

AGROVOLTAICO CANDELA - COMUNI DI CANDELA E ASCOLI SATRIANO (FG)

PROGETTO DEFINITIVO

Autorizzazione Unica ai sensi del D.Lgs. 29 dicembre 2003, n. 387 per un impianto agrovoltaico di superficie pari a 136ha costituito da olivo, vite, officinali, orticole e foraggere integrate ad un impianto fotovoltaico con tracker monoassiali (78 MWp) sito nel Comune di Candela (FG) e Ascoli Satriano (FG)

R.9	Disciplin
CODICE ELABORATO:	TITOLO ELABORATO:

A4

FORMATO:

Disciplinare descrittivo e prestazionale degli elementi tecnici

PROPONENTE:

SCALA:

ARGOS S.R.L.

Via Guido d'Arezzo 15 - 20145 Milano (MI) C.F. e P.IVA 02377660564 argos.srls@legalmail.it

AMMINISTRATORE

Filiberto Fons Francesc

PROGETTISTA:

Studio Santi srl con socio unico

Via Enrico Fermi n. 46 - 00058 Santa Marinella (RM) www.studiosanti.eu - info@studiosanti.eu tel +39 0766 53 68 98

Ing. Federico Santi Ordine degli Ingegneri di Roma N. A20930

Ing. Mauro Di Prete Ordine degli Ingegneri di Roma N. A14624

Istituto LR.I.D.F. Srl. Via Cristoforo Colombo 163 - 00147 Roma www.istituto-iride.com - iride@pec.istituto-iride.com Tel +39 06 51606033

REV.	DATA	STATO	PREPARATO	RIESAMINATO	APPROVATO
00	05-07-2023	PRIMA EMISSIONE	Fio. CASTELLANI	Fra. CASTELLANI	F. SANTI

Questo documento o parte di esso non può essere riprodotto, salvato, trasmesso, riutilizzato in altri progetti in alcuna forma sia essa elettronica, meccanica, fotografica senza la preventiva autorizzazione di Studio Santi srl. Le informazioni contenute nel presente documento sono da intendersi valide limitatamente all'oggetto del documento stesso. Altre informazioni sono da ritenersi non valide ai fini dell'esecuzione. Le informazioni riportate nel presente documento non sono da intendersi "shop drawing" e pertanto l'esecutore delle opere dovrà verificare in campo quanto necessario per l'acquisto dei materiali.

Autorizzazione Unica ai sensi del D.Lgs. 29 dicembre 2003, n. 387 per un impianto agrovoltaico di superficie pari a 136ha costituito da olivo, vite, officinali, orticole e foraggere integrate ad un impianto fotovoltaico con tracker monoassiali (78 MWp) sito in Candela (FG) e Ascoli Satriano (FG)

R.9 – Disciplinare descrittivo e prestazionale degli elementi tecnici

Sommario

1	PREI	MESSA							
2	DES	CRIZI	ONE SOMMARIA DELL'IMPIANTO	3					
3	PRIN	ICIP/	ALI ELEMENTI TECNICI	. 4					
	3.1	Moduli fotovoltaici							
	3.2	Con	vertitori di potenza e centri di trasformazione	. 6					
	3.3	Stru	tture di sostegno	10					
	3.4	Cavi	i e quadri di campo	11					
	3.4.2	1	Cavi DC	11					
	3.4.2	2	Cavi esterni e interrati	12					
	3.4.3	3	Cavi AC BT	12					
	3.4.4	4	Cavi AC MT	12					
	3.4.5	5	Quadri di parallelo di stringa (string box)	12					
	3.4.6	3.4.6 Quadri MT							
	3.4.7	7	Elettrodotto e SSE AT	14					
	3.5	Siste	emi ausiliari	15					
	3.5.2	1	Videosorveglianza	15					
	3.5.2	2	Illuminazione	16					
	3.6	Sicu	rezza elettrica	17					
	3.7	Protezione contro i contatti diretti							
	3.8	Protezione contro i contatti diretti							
	3.9	Protezione contro i contatti indiretti							
	3.10	Coll	egamento alla Rete di Trasmissione Nazionale	21					
	3.11	Gestione dell'impianto							

Autorizzazione Unica ai sensi del D.Lgs. 29 dicembre 2003, n. 387 per un impianto agrovoltaico di superficie pari a 136ha costituito da olivo, vite, officinali, orticole e foraggere integrate ad un impianto fotovoltaico con tracker monoassiali (78 MWp) sito in Candela (FG) e Ascoli Satriano (FG)

R.9 – Disciplinare descrittivo e prestazionale degli elementi tecnici

1 PREMESSA

L'impianto di produzione di energia elettrica da fonte fotovoltaica è ubicato nel Comune di Candela (FG) e si connette con la SE RTN Camerelle nel Comune di Ascoli Satriano, tramite cavidotto interrato di circa 9 km nei due comuni. Oltre al gruppo di generazione/conversione è prevista la realizzazione di una rete di cavidotti interrati MT, da una sottostazione elettrica di trasformazione (SET) ed il collegamento in AT con la stazione Terna Camerelle.

La presente relazione ha lo scopo di descrivere i principali elementi dell'opera da un punto di vista tecnico e prestazionale, i quali saranno poi approfonditi in sede di progettazione esecutiva. Gli elementi qui analizzati sono relativi al solo impianto fotovoltaico; la parte relativa al progetto agronomico è definita nella specifica Relazione Agronomica.

2 DESCRIZIONE SOMMARIA DELL'IMPIANTO

Il progetto prevede la realizzazione di un impianto da 78 MWp per la produzione di energia elettrica mediante tecnologia fotovoltaica, comprensivo di relative opere di connessione ed infrastrutture annesse.

L'impianto, denominato AGRIVOLTAICO CANDELA, è dotato di inseguitori monoassiali orientati nord-sud, installati a terra e integrati alle attività agricole dell'area, connesso alla rete in AT.

L'impianto è costituito dai seguenti elementi principali:

- n. 1.653 inseguitori monoassiali da 56 moduli ciascuno;
- n. 587 inseguitori monoassiali da 28 moduli ciascuno;
- n. 594 inseguitori monoassiali da 14 moduli ciascuno;
- n. 177.320 moduli fotovoltaici bifacciali in silicio monocristallino, potenza di picco 665 Wp/cad;
- n. 42 inverter installati in campo, connessi allo smistamento MT;
- cavidotto interrato in MT di collegamento tra gli inverter in campo e lo smistamento MT;
- n. 1 SSE AT con n. 1 trasformatore elevatore MT/AT;
- cavidotto interrato in AT di collegamento fra il sito e la Stazione Terna (9 km);
- viabilità interna al sito, in granulare misto stabilizzato, per le operazioni di costruzione e manutenzione dell'impianto e per il passaggio dei cavidotti interrati BT e MT;
- rete telematica di monitoraggio interna per il controllo dell'impianto mediante trasmissione dati via modem o tramite comune linea telefonica;
- recinzione e impianto di videosorveglianza perimetrale.

Tutti gli elementi sono ampiamente descritti negli elaborati grafici.

3 PRINCIPALI ELEMENTI TECNICI

3.1 Moduli fotovoltaici

Per la progettazione dell'impianto il modulo fotovoltaico scelto è bifacciale in silicio monocristallino ed ha una potenza di picco di 665 Wp. Il modello preso a riferimento è il TRINA Vertex TSM-DEG21C.20 665 Wp o similari.

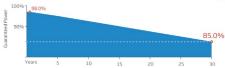
La scelta è motivata dalla elevata potenza specifica del modulo e dalle ottimali caratteristiche di rendimento in diverse condizioni ambientali e nel tempo; la scelta definitiva sarà effettuata nella fase di avvio della costruzione in base alle disponibilità di mercato del momento ed ai più recenti sviluppi tecnologici.

- Lowest guaranteed first year and annual degradation;
- Designed for compatibility with existing mainstream system components

High power up to 665W

- Up to 21.4% module efficiency with high density interconnect technology
- Multi-busbar technology for better light trapping effect, lower series resistance and improved current collection

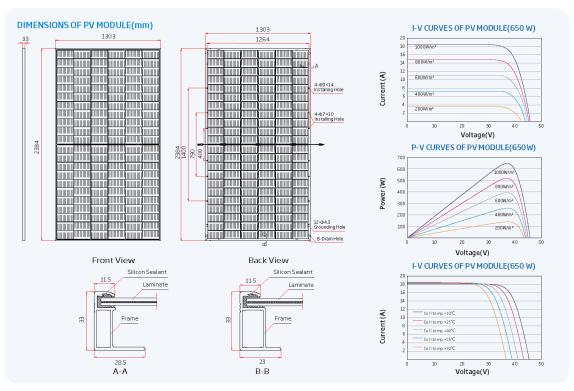
High reliability


- Minimized micro-cracks with innovative non-destructive cutting technology
- Ensured PID resistance through cell process and module material control
- Resistant to harsh environments such as salt, ammonia, sand, high temperature and high humidity areas
- Mechanical performance up to 5400 Pa positive load and 2400 Pa negative load

High energy yield

- Excellent IAM (Incident Angle Modifier) and low irradiation
- performance, validated by 3rd party certifications
- The unique design provides optimized energy production under inter-row shading conditions
- Lower temperature coefficient (-0.34%) and operating temperature
- Up to 25% additional power gain from back side depending on albedo

Trina Solar's Vertex Bifacial Dual Glass Performance Warranty


Comprehensive Products and System Certificates

IEC61215/IEC61730/IEC61701/IEC62716/UL61730 ISO 9001: Quality Management System
ISO 14001: Environmental Management System
ISO 14001: Environmental Management System
ISO14064: Greenhouse Gases Emissions Verification
ISO45001: Occupational Health and Safety Management System

ELECTRICAL DATA (STC)

Peak Power Watts-Pmax(Wp)*	645	650	655	660	665
Power Tolerance-PMAX (W)			0 ~ +5		
Maximum Power Voltage-VMPP (V)	37.5	37.7	37.9	38.1	38.3
Maximum Power Current-IMPP (A)	17.23	17.27	17.31	17.35	17.39
Open Circuit Voltage-Voc(V)	45.3	45.5	45.7	45.9	46.1
Short Circuit Current-Isc(A)	18.31	18.35	18.40	18.45	18.50
Module Efficiency ₁₁ m (%)	20.8	20.9	21.1	21.2	21.4
STC: Irrdiance 1000W/m2. Cell Temperature 25°C. Air Mass AM1.5. *Measuring tolerance: ±3%.					

Electrical characteristics with different power bin (reference to 10% Irradiance ratio)

Total Equivalent power -PMAX (Wp)	690	696	701	706	712
Maximum Power Voltage-VMPP (V)	37.5	37.7	37.9	38.1	38.3
Maximum Power Current-IMPP (A)	18.44	18.48	18.52	18.56	18.60
Open Circuit Voltage-Voc (V)	45.3	45.5	45.7	45.9	46.1
Short Circuit Current-Isc (A)	19.59	19.63	19.69	19.74	19.79
Irradiance ratio (rear/front)			10%		

Power Bifaciality:70±5%.

ELECTRICAL DATA (NOCT)					
Maximum Power-PMAX (Wp)	488	492	495	499	504
Maximum Power Voltage-VMPP (V)	34.9	35.1	35.2	35.4	35.6
Maximum Power Current-IMPP (A)	13.98	14.01	14.05	14.10	14.16
Open Circuit Voltage-Voc (V)	42.7	42.9	43.0	43.2	43.4
Short Circuit Current-Isc (A)	14.75	14.79	14.83	14.87	14.91

MECHANICAL DATA

MECHANICAE DATA			
Solar Cells	Monocrystalline		
No. of cells	192 cells		
Module Dimensions	2384×1303×33 mm (93.86×51.30×1.30 inches)		
Weight	38.3 kg (84.4 lb)		
Front Glass	2.0 mm (0.08 in ches), High Transmission, AR Coated Heat Strengthened Glass		
Encapsulant material	POE/EVA		
Back Glass	2.0 mm (0.08 inches), Heat Strengthened Glass (White Grid Glass)		
Frame	33mm(1.30inches) Anodized Aluminium Alloy		
J-Box	IP 68 rated		
Cables	Photovoltaic Technology Cable 4.0mm² (0.006 inches²), Portrait: 350/280 mm(13.78/11.02 inches) Length can be customized		
Connector	MC4 EV02/TS4*		
*Please refer to regional datasheet for specified connector.			

*Please refer to regional datasheet for specified connects

TEMPERATURE RATINGS

NOCT (Nominal Operating Cell Temperature)	43°C(±2°C)
Temperature Coefficient of PMAX	- 0.34%/°C
Temperature Coefficient of Voc	- 0.25%/°C
Temperature Coefficient of Isc	0.04%/°C

MAXIMUMRATINGS

Operational Temperature	-40~+85℃
Maximum System Voltage	1500V DC (IEC)
	1500V DC(UL)
Max Series Fuse Rating	35A

WARRANT

WARRANTY				
12 year Product Workmanship Warranty				
30 year Power Warranty				
2% first year degradation				
O 45% Applial Power Attenuation				

PACKAGING CONFIGUREATION

Modules per box: 33 pieces Modules per 40' container: 594 pieces

CAUTION: READ SAFETY AND INSTALLATION INSTRUCTIONS BEFORE USING THE PRODUCT.

© 2022 Trina Solar Co.,Ltd, All rights reserved, Specifications included in this datasheet are subject to change without notice.

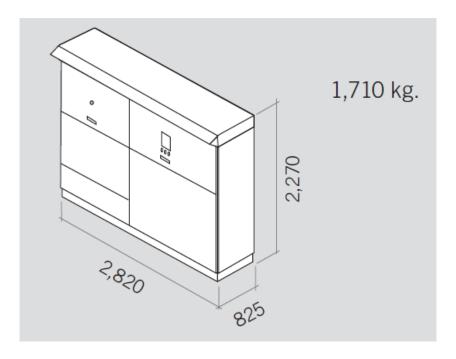
Version number: TSM_EN_2022_A www.trinasolar.com

3.2 Convertitori di potenza e centri di trasformazione

L'impianto è dotato di inverter della INGETEAM – modello Ingecon o similari con le caratteristiche elettriche del tipo di seguito elencate:

	1170TL B450	1400TL B540	1500TL B578	1560TL B600	1600TL B615
Input (DC)					
Recommended PV array power range(1)	1,157 - 1520 kWp	1,389 - 1,824 kWp	1,487 - 1,952 kWp	1,543 - 2,026 kWp	1,582 - 2,077 kWp
Voltage Range MPP ⁽²⁾	645 - 1,300 V	769 - 1,300 V	822 - 1,300 V	853 - 1,300 V	873 - 1,300 V
Maximum voltage ⁽³⁾			1,500 V		
Maximum current			1,870 A		
Nº inputs with fuse holders		6 up 1	to 15 (up to 12 with the combin	ner box)	
Fuse dimensions		63 A / 1,	500 V to 500 A / 1,500 V fuse	s (optional)	
Type of connection			Connection to copper bars		
Power blocks			1		
MPPT			1		
Max. current at each input		From 40	A to 350 A for positive and neg	gative poles	
Input protections					
Overvoltage protections		Туре	Il surge arresters (type I+II op	otional)	
DC switch		M	otorized DC load break discon	nect	
Other protections	Up to 15 pairs	s of DC fuses (optional) / Insu	lation failure monitoring / Anti-	islanding protection / Emergen	icy pushbutton
Output (AC)					
Power IP54 @30 °C / @50 °C	1,169 kVA / 1,052 kVA	1,403 kVA / 1,263 kVA	1,502 kVA / 1,352 kVA	1,559 kVA / 1,403 kVA	1,598 kVA / 1,438 kV
Current IP54 @30 °C / @50 °C			1,500 A / 1,350 A		
Power IP56 @27 °C / @50 °C(4)	1,169 kVA / 1,035 kVA	1,403 kVA / 1,242 kVA	1,502 kVA / 1,330 kVA	1,559 kVA / 1,380 kVA	1,598 kVA / 1,415 kV
Current IP56 @ 27°C / @ 50°C ⁽⁴⁾			1,500 A / 1,328 A		
Rated voltage ⁽⁵⁾	450 V IT System	540 V IT System	578 V IT System	600 V IT System	615 V IT System
Frequency			50 / 60 Hz		
Power Factor adjustable			Yes, 0-1 (leading / lagging)		
THD (Total Harmonic Distortion) ¹⁵⁾			<3%		
Output protections					
Overvoltage protections			Type II surge arresters		
AC breaker			Motorized AC circuit breaker		
Anti-islanding protection	Yes, with automatic disconnection				
Other protections	AC short circuits and overloads				
Features					
Maximum efficiency			98.9%		
Euroefficiency			98.5%		
Max. consumption aux. services	4,700 W (25 A)				
Stand-by or night consumption ⁽⁷⁾	90 W				
Average power consumption per day	2,000 W				

Autorizzazione Unica ai sensi del D.Lgs. 29 dicembre 2003, n. 387 per un impianto agrovoltaico di superficie pari a 136ha costituito da olivo, vite, officinali, orticole e foraggere integrate ad un impianto fotovoltaico con tracker monoassiali (78 MWp) sito in Candela (FG) e Ascoli Satriano (FG)


R.9 – Disciplinare descrittivo e prestazionale degli elementi tecnici

General Information	
Ambient temperature	-20 °C to +57 °C
Relative humidity (non-condensing)	0 - 100%
Protection class	IP54 (IP56 with the sand trap kit)
Corrosion protection	External corrosion protection
Maximum altitude	4,500 m (for installations beyond 1,000 m, please contact Ingeteam's solar sales department)
Cooling system	Air forced with temperature control (230 V phase + neutral power supply)
Air flow range	0 - 7,800 m³/h
Average air flow	4,200 m³/h
Acoustic emission (100% / 50% load)	<66 dB(A) at 10m / <54.5 dB(A) at 10m
Marking	CE
EMC and security standards	IEC 62920, IEC 61000-6-1, IEC 61000-6-2, IEC 61000-6-4, IEC 61000-3-11, IEC 61000-3-12, IEC 62109-1, IEC 62109-2, EN 50178, FCC Part 15, AS3100
Grid connection standards	IEC 62116, EN 50530, IEC 61683, EU 631/2016 (EN 50549-2, P.O.12.2, CEI 0-16, VDE AR N 4120), G99, South African Grid code, Mexican Grid Code, Chilean Grid Code, Ecuadorian Grid Code, Peruvian Grid code, Thailand PEA requirements, IEC61727, UNE 206007-1, ABNT NBR 16149, ABNT NBR 16150, IEEE 1547, IEEE1547.1, DEWA (Dubai) Grid code, Abu Dhabi Grid Code, Jordan Grid Code, Egyptian Grid Code, Saudi Arabia Grid Code, RETIE Colombia, Australian Grid Code

Notes: (1) Depending on the type of installation and geographical location. Data for STC conditions (2) Vmpp.min is for rated conditions (Vac=1 p.u. and Power Factor=1) and floating systems (2) Consider the voltage increase of the "Voc" at low temperatures (4) With the sand trap kit (3) Other AC voltages and powers available upon request (4) For Pout>25% of the rated power and voltage in accordance with IEC 61000-3-4 (7) Consumption from PV field when there is PV power available.

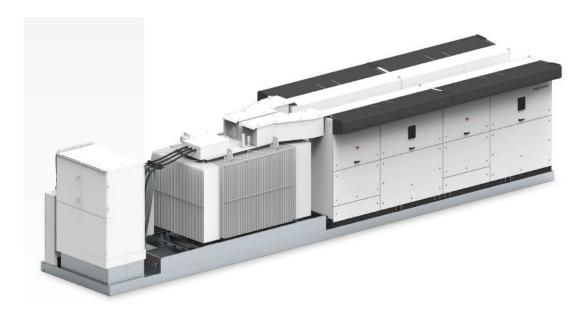
La potenza nominale di ciascun inverter è di taglio variabile tra 500 - 1000 - 1500 - 2000 kVA in modo di rispettare quanto previsto dalla STMG mantenendo una potenza massima di immissione in rete pari a 75.5 MW.

Dal punto di vista geometrico, un inverter presenta le seguenti dimensioni:

R.9 – Disciplinare descrittivo e prestazionale degli elementi tecnici

Le cabine di campo (Skid) sono costituite dalle seguenti componenti principali:

- 1. Inverter;
- 2. Trasformatore;
- 3. Quadri di media tensione;
- 4. Quadri di bassa tensione;
- 5. Trasformatore per servizi ausiliari;

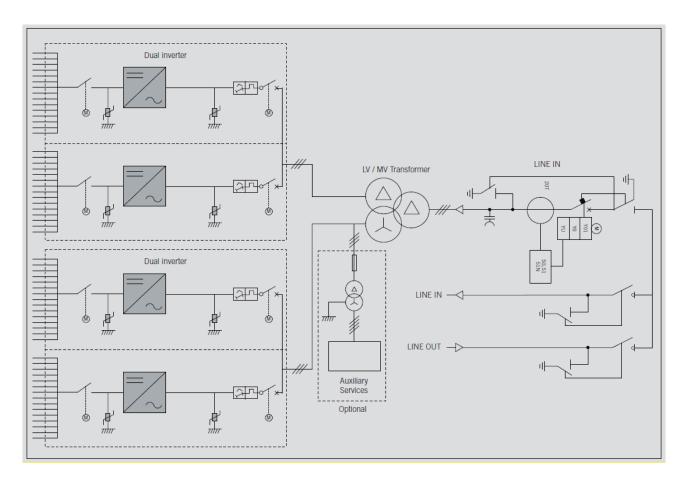

Tali componenti sono posizionati su una piattaforma in calcestruzzo e sono di tipo outdoor ossia non necessitano di essere protetti dalle azioni atmosferiche in quanto presentano un grado di protezione tale da garantirne il funzionamento anche in caso di pioggia diretta.

La cabina di campo, prodotta dalla INGETEAM, modello Ingecon FSK B Series o similari, presenta le seguenti caratteristiche:

Autorizzazione Unica ai sensi del D.Lgs. 29 dicembre 2003, n. 387 per un impianto agrovoltaico di superficie pari a 136ha costituito da olivo, vite, officinali, orticole e foraggere integrate ad un impianto fotovoltaico con tracker monoassiali (78 MWp) sito in Candela (FG) e Ascoli Satriano (FG)

R.9 – Disciplinare descrittivo e prestazionale degli elementi tecnici

	1800 FSK B Series	3600 FSK B Series	5400 FSK B Series	7200 FSK B Series
General data				
Number of inverters	1	2	3	4
Max. power @30 °C / 86 °F(1)	1,793 kVA	3,586 kVA	5,379 kVA	7,172 kVA
Operating temperature range	from -20 °C to +50 °C			
Relative humidity (non-condensing)		0 - 1	.00%	
Maximum altitude		3,000 masl (power derati	ing starting at 1,000 masl)	
LV / MV Transformer				
Medium voltage		From 20 kV up to	35 kV, 50-60 Hz	
Cooling system		ON	IAN	
Minimum PEI (Peak Efficiency Index)(2)		99.	40%	
Protection degree	IP54			
MV Switchgear				
Medium voltage	24 kV / 36 kV / 40.5 kV			
Rated current	630 A			
Cooling system	Natural air ventilation			
Protection degree	IP54			
Equipment				
LV-AUX Switchgear	Standard version (optional monitoring system)			
LV / MV Transformer	Oil-immersed hermetically sealed transformer			
MV Switchgear	1L1A cells (2L1A optional)			
Mechanical information				
Structure type	Hot dip galvanized steel skid			
Dimensions Full Skid (W x D x H)	8,570 x 2,100 x 2,460 mm	11,390 x 2,100 x 2,460 mm	11,390 x 2,100 x 2,460 mm	11,390 x 2,100 x 2,460 mm
Full Skid	13 T	16 T	19 T	25 T
Standards	IEC 62271-212, IEC 62271-200, IEC 60076, IEC 61439-1			



Dal punto di vista costruttivo le CT sono caratterizzate da un design compatto tale da facilitarne il trasporto e minimizzare il lavoro di installazione sul sito.

Costruttivamente presentano un telaio in acciaio adatto per essere posizionato su una soletta in calcestruzzo, da realizzare in opera.

Il trasformatore di media tensione è in olio, sigillato ermeticamente, è comunque fornito di vasca di ritenzione per le eventuali perdite dello stesso olio. Sono inoltre dotate di trasformatore da 400 V per i servizi ausiliari, di una stazione meteo e di un sistema di comunicazione remota.

Dal punto di vista ambientale presentano un range di funzionamento compreso fra -20 ºC e +50 ºC. Dal punto di vista della configurazione elettrica la CT è riassunta nello seguente schema (versione con 4 inverter):

3.3 Strutture di sostegno

L'impianto fotovoltaico è realizzato mediante sistema ad inseguimento monoassiale nord-sud, in modo tale da garantire una produzione ottimale. Il sistema di inseguimento è realizzato mediante telai ancorati al suolo tramite pali ad infissione diretta tramite macchina battipali. In questo modo si evita l'uso di calcestruzzo o plinti di fondazione. I telai di sostegno, realizzati in acciaio e alluminio, sono in grado di sostenere 56 o 28 o 14 moduli fotovoltaici, disposti in verticale su unica fila e disposti ad una distanza di 5,6 m l'uno dall'altro in maniera da lasciare spazio libero sufficiente alle attività agronomiche (circa 3,2 m con inclinazione 0°, circa 4 m con inclinazione 55°).

Il tracker è in grado di orientare i moduli in un range da +/- 55° a seconda della posizione del sole e della velocità del vento. I singoli tracker sono dotati di un PLC in grado di autorientarsi, basandosi su orologio astronomico, oltre ad essere programmato con un software in grado di ottimizzare gli ombreggiamenti reciproci dei tracker, tipicamente la mattina e la sera. Si riportano di seguito immagini esemplificative.

3.4 Cavi e quadri di campo

Presso ciascuna PS sarà installato un quadro di parallelo in bassa tensione per protezione dell'interconnessione tra gli inverter e il trasformatore, prefabbricato dal produttore delle power station. Il quadro consentirà il sezionamento delle singole sezioni di impianto afferenti al trasformatore e le necessarie protezioni alle linee elettriche.

3.4.1 Cavi DC

Il collegamento tra le varie stringhe e gli string box avviene con cavi unipolari adatti ad impianti fotovoltaici. Ogni stringa è composta da 28 moduli; ciascuno modulo presenta una portata massima di 17.39 A. Il cavo utilizzato è un cavo solare, del tipo H1Z2Z2 con sezione indicativa di 4 mm².

Per quanto riguarda i collegamenti dagli string box al quadro di parallelo si rimanda agli schemi unifilari.

Autorizzazione Unica ai sensi del D.Lgs. 29 dicembre 2003, n. 387 per un impianto agrovoltaico di superficie pari a 136ha costituito da olivo, vite, officinali, orticole e foraggere integrate ad un impianto fotovoltaico con tracker monoassiali (78 MWp) sito in Candela (FG) e Ascoli Satriano (FG)

R.9 – Disciplinare descrittivo e prestazionale degli elementi tecnici

3.4.2 Cavi esterni e interrati

In generale, per tutte le linee elettriche, si prevede la posa direttamente interrata dei cavi, senza ulteriori protezioni meccaniche, ad una profondità indicativa di 1,10 m dal piano di calpestio.

In caso di particolari attraversamenti o di risoluzione puntuale di interferenze, le modalità di posa saranno modificate in conformità a quanto previsto dalla norma CEI 11-17 e dagli eventuali regolamenti vigenti relativi alle opere interferite, mantenendo comunque un grado di protezione delle linee non inferiore a quanto garantito dalle normali condizioni di posa.

Per il dettaglio dei tipologici di posa, si rimanda agli elaborati.

3.4.3 Cavi AC BT

I cavi di AC di Bassa Tensione verranno utilizzati per collegare l'inverter al trasformatore. In generale, i cavi saranno resistenti all'assorbimento d'acqua, al freddo, ai raggi UV, agli agenti chimici, ai grassi o agli oli, all'abrasione e agli urti. Il conduttore sarà in rame, avrà una flessibilità di classe 5, avrà isolamento XLPE o HEPR, schermo metallico e rivestimento esterno in poliolefina, di tipo FG16.

3.4.4 Cavi AC MT

Il presente progetto prevede la realizzazione di una rete di cavidotti in MT per la connessione delle cabine di impianto, a partire dal punto di consegna presso la Cabina SSE verso la cabina principale di impianto MTR, e da questa, secondo una distribuzione ad anello chiuso, verso tutte le cabine presenti nell'impianto. Analogamente, sarà realizzata una rete di cavidotti in BT per il collegamento dalle cabine agli stringbox e per il collegamento degli stringbox alle stringhe.

Tutti i cavi saranno idonei alle tipologie di posa, e conformi alle normative vigenti, con particolare riferimento alle norme CEI e alla direttiva cavi CPR.

3.4.5 Quadri di parallelo di stringa (string box)

Le stringhe verranno collegate alle string box modello Combiner Box Ingeteam o similari ubicate su appositi supporti alloggiati sotto le strutture, protetti da agenti atmosferici, e saranno realizzati in policarbonato ignifugo, dotato di guarnizioni a tenuta stagna grado isolamento IP65 cercando di minimizzare le lunghezze dei cavi di connessione.

R.9 – Disciplinare descrittivo e prestazionale degli elementi tecnici

La scatola di stringhe serve anche come protezione contro le sovracorrenti inverse attraverso i fusibili installati sia sul polo positivo che sul polo negativo. Al suo interno sono poi installati gli scaricatori di sovratensioni e un sezionatore del carico all'uscita. Le scatole devono essere dotate di un sistema di monitoraggio della corrente di stringa, che deve rilevare i guasti con i relativi segnali di allarme. Le caratteristiche principali sono:

- Tensione massima: 1500V
- Numero di quadri parallelo CC per ogni sottocampo: mediamente 8

Protezioni:

- Fusibili in polo positivo e negativo.
- Scaricatori di sovratensione di tipo II
- Interruttore di carico
- Monitoraggio di ogni due stringhe.

3.4.6 Quadri MT

Gli scomparti di Media Tensione tali da essere adattati alle esigenze di ogni specifica CT. In tutti i casi viene utilizzato un quadro metallico gas-isolato, fabbricato secondo la norma IEC 62271-200. Le principali caratteristiche tecniche, basate sulla tensione di isolamento richiesta, sono le seguenti:

- Capacità di interruzione 16 kA 1 s.
- Connettori plug-in di tipo C DIN EN 50181.
- Funzionamento a sicurezza intrinseca tramite interblocchi.
- Interblocco aggiuntivo per l'accesso alla stanza del trasformatore.
- Protezione opzionale con fusibile disponibile fino a 2330 kVA (verificare le condizioni climatiche).
- Protezione opzionale dell'interruttore automatico con funzione 50/51 50 / 51N e relè di protezione autoalimentato disponibile nell'intera gamma di potenza.
- IP65 per le parti isolate a gas.
- Intervallo di temperatura standard: da -25 ° C a +40 ° C.
- Indicatori di presenza tensione e visualizzazione pressione gas.

3.4.7 Elettrodotto e SSE AT

La stazione di elevazione di utenza SEU si connette in alta tensione a 150 kV alla SSE RTN Camerelle. La stazione di elevazione di utenza sorge a ridosso del campo fotovoltaico e l'elettrodotto è realizzato in interrato su terreno come meglio specificato nella relativa tavola.

La lunghezza del tratto in AT è pari a circa 9000 metri.

Il cavo utilizzato è di tipo XLPE / Composito, largamente usato per per sistemi fino a 150 kV che presenta una buona resistenza radiale alla penetrazione di umidità.

XDRCU-AL 220/127 kV

Le caratteristiche del conduttore tipo sono riportate nella tabella sottostante

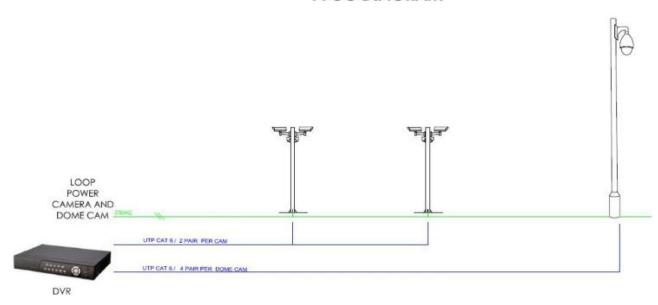
Copper of cross-s	onductor section	Outer diameter approx.	Cable weight appox.	Capacitance	Impedance (90°C, 50 Hz)	Surge impedance	Min. bending radius	Max. pulling force
mm²	kcmil	mm	kg/m	μF/km	Ω/km	Ω	mm	kN
300	600	99	12	0.11	0.25	59	2000	18
500	1000	99	13	0.13	0.23	54	2000	30
630	1250	100	15	0.15	0.22	51	2000	38
800	1600	105	17	0.18	0.20	46	2100	48
1000	2000	111	20	0.19	0.19	44	2250	60
1200	2400	112	22	0.22	0.19	41	2250	72
1400	2750	115	24	0.22	0.18	40	2300	84
1600	3200	116	26	0.25	0.18	38	2350	96
2000	4000	119	30	0.27	0.17	36	2400	120
2500	5000	129	37	0.28	0.17	34	2600	150

		Buried in soil	Buried in soil	Buried in soil	Buried in soil	In free air	In free air
				•••	•••		•••
Lo	ad Factor	0.7	1.0	0.7	1.0	-	-
mm ²	kcmil	Α	Α	А	А	Α	Α
300	600	670	571	714	621	707	768
500	1000	877	739	945	813	944	1038
630	1250	1001	838	1090	930	1092	1213
800	1600	1130	939	1241	1051	1252	1405
1000	2000	1339	1106	1462	1231	1508	1687
1200	2400	1450	1192	1595	1336	1651	1863
1400	2750	1561	1280	1725	1440	1791	2031
1600	3200	1657	1353	1847	1536	1919	2195
2000	4000	1824	1482	2060	1703	2147	2490
2500	5000	2002	1618	2282	1876	2397	2815

3.5 Sistemi ausiliari

3.5.1 Videosorveglianza

Verrà installato un Sistema di videosorveglianza (CCTV) che in tempo reale rileverà ogni presenza in campo. Questo sistema sarà autonomo e sarà gestito da un server web integrato o da un sistema equivalente. Tutti i canali TVCC verranno registrati sul disco rigido e la connessione dei registratori sarà IP. Le videocamere saranno di tipo termico analogico, che diventerà digitale per essere in grado di trasmettere il segnale attraverso la fibra ottica. Saranno per uso esterno e con raggio massimo 200 metri. Saranno idonee per installazioni esterne, a prova di corrosione, acqua, polvere e annebbiamento della lente.


Le telecamere saranno installate su pali ad una altezza sul livello del terreno tale da evitare ostacoli. Permetteranno anche il cambio automatico del colore in bianco e nero quando le condizioni di luce sono basse.

Gli obiettivi delle telecamere garantiranno immagini chiare e ben delineate, in modo che i sistemi di lenti siano progettati, dimensionati e configurati per operare nelle aree in cui saranno posizionate le telecamere, tenendo conto della luminosità del luogo, dello zoom e le distanze minima e massima tra gli oggetti da registrare e la fotocamera.

Durante la costruzione sono considerate necessarie misure di sicurezza aggiuntive, nonostante la recinzione di sicurezza perimetrale, attraverso la sorveglianza permanente.

Si riporta di seguito uno schema esemplificativo.

TVCC DIAGRAM

Autorizzazione Unica ai sensi del D.Lgs. 29 dicembre 2003, n. 387 per un impianto agrovoltaico di superficie pari a 136ha costituito da olivo, vite, officinali, orticole e foraggere integrate ad un impianto fotovoltaico con tracker monoassiali (78 MWp) sito in Candela (FG) e Ascoli Satriano (FG)

R.9 – Disciplinare descrittivo e prestazionale degli elementi tecnici

3.5.2 Illuminazione

Dove è necessario utilizzare gli apparecchi saranno installati almeno due punti luce in grado di fornire un livello sufficiente di illuminazione per il controllo e la manovra delle apparecchiature. Il livello medio sarà di almeno 150 lux. Inoltre, le luci di emergenza verranno installate in base alle seguenti specifiche:

• Tipo: non permanente

Autonomia: 1 ora

• Flusso luminoso: 150 lm

• Batteria Ni-Cd: 3,6 V - 1,5 A/h

• Involucro conforme alla norma UNE-EN 60598-1: 2015

• Indicatore di carica della batteria a LED

• Batterie al nichel-cadmio ad alta temperatura protette contro le sovracorrenti

Rete 230V-50Hz

• Connessione del telecomando protetta, con possibilità di test con tensione e reset e riaccensione senza rete

Adatto per il montaggio su superfici infiammabili.

Sicurezza elettrica 3.6

L'impianto di produzione, dovendo sottostare alle prescrizioni del codice delle reti del distributore, deve rimanere connesso e in parallelo alla rete AT in ogni condizione di carico. Per questo motivo la Stazione di Elevazione di Utenza deve garantire i servizi di rete richiesti, per valori di tensione nel punto di consegna, compresi nel seguente intervallo:

Riguardo all'esercizio in parallelo con la rete AT in funzione della freguenza, l'impianto dovrà rimanere connesso alla rete per un tempo indefinito, per valori di frequenza compresi nel seguente intervallo:

$$47,5 \text{ Hz} \le f \le 51,5 \text{ Hz}$$

Il sistema di protezione dell'impianto include gli apparati di norma dedicati alla protezione dell'impianto stesso e della rete sia per i guasti interni sia per i guasti esterni all'impianto. La taratura delle protezioni contro i suddetti guasti prevede un coordinamento con le altre protezioni di rete e deve essere tale da garantire il funzionamento dell'impianto nei limiti previsti dal codice di rete. Per quanto riguarda invece le tarature delle protezioni contro i guasti interni, il produttore le concorda con il gestore della rete preliminarmente all'entrata in servizio dell'impianto di produzione di energia fotovoltaica.

Relativamente invece alle protezioni contro i guasti esterni di seguito si riportano le tipologie di protezione sensibili ai guasti esterni con i relativi campi di regolazione, da installare sui montanti dell'impianto d'utenza.

PROTEZIONI DI RETE DA INSTALLARE NELL'IMPIANTO DI UTENZA LATO AT				
PROTEZIONE	CAMPI DI REGOLAZIONE			
	Soglia	Ritardo		
Massima tensione a 2 soglie (59)	1 ÷ 1,5 VN	0 ÷ 10 s		
Minima tensione (27)	0,3 ÷ 1 VN	0 ÷ 10 s		
Massima frequenza a 2 soglie (81>)	50 ÷ 53 Hz	0 ÷ 10 s		
Minima frequenza a 2 soglie (81<)	45 ÷ 50 Hz	0 ÷ 10 s		
Massima tensione omopolare a 2 soglie (59N)	0,05 ÷ 1 VO MAX	0 ÷ 10 s		

PROTEZIONI DELLA CENTRALE FOTOVOLTAICA DA INSTALLARE SUI MONTANTI IN C.A. A BORDO DEGLI INVERTER				
PROTEZIONE	CAMPI DI REGOLAZIONE	CAMPI DI REGOLAZIONE		
	Soglia	Ritardo		
Massima tensione a 2 soglie (59)	1 ÷ 1,3 VN	0 ÷ 10 s		
Minima tensione (27)	0,3 ÷ 1 VN	0 ÷ 10 s		
Massima frequenza a 2 soglie (81>)	50 ÷ 53 Hz	0 ÷ 10 s		
Minima frequenza a 2 soglie (81<)	45 ÷ 50 Hz	0 ÷ 10 s		

Inoltre l'impianto di produzione è in grado di ricevere comandi di apertura degli interruttori AT provenienti dall'impianto di consegna associato.

Relativamente alle tarature delle protezioni, i valori sono:

PROTEZIONE DI MINIMA TENSIONE RETE (27)	
Alimentazione	Tensioni concatenate di rete
Soglia di intervento	Tensione pari a 80% di VnR dove VnR è la tensione nominale della rete

Autorizzazione Unica ai sensi del D.Lgs. 29 dicembre 2003, n. 387 per un impianto agrovoltaico di superficie pari a 136ha costituito da olivo, vite, officinali, orticole e foraggere integrate ad un impianto fotovoltaico con tracker monoassiali (78 MWp) sito in Candela (FG) e Ascoli Satriano (FG)

R.9 – Disciplinare descrittivo e prestazionale degli elementi tecnici

Ritardo	0,6 s
Azione	Scatto del trasformatore elevatore MT/AT lato AT

PROTEZIONE DI MASSIMA TENSIONE OMOPOLAR	RE RETE (59N)
La protezione è dedicata al rilievo dei guasti fase-terra	a.
Alimentazione:	Tensioni residua di rete
1ª soglia di intervento	Tensione pari a 10% di V RES MAX dove V RES MAX = 3V0 è la tensione residua riscontrabile nella rete AT per corto circuito monofase a terra
Ritardo 1ª soglia	0,6÷1,2 s
2ª soglia di intervento	Tensione pari a 70% di V RES MAX
Ritardo 2ª soglia	0,1 s
Azione	Scatto del trasformatore elevatore MT/AT lato AT

PROTEZIONE DI MINIMA FREQUENZA RETE (81<)			
La protezione è dedicata al rilievo delle situazioni di sottofrequenza.			
Alimentazione:	Tensioni concatenate di rete		
1ª soglia di intervento	Frequenza pari a 47,5 Hz		
Ritardo 1ª soglia	4,0 s		
2ª soglia di intervento	Frequenza pari a 46,5 Hz		
Ritardo 2ª soglia	0,1 s		
Azione:	Scatto del trasformatore elevatore MT/AT lato AT		
PROTEZIONE DI MASSIMA FREQUENZA RETE (81>)			
La protezione è dedicata al rilievo delle situazioni di sovrafrequenza.			
Alimentazione:	Tensioni concatenate (preferibilmente) oppure tensioni stellate		
1ª soglia di intervento	Frequenza pari a 51,5 Hz		
Ritardo 1ª soglia	1,0 s		
2ª soglia di intervento	Frequenza pari a 52,5 Hz		
Ritardo 2ª soglia	0,1 s		
Azione	Scatto del trasformatore elevatore MT/AT lato AT		

Relativamente ai guasti interni, a protezione della rete, le protezioni minime previste per il trasformatore elevatore MT/AT sono le seguenti:

- 1. Massima Corrente di fase del trasformatore (lato AT)
- 2. Differenziale di trasformatore
- 3. Massima Corrente di fase del trasformatore (lato MT)

Le azioni determinate dall'intervento di tali protezioni sono l'apertura ed il blocco degli interruttori AT ed MT del trasformatore elevatore. Esse si aggiungono alle protezioni previste a bordo del trasformatore (tipicamente buchholz, livello olio, massima temperatura) i cui livelli d'intervento nonché i relativi comandi sono decisi dal costruttore del trasformatore e dal produttore.

Autorizzazione Unica ai sensi del D.Lgs. 29 dicembre 2003, n. 387 per un impianto agrovoltaico di superficie pari a 136ha costituito da olivo, vite, officinali, orticole e foraggere integrate ad un impianto fotovoltaico con tracker monoassiali (78 MWp) sito in Candela (FG) e Ascoli Satriano (FG)

R.9 – Disciplinare descrittivo e prestazionale degli elementi tecnici

Relativamente alle protezioni direzionali queste sono installate a livello di media tensione nelle cabine di campo in maniera tale da discriminare dovessero presentarsi gli eventuali guasti omopolari sulle linee: se sul tratto di media tensione di collegamento alla SEU o sul tratto di media tensione all'interno del campo fotovoltaico.

3.7 Protezione contro i contatti diretti

Le varie sezioni dell'impianto sono costituite da sistemi di Categoria I. Non essendo presenti circuiti a bassissima tensione di sicurezza (SELV) né a bassissima tensione di protezione (PELV), la protezione contro i contatti diretti sarà assicurata mediante isolamento completo delle parti attive, sia per la sezione in corrente continua che per quella in corrente alternata.

3.8 Protezione contro i contatti diretti

La protezione contro le sovracorrenti sarà assicurata secondo le prescrizioni della Norma CEI 64-8. In particolare sarà assicurato il coordinamento tra i cavi e i dispositivi di massima corrente installati, secondo le seguenti regole:

 $|_{b} < |_{n} < |_{z}$ $|_{2}t < K_{2}S_{2}$.

dove: Ib = corrente di impiego del cavo

In = corrente nominale dell'interruttore Iz = portata del cavo

Icc = corrente di cortocircuito

t = tempo di intervento dell'interruttore

K = coefficiente che dipende dal tipo di isolamento del cavo

S = sezione del cavo

3.9 Protezione contro i contatti indiretti

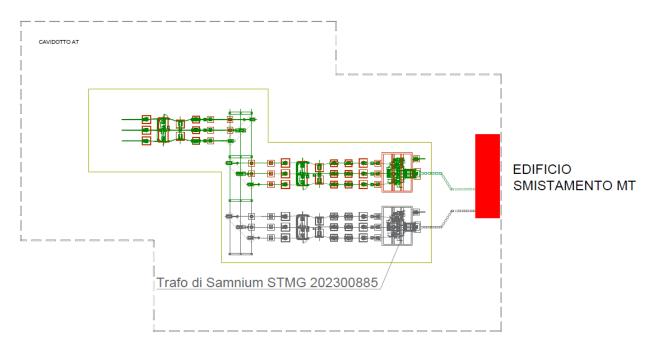
La protezione contro i contatti indiretti sarà assicurata mediante:

- messa a terra delle masse e delle masse estranee;
- scelta e coordinamento dei dispositivi di interruzione automatici della corrente di guasto, in conformità a quanto prescritto dalla Norma CEI 64-8.
- ricerca ed eliminazione del primo guasto a terra.

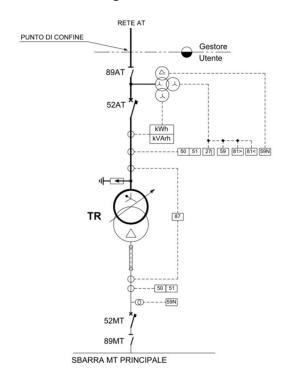
In particolare, l'impianto rientra nei sistemi di tipo "TN", saranno installati interruttori differenziali tali da garantire il rispetto della seguente relazione nei tempi riportati in tabella I:

Zs x I ≤Uo dove:

ZS è l'impedenza dell'anello di guasto comprensiva dell'impedenza di linea e dell'impedenza della sorgente è la corrente che provoca l'interruzione automatica del dispositivo di protezione in Ampere, secondo le prescrizioni della norma 64-8/4; quando il dispositivo di protezione è un dispositivo di protezione a corrente differenziale, la la è la corrente differenziale


Tabella 1 Tempi massimi di interruzione per sistemi TN

U ₀ (V)	Tempo di interruzione (s)
120	0,8
230	0,4
400	0,2
>400	0,1


Per ridurre il rischio di contatti pericolosi il campo fotovoltaico lato corrente continua è assimilabile ad un sistema IT cioè flottante da terra. La separazione galvanica tra il lato corrente continua e il lato corrente alternata è garantito dalla presenza del trasformatore BT/MT. In tal modo perché un contatto accidentale sia realmente pericoloso occorre che si entri in contatto contemporaneamente con entrambe le polarità del campo. Il contatto accidentale con una sola delle polarità non ha praticamente conseguenze, a meno che una delle polarità del campo non sia casualmente a contatto con la massa. Per prevenire tale eventualità ogni inverter sarà munito di un opportuno dispositivo di rivelazione degli squilibri verso massa, che ne provoca l'immediato spegnimento e l'emissione di una segnalazione di allarme sia acustica che visiva (controllo di isolamento).

3.10 Collegamento alla Rete di Trasmissione Nazionale

La stazione di elevazione di utenza viene realizzata nelle immediate adiacenze del campo fotovoltaico e tramite un elettrodotto, di nuova realizzazione, si collegherà alla SE RTN Camerelle a circa 9 km di distanza, nel Comune di Ascoli Satriano (FG).

La stazione di stazione di elevazione di utenza si compone del trasformatore media/alta tensione 30 kV/150 kV, della necessaria componentistica elettromeccanica, degli impianti, e dei box dedicati al controllo della stazione e viene realizzata secondo lo schema seguente:

L'area sulla quale sono installate le componenti elettromeccaniche ed il trasformatore sono pavimentate in cemento mentre sotto il trasformatore di alta tensione in olio vi è realizzata la vasca di raccolta dell'eventuale perdita di olio.

Ai fini di quanto indicato in materia di regolazione e protezione delle reti RTN, lo schema d'inserimento e di connessione, nonché la struttura dell'impianto, presenta le seguenti caratteristiche:

- 1. L'impianto è dotato di un interruttore che realizza la separazione funzionale fra le attività di competenza del TSO/DSO e quelle di competenza del titolare dell'impianto di produzione;
- 2. L'impianto di produzione dispone di un trasformatore AT/MT con i relativi sistemi di protezione e comando;
- 3. gli avvolgimenti AT del trasformatore AT/MT sono collegati a stella, ad isolamento uniforme, con terminale di neutro accessibile e predisposto per l'eventuale connessione a terra, invece gli avvolgimenti MT sono collegati a triangolo;
- 4. gli avvolgimenti AT del trasformatore AT/MT sono dotati di un commutatore di tensione sotto carico con regolatore automatico in grado di consentire, con più gradini, una variazione della tensione a vuoto compresa almeno tra 12% della tensione nominale.

3.11 Gestione dell'impianto

L'impianto fotovoltaico non richiederà, di per sé, il presidio da parte di personale preposto. La centrale, infatti, verrà esercita, a regime, mediante il sistema di supervisione che consentirà di rilevare le condizioni

Autorizzazione Unica ai sensi del D.Lgs. 29 dicembre 2003, n. 387 per un impianto agrovoltaico di superficie pari a 136ha costituito da olivo, vite, officinali, orticole e foraggere integrate ad un impianto fotovoltaico con tracker monoassiali (78 MWp) sito in Candela (FG) e Ascoli Satriano (FG)

R.9 – Disciplinare descrittivo e prestazionale degli elementi tecnici

di funzionamento e di effettuare comandi sulle macchine ed apparecchiature da remoto, o, in caso di necessità, di rilevare eventi che richiedano l'intervento di squadre specialistiche.

Il sistema di controllo dell'impianto avverrà tramite due tipologie di controllo: controllo locale e controllo remoto.

- Controllo locale: monitoraggi tramite PC centrale, posto in prossimità dell'impianto, tramite software apposito in grado di monitorare e controllare gli inverter;
- Controllo remoto: gestione a distanza dell'impianto tramite modem GPRS con scheda di rete Data-Logger montata a bordo degli inverter.

Il sistema di controllo con software dedicato permetterà l'interrogazione in ogni istante dell'impianto, al fine di verificare la funzionalità degli inverter installati, con la possibilità di visionare le funzioni di stato, comprese le eventuali anomalie di funzionamento.

Le principali grandezze controllate dal sistema saranno:

- Potenze dell'inverter;
- Tensione di campo dell'inverter;
- Corrente di campo dell'inverter;
- Letture dell'energia attiva e reattiva prodotte;
- Radiazioni solari;
- Temperatura ambiente;
- Velocità del vento;

La connessione tra gli inverter e il PC avverrà tramite un box acquisizione.