

Direzione Tecnica

S.S 685 "DELLE TRE VALLI UMBRE"

TRATTO SPOLETO - ACQUASPARTA 1º stralcio: Madonna di Baiano-Firenzuola

PROGETTO ESECUTIVO

COD. **PG143**

ATI SINTAGMA - GDG - ICARIA **PROGETTAZIONE:**

IL RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE:

Dott. Ing. Nando Granieri

Ordine degli Ingegneri della Prov. di Perugia n° A351

IL PROGETTISTA:

Dott. Ing. Federico Durastanti

Ordine degli Ingegneri della Prov. di Terni n° Terni n° A844

Dott. Geol. Giorgio Cerquiglini

Ordine dei Geologi della Regione Umbria n°108

IL COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE:

Dott. Ing. Filippo Pambianco

Ordine degli Ingegneri della Prov. di Perugia n° A1373

Il Responsabile di Progetto

Arch. Pianificatore Marco Colazza

Il Responsabile del Procedimento

Dott. Ing.

Alessandro Micheli

PROTOCOLLO DATA IL GRUPPO DI PROGETTAZIONE:

MANDATARIA:

MANDANTI:

Bintagma

Dott. Ing. Dott. Ing.

Dott. Ing.

Dott. Ing.

GEOTECHNICAL DESIGN GROUP

società di ingegneria Dott. Ing. V.Rotisciani

Dott.Arch. Dott.Ing. Dott.Arch. Dott.Ing. Dott.Ing. Dott.Geol. Geom. Dott.Ing. Dott.Ing.

Dott.Ing. Dott.Ing.

Dott.Ing.

Dott. Agr.

Dott.Ing.

N.Kamenicky V.Truffini A.Bracchini F Durastanti E.Bartolocci G.Cerquiglini S.Scopetta L.Sbrenna E.Sellari L.Dinelli

N.Granieri

L.Nani F.Pambianco

F.Berti Nulli

D.Carlaccini S.Sacconi C.Consorti E.Loffredo C.Chierichini

Dott. Ing. Geom. Dott. Ing. Dott. Ing. Geom.

F.Macchioni C.Vischini V.Piunno G.Pulli C.Sugaroni

MANDO GRANIERI

SETTORE CIVICE E AMBIENTALE SETTORE INDUSTRIALE SETTORE DELI/INFORMAZIONE

13.FABBRICATI 13.01 FABBRICATO TECNOLOGICO

CODICE PROGET			FA01STRRE01B			REVISIONE	SCALA:
	G143 E 23 CODICE ELAB. T00 FA01 STR RE01		В	-			
В	Rev. A seguito istr. ANAS			Set 2023	F.Brunori	F.Durastanti	N.Granieri
Α	Emissione			Ago 2023	F.Brunori	F.Durastanti	N.Granieri
REV.	DESCRIZIONE			DATA	REDATTO	VERIFICATO	APPROVATO

Direzione Progettazione e Realizzazione Lavori

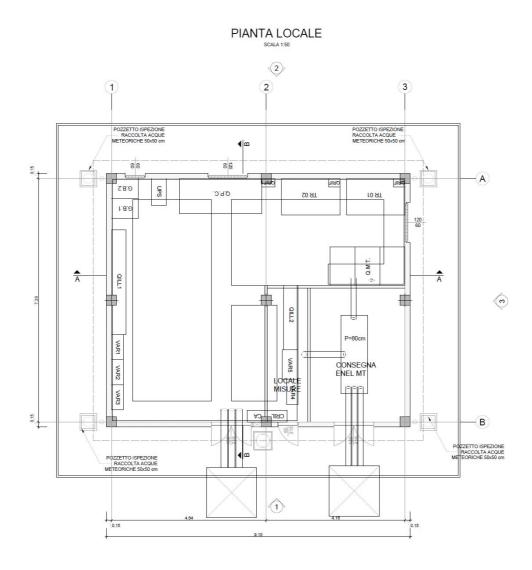
STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

1	INTRODUZIONE	4
2	DESCRIZIONE DELL' OPERA	5
3	NORMATIVA TECNICA E DOCUMENTAZIONE DI RIFERIMENTO	8
4	CARATTERISTICHE DEI MATERIALI	9
5	CARATTERIZZAZIONE TERRENO DI FONDAZIONE	11
6	CARATTERIZZAZIONE SISMICA DEL SITO	12
7	MODELLAZIONE STRUTTURALE	14
	7.1 CODICE DI CALCOLO	14
	7.2 Note su paragrafo 10.2 del DM 17-01-18	
	7.3 VALIDAZIONE DEL CODICE DI CALCOLO ADOTTATO	15
	7.4 CARATTERISTICHE GENERALI COSTRUZIONE	
	7.5 TIPO DI ANALISI SVOLTA	
	7.6 AFFIDABILITÀ DEI CODICI DI CALCOLO	
	7.7 INFORMAZIONI GENERALI SULL'ELABORAZIONE	
	7.8 GIUDIZIO MOTIVATO DI ACCETTABILITÀ DEI RISULTATI	
8	ANALISI DEI CARICHI	19
	8.1 Peso proprio della struttura	19
	8.2 CARICHI PERMANENTI NON STRUTTURALI	19
	8.3 CARICHI VARIABILI	
	8.4 AZIONE TERMICA	
	8.5 CARICO DELLA NEVE SULLA COPERTURA	
	8.6 AZIONE DEL VENTO	
	8.7 AZIONE SISMICA	
9	COMBINAZIONI DI CARICO	35
1(0 RISULTATI DELLA MODELLAZIONE	51
1	1 VERIFICA DEGLI ELEMENTI STRUTTURALI	68
	11.1Verifica solaio	68
	11.2VERIFICA PILASTRI	
	11.2.1 Verifica di resistenza	
	11.2.2 Verifica di stabilità	
	11.2.4 Verifica a torsione	
	11.2.5 Verifica limitazioni di armatura	

PROGETTO ESECUTIVO

11.3VERI	IFICA TRAVE DI BORDO	93
11.3.1	Verifica di resistenza	93
11.3.2	Verifica a taglio	
11.3.3	Verifica a torsione	
11.3.4	Verifica limitazioni di armatura	
11.4VERI	IFICA TRAVE INTERNA	111
11.4.1	Verifica di resistenza	111
11.4.2	Verifica a taglio	
11.4.3	Verifica a torsione	
11.4.4	Verifica limitazioni di armatura	
11.5VERI	IFICA SBALZO	128
12 EFFET	TI DELLA NON LINEARITA' GEOMETRICA	148
	TI DELLA NON LINEARITA' GEOMETRICA CA STATO LIMITE DI DEFORMABILITA'	
13 VERIFIO		151
13 VERIFI (13.1TRA)	CA STATO LIMITE DI DEFORMABILITA'	1 51
13 VERIFI 13.1TRAN 13.2TRAN	CA STATO LIMITE DI DEFORMABILITA'	1 51 151152
13 VERIFION 13.1TRAN 13.2TRAN 14 VERIFION 15 VERIFION	CA STATO LIMITE DI DEFORMABILITA'	151151152153
13 VERIFION 13.1TRAN 13.2TRAN 14 VERIFION 15 MODEL	CA STATO LIMITE DI DEFORMABILITA'	
13 VERIFICATION 13.1TRAN 13.2TRAN 14 VERIFICATION 15 MODEL 15.1VERI	CA STATO LIMITE DI DEFORMABILITA'	

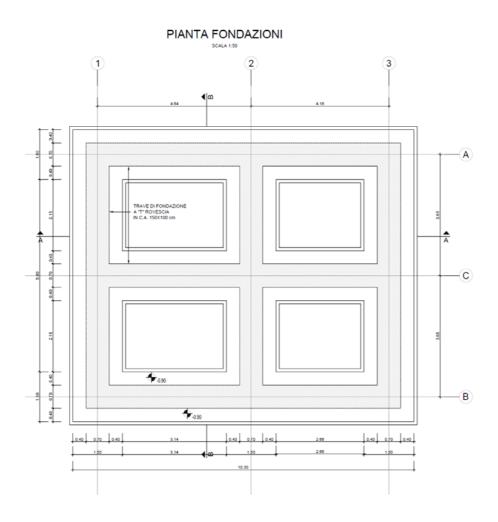

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

1 INTRODUZIONE

La presente relazione ha per oggetto i calcoli e le verifiche strutturali del fabbricato tecnologico collocato in corrispondenza dell'inizio della galleria artificiale Colle del Vento, nell'ambito del progetto definitivo della "Strada delle Tre Valli Umbre", tratto Eggi-Acquasparta.

Di seguito si riporta la pianta del fabbricato.

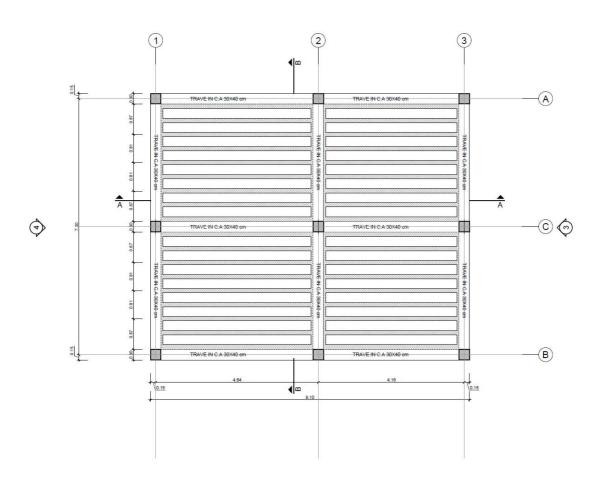

PROGETTO ESECUTIVO

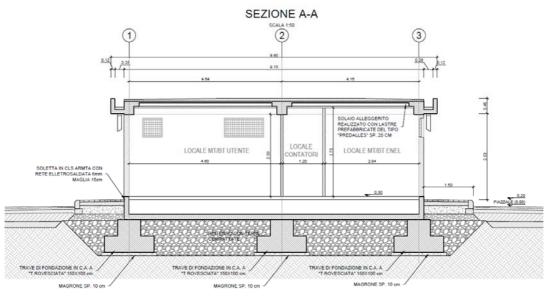
Relazione tecnica e di calcolo

2 DESCRIZIONE DELL' OPERA

L'opera in esame è costituita da un fabbricato tecnologico ad un solo piano di dimensioni in pianta 9.10 x7.60 m ed altezza 3.68 m. La struttura è realizzata con un telaio in c.a. composto da travi 30x40 cm e da pilastri 30x30 cm con tamponature esterne in muratura di spessore 15 cm. Il solaio di copertura è realizzato in latero-cemento con lastre prefabbricate sp=5+10+5 cm. La fondazione è costituita da travi a T rovesce in c.a. 150x100 cm.

Di seguito si riportano le piante e le sezioni del fabbricato.

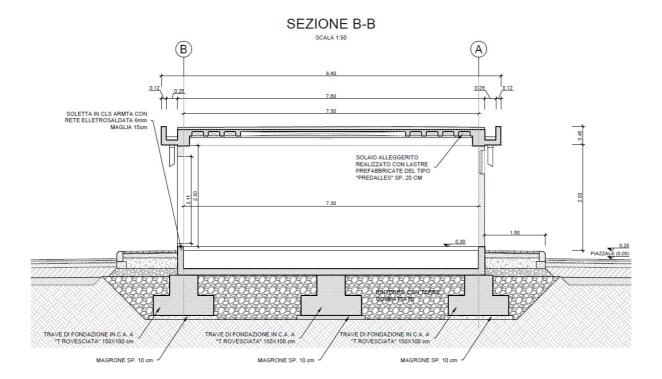



PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

PIANTA COPERTURA

SCALA 1:50



STRADA DELLE TRE VALLI UMBRE

Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

3 NORMATIVA TECNICA E DOCUMENTAZIONE DI RIFERIMENTO

La progettazione è conforme alle normative vigenti.

La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

- Nuove norme tecniche per le costruzioni D.M. 17-03-18 (NTC-2018);
- Circolare n. 7 / C.S.LL.PP. del 21 gennaio 2019
- Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20/03/2003. Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica;
- Decreto del Presidente del Consiglio dei Ministri del 21/10/2003;
- Eurocodice 2: Progettazione delle strutture in calcestruzzo Parte 1.1: Regole generali e regole per gli edifici.
- UNI ENV 1992-1-1 Parte 1-1:Regole generali e regole per gli edifici;
- UNI EN 206-1/2001 Calcestruzzo. Specificazioni, prestazioni, produzione e conformità;
- UNI EN 1998-5 Fondazioni ed opere di sostegno.

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

4 CARATTERISTICHE DEI MATERIALI

CALCESTRUZZO OPERE IN ELEVAZIONE (E PREDALLES): CLASSE C32/40

Classe di resistenza C32/40 (Rck > = 40 Mpa)

Classe di consistenza (slump) S4 – UNI EN 12350-2

Classe di esposizione XC4 – UNI EN 206-1

Dimensione massima nominale degli aggregati UNI EN 206 – 1: 22 mm

CALCESTRUZZO OPERE DI FONDAZIONE: CLASSE C30/37

Classe di resistenza C30/37 (Rck > = 37 Mpa)

Classe di consistenza (slump) S4 – UNI EN 12350-2

Classe di esposizione XC2+XA1- UNI EN 206-1

Dimensione massima nominale degli aggregati UNI EN 206 – 1: 32 mm

CALCESTRUZZO MAGRONE: CLASSE C12/15

Classe di resistenza C12/15 (Rck > = 15 Mpa)

Classe di esposizione X0 – UNI EN 206-1

Dimensione massima nominale degli aggregati UNI EN 206 – 1: 30 mm

COPRIFERRI

Copriferro strutture di fondazione: 35 mm Copriferro strutture in elevazione: 35 mm

ARMATURA IN BARRE PER STRUTTURA INTELAIATA IN C.A.:

L'acciaio utilizzato è ad aderenza migliorata tipo B 450 C ed è caratterizzato dai seguenti valori nominali delle tensioni caratteristiche di snervamento e rottura:

 $f_{y \text{ nom}} = 450 \text{ N/mm}^2$

 $f_{t nom} = 540 \text{ N/mm}^2$

e deve rispettare i requisiti indicati di seguito:

Modulo di elasticità: Es = 210000 Mpa = 210 Gpa

Sovrapposizioni barre >= 40 diametri

Resistenze di calcolo dell'acciaio per la verifica agli SLU (γS =1,15):

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Resistenza di calcolo a rottura per trazione:

fyd =
$$fyk/\gamma s = 391,30 \text{ Mpa}$$

$$\epsilon yd = fyd/Es = 0.186\%$$

Resistenze di calcolo dell'acciaio per la verifica agli SLE (γs =1,00):

Resistenza di calcolo a rottura per trazione:

$$fyd = fyk/\gamma_S = 450/1 = 450,00 \text{ Mpa}$$

$$\epsilon yd = fyd/Es = 0.218\%$$

$$\sigma s = 0.80 \text{ fyk} = 0.8 \text{ 450} = 360.00 \text{ Mpa}$$

Le armature da porsi in opera devono essere non ossidate, non corrose, senza difetti superficiali, senza sostanze superficiali che possano ridurre l'aderenza al conglomerato e di sezione resistente integra e priva di qualsiasi difetto di fusione.

Tensione tangenziale di aderenza acciaio-calcestruzzo:

		Solaio in lastre	Struttura in	Fondazioni
		predalles	elevazione	TOTICAZIONI
f _{bk}	(N/mm ²)	4.36	4,36	4,36
f _{bd}	(N/mm ²)	2.90	2,90	2,90

dove:

f_{bk} = 2.25·η·f_{ctk} = Resistenza tangenziale caratteristica di aderenza

$$f_{bd} = \frac{f_{bk}}{\gamma_c}$$
 = Resistenza tangenziale di aderenza di calcolo

 $\eta = 1.0$ – per barre di diametro $\Phi \le 32$ mm;

γ_c = 1.5 – Coefficiente parziale di sicurezza relativo al calcestruzzo.

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

5 CARATTERIZZAZIONE TERRENO DI FONDAZIONE

Il fabbricato tecnologico si trova in una zona caratterizzata da una formazione marnosa arenacea avente i seguenti parametri geotecnici:

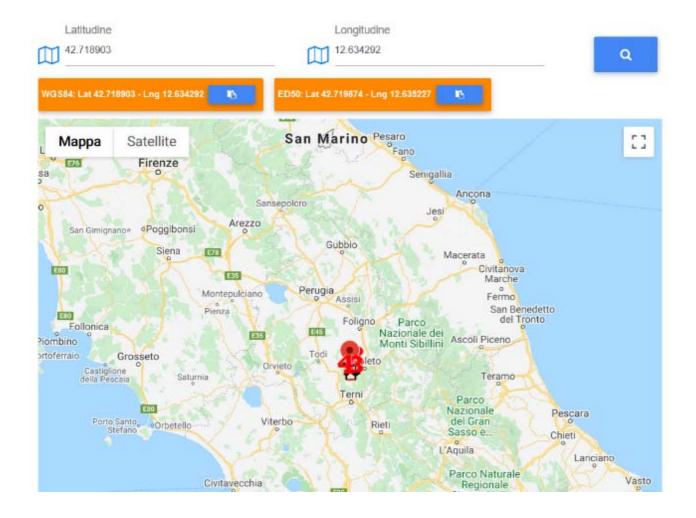
γ_{t}	c'	φ°
[kN/mc]	[kPa]	[°]
22÷23	50÷100	32÷40°

La costante di sottofondo Ks è stata asssunta pari a 15000 kN/m³.

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

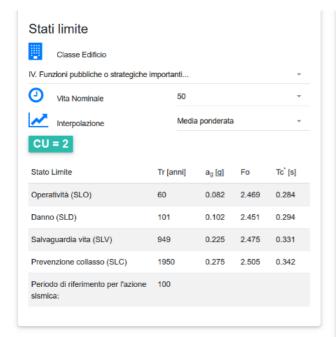
6 CARATTERIZZAZIONE SISMICA DEL SITO

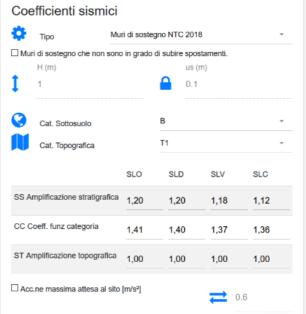

L'azione sismica è sta definita adottando i seguenti parametri.

La vita nominale (V_N) dell'opera è stata assunta pari a 50 anni la classe d'uso è la IV.

Il periodo di riferimento (V_R) per l'azione sismica data la vita nominale e la classe d'uso vale quindi:

 $V_R = V_N \cdot C_u = 100 \text{ anni.}$


Secondo quanto riportato nella relazione geologica, sismica e geotecnica il terreno di fondazione rientra nella Categoria B e la zona è ascrivibile alla categoria T1 pertanto il coefficiente di amplificazione topografica è ST =1,0.



PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Latitudine: 42°43′8.05″N

Longitudine: 12°38′3.45″E

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

7 MODELLAZIONE STRUTTURALE

7.1 Codice di calcolo

L'analisi della struttura è stata condotta con un programma agli elementi finiti:

Titolo SAP 2000

Versione 20.0

Distributore CSI ITALIA

7.2 Note su paragrafo 10.2 del DM 17-01-18

Le analisi e le verifiche della struttura sono state condotte con l'ausilio del codice di calcolo automatico SAP 2000 v20.0.0.

In particolare è stata condotta un'analisi statica nei confronti dei carichi permanenti ed accidentali di neve, vento e manutenzione ed un'analisi dinamica lineare con spettro di risposta elastico per quanto riguarda le azioni sismiche.

Il calcolo statico della struttura e la verifica delle strutture è stato eseguito secondo *i* metodi della scienza e della tecnica delle costruzioni.

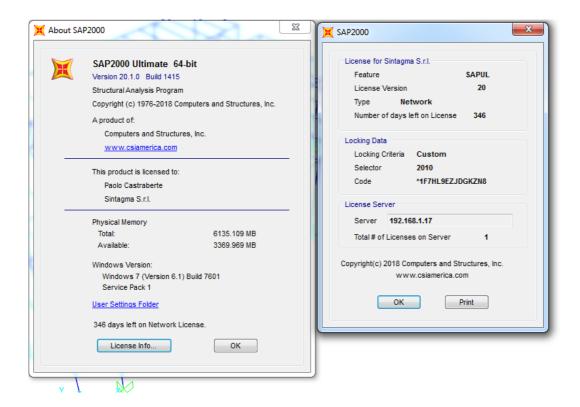
Gli elementi costituenti la struttura sono stati modellati utilizzando degli elementi *frame* e sono stati definiti utilizzando l'ipotesi di materiale elastico lineare isotropo in un campo di piccoli spostamenti e deformazioni. I vincoli definiti alle estremità delle travi ed alla base dei pilastri si schematizzano con incastri.

Per la verifica delle strutture si è seguito il metodo agli stati limite facendo riferimento alle normative elencate; le verifiche sono state eseguite agli SLU (verifiche di resistenza) ed agli SLE (verifica di deformabilità verticale ed orizzontale).

Si sono analizzate le possibili condizioni di carico e si è proceduto al dimensionamento delle parti per le condizioni più gravose. A parità di sezione resistente è stato omesso il risultato della verifica di quegli elementi che risultano meno sollecitati.

Il codice di calcolo SAP è fornito dalla C.S.I. Italia e correttamente licenziato nella versione 20.0.0.

PROGETTO ESECUTIVO


Relazione tecnica e di calcolo

7.3 Validazione del codice di calcolo adottato

Come detto, per la risoluzione del modello di calcolo si e' fatto uso del programma di calcolo

SAP2000 NL

Di seguito si riporta una schermata con tutte le informazioni del programma, del produttore e della licenza d'uso:

Il produttore fornisce idonea documentazione utile al corretto uso del programma. sul sito del produttore e' inoltre possibile scaricare la necessaria documentazione utile alla validazione del programma.

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

7.4 Caratteristiche generali costruzione

COSTRUZIONE REGOLARE IN PIANTA

Per quanto riguarda gli edifici, una costruzione è regolare in pianta se tutte le seguenti condizioni sono rispettate:

a) la distribuzione di masse e rigidezze è approssimativamente simmetrica rispetto a due direzioni ortogonali e la forma in pianta è compatta, ossia il contorno di ogni orizzontamento è convesso; il requisito può ritenersi soddisfatto, anche in presenza di rientranze in pianta, quando esse non influenzano significativamente la rigidezza nel piano dell'orizzontamento e, per ogni rientranza, l'area compresa tra il perimetro dell'orizzontamento e la linea convessa circoscritta all'orizzontamento non supera il 5% dell'area dell'orizzontamento;

verifica soddisfatta

b) il rapporto tra i lati del rettangolo circoscritto alla pianta di ogni orizzontamento è inferiore a 4;

B= 7.6 m L= 9.1 m

L/B = 1.20 <

verifica soddisfatta

c) ciascun orizzontamento ha una rigidezza nel proprio piano tanto maggiore della corrispondente rigidezza degli elementi strutturali verticali da potersi assumere che la sua deformazione in pianta influenzi in modo trascurabile la distribuzione delle azioni sismiche tra questi ultimi e ha resistenza sufficiente a garantire l'efficacia di tale distribuzione.

verifica soddisfatta

COSTRUZIONE REGOLARE IN ALTEZZA

Sempre riferendosi agli edifici, una costruzione è regolare in altezza se tutte le seguenti condizioni sono rispettate:

d) tutti i sistemi resistenti alle azioni orizzontali si estendono per tutta l'altezza della costruzione o, se sono presenti parti aventi differenti altezze, fino alla sommità della rispettiva parte dell'edificio;

verifica soddisfatta

e) massa e rigidezza rimangono costanti o variano gradualmente, senza bruschi cambiamenti, dalla base alla sommità della costruzione (le variazioni di massa da un orizzontamento all'altro non superano il 25%, la rigidezza non si riduce da un orizzontamento a quello sovrastante più del 30% e non aumenta più del 10%); ai fini della rigidezza si possono considerare regolari in altezza strutture dotate di pareti o nuclei in c.a. o di pareti e nuclei in muratura di sezione costante sull'altezza o di telai controventati in acciaio, ai quali sia affidato almeno il 50% dell'azione sismica alla base;

verifica soddisfatta

 f) il rapporto tra la capacità e la domanda allo SLV non è significativamente diverso, in termini di resistenza, per orizzontamenti successivi (tale rapporto, calcolato per un generico orizzontamento, non deve differire più del 30% dall'analogo rapporto calcolato per l'orizzontamento adiacente); può fare eccezione l'ultimo orizzontamento di strutture intelaiate di almeno tre orizzontamenti;

verifica soddisfatta

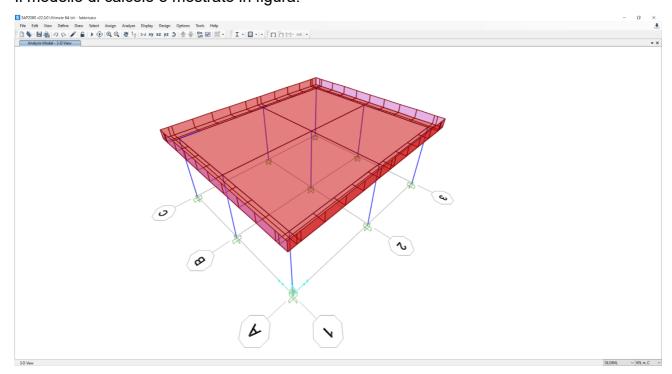
g) eventuali restringimenti della sezione orizzontale della costruzione avvengano con continuità da un orizzontamento al successivo; oppure avvengano in modo che il rientro di un orizzontamento non superi il 10% della dimensione corrispondente all'orizzontamento immediatamente sottostante, né il 30% della dimensione corrispondente al primo orizzontamento. Fa eccezione l'ultimo orizzontamento di costruzioni di almeno quattro orizzontamenti, per il quale non sono previste limitazioni di restringimento.

verifica soddisfatta

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

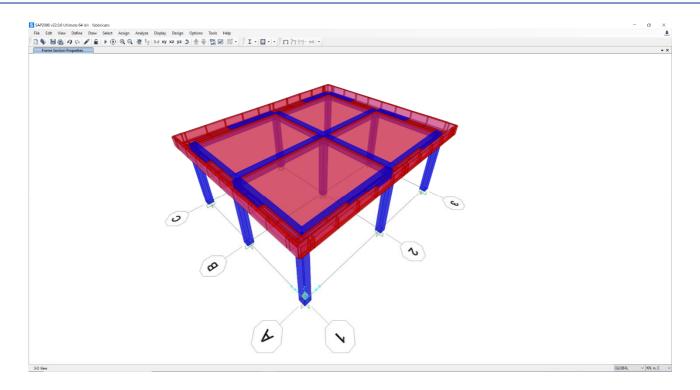
7.5 Tipo di analisi svolta


L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La struttura in elevazione viene discretizzata con un modello tridimensionale in elementi tipo frame per le travi e i pilastri. I pilastri sono vincolati alla base con degli incastri mentre le travi sono incastrate ai pilastri con nodi rigidi.

L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi dinamica lineare con spettro secondo le disposizioni del capitolo 7 del DM 14/01/2018.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

La struttura è stata modellata come un telaio resistente definito mediante elementi frame connessi tra loro. La modellazione dei singoli elementi frame è stata fatta all'interasse dell'elemento trave e pilastro. Il solaio invece è stato modellato mediante elementi shell che trasmettono il carico alle travi di pertinenza.


Il modello di calcolo è mostrato in figura.

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

7.6 Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore del software contiene un'esauriente descrizione delle basi teoriche. degli algoritmi impiegati e l'individuazione dei campi d'impiego.

7.7 Informazioni generali sull'elaborazione

Il software prevede una serie di controlli automatici che consentono l'individuazione di errori di modellazione. Il codice di calcolo consente di visualizzare e controllare. sia in forma grafica che tabellare. i dati del modello strutturale. in modo da avere una visione consapevole del comportamento corretto del modello strutturale.

7.8 Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a controlli dal sottoscritto utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli eseguiti con metodi tradizionali. Inoltre sulla base di considerazioni riguardanti gli stati

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

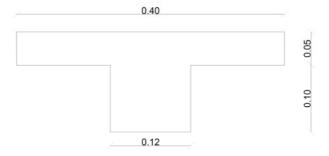
tensionali e deformativi determinati. si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

8 ANALISI DEI CARICHI

Si riportano di seguito i carichi utilizzati per il calcolo delle sollecitazioni e le verifiche delle sezioni della struttura in esame.

8.1 Peso proprio della struttura

Le sollecitazioni indotte dal peso della struttura sono valutate automaticamente dal programma.


8.2 Carichi permanenti non strutturali

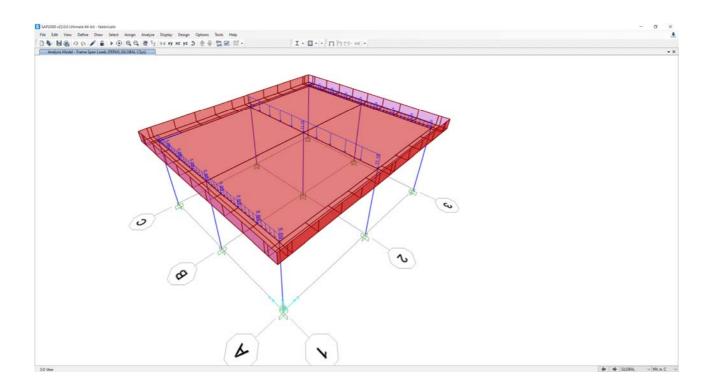
Solaio di copertura:

- Peso del solaio H(5+10+5): p=3.10 KN/m²
- Peso guaina impermeabilizzazione: p=0.04 KN/m²
- Peso del massetto in cls: p=1.6 KN/m²
- Peso riempimento in cls su sbalzo: 1.92 KN/m²
 Complessivamente il peso dei permanenti non strutturali vale p = 4.74 KN/m²

Nella modellazione il solaio viene schematizzato con elementi tipo membrana a cui è assegnato uno spessore equivalente ottenuto dalla rigidezza del solaio effettivamente realizzato.

Caratteristiche travetto gettato in opera:

A=0.032 m² Jx=0.000056 m⁴


PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Si considera una sezione rettangolare di larghezza B=1.0 m e di spessore equivalente pari

a:
$$H = \sqrt[3]{\frac{12 \cdot J_x}{B}} = 0.088 \text{ m}$$

Considerando quindi che il peso del solaio di spessore $8.8 \text{ cm} (0.088*25=2.20 \text{ KN/m}^2)$ è già considerato automaticamente dal modello il carico permanente esterno applicato sarà: $4.74 - 2.20 = 2.54 \text{ KN/m}^2$

Travi rovesce di fondazione interne:

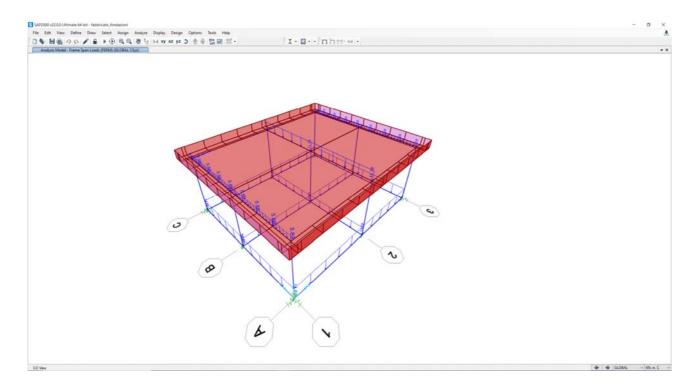
peso del massetto: 1.68 kN/m

peso della soletta: 2.63 kN/m

Peso del riempimento in cls alleggerito: 6.3 kN/m

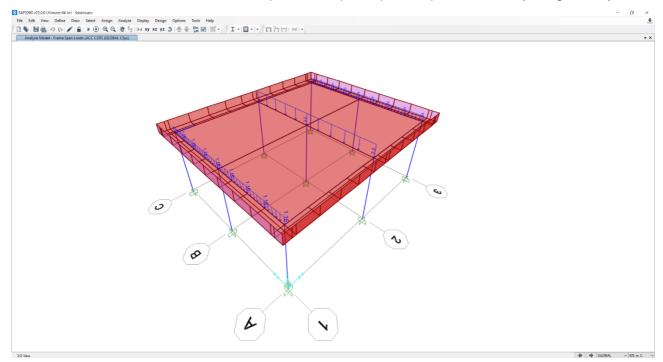
Travi rovesce di fondazione di bordo:

peso del massetto: 0.84 kN/m


peso della soletta: 3.94 kN/m

Peso del riempimento in cls alleggerito: 3.15 kN/m

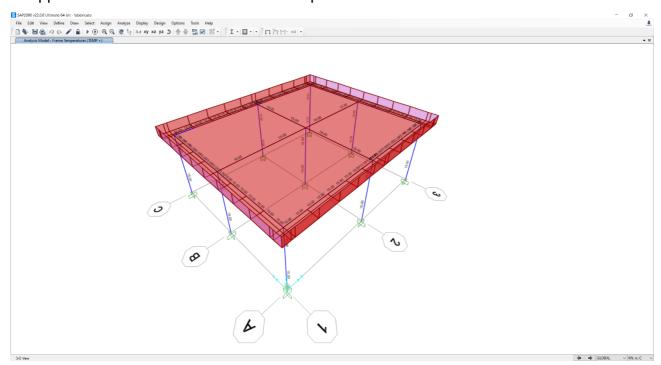
Peso della tamponatura esterna: 6.75 kN/m

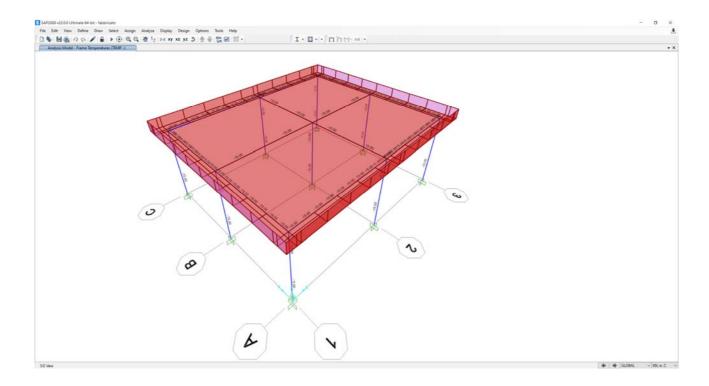

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

8.3 Carichi variabili

Il carico della manutenzione sulla copertura si pone pari a q=0.5 KN/m² (categoria H).




PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

8.4 Azione termica

Si applica la variazione uniforme della temperatura di ±15° alle membrature in cls.

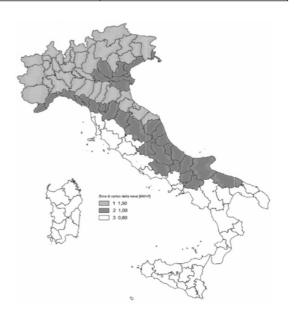
PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

8.5 Carico della neve sulla copertura

CALCOLO DELL'AZIONE DELLA NEVE

0	Zona I - Alpina	q _{sk} = 1,50 kN/mq	a _s ≤ 200
	Aosta, Belluno, Bergamo, Biella, Bolzano, Brescia, Como, Cuneo, Lecco, Pordenone, Sondrio, Torino, Trento, Udine, Verbano-Cusio-Ossola, Vercelli, Vicenza.	$q_{sk} = 1,39 [1+(a_s/728)^2] \text{ kN/mq}$	a _s > 200 m
0	Zona I - Mediterranea Alessandria, Ancona, Asti, Bologna, Cremona, Forli-Cesena, Lodi, Milano, Modena, Monza	q _{sk} = 1,50 kN/mq m	a _s ≤ 200
	Brianza, Novara, Parma, Pavia, Pesaro e Urbino, Piacenza, Ravenna, Reggio Emilia, Rimini, Treviso, Varese.	$q_{sk} = 1.35 [1+(a_s/602)^2] \text{ kN/mq}$	a _s > 200 m
•	Zona II Arezzo, Ascoli Piceno, Avellino, Bari, Barletta-Andria-Trani, Benevento, Campobasso,	q _{sk} = 1,00 kN/mq	a _s ≤ 200
Arezzo, Assoil Piceno, Avellino, Bari, Banetta-Andria- Irani, Benevento, Lampobasso, Chieti, Fermo, Ferrara, Firenze, Foggia, Frosinone, Genova, Gorizia, Imperia, Isernia, L'Aquila, La Spezia, Lucca, Macerata, Mantova, Massa Carrara, Padova, Perugia, Pescara, Pistoia, Prato, Rieti, Rovigo, Savona, Teramo, Trieste, Venezia, Verona.	m $q_{sk} = 0.85 [1+(a_s/481)^2] kN/mq$	a _s > 200 m	
	Zona III Agrigento, Brindisi, Cagliari, Caltanisetta, Carbonia-Iglesias, Caserta, Catania, Catanzaro,	q _{sk} = 0,60 kN/mq	a _s ≤ 200
	Cosenza, Crotone, Enna, Grosseto, Latina, Lecce, Livorno, Matera, Medio Campidano, Messina, Napoli, Nuoro, Ogliastra, Olbia Tempio, Oristano, Palermo, Pisa, Potenza, Ragusa, Reggio Calabria, Roma, Salerno, Sassari, Siena, Siracusa, Taranto, Terni, Trapani, Vibo Valentia, Viterbo.	m $q_{sk} = 0.51 [1+(a_s/481^2] \text{ kN/mq}$	a _s > 200 m


$$\begin{split} q_s & \text{ (carico neve sulla copertura [N/mq])} = q_{sk'} \mu_i \cdot C_E \cdot C_t \\ q_{sk} & \text{ (valore caratteristico della neve al suolo [kN/mq])} \\ & \mu_i & \text{ (coefficiente di forma)} \\ & C_E & \text{ (coefficiente di esposizione)} \\ & C_t & \text{ (coefficiente termico)} \end{split}$$

Valore carratteristicio della neve al suolo

a _s (altitudine sul livello del mare [m])	380
q _{sk} (val. caratt. della neve al suolo [kN/mq])	1.38

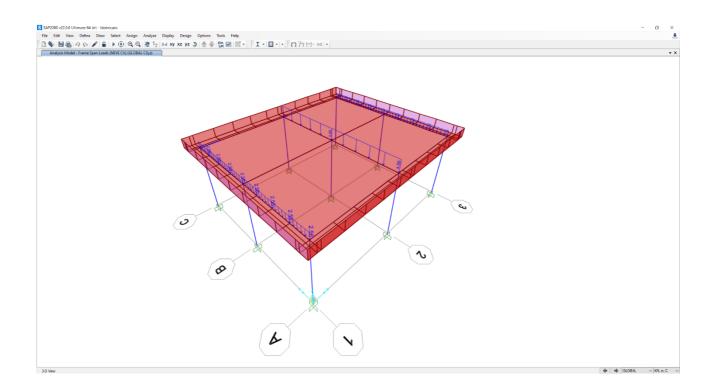
Coefficiente termico

Il coefficiente termico tiene conto della riduzione del carico neve a causa dello scioglimento della stessa, causata dalla perdita di calore della costruzione. Tale coefficiente dipende dalle proprietà di isolamento termico del materiale utilizzato in copertura. In assenza di uno specifico e documentato studio, deve essere utilizzato Ct = 1.

Coefficiente di esposizione

Topografia	Descrizione	CE
Normale	Aree in cui non è presente una significativa rimozione di neve sulla costruzione prodotta dal vento, a causa del terreno, altre costruzioni o alberi.	1

PROGETTO ESECUTIVO


Relazione tecnica e di calcolo

Valore del carico della neve al suolo

q₅ (carico della neve al suolo [kN/mq])	1.38
---	------

Coefficiente di forma (copertura ad una falda)

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

8.6 Azione del vento

Per le costruzioni usuali, le azioni del vento sono convenzionalmente ricondotte alle azioni statiche equivalenti definite al § 3.3.3 delle Norme Tecniche per le Costruzioni relative al DM 20.02.2018.

La pressione del vento è quindi data dall'espressione 3.3.4 delle NTC 2018:

$$p = qb \cdot ce \cdot cp \cdot cd$$

I parametri ce e cd sono funzione della posizione geografica e dell'altitudine sul livello del mare della costruzione, oltre che della categoria di esposizione e della classe di rugosità del sito. La struttura ricade in zona 3, pertanto:

CALCOLO DELL'AZIONE DEL VENTO

3) Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)

Zona	v _{b,0} [m/s]	a ₀ [m]	k _a [1/s]
3	27	500	0.02

a _s (altitudine sul livello del mare [m])	380

$$v_b = v_{b,0}$$
 per $a_s \le a_0$ $v_b = v_{b,0} + k_a (a_s - a_0)$ per $a_0 < a_s \le 1500$ m

v _b (velocità di riferimento [m/s]) 27	v₀ (velocità di riferimento [m/s])	27
---	------------------------------------	----

p (pressione del vento [N/mq]) = $q_b \cdot c_e \cdot c_p \cdot c_d$ q_b (pressione cinetica di riferimento [N/mq]) c_e (coefficiente di esposizione)

c_n (coefficiente di forma) c_d (coefficiente dinamico)

Pressione cinetica di riferimento

$$q_b = 1/2 \cdot \rho \cdot v_b^2$$
 ($\rho = 1,25 \text{ kg/mc}$)

|--|

Coefficiente di forma

E' il coefficiente di forma (o coefficiente aerodinamico), funzione della tipologia e della geometria della costruzione e del suo orientamento rispetto alla direzione del vento. Il suo valore può essere ricavato da dati suffragati da opportuna do cumentazione o da prove sperimentali in galleria del vento

Coefficiente dinamico

Esso può essere assunto autelativamente pari ad 1nelle co struzio ni di tipologia ricorrente, quali gli edifici di forma regolare non eccedenti 80 m di altezza ed i capannoni industriali, o ppure può essere determinato mediante analis specifiche o facendo riferimento a dati di comprovata affidabilità.

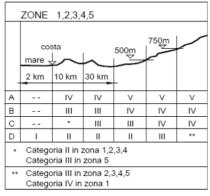
Coefficiente di esposizione

Classe di rugosità del terreno

D) Aree prive di ostacoli (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,....)

STRADA DELLE TRE VALLI UMBRE

Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola


PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Zona

3

Categoria di esposizione

ZONA 6					
	со	sta		500 <u>m</u>	
	mare ,	<u> </u>	~	ブ	
_	2 km	10 km	30 km		
Α		III	IV	V	V
В		II	III	IV	IV
С		II	III	III	IV
D	- 1	- 1	II	Ш	III

z _{altezza edif.}[m]

3.3

	ZONE 7,8					
	mare	cos	ata			
.	1.5 km	0.5 km				
Α	A IV					
В			IV	Ī	Α	
С			III	ı	В	
D	1	II	*	ŀ	_	
* C	∗ Categoria II in zona 8				С	
	Categoria III in zona 7					

Classe di rugosità

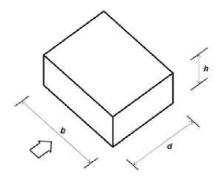
D

		ZONA	9
1			costa
		mare <	_/
	Α		_
1	В		_
1	С		- 1
	D	1	_

a_s [m]

380

$c_e(z) = k_r^2 \cdot c_t \cdot \ln(z/z_0) [7 + c_t \cdot \ln(z/z_0)]$	per z≥z _{min}
$c_e(z) = c_{e(z_{min})}$	per z < z _{min}


Cat. Esposiz	k _r	z ₀ [m]	z _{min} [m]	Ct
II	0.19	0.05	4	1

|--|

La pressione del vento a meno del coefficiente di forma vale: 820.37 N/mq (0.8203 kN/mq)

Il coefficiente dinamico cd è assunto cautelativamente pari a 1.

Il coefficiente di forma cp è stato valutato considerando il §C3.3.8.1 della Circolare Esplicativa delle NTC 2018, relativo agli "Edifici a pianta rettangolare con coperture piane, a falde, inclinate e curvilinee".

Pareti verticali (§C3.3.8.1.1):

L'edificio ha pianta rettangolare per cui si adottano i valori indicati in tabella C3.3.I

Faccia sopravento	Facce laterali	Faccia sottovento
$h/d \le 1$: $c_{pe} = 0.7 + 0.1 \cdot h/d$	$h/d \le 0.5$: $c_{pe} = -0.5 - 0.8 \cdot h/d$	$h/d \le 1$: $c_{pe} = -0.3 - 0.2 \cdot h/d$
$h/d > 1$: $c_{pe} = 0.8$	$h/d > 0.5$: $c_{pe} = -0.9$	$1 < h/d \le 5$: $c_{pe} = -0.5 - 0.05 \cdot (h/d-1)$

I rapporti h/d sono i seguenti:

In direzione X: h/d= 0.38

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

In direzione Y: h/d= 0.45

Per il vento in direzione X, si ottengono i seguenti coefficienti di forma:

Cpe,sopravento = 0.74

Cpe,sottovento = -0.38

Cpe, laterale = -0.74

Per il vento in direzione Y, si ottengono i seguenti coefficienti di forma:

Cpe,sopravento = 0.75

Cpe, sottovento = -0.39

Cpe,laterale = -0.90

Pressione interna (§C3.3.8.5):

Il fabbricato in esame può essere considerato stagno pertanto non si prende in considerazione la pressione interna del vento.

Di seguito si riportano i valori massimi di pressione applicati sulle diverse superfici:

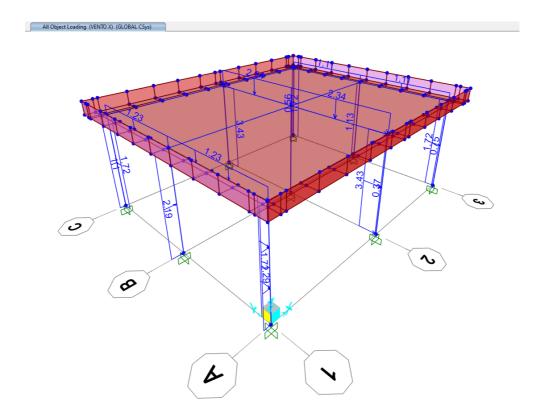
- Pareti sopravento (vento X): 0.60 kN/m2
- Pareti sopravento (vento Y): 0.61 kN/m2
- Pareti sottovento (vento X): 0.31 kN/m2
- Pareti sottovento (vento Y): 0.32 kN/m2
- Pareti laterali (vento X): 0.74 kN/m2
- Pareti laterali (vento Y): 0.74 kN/m2

Oltre alla pressione normale va tenuta in conto anche un'azione tangenziale per unità di superficie parallela alla direzione del vento. Tale azione può essere valutata come:

$$p_f = q_b \cdot c_e \cdot c_f$$

dove:

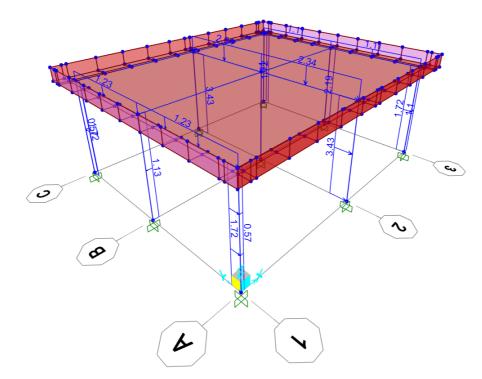
• qb e ce sono quelli già definiti per il calcolo della pressione normale da vento;

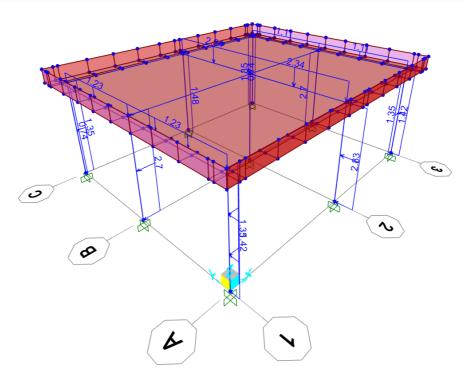

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

• cf è il coefficiente d'attrito, funzione della scabrezza della superficie sulla quale il vento esercita l'azione tangente e che per una generica superficie scabra può essere assunto pari a 0.02.

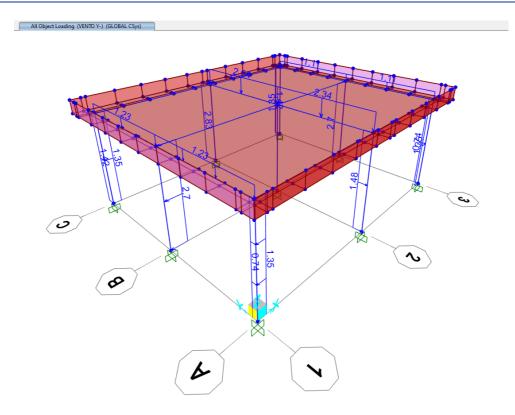
In definitiva


pf,max = 0.01 Kn/m


PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

All Object Loading (VENTO X-) (GLOBAL CSys)



All Object Loading (VENTO Y) (GLOBAL CSys)

PROGETTO ESECUTIVO

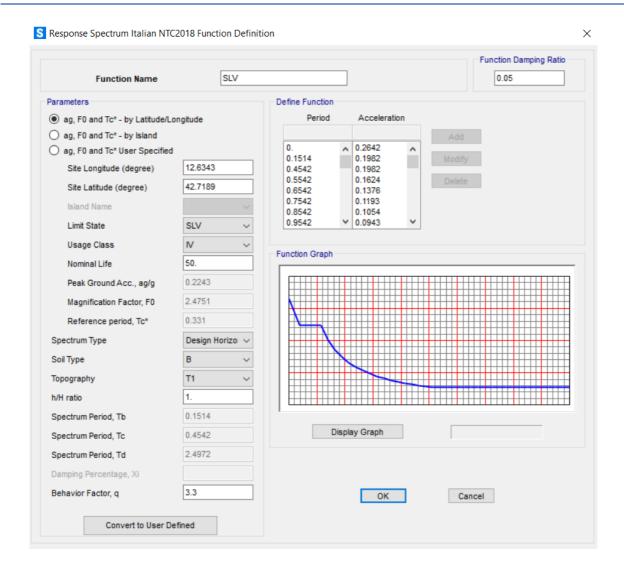
Relazione tecnica e di calcolo

8.7 Azione sismica

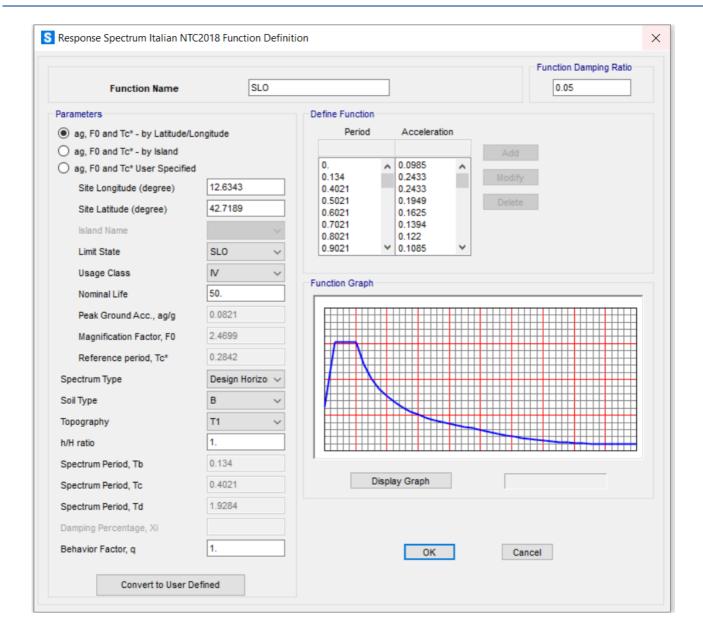
Come riportato al capitolo 7.3.1 ed al capitolo 7.4.3. del DM 2018, poichè la struttura è regolare in pianta ed in altezza ed è costituita da un telaio piano in c.a. viene progettata in classe di duttilità media CD "B" pertanto si considerano i seguenti parametri per l'azione sismica:

$$\frac{\alpha_u}{\alpha_1} = 1.1$$

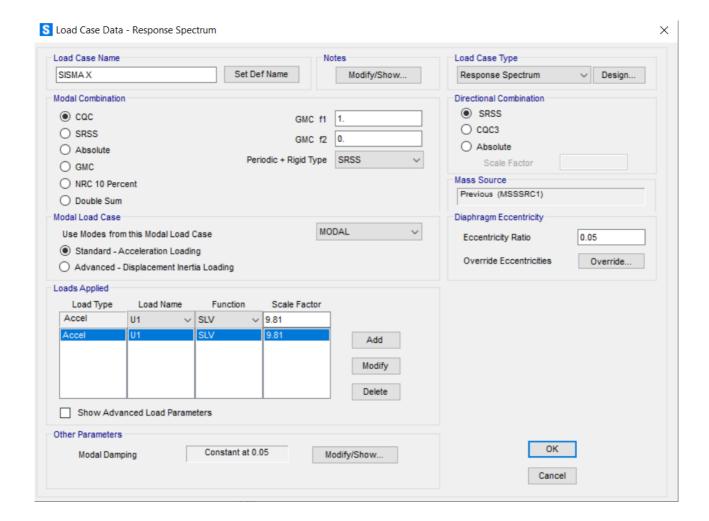
$$K_R = 1$$


$$q_0 = 3 \cdot \frac{\alpha_u}{\alpha_1} = 3.3$$

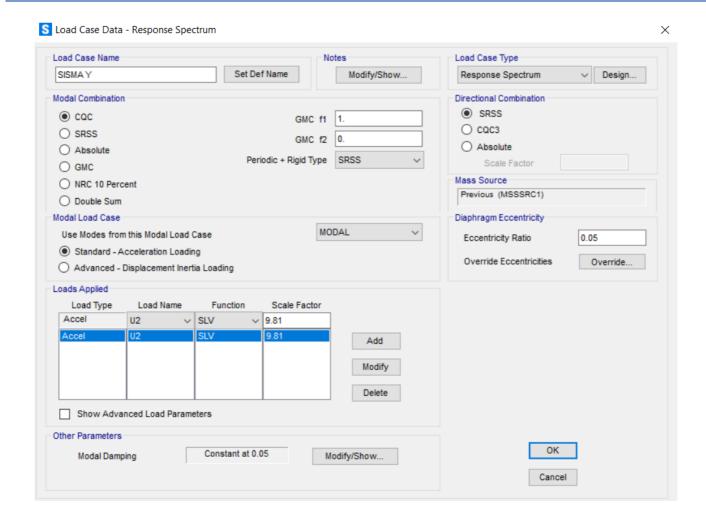
$$q = K_R \cdot q_0 = 3.3$$


Di seguito si riportano gli spettri di progetto utilizzati per l'analisi dinamica della struttura.

PROGETTO ESECUTIVO


PROGETTO ESECUTIVO

PROGETTO ESECUTIVO


Relazione tecnica e di calcolo

Di seguito si riportano i casi di carico sismici comprensivi degli effetti dovuti all'eccentricità del 5 % utilizzati nel modello di calcolo per l'analisi dinamica della struttura.

PROGETTO ESECUTIVO

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

9 COMBINAZIONI DI CARICO

Ai fini delle verifiche degli stati limite si riportano per comodità le combinazioni delle azioni riportate nella normativa ponti alla quale è possibile fare riferimento per la simbologia adottata:

- Combinazione fondamentale. generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

 Combinazione caratteristica (rara). generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot \ Q_{k2} + \psi_{03} \cdot \ Q_{k3} + \dots$$

Combinazione frequente. generalmente impiegata per gli stati limite di esercizio (SLE)
 reversibili; utilizzata nella verifica a Fessurazione:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente. generalmente impiegata per gli stati limite di esercizio
 (SLE) a lungo termine;

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

- Combinazione sismica. impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

dove:

$$E = \pm 1.00 \times E_{Y} \pm 0.30 \times E_{Z}$$
 oppure $E = \pm 0.30 \times E_{Y} \pm 1.00 \times E_{Z}$

avendo indicato con E_Y e E_Z rispettivamente le componenti orizzontale e verticale dell'azione sismica

PROGETTO ESECUTIVO

Tabella 5.2.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, eccezionali e sismica (da DM 14/01/2008)

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γο	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γp	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

Azioni		Ψο	Ψ1	Ψ2
AZIONI SINGOLE	Carico sul rilevato a tergo delle spalle	0.80	0.80 (0.6; 0.4)(1)	0.0
DA TRAFFICO	Azioni aerodinamiche generate dal transito dei convogli	0.80	0.80	0.0
	gr ₁	0.80@	0.80 (0.6; 0.4)(1)	0.0
	gr_2	1.00 @	o = 0	
GRUPPI DI	gr ₃	rgo delle spalle 0.80 0.80 (0.6; 0.4) ⁽¹⁾ generate dal 0.80 0.80 (0.6; 0.4) ⁽¹⁾ 1.00 ⁽²⁾ - 0.80 ⁽²⁾ 0.80 (0.6; 0.4) ⁽¹⁾	0.0	
CARICO	gr ₄	0.80@	0.80 (0.6; 0.4) (1) 0.80 0.80 (0.6; 0.4) (1) - 0.80 (0.6; 0.4) (1) 0.80 (0.6; 0.4) (1) 0.80 (0.6; 0.4) (1) 0.50	0.0
	gr ₅	0.80 (2)	0.80 (0.6; 0.4)(1)	0.0
AZIONI DEL VENTO	Azioni aerodinamiche generate dal ransito dei convogli gr ₁ gr ₂ gr ₃ gr ₄ gr ₅	0,60	0.50	0.0
AZIONI TERMICHE	T _k	0.60	0.60	0.50

Tabella 1.7.4.3.2 - Coefficienti di combinazione ψ delle azioni.

PROGETTO ESECUTIVO

TABLE: Combination Defin				
ComboName	ComboType	CaseType	CaseName	ScaleFactor
Text	Text	Text	Text	Unitless
SLU_1	Linear Add	Linear Static	DEAD	1.3
SLU_1		Linear Static	PERM	1.3
SLU_1		Linear Static	NEVE CV	1.5
SLU_1		Linear Static	VENTO X	0.9
SLU_1		Linear Static	TEMP -	0.9
SLU_2	Linear Add	Linear Static	DEAD	1.3
SLU_2		Linear Static	PERM	1.3
SLU_2		Linear Static	NEVE CV	1.5
SLU_2		Linear Static	VENTO X-	0.9
SLU_2		Linear Static	TEMP -	0.9
SLU_3	Linear Add	Linear Static	DEAD	1.3
SLU_3		Linear Static	PERM	1.3
SLU_3		Linear Static	NEVE CV	1.5
SLU_3		Linear Static	VENTO Y	0.9
SLU_3		Linear Static	TEMP -	0.9
SLU_6	Linear Add	Linear Static	DEAD	1.3
SLU_6		Linear Static	PERM	1.3
SLU_6		Linear Static	NEVE CV	0.75
SLU_6		Linear Static	VENTO X	1.5
SLU_6		Linear Static	TEMP -	0.9
SLU_7	Linear Add	Linear Static	DEAD	1.3
SLU_7		Linear Static	PERM	1.3
SLU_7		Linear Static	NEVE CV	0.75
SLU_7		Linear Static	VENTO X-	1.5
SLU_7		Linear Static	TEMP -	0.9

PROGETTO ESECUTIVO

SLU_5	Linear Add	Linear Static	DEAD	1.3
SLU_5		Linear Static	PERM	1.3
SLU_5		Linear Static	NEVE SV	1.5
SLU_5		Linear Static	TEMP -	0.9
SLU_8	Linear Add	Linear Static	DEAD	1.3
SLU_8		Linear Static	PERM	1.3
SLU_8		Linear Static	NEVE CV	0.75
SLU_8		Linear Static	VENTO Y	1.5
SLU_8		Linear Static	TEMP -	0.9
SLU_10	Linear Add	Linear Static	DEAD	1.3
SLU_10		Linear Static	PERM	1.3
SLU_10		Linear Static	VENTO X	1.5
SLU_10		Linear Static	TEMP +	0.9
SLU_11	Linear Add	Linear Static	DEAD	1.3
SLU_11		Linear Static	PERM	1.3
SLU_11		Linear Static	VENTO X-	1.5
SLU_11		Linear Static	TEMP +	0.9
SLU_12	Linear Add	Linear Static	DEAD	1.3
SLU_12		Linear Static	PERM	1.3
SLU_12		Linear Static	VENTO Y	1.5
SLU_12		Linear Static	TEMP +	0.9
SLU_14	Linear Add	Linear Static	DEAD	1.3
SLU_14		Linear Static	PERM	1.3
SLU_14		Linear Static	VENTO X	0.9
SLU_14		Linear Static	TEMP +	1.5
SLU_15	Linear Add	Linear Static	DEAD	1.3
SLU_15		Linear Static	PERM	1.3
SLU_15		Linear Static	VENTO X-	0.9
SLU_15		Linear Static	TEMP +	1.5

PROGETTO ESECUTIVO

SLU_16	Linear Add	Linear Static	DEAD	1.3
SLU_16	ziiicai / taa	Linear Static	PERM	1.3
SLU_16		Linear Static	VENTO Y	0.9
SLU_16		Linear Static	TEMP +	1.5
SLU_18	Linear Add	Linear Static	DEAD	1.3
SLU_18		Linear Static	PERM	1.3
SLU_18		Linear Static	NEVE CV	0.75
SLU_18		Linear Static	VENTO X	0.9
SLU_18		Linear Static	TEMP -	1.5
SLU_19	Linear Add	Linear Static	DEAD	1.3
SLU_19		Linear Static	PERM	1.3
SLU_19		Linear Static	NEVE CV	0.75
_ SLU_19		Linear Static	VENTO X-	0.9
_ SLU_19		Linear Static	TEMP -	1.5
_ SLU_20	Linear Add	Linear Static	DEAD	1.3
		Linear Static	PERM	1.3
_ SLU_20		Linear Static	NEVE CV	0.75
		Linear Static	VENTO Y	0.9
SLU_20		Linear Static	TEMP -	1.5
	Linear Add	Linear Static	DEAD	1.3
SLU_22		Linear Static	PERM	1.3
SLU_22		Linear Static	NEVE SV	0.75
SLU_22		Linear Static	TEMP -	1.5
SLU_23	Linear Add	Linear Static	DEAD	1
SLU_23		Linear Static	PERM	1
SLU_23		Linear Static	NEVE CV	1.3
SLU_23		Linear Static	VENTO X	0.78
SLU_23		Linear Static	TEMP -	0.78
SLU_24	Linear Add	Linear Static	DEAD	1

PROGETTO ESECUTIVO

SLU_24		Linear Static	PERM	1
SLU_24		Linear Static	NEVE CV	1.3
SLU_24		Linear Static	VENTO X-	0.78
SLU_24		Linear Static	TEMP -	0.78
SLU_25	Linear Add	Linear Static	DEAD	1
SLU_25		Linear Static	PERM	1
SLU_25		Linear Static	NEVE CV	1.3
SLU_25		Linear Static	VENTO Y	0.78
SLU_25		Linear Static	TEMP -	0.78
SLU_27	Linear Add	Linear Static	DEAD	1
SLU_27		Linear Static	PERM	1
SLU_27		Linear Static	NEVE SV	1.3
SLU_27		Linear Static	TEMP -	0.78
SLU_28	Linear Add	Linear Static	DEAD	1
SLU_28		Linear Static	PERM	1
SLU_28		Linear Static	NEVE CV	0.65
SLU_28		Linear Static	VENTO X	1.3
SLU_28		Linear Static	TEMP -	0.78
SLU_29	Linear Add	Linear Static	DEAD	1
SLU_29		Linear Static	PERM	1
SLU_29		Linear Static	NEVE CV	0.65
SLU_29		Linear Static	VENTO X-	1.3
SLU_29		Linear Static	TEMP -	0.78
SLU_30	Linear Add	Linear Static	DEAD	1
SLU_30		Linear Static	PERM	1
SLU_30		Linear Static	NEVE CV	0.65
SLU_30		Linear Static	VENTO Y	1.3
SLU_30		Linear Static	TEMP -	0.78
SLU_32	Linear Add	Linear Static	DEAD	1

PROGETTO ESECUTIVO

SLU_32		Linear Static	PERM	1
SLU_32		Linear Static	VENTO X	1.3
SLU_32		Linear Static	TEMP +	0.78
SLU_33	Linear Add	Linear Static	DEAD	1
SLU_33		Linear Static	PERM	1
SLU_33		Linear Static	VENTO X-	1.3
SLU_33		Linear Static	TEMP +	0.78
SLU_34	Linear Add	Linear Static	DEAD	1
SLU_34		Linear Static	PERM	1
SLU_34		Linear Static	VENTO Y	1.3
SLU_34		Linear Static	TEMP +	0.78
SLU_36	Linear Add	Linear Static	DEAD	1
SLU_36		Linear Static	PERM	1
SLU_36		Linear Static	TEMP +	1.3
SLU_36		Linear Static	VENTO X	0.78
SLU_37	Linear Add	Linear Static	DEAD	1
SLU_37		Linear Static	PERM	1
SLU_37		Linear Static	VENTO X-	0.78
SLU_37		Linear Static	TEMP +	1.3
SLU_38	Linear Add	Linear Static	DEAD	1
SLU_38		Linear Static	PERM	1
SLU_38		Linear Static	VENTO Y	0.78
SLU_38		Linear Static	TEMP +	1.3
SLU_40	Linear Add	Linear Static	DEAD	1
SLU_40		Linear Static	PERM	1
SLU_40		Linear Static	NEVE CV	0.65
SLU_40		Linear Static	VENTO X	0.78
SLU_40		Linear Static	TEMP -	1.3
SLU_41	Linear Add	Linear Static	DEAD	1

PROGETTO ESECUTIVO

SLU_41		Linear Static	PERM	1
SLU_41		Linear Static	NEVE CV	0.65
SLU_41		Linear Static	VENTO X-	0.78
SLU_41		Linear Static	TEMP -	1.3
SLU_42	Linear Add	Linear Static	DEAD	1
SLU_42		Linear Static	PERM	1
SLU_42		Linear Static	NEVE CV	0.65
SLU_42		Linear Static	VENTO Y	0.78
SLU_42		Linear Static	TEMP -	1.3
SLU_44	Linear Add	Linear Static	DEAD	1
SLU_44		Linear Static	PERM	1
SLU_44		Linear Static	NEVE SV	0.65
SLU_44		Linear Static	TEMP -	1.3
Sismica_SLU_+1.0_X_+0.3Y	Linear Add	Linear Static	DEAD	1
Sismica_SLU_+1.0_X_+0.3Y		Linear Static	PERM	1
Sismica_SLU_+1.0_X_+0.3Y		Response Spectrum	SISMA X	1
Sismica_SLU_+1.0_X_+0.3Y		Response Spectrum	SISMA Y	0.3
Sismica_SLU_+0.3_X_+1.0Y	Linear Add	Linear Static	DEAD	1
Sismica_SLU_+0.3_X_+1.0Y		Linear Static	PERM	1
Sismica_SLU_+0.3_X_+1.0Y		Response Spectrum	SISMA X	0.3
Sismica_SLU_+0.3_X_+1.0Y		Response Spectrum	SISMA Y	1
Sismica_SLE_+1.0_X_+0.3Y	Linear Add	Linear Static	DEAD	1
Sismica_SLE_+1.0_X_+0.3Y		Linear Static	PERM	1
Sismica_SLE_+1.0_X_+0.3Y		Response Spectrum	SISMA_SLE X	1
Sismica_SLE_+1.0_X_+0.3Y		Response Spectrum	SISMA_SLE Y	0.3
Sismica_SLE_+0.3_X_+1.0Y	Linear Add	Linear Static	DEAD	1
Sismica_SLE_+0.3_X_+1.0Y		Linear Static	PERM	1
Sismica_SLE_+0.3_X_+1.0Y		Response Spectrum	SISMA_SLE X	0.3
Sismica_SLE_+0.3_X_+1.0Y		Response Spectrum	SISMA_SLE Y	1

PROGETTO ESECUTIVO

SLU_43	Linear Add	Linear Static	DEAD	1
SLU_43		Linear Static	PERM	1
SLU_43		Linear Static	NEVE CV	0.65
SLU_43		Linear Static	VENTO Y-	0.78
SLU_43		Linear Static	TEMP -	1.3
SLU_39	Linear Add	Linear Static	DEAD	1
SLU_39		Linear Static	PERM	1
SLU_39		Linear Static	VENTO Y-	0.78
SLU_39		Linear Static	TEMP +	1.3
SLU_35	Linear Add	Linear Static	DEAD	1
SLU_35		Linear Static	PERM	1
SLU_35		Linear Static	VENTO Y-	1.3
SLU_35		Linear Static	TEMP +	0.78
SLU_31	Linear Add	Linear Static	DEAD	1
SLU_31		Linear Static	PERM	1
SLU_31		Linear Static	VENTO Y-	1.3
SLU_31		Linear Static	TEMP -	0.78
SLU_31		Linear Static	NEVE CV	0.65
SLU_26	Linear Add	Linear Static	DEAD	1
SLU_26		Linear Static	PERM	1
SLU_26		Linear Static	NEVE CV	1.3
SLU_26		Linear Static	VENTO Y-	0.78
SLU_26		Linear Static	TEMP -	0.78
SLU_21	Linear Add	Linear Static	DEAD	1.3
SLU_21		Linear Static	PERM	1.3
SLU_21		Linear Static	NEVE CV	0.75
SLU_21		Linear Static	VENTO Y-	0.9
SLU_21		Linear Static	TEMP -	1.5
SLU_17	Linear Add	Linear Static	DEAD	1.3

PROGETTO ESECUTIVO

SLU_17		Linear Static	PERM	1.3
SLU_17		Linear Static	VENTO Y-	0.9
SLU_17		Linear Static	TEMP +	1.5
SLU_13	Linear Add	Linear Static	DEAD	1.3
SLU_13		Linear Static	PERM	1.3
SLU_13		Linear Static	VENTO Y-	1.5
SLU_13		Linear Static	TEMP +	0.9
SLU_9	Linear Add	Linear Static	DEAD	1.3
SLU_9		Linear Static	PERM	1.3
SLU_9		Linear Static	NEVE CV	0.75
SLU_9		Linear Static	VENTO Y-	1.5
SLU_9		Linear Static	TEMP -	0.9
SLU_4	Linear Add	Linear Static	DEAD	1.3
SLU_4		Linear Static	PERM	1.3
SLU_4		Linear Static	NEVE CV	1.5
SLU_4		Linear Static	VENTO Y-	0.9
SLU_4		Linear Static	TEMP -	0.9
Sismica_SLU_+1.0_X0.3Y	Linear Add	Linear Static	DEAD	1
Sismica_SLU_+1.0_X0.3Y		Linear Static	PERM	1
Sismica_SLU_+1.0_X0.3Y		Response Spectrum	SISMA X	1
Sismica_SLU_+1.0_X0.3Y		Response Spectrum	SISMA Y	-0.3
Sismica_SLU_+0.3_X1.0Y	Linear Add	Linear Static	DEAD	1
Sismica_SLU_+0.3_X1.0Y		Linear Static	PERM	1
Sismica_SLU_+0.3_X1.0Y		Response Spectrum	SISMA X	0.3
Sismica_SLU_+0.3_X1.0Y		Response Spectrum	SISMA Y	-1
Sismica_SLU1.0_X0.3Y	Linear Add	Linear Static	DEAD	1
Sismica_SLU1.0_X0.3Y		Linear Static	PERM	1
Sismica_SLU1.0_X0.3Y		Response Spectrum	SISMA X	-1
Sismica_SLU1.0_X0.3Y		Response Spectrum	SISMA Y	-0.3

PROGETTO ESECUTIVO

Sismica_SLU0.3_X1.0Y	Linear Add	Linear Static	DEAD	1
Sismica_SLU0.3_X1.0Y		Linear Static	PERM	1
Sismica_SLU0.3_X1.0Y		Response Spectrum	SISMA X	-0.3
Sismica_SLU0.3_X1.0Y		Response Spectrum	SISMA Y	-1
Sismica_SLU1.0_X_+0.3Y	Linear Add	Linear Static	DEAD	1
Sismica_SLU1.0_X_+0.3Y		Linear Static	PERM	1
Sismica_SLU1.0_X_+0.3Y		Response Spectrum	SISMA X	-1
Sismica_SLU1.0_X_+0.3Y		Response Spectrum	SISMA Y	0.3
Sismica_SLU0.3_X_+1.0Y	Linear Add	Linear Static	DEAD	1
Sismica_SLU0.3_X_+1.0Y		Linear Static	PERM	1
Sismica_SLU0.3_X_+1.0Y		Response Spectrum	SISMA X	-0.3
Sismica_SLU0.3_X_+1.0Y		Response Spectrum	SISMA Y	1
Sismica_SLE1.0_X_+0.3Y	Linear Add	Linear Static	DEAD	1
Sismica_SLE1.0_X_+0.3Y		Linear Static	PERM	1
Sismica_SLE1.0_X_+0.3Y		Response Spectrum	SISMA_SLE X	-1
Sismica_SLE1.0_X_+0.3Y		Response Spectrum	SISMA_SLE Y	0.3
Sismica_SLE0.3_X_+1.0Y	Linear Add	Linear Static	DEAD	1
Sismica_SLE0.3_X_+1.0Y		Linear Static	PERM	1
Sismica_SLE0.3_X_+1.0Y		Response Spectrum	SISMA_SLE X	-0.3
Sismica_SLE0.3_X_+1.0Y		Response Spectrum	SISMA_SLE Y	1
Sismica_SLE_+1.0_X0.3Y	Linear Add	Linear Static	DEAD	1
Sismica_SLE_+1.0_X0.3Y		Linear Static	PERM	1
Sismica_SLE_+1.0_X0.3Y		Response Spectrum	SISMA_SLE X	1
Sismica_SLE_+1.0_X0.3Y		Response Spectrum	SISMA_SLE Y	-0.3
Sismica_SLE_+0.3_X1.0Y	Linear Add	Linear Static	DEAD	1
Sismica_SLE_+0.3_X1.0Y		Linear Static	PERM	1
Sismica_SLE_+0.3_X1.0Y		Response Spectrum	SISMA_SLE X	0.3
Sismica_SLE_+0.3_X1.0Y		Response Spectrum	SISMA_SLE Y	-1
Sismica_SLE1.0_X0.3Y	Linear Add	Linear Static	DEAD	1

PROGETTO ESECUTIVO

Sismica_SLE1.0_X0.3Y		Linear Static	PERM	1
Sismica_SLE1.0_X0.3Y		Response Spectrum	SISMA_SLE X	-1
Sismica_SLE1.0_X0.3Y		Response Spectrum	SISMA_SLE Y	-0.3
Sismica_SLE0.3_X1.0Y	Linear Add	Linear Static	DEAD	1
Sismica_SLE0.3_X1.0Y		Linear Static	PERM	1
Sismica_SLE0.3_X1.0Y		Response Spectrum	SISMA_SLE X	-0.3
Sismica_SLE0.3_X1.0Y		Response Spectrum	SISMA_SLE Y	-1
SLU_1a	Linear Add	Linear Static	DEAD	1.3
SLU_1a		Linear Static	PERM	1.3
SLU_1a		Linear Static	ACC COP	1.5
SLU_1a		Linear Static	TEMP -	0.9
SLU_1a		Linear Static	VENTO X	0.9
SLU_2a	Linear Add	Linear Static	DEAD	1.3
SLU_2a		Linear Static	PERM	1.3
SLU_2a		Linear Static	ACC COP	1.5
SLU_2a		Linear Static	TEMP -	0.9
SLU_2a		Linear Static	VENTO X-	0.9
SLU_3a	Linear Add	Linear Static	DEAD	1.3
SLU_3a		Linear Static	PERM	1.3
SLU_3a		Linear Static	ACC COP	1.5
SLU_3a		Linear Static	TEMP -	0.9
SLU_3a		Linear Static	VENTO Y	0.9
SLU_4a	Linear Add	Linear Static	DEAD	1.3
SLU_4a		Linear Static	PERM	1.3
SLU_4a		Linear Static	ACC COP	1.5
SLU_4a		Linear Static	TEMP +	0.9
SLU_4a		Linear Static	VENTO X	0.9
SLU_5a	Linear Add	Linear Static	DEAD	1.3
SLU_5a		Linear Static	PERM	1.3

PROGETTO ESECUTIVO

SLU_5a		Linear Static	ACC COP	1.5
SLU_5a		Linear Static	TEMP +	0.9
SLU_5a		Linear Static	VENTO X-	0.9
SLU_6a	Linear Add	Linear Static	DEAD	1.3
SLU_6a		Linear Static	PERM	1.3
SLU_6a		Linear Static	ACC COP	1.5
SLU_6a		Linear Static	TEMP +	0.9
SLU_6a		Linear Static	VENTO Y	0.9
SLU_45	Linear Add	Linear Static	DEAD	1
SLU_45		Linear Static	PERM	1
SLU_45		Linear Static	ACC COP	1.3
SLU_45		Linear Static	TEMP -	0.78
SLU_45		Linear Static	VENTO X	0.78
SLU_46	Linear Add	Linear Static	DEAD	1
SLU_46		Linear Static	PERM	1
SLU_46		Linear Static	ACC COP	1.3
SLU_46		Linear Static	TEMP -	0.78
SLU_46		Linear Static	VENTO X-	0.78
SLU_47	Linear Add	Linear Static	DEAD	1
SLU_47		Linear Static	PERM	1
SLU_47		Linear Static	ACC COP	1.3
SLU_47		Linear Static	TEMP -	0.78
SLU_47		Linear Static	VENTO Y	0.78
SLU_48	Linear Add	Linear Static	DEAD	1
SLU_48		Linear Static	PERM	1
SLU_48		Linear Static	ACC COP	1.3
SLU_48		Linear Static	TEMP +	0.78
SLU_48		Linear Static	VENTO X	0.78
SLU_49	Linear Add	Linear Static	DEAD	1

PROGETTO ESECUTIVO

SLU_49		Linear Static	PERM	1
SLU_49		Linear Static	ACC COP	1.3
SLU_49		Linear Static	TEMP +	0.78
SLU_49		Linear Static	VENTO X-	0.78
SLU_50	Linear Add	Linear Static	DEAD	1
SLU_50		Linear Static	PERM	1
SLU_50		Linear Static	ACC COP	1.3
SLU_50		Linear Static	TEMP +	0.78
SLU_50		Linear Static	VENTO Y	0.78
CARATTERISTICA 1	Linear Add	Linear Static	DEAD	1
CARATTERISTICA 1		Linear Static	PERM	1
CARATTERISTICA 1		Linear Static	VENTO X	1
CARATTERISTICA 1		Linear Static	NEVE CV	0.5
CARATTERISTICA 1		Linear Static	TEMP +	0.5
CARATTERISTICA 2	Linear Add	Linear Static	DEAD	1
CARATTERISTICA 2		Linear Static	PERM	1
CARATTERISTICA 2		Linear Static	VENTO X	1
CARATTERISTICA 2		Linear Static	NEVE CV	0.5
CARATTERISTICA 2		Linear Static	TEMP -	0.5
CARATTERISTICA 3	Linear Add	Linear Static	DEAD	1
CARATTERISTICA 3		Linear Static	PERM	1
CARATTERISTICA 3		Linear Static	VENTO X	0.6
CARATTERISTICA 3		Linear Static	ACC COP	1
CARATTERISTICA 3		Linear Static	TEMP -	0.5
CARATTERISTICA 4	Linear Add	Linear Static	DEAD	1
CARATTERISTICA 4		Linear Static	PERM	1
CARATTERISTICA 4		Linear Static	VENTO X	0.6
CARATTERISTICA 4		Linear Static	ACC COP	1
CARATTERISTICA 4		Linear Static	TEMP +	0.5

PROGETTO ESECUTIVO

CARATTERISTICA 5	Linear Add	Linear Static	DEAD	0
CARATTERISTICA 5		Linear Static	PERM	0
CARATTERISTICA 5		Linear Static	VENTO X	1
CARATTERISTICA 5		Linear Static	NEVE CV	0.5
CARATTERISTICA 5		Linear Static	TEMP +	0.5
CARATTERISTICA 6	Linear Add	Linear Static	DEAD	0
CARATTERISTICA 6		Linear Static	PERM	0
CARATTERISTICA 6		Linear Static	VENTO X	1
CARATTERISTICA 6		Linear Static	NEVE CV	0.5
CARATTERISTICA 6		Linear Static	TEMP -	0.5
CARATTERISTICA 7	Linear Add	Linear Static	DEAD	0
CARATTERISTICA 7		Linear Static	PERM	0
CARATTERISTICA 7		Linear Static	VENTO X	0.6
CARATTERISTICA 7		Linear Static	ACC COP	1
CARATTERISTICA 7		Linear Static	TEMP -	0.5
CARATTERISTICA 8	Linear Add	Linear Static	DEAD	0
CARATTERISTICA 8		Linear Static	PERM	0
CARATTERISTICA 8		Linear Static	VENTO X	0.6
CARATTERISTICA 8		Linear Static	ACC COP	1
CARATTERISTICA 8		Linear Static	TEMP +	0.5
SLE_1F	Linear Add	Linear Static	DEAD	1
SLE_1F		Linear Static	PERM	1
SLE_1F		Linear Static	NEVE CV	0.2
SLE_2F	Linear Add	Linear Static	DEAD	1
SLE_2F		Linear Static	PERM	1
SLE_2F		Linear Static	NEVE SV	0.2
SLE_3F	Linear Add	Linear Static	DEAD	1
SLE_3F		Linear Static	PERM	1
SLE_3F		Linear Static	VENTO X	0.2

PROGETTO ESECUTIVO

SLE_4F	Linear Add	Linear Static	DEAD	1
SLE_4F		Linear Static	PERM	1
SLE_4F		Linear Static	VENTO X-	0.2
SLE_5F	Linear Add	Linear Static	DEAD	1
SLE_5F		Linear Static	PERM	1
SLE_5F		Linear Static	VENTO Y	0.2
SLE_7F	Linear Add	Linear Static	DEAD	1
SLE_7F		Linear Static	PERM	1
SLE_7F		Linear Static	TEMP +	0.5
SLE_8F	Linear Add	Linear Static	DEAD	1
SLE_8F		Linear Static	PERM	1
SLE_8F		Linear Static	TEMP -	0.5
SLE_6F	Linear Add	Linear Static	DEAD	1
SLE_6F		Linear Static	PERM	1
SLE_6F		Linear Static	VENTO Y-	0.2
SLE_QP	Linear Add	Linear Static	DEAD	1
SLE_QP		Linear Static	PERM	1

Relazione tecnica e di calcolo

10 RISULTATI DELLA MODELLAZIONE

Si riportano di seguito i primi tre modi di vibrazione della struttura e le sollecitazioni massime ottenute dal modello con cui si effettuano le successive verifiche di resistenza.

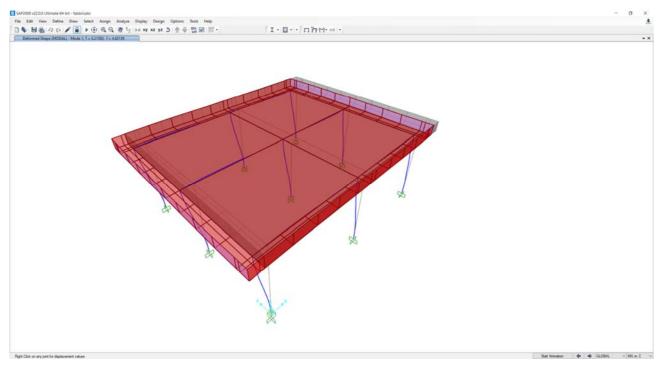


Figura 1 – primo periodo di vibrazione

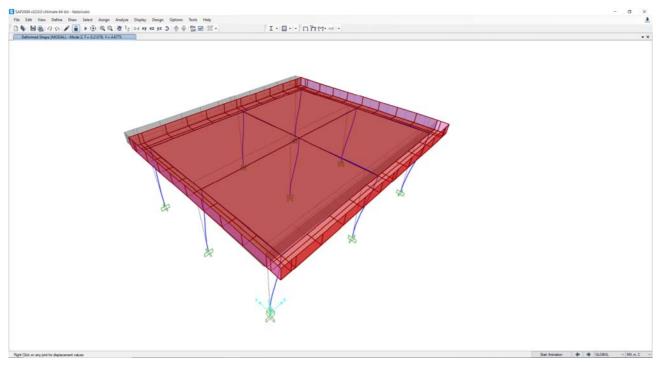


Figura 2 – secondo periodo di vibrazione

PROGETTO ESECUTIVO

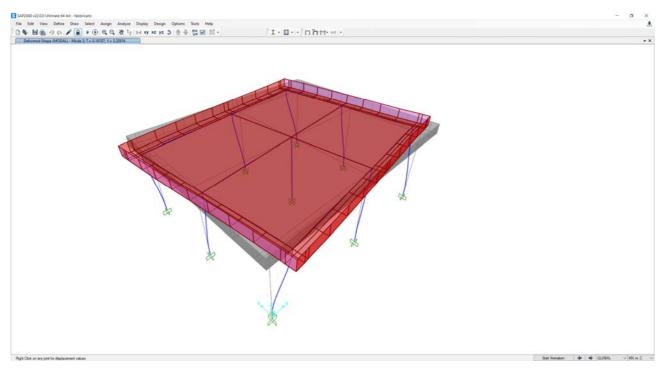


Figura 3 – terzo periodo di vibrazione

PROGETTO ESECUTIVO

TABLE: Modal Participating Mass Ratios									
OutputCase	StepType	StepNum	Period	UX	UY	UZ	SumUX	SumUY	SumUZ
Text	Text	Unitless	Sec	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless
MODAL	Mode	1	0.215918	0.99951	0	2.333E-07	0.99951	0	2.333E-07
MODAL	Mode	2	0.213789	0	0.99543	0	0.99951	0.99543	2.333E-07
MODAL	Mode	3	0.191969	0	0.00409	0	0.99951	0.99952	2.333E-07
MODAL	Mode	4	0.030018	3.597E-18	0.00006186	1.155E-15	0.99951	0.99958	2.333E-07
MODAL	Mode	5	0.028967	0.0002	3.635E-17	0.02335	0.99971	0.99958	0.02335
MODAL	Mode	6	0.027314	2.072E-18	0.00021	1.019E-14	0.99971	0.99979	0.02335
MODAL	Mode	7	0.026789	1.601E-18	0.00001849	6.065E-15	0.99971	0.9998	0.02335
MODAL	Mode	8	0.025656	0.00004886	1.088E-17	0.02624	0.99976	0.9998	0.04959
MODAL	Mode	9	0.024793	0.00004266	1.299E-16	0.13102	0.9998	0.9998	0.1806
MODAL	Mode	10	0.023984	2.041E-19	0.00005498	3.937E-15	0.9998	0.99985	0.1806
MODAL	Mode	11	0.023416	3.153E-07	2.901E-18	0.39533	0.9998	0.99985	0.57593
MODAL	Mode	12	0.021848	1.206E-07	1.593E-17	0.2393	0.9998	0.99985	0.81522
MODAL	Mode	13	0.0176	4.913E-17	0.000002786	1.667E-13	0.9998	0.99985	0.81522
MODAL	Mode	14	0.016737	0.000007869	2.154E-17	0.00217	0.99981	0.99985	0.81739
MODAL	Mode	15	0.016353	2.038E-16	0.000003185	9.654E-15	0.99981	0.99986	0.81739
MODAL	Mode	16	0.016046	0.00001395	2.496E-17	0.00029	0.99982	0.99986	0.81769
MODAL	Mode	17	0.015757	3.297E-18	0.00003664	2.389E-16	0.99982	0.99989	0.81769
MODAL	Mode	18	0.015357	0.00003584	5.736E-17	0.00162	0.99986	0.99989	0.81931
MODAL	Mode	19	0.015137	1.49E-16	0.00002599	6.58E-16	0.99986	0.99992	0.81931
MODAL	Mode	20	0.015017	0.00007885	1.747E-16	0.00025	0.99994	0.99992	0.81955
MODAL	Mode	21	0.014598	0.000008006	2.735E-17	0.00009356	0.99995	0.99992	0.81965
MODAL	Mode	22	0.01405	1.354E-16	0.00001773	2.153E-13	0.99995	0.99994	0.81965
MODAL	Mode	23	0.013952	8.823E-16	0.00001956	4.36E-14	0.99995	0.99994	0.81965
MODAL	Mode	24	0.01394	0.00001244	1.599E-17	0.00276	0.99995	0.99994	0.82241
MODAL	Mode	25	0.013559	3.007E-16	0.000004971	9.194E-14	0.99995	0.99994	0.82241

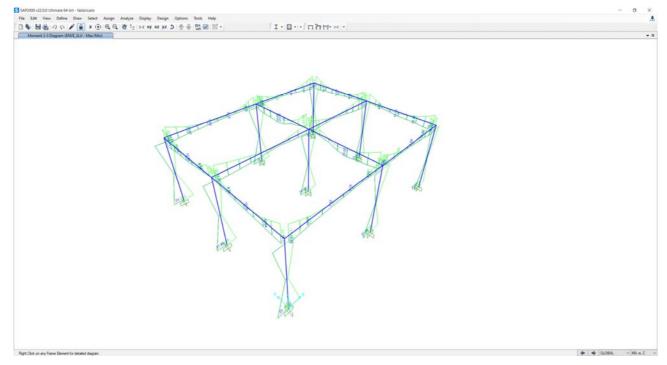


Figura 4 – Momento flettente M33 per la combinazione ENVE-SLU

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

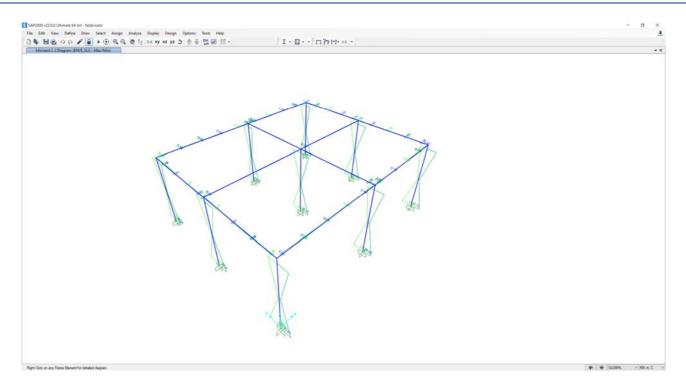


Figura 5 – Momento flettente M22 per la combinazione ENVE-SLU

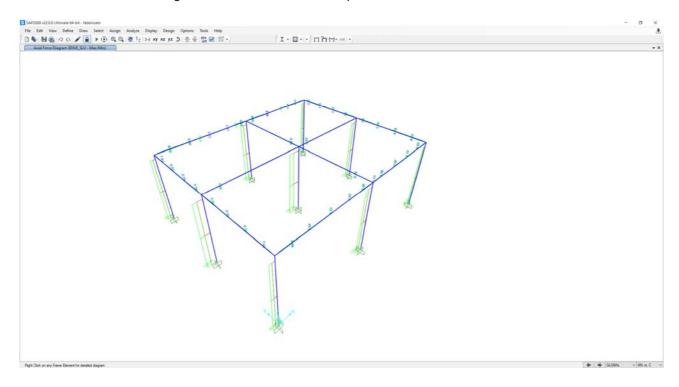


Figura 6 – sforzo assiale N per la combinazione ENVE-SLU

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

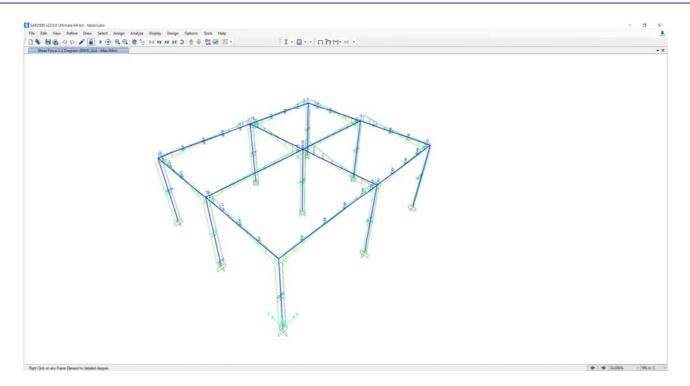


Figura 7 – Taglio V22 per la combinazione ENVE-SLU

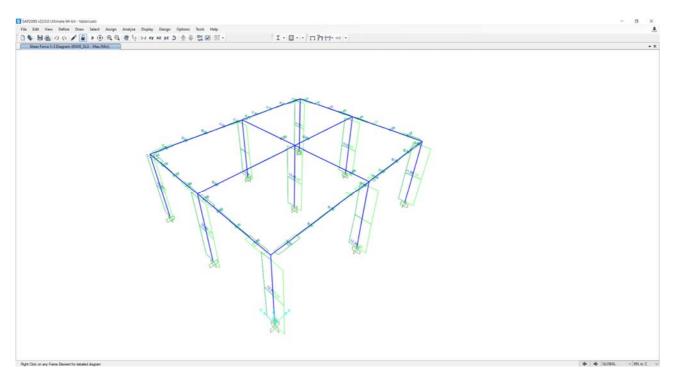


Figura 8 – Taglio V33 per la combinazione ENVE-SLU

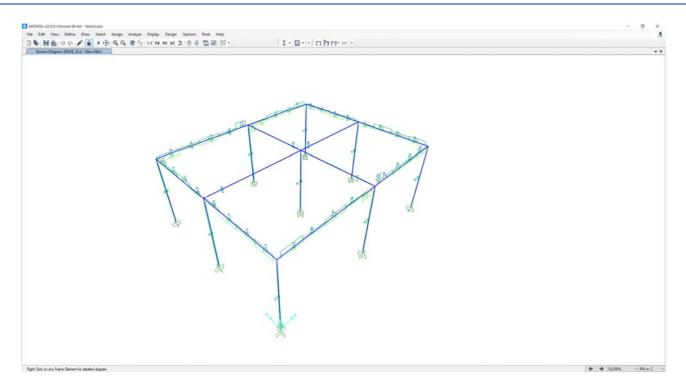


Figura 9 – Momento torcente per la combinazione ENVE-SLU

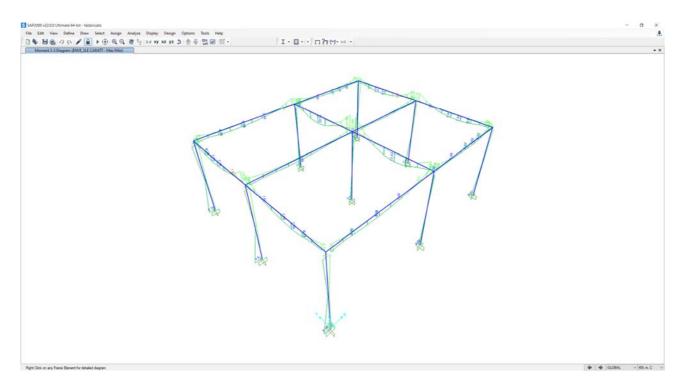


Figura 10 – Momento flettente M33 per la combinazione ENVE-SLE CARATTERISTICA

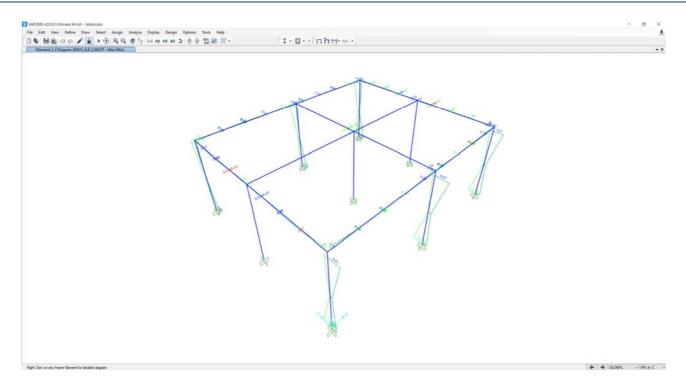


Figura 11 - Momento flettente M22 per la combinazione ENVE-SLE CARATTERISTICA

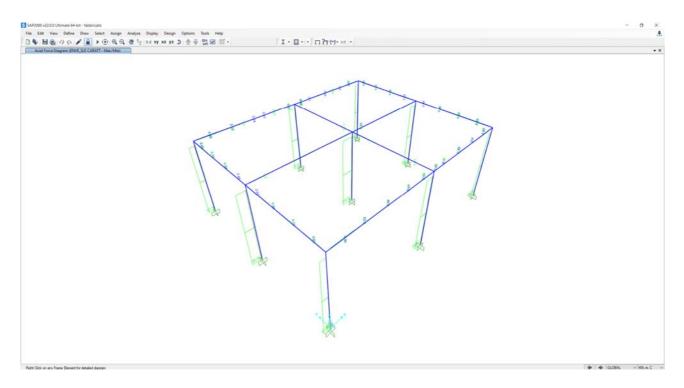


Figura 12 – Sforzo assiale P per la combinazione ENVE-SLE CARATTERISTICA



Figura 13 – Momento flettente M33 per la combinazione ENVE-SLE FREQUENTE

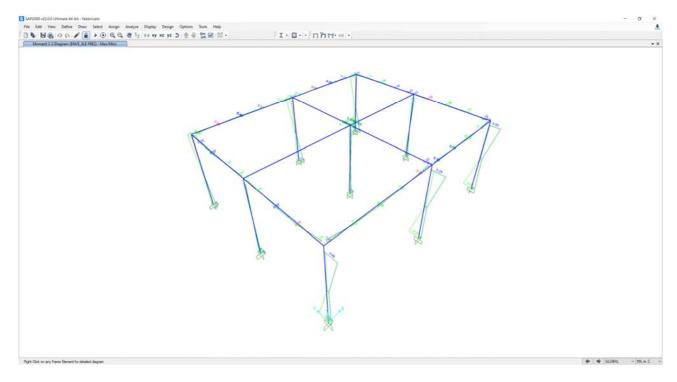


Figura 14 – Momento flettente M22 per la combinazione ENVE-SLE FREQUENTE

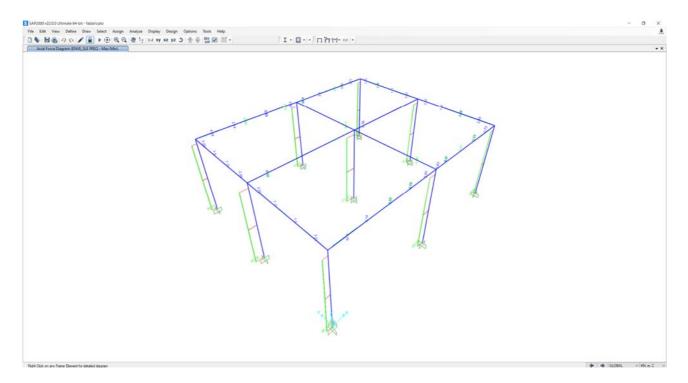


Figura 15 – Sforzo assiale P per la combinazione ENVE-SLE FREQUENTE

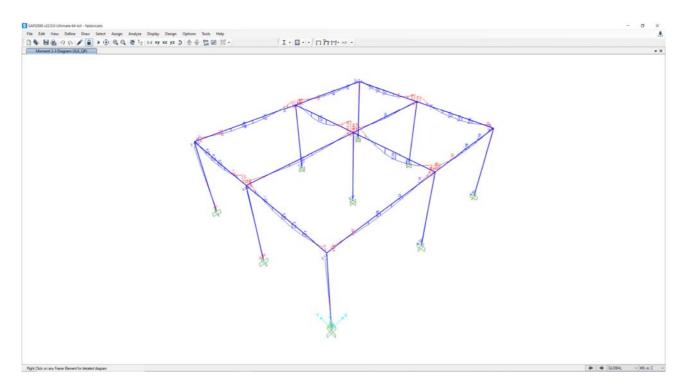


Figura 16 – Momento flettente M33 per la combinazione ENVE-SLE QUASI PERMANENTE

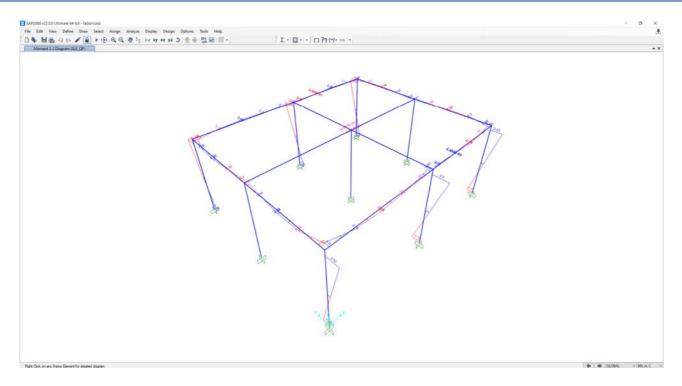


Figura 17 – Momento flettente M22 per la combinazione ENVE-SLE QUASI PERMANENTE

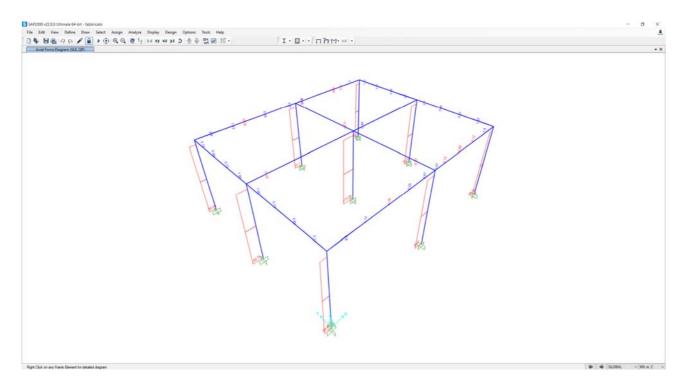


Figura 18 – Sforzo assiale P per la combinazione ENVE-SLE QUASI PERMANENTE

PROGETTO ESECUTIVO

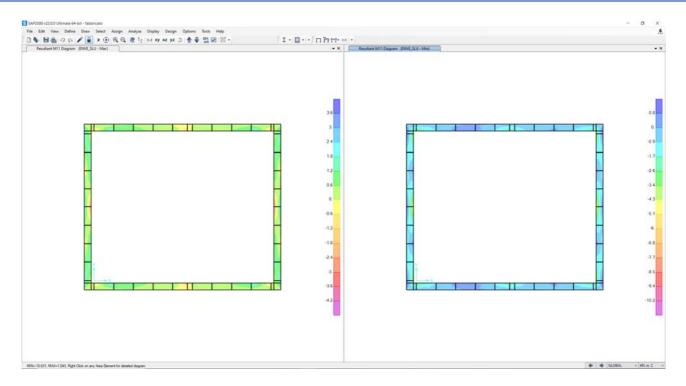


Figura 19 - Momento flettente M11 per la combinazione ENVE-SLU

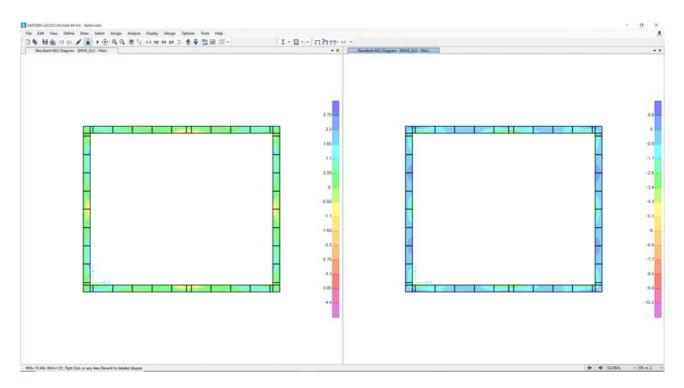


Figura 20 – Momento flettente M22 per la combinazione ENVE-SLU

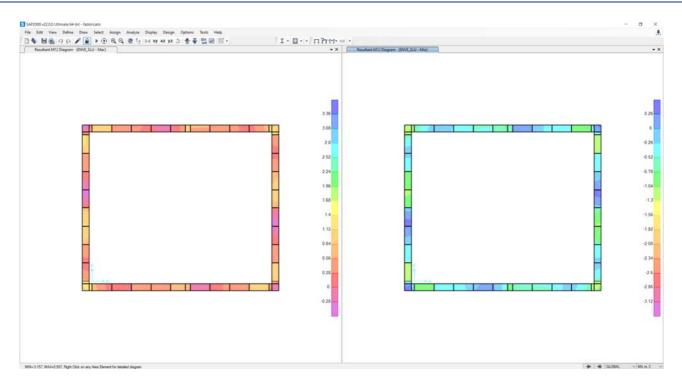


Figura 21 – Momento flettente M12 per la combinazione ENVE-SLU

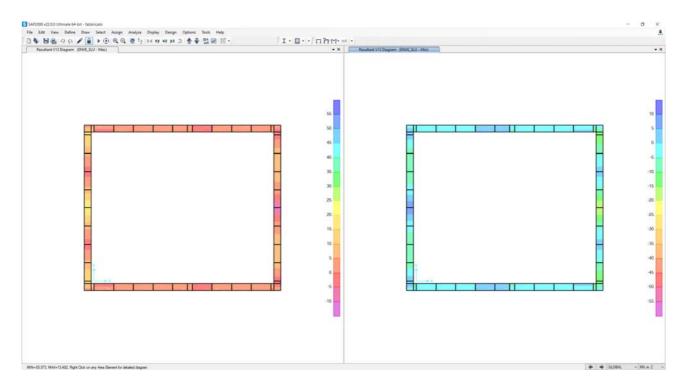


Figura 22 – Taglio V13 per la combinazione ENVE-SLU

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

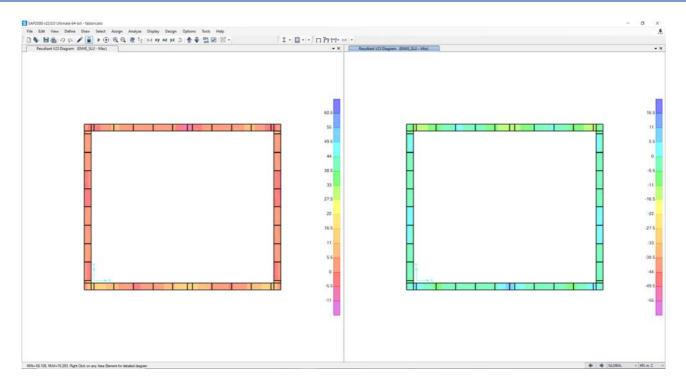


Figura 23 - Taglio V23 per la combinazione ENVE-SLU

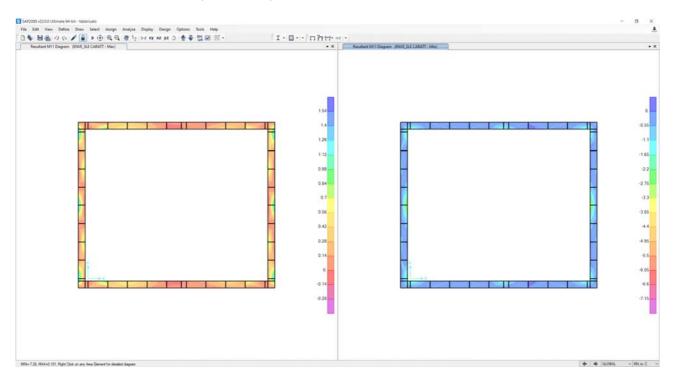


Figura 24 – Momento flettente M11 per la combinazione ENVE-SLE CARATTERISTICA

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – l° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

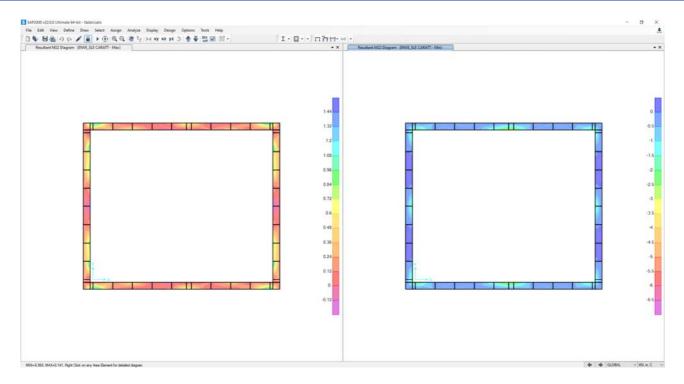


Figura 25 - Momento flettente M22 per la combinazione ENVE-SLE CARATTERISTICA

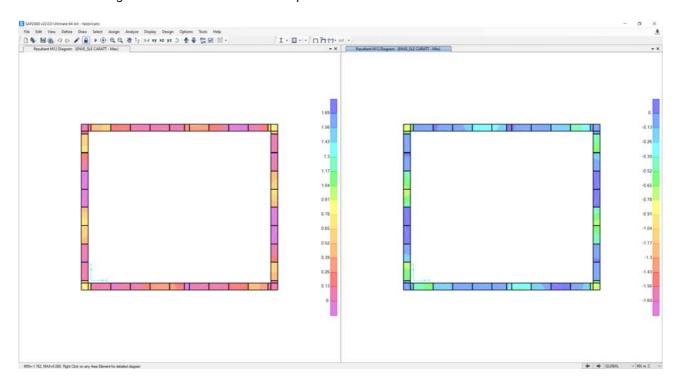


Figura 26 – Momento flettente M12 per la combinazione ENVE-SLE CARATTERISTICA

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

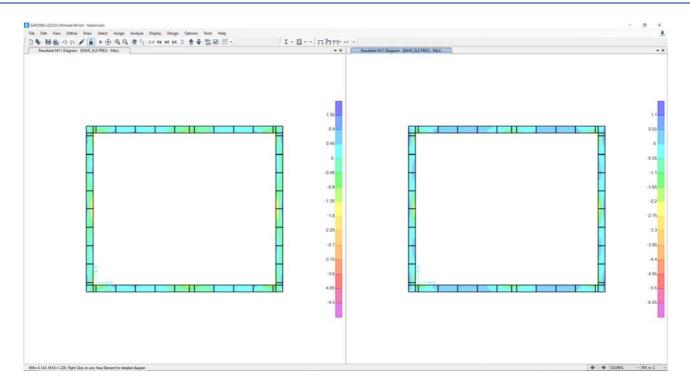


Figura 27 – Momento flettente M11 per la combinazione ENVE-SLE FREQUENTE

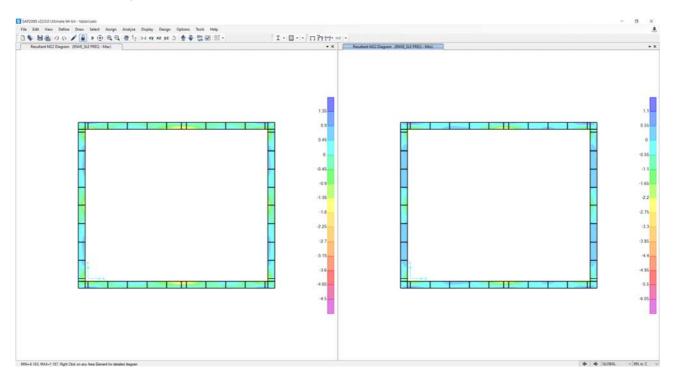


Figura 28 – Momento flettente M22 per la combinazione ENVE-SLE FREQUENTE

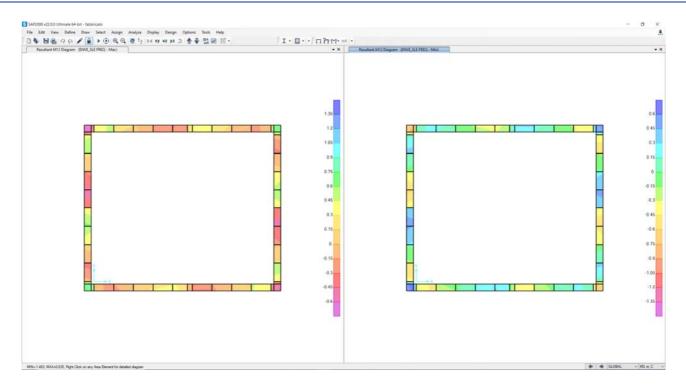


Figura 29 – Momento flettente M12 per la combinazione ENVE-SLE FREQUENTE

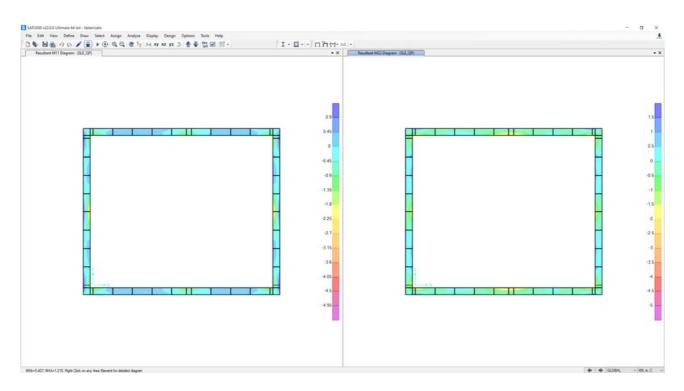


Figura 30 – Momento flettente M11 - M22 per la combinazione SLE QUASI PERMANENTE

PROGETTO ESECUTIVO

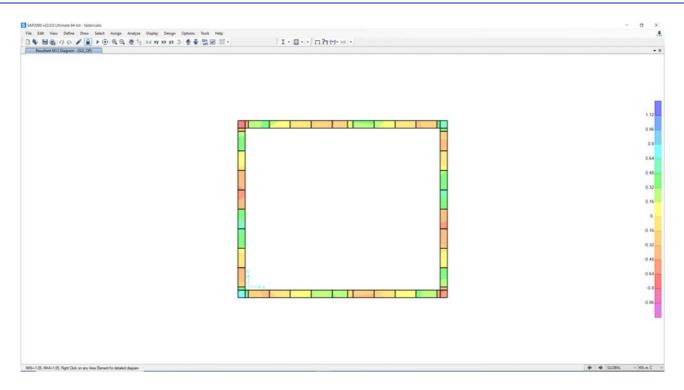
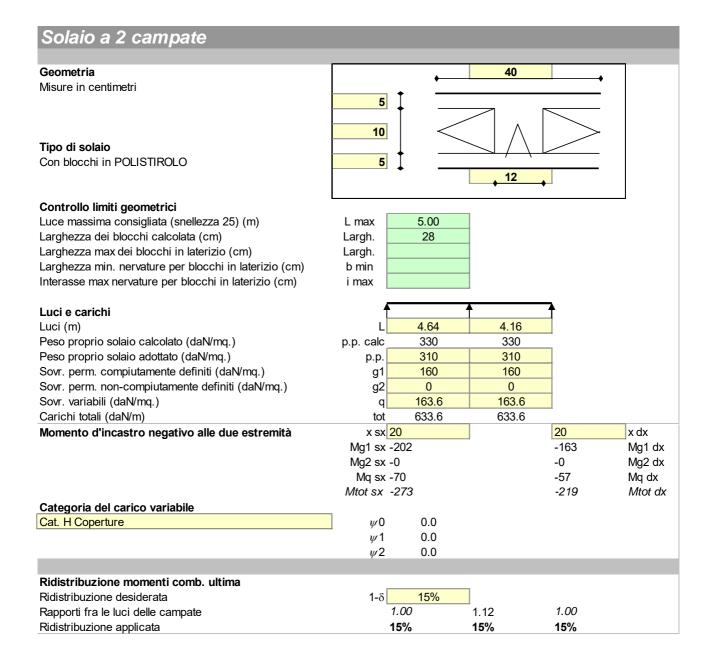


Figura 31 – Momento flettente M12 per la combinazione SLE QUASI PERMANENTE

PROGETTO ESECUTIVO


Relazione tecnica e di calcolo

11 VERIFICA DEGLI ELEMENTI STRUTTURALI

Si effettua di seguito la verifica del solaio e delle membrature che compongono l'opera in esame.

11.1 Verifica solaio

Con riferimento all'analisi dei carichi effettuata al capitolo 8.2 si effettua la verifica del solaio a lastre prefabbricate di spessore 5+10+5.

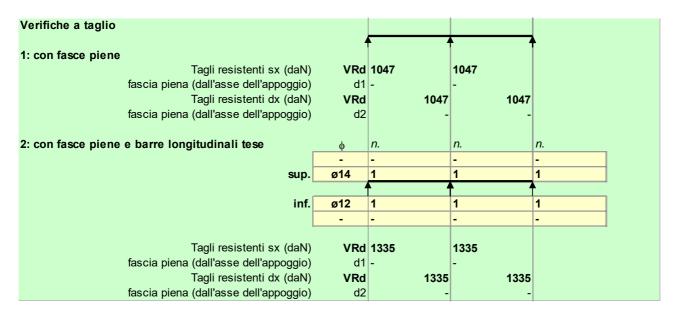
STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

Coefficienti parziali sulle azioni	γg1 1.0 1.3
	γg2 0.8 1.5
	γq 0.0 1.5
Interasse nervature (m)	i 0.40
1: COMBINAZIONE ULTIMA	
Momenti Max - per nervatura	-313 -569 -252
Momenti Max + per nervatura	↑ 539 ↑ 403 ↑
Tagli dx Max per nervatura	757 802
Tagli sx Max per nervatura	859 665
Reazioni Max per nervatura	757 1662 665
Reazioni Max per fascia di un metro	1893 4154 1663
2: COMBINAZIONE RARA	
Momenti Max - per nervatura	<u>-273</u> <u>-495</u> -219
Momenti Max + per nervatura	↑ 328 ↑ 235 ↑
Tagli dx Max per nervatura	552 593
Tagli sx Max per nervatura	636 479
Reazioni Max per nervatura	552 1229 479
Reazioni Max per fascia di un metro	1379 3073 1197
3: COMBINAZIONE QUASI PERMANENTE	
Momenti Max - per nervatura	-202 -367 -163
Momenti Max + per nervatura	225 148
Tagli dx Max per nervatura	401 440
Tagli sx Max per nervatura	472 342
Reazioni Max per nervatura	401 912 342
Reazioni Max per fascia di un metro	1002 2280 855
4: COMBINAZIONE FREQUENTE	
Momenti Max - per nervatura	-202 -367 -163
Momenti Max + per nervatura	225 148
Tagli dx Max per nervatura	401 440
Tagli sx Max per nervatura	472 342
Reazioni Max per nervatura	401 912 342
Reazioni Max per fascia di un metro	1002 2280 855

PROGETTO ESECUTIVO

Materiali					
Calcestruzzo	Classe	C32/40			
Acciaio	Tipo	B450C			
Dati geometrici					
Diametro delle barre longitudinali superiori (mm)	ф	14	14	14	
Diametro delle barre longitudinali inferiori (mm)	ф	12	12	12	
Armatura costante superiore	ф	n.	n.	n.	С
a) nessuna	-	-	-		4.00
	CampSup	-	-		
	-	-	-	-	4.00
	AppSup	-	-	-	
Armatura costante inferiore					
a) nessuna	-	-	-		4.00
	CampInf	-	-		4.00
	-	-	-	-	4.00
	AppInf	-	-	-	
Discontinuo esta di calcasterare colle 1 con 7 con 2		4.0	4.0	1.0	
Ricoprimento di calcestruzzo sulle barre (cm)	C	4.0	4.0	4.0	
Copriferro di calcolo (cm)	h'	4.7	4.7	4.7	
Spessore solaio (cm)	H		20	20	
Larghezza nervature (cm)	b		12	12	
Altezza utile (cm)	d		15.3	15.3	
	a) nessuna		0ø0	0ø0	
Armatura appoggi		1ø14	1ø14	1ø14	
	4		1	1	
	`	1ø12	1ø12	1ø12	
	a) nessuna	0ø0	0ø0	0ø0	
Managara - II - itanta (-I-NI*)	M = =1	242	500	050	
Momento sollecitante (daN*m)		T	569	252	
Momento resistente (daN*m)			861	861	
indice di verifica		2.75	1.51	3.42	
Asse neutro (cm)			4 3913	3913	
Sforzo acciaio (daN/cmq.)		3913	1 1 1		
Sforzo calcestruzzo (daN/cmq.)		-188.1	-188.1	-188.1	
Deformazione acciaio		0.977%	0.977%	0.977%	
Deformazione calcestruzzo		-0.350%	-0.350%	-0.350%	
Campo di rottura			3	3	
Ridistribuzione massima consentita	1-δ	23%	23%	23%	
Controllo ridistribuzione	1-δ	sì	sì	sì	
	a) nessuna	0ø0	0ø0		
Armatura campate		0ø14	0ø14		
	4	1ø12	1ø12 ⁴	Ť	
	a) nessuna	0ø0	0ø0		
Momento sollecitante (daN*m)		539	403		
Momento resistente (daN*m)		655	655		
indice di verifica			1.62		
Asse neutro (cm)		1	1		
Sforzo acciaio (daN/cmq.)		3913	3913		
Sforzo calcestruzzo (daN/cmq.)		-142.8	-142.8		
Deformazione acciaio	E. S	1.000%	1.000%		
Deformazione calcestruzzo		-0.102%	-0.102%		
Campo di rottura		2	2		
		_	_		


PROGETTO ESECUTIVO

controllo armatura minima s	scelta:	nessuna	sì		sì	
Armatura appoggi		φ	n.	n.	n.	С
		-	-	-	-	4.0
	sup.	ø14	1	1	_1	4.0
CLIK PER PROCEDERE	-			<u> </u>	<u>†</u>	
	inf.	ø12	1	1	1	4.0
	L	-	-	-	-	4.0
1: VERIFICHE IN COMBINAZIONE ULTIMA						
Momento sollecitante (d.	aN*m)	Med	313	569	252	
Momento resistente (d	aN*m)	Mrd	861	861	861	
indice di v		f	2.75	1.51	3.42	
Asse neutro		XC		4	4	
Sforzo acciaio (daN/	/cmq.)		3913	3913	3913	
Sforzo calcestruzzo (daNa	/cmq.)		-188.1 0.977%	-188.1	-188.1	
Deformazione a	Deformazione acciaio			0.977%	0.977%	
Deformazione calces	ε. c	-0.350%	-0.350%	-0.350%		
Campo di rottura		n.	3	3	3	
Ridistribuzione massima cons	sentita	1-δ	23%	23%	23%	
Controllo ridistribu	zione	1-δ	sì	sì	sì	
2: VERIFICHE IN COMBINAZIONE RARA						
		_o s limite	3600	3600	3600	
		σS	1350	2450	1085	
indice di verifica lato a	cciaio	f	2.67	1.47	3.32	
		σc limite	199.2	199.2	199.2	
		σC	54.5	99.0	43.8	
indice di verifica la	to cls	f	3.65	2.01	4.54	
3: VERIFICHE IN COMBINAZIONE QUASI PERMA	ANENTE	Ξ.				
		σc limite	149.4	149.4	149.4	
			40.5	73.4	32.5	
indice di verifica la	to cls	f	3.69	2.03	4.59	

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Armatura campate	φ	n.	n.	С
	-	-	-	4.0
sup.	ø14	-	-	4.0
inf.	ø12	1 4	1 4	4.0
	-	-	-	4.0
controllo armatura minima scelta:	nessuna	sì	sì	
1: VERIFICHE IN COMBINAZIONE ULTIMA				
Momento sollecitante (daN*m)	Med	539	403	
Momento resistente (daN*m)	Mrd	659	659	
indice di verifica	f	1.22	1.63	
Asse neutro (cm)	хс	1	1	
Sforzo acciaio (daN/cmq.)	σ.s	3913	3913	
Sforzo calcestruzzo (daN/cmq.)	σ.c	-142.4	-142.4	
Deformazione acciaio	E. S	1.000%	1.000%	
Deformazione calcestruzzo	e.c	-0.101%	-0.101%	
Campo di rottura	n.	2	2	
2: VERIFICHE IN COMBINAZIONE RARA				
_	у	3.21	3.21	
	Jci	2961	2961	
	_o s limite	3600	3600	
	σS	2026	1449	
indice di verifica lato acciaio	f	1.78	2.49	
	σc limite	199.2	199.2	
	σС	35.6	25.5	
indice di verifica lato cls	f	5.59	7.82	
3: VERIFICHE IN COMBINAZIONE QUASI PERMANENTI	E			
	у	3.21	3.21	
	Jci	2961	2961	
	_σ c limite	149.4	149.4	
	σС	24.4	16.1	
indice di verifica lato cls	f	6.13	9.29	
	σS	1386	915	
4: VERIFICHE IN COMBINAZIONE FREQUENTE	σS	1386	915	

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Verifiche di fessurazione				
CONDIZ. AMBIENTALI AGGRESSIVE				
Appoggi				
diametro armature superiori	ф	14	14	14
combinazione frequente	σS	1002	1817	805
comb. frequente CONDIZ. AMBIENTALI AGGRESSIVE	f	2.29	2.01	2.29
combinazione quasi permanente	σS	1002	1817	805
comb. quasi perm. CONDIZ. AMBIENTALI AGGRESSIVE	f	1.79	1.44	1.79
Campate				
diametro armature inferiori	ф	12	12	
combinazione frequente	σS	1386	915	
comb. frequente CONDIZ. AMBIENTALI AGGRESSIVE	f	2.67	2.67	
combinazione quasi permanente	σS	1386	915	
comb. quasi perm. CONDIZ. AMBIENTALI AGGRESSIVE	f	2.08	2.08	
Verifiche di deformabilità				
PER L'INTEGRITA' DEI DIVISORI				
Coefficiente di viscosità (11.2.10.7)	₀(inf)	4	4	
	15. 7			
Freccia massima sez. non-fessurata (cm)	f max	0.22	0.10	
Freccia massima sez. fessurata (cm)	f max	1.86	0.82	
Freccia massima combinata (cm)	f max	0.22	0.10	
Freccia limite (cm)	f lim	0.93	0.83	
indice di verifica	f	4.19	8.45	

Si adotta un'armatura superiore Φ 14 e un'armatura inferiore Φ 12 estesa per tutta la lunghezza.

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

11.2 Verifica pilastri

11.2.1 Verifica di resistenza

In base ai risultati riportati al capitolo 10 si effettua di seguito la verifica del pilastro 30x30 cm maggiormente sollecitato.

Di seguito si riportano le sollecitazioni massime di progetto.

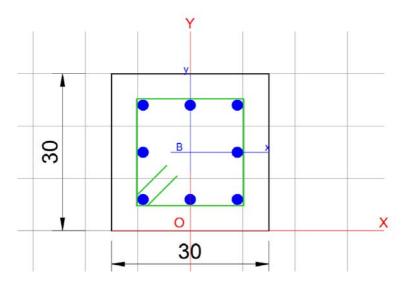
Frame	Station	OutputCase	Р	V2	V3	M2	M3
Text	m	Text	KN	KN	KN	KN-m	KN-m
9	0	SLU_14	-74.37	8.92	-9.06	-11.83	13.94
1	0	SLU_15	-79.23	-8.99	-9.21	-12.06	-14.18
6	0	SLU_16	-108.43	0.51	10.63	14.72	0.72
4	0	SLU_17	-108.43	0.51	-10.63	-14.72	0.72
6	0	SLU_10	-109.78	2.48	14.50	13.32	4.07
2	0	SLU_12	-116.27	-11.04	2.48	4.23	-10.89
5	0	SLU_2	-193.84	-0.88	0.00	0.00	-1.69
7	3.2	SLU_44	-40.89	-3.97	-2.69	2.84	5.05

Frame	Station	OutputCase	P	V2	V3	M2	M3
Text	m	Text	KN	KN	KN	KN-m	KN-m
4	0	$Sismica_SLU_+1.0_X_+0.3Y$	-77.969	16.226	2.204	5.0183	27.245
4	0	$Sismica_SLU_+1.0_X_+0.3Y$	-85.411	-15.709	-5.286	-8.4611	-26.6012
2	0	$Sismica_SLU_+0.3_X_+1.0Y$	-82.843	3.271	16.301	27.4212	6.2922
2	0	$Sismica_SLU_+0.3_X_+1.0Y$	-86.638	-4.035	-16.301	-27.4212	-7.083
2	0	Sismica_SLU_+0.3_X_+1.0Y	-86.638	-4.035	-16.301	-27.4212	-7.083
4	1.6	$Sismica_SLU_+1.0_X_+0.3Y$	-74.371	16.226	2.204	1.497	1.2837
5	0	$Sismica_SLU_+1.0_X_+0.3Y$	-114.558	-14.913	-4.536	-7.6239	-25.3144
9	3.2	Sismica_SLU_+0.3_X_+1.0Y	-30.758	5.697	11.834	21.0401	5.4865

Frame	Station	OutputCase	P	V2	V3	M2	M3
Text	m	Text	KN	KN	KN	KN-m	KN-m
2	0	CARATTERISTICA 6	-15.234	7.052	-0.109	-0.1837	8.0043
9	3.2	CARATTERISTICA 1	-50.729	2.942	-0.538	4.3679	-5.8012
6	0	CARATTERISTICA 1	-89.463	1.682	9.899	8.9259	2.7474
4	0	CARATTERISTICA 1	-89.458	2.494	-9.892	-8.9141	3.4104
2	0	CARATTERISTICA 6	-15.234	7.052	-0.109	-0.1837	8.0043
2	3.2	CARATTERISTICA 1	-90.015	-3.96	-0.109	0.1653	2.3775
5	0	CARATTERISTICA 2	-138.041	1.564	0.003922	0.0066	2.5917

anas Direzione Progettazione e Realizzazione Lavori

PROGETTO ESECUTIVO


Relazione tecnica e di calcolo

3 3.2 CARATTERISTICA 7 -1.798 1.619 -2.816 2.2044 -3.2088

Frame	Station	OutputCase	Р	V2	V3	M2	M3
Text	m	Text	KN	KN	KN	KN-m	KN-m
1	3.2	SLE_7F	-48.994	-2.908	-2.792	4.7401	4.7626
1	0	SLE_7F	-56.192	-2.908	-2.792	-4.1942	-4.5416
4	3.2	SLE_7F	-73.264	0.315	-3.085	5.3569	-0.5862
6	3.2	SLE_7F	-73.264	0.315	3.085	-5.3569	-0.5862
4	0	SLE_7F	-80.462	0.315	-3.085	-4.5158	0.4215
9	0	SLE_7F	-52.446	2.569	-2.747	-4.1428	4.1571
5	0	SLE_1F	-117.384	0.237	-8.8E-14	-1.6E-13	0.2967
7	3.2	SLE_8F	-40.806	-1.087	-0.396	-0.236	1.0453

Frame	Station	OutputCase	Р	V2	V3	M2	M3
Text	m	Text	KN	KN	KN	KN-m	KN-m
1	3.2	SLE_QP	-46.89	-1.018	-1.221	2.5351	2.1457
7	3.2	SLE_QP	-43.027	0.741	1.175	-2.4416	-1.5086
4	3.2	SLE_QP	-74.492	0.258	-1.541	3.2098	-0.5052
6	3.2	SLE_QP	-74.492	0.258	1.541	-3.2098	-0.5052
4	0	SLE_QP	-81.69	0.258	-1.541	-1.7214	0.3219
1	0	SLE_QP	-54.088	-1.018	-1.221	-1.371	-1.1103
5	0	SLE_QP	-113.399	0.236	-8.8E-14	-1.6E-13	0.2947
9	3.2	SLE_QP	-43.027	0.741	-1.175	2.4416	-1.5086

Armatura sezione

• Arm. Longitudinale: Ø16

• Arm. Trasversale: Ø12/10cm zona critica - Ø12/15cm fuori zona critica

STRADA DELLE TRE VALLI UMBRE

Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Verifica SLU-SLE

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.1	MPa

Resis. compr. ridotta fcd': 9.1 MPa 0.0020 Def.unit. max resistenza ec2: Def.unit. ultima ecu: 0.0035 Parabola-Rettangolo Diagramma tensione-deformaz.: Modulo Elastico Normale Ec: 33345.8 MPa Resis. media a trazione fctm: 3.02 MPa Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: 17.6 MPa Sc limite S.L.E. comb. Frequenti: 17.6 MPa Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 mm Sc limite S.L.E. comb. Q.Permanenti: 12.8 MPa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

Resist. snerv. di progetto fyd:
Resist. ultima di progetto ftd:

Deform. ultima di progetto Epu:

450.0 MPa
391.3 MPa
391.3 MPa
0.068

Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Modulo Elastico Ef 2000000 Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	-15.0	0.0
2	-15.0	30.0
3	15.0	30.0
4	15.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-9.0	6.0	16
2	-9.0	24.0	16
3	9.0	24.0	16
4	9.0	6.0	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazioneN°BarreNumero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre Ø

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Direzione Progettazione	e
Realizzazione Lavori	

1	1	4	1	16
2	2	3	1	16 16
3	1	2	1	16 16
4	3	4	1	16

ARMATURE A TAGLIO

Diametro staffe: 12 mm Passo staffe: 15.0 cm

Indicazione Barre Longitudinali di risvolto per ogni staffa:

N°Staffa Barra Barra Barra Barra 1 1 2 3 4

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My Vy Vx		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez Componente del Taglio [kN] parallela all'asse princ.d'inerzia y Componente del Taglio [kN] parallela all'asse princ.d'inerzia x					
N°Comb.	N	Мх	Му	Vy	Vx		
1	-74.37	-11.83	13.94	-9.06	8.92		
2	-79.23	-12.06	-14.18	-9.21	-8.99		
3	-108.43	14.72	0.72	10.63	0.51		
4	-108.43	-14.72	0.72	-10.63	0.51		
5	-109.78	13.32	4.07	14.50	2.48		
6	-116.27	4.23	-10.89	2.48	-11.04		
7	-193.84	0.00	-1.69	0.00	-0.88		
8	-40.89	2.84	5.05	-2.69	-3.97		

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx	Momento flettent con verso positiv	o se tale da comprimere il lei	nc. d'inerzia (tra parentesi Mon nbo superiore della sezione	,		
Му	Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazion con verso positivo se tale da comprimere il lembo destro della sezione					
N°Comb.	N	Mx	Му			
1	-15.23	8.00	-0.18			

N COMD.	IN	IVIX	iviy
1	-15.23	8.00	-0.18
2	-50.73	-5.80	4.37
3	-89.46	2.75	8.93
4	-89.46	3.41	-8.91
5	-138.04	2.59	0.01
6	-1.80	-3.21	2.20

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)					
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)					
	con verso positivo	se tale da comprimere il lem	bo superiore della sezione			
My	Momento flettente	[kNm] intorno all'asse y prin	c. d'inerzia (tra parentesi Mom.Fess	urazione)		
	con verso positivo se tale da comprimere il lembo destro della sezione					
N°Comb.	N	Mx	My			

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

-48.99	4.76 (6.65)	4.74 (6.62)
-56.19	-4.54 (-6.58)	-4.19 (-6.07)
-73.26	-0.59 (-1.03)	5.36 (9.38)
	-56.19	-56.19 -4.54 (- 6.58)

3 -73.26 -0.59 (-1.03) 5.36 (9.38) 4 -73.26 -0.59 (-1.03) -5.36 (-9.38) 5 -117.38 0.30 (0.84) 0.00 (0.00) 6 -40.81 1.05 (5.35) -0.24 (-1.22)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	-46.89	2.15 (5.13)	2.54 (6.06)
2	-43.03	-1.51 (-4.16)	-2.44 (-6.72)
3	-74.49	-0.51 (-1.16)	3.21 (7.29)
4	-74.49	-0.51 (-1.16)	-3.21 (-7.29)
5	-113.40	0.29 (0.84)	0.00 (0.00)
6	-43.03	-1.51 (-4.16)	2.44 (6.72)
7	-43.03	-1.51 (-4.16)	2.44 (6.72)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.2 cm Interferro netto minimo barre longitudinali: 7.4 cm Copriferro netto minimo staffe: 4.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Totale
1	S	-74.37	-11.83	13.94	-74.29	-38.52	45.51	3.26	16.1(2.7)
2	S	-79.23	-12.06	-14.18	-79.06	-38.40	-45.22	3.19	16.1(2.7)
3	S	-108.43	14.72	0.72	-108.31	56.16	2.94	3.82	16.1(2.7)
4	S	-108.43	-14.72	0.72	-108.31	-56.16	2.94	3.82	16.1(2.7)
5	S	-109.78	13.32	4.07	-110.07	54.04	16.50	4.06	16.1(2.7)
6	S	-116.27	4.23	-10.89	-116.21	20.16	-51.83	4.76	16.1(2.7)
7	S	-193.84	0.00	-1.69	-193.79	0.00	-48.17	28.50	16.1(2.7)
8	S	-40.89	2.84	5.05	-41.07	30.16	53.20	10.55	16.1(2.7)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform. unit. massima del calcestruzzo a compressione Deform. unit. massima del calcestruzzo a compressione

Xc max Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min Deform. unit. minima nell'acciaio (negativa se di trazione)

Realizzazione Lavori

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	15.0	0.0	0.00142	9.0	6.0	-0.00481	-9.0	24.0
2	0.00350	-15.0	0.0	0.00141	-9.0	6.0	-0.00484	9.0	24.0
3	0.00350	15.0	30.0	0.00031	9.0	24.0	-0.00927	-9.0	6.0
4	0.00350	15.0	0.0	0.00031	9.0	6.0	-0.00927	-9.0	24.0
5	0.00350	15.0	30.0	0.00101	9.0	24.0	-0.00644	-9.0	6.0
6	0.00350	-15.0	30.0	0.00107	-9.0	24.0	-0.00621	9.0	6.0
7	0.00350	-15.0	30.0	-0.00034	-9.0	24.0	-0.01187	9.0	6.0
8	0.00350	15.0	30.0	0.00138	9.0	24.0	-0.00499	-9.0	6.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
O DI-I	On affiliation and an artificial flooring to the discontinuous

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

C.Rid.	x/d	С	b	а	N°Comb
		0.000691472	-0.000158895	0.000187235	1
		0.000683043	-0.000159720	-0.000187797	2
		-0.012156535	0.000511883	0.000020003	3
		0.003199961	-0.000511883	0.000020003	4
		-0.007613922	0.000326636	0.000087657	5
		-0.004065887	0.000099813	-0.000304767	6
		-0.006107130	0.00000015	-0.000640445	7
		-0.003602787	0.000119758	0.000234003	8

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Ss min Minima tensione (negativa se di trazione) nell'acciaio [MPa] Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb	Ver	Sc max	Xc max `	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.52	-15.0	30.0	-68.4	9.0	6.0	211	6.0
2	S	3.66	15.0	0.0	-101.2	-9.0	24.0	106	2.0
3	S	3.78	15.0	30.0	-141.7	-9.0	6.0	126	2.0
4	S	4.10	-15.0	30.0	-145.3	9.0	6.0	123	2.0
5	S	0.00	15.0	30.0	-109.8	-9.0	6.0	900	16.1
6	S	1.87	15.0	0.0	-34.1	-9.0	24.0	86	2.0

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm
Ver.	Esito della verifica
e1	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2	Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
k1	= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]
kt	= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]

= 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k2

k3 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

6 7

S S

-0.00039

-0.00039

0.00000

0.00000

0.500 16.0

0.500 16.0

52

52

351

351

0.00017 (0.00017)

0.00017 (0.00017)

0.061 (0.20)

0.061 (0.20)

-4.16

-4.16

6.72

6.72

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Neurizzazione Lavori													
Ø Cf e sm · sr ma wk Mx fe: My fe:	SS.	Copriferr Differenz Tra pare Massima Apertura Compon	o [mm] netto za tra le defor ntesi: valore r a distanza tra	calcolato con mazioni medi minimo = 0.6 le fessure [mi m calcolata = o di prima fes o di prima fes	riferime e di acc Smax / m] sr max surazio surazio	ento alla beciaio e calo Es [(7.9 *(e_sm - e one intorno one intorno	oarra più te cestruzzo)EC2 e (C e_cm) [(7. o all'asse) o all'asse)	[(7.8)EC2 e (0 C4.1.8)NTC] 8)EC2 e (C4.1 X [kNm]	C4.1.7)NTC]		ra parentesi		
Comb.	Ver	e1	e2	k2	Ø	Cf		е	sm - e cm s	sr max	wk	Mx fess	My fess
1 2 3 4 5 6	S S S S S	-0.00047 -0.00070 -0.00096 -0.00098 -0.00063 -0.00025	0.00000 0.00000 0.00000 0.00000 -0.00023 0.00000	0.500 0.500 0.500 0.500 0.683 0.500	16.0 16.0 16.0 16.0 16.0	52 52 52 52		0.00030 0.00043 0.00044 0.00033	(0.00021) (0.00030) (0.00043) (0.00044) (0.00033) (0.00010)	272 320 347 343 385 293	0.056 (0.20) 0.097 (0.20) 0.147 (0.20) 0.149 (0.20) 0.127 (0.20) 0.030 (0.20)	14.86 -7.62 2.85 3.40 4.65 -9.67	-0.33 5.74 9.26 -8.88 0.02 6.63
COMBIN	IAZION	I FREQUEN	TI IN ESER	CIZIO - MA	ASSIM	E TENSI	ONI NOF	RMALI ED A	PERTURA I	FESSUR	E (NTC/EC2)		
N°Comb	Ver	Sc max	Xc max Yc	max S	s min	Xs min	Ys min	Ac eff.	As eff.				
1 2 3 4 5 6	S S S S S	3.44 3.14 1.55 1.55 0.00 0.00	15.0 -15.0 15.0 -15.0 -15.0 -15.0	0.0 0.0 0.0 30.0 30.0	-95.8 -97.0 -93.8 -93.8 -75.7 -37.3	-9.0 9.0 -9.0 9.0 -9.0 9.0	6.0 24.0 24.0 24.0 6.0 6.0	102 109 236 236 900 900 7.3.4 EC2]	2.0 2.0 6.0 6.0 16.1 16.1				
Comb.	Ver	e1	e2	k2	Ø	Cf		е	sm - e cm s	sr max	wk	Mx fess	My fess
1 2 3 4 5 6	S S S S S	-0.00066 -0.00067 -0.00062 -0.00062 -0.00039 -0.00023	0.00000 0.00000 0.00000 0.00000 -0.00034 -0.00003	0.500 0.500 0.500 0.500 0.941 0.562	16.0 16.0 16.0 16.0 16.0	52 52 52 52		0.00029 0.00028 0.00028 0.00023	(0.00029) (0.00029) (0.00028) (0.00028) (0.00023) (0.00011)	314 325 283 283 463 348	0.090 (0.20) 0.094 (0.20) 0.080 (0.20) 0.080 (0.20) 0.105 (0.20) 0.039 (0.20)	6.65 -6.58 -1.03 -1.03 0.84 5.35	6.62 -6.07 9.38 -9.38 0.00 -1.22
COMBIN	IAZION	I QUASI PEI	RMANENTI	IN ESERCI	ZIO -	MASSIN	IE TENS	IONI NORM	ALI ED APE	RTURA	FESSURE (NT	C/EC2)	
N°Comb	Ver	Sc max	Xc max Yc	max S	s min	Xs min	Ys min	Ac eff.	As eff.				
1 2 3 4 5 6 7	S S S S S S	1.60 1.30 0.58 0.58 0.00 1.30	15.0 -15.0 15.0 -15.0 -15.0 15.0	0.0 0.0 0.0 30.0 0.0	-65.5 -57.9 -79.8 -79.8 -73.2 -57.9	-9.0 9.0 -9.0 9.0 -9.0 -9.0	6.0 24.0 24.0 24.0 6.0 24.0 24.0	124 129 251 251 900 129 129	2.0 2.0 6.0 6.0 16.1 2.0 2.0				
COMBIN	IAZION	I QUASI PEI	RMANENTI	IN ESERCI	ZIO - <i>A</i>	APERTU	RA FESS	SURE [§ 7.3.	4 EC2]				
Comb.	Ver	e1	e2	k2	Ø	Cf		е	sm - e cm s	sr max	wk	Mx fess	My fess
1 2 3 4 5	S S S S	-0.00044 -0.00039 -0.00051 -0.00037	0.00000 0.00000 0.00000 0.00000 -0.00033	0.500 0.500 0.500 0.500 0.941	16.0 16.0 16.0 16.0 16.0	52 52 52 52		0.00017 0.00024 0.00024 0.00022	(0.00020) (0.00017) (0.00024) (0.00024) (0.00022)	344 351 290 290 463 351	0.068 (0.20) 0.061 (0.20) 0.069 (0.20) 0.069 (0.20) 0.102 (0.20)	5.13 -4.16 -1.16 -1.16 0.84	6.06 -6.72 7.29 -7.29 0.00

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Verifica SLV

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	181	daN/cm ²
	Resis. compr. ridotta fcd':	90.7	daN/cm ²
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	333458	daN/cm ²
	Resis. media a trazione fctm:	30.2	daN/cm ²
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	4500	daN/cm ²
	Resist. caratt. rottura ftk:	4500	daN/cm ²
	Resist. snerv. di progetto fyd:	3913	daN/cm ²
	Resist. ultima di progetto ftd:	3913	daN/cm ²
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1 2 3 4	-15.0 -15.0 15.0 15.0	0.0 30.0 30.0 0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-9.0	6.0	16
2	-9.0	24.0	16
3	9.0	24.0	16
4	9.0	6.0	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
N° Darro	Numero di harro gonorato aquidistanti cui si riferisco la gonoraz

Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione N°Barre Ø

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	1	16
2	2	3	1	16
3	1	2	1	16
4	3	4	1	16

ARMATURE A TAGLIO

Diametro staffe: 12 mm

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Passo staffe: 10.0 cm

Indicazione Barre Longitudinali di risvolto per ogni staffa:

N°Staffa Barra Barra Barra Barra 1 1 2 3 4

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [daNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [daNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [daN] parallela all'asse princ.d'inerzia y
Vx	Componente del Taglio [daN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	My	Vy	Vx
1	-78	5	27	2	16
2	-85	-8	-27	-5	-16
3	-83	27	6	16	3
4	-87	-27	-7	-16	-4
5	-87	-27	-7	-16	-4
6	-74	2	1	2	16
7	-115	-8	-25	-5	-15
8	-31	21	5	12	6

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.2 cm Interferro netto minimo barre longitudinali: 7.4 cm Copriferro netto minimo staffe: 4.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sn Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione)

Mx Sn

My Sn

Componente momento assegnato [daNm] riferito all'asse x princ. d'inerzia

My Sn

Componente momento assegnato [daNm] riferito all'asse y princ. d'inerzia

N Res

Sforzo normale resistente [daN] baricentrico (positivo se di compress.)

Mx Res

Momento flettente resistente [daNm] riferito all'asse x princ. d'inerzia

My res

Momento flettente resistente [daNm] riferito all'asse y princ. d'inerzia

Mis.Sic.

Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Totale
1	S	-78	5	27	-78	1196	6467	237.34	16.1(9.0)
2	S	-85	-8	-27	-88	-1986	-6140	231.20	16.1(9.0)
3	S	-83	27	6	-105	6361	1457	231.96	16.1(9.0)
4	S	-87	-27	-7	-99	-6292	-1625	229.48	16.1(9.0)
5	S	-87	-27	-7	-99	-6292	-1625	229.48	16.1(9.0)
6	S	-74	2	1	-104	4844	4150	999.00	16.1(9.0)
7	S	-115	-8	-25	-134	-1877	-6184	244.48	16.1(9.0)
8	S	-31	21	5	-60	6287	1644	298.87	16.1(9.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform. unit. massima del calcestruzzo a compressione

Deform. unit. massima del calcestruzzo a compressione

Xc max Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X.Y.O.sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	15.0	30.0	0.00115	9.0	24.0	-0.00591	-9.0	6.0
2	0.00350	-15.0	0.0	0.00129	-9.0	6.0	-0.00535	9.0	24.0
3	0.00350	15.0	30.0	0.00120	9.0	24.0	-0.00572	-9.0	6.0
4	0.00350	-15.0	0.0	0.00122	-9.0	6.0	-0.00560	9.0	24.0
5	0.00350	-15.0	0.0	0.00122	-9.0	6.0	-0.00560	9.0	24.0
6	0.00350	15.0	30.0	0.00154	9.0	24.0	-0.00435	-9.0	6.0
7	0.00350	-15.0	0.0	0.00127	-9.0	6.0	-0.00543	9.0	24.0
8	0.00350	15.0	30.0	0.00123	9.0	24.0	-0.00559	-9.0	6.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000330951	0.000060968	-0.003293293		
2	-0.000284485	-0.000084366	-0.000767276		
3	0.000069030	0.000315084	-0.006987962		
4	-0.000074034	-0.000305223	0.002389493		
5	-0.000074034	-0.000305223	0.002389493		
6	0.000150665	0.000176560	-0.004056773		
7	-0.000290790	-0.000081356	-0.000861853		
8	0.000074560	0.000304003	-0.006738498		

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

11.2.2 Verifica di stabilità

Le verifiche di stabilità degli elementi snelli devono essere condotte attraverso un'analisi del secondo ordine che tenga conto degli effetti flessionali delle azioni assiali sulla configurazione deformata degli elementi stessi.

Si deve tenere adeguatamente conto delle imperfezioni geometriche e delle deformazioni viscose per carichi di lunga durata.

Si devono assumere legami fra azioni interne e deformazioni in grado di descrivere in modo adeguato il comportamento non lineare dei materiali e gli effetti della fessurazione delle sezioni. Cautelativamente il contributo del calcestruzzo teso può essere trascurato.

Snellezza limite per pilastri singoli

In via approssimata gli effetti del secondo ordine in pilastri singoli possono essere trascurati se la snellezza λ non supera il valore limite

$$\lambda_{\lim} = \frac{25}{\sqrt{v}} \tag{4.1.41}$$

dove

 $\nu = N_{Ed} / (A_c \cdot f_{cd})$ è l'azione assiale adimensionalizzata.

La snellezza è calcolata come rapporto tra la lunghezza libera di inflessione, l_0 , ed il raggio d'inerzia, i, della sezione di calcestruzzo non fessurato:

$$\lambda = l_0 / i$$
 [4.1.42]

In base ai risultati riportati al paragrafo precedente lo sforzo assiale massimo di compressione sul singolo pilastro è pari a N = 193.84 KN.

Di seguito si riporta la verifica di stabilità.

Ned	193840.00	NN
b		mm
D		
а	300	mm
L	3.20	mm
Ac	90000	mm2
Jx	675000000	mm4
Jy	675000000	mm4
v	0.12	
fcd	18.13	MPa
λlim	72.53	
β	1	
LO	3.2	m
i	86.6	mm
λ	36.952	

La verifica risulta soddisfatta.

STRADA DELLE TRE VALLI UMBRE

Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

11.2.3 Verifica a taglio

Ai fini della progettazione in capacità, per ciascuna direzione di applicazione del sisma la domanda a taglio V_{Ed} si ottiene imponendo l'equilibrio con i momenti delle sezioni di estremità (superiore e inferiore) del pilastro $M_{i,d}^s$ $M_{i,d}^i$, determinate come appresso indicato ed amplificate del fattore di sovraresistenza γ_{Rd} , secondo l'espressione:

$$V_{Ed}l_p = \gamma_{Rd} \left(M_{i,d}^s + M_{i,d}^i \right)$$
 [7.4.5]

dove:

per il valore di yRd si veda la Tab. 7.2.I;

$$M_{i,d} = M_{c,Rd} \cdot \min(1, \frac{\sum M_{b,Rd}}{\sum M_{c,Rd}}) \text{ è il momento nella sezione di estremità (superiore o inferiore) in corrispondenza della formazione della cerpiera pella travi, dave i valori in sommatoria sono quelli impierate.}$$

formazione delle cerniere nelle travi, dove i valori in sommatoria sono quelli impiegati nella [7.4.4];

 $M_{c,Rd}$ è la capacità a flessione nella sezione di estremità (superiore o inferiore); lp è la lunghezza del pilastro.

dove:

 γ_{Rd} = 1.10 per strutture in CD"B";

 $M^{s}_{C.Rd} = M^{i}_{C.Rd} = 64.92 \text{ kNm}$

 $I_p = 3.20 \text{ m}$

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

NODO INTERMEDIO

numero travi convergenti n= 3

Dimensioni sezione pilastro

b =	300	mm	RcK =	40 MPa
a =	300	mm	f_{ck} =	32 MPa
lp=	3.2	m	f_{cd} =	18.13 MPa
Ac=	90000	mma		

ASSE FORTE

Pressoflessione

	N 4 = =l	27.42	I/NI.aa
momento analisi	Med =	27.42	KNm
sforzo assiale analisi	Ned =	193.8	KN
momento resistente pilastro sup.	$M_{C,Rd}$ (sup) =	0	KNm
momento resistente pilastro inf.	$M_{C,Rd}$ (inf) =	64.92	KNm
momento resistente trave 1	Mb,Rd =	96.42	KNm
momento resistente trave 2	Mb,Rd =	75.55	KNm
momento resistente trave 3	Mb,Rd =	75.55	KNm
momento resistente trave 4	Mb,Rd =	0	KNm
fattore di sovraresistenza	γ rd =	1.1	CD "B"
	$N_{Rdc} =$	1632	KN

Ned < 65% N_{Rdc} La verifica risulta soddisfatta

Taglio

$$\begin{aligned} \mathbf{V}_{Ed}\mathbf{l}_{p} &= \gamma_{Rd}\left(\mathbf{M}_{i,d}^{s} + \mathbf{M}_{i,d}^{i}\right) & \mathbf{M}_{i,d} &= \mathbf{M}_{c,Rd} \cdot min(\mathbf{1}, \frac{\sum \mathbf{M}_{b,Rd}}{\sum \mathbf{M}_{c,Rd}}) \\ \alpha &= & 1 & \end{aligned}$$

$$\forall ed = & \mathbf{22.3} \quad \text{KN}$$

Il taglio di calcolo ottenuto dell'analisi strutturale mediante il SAP2000 è pari a:

$V_{Ed} = 16.3 kN$

Poiché il valore del taglio determinato mediante la procedura sopra riportata è maggiore del taglio di calcolo ottenuto dell'analisi strutturale mediante il SAP2000, si procede alla verifica di resistenza considerando il valore del taglio massimo assoluto.

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Verifica elementi con armature trasversali resistenti al taglio

[4.1.2.1.3.2]

La resistenza a taglio V_{Rd} di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati.

$$\begin{array}{c} V_{Rsd} \geq V_{Ed} \\ V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha \\ V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f'_{cd} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^{2}\theta) \\ V_{Rd} = \min(V_{Rsd}; V_{Rcd}) \\ \\ \text{Acciaio} \qquad & \textbf{B 450 C} \qquad f_{yd} \qquad & \textbf{391.3 N/mm}^{2} \\ \\ \text{Coefficiente parziale di sicurezza relativo all'acciaio} \qquad & \gamma_{s} \qquad & 1.15 \\ \\ \text{Inclinazione dei puntoni di cls rispetto all'asse della trave} \qquad & \Theta \qquad & 45 \, ^{\circ} \\ & & 0.79 \, \text{rad} \\ \\ \text{diametro staffe} \qquad & \emptyset \qquad & 12 \, \text{mm} \\ \\ \text{Area dell'armatura trasversale} \qquad & A_{sw} \qquad & 226.19 \, \text{mm}^{2} \\ \\ \text{Interasse tra due armature trasversali consecutive} \qquad & s \qquad & 100 \, \text{mm} \\ \\ \text{Angolo di inclinazione dell'armatura trasversale} \qquad & \alpha \qquad & 90 \, ^{\circ} \\ & 1.57 \, \text{rad} \\ \\ \text{Resistenza a compressione ridotta del calcestruzzo d'anima} \qquad & f'_{cd} \qquad & 8.23 \, \text{N/mm}^{2} \\ \\ \text{Coefficiente maggiorativo} \qquad & Q_{c} \qquad & 1 \\ \\ \hline & V_{Rsd} \qquad & 195.16 \, \text{kN} \\ \hline & V_{Rd} \qquad & 272.23 \, \text{kN} \\ \hline & V_{Rd} \qquad & 195.16 \, \text{kN}$$

Si adotteranno staffe Φ12 / 10 cm per la lunghezza critica del pilastro pari a 0,6m.

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Verifica elementi con armature trasversali resistenti al taglio

[4.1.2.1.3.2]

La resistenza a taglio V_{Rd} di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati.

$$\begin{split} &V_{Rd} \geq V_{Ed} \\ &V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha \\ &V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f'_{cd} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^{2}\theta) \\ &V_{Rd} = \min(V_{Rsd}; V_{Rcd}) \end{split}$$

Acciaio	В 450 С	f_{yd}	391.3 N/mm ²
Coefficiente parziale di sicurezza relativo	all'acciaio	γ_{s}	1.15
Inclinazione dei puntoni di cls rispetto all	'asse della trave	Θ	<mark>45</mark> ° 0.79 rad
diametro staffe		Ø	12 mm
Area dell'armatura trasversale		A_{sw}	226.19 mm ²
Interasse tra due armature trasversali con	secutive	S	150 mm
Angolo di inclinazione dell'armatura trasv	versale	α	90 °
			1.57 rad
Resistenza a compressione ridotta del cal	cestruzzo d'anima	f' _{cd}	9.07 N/mm ²
Coefficiente maggiorativo		α_{c}	1
		V_{Rsd}	130.11 kN
		V_{Rcd}	299.82 kN
		V_{Rd}	130.11 kN
Verifica:	$V_{Rd} > V_{Ed}$		VERIFICATA

Al di fuori della zona dissipativa si adotteranno staffe Φ12 / 15 cm.

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

11.2.4 Verifica a torsione

La resistenza alla torsione del pilastro è la minore delle tre sotto definite:

<u>Calcestruzzo</u>

B (m)	0.3
H (m)	0.3
A _c (m ²)	0.09
u (m)	1.2
t (m)	0.08
A (m ²)	0.05
f'cd (kN/m ²)	9065.0
cotgθ (-)	1.00
a ₁	0.0005
as	0.002
T _{Rcd} (kNm)	34.42

Staffe Trasversali

T _{Rsd} (kNm)	89.57
cotgθ (-)	1.00
f _{yd} (kN/m ²)	391300
s (prog.) (m)	0.1
A (m ²)	0.05
$A_s(m^2)$	0.0002
t (m)	0.08
u (m)	1.2
A _c (m ²)	0.09
H (m)	0.3
B (m)	0.3

Armatura Longitudinale

B (m)	0.3
H (m)	0.3
A _c (m ²)	0.09
u (m)	1.2
t (m)	0.08
u _m (m)	0.90
$\Sigma A_l (m^2)$	0.0005
A (m ²)	0.05
f _{yd} (kN/m ²)	391300
cotgθ (-)	1.00
T _{Rsd} (kNm)	23.04

T_{Rd} (**kNm**) 23.04 **T**_{Ed} (**kNm**) 0.30 sap

Per quanto riguarda la crisi lato calcestruzzo, la resistenza massima di una membratura soggetta a torsione e taglio è limitata dalla resistenza delle bielle compresse di calcestruzzo. Per non eccedere tale resistenza deve essere soddisfatta la seguente condizione:

 $T_{Ed}/T_{Rcd}+V_{Ed}/V_{Rcd}<1$ $T_{Ed}/T_{Rcd}=$ 0.013

 $V_{Ed} / V_{Rcd} = 0.171$

0.184 La verifica risulta soddisfatta

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

11.2.5 Verifica limitazioni di armatura

Resta da verificare che l'armatura determinata in funzione delle sollecitazioni agenti rispetti le limitazioni riportate nel punto 7.4.6.2 delle NTC2018.

Dimensioni sezione

b = 300 mm

a = 300 mm

c = 52 mm

interasse barre = 100 mm < 250 mm

sezione corrente:

Armatura 8 Ø 16 mm

 $A_s = 1607.68 \text{ mm}^2$

 $\rho = A_s/(bh) = 0.01786$

1%= 0.010

4%= 0.040 La verifica risulta soddisfatta

 $A_s = 1607.68 \text{ mm}^2$

A_{smin}= 270 mm² La verifica risulta soddisfatta

A_{smax}= 3600 mm² La verifica risulta soddisfatta

Passo massimo delle staffe nella zona critica

s1 150 mm s2 175 mm s3 128 mm s = **128** mm

STRADA DELLE TRE VALLI UMBRE

Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

RcK =	40 MPa	
f _{ck} =	32 MPa	
f _{cd} =	18.13 MPa	valore della resistenza di progetto a compressione
$f_{yk} =$	450 MPa	resistenza caratteristica a trazione dell'armatura
f _{yd} =	391 MPa	
b _t =	208 mm	distanza tra i bracci più esterni
$A_{sw,min}$ /s =	0.7711 mm ² /mm	
Ø =	12 mm	diametro staffe
A _{sw} =	226.08 mm ²	A £ b
s =	100 mm	$\frac{A_{st}}{s} = 0.08 \frac{f_{cd} \cdot b_{st}}{f}$
$A_{sw}/s =$	2.261 mm ² /mm	La verifica risulta soddisfatta S f_{yd}

Si riscontra, pertanto, che l'armatura dei pilastri rispetta i limiti prescritti dalle NTC2018.

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

11.3 Verifica trave di bordo

11.3.1 Verifica di resistenza

In base ai risultati riportati al capitolo 10 si effettua di seguito la verifica della trave 30x40 cm di bordo maggiormente sollecitata.

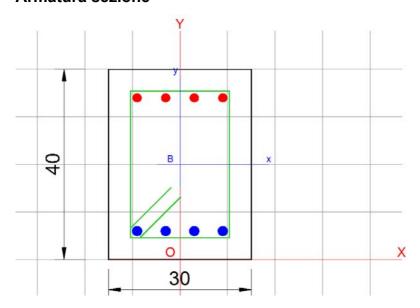
Di seguito si riportano le sollecitazioni massime di progetto.

Frame	Station	OutputCase	Р	V2	V3	M2	М3
Text	m	Text	KN	KN	KN	KN-m	KN-m
105	2.28125	SLU_1	3.593	0.777	0.12	0.6359	12.2436
101	3.5	SLU_3	3.236	36.211	0.775	-0.7205	-21.4409
10	0.15	SLU_21	9.478	-5.468	2.748	1.7807	4.4042
132	0.15	SLU_20	9.478	-5.468	-2.748	-1.7807	4.4042
101	0.15	SLU_2	6.337	-19.173	-2.779	-1.4819	0.0991
105	0.15	SLU_4	3.236	-36.211	-0.775	-0.7205	-21.4409
137	2.20444	SLU_15	-3.276	0.687	-0.248	0.2556	3.0644
132	0.97778	SLU_20	9.478	-2.241	-2.748	0.4941	7.5949

Frame	Station	OutputCase	Р	V2	V3	M2	M3
Text	m	Text	KN	KN	KN	KN-m	KN-m
101	0.15	Sismica_SLU_+0.3_X_+1.0Y	7.411	0.965	1.654	0.7144	16.1189
101	3.5	Sismica_SLU_+0.3_X_+1.0Y	-1.399	7.599	-0.937	-1.4309	-22.7022
10	0.15	Sismica_SLU_+1.0_X_+0.3Y	7.948	3.676	4.434	2.5948	14.8752
132	0.15	Sismica_SLU_+1.0_X_+0.3Y	-2.438	-19.7	-4.434	-2.5948	-21.2051
17	0.15	Sismica_SLU_+0.3_X_+1.0Y	-5.751	-18.464	-5.407	-0.8922	-11.2879
105	0.15	Sismica_SLU_+0.3_X_+1.0Y	-1.399	-29.942	-1.89	-1.4309	-22.7022
17	0.24889	Sismica_SLU_+0.3_X_+1.0Y	-5.751	-18.167	-5.407	-0.3894	-9.477
132	0.97778	Sismica SLU +1.0 X +0.3Y	7.948	6.159	1.82	1.126	10.8072

Frame	Station	OutputCase	P	V2	V3	M2	M3
Text	m	Text	KN	KN	KN	KN-m	KN-m
105	2.28125	CARATTERISTICA 2	2.68	0.608	0.095	0.4368	8.4793
105	0.15	CARATTERISTICA 2	3.347	-24.925	-0.583	-0.5288	-14.4887
10	0.15	CARATTERISTICA 2	4.586	-6.146	1.684	1.1244	0.2676
132	0.15	CARATTERISTICA 2	4.565	-6.177	-1.669	-1.1186	0.2151
17	1.22667	CARATTERISTICA 1	-1.919	-2.572	0.22	-0.0313	1.8345
105	2.7375	CARATTERISTICA 2	4.691	4.698	1.845	0.4144	6.9165

Frame	Station	OutputCase	Р	V2	V3	M2	М3
Text	m	Text	KN	KN	KN	KN-m	KN-m


PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

101	1.36875	SLE_8F	1.545	-0.778	-0.115	0.3239	6.5004
101	3.5	SLE_8F	2.074	19.539	0.468	-0.4127	-11.2452
10	0.15	SLE_8F	4.199	-6.329	1.593	1.0614	-0.4917
132	0.15	SLE_8F	4.199	-6.329	-1.593	-1.0614	-0.4917
137	2.20444	SLE_7F	-1.424	0.092	-0.241	0.2427	2.7993
132	0.97778	SLE 8F	4.199	-3.847	-1.593	0.2573	3.72

Frame	Station	OutputCase	P	V2	V3	M2	M3
Text	m	Text	KN	KN	KN	KN-m	KN-m
101	1.36875	SLE_QP	0.852	-1.618	-0.121	0.2989	5.7782
101	3.5	SLE_QP	1.912	18.77	0.477	-0.3986	-10.4991
10	0.15	SLE_QP	2.755	-8.012	1.307	0.9023	-3.1649
132	0.15	SLE_QP	2.755	-8.012	-1.307	-0.9023	-3.1649
137	1.22667	SLE_QP	-0.84	-3.356	-0.297	-0.0063	1.3546
132	0.15	SLE_QP	2.755	-8.012	-1.307	-0.9023	-3.1649

Armatura sezione

- Arm. Longitudinale: $4\varnothing 14$ superiore $4\varnothing 16$ inferiore
- Arm. Trasversale: Ø10/10cm zona critica Ø10/15cm fuori zona critica

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Verifica SLU-SLE

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40
	Resis. compr. di progetto fcd:	18.1 MPa

Resis. compr. ridotta fcd': 9.1 MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33345.8 MPa Resis. media a trazione fctm: 3.02 MPa Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: 19.2 MPa Sc limite S.L.E. comb. Frequenti: 19.2 MPa Ap.Fessure limite S.L.E. comb. Frequenti: 0.400 mm Sc limite S.L.E. comb. Q.Permanenti: 14.4 MPa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.300 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:450.0MPaResist. caratt. rottura ftk:450.0MPaResist. snerv. di progetto fyd:391.3MPaResist. ultima di progetto ftd:391.3MPaDeform. ultima di progetto Epu:0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

1.00

0.50

MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	-15.0	0.0
2	-15.0	40.0
3	15.0	40.0
4	15.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-9.0	6.0	16
2	-9.0	34.0	14
3	9.0	34.0	14
4	9.0	6.0	16

DATI GENERAZIONI LINEARI DI BARRE

N° Gen.Numero assegnato alla singola generazione lineare di barreN° Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN° Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre Ø

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

1	1	4	2	16 14
2	2	3	2	14

ARMATURE A TAGLIO

Diametro staffe: 10 mm Passo staffe: 15.0 cm

Indicazione Barre Longitudinali di risvolto per ogni staffa:

N°Staffa Barra Barra Barra Barra 1 1 2 3 4

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My Vy Vx		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez Componente del Taglio [kN] parallela all'asse princ.d'inerzia y Componente del Taglio [kN] parallela all'asse princ.d'inerzia x				
N°Comb.	N	Mx	Му	Vy	Vx	
1	3.59	12.24	0.64	0.78	0.12	
2	3.24	-21.44	-0.72	36.21	0.78	
3	9.48	4.40	1.78	-5.47	2.75	
4	9.48	4.40	-1.78	-5.47	-2.75	
5	6.34	0.10	-1.48	-19.17	-2.78	
6	3.24	-21.44	-0.72	-36.21	-0.78	
7	-3.28	3.06	0.26	0.69	-0.25	
8	9.48	7.59	0.49	-2.24	-2.75	

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)
	con verso positivo se tale da comprimere il lembo superiore della sezione
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
	con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	2.68	8.48	0.44
2	3.35	-14.49	-0.53
3	4.59	0.27	1.12
4	4.57	0.22	-1.12
5	3.80	6.52	-0.48
6	3.35	-14.49	-0.53
7	-1.92	1.83	-0.03
0	4.40	4.02	0.41

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kľ	Ŋ] applicato nel Baricentro (+	se di compressione)	
Mx	Momento flettente	[kNm] intorno all'asse x prin	c. d'inerzia (tra parentesi Mom	Fessurazione)
	con verso positivo	se tale da comprimere il len	bo superiore della sezione	
Му	Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazio con verso positivo se tale da comprimere il lembo destro della sezione			
N°Comb.	N	Mx	My	

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

1	0.00	0.00 (6.65)	0.00 (6.62)
2	0.00	0.00 (-6.58)	0.00 (-6.07)
3	0.00	0.00 (-1.03)	0.00 (9.38)
4	0.00	0.00 (-1.03)	0.00 (-9.38)
5	0.00	0.00 (0.84)	0.00 (0.00)
6	0.00	0.00 (5.35)	0.00 (-1.22)
7	1.55	6.50 (29.13)	0.32 (1.45)
8	2.07	-11.25 (-28.83)	-0.41 (-1.06)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Storzo normale [kiv] applicato nei Baricentro (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazior

one)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	My
1	0.00	0.00 (5.13)	0.00 (6.06)
2	0.00	0.00 (-4.16)	0.00 (-6.72)
3	0.00	0.00 (-1.16)	0.00 (7.29)
4	0.00	0.00 (-1.16)	0.00 (-7.29)
5	0.00	0.00 (0.84)	0.00 (0.00)
6	0.00	0.00 (-4.16)	0.00 (6.72)
7	0.85	5.78 (28.88)	0.30 (1.49)
8	1.91	-10.50 (-28.77)	-0.40 (-1.09)

RISULTATI DEL CALCOLO

As Tesa

Му

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.2 cm Interferro netto minimo barre longitudinali: 4.4 cm Copriferro netto minimo staffe: 4.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Мх Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) My N Res

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000 Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	3.59	12.24	0.64	3.89	97.89	4.76	7.99	8.0
2	S	3.24	-21.44	-0.72	3.48	-77.04	-2.88	3.59	6.2
3	S	9.48	4.40	1.78	9.66	88.38	35.20	19.89	9.6
4	S	9.48	4.40	-1.78	9.66	88.38	-35.20	19.89	9.6
5	S	6.34	0.10	-1.48	6.12	5.49	-63.41	42.81	10.6
6	S	3.24	-21.44	-0.72	3.48	-77.04	-2.88	3.59	6.2
7	S	-3.28	3.06	0.26	-3.35	96.53	7.92	32.11	8.0
8	S	9.48	7.59	0.49	9.48	98.50	6.72	12.92	8.0

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.216	15.0	40.0	0.00059	9.0	34.0	-0.01267	-9.0	6.0
2	0.00350	0.184	-15.0	0.0	0.00011	-9.0	6.0	-0.01555	9.0	34.0
3	0.00350	0.384	15.0	40.0	0.00161	9.0	34.0	-0.00562	-9.0	6.0
4	0.00350	0.384	-15.0	40.0	0.00161	-9.0	34.0	-0.00562	9.0	6.0
5	0.00350	0.284	-15.0	0.0	0.00042	-9.0	6.0	-0.00884	9.0	34.0
6	0.00350	0.184	-15.0	0.0	0.00011	-9.0	6.0	-0.01555	9.0	34.0
7	0.00350	0.232	15.0	40.0	0.00074	9.0	34.0	-0.01160	-9.0	6.0
8	0.00350	0.229	15.0	40.0	0.00073	9.0	34.0	-0.01177	-9.0	6.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Coeff. a, b, c nell'eq. dell'asse neutro ax+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Coeff. di riduz. momenti per sola flessione in travi continue									
N°Comb	a	b	С	x/d	C.Rid.					
1	0.000032411	0.000452736	-0.015095622	0.216	0.711					
2	-0.000018400	-0.000547245	0.003223998	0.184	0.700					
3	0.000158739	0.000156110	-0.005125469	0.384	0.920					
4	-0.000158739	0.000156110	-0.005125469	0.384	0.920					
5	-0.000508526	-0.000004048	-0.004127883	0.284	0.794					
6	-0.000018400	-0.000547245	0.003223998	0.184	0.700					
7	0.000050951	0.000408237	-0.013593762	0.232	0.730					
8	0.000043636	0.000418342	-0.013888208	0.229	0.726					

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

 $\begin{array}{lll} \mbox{Ver} & \mbox{S = comb. verificata} \ \mbox{N = comb. non verificata} \\ \mbox{Sc max} & \mbox{Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]} \\ \mbox{Xc max, Yc max} & \mbox{Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)} \\ \end{array}$

Ss min Minima tensione (negativa se di trazione) nell'acciaio [MPa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)
Ac eff.
As eff.
Ase eff.
Area barre [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max \	c max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.46	15.0	40.0	-35.6	-9.0	6.0	243	8.0
2	S	2.57	-15.0	0.0	-78.2	9.0	34.0	271	6.2
3	S	0.38	15.0	40.0	-6.5	-9.0	6.0	103	2.0
4	S	0.37	-15.0	40.0	-6.3	9.0	6.0	104	2.0
5	S	1.19	-15.0	40.0	-26.9	9.0	6.0	225	8.0
6	S	2.57	-15.0	0.0	-78.2	9.0	34.0	271	6.2
7	S	0.28	-15.0	40.0	-9.0	9.0	6.0	284	8.0
8	S	1.22	15.0	40.0	-27.7	-9.0	6.0	233	8.0

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Ver.	Esito della verifica
e1	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2	Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
k1	= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]
kt	= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]
k2	= 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]
k3	= 3.400 Coeff. in eq.(7.11) come da annessi nazionali
k4	= 0.425 Coeff. in eq.(7.11) come da annessi nazionali
Ø	Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]
Cf	Copriferro [mm] netto calcolato con riferimento alla barra più tesa
e sm - e cm	Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]
	Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]
sr max	Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = $sr max^*(e_sm - e_cm)$ [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm]
My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	esm-ecmsr	max	wk	Mx fess	My fess
1	S	-0.00023	0.00000	0.500	16.0	52	0.00011 (0.00011)	259	0.028 (990.00)	29.20	1.50
2	S	-0.00050	0.00000	0.500	14.0	53	0.00023 (0.00023)	285	0.067 (990.00)	-28.93	-1.06
3	S	-0.00005	0.00000	0.500	16.0	52	0.00002 (0.00002)	316	0.006 (990.00)	4.92	20.66
4	S	-0.00005	0.00000	0.500	16.0	52	0.00002 (0.00002)	317	0.006 (990.00)	4.10	-21.32
5	S	-0.00018	0.00000	0.500	16.0	52	0.00008 (0.00008)	253	0.020 (990.00)	28.79	-2.11
6	S	-0.00050	0.00000	0.500	14.0	53	0.00023 (0.00023)	285	0.067 (990.00)	-28.93	-1.06
7	S	-0.00006	0.00000	0.500	16.0	52	0.00003 (0.00003)	273	0.007 (990.00)	28.10	-0.48
8	S	-0.00018	0.00000	0.500	16.0	52	0.00008 (0.00008)	255	0.021 (990.00)	29.55	1.77

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max '	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	3.44	15.0	30.0	-95.8	-9.0	6.0	102	2.0
2	S	3.14	-15.0	0.0	-97.0	9.0	24.0	109	2.0
3	S	1.55	15.0	0.0	-93.8	-9.0	24.0	236	6.0
4	S	1.55	-15.0	0.0	-93.8	9.0	24.0	236	6.0
5	S	0.00	-15.0	30.0	-75.7	-9.0	6.0	900	16.1
6	S	0.00	-15.0	30.0	-37.3	9.0	6.0	900	16.1
7	S	1.12	15.0	40.0	-27.6	-9.0	6.0	245	8.0
8	ς	2.00	-15 N	0.0	-61 1	0 N	3/1 ()	272	6.2

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
	0	0.000//	0.00000	0.500	440	50	0.00000 (0.00000)	04.4	0.000 (0.40)		
1	S	-0.00066	0.00000	0.500	16.0	52	0.00029 (0.00029)	314	0.090 (0.40)	6.65	6.62
2	S	-0.00067	0.00000	0.500	16.0	52	0.00029 (0.00029)	325	0.094 (0.40)	-6.58	-6.07
3	S	-0.00062	0.00000	0.500	16.0	52	0.00028 (0.00028)	283	0.080 (0.40)	-1.03	9.38
4	S	-0.00062	0.00000	0.500	16.0	52	0.00028 (0.00028)	283	0.080 (0.40)	-1.03	-9.38
5	S	-0.00039	-0.00034	0.941	16.0	52	0.00023 (0.00023)	463	0.105 (0.40)	0.84	0.00
6	S	-0.00023	-0.00003	0.562	16.0	52	0.00011 (0.00011)	348	0.039 (0.40)	5.35	-1.22
7	S	-0.00018	0.00000	0.500	16.0	52	0.00008 (0.00008)	260	0.021 (0.40)	29.13	1.45
8	S	-0.00039	0.00000	0.500	14.0	53	0.00018 (0.00018)	285	0.052 (0.40)	-28.83	-1.06

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.60	15.0	30.0	-65.5	-9.0	6.0	124	2.0
2	S	1.30	-15.0	0.0	-57.9	9.0	24.0	129	2.0
3	S	0.58	15.0	0.0	-79.8	-9.0	24.0	251	6.0
4	S	0.58	-15.0	0.0	-79.8	9.0	24.0	251	6.0
5	S	0.00	-15.0	30.0	-73.2	-9.0	6.0	900	16.1
6	S	1.30	15.0	0.0	-57.9	-9.0	24.0	129	2.0
7	S	0.99	15.0	40.0	-24.9	-9.0	6.0	246	8.0

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

8 S 1.87 -15.0 0.0 -57.1 9.0 34.0 271 6.2

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	esm-ecms	r max	wk	Mx fess	My fess
1	S	-0.00044	0.00000	0.500	16.0	52	0.00020 (0.00020)	344	0.068 (0.30)	5.13	6.06
2	S	-0.00039	0.00000	0.500	16.0	52	0.00017 (0.00017)	351	0.061 (0.30)	-4.16	-6.72
3	S	-0.00051	0.00000	0.500	16.0	52	0.00024 (0.00024)	290	0.069 (0.30)	-1.16	7.29
4	S	-0.00051	0.00000	0.500	16.0	52	0.00024 (0.00024)	290	0.069 (0.30)	-1.16	-7.29
5	S	-0.00037	-0.00033	0.941	16.0	52	0.00022 (0.00022)	463	0.102 (0.30)	0.84	0.00
6	S	-0.00039	0.00000	0.500	16.0	52	0.00017 (0.00017)	351	0.061 (0.30)	-4.16	6.72
7	S	-0.00016	0.00000	0.500	16.0	52	0.00007 (0.00007)	260	0.019 (0.30)	28.88	1.49
8	S	-0.00036	0.00000	0.500	14.0	53	0.00017 (0.00017)	285	0.049 (0.30)	-28.77	-1.09

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Verifica SLV

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Resis. compr. ridotta fcd': Def.unit. max resistenza ec2: Def.unit. ultima ecu: Diagramma tensione-deformaz.:	C32/40 18.1 9.1 0.0020 0.0035 Parabola-Rettangolo	MPa MPa
	Modulo Elastico Normale Ec:	33345.8	MPa
	Resis. media a trazione fctm:	3.02	MPa
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del De Classe Calces		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-15.0	0.0
2	-15.0	40.0
3	15.0	40.0
4	15.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-9.0	6.0	16
2	-9.0	34.0	14
3	9.0	34.0	14
4	9.0	6.0	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione

Numero de la barra lintale cui si riferisce la generazione Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione N°Barre

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	2	16
2	2	3	2	14

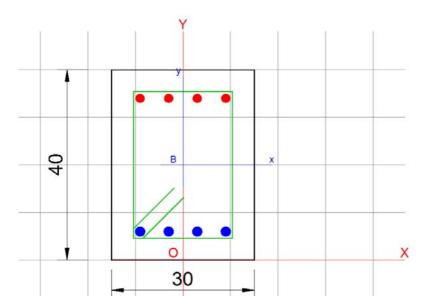
ARMATURE A TAGLIO

Diametro staffe: 10 mm 8.0 cm Passo staffe:

Indicazione Barre Longitudinali di risvolto per ogni staffa:

N°Staffa Barra Barra Barra Barra

PROGETTO ESECUTIVO


Relazione tecnica e di calcolo

1 1 2 3 4

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	My	Vy	Vx
1	7.41	16.12	0.71	0.97	1.65
2	-1.40	-22.70	-1.43	7.60	-0.94
3	7.95	14.88	2.59	3.68	4.43
4	-2.44	-21.21	-2.59	-19.70	-4.43
5	-5.75	-11.29	-0.89	-18.46	-5.41
6	-1.40	-22.70	-1.43	-29.94	-1.89
7	-5.75	-9.48	-0.39	-18.17	-5.41
8	7.95	10.81	1.13	6.16	1.82

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.2 cm Interferro netto minimo barre longitudinali: 4.4 cm Copriferro netto minimo staffe: 4.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)
Mx	Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My	Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res	Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.)
Mx Res	Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res	Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N r Mx Res My Res) e (N Mx My)

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area massima ex (7.4.26)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	7.41	16.12	0.71	7.17	98.38	4.31	6.09	8.0
2	S	-1.40	-22.70	-1.43	-1.28	-76.23	-4.96	3.36	6.2
3	S	7.95	14.88	2.59	8.16	96.48	16.80	6.47	8.0
4	S	-2.44	-21.21	-2.59	-2.65	-75.64	-8.99	3.56	8.2
5	S	-5.75	-11.29	-0.89	-5.49	-75.54	-6.04	6.64	6.2
6	S	-1.40	-22.70	-1.43	-1.28	-76.23	-4.96	3.36	6.2
7	S	-5.75	-9.48	-0.39	-5.95	-75.71	-3.24	7.91	6.2
8	S	7.95	10.81	1.13	7.99	97.86	10.07	9.03	8.0

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.215	15.0	40.0	0.00057	9.0	34.0	-0.01280	-9.0	6.0
2	0.00350	0.192	-15.0	0.0	0.00023	-9.0	6.0	-0.01470	9.0	34.0
3	0.00350	0.285	15.0	40.0	0.00118	9.0	34.0	-0.00876	-9.0	6.0
4	0.00350	0.210	-15.0	0.0	0.00047	-9.0	6.0	-0.01313	9.0	34.0
5	0.00350	0.196	-15.0	0.0	0.00028	-9.0	6.0	-0.01435	9.0	34.0
6	0.00350	0.192	-15.0	0.0	0.00023	-9.0	6.0	-0.01470	9.0	34.0
7	0.00350	0.184	-15.0	0.0	0.00010	-9.0	6.0	-0.01555	9.0	34.0
8	0.00350	0.248	15.0	40.0	0.00090	9.0	34.0	-0.01064	-9.0	6.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C Rid	Coeff, di riduz, momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000029337	0.000458837	-0.015293508	0.215	0.708
2	-0.000032263	-0.000512464	0.003016051	0.192	0.700
3	0.000088958	0.000297920	-0.009751165	0.285	0.797
4	-0.000054989	-0.000450342	0.002675159	0.210	0.703
5	-0.000038949	-0.000497444	0.002915759	0.196	0.700
6	-0.000032263	-0.000512464	0.003016051	0.192	0.700
7	-0.000022127	-0.000544595	0.003168091	0.184	0.700
8	0.000061070	0.000372655	-0.012322252	0.248	0.749

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

11.3.2 Verifica a taglio

Direzione Progettazione e Realizzazione Lavori

Al fine di escludere la formazione di meccanismi inelastici dovuti al taglio, le sollecitazioni di taglio di calcolo V_{Ed} si ottengono sommando il contributo dovuto ai carichi gravitazionali agenti sulla trave, considerata incernierata agli estremi, alle sollecitazioni di taglio corrispondenti alla formazione di cerniere plastiche nella trave e prodotte dai momenti resistenti (ultimi) delle due sezioni di plasticizzazione (generalmente quelle di estremità) amplificati del fattore di sovra resistenza γ_{Rd} assunto pari a 1.1 per CDB.

Deve risultare (NTC2018):

$$V_{Rd} > V_{d}$$

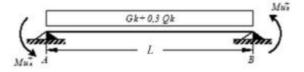
dove:

V_d = Valore di calcolo del taglio agente;

 $V_{Rd} = min (V_{Rsd}, V_{Rcd})$

Con riferimento all'armatura trasversale, la resistenza di calcolo a "taglio trazione" si calcola con:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$$


Con riferimento al calcestruzzo d'anima, la resistenza di calcolo a "taglio compressione" si calcola con:

$$V_{_{Rcd}}\,=\,0.9\cdot d\cdot b_{_{\,w}}\cdot\alpha_{_{\,c}}\cdot f^{\,\prime}_{_{\,cd}}\cdot (ctg\,\alpha+ctg\,\theta)\,/(1+ctg^{\,2}\theta)$$

dove:

- α : Angolo d'inclinazione dell'armatura trasversale rispetto all'asse dell'elemento;
- θ : Angolo d'inclinazione dei puntoni in calcestruzzo rispetto all'asse dell'elemento.

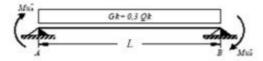
1° Schema:

Il taglio è variabile linearmente lungo la trave ed è pari a:

$$V_{A} = \gamma_{Rd} \frac{Mu_{A}^{+} + Mu_{B}^{+}}{l_{trave}} + \frac{(G_{k} + 0.3Q_{k}) \cdot l_{trave}}{2}$$

anas Direzione Progettazione e Realizzazione Lavori

STRADA DELLE TRE VALLI UMBRE


Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

$$V_{B} = \gamma_{Rd} \frac{Mu_{A}^{+} + Mu_{B}^{+}}{l_{trave}} - \frac{(G_{k} + 0.3Q_{k}) \cdot l_{trave}}{2}$$

2° Schema:

Il taglio è variabile linearmente lungo la trave ed è pari a:

$$V_{A} = \gamma_{Rd} \frac{Mu_{A}^{-} + Mu_{B}^{-}}{l_{trave}} + \frac{(G_{k} + 0.3Q_{k}) \cdot l_{trave}}{2}$$

$$V_{B} = \gamma_{Rd} \frac{Mu_{A}^{-} + Mu_{B}^{-}}{l_{trave}} - \frac{(G_{k} + 0.3Q_{k}) \cdot l_{trave}}{2}$$

Si riporta di seguito un prospetto riepilogativo con i valori delle sollecitazioni taglianti ottenute seguendo la metodologia descritta e riportata negli schemi precedenti:

Determinazione taglio di calcolo

Base	0.30	m
Altezza	0.40	m
L _{trave}	7.30	m
L influenza	2.32	m
Peso proprio trave	3.00	kN/m
Carico solaio	3.10	kN/m ²
Carico perm.	1.64	kN/m ²
G _k	11.00	kN/m
YQ	0.30	[-]
Q_k	1.104	kN/m
γRd	1.10	[-]

M _{uA} ⁽⁺⁾ (kNm)	M _{uB} ⁽⁻⁾ (kNm)	$M_{uA}^{(-)}$ (kNm)	M _{uB} ⁽⁺⁾ (kNm)
96.42	75.55	75.55	96.42

1° Sc	hema	2° Schema		
V _A (kN)	V _B (kN)	V _A (kN)	V _B (kN)	
70.4	-12.3	64.1	-18.6	

V _{2 (output)} =	36.21	kN
V _{Ed} =	70.41	kN

Poiché il valore del taglio determinato mediante la procedura sopra riportata è maggiore del taglio di calcolo ottenuto a valle dell'analisi strutturale mediante il SAP2000 (V₂=36.21 kN) si procede alla verifica di resistenza considerando il seguente valore del taglio massimo:

 $V_{Ed-max} = 70.41 \text{ kN}$

Verifica:

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – l° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Verifica elementi con armature trasversali resistenti al taglio

[4.1.2.1.3.2]

La resistenza a taglio V_{Rd} di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati.

$$V_{Rsd} \geq V_{Ed}$$

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha$$

$$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^2\theta)$$

$$V_{Rd} = \min(V_{Rsd}; V_{Rcd})$$
Acciaio

B 450 C

$$f_{yd}$$
391.3 N/mm²

Coefficiente parziale di sicurezza relativo all'acciaio

$$\gamma_s$$
1.15

Inclinazione dei puntoni di cls rispetto all'asse della trave
$$0.79 \text{ rad}$$
diametro staffe
$$A_{sw}$$
10 mm

Area dell'armatura trasversale
$$A_{sw}$$
157.08 mm²

Interasse tra due armature trasversali consecutive
$$A_{sw}$$
157.08 mm²

Interasse tra due armature trasversale
$$A_{sw}$$
157.08 mm²

Resistenza a compressione ridotta del calcestruzzo d'anima
$$f_{cd}$$
90°
1.57 rad

Resistenza a compressione ridotta del calcestruzzo d'anima
$$f_{cd}$$
9.05 N/mm²

Coefficiente maggiorativo

$$A_{cd}$$
308.40 kN
$$V_{Rcd}$$
544.90 kN

Si adotteranno staffe $\Phi 10$ / 8 cm per la lunghezza critica della trave, mentre al di fuori della zona critica si addotteranno staffe $\Phi 10$ / 15 cm.

 $V_{Rd} > V_{Fd}$

 V_{Rd}

308.40 kN

VERIFICATA

STRADA DELLE TRE VALLI UMBRE

Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

11.3.3 Verifica a torsione

La verifica di resistenza nei confronti della torsione (SLU) (NTC2018) consiste nel controllare che:

$$T_{Rd} > T_{Ed}$$

dove T_{Ed} è il valore di calcolo del momento torcente.

Per elementi prismatici sottoposti a torsione semplice o combinata con altre sollecitazioni, che abbiano sezione piena o cava, lo schema resistente è costituito da un traliccio periferico in cui gli sforzi di trazione sono affidati alle armature longitudinali e trasversali ivi contenute e gli sforzi di compressione sono affidati alle bielle di calcestruzzo.

Con riferimento al calcestruzzo la resistenza si calcola con:

$$T_{Rcd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta / (1 + ctg \theta)$$

dove t è lo spessore della sezione cava; per sezioni piene $t = A_c/u$ dove A_c è l'area della sezione ed u è il suo perimetro; t deve essere assunta comunque ≥ 2 volte la distanza fra il bordo e il centro dell'armatura longitudinale.

Le armature longitudinali e trasversali del traliccio resistente devono essere poste entro lo spessore t del profilo periferico. Le barre longitudinali possono essere distribuite lungo detto profilo, ma comunque una barra deve essere presente su tutti i suoi spigoli.

Con riferimento alle staffe trasversali la resistenza si calcola con:

$$T_{Rsd} = 2 \cdot A \cdot (A_s/s) \cdot f_{vd} \cdot ctg\theta$$

Con riferimento all'armatura longitudinale la resistenza si calcola con:

$$T_{Rsd} = 2 \cdot A \cdot (\Sigma A_I / u_m) \cdot f_{vd} / ctg\theta$$

dove si è posto:

A area racchiusa dalla fibra media del profilo periferico;

As area delle staffe:

u_m perimetro medio del nucleo resistente;

s passo delle staffe;

ΣA_I area complessiva delle barre longitudinali.

L'inclinazione θ delle bielle compresse di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti

 $0.4 \le \text{ctg } \theta \le 2.5$

Entro questi limiti, nel caso di torsione pura, può porsi ctg θ = (al/as) ½

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

con: $a_1 = \sum A_1 / u_m$

 $a_s = A_s / s$

La resistenza alla torsione della trave è la minore delle tre sopra definite:

Calcestruzzo

T _{Rcd} (kNm)	52.24
a _s	0.002
a ₁	0.0016
cotgθ (-)	1.00
f _{cd} (kN/m ²)	9050.0
A (m ²)	0.07
t (m)	0.09
u (m)	1.4
A_c (m^2)	0.12
H (m)	0.4
B (m)	0.3

B (m)	0.3
H (m)	0.4
A_c (m ²)	0.12
u (m)	1.4
t (m)	0.09
$A_s (m^2)$	0.0002
A (m ²)	0.07
s _(prog.) (m)	0.08
f_{yd} (kN/m ²)	391300
cotgθ (-)	1.00
T _{Rsd} (kNm)	148.95

Armatura Longitudinale

T _{Rsd} (kNm)	78.28
cotgθ (-)	1.00
f _{yd} (kN/m ²)	391300
A (m ²)	0.07
ΣA_{l} (m ²)	0.0016
u _m (m)	1.06
t (m)	0.09
u (m)	1.4
A _c (m ²)	0.12
H (m)	0.4
B (m)	0.3

T_{Rd} (**kNm**) 52.24 **T**_{Ed} (**kNm**) 4.43 sap

Per quanto riguarda la crisi lato calcestruzzo, la resistenza massima di una membratura soggetta a torsione e taglio è limitata dalla resistenza delle bielle compresse di calcestruzzo. Per non eccedere tale resistenza deve essere soddisfatta la seguente condizione.

Verifica a taglio-torsione

$$T_{Ed} / T_{Rcd} + V_{Ed} / V_{Rcd} < 1$$
 $T_{Ed} / T_{Rcd} = 0.085$ $V_{Ed} / V_{Rcd} = 0.228$

= 0.313 < 1 La verifica risulta soddisfatta

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

11.3.4 Verifica limitazioni di armatura

Dimensioni sezione

300 mm h = 400 mm 52 mm

In campata:

Armatura tesa Ø 16 mm

 $A_s =$ 803.84 mm² $\rho = A_s/(bh) =$ 0.00670

Armatura compressa Ø 14 mm 4

As'= 615.44 mm²

 $\rho_{comp} = A_s'/(bh) =$ 0.0051287

 $\frac{1,4}{f_{yk}} < \rho < \rho_{comp} + \frac{3,5}{f_{yk}}$ $1,4/f_{vk} =$ 0.00311

0.01291 La verifica risulta soddisfatta ρ_{comp} +3,5/ f_{yk} =

Agli appoggi:

Armatura tesa 4 Ø 14 mm

 $A_s =$ 615.44 mm² $\rho=A_s/(bh)=$ 0.00513

Armatura compressa 4 Ø 16 mm

 803.84 mm^2 A_s'=

0.0066987 $\rho_{comp} = A_s'/(bh) =$

 $\frac{1,4}{f_{yk}} < \rho < \rho_{comp} + \frac{3,5}{f_{yk}}$ $1,4/f_{vk} =$ 0.00311

 ρ_{comp} +3,5/ f_{yk} = 0.01448 La verifica risulta soddisfatta

L'armatura compressa non deve mai essere inferiore a un quarto di quella tesa:

 $\rho_{comp}{\ge}0,25\rho$

nel caso specifico risulta:

 $\rho_{comp} = A_s'/(bh) =$ 0.0067

 $0,25\rho =$ 0.0013 La verifica risulta soddisfatta

Nelle zone critiche (agli appoggi) l'armatura compressa non deve mai essere inferiore a metà di quella tesa:

 $\rho_{comp} \ge 0.5 \rho$

nel caso specifico risulta:

0.0067 $\rho_{comp}=A_s'/(bh)=$

 $0.5\rho =$ 0.0026 La verifica risulta soddisfatta

Passo massimo delle staffe nella zona critica

s1 87 mm 225 mm s2 s3 112 mm s4 240 mm s = **87** mm

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Devono inoltre essere rispettati i limiti previsti per le travi in calcestruzzo in zona non sismica (punto 4.1.6.1.1 delle NTC2018).

RcK =	40 MPa	
f _{ck} =	32 MPa	
f _{ctm} =	3.02 MPa	valore medio della resistenza a trazione assiale
$f_{yk} =$	450 MPa	resistenza caratteristica a trazione dell'armatura
b _t =	300 mm	larghezza media della zona tesa
A _{smin} =	182.40 mm ²	C
A _s =	615.44 mm ²	La verifica risulta soddisfatta $A_{s, \min} = 0.26 rac{f_{ctm}}{f_{vk}} b_{t} \cdot d$
$0.0013 b_t d =$	135.72 mm ²	f_{yk}

A _s =	803.84 mm ²	
V _{Ed} =	70.41 kN	taglio di calcolo
$f_{yk} =$	450 MPa	
γ _s =	1.15	
$f_{yd} =$	391.3 MPa	
$V_{Rd}=A_s \times f_{yd}=$	314.5 kN	La verifica risulta soddisfatta

$$A_s$$
= 803.84 mm² La verifica risulta soddisfatta A_s '= 803.84 mm² La verifica risulta soddisfatta $0.04A_c$ = 4800 mm²

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

11.4 Verifica trave interna

11.4.1 Verifica di resistenza

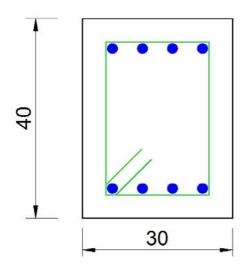
In base ai risultati riportati al capitolo 10 si effettua di seguito la verifica della trave 30x40 cm interna maggiormente sollecitata.

Di seguito si riportano le sollecitazioni massime di progetto.

Frame	Station	OutputCase	Р	V2	V3	M2	М3
Text	m	Text	KN	KN	KN	KN-m	KN-m
18	1.58571	SLU_1	-0.225	1.642	0.011	0.0139	20.8346
18	3.5	SLU_1	-0.225	54.899	0.011	-0.0078	-33.2837
18	0.15	SLU_6	0.803	-34.557	0.011	0.0312	-3.5245
19	0.15	SLU_6	0.804	-51.136	-0.013	-0.0149	-31.2975
19	3.5	SLU_6	0.804	34.564	-0.013	0.0293	-3.538
19	0.15	SLU_2	-0.226	-54.897	-0.00979	-0.0067	-33.281
19	0.15	SLU_13	-3.149	-40.035	-0.00924	-0.0079	-23.5955
13	0.15	SLU_8	3.255	-9.982	0.003476	0.0069	-7.8578

Frame	Station	OutputCase	P	V2	V3	M2	M3
Text	m	Text	KN	KN	KN	KN-m	KN-m
18	1.10714	Sismica_SLU_+0.3_X_+1.0Y	0.241	1.311	0.027	0.2249	16.8152
18	3.5	Sismica_SLU_+0.3_X_+1.0Y	-1.999	17.547	-0.013	-0.195	-26.9048
18	0.15	Sismica_SLU_+1.0_X_+0.3Y	-0.514	-18.43	0.049	0.2606	-0.9609
18	0.15	Sismica_SLU_+1.0_X_+0.3Y	-1.245	-23.765	-0.034	-0.2244	-11.8057
18	2.54286	Sismica_SLU_+1.0_X_+0.3Y	-0.514	15.489	0.049	0.1591	4.4829
18	3.5	Sismica_SLU_+0.3_X_+1.0Y	0.241	35.231	0.027	0.1833	-3.5861
18	3.5	Sismica_SLU_+0.3_X_+1.0Y	-1.999	17.547	-0.013	-0.195	-26.9048
13	4.01	Sismica_SLU_+1.0_X_+0.3Y	1.932	13.412	0.011	0.1434	14.239

Frame	Station	OutputCase	P	V2	V3	M2	M3
Text	m	Text	KN	KN	KN	KN-m	KN-m
18	1.58571	CARATTERISTICA 2	0.382	1.166	0.00851	0.0108	14.2348
18	3.5	CARATTERISTICA 2	0.382	37.432	0.00851	-0.0055	-22.7086
18	0.15	CARATTERISTICA 2	0.382	-26.033	0.00851	0.023	-3.6163
19	0.15	CARATTERISTICA 2	0.383	-37.427	-0.0097	-0.0107	-22.7026
19	0.15	CARATTERISTICA 2	0.383	-37.427	-0.0097	-0.0107	-22.7026
19	0.15	CARATTERISTICA 2	0.383	-37.427	-0.0097	-0.0107	-22.7026
12	0.15	CARATTERISTICA 1	-1.291	-7.03	0.000304	0.0019	-5.9573
19	0.15	CARATTERISTICA 6	1.262	-11.038	-0.00255	-0.0049	-7.4571


PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Frame	Station	OutputCase	Р	V2	V3	M2	M3
Text	m	Text	KN	KN	KN	KN-m	KN-m
18	1.58571	SLE_8F	-0.7	0.165	0.007446	0.0083	10.0668
18	3.5	SLE_1F	-0.952	28.262	0.007253	-0.0059	-16.3635
18	0.15	SLE_8F	-0.7	-20.187	0.007446	0.019	-4.3059
19	0.15	SLE_3F	-0.627	-27.477	-0.00754	-0.0067	-15.9827
18	3.5	SLE_8F	-0.7	27.3	0.007446	-0.006	-16.2211
18	3.5	SLE_1F	-0.952	28.262	0.007253	-0.0059	-16.3635
18	3.5	SLE_5F	-1.104	27.371	0.007211	-0.0059	-15.9831
13	4.01	SLE_8F	0.798	4.773	2.39E-14	-3.2E-14	-1.0822

Frame	Station	OutputCase	Р	V2	V3	M2	M3
Text	m	Text	KN	KN	KN	KN-m	KN-m
18	1.58571	SLE_QP	-0.879	-0.746	0.007146	0.0078	9.2979
18	3.5	SLE_QP	-0.879	26.389	0.007146	-0.0058	-15.2454
18	0.15	SLE_QP	-0.879	-21.098	0.007146	0.0181	-6.3833
18	3.5	SLE_QP	-0.879	26.389	0.007146	-0.0058	-15.2454
18	3.5	SLE_QP	-0.879	26.389	0.007146	-0.0058	-15.2454
18	3.5	SLE_QP	-0.879	26.389	0.007146	-0.0058	-15.2454
13	4.01	SLE_QP	0.441	5.69	2.37E-15	-8E-15	-3.4458
18	3.5	SLE_QP	-0.879	26.389	0.007146	-0.0058	-15.2454

Armatura sezione

- Arm. Longitudinale: 4Ø16 superiore 4Ø16 inferiore
- Arm. Trasversale: Ø10/8 cm zona critica Ø10/15cm fuori zona critica

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Verifica SLU-SLE

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.1	MPa
	Resis. compr. ridotta fcd':	9.1	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33345.8	MPa
	Resis. media a trazione fctm:	3.02	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	19.2	MPa
	Sc limite S.L.E. comb. Frequenti:	19.2	MPa
	Ap.Fessure limite S.L.E. comb. Freque	nti: 0.400	mm
	Sc limite S.L.E. comb. Q.Permanenti:	14.4	MPa
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.300	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²

Sf limite S.L.E. Comb. Rare:

Diagramma tensione-deformaz.:

Bilineare finito 1.00

Coeff. Aderenza istantaneo B1*B2: Coeff. Aderenza differito B1*B2: 0.50

360.00 MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Dominio: Classe Calcestruzzo:		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-15.0	0.0
2	-15.0	40.0
3	15.0	40.0
4	15.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-9.0	6.0	16
2	-9.0	34.0	16
3	9.0	34.0	16
4	9.0	6.0	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
NOD	Nicona and all bearing managed as a solidicate at all all all all all and a languaged as a second

 $\mathsf{N}^{\circ}\mathsf{Barre}$ Numero di barre generate equidistanti cui si riferisce la generazione

Diametro in mm delle barre della generazione

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre Ø

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

1	1	4	2	16
2	2	3	2	16 16

ARMATURE A TAGLIO

Diametro staffe: 10 mm
Passo staffe: 15.0 cm

Indicazione Barre Longitudinali di risvolto per ogni staffa:

N°Staffa Barra Barra Barra Barra 1 1 2 3 4

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N		Sforzo normale [kN] applicato nel Baric. (+ se di compressione)			
Mx		Momento flettente [kNm] intorno all'asse x princ. d'inerzia			
				imere il lembo sup. o	
My				asse y princ. d'inerz	
				imere il lembo destro	
Vy				la all'asse princ.d'ine	
Vx		Componente del	Taglio [kN] paralle	la all'asse princ.d'ine	erzia x
N°Comb.	N	Mv	M	16.	1/4
N COMB.	IN	Mx	Му	Vy	Vx
1	0.00	20.83	0.01	1.64	0.01
2	0.00	-33.28	-0.01	54.90	0.01
3	0.80	-3.52	0.03	-34.56	0.01
4	0.80	-31.30	-0.01	-51.14	-0.01
5	0.80	-3.54	0.03	34.56	-0.01
6	0.00	-33.28	-0.01	-54.90	-0.01
7	-3.15	-23.60	-0.01	-40.04	-0.01
8	3.26	-7.86	0.01	-9.98	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
	con verso positivo se tale da comprimere il lembo superiore della sezione
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	0.38	14.23	0.01
2	0.38	-22.71	-0.01
3	0.38	-3.62	0.02
4	0.38	-22.70	-0.01
5	-1.29	-5.96	0.00
6	1.26	-7.46	0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)			
Mx	Momento fl	Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)		
	con verso p	positivo se tale da comprimere	il lembo superiore della sezione	
Му	Momento fl	lettente [kNm] intorno all'asse y	/ princ. d'inerzia (tra parentesi Mo	om.Fessurazione)
	con verso p	positivo se tale da comprimere	il lembo destro della sezione	
N°Comb.	N	Mx	Mv	
N Comb.	IV	IVIA	iviy	
1	-0.70	10.07 (31.11)	0.01 (0.03)	
2	-0.95	-16.36 (-31.15)	-0.01 (-0.01)	

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Direzione	Proget	tazione	e
Realizz	azione	l avori	

3	-0.70	-4.31 (-30.73)	0.02 (0.14)
4	-0.63	-15.98 (-31.19)	-0.01 (-0.01)
5	-1.10	-15.98 (-31.13)	-0.01 (-0.01)
6	0.80	-1.08 (-33.05)	0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)
	con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	-0.88	9.30 (31.05)	0.01 (0.03)
2	-0.88	-15.25 (-31.15)	-0.01 (-0.01)
3	-0.88	-6.38 (-30.86)	0.02 (0.09)
4	-0.88	-15.25 (-31.15)	-0.01 (-0.01)
5	0.44	-3.45 (-31.59)	0.00 (0.00)
6	-0.88	-15.25 (-31.15)	-0.01 (-0.01)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.2 cm Interferro netto minimo barre longitudinali: 4.4 cm Copriferro netto minimo staffe: 4.2 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver	S = combina	zione verifi	cata / N =	combin.	non ver	ificata		

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)
Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.45)NTC]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	20.83	0.01	0.00	97.55	0.03	4.68	8.0(1.8)
2	S	0.00	-33.28	-0.01	0.00	-97.52	-0.01	2.93	8.0(1.8)
3	S	0.80	-3.52	0.03	0.79	-97.94	0.55	27.79	8.0(1.8)
4	S	0.80	-31.30	-0.01	0.95	-97.67	-0.02	3.12	8.0(1.8)
5	S	0.80	-3.54	0.03	0.77	-98.00	0.32	27.70	8.0(1.8)
6	S	0.00	-33.28	-0.01	0.00	-97.52	-0.01	2.93	8.0(1.8)
7	S	-3.15	-23.60	-0.01	-3.40	-97.04	-0.01	4.11	8.0(1.8)
8	S	3.26	-7.86	0.01	3.24	-98.01	0.03	12.47	8.0(1.8)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

0.700

0.189

Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.188	15.0	40.0	0.00021	9.0	34.0	-0.01514	-9.0	6.0
2	0.00350	0.188	-15.0	0.0	0.00021	-9.0	6.0	-0.01514	9.0	34.0
3	0.00350	0.190	15.0	0.0	0.00024	9.0	6.0	-0.01495	-9.0	34.0
4	0.00350	0.188	-15.0	0.0	0.00021	-9.0	6.0	-0.01512	9.0	34.0
5	0.00350	0.189	15.0	0.0	0.00023	9.0	6.0	-0.01499	-9.0	34.0
6	0.00350	0.188	-15.0	0.0	0.00021	-9.0	6.0	-0.01514	9.0	34.0
7	0.00350	0.187	-15.0	0.0	0.00020	-9.0	6.0	-0.01522	9.0	34.0
8	0.00350	0.189	15.0	0.0	0.00022	9.0	6.0	-0.01506	-9.0	34.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

0.000000479

a, b, c x/d C.Rid.	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Coeff. di riduz. momenti per sola flessione in travi continue									
N°Comb	a	b	С	x/d	C.Rid.					
1	0.000000366	0.000547859	-0.018419823	0.188	0.700					
2	-0.00000128	-0.000548271	0.003498073	0.188	0.700					
3	0.000004774	-0.000539349	0.003428383	0.190	0.700					
4	-0.000000261	-0.000547445	0.003496091	0.188	0.700					
5	0.000004478	-0.000540781	0.003432823	0.189	0.700					
6	-0.00000110	-0.000548284	0.003498344	0.188	0.700					
7	-0.00000184	-0.000550430	0.003497236	0.187	0.700					

-0.000545580

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

0.003492814

Ver			S = comb. verificata/ N = comb. non verificata										
Sc ma	Х		Massima	Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]									
Xc ma	x, Yc m	ax	Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)										
Ss mir	1		Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ascissa, Ordinata [cm] della barra corrisp, a Ss min (sistema rif. X,Y,O)										
Xs mir	n, Ys mi	n											
Ac eff.			Area di ca	alcestruzzo	[cm²] in zon	a tesa co	nsiderata à	derente alle b	parre				
As eff.													
				Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure									
N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.				
1	S	2.07	15.0	40.0	-59.6	-9.0	6.0	285	8.0				
2	S	3.30	-15.0	0.0	-95.2	9.0	34.0	285	8.0				
_	_												
3	S	0.54	15.0	0.0	-15.0	-9.0	34.0	279	8.0				
4	S	3.31	-15.0	0.0	-95.2	9.0	34.0	285	8.0				
5	S	0.86	15.0	0.0	-25.8	-9.0	34.0	285	8.0				
6	S	1.09	-15.0	0.0	-30.6	9.0	34.0	285	8.0				

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm
Ver.	Esito della verifica
e1	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2	Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
k1	= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]
kt	= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]
k2	= 0.5 per flessione; =(e1 + e2)/(2 *e1) per trazione eccentrica [eq.(7.13)EC2]
k3	= 3.400 Coeff. in eq.(7.11) come da annessi nazionali
k4	= 0.425 Coeff. in eq.(7.11) come da annessi nazionali
Ø	Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]
Cf	Copriferro [mm] netto calcolato con riferimento alla barra più tesa
e sm - e cm	Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	esm-ecms	sr max	wk	Mx fess	My fess
1	S	-0.00038	0.00000	0.500	16.0	52	0.00018 (0.00018)	273	0.049 (990.00)	31.32	0.02
2	S	-0.00060	0.00000	0.500	16.0	52	0.00029 (0.00029)	273	0.078 (990.00)	-31.33	-0.01
3	S	-0.00010	0.00000	0.500	16.0	52	0.00005 (0.00005)	271	0.012 (990.00)	-31.23	0.20
4	S	-0.00060	0.00000	0.500	16.0	52	0.00029 (0.00029)	273	0.078 (990.00)	-31.32	-0.01
5	S	-0.00016	0.00000	0.500	16.0	52	0.00008 (0.00008)	273	0.021 (990.00)	-30.81	0.01
6	S	-0.00019	0.00000	0.500	16.0	52	0.00009 (0.00009)	273	0.025 (990.00)	-31.65	-0.02

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Y	c max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.46	15.0	40.0	-42.8	-9.0	6.0	285	8.0
2	S	2.38	-15.0	0.0	-69.3	9.0	34.0	285	8.0
3	S	0.63	15.0	0.0	-18.6	-9.0	34.0	285	8.0
4	S	2.32	-15.0	0.0	-67.6	9.0	34.0	285	8.0
5	S	2.32	-15.0	0.0	-67.8	9.0	34.0	285	8.0
6	c	0.16	15 N	0.0	11	0.0	240	270	0.0

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max wk			Mx fess	My fess
1	S	-0.00027	0.00000	0.500	16.0	52	0.00013 (0.00013)	273	0.035 (0.40)	31.11	0.03
2	S	-0.00044	0.00000	0.500	16.0	52	0.00021 (0.00021)	273	0.057 (0.40)	-31.15	-0.01
3	S	-0.00012	0.00000	0.500	16.0	52	0.00006 (0.00006)	273	0.015 (0.40)	-30.73	0.14
4	S	-0.00043	0.00000	0.500	16.0	52	0.00020 (0.00020)	273	0.055 (0.40)	-31.19	-0.01
5	S	-0.00043	0.00000	0.500	16.0	52	0.00020 (0.00020)	273	0.056 (0.40)	-31.13	-0.01
6	S	-0.00003	0.00000	0.500	16.0	52	0.00001 (0.00001)	268	0.003 (0.40)	-33.05	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Y	'c max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.35	15.0	40.0	-39.6	-9.0	6.0	285	8.0
2	S	2.21	-15.0	0.0	-64.6	9.0	34.0	285	8.0
3	S	0.93	15.0	0.0	-27.4	-9.0	34.0	285	8.0
4	S	2.21	-15.0	0.0	-64.6	9.0	34.0	285	8.0
5	S	0.50	-15.0	0.0	-14.2	9.0	34.0	285	8.0
6	ς	2 21	-15.0	0.0	-64.6	9.0	34.0	285	8.0

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00025	0.00000	0.500	16.0	52	0.00012 (0.00012)	273	0.032 (0.30)	31.05	0.03
2	S	-0.00041	0.00000	0.500	16.0	52	0.00019 (0.00019)	273	0.053 (0.30)	-31.15	-0.01
3	S	-0.00017	0.00000	0.500	16.0	52	0.00008 (0.00008)	273	0.022 (0.30)	-30.86	0.09
4	S	-0.00041	0.00000	0.500	16.0	52	0.00019 (0.00019)	273	0.053 (0.30)	-31.15	-0.01
5	S	-0.00009	0.00000	0.500	16.0	52	0.00004 (0.00004)	273	0.012 (0.30)	-31.59	0.00
6	S	-0.00041	0.00000	0.500	16.0	52	0.00019 (0.00019)	273	0.053 (0.30)	-31.15	-0.01

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Verifica SLV

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Resis. compr. ridotta fcd': Def.unit. max resistenza ec2: Def.unit. ultima ecu: Diagramma tensione-deformaz.:	C32/40 18.1 9.1 0.0020 0.0035 Parabola-Rettangolo	MPa MPa
	Modulo Elastico Normale Ec:	33345.8	MPa
	Resis. media a trazione fctm:	3.02	MPa
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-15.0	0.0
2	-15.0	40.0
3	15.0	40.0
4	15.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-9.0	6.0	16
2	-9.0	34.0	16
3	9.0	34.0	16
4	9.0	6.0	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione

Numero de la barra finale cui si riferisce la generazione Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione N°Barre

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	2	16
2	2	3	2	16

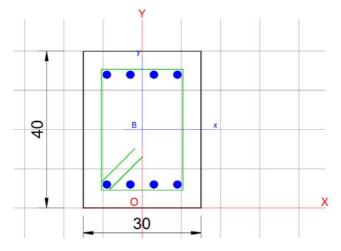
ARMATURE A TAGLIO

Diametro staffe: 10 mm 8 cm Passo staffe:

Indicazione Barre Longitudinali di risvolto per ogni staffa:

N°Staffa Barra Barra Barra Barra

PROGETTO ESECUTIVO


Relazione tecnica e di calcolo

1 1 2 3 4

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	My	Vy	Vx
1	0.00	16.82	0.22	1.31	0.03
2	-2.00	-26.90	-0.20	17.55	-0.01
3	-0.51	-0.96	0.26	-18.43	0.05
4	-1.25	-11.81	-0.22	-23.77	-0.03
5	-0.51	4.48	0.16	15.49	0.05
6	0.00	-3.59	0.18	35.23	0.03
7	-2.00	-26.90	-0.20	17.55	-0.01
8	1.93	14.24	0.14	13.41	0.01

RISULTATI DEL CALCOLO

As Tesa

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.2 cm Interferro netto minimo barre longitudinali: 4.4 cm Copriferro netto minimo staffe: 4.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)
Mx	Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My	Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res	Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)
Mx Res	Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res	Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)
	Verifica positiva se tale rapporto risulta >=1.000

N°Comb Ver N Mx My N Res Mx Res My Res Mis.Sic. As Tesa

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

1	S	0.00	16.82	0.22	0.00	92.83	0.86	5.52	8.0(1.8)
2	S	-2.00	-26.90	-0.20	-1.83	-92.37	-0.95	3.43	8.0(1.8)
3	S	-0.51	-0.96	0.26	-0.58	-72.89	20.15	75.96	8.0(2.1)
4	S	-1.25	-11.81	-0.22	-1.39	-91.68	-1.64	7.77	8.0(1.8)
5	S	-0.51	4.48	0.16	-0.64	90.50	3.05	20.19	8.0(1.8)
6	S	0.00	-3.59	0.18	0.00	-89.37	4.47	24.92	8.0(1.8)
7	S	-2.00	-26.90	-0.20	-1.83	-92.37	-0.95	3.43	8.0(1.8)
8	S	1.93	14.24	0.14	1.83	93.30	0.53	6.55	8.0(1.8)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00097	0.331	15.0	40.0	0.00045	9.0	34.0	-0.00196	-9.0	6.0
2	0.00097	0.331	-15.0	0.0	0.00045	-9.0	6.0	-0.00196	9.0	34.0
3	0.00132	0.403	15.0	0.0	0.00067	9.0	6.0	-0.00196	-9.0	34.0
4	0.00098	0.335	-15.0	0.0	0.00046	-9.0	6.0	-0.00196	9.0	34.0
5	0.00102	0.342	15.0	40.0	0.00048	9.0	34.0	-0.00196	-9.0	6.0
6	0.00105	0.348	15.0	0.0	0.00050	9.0	6.0	-0.00196	-9.0	34.0
7	0.00097	0.331	-15.0	0.0	0.00045	-9.0	6.0	-0.00196	9.0	34.0
8	0.00096	0.330	15.0	40.0	0.00045	9.0	34.0	-0.00196	-9.0	6.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Rapp. di	b, c nell'eq. dell'asse ne duttilità (travi e solette)[§ riduz. momenti per sola f	4.1.2.1.2.1 NTC]: deve	essere < 0.45	
N°Comb	a	b	С	x/d	C.Rid.
1	0.000001139	0.000085165	-0.002457237	0.331	0.853
2	-0.000001450	-0.000084946	0.000944695	0.331	0.853
3	0.000041816	-0.000066793	0.000690804	0.403	0.943
4	-0.000003256	-0.000084211	0.000935961	0.335	0.859
5	0.000006218	0.000083029	-0.002398715	0.342	0.867
6	0.000009045	-0.000081914	0.000909975	0.348	0.875
7	-0.000001450	-0.000084946	0.000944695	0.331	0.853
8	0.000000859	0.000085249	-0.002460268	0.330	0.852

Realizzazione Lavori

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

11.4.2 Verifica a taglio

Al fine di escludere la formazione di meccanismi inelastici dovuti al taglio, le sollecitazioni di taglio di calcolo V_{Ed} si ottengono sommando il contributo dovuto ai carichi gravitazionali agenti sulla trave, considerata incernierata agli estremi, alle sollecitazioni di taglio corrispondenti alla formazione di cerniere plastiche nella trave e prodotte dai momenti resistenti (ultimi) delle due sezioni di plasticizzazione (generalmente quelle di estremità) amplificati del fattore di sovra resistenza γ_{Rd} assunto pari a 1.1 per CDB.

Deve risultare (NTC2018):

$$V_{Rd} > V_d$$

dove:

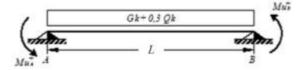
V_d = Valore di calcolo del taglio agente;

 $V_{Rd} = min (V_{Rsd}, V_{Rcd})$

Con riferimento all'armatura trasversale, la resistenza di calcolo a "taglio trazione" si calcola con:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$$

Con riferimento al calcestruzzo d'anima, la resistenza di calcolo a "taglio compressione" si calcola con:


$$V_{_{Rcd}} = 0.9 \cdot d \cdot b_{_{W}} \cdot \alpha_{_{c}} \cdot f'_{_{cd}} \cdot (ctg \alpha + ctg \theta) / (1 + ctg^{2} \theta)$$

dove:

α : Angolo d'inclinazione dell'armatura trasversale rispetto all'asse dell'elemento;

θ : Angolo d'inclinazione dei puntoni in calcestruzzo rispetto all'asse dell'elemento.

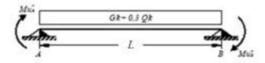
• <u>1° Schema</u>:

Il taglio è variabile linearmente lungo la trave ed è pari a:

Direzione Progettazione e Realizzazione Lavori

STRADA DELLE TRE VALLI UMBRE

Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola


PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

$$V_{A} = \gamma_{Rd} \frac{Mu_{A}^{+} + Mu_{B}^{+}}{l_{.....}} + \frac{(G_{k} + 0.3Q_{k}) \cdot l_{trave}}{2}$$

$$V_{B} = \gamma_{Rd} \frac{Mu_{A}^{+} + Mu_{B}^{+}}{l_{trave}} - \frac{(G_{k} + 0.3Q_{k}) \cdot l_{trave}}{2}$$

• 2° Schema:

Il taglio è variabile linearmente lungo la trave ed è pari a:

$$V_{A} = \gamma_{Rd} \frac{Mu_{A}^{-} + Mu_{B}^{-}}{l_{trave}} + \frac{(G_{k} + 0.3Q_{k}) \cdot l_{trave}}{2}$$

$$V_{\scriptscriptstyle B} = \gamma_{\scriptscriptstyle Rd} \frac{Mu^{\scriptscriptstyle -}{}_{\scriptscriptstyle A} + Mu^{\scriptscriptstyle -}{}_{\scriptscriptstyle B}}{l_{\scriptscriptstyle trave}} - \frac{(G_{\scriptscriptstyle k} + 0.3Q_{\scriptscriptstyle k}) \cdot l_{\scriptscriptstyle trave}}{2}$$

Si riporta di seguito un prospetto riepilogativo con i valori delle sollecitazioni taglianti ottenute seguendo la metodologia descritta e riportata negli schemi precedenti:

Determinazione taglio di calcolo

Base	0.30	m
Altezza	0.40	m
L _{trave}	7.30	m
L _{influenza}	4.40	m
Peso proprio trave	3.00	kN/m
Carico solaio	3.10	kN/m ²
Carico perm.	1.64	kN/m ²
G _k	20.86	kN/m
Υ _Q	0.30	[-]
Q_k	1.104	kN/m
₽Rd	1.10	[-]

$M_{uA}^{(+)}$ (kNm)	$M_{uB}^{(-)}$ (kNm)	$M_{uA}^{(-)}$ (kNm)	M _{uB} ⁽⁺⁾ (kNm)
96.42	96.42	96.42	96.42

1° Sc	hema	2° Schema		
V _A (kN)	V _B (kN)	V _A (kN)	V _B (kN)	
106.4	-48.3	106.4	-48.3	

V _{2 (output)} =	54.9	kN
V _{Ed} =	106.39	kN

Poiché il valore del taglio determinato mediante la procedura sopra riportata è maggiore del taglio di calcolo ottenuto a valle dell'analisi strutturale mediante il SAP2000 (V₂=54.9 kN) si procede alla verifica di resistenza considerando il seguente valore del taglio massimo: V_{Ed-max}= 106.39 kN

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Verifica elementi con armature trasversali resistenti al taglio

Resistenza a compressione ridotta del calcestruzzo d'anima

Coefficiente maggiorativo

Verifica:

[4.1.2.1.3.2]

1.57 rad

1

306.33 kN

542.13 kN

306.33 kN

VERIFICATA

9.07 N/mm²

La resistenza a taglio V_{Rd} di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati.

$$\begin{aligned} V_{Rd} \geq V_{Ed} \\ V_{Rsd} &= 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha \\ V_{Rcd} &= 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f'_{cd} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^{2}\theta) \\ V_{Rd} &= \min(V_{Rsd}; V_{Rcd}) \end{aligned}$$
 Acciaio B 450 C f_{yd} 391.3 N/mm²

$$\begin{aligned} &\text{Coefficiente parziale di sicurezza relativo all'acciaio} &\gamma_{s} &1.15 \\ &\text{Inclinazione dei puntoni di cls rispetto all'asse della trave} &\Theta &45° &0.79 \text{ rad} \\ &\text{diametro staffe} &\emptyset &10 \text{ mm} \\ &\text{Area dell'armatura trasversale} &A_{sw} &157.08 \text{ mm}^{2} \\ &\text{Interasse tra due armature trasversali consecutive} &s &80 \text{ mm} \\ &\text{Angolo di inclinazione dell'armatura trasversale} &\alpha &90° \end{aligned}$$

Si adotteranno staffe Φ 10 / 8 cm per la lunghezza critica della trave, mentre al di fuori della zona critica si addotteranno staffe Φ 10 / 15 cm.

 $V_{Rd} > V_{Fd}$

f'cd

 α_c

 V_{Rsd}

 V_{Rcd}

 V_{Rd}

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

11.4.3 Verifica a torsione

La verifica di resistenza nei confronti della torsione (SLU) (NTC2018) consiste nel controllare che:

$$T_{Rd} \ge T_{Ed}$$

dove T_{Ed} è il valore di calcolo del momento torcente.

Per elementi prismatici sottoposti a torsione semplice o combinata con altre sollecitazioni, che abbiano sezione piena o cava, lo schema resistente è costituito da un traliccio periferico in cui gli sforzi di trazione sono affidati alle armature longitudinali e trasversali ivi contenute e gli sforzi di compressione sono affidati alle bielle di calcestruzzo.

Con riferimento al calcestruzzo la resistenza si calcola con:

$$T_{Rcd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta/(1 + ctg \theta)$$

dove t è lo spessore della sezione cava; per sezioni piene $t = A_c/u$ dove A_c è l'area della sezione ed u è il suo perimetro; t deve essere assunta comunque ≥ 2 volte la distanza fra il bordo e il centro dell'armatura longitudinale.

Le armature longitudinali e trasversali del traliccio resistente devono essere poste entro lo spessore t del profilo periferico. Le barre longitudinali possono essere distribuite lungo detto profilo, ma comunque una barra deve essere presente su tutti i suoi spigoli.

Con riferimento alle staffe trasversali la resistenza si calcola con:

$$T_{Rsd} = 2 \cdot A \cdot (A_s/s) \cdot f_{vd} \cdot ctg\theta$$

Con riferimento all'armatura longitudinale la resistenza si calcola con:

$$T_{Rsd} = 2 \cdot A \cdot (\Sigma A_I / u_m) \cdot f_{vd} / ctg\theta$$

dove si è posto:

A area racchiusa dalla fibra media del profilo periferico;

As area delle staffe:

u_m perimetro medio del nucleo resistente;

s passo delle staffe;

ΣA_I area complessiva delle barre longitudinali.

L'inclinazione θ delle bielle compresse di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti

$$0.4 \le \text{ctg } \theta \le 2.5$$

Entro questi limiti, nel caso di torsione pura, può porsi ctg θ = (al/as) ½

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

con: $a_1 = \sum A_1 / u_m$

 $a_s = A_s / s$

La resistenza alla torsione della trave è la minore delle tre sopra definite:

Calcestruzzo

	0.002
a_s	0.000
a ₁	0.0016
cotgθ (-)	1.00
f _{cd} (kN/m ²)	9065.0
A (m ²)	0.07
t (m)	0.09
u (m)	1.4
A _c (m ²)	0.12
H (m)	0.4
B (m)	0.3

Staffe Trasversali

B (m)	0.3
H (m)	0.4
A _c (m ²)	0.12
u (m)	1.4
t (m)	0.09
A_s (m ²)	0.0003
A (m ²)	0.07
s _(prog.) (m)	0.08
f_{yd} (kN/m ²)	391300
cotgθ (-)	1.00
T _{Rsd} (kNm)	202.73

Armatura Longitudinale

1.00
391300
0.07
0.0016
1.06
0.09
1.4
0.12
0.4
0.3

T_{Rd} (**kNm**) 52.33 **T**_{Ed} (**kNm**) 0.11 sap

Per quanto riguarda la crisi lato calcestruzzo, la resistenza massima di una membratura soggetta a torsione e taglio è limitata dalla resistenza delle bielle compresse di calcestruzzo. Per non eccedere tale resistenza deve essere soddisfatta la seguente condizione

Verifica a taglio-torsione

$$T_{Ed} / T_{Rcd} + V_{Ed} / V_{Rcd} < 1$$
 $T_{Ed} / T_{Rcd} = 0.002$ $V_{Ed} / V_{Rcd} = 0.347$

= 0.349 < 1 La verifica risulta soddisfatta

STRADA DELLE TRE VALLI UMBRE

Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

11.4.4 Verifica limitazioni di armatura

Dimensioni sezione

b = 300 mm h = 400 mm c= 52 mm

In campata:

Armatura tesa 4 Ø 16 mm

 A_s = 803.84 mm² ρ = A_s /(bh)= 0.00670

Armatura compressa 4 Ø 16 mm

A_s'= 803.84 mm²

 $\rho_{comp} = A_s'/(bh) = 0.0066987$

 $\frac{1,4}{f_{yk}} < \rho < \rho_{comp} + \frac{3,5}{f_{yk}}$

 ho_{comp} +3,5/ f_{yk} = 0.01448 La verifica risulta soddisfatta

Agli appoggi:

Armatura tesa 4 Ø 16 mm

 A_s = 803.84 mm² ρ = $A_s/(bh)$ = 0.00670

Armatura compressa 4 Ø 16 mm

 $A_s'=$ 803.84 mm²

 $\rho_{comp} = A_s'/(bh) = 0.0066987$

 $\frac{1,4}{f_{yk}} < \rho < \rho_{comp} + \frac{3,5}{f_{yk}}$ 1,4/f_{yk}= 0.00311 $\frac{1}{f_{yk}} < \rho < \rho_{comp} + \frac{3,5}{f_{yk}}$ La verifica risulta soddisfatta

L'armatura compressa non deve mai essere inferiore a un quarto di quella tesa:

 $\rho_{comp} \ge 0,25 \rho$

nel caso specifico risulta:

 $\rho_{comp} = A_s / (bh) = 0.0067$

0,25ρ = 0.0017 La verifica risulta soddisfatta

Nelle zone critiche (agli appoggi) l'armatura compressa non deve mai essere inferiore a metà di quella tesa:

 $\rho_{comp} \ge 0.5\rho$

nel caso specifico risulta:

 $\rho_{comp} = A_s'/(bh) = 0.0067$

 0.5ρ = 0.0033 La verifica risulta soddisfatta

Passo massimo delle staffe nella zona critica

s1 87 mm s2 225 mm s3 128 mm s4 240 mm s = **87** mm

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Devono inoltre essere rispettati i limiti previsti per le travi in calcestruzzo in zona non sismica (punto 4.1.6.1.1 delle NTC2018).

Passo massimo delle staffe nella zona critica

A _s =	803.84 mm ²	
V _{Ed} =	106.39 kN	taglio di calcolo
f _{yk} =	450 MPa	
γ _s =	1.15	
f _{yd} =	391.3 MPa	
$V_{Rd} = A_s \times f_{yd} =$	314.5 kN	La verifica risulta soddisfatta

$$A_s$$
= 803.84 mm² La verifica risulta soddisfatta A_s '= 803.84 mm² La verifica risulta soddisfatta $0.04A_c$ = 4800 mm²

$$A_{st,min}$$
=1,5 b = 450 mm²/mm
 \emptyset = 10 mm diametro staffe
 A_{sw} = 157 mm²
 s = 0.08 m
 A_{st} = A_{sw} / s = 1962.5 mm²/mm La verifica risulta soddisfatta
 $0.8d$ = 278.4 mm La verifica risulta soddisfatta

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

11.5 Verifica sbalzo

In base ai risultati riportati al capitolo 10 si effettua di seguito la verifica dello sbalzo in sommità dello spessore di 12 cm.

Di seguito si riportano le sollecitazioni massime con cui si effettuano le verifiche.

		Frame	OutputCase	Р	V13	V23	M11	M22	M12
		Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
maxP	KN	126	SLU_3	52.7	4.2	-0.1	-0.8	0.4	0.3
minP	KN	113	SLU_4	-41.0	4.0	-0.2	0.0	0.0	-1.2
maxV2	KN	113	SLU_2	-39.5	20.6	-0.2	2.0	-0.1	-0.7
minV2	KN	130	SLU_1	-38.4	-20.0	0.3	1.9	-0.1	-0.6
maxV3	KN	22	SLU_20	1.4	-0.2	17.1	0.2	1.8	0.3
minV3	KN	4	SLU_21	9.4	1.5	-17.1	-2.3	-3.4	0.0
maxM2	KN-m	1	SLU_1	-34.3	17.2	1.9	2.1	0.4	-0.3
minM2	KN-m	113	SLU_2	-5.9	20.6	-3.6	-4.8	-2.8	-0.6
maxM3	KN-m	107	SLU_21	3.6	-5.1	5.4	0.7	2.2	1.1
minM3	KN-m	31	SLU_4	1.3	-3.8	16.4	-2.3	-4.3	-0.1
maxM12	KN-m	17	SLU_17	-2.0	6.1	5.8	-1.0	-1.0	1.3
minM12	KN-m	2	SLU_16	-2.0	6.1	-5.8	-1.0	-1.0	-1.3

Frame OutputCase		Р	V13	V23	M11	M22	M12		
Text Text		KN	KN	KN	KN-m	KN-m	KN-m		
maxP	KN	109	Sismica_SLU_+0.3_X_+1.0Y	67.7	6.2	0.1	8.0	0.4	0.5
minP	KN	107	Sismica_SLU_+0.3_X_+1.0Y	-46.8	-8.8	-0.2	-1.4	-0.2	0.0
maxV2	KN	1	Sismica_SLU_+1.0_X_+0.3Y	4.0	15.5	3.0	1.5	0.6	0.1
minV2	KN	12	Sismica_SLU_+1.0_X_+0.3Y	-7.9	-14.8	-11.4	-3.2	-2.5	-0.3
maxV3	KN	22	Sismica_SLU_+0.3_X_+1.0Y	1.9	1.8	15.6	0.5	1.4	8.0
minV3	KN	4	Sismica_SLU_+0.3_X_+1.0Y	3.3	-8.2	-15.6	-2.6	-3.4	-0.8
maxM2	KN-m	68	Sismica_SLU_+1.0_X_+0.3Y	8.0	-0.2	7.8	2.2	1.3	0.0
minM2	KN-m	107	Sismica_SLU_+1.0_X_+0.3Y	-4.3	3.1	0.7	-3.3	-2.6	-0.4
maxM3	KN-m	107	Sismica_SLU_+0.3_X_+1.0Y	11.3	6.7	4.7	1.7	2.5	0.9

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

minM3	KN-m	68	Sismica_SLU_+0.3_X_+1.0Y	2.9	-3.9	3.3	-2.4	-3.5	-0.8
maxM12	KN-m	22	Sismica_SLU_+1.0_X_+0.3Y	1.3	13.8	9.6	0.0	-0.7	1.4
minM12	KN-m	4	Sismica SLU +1.0 X +0.3Y	-2.0	-9.9	-9.6	-2.3	-1.7	-1.4

		Frame	OutputCase	Р	V13	V23	M11	M22	M12
		Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
maxP	KN	126	CARATTERISTICA 2	35.8	2.3	-0.1	-0.5	0.3	0.2
minP	KN	113	CARATTERISTICA 2	-26.9	2.3	-0.2	-0.1	0.0	-0.8
maxV2	KN	113	CARATTERISTICA 2	-26.7	14.2	-0.2	1.4	0.0	-0.4
minV2	KN	130	CARATTERISTICA 2	-26.3	-14.0	0.2	1.3	0.0	-0.4
maxV3	KN	22	CARATTERISTICA 2	0.7	-0.2	11.9	0.2	1.4	0.3
minV3	KN	4	CARATTERISTICA 2	6.1	0.6	-11.9	-1.6	-2.2	-0.1
maxM2	KN-m	1	CARATTERISTICA 2	-25.1	12.4	1.2	1.5	0.3	-0.3
minM2	KN-m	130	CARATTERISTICA 2	-3.7	-14.0	2.4	-3.3	-1.9	-0.4
maxM3	KN-m	4	CARATTERISTICA 2	0.7	-0.2	-11.9	0.2	1.4	-0.3
minM3	KN-m	31	CARATTERISTICA 2	0.9	-3.5	11.6	-1.7	-3.1	-0.2
				-					
maxM12	KN-m	17	CARATTERISTICA 1	-0.1	6.4	6.0	-1.2	-1.2	0.9
minM12	KN-m	2	CARATTERISTICA 1	-0.1	6.4	-6.0	-1.2	-1.2	-0.9

		Frame	OutputCase	Р	V13	V23	M11	M22	M12
		Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
maxP	KN	126	SLE_8F	28.5	1.7	-0.1	-0.4	0.2	0.2
minP	KN	1	SLE_8F	-22.9	8.0	0.8	1.0	0.1	-0.5
maxV2	KN	113	SLE_8F	-21.7	12.1	-0.2	1.1	0.0	-0.4
minV2	KN	130	SLE_8F	-21.4	-11.8	0.2	1.1	0.0	-0.4
maxV3	KN	31	SLE_8F	-5.3	-0.1	10.7	-0.2	0.7	-0.1
minV3	KN	158	SLE_8F	1.0	-2.4	-10.7	-1.5	-2.8	0.1
maxM2	KN-m	1	SLE_1F	-20.3	9.9	1.0	1.3	0.3	-0.4
minM2	KN-m	113	SLE_8F	-3.3	12.1	-2.1	-2.9	-1.6	-0.3
maxM3	KN-m	4	SLE_8F	0.3	-0.3	-10.6	0.2	1.2	-0.3
minM3	KN-m	31	SLE_8F	1.0	-2.4	10.7	-1.5	-2.8	-0.1

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

maxM12	KN-m	17	SLE_7F	-0.5	5.3	5.3	-0.9	-1.0	0.8
minM12	KN-m	2	SLE 7F	-0.5	5.3	-5.3	-0.9	-1.0	-0.8

		Frame	OutputCase	Р	V13	V23	M11	M22	M12
		Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
maxP	KN	126	SLE_QP	25.4	1.0	0.0	-0.3	0.2	0.2
minP	KN	1	SLE_QP	-20.9	7.4	0.9	1.0	0.1	-0.5
maxV2	KN	113	SLE_QP	-19.7	11.4	-0.1	1.1	0.0	-0.4
minV2	KN	130	SLE_QP	-19.4	-11.1	0.1	1.0	0.0	-0.3
maxV3	KN	31	SLE_QP	-4.6	0.0	10.1	-0.2	0.6	-0.1
minV3	KN	158	SLE_QP	1.1	-2.3	-10.1	-1.4	-2.6	0.1
maxM2	KN-m	1	SLE_QP	-19.9	9.6	0.9	1.3	0.2	-0.4
minM2	KN-m	113	SLE_QP	-2.9	11.4	-2.0	-2.7	-1.5	-0.3
maxM3	KN-m	4	SLE_QP	-0.1	-0.2	-9.7	0.2	1.2	-0.4
minM3	KN-m	31	SLE_QP	1.1	-2.3	10.1	-1.4	-2.6	-0.1
maxM12	KN-m	17	SLE_QP	0.2	6.0	5.9	-1.1	-1.2	0.7
minM12	KN-m	2	SLE QP	0.2	6.0	-5.9	-1.1	-1.2	-0.7

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Verifica flessione M11*

Si effttua la verifica a flessione con i valori massimi del momento flettente, pari a M_{11} *= M_{11} ± M_{12} , trascurando, in favore di sicurezza, il contributo dello sforzo assiale.

Allo stesso tempo si effettua la verifica a pressoflessione considerando lo sforzo assiale massimo agente ed il momento flettente relativo M_{11}^* .

DATI GENERALI SEZIONE GENERICA IN C.A.

NOME SEZIONE: Sbalzo_rev01

(Percorso File: Z:\0260 TreValli Esecutivo\committente\Ricevuti\23-03-24 PD\Editabili\J_OPERE-D'ARTE-

MINORI\FABBRICATO\sbalzo\M11\Sbalzo_rev01.sez)

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/4	10
----------------	---------	-------	----

Resis. compr. di progetto fcd: 18.1 MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33345.8 MPa Resis. media a trazione fctm: 3.02 MPa Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: 19.2 MPa Sc limite S.L.E. comb. Frequenti: 19.2 MPa Ap.Fessure limite S.L.E. comb. Frequenti: 0.400 mm Sc limite S.L.E. comb. Q.Permanenti: 14.4 MPa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.300 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

Resist. snerv. di progetto fyd:

Resist. ultima di progetto ftd:

Deform. ultima di progetto Epu:

450.0 MPa
391.3 MPa
391.3 MPa
0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

1.00

0.50

MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1 2	-50.0 -50.0	0.0 12.0

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

3	50.0	12.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-45.5	4.5	10
2	-45.5	7.5	10
3	45.5	7.5	10
4	45.5	4.5	10

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
MODama	Niconaga di banca managata ancidistanti aci di diferiaga la managa

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	10
2	2	3	3	10

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

			nale [kN] applicato nel Baric. (+ se di compressione)				
Mx		Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez.					
Му				sse y princ. d'inerzia			
.,				nere il lembo destro			
Vy Vx				a all'asse princ.d'ine a all'asse princ.d'ine			
٧٨		Componente dei	ragilo (kiv) parallelo	i ali asse princ.u ine	ΙΖΙά Λ		
N°Comb.	N	Mx	My	Vy	Vx		
1	0.00	-5 40	0.00	0.10	0.00		

1	0.00	-5.40	0.00	0.10	0.00
2	-52.70	-1.10	0.00	0.00	0.00
3	40.99	-1.20	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My	Momento flettent con verso positiv Momento flettent	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fess con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fess con verso positivo se tale da comprimere il lembo destro della sezione					
N°Comb.	N	Mx	Му				
1	0.00	-3.70	0.00				

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

1	N	Sforzo	norn	nale	[kN]	applicato	o nel Baricentro) (+	se di	compress	sione)	

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

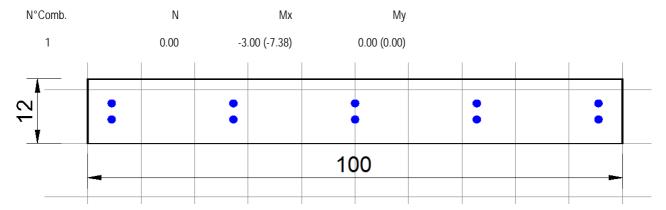
con verso positivo se tale da comprimere il lembo destro della sezione

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

N°Comb.	N	Mx	Му
1	0.00	-3.20 (-7.38)	0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA


N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 4.0 cm Interferro netto minimo barre longitudinali: 2.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)
Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia

My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	-5.40	0.00	0.00	-15.74	0.00	2.92	7.9(1.3)
2	S	-52.70	-1.10	0.00	-52.96	-13.42	0.00	12.20	7.9(1.3)
3	S	40.99	-1.20	0.00	40.99	-17.43	0.00	14.53	7.9(2.1)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max x/d	Deform. unit. massima del calcestruzzo a compressione Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Ys ma	Х	Ordinata in c	m della barra d	corrisp. a es m	ax (sistema rif.	X,Y,O sez.)						
N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max		
1	0.00350	0.278	-50.0	0.0	-0.00406	-45.5	4.5	-0.00910	45.5	7.5		
2	0.00350	0.236	-50.0	0.0	-0.00539	-45.5	4.5	-0.01132	45.5	7.5		
3	0.00350	0.316	-50.0	0.0	-0.00315	-45.5	4.5	-0.00758	45.5	7.5		

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Coeff. a, b, c nell'eq. dell'asse neutro $aX+bY+c=0$ nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Coeff. di riduz. momenti per sola flessione in travi continue							
N°Comb	a	b	С	x/d	C.Rid.			
1	0.000000000	-0.001680461	0.003500000	0.278	0.787			
2	0.000000000	-0.001976139	0.003500000	0.236	0.735			
3	0.000000000	-0.001477741	0.003500000	0.316	0.835			

METODO SLU - VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (\$ 4.1.2.1.3.1 NTC)

Ver Ved Vwct d bw Ro Scp		Taglio ag Taglio tra Altezza u Larghezz Rapporto	S = comb.verificata a taglio/ N = comb. non verificata Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta) Taglio trazione resistente [kN] in assenza di staffe [formula (4.1.23)NTC Altezza utile sezione [cm] Larghezza minima sezione [cm] Rapporto geometrico di armatura longitudinale [<0.02] Tensione media di compressione nella sezione [MPa]					
N°Comb	Ver	Ved	Vwct	d	bw	Ro	Scp	
1 2 3	S S S	0.10 0.00 0.00	58.03 0.00 61.87	7.5 7.5 7.5	100.0 100.0 100.0	0.0105 0.0000 0.0105	0.00 0.00 0.34	

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Ss min Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Xs min, Ys min Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff. N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff. S 50.0 -119.4 45.5 305 3.9 4.64 0.0 7.5

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm
Ver.	Esito della verifica
e1	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2	Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
k1	= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]
kt	= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]
k2	= 0.5 per flessione; =(e1 + e2)/(2 *e1) per trazione eccentrica [eq.(7.13)EC2]
k3	= 3.400 Coeff. in eq.(7.11) come da annessi nazionali
k4	= 0.425 Coeff. in eq.(7.11) come da annessi nazionali
Ø	Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]
Cf	Copriferro [mm] netto calcolato con riferimento alla barra più tesa
e sm - e cm	Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]
	Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]
sr max	Massima distanza tra le fessure [mm]

Comb.

Ver

S

e1

-0.00094

e2

0.00000

k2

0.500 10.0

Ø

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

e sm - e cm sr max

268

0.078 (0.30)

0.00029 (0.00029)

My fess

0.00

wk Mx fess

-7.38

wk Mx fes My fes		Compor	a fessure in r nente momer nente momer	nto di prima f	essurazi	one intorn	o all'asse 2	X [kNm]	1.7)NTC]. Val	ore limite	e tra parentesi		
Comb.	Ver	e1	ež	2 k	2 0) Cf	F	(e sm - e cm	sr max	wk	Mx fess	My fess
1	S	-0.00116	0.00000	0.50	0 10.0	40		0.0003	6 (0.00036)	268	0.096 (990.00)	-7.38	0.00
COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)													
N°Comb	Ver	Sc max	Xc max Y	c max	Ss min	Xs min	Ys min	Ac eff.	As eff.				
1	S	4.01	50.0	0.0	-103.3	45.5	7.5	305	3.9				
COMBIN	COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]												
Comb.	Ver	e1	e2	2 k	2 @) Cí	-	6	e sm - e cm	sr max	wk	Mx fess	My fess
1	S	-0.00101	0.00000	0.50	0 10.0	40		0.0003	1 (0.00031)	268	0.083 (0.40)	-7.38	0.00
COMBIN	AZION	I QUASI PE	RMANENT	I IN ESER	CIZIO -	MASSI	ME TENS	SIONI NORM	IALI ED AP	ERTUR	A FESSURE (NT	C/EC2)	
N°Comb	Ver	Sc max	Xc max Y	c max	Ss min	Xs min	Ys min	Ac eff.	As eff.				
1	S	3.76	50.0	0.0	-96.8	45.5	7.5	305	3.9				
COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]													

Cf

40

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A.

NOME SEZIONE: Sbalzo_SLV_REV01

(Percorso File: Z:\0260 TreValli Esecutivo\committente\Ricevuti\23-03-24 PD\Editabili\J_OPERE-D'ARTE-

MINORI\FABBRICATO\sbalzo\M11\Sbalzo_SLV_REV01.sez)

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C32/40

Resis. compr. di progetto fcd:
Def.unit. max resistenza ec2:
Def.unit. ultima ecu:
Diagramma tensione-deformaz.:
Modulo Elastico Normale Ec:
Resis. media a trazione fctm:

18.1 MPa
0.0020
Parabola-Rettangolo
MPa
18.2 MPa
18.3 MPa
18.3 MPa
18.4 MPa
18.1 MPa
18.1 MPa
18.1 MPa
18.1 MPa
18.1 MPa
18.2 MPa
18.3 MPa
18.3 MPa
18.4 MPa
18.5 MPa
18.1 MPa

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

Resist. snerv. di progetto fyd:

Resist. ultima di progetto ftd:

Deform. ultima di progetto Epu:

450.0 MPa
391.3 MPa
391.3 MPa
0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	12.0
3	50.0	12.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-45.5	4.5	10
2	-45.5	7.5	10
3	45.5	7.5	10
4	45.5	4.5	10

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

 N° Gen. N° Barra Ini. N° Barra Fin. N° Barre \emptyset

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

1	1	4	3	10 10
2	2	3	3	10

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My Vy Vx		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez. Componente del Taglio [kN] parallela all'asse princ.d'inerzia y Componente del Taglio [kN] parallela all'asse princ.d'inerzia x							
N°Comb.	N	Mx	My	Vy	Vx				
1 2 3	0.00 -67.70 46.79	-3.70 1.30 -1.40	0.00 0.00 0.00	0.10 0.00 0.00	0.00 0.00 0.00				
12	•		•			•		•	
	_			100)				

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 4.0 cm Interferro netto minimo barre longitudinali: 2.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata
N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)
Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia

My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	-3.70	0.00	0.00	-12.16	0.00	3.29	7.9(1.3)
2	S	-67.70	1.30	0.00	-67.66	9.20	0.00	7.07	7.9(1.3)
3	S	46.79	-1.40	0.00	46.69	-14.12	0.00	10.09	7.9(2.1)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)

3

S

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00107	0.355	-50.0	0.0	-0.00074	-45.5	4.5	-0.00196	45.5	7.5
2	0.00086	0.305	-50.0	12.0	-0.00083	45.5	7.5	-0.00196	-45.5	4.5
3	0.00122	0.384	-50.0	0.0	-0.00069	-45 5	45	-0.00196	45.5	7.5

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
O DI-I	

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	-0.000404150	0.001074627	0.355	0.883
2	0.000000000	0.000375301	-0.003645354	0.305	0.821
3	0.000000000	-0.000423727	0.001221450	0.384	0.920

METODO SLU - VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (\$ 4.1.2.1.3.1 NTC)

Ver Ved Vwct d bw Ro Scp		Taglio agı Taglio tra Altezza u Larghezzi Rapporto	S = comb.verificata a taglio/ N = comb. non verificata Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta) Taglio trazione resistente [kN] in assenza di staffe [formula (4.1.23)NTC] Altezza utile sezione [cm] Larghezza minima sezione [cm] Rapporto geometrico di armatura longitudinale [<0.02] Tensione media di compressione nella sezione [MPa]					
N°Comb	Ver	Ved	Vwct	d	bw	Ro	Scp	
1 2	S S	0.10 0.00	58.03 0.00	7.5 7.5	100.0 100.0	0.0105 0.0000	0.00	

0.00 62.42 7.5 100.0 0.0105 0.39

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Verifica flessione M22*

Si effttua la verifica a flessione con i valori massimi del momento flettente, pari a M_{22} *= M_{22} ± M_{12} , trascurando, in favore di sicurezza, il contributo dello sforzo assiale.

Allo stesso tempo si effettua la verifica a pressoflessione considerando lo sforzo assiale massimo agente ed il momento flettente relativo M_{22}^* .

DATI GENERALI SEZIONE GENERICA IN C.A.

NOME SEZIONE: Sbalzo SLU rev01

(Percorso File: Z:\0260 TreValli Esecutivo\committente\Ricevuti\23-03-24 PD\Editabili\J_OPERE-D'ARTE-

MINORI\FABBRICATO\sbalzo\M22\Sbalzo_SLU_rev01.sez)

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante

Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:		C32/40

Resis. compr. di progetto fcd: 18.1 MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Parabola-Rettangolo Diagramma tensione-deformaz.: Modulo Elastico Normale Ec: MPa 33345.8 Resis. media a trazione fctm: 3.02 MPa Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: 19.2 MPa Sc limite S.L.E. comb. Frequenti: 19.2 MPa Ap.Fessure limite S.L.E. comb. Frequenti: 0.400 mm Sc limite S.L.E. comb. Q.Permanenti: 14.4 MPa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.300 mm

ACCIAIO - Tipo: B450C

Deform. ultima di progetto Epu: 0.068
Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*B2:

Coeff. Aderenza differito ß1*B2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

1.00

0.50

MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do	Poligonale	
Classe Calces	C32/40	
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	12.0

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

3	50.0	12.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-45.5	4.5	10
2	-45.5	7.5	10
3	45.5	7.5	10
4	45.5	4.5	10

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
NODama	Numbers of house measurets annialistanti ani di diferiosa la managa

Numero di barre generate equidistanti cui si riferisce la generazione N°Barre

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	10
2	2	3	3	10

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia					
Му		con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.					
Vy Vx		Componente del Taglio [kN] parallela all'asse princ.d'inerzia y Componente del Taglio [kN] parallela all'asse princ.d'inerzia x					
N°Comb.	N	Mx	My	Vy	Vx		
1	0.00	-4.50	0.00	0.10	0.00		
2	-52.70	0.70	0.00	0.00	0.00		

3	40.99	-1.20	0.00	0.00
COMB. RAR	E (S.L.E.) - SFORZ	ZI PER OGNI CO	MBINAZIONE AS	SEGNATA

N	Storzo normale (k	:N] applicato nel Baricentro (-	- se di compressione)	
Mx			c. d'inerzia (tra parentesi Mom.	Fessurazione)
	con verso positiv	o se tale da comprimere il ler	nbo superiore della sezione	
My			c. d'inerzia (tra parentesi Mom.	Fessurazione)
	con verso positiv	o se tale da comprimere il ler	nbo destro della sezione	
N°Comb.	N	Mx	My	
1	0.00	3 30	0.00	

0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mv	Momento flattente [kNm] interno all'asse y princ d'inerzia (tra parentes

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) My

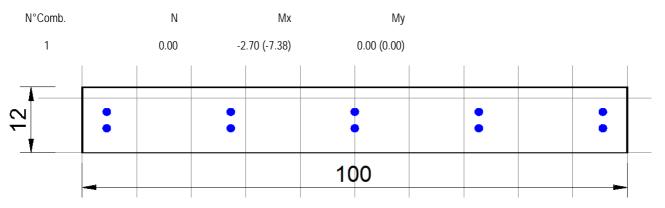
con verso positivo se tale da comprimere il lembo destro della sezione

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

N°Comb.	N	Mx	Му
1	0.00	-2.90 (-7.38)	0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA


Ν Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione) My

con verso positivo se tale da comprimere il lembo destro della sezione

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 4.0 cm Interferro netto minimo barre longitudinali: 2.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata Ver

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia My Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.) N Res

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Mx Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia My Res Mis.Sic.

Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

Area armature trave [cm 2] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC] As Tesa

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	-4.50	0.00	0.00	-15.74	0.00	3.50	7.9(1.3)
2	S	-52.70	0.70	0.00	-52.96	13.42	0.00	19.18	7.9(1.3)
3	S	40.99	-1.20	0.00	40.99	-17.43	0.00	14.53	7.9(2.1)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.278	-50.0	0.0	-0.00406	-45.5	4.5	-0.00910	45.5	7.5
2	0.00350	0.236	-50.0	12.0	-0.00539	45.5	7.5	-0.01132	-45.5	4.5
3	0.00350	0.316	-50.0	0.0	-0.00315	-45.5	4.5	-0.00758	45.5	7.5

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

x/d C.Rid.	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Coeff. di riduz. momenti per sola flessione in travi continue									
N°Comb	а	b	С	x/d	C.Rid.					
1	0.000000000	-0.001680461	0.003500000	0.278	0.787					
2	0.000000000	0.001976139	-0.020213672	0.236	0.735					
3	0.000000000	-0.001477741	0.003500000	0.316	0.835					

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.

METODO SLU - VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (\$ 4.1.2.1.3.1 NTC)

Ver Ved Vwct d bw Ro Scp		Taglio ag Taglio tra Altezza u Larghezz Rapporto	juale al tante [kN] i cm] ione [cm li armatu	= comb. non verificata taglio Vy di comb. (sollecit. retta) in assenza di staffe [formula (4.1.23)NTC] n] ura longitudinale [<0.02] one nella sezione [MPa]				
N°Comb	Ver	Ved	Vwct	d	bw	Ro	Scp	
1 2 3	S S S	0.10 0.00 0.00	58.03 0.00 61.87	7.5 7.5 7.5	100.0 100.0 100.0	0.0105 0.0000 0.0105	0.00 0.00 0.34	

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ss mir	ix, Yc m 1 1, Ys mi		Massima t Ascissa, C Minima ter Ascissa, C Area di cal	ensione (p Ordinata [ci nsione (ne Ordinata [ci Icestruzzo	m] del punto gativa se di m] della barr [cm²] in zon	compres corrisp. a trazione) a corrisp. a tesa co	sione) nel c a Sc max (s nell'acciaio a Ss min (s nsiderata a	calcestruzzo [istema rif. X,\ [MPa] sistema rif. X, derente alle b l'apertura del	Y,O) Y,O) arre
N°Comb	Ver	Sc max	Xc max Y	'c max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	4.14	50.0	0.0	-106.5	22.8	7.5	305	3.9

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm
Ver.	Esito della verifica
e1	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2	Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
k1	= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]
kt	= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]
k2	= 0.5 per flessione; = $(e1 + e2)/(2*e1)$ per trazione eccentrica [eq.(7.13)EC2]
k3	= 3.400 Coeff. in eq.(7.11) come da annessi nazionali
k4	= 0.425 Coeff. in eq.(7.11) come da annessi nazionali
Ø	Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]
Cf	Copriferro [mm] netto calcolato con riferimento alla barra più tesa
e sm - e cm	Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]
	Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]
sr max	Massima distanza tra le fessure [mm]
de	Another focus in the colorest of the control of the

wk Apertura fessure in mm calcolata = $sr max^*(e_sm - e_cm)$ [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

S

-0.00085

0.00000

0.500 10.0

40

1

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

0.00026 (0.00026)

268

0.070 (0.30)

0.00

-7.38

Mx fe My fe		Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm]											
Comb.	Ver	e1	e2	k2	Ø	Cf		е	sm - e cm	sr max	wk	Mx fess	My fess
1	S	-0.00104	0.00000	0.500	10.0	40		0.00032	2 (0.00032)	268	0.086 (990.00)	-7.38	0.00
COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)													
N°Comb	Ver	Sc max	Xc max Yc m	ax S	s min	Xs min	Ys min	Ac eff.	As eff.				
1	S	3.64	50.0	0.0	-93.6	45.5	7.5	305	3.9				
COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]													
Comb.	Ver	e1	e2	k2	Ø	Cf		e	sm - e cm	sr max	wk	Mx fess	My fess
1	S	-0.00091	0.00000	0.500	10.0	40		0.00028	3 (0.00028)	268	0.075 (0.40)	-7.38	0.00
COMBIN	IAZION	II QUASI PEI	RMANENTI IN	ESERCI	ZIO -	MASSIN	NE TENS	IONI NORM	ALI ED API	ERTUR	A FESSURE (NT	C/EC2)	
N°Comb	Ver	Sc max	Xc max Yc m	ax S	s min	Xs min	Ys min	Ac eff.	As eff.				
1	S	3.39	50.0	0.0	-87.1	45.5	7.5	305	3.9				
COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]													
Comb.	Ver	e1	e2	k2	Ø	Cf		е	sm - e cm	sr max	wk	Mx fess	My fess

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A.

NOME SEZIONE: Sbalzo_SLV_REV01

(Percorso File: Z:\0260 TreValli Esecutivo\committente\Ricevuti\23-03-24 PD\Editabili\J_OPERE-D'ARTE-

MINORI\FABBRICATO\sbalzo\M22\Sbalzo_SLV_REV01.sez)

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C32/40

Resis. compr. di progetto fcd:
Def.unit. max resistenza ec2:
Def.unit. ultima ecu:
Diagramma tensione-deformaz.:
Modulo Elastico Normale Ec:
Resis. media a trazione fctm:

18.1 MPa
0.0020
Parabola-Rettangolo
MPa
18.2 MPa
18.3 MPa
18.3 MPa
18.4 MPa
18.1 MPa
18.1 MPa
18.1 MPa
18.1 MPa
18.1 MPa
18.2 MPa
18.3 MPa
18.3 MPa
18.4 MPa
18.5 MPa
18.1 MPa

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

Resist. snerv. di progetto fyd:
Resist. ultima di progetto ftd:
Deform. ultima di progetto Epu:

450.0 MPa
391.3 MPa
391.3 MPa
0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del De Classe Calces		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	12.0
3	50.0	12.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-45.6	4.4	10
2	-45.6	7.6	10
3	45.6	7.6	10
4	45.6	4.4	10

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazioneN°BarreNumero di barre generate equidistanti cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si rifer Ø Diametro in mm delle barre della generazione

 N° Gen. N° Barra Ini. N° Barra Fin. N° Barre \emptyset

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

1	1	4	3	10 10
2	2	3	3	10

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My Vy Vx	Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez. Componente del Taglio [kN] parallela all'asse princ.d'inerzia y Componente del Taglio [kN] parallela all'asse princ.d'inerzia x									
N°Comb.	N	Mx	My	Vy	Vx					
1 2 3	0.00 -67.70 46.79	-4.20 0.90 -0.20	0.00 0.00 0.00	0.10 0.00 0.00	0.00 0.00 0.00					
12	•		•			•	•			
				100			-			

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 3.9 cm Interferro netto minimo barre longitudinali: 2.2 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	-4.20	0.00	0.00	-12.11	0.00	2.88	7.9(1.3)
2	S	-67.70	0.90	0.00	-67.63	9.15	0.00	10.17	7.9(1.3)
3	S	46.79	-0.20	0.00	46.65	-14.08	0.00	70.40	7.9(2.1)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp, a es min (sistema rif. X.Y.O sez.)

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X.Y.O.sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00105	0.349	-50.0	0.0	-0.00069	-45.6	4.4	-0.00196	45.6	7.6
2	0.00084	0.300	-50.0	12.0	-0.00078	45.6	7.6	-0.00196	-45.6	4.4
3	0.00119	0.379	-50.0	0.0	-0.00063	-45.6	44	-0.00196	45.6	7.6

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C Did	Coeff di riduz momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	-0.000395528	0.001049513	0.349	0.876
2	0.000000000	0.000367566	-0.003573793	0.300	0.815
3	0.000000000	-0.000414593	0.001194404	0.379	0.914

METODO SLU - VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (\$ 4.1.2.1.3.1 NTC)

Ver Ved Vwct d bw Ro Scp		Taglio age Taglio traz Altezza ut Larghezza Rapporto	verificata a t ente [daN] ug zione resister ile sezione [d a minima sez geometrico d media di con	juale al tante [kN] i cm] ione [cm li armatu	aglio Vy o n assenz] ra longitu	di comb. (so ta di staffe udinale [<0.	ollecit. retta formula (4. 02]	
N°Comb	Ver	Ved	Vwct	d	bw	Ro	Scp	
1	S	0.10	58.55	7.6	100.0	0.0103	0.00	
2	S	0.00	0.00	7.6	100.0	0.0000	0.00	
3	S	0.00	62 99	7.6	100.0	0.0103	0.39	

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Verifica a taglio

Verifica a taglio senza armatura a taglio								
$V_{Rd} \ge V_{Ed}$								
$V_{Rd} = \begin{cases} 0.18 \end{cases}$	$\frac{\cdot k \cdot (100 \cdot \rho_1)}{\gamma_c}$	$\left.\cdot f_{ck}\right)^{1/3}+$	$0.15 \cdot \sigma_{cp}$	$\left. \left. \right\} \cdot b_{w} \cdot a \right.$	$l \ge \left(v_{\min} + 0.15\right)$	$\left\langle \sigma_{cp} ight angle$	$\big) \cdot b_{_{w}} \cdot d$	
Rck	40	MPa						
fck	33.2	MPa						
γс	1.5							
h	120	mm						
d	82	mm						
bw	1000	mm		As	5	Φ	12.0	
1+(200/d)^0,5	2.562							
k	2.000							
Asl	565	mmq						
Asl/(bw. d)	0.0069							
ρ1	0.007							
vmin	0.570							
vmin∙bw·d	46773							
V_{Rd}	55.9	KN	>	VE_d	VERIFICATO			
senza consider	are il contributo	dello sforz	zo assiale					

STRADA DELLE TRE VALLI UMBRE

Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

12 EFFETTI DELLA NON LINEARITA' GEOMETRICA

Effetti delle non linearità geometriche

Le non linearità geometriche sono prese in conto attraverso il fattore θ che, in assenza di più accurate determinazioni, può essere definito come:

$$\theta = \frac{P \cdot d_{E_r}}{V \cdot h}$$
 [7.3.3]

dove

- P è il carico verticale totale dovuto all'orizzontamento in esame e alla struttura ad esso sovrastante;
- d_{ER} è lo spostamento orizzontale medio d'interpiano allo SLV, ottenuto come differenza tra lo spostamento orizzontale dell'orizzontamento considerato e lo spostamento orizzontale dell'orizzontamento immediatamente sottostante, entrambi valutati come indicato al § 7.3.3.3;
- V è la forza orizzontale totale in corrispondenza dell'orizzontamento in esame, derivante dall'analisi lineare con fattore di comportamento q;
- h è la distanza tra l'orizzontamento in esame e quello immediatamente sottostante.

Gli effetti delle non linearità geometriche:

- possono essere trascurati, quando θ è minore di 0,1;
- possono essere presi in conto incrementando gli effetti dell'azione sismica orizzontale di un fattore pari a 1/(1-θ), quando θ
 è compreso tra 0,1 e 0,2;
- devono essere valutati attraverso un'analisi non lineare, quando θ è compreso tra 0,2 e 0,3.

Il fattore θ non può comunque superare il valore 0,3.

Dal modello di calcolo si ottengono le forze P e V agenti in corrispondenza dell'orizzontamento:

TABLE: Ele	ement For	ces - Frame	S		TABLE: El	ement For	ces - Frame	S			
Frame	Station	OutputCase	Р	P tot	Frame	Station	OutputCase	V2	V3	V2 tot	V3 tot
Text	m	Text	KN	KN	Text	m	Text	KN	KN	KN	KN
1	3.2	: G1+G2	-46.921	-585.117		3.2	SISMA X	13.147	0.531	130.443	127.63
2	3.2	: G1+G2	-77.486		1	3.2	SISMA Y	1.136	13.985		
3	3.2	: G1+G2	-46.921		2	3.2	SISMA X	12.163	0.425		
4	3.2	: G1+G2	-74.486		2	3.2	SISMA Y	3.2E-08	16.135		
5	3.2	: G1+G2	-106.202		3	3.2	SISMA X	13.147	0.531		
6	3.2	: G1+G2	-74.486		3	3.2	SISMA Y	1.136	13.985		
7	3.2	: G1+G2	-43.061		4	3.2	SISMA X	15.561	0.019		
8	3.2	G1+G2	-72.493		4	3.2	SISMA Y	1.181	12.408		
9	3.2	: G1+G2	-43.061		5	3.2	SISMA X	15.133	0.015		
					5	3.2	SISMA Y	4.34E-09	15.051		
					6	3.2	SISMA X	15.561	0.019		
					6	3.2	SISMA Y	1.181	12.408		
					7	3.2	SISMA X	13.354	0.515		
					7	3.2	SISMA Y	0.964	12.886		
					8	3.2	SISMA X	12.461	0.41		
					8	3.2	SISMA Y	1.16E-08	14.906		
					9	3.2	SISMA X	13.354	0.515		
				ļ	9	3.2	SISMA Y	0.964	12.886		

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

7.3.3.3 VALUTAZIONE DEGLI SPOSTAMENTI DELLA STRUTTURA

Gli spostamenti de sotto l'azione sismica di progetto relativa allo SLV si ottengono moltiplicando per il fattore di duttilità in spostamento μ_d i valori d_{Ee} ottenuti dall'analisi lineare, dinamica o statica, secondo l'espressione seguente:

$$\mathbf{d}_{E} = \pm \mu_{d} \cdot \mathbf{d}_{Ee} \tag{7.3.8}$$

Dove:

$$\begin{split} \mu_{_d} &= q & \text{se } T_{_l} \geq T_{_C} \\ \mu_{_d} &= 1 + \left(q - 1\right) \cdot \frac{T_{_C}}{T_{_l}} & \text{se } T_{_l} < T_{_C} \end{split} \tag{7.3.9}$$

In ogni caso $\mu_d \le 5q - 4$.

Dal modello di calcolo si ottengono i seguenti spostamenti:

q=	3.3
Tc =	0.4542
T1 =	0.2159
μd =	5.84

TABLE: J	oint Displace	ments							
Joint	OutputCase	CaseType	StepType	U1	U1		U:	1d	Δ
Text	Text	Text	Text	m	max	min	max	min	m
2	SISMA X	LinRespSpec	Max	0.002269	0.00227	0.000000	0.01325	0.00000	0.15
2	SISMA Y	LinRespSpec	Max	0.000171					
4	SISMA X	LinRespSpec	Max	0.002219					
4	SISMA Y	LinRespSpec	Max	8.53E-14					
6	SISMA X	LinRespSpec	Max	0.002269					
6	SISMA Y	LinRespSpec	Max	0.000171					
8	SISMA X	LinRespSpec	Max	0.002269					
8	SISMA Y	LinRespSpec	Max	0.000171					
10	SISMA X	LinRespSpec	Max	0.00222					
10	SISMA Y	LinRespSpec	Max	2.8E-13					
12	SISMA X	LinRespSpec	Max	0.002269					
12	SISMA Y	LinRespSpec	Max	0.000171					
14	SISMA X	LinRespSpec	Max	0.002269					
14	SISMA Y	LinRespSpec	Max	0.000171					
16	SISMA X	LinRespSpec	Max	0.002219					
16	SISMA Y	LinRespSpec	Max	8.53E-14					
18	SISMA X	LinRespSpec	Max	0.002269					
18	SISMA Y	LinRespSpec	Max	0.000171					

PROGETTO ESECUTIVO

IABLE: JO	IABLE: Joint Displacements								
Joint	OutputCase	CaseType	StepType	U2	U	12	U	2d	Δ
Text	Text	Text	Text	m	max	min	max	min	m
2	SISMA X	LinRespSp	Max	0.000062	0.00234	0.00000	0.013632	0.000013	0.15
2	SISMA Y	LinRespSp	Max	0.002335					
7	CICNAN V	LinDocnCr	Max	0.000063					

<u>L</u>	SISIVIA V	Litikespshiviax	0.000062
2 4 4	SISMA Y	LinRespSp Max	0.002335
4	SISMA X	LinRespSp Max	0.000062
4	SISMA Y	LinRespSp Max	0.002335
6	SISMA X	LinRespSp Max	0.000062
6	SISMA Y	LinRespSp Max	0.002335
8	SISMA X	LinRespSp Max	2.23E-06
8	SISMA Y	LinRespSp Max	0.002168
10	SISMA X	LinRespSp Max	2.23E-06
10	SISMA Y	LinRespSp Max	0.002169
12	SISMA X	LinRespSp Max	2.23E-06
12	SISMA Y	LinRespSp Max	0.002168
14	SISMA X	LinRespSp Max	0.00006
14	SISMA Y	LinRespSp Max	0.002157
16	SISMA X	LinRespSp Max	0.00006
16	SISMA Y	LinRespSp Max	0.002157
18	SISMA X	LinRespSp Max	0.00006
18	SISMA Y	LinRespSp Max	0.002157

Effetti de	lla non liìne	earità	geom	etrica		
P=	585.117	KN				
V2=	130.443	KN				
V3=	127.63	KN				
U1d =	0.013247	m				
U2d =	0.013632	m				
h=	3.2	m				
$\Theta 1 =$	0.019		\leq	0.1	trascurare	
θ2 =	0.020		\leq	0.1	trascurare	

STRADA DELLE TRE VALLI UMBRE

Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

13 VERIFICA STATO LIMITE DI DEFORMABILITA'

13.1 Travi 30x40 interne

Travi e solai

Per travi e solai con luci non superiori a 10 m è possibile omettere la verifica delle inflessioni come sopra riportata, ritenendola implicitamente soddisfatta, se il rapporto l/h tra luce e altezza rispetta la limitazione

$$\frac{l}{h} \le K \left[11 + \frac{0.015 \, f_{ck}}{\rho + \rho'} \right] \left[\frac{500 \, A_{s,eff}}{f_{yk} A_{s,calc}} \right] \tag{C4.1.4}$$

dove $f_{ck}e$ f_{yk} sono espressi in MPa, ρ e ρ' sono i rapporti tra armatura tesa e compressa, rispettivamente, $A_{s,eff}$ ed $A_{s,calc}$ sono, rispettivamente, l'armatura tesa effettivamente presente nella sezione più sollecitata e l'armatura di progetto nella stessa sezione, e K è un coefficiente correttivo, che dipende dallo schema strutturale.

altezza trave	h=	400	mm				
base trave	b=	300	mm	cond	izione di va	alidità	
luce trave	L=	7300	mm	≤	10 m	OK	
calcestruzzo	Rck	40	MPa				
C32/40	fck	32	MPa				
acciaio	fyk	450	MPa				
area cls	Ac =	120000	mmq				
armat. Tesa	As,tesa =	4	Ф	16.0	\Rightarrow	804.25	mmq
armat. Comp	As,compressa =	4	Ф	16.0	\Rightarrow	804.25	mmq
armat. Tesa sez +soll	As,eff =	4	Ф	16.0	\Rightarrow	804.25	mmq
armat. Di progetto sez + soll	As,calc =	4	Ф	16.0	\Rightarrow	1608.495	mmq
amat. Di progetto sez i son	As,caic –	4	Φ	16.0	\Rightarrow	1000.493	mmq
	K=	1					
	ρ =	0.0067					
	ρ'=	0.0067					
	$\lambda =$	18.25					
	$\lambda \text{ lim} =$	26.01					
[C4.1.4]	$\lambda \leq \lambda \lim$	verificato	\Rightarrow	verifica infle	essione so	ddisfatta	

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

13.2 Travi 30x40 bordo

Travi e solai

Per travi e solai con luci non superiori a 10 m è possibile omettere la verifica delle inflessioni come sopra riportata, ritenendola implicitamente sod disfatta, se il rapporto l/h tra luce e altezza rispetta la limitazione

$$\frac{l}{h} \le K \left[11 + \frac{0.015 \, f_{ck}}{\rho + \rho'} \right] \left[\frac{500 \, A_{s,eff}}{f_{yk} A_{s,calc}} \right] \tag{C4.1.4}$$

dove $f_{ck}e$ f_{yk} sono espressi in MPa, ρ e ρ' sono i rapporti tra armatura tesa e compressa, rispettivamente, $A_{s,eff}$ ed $A_{s,calc}$ sono, rispettivamente, l'armatura tesa effettivamente presente nella sezione più sollecitata e l'armatura di progetto nella stessa sezione, e K è un coefficiente correttivo, che dipende dallo schema strutturale.

altezza trave b= 400 mm condizione di validità luce trave L= 7300 mm $\leq 10 \mathrm{m}$ OK calcestruzzo Rck 40 MPa $\leq 32 \mathrm{mm}$ MPa acciaio fyk 450 MPa area cls Ac = 120000 mmq $\leq 32 \mathrm{mm}$ As, compressa = 4 $\otimes 32 \mathrm{mm}$ As, compressa = 4 $\otimes 32 \mathrm{mm}$ As, calc = 5 $\otimes 32 \mathrm{mm}$ As, calc = 6 $\otimes 32 \mathrm{mm}$ As, calc = 7 $\otimes 32 \mathrm{mm}$ As, calc = 8 $\otimes 32 \mathrm{mm}$ As, calc = 9								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	altezza trave	h=	400	mm				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	base trave	b=	300	mm	cond	dizione di va	alidità	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	luce trave	L=	7300	mm	≤	10 m	OK	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	calcestruzzo	Rck	40	MPa				
area cls $Ac = 120000 \text{ mmq}$ armat. Tesa As ,tesa = 4 Φ 16.0 \Rightarrow 804.25 mmq armat. Comp As ,compressa = 4 Φ 14.0 \Rightarrow 615.75 mmq armat. Tesa sez +soll As ,eff = 4 Φ 16.0 \Rightarrow 804.25 mmq armat. Di progetto sez + soll As ,calc = 4 Φ 16.0 \Rightarrow 1420 mmq As ,calc = 4 Φ 14.0 \Rightarrow 1420 mmq As ,calc = 4 As ,c	C32/40	fck	32	MPa				
armat. Tesa	acciaio	fyk	450	MPa				
armat. Comp As,compressa = 4	area cls	Ac =	120000	mmq				
armat. Tesa sez +soll As,eff = 4 Φ 16.0 \Rightarrow 804.25 mmq armat. Di progetto sez + soll As,calc = 4 Φ 16.0 \Rightarrow 1420 mmq K= 1 ρ = 0.0067 ρ '= 0.0051 λ = 18.25 λ lim = 32.45	armat. Tesa	As,tesa =	4	Ф	16.0	\Rightarrow	804.25	mmq
armat. Di progetto sez + soll	armat. Comp	As,compressa =	4	Ф	14.0	\Rightarrow	615.75	mmq
armat. Di progetto sez + soll $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	armat. Tesa sez +soll	As,eff =	4	Ф	16.0	\Rightarrow	804.25	mmq
K= 1 $ρ = 0.0067$ $ρ' = 0.0051$ $λ = 18.25$ $λ lim = 32.45$	armet Di progette coz Leell	As sale =	4	Ф	16.0	\Rightarrow	1420	mmq
$ ho = 0.0067$ $ ho' = 0.0051$ $ ho = 18.25$ $ ho \lim = 32.45$	armat. Di progetto sez + soii	As,caic –	4	Ф	14.0	\Rightarrow	1420	mmq
$\rho' = 0.0051$ $\lambda = 18.25$ $\lambda \lim = 32.45$		K=	1					
$\begin{array}{ccc} \lambda = & 18.25 \\ \lambda \text{ lim} = & 32.45 \end{array}$		ρ =	0.0067					
λ lim = 32.45		ρ'=	0.0051					
· · · · · · · · · · · · · · · · · · ·		•	18.25					
[C4.1.4] $\lambda \leq \lambda$ lim verificato \Rightarrow verifica inflessione soddisfatta		λ lim $=$	32.45					
	[C4.1.4]	$\lambda \leq \lambda \lim$	verificato	\Rightarrow	verifica infl	essione so	ddisfatta	

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

14 VERIFICA AGLI SLE

Per le costruzioni ricadenti in classe d'uso III e IV si deve verificare che gli spostamenti interpiano ottenuti dall'analisi in presenza dell'azione sismica di progetto relativa allo SLO siano inferiori a 2/3*0.01 h e quindi:

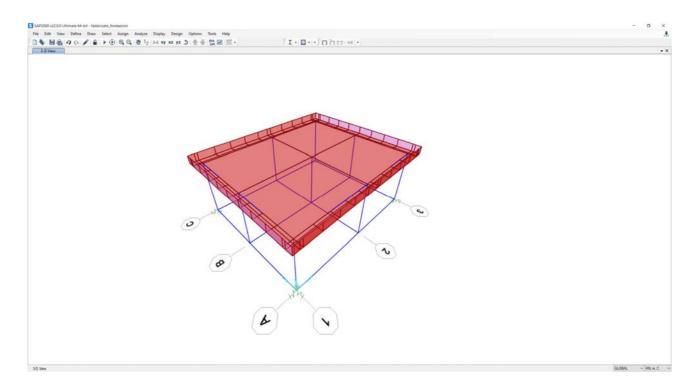
dr < 2/3*0.01 h, essendo dr lo spostamento di interpiano ed h l'altezza del piano.

Si riportano di seguito le verifiche degli spostamenti orizzontali lungo X (U1) e lungo Y (U2) effettuate per le combinazioni di carico Sisma-SLEX e Sisma-SLEY.

TABLE:	Joint Displacements							
Joint	OutputCase	CaseType	StepType	U1	U1	(m)	Н	δ
Text	Text	Text	Text	m	max	min	m	m
2	SISMA_SLE X	LinRespSpec	Max	0.002788	0.002788	0.000000	3.40	0.023
2	SISMA_SLE Y	LinRespSpec	Max	0.000211	OK	OK		
4	SISMA_SLE X	LinRespSpec	Max	0.002726				
4	SISMA_SLE Y	LinRespSpec	Max	4.33E-14				
6	SISMA_SLE X	LinRespSpec	Max	0.002788				
6	SISMA_SLE Y	LinRespSpec	Max	0.000211				
8	SISMA_SLE X	LinRespSpec	Max	0.002788				
8	SISMA_SLE Y	LinRespSpec	Max	0.000211				
12	SISMA_SLE X	LinRespSpec	Max	0.002788				
12	SISMA_SLE Y	LinRespSpec	Max	0.000211				
14	SISMA_SLE X	LinRespSpec	Max	0.002788				
14	SISMA_SLE Y	LinRespSpec	Max	0.000211				
16	SISMA_SLE X	LinRespSpec	Max	0.002726				
16	SISMA_SLE Y	LinRespSpec	Max	4.33E-14				
18	SISMA_SLE X	LinRespSpec	Max	0.002788				
18	SISMA_SLE Y	LinRespSpec	Max	0.000211				

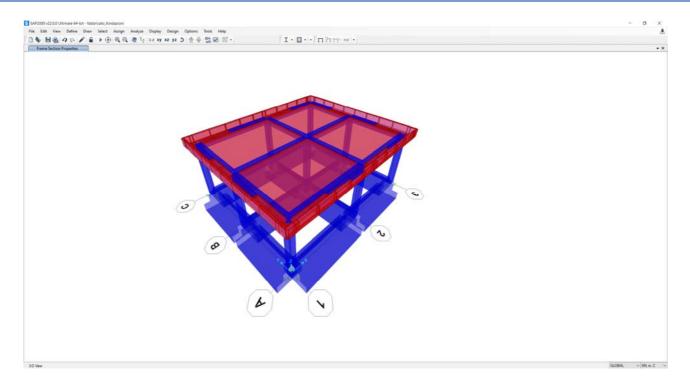
PROGETTO ESECUTIVO

TABLE: J	oint Displacements							
Joint	OutputCase	CaseType	StepType	U2	U2	(m)	Н	δ
Text	Text	Text	Text	m	max	min	m	m
2	SISMA_SLE X	LinRespSpec	Max	0.000076	0.0029	0.0000	3.40	0.034
2	SISMA_SLE Y	LinRespSpec	Max	0.002869	OK	OK		
4	SISMA_SLE X	LinRespSpec	Max	0.000076				
4	SISMA_SLE Y	LinRespSpec	Max	0.002869				
6	SISMA_SLE X	LinRespSpec	Max	0.000076				
6	SISMA_SLE Y	LinRespSpec	Max	0.002869				
8	SISMA_SLE X	LinRespSpec	Max	2.75E-06				
8	SISMA_SLE Y	LinRespSpec	Max	0.002664				
12	SISMA_SLE X	LinRespSpec	Max	2.75E-06				
12	SISMA_SLE Y	LinRespSpec	Max	0.002664				
14	SISMA_SLE X	LinRespSpec	Max	0.000073				
14	SISMA_SLE Y	LinRespSpec	Max	0.00265				
16	SISMA_SLE X	LinRespSpec	Max	0.000073				
16	SISMA_SLE Y	LinRespSpec	Max	0.00265				
18	SISMA_SLE X	LinRespSpec	Max	0.000073				
18	SISMA_SLE Y	LinRespSpec	Max	0.00265				


PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

15 MODELLAZIONE TRAVI ROVESCE DI FONDAZIONE


Le sollecitazioni sulle travi rovesce di fondazione sono state determinate con l'ausilio del codice di calcolo automatico SAP2000 utilizzando il modello di calcolo implementato a partire da quello utilizzato per il dimensionamento e la verifica delle strutture in elevazione. In particolare le travi di fondazione sono state modellate utilizzando elementi *frame* ai quali sono state assegnate molle verticali con una costante elastica Ks =15000 KN/m³ per simulare il terreno alla Winkler.

Si riporta di seguito il modello di calcolo.

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Si riportano di seguito le sollecitazioni agenti sulla soletta di fondo ottenute dall'analisi.

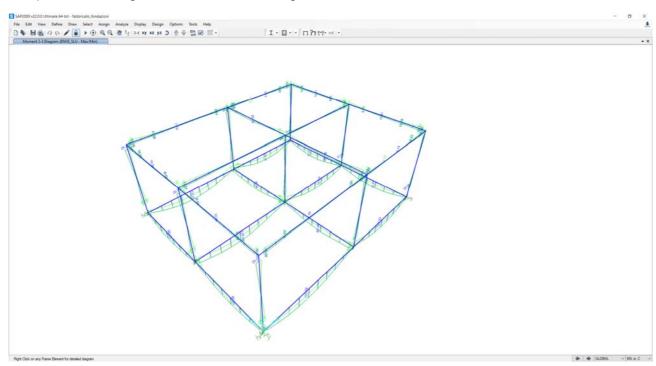


Figura 32 - Momento flettente M33 - combinazione ENVE-SLU

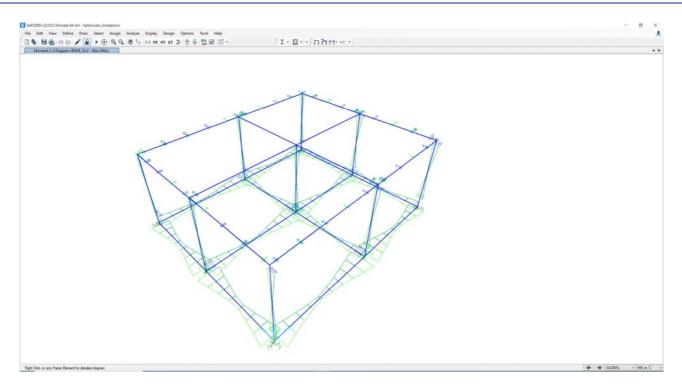


Figura 33 – Momento flettente M22 - combinazione ENVE-SLU

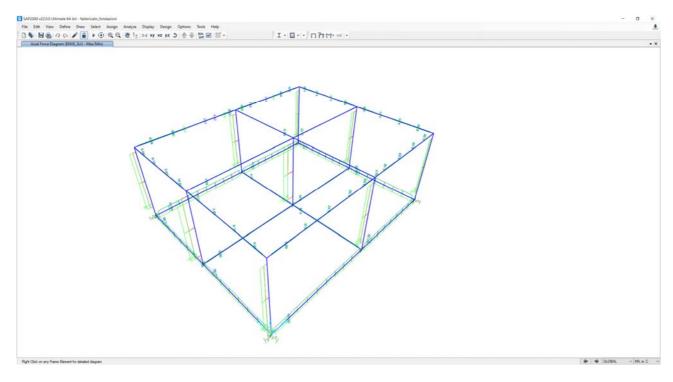


Figura 34 – Sforzo assiale N - combinazione ENVE-SLU

Realizzazione Lavori

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

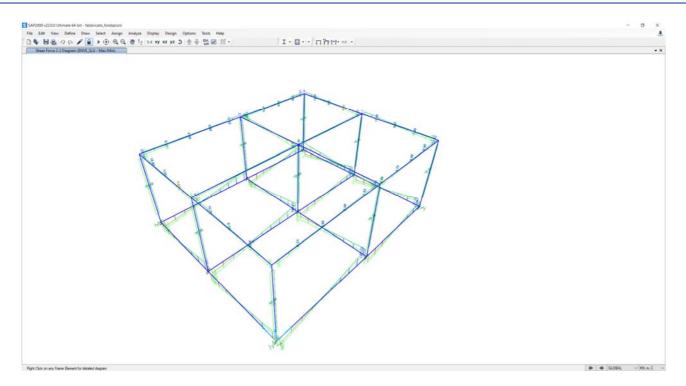


Figura 35 – Taglio V22 - combinazione ENVE-SLU

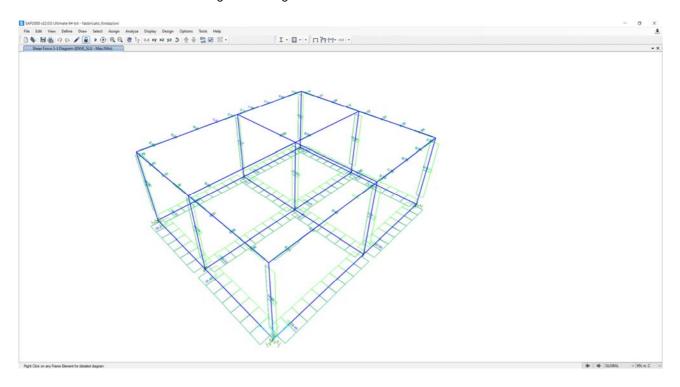


Figura 36 – Taglio V33 - combinazione ENVE-SLU

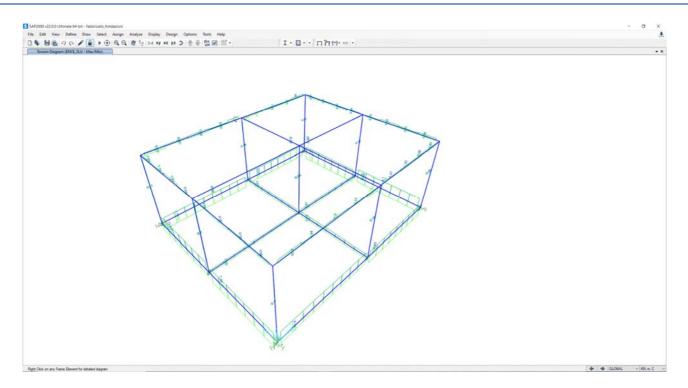


Figura 37 - Momento torcente - combinazione ENVE-SLU

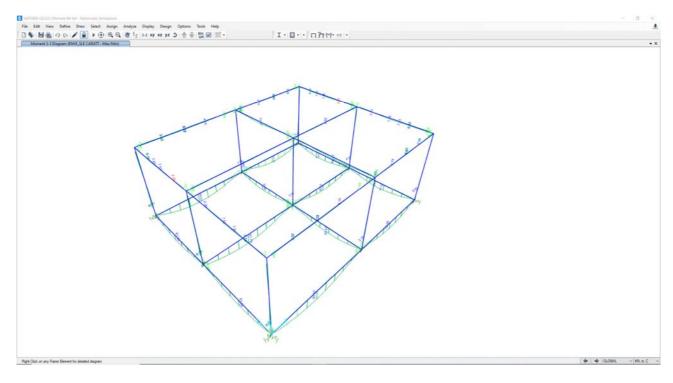


Figura 38 - Momento flettente M33 - combinazione ENVE-SLE CARATTERISTICA

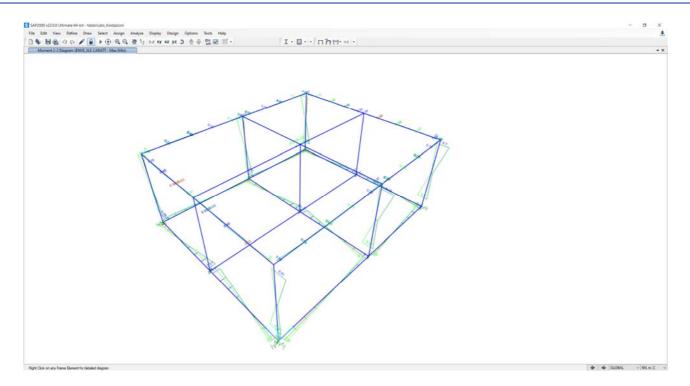


Figura 39 – Momento flettente M22 - combinazione ENVE-SLE CARATTERISTICA

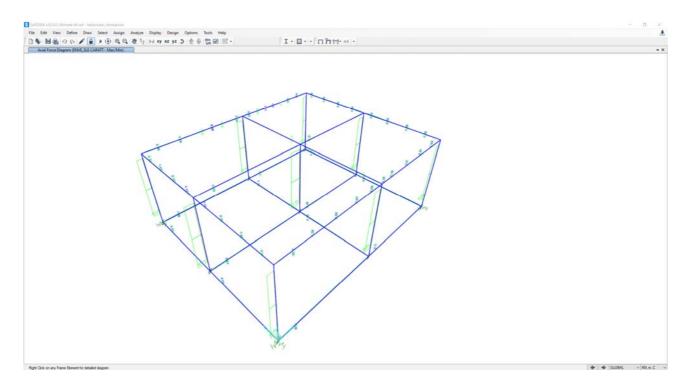


Figura 40 –Sforzo assiale N - combinazione ENVE-SLE CARATTERISTICA

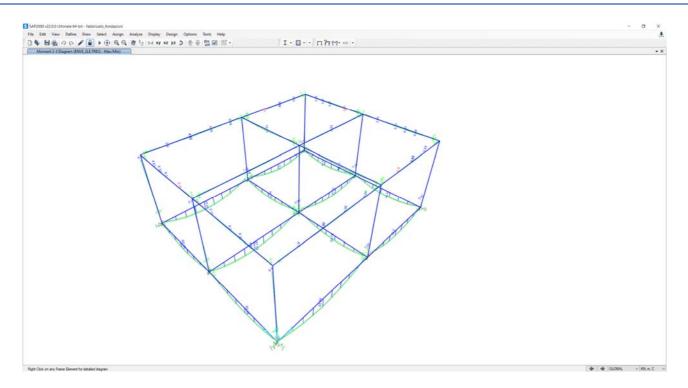


Figura 41 - Momento flettente M33 - combinazione ENVE-SLE FREQUENTE

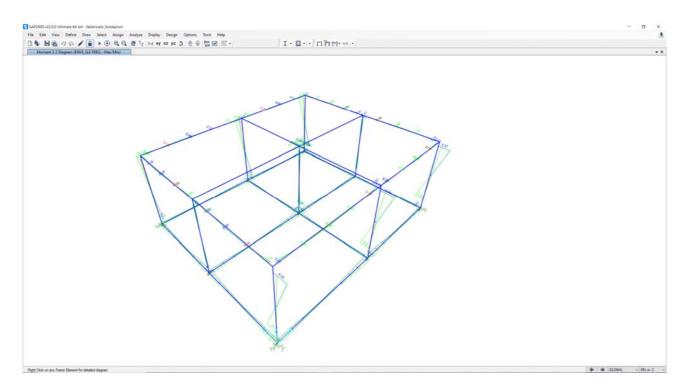


Figura 42 – Momento flettente M22 - combinazione ENVE-SLE FREQUENTE

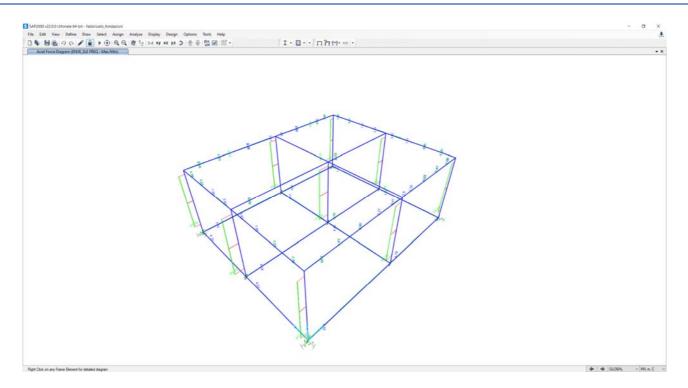


Figura 43 –Sforzo normale N - combinazione ENVE-SLE FREQUENTE

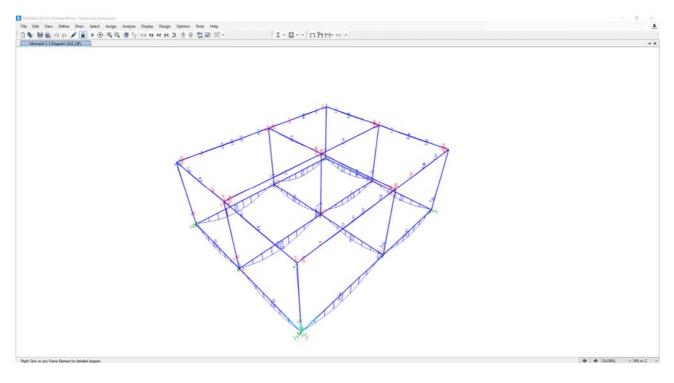


Figura 44 - Momento flettente M33 - combinazione ENVE-SLE QUASI PERMANENTE

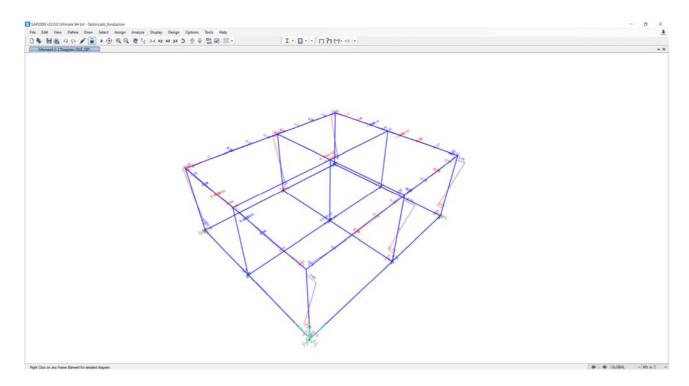


Figura 45 - Momento flettente M22 - combinazione ENVE-SLE QUASI PERMANENTE

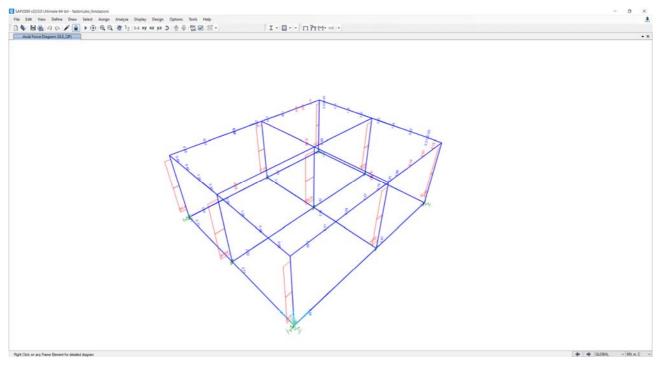


Figura 46 –Sforzo normale N - combinazione ENVE-SLE QUASI PERMANENTE

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

15.1 Verifica travi rovesce di fondazione

In base ai risultati ottenuti dal modello si effettua di seguito la verifica di resistenza delle travi rovesce.

Di seguito si riportano le sollecitazioni massime con cui si effettuano le verifiche.

Frame	Station	OutputCase	Р	V2	V3	M2	M3
Text	m	Text	KN	KN	KN	KN-m	KN-m
11	2.07889	SLU_18	-0.057	-3.803	-1.121	-0.8056	133.4879
11	4.49	SLU_14	12.04	130.821	-1.131	1.9213	-57.4088
15	4.49	SLU_12	6.624	119.149	-4.7	10.8696	-46.4576
15	4.49	SLU_13	6.624	119.149	4.7	-10.8696	-46.4576
16	0.15	SLU_12	5.987	-108.646	5.174	10.7356	-47.2144
20	4.49	SLU_10	10.624	131.178	1.852	-3.1656	-50.4225
16	4.01	SLU_19	-6.128	81.471	2.93E-12	-5.7E-12	35.4189
11	4.49	SLU_17	12.601	129.545	2.343	-6.1338	-55.5692

Frame	Station	OutputCase	P	V2	V3	M2	M3
Text	m	Text	KN	KN	KN	KN-m	KN-m
20	2.56111	Sismica_SLU_+1.0_X_+0.3Y	60.68	25.764	24.485	8.6706	105.2611
15	4.49	Sismica_SLU_+1.0_X_+0.3Y	0.712	73.837	-10.584	-24.4691	-69.0729
11	4.49	Sismica_SLU_+0.3_X_+1.0Y	43.818	102.285	34.485	85.3564	-13.5063
20	4.49	Sismica_SLU_+0.3_X_+1.0Y	-37.024	95.369	-34.485	-85.3564	-41.7376
16	2.08	Sismica_SLU_+0.3_X_+1.0Y	2.848	-5.007	38.515	5.6839	62.3638
15	4.49	Sismica_SLU_+1.0_X_+0.3Y	3.832	109.476	10.584	24.4691	12.4148
14	0.15	Sismica_SLU_+1.0_X_+0.3Y	-56.334	-96.149	-27.289	-49.9115	-54.8909
14	0.15	Sismica_SLU_+1.0_X_+0.3Y	62.167	-82.882	27.355	49.9779	-0.5093

Frame	Station	OutputCase	P	V2	V3	M2	М3
Text	m	Text	KN	KN	KN	KN-m	KN-m
11	2.07889	CARATTERISTICA 2	3.127	-1.999	-1.234	-0.8742	95.6114
11	4.49	CARATTERISTICA 1	7.188	100.436	-1.235	2.1014	-35.4752
22	3.5	CARATTERISTICA 1	3.731	74.424	-2.502	5.3077	-14.3045
24	0.15	CARATTERISTICA 1	5.21	-58.064	-2.69	-4.1303	1.5005
15	0.15	CARATTERISTICA 6	-4.971	1.984	-9.6E-13	-1.9E-12	13.6897
11	0.15	CARATTERISTICA 1	7.188	-82.59	-1.235	-3.2589	3.2507

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Frame	Station	OutputCase	Р	V2	V3	M2	M3
Text	m	Text	KN	KN	KN	KN-m	KN-m
11	2.07889	SLE_8F	1.366	-3.231	-0.036	-0.0456	93.8319
16	0.15	SLE_7F	3.822	-83.831	-1.4E-12	-3.4E-12	-35.1295
15	4.49	SLE_5F	2.278	91.607	-0.627	1.4493	-28.1474
15	4.49	SLE_6F	2.278	91.607	0.627	-1.4493	-28.1474
16	4.01	SLE_8F	-0.101	63.682	9.45E-13	-2.1E-12	14.7831
20	4.49	SLE_7F	5.427	99.204	0.037	-0.0412	-34.2844

Frame	Station	DutputCase	Р	V2	V3	M2	M3
Text	m	Text	KN	KN	KN	KN-m	KN-m
11	2.07889	SLE_QP	3.397	-2.854	-0.036	-0.0468	88.0787
16	0.15	SLE_QP	1.86	-83.611	-2.5E-13	-8.9E-13	-29.1918
22	3.5	SLE_QP	2.744	74.746	-0.092	0.2014	-10.5362
26	3.5	SLE_QP	2.702	74.592	0.076	-0.1647	-10.1807
16	4.01	SLE_QP	1.86	63.462	-2.5E-13	6.18E-14	9.695
11	4.49	SLE QP	3.397	98.827	-0.036	0.0408	-27.622

DATI GENERALI SEZIONE GENERICA IN C.A.

NOME SEZIONE: trave rovescia_rev01

(Percorso File: Z:\0260 TreValli Esecutivo\committente\Ricevuti\23-03-24 PD\Editabili\J_OPERE-D'ARTE-MINOR\FABBRICATO\travi rovesce\trave rovescia_rev01.sez)

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave di fondazione in combinazione sismica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante
Condizioni Ambientali: Poco aggressive
Riferimento Sforzi assegnati: Assi x,y principali d'inerzia
Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Resis. compr. ridotta fcd': Def.unit. max resistenza ec2:	C30/37 17.0 8.5 0.0020	MPa MPa
	Def.unit. ultima ecu:	0.0035 Parabola-Rettangolo	
	Diagramma tensione-deformaz.: Modulo Elastico Normale Ec:	32836.0	MPa
	Resis. media a trazione fctm:	2.90	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	18.0	MPa
	Sc limite S.L.E. comb. Frequenti:	18.0	MPa
	Ap.Fessure limite S.L.E. comb. Frequen	nti: 0.400	mm
	Sc limite S.L.E. comb. Q.Permanenti:	13.5	MPa
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.300	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Modulo Elastico Ef
Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo β1*β2:
Coeff. Aderenza differito β1*β2:
Sf limite S.L.E. Comb. Rare:

2000000
daN/cm²
Bilineare finito
1.00
1.00
4.00
Bilineare finito
1.00
Bilinea

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del D Classe Calces	Poligonale C30/37	
N°vertice:	X [cm]	Y [cm]
1	-75.0	0.0
2	-75.0	50.0
3	-35.0	50.0
4	-35.0	100.0
5	35.0	100.0
6	35.0	50.0
7	75.0	50.0
8	75.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-68.9	6.1	18
2	-68.9	43.9	18
3	-28.9	43.9	18
4	-28.9	93.9	18
5	28.9	93.9	18
6	28.9	43.9	18
7	68.9	43.9	18
8	68.9	6.1	18
9	-29.0	6.1	18
10	29.0	6.1	18

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	9	10	3	18
2	4	5	3	18
3	2	3	1	18
4	6	7	1	18
5	1	9	1	18
6	10	8	1	18

ARMATURE A TAGLIO

Diametro staffe: 12 mm Passo staffe: 10.0 cm

Indicazione Barre Longitudinali di risvolto per ogni staffa:

 N°Staffa
 Barra
 Barra
 Barra
 Barra

 1
 1
 2
 7
 8

 2
 9
 4
 5
 10

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Momento fletteni	kN] applicato nel Ba te [kNm] intorno all'a	asse x princ. d'inerz	ia
Му		Momento fletteni	o se tale da compri le [kNm] intorno all'a o se tale da compri	asse y princ. d'inerz	ia
Vy Vx		Componente del	Taglio [kN] parallel Taglio [kN] parallel	a all'asse princ.d'ine	erzia y
N°Comb.	N	Mx	Му	Vy	Vx
1	0.00	1.33	-0.01	-0.04	-0.01
2	0.00	-0.57	0.02	1.31	-0.01
3	0.00	-0.46	0.11	1.19	-0.05
4	0.00	-0.46	-0.11	1.19	0.05
5	0.00	-0.47	0.11	-1.09	0.05
6	0.00	-0.50	-0.03	1.31	0.02
7	0.00	0.35	0.00	0.81	0.00
8	0.00	-0.56	-0.06	1.30	0.02

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
	con verso positivo se tale da comprimere il lembo superiore della sezione
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
	and the second of the second s

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	0.03	0.96	-0.01
2	0.07	-0.35	0.02
3	0.04	-0.14	0.05
4	0.05	0.02	-0.04
5	-0.05	0.14	0.00
6	0.07	0.03	-0.03

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
	con verso positivo se tale da comprimere il lembo superiore della sezione
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
	con verso positivo se tale da comprimere il lembo destro della sezione

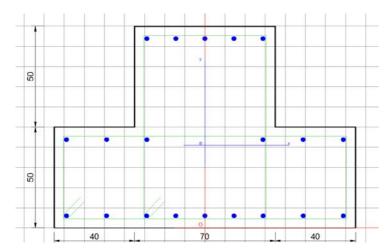
N°Comb.	N	Mx	Му
1	0.01	0.94 (656.09)	0.00 (-0.32)
2	0.04	-0.35 (-457.97)	0.00 (0.00)
3	0.02	-0.28 (-448.68)	0.01 (23.10)
4	0.02	-0.28 (-448.68)	-0.01 (-23.10)
5	0.00	0.15 (653.73)	0.00 (0.00)
6	0.05	-0.34 (-460.87)	0.00 (-0.55)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Mx

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

Му


STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – l° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	My
1	0.03	0.88 (659.08)	0.00 (-0.35)
2	0.02	-0.29 (-455.19)	0.00 (0.00)
3	0.03	-0.11 (-464.58)	0.00 (8.88)
4	0.03	-0.10 (-465.35)	0.00 (-7.53)
5	0.02	0.10 (679.47)	0.00 (0.00)
6	0.03	-0.28 (-458.63)	0.00 (0.68)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.2 cm Interferro netto minimo barre longitudinali: 12.7 cm Copriferro netto minimo staffe: 4.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cis.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex § 7.2.6 NTC

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	1.33	-0.01	0.00	1100.73	-6.98	824.59	38.2(22.0)
2	S	0.00	-0.57	0.02	0.00	-707.82	23.36	999.00	28.0(22.0)
3	S	0.00	-0.46	0.11	0.00	-705.09	165.16	999.00	33.1(22.0)
4	S	0.00	-0.46	-0.11	0.00	-705.09	-165.16	999.00	33.1(22.0)
5	S	0.00	-0.47	0.11	0.00	-705.12	163.97	999.00	33.1(22.0)
6	S	0.00	-0.50	-0.03	0.00	-706.85	-41.95	999.00	28.0(22.0)
7	S	0.00	0.35	0.00	0.00	1101.01	0.00	999.00	38.2(22.0)
8	S	0.00	-0.56	-0.06	0.00	-706.56	-75.20	999.00	28.0(22.0)

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

$N^{\circ}Comb$	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.122	-35.0	100.0	0.00164	-28.9	93.9	-0.02513	68.9	6.1
2	0.00350	0.063	75.0	0.0	-0.00013	68.9	6.1	-0.05245	-28.9	93.9
3	0.00350	0.076	75.0	0.0	0.00051	68.9	6.1	-0.04256	-28.9	93.9
4	0.00350	0.076	-75.0	0.0	0.00051	-68.9	6.1	-0.04256	28.9	93.9
5	0.00350	0.076	75.0	0.0	0.00051	68.9	6.1	-0.04262	-28.9	93.9
6	0.00350	0.064	-75.0	0.0	-0.00004	-68.9	6.1	-0.05095	28.9	93.9
7	0.00350	0.120	-35.0	100.0	0.00161	-28.9	93.9	-0.02566	68.9	6.1
8	0.00350	0.068	-75.0	0.0	0.00014	-68.9	6.1	-0.04831	28.9	93.9

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
0.01.1	

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	-0.000001828	0.000302872	-0.026851126	0.122	0.700
2	0.000001194	-0.000594504	0.003410472	0.063	0.700
3	0.000009016	-0.000480569	0.002823826	0.076	0.700
4	-0.000009016	-0.000480569	0.002823826	0.076	0.700
5	0.000008971	-0.000481236	0.002827207	0.076	0.700
6	-0.000002191	-0.000577468	0.003335666	0.064	0.700
7	0.000000000	0.000310527	-0.027552694	0.120	0.700
8	-0.000004418	-0.000546835	0.003168614	0.068	0.700

VERIFICHE A TAGLIO

Diam. Staffe: 12 mm

Passo staffe: 10.0 cm [Passo massimo di normativa = 33.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata

Ved Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro Vcd Taglio compressione resistente [kN] lato calcestruzzo [formula (4.1.28)NTC]

Vwd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

Dmed Altezza utile media pesata [cm] valutata lungo strisce ortog. all'asse neutro.

La resistenza delle travi è calcolata assumendo il valore di 0.9 Dmed come coppia interna.

I pesi della media sono le lunghezze delle strisce. (Sono esluse le strisce totalmente non compresse).

bw Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Ctg Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo
Acw Coefficiente maggiorativo della resistenza a taglio per compressione
Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]
A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]
Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungħ.legat.proietta-ta sulla direz. del taglio e d_max= massima altezza utile nella direz. del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	Dmed	bw	Ctg	Acw	Ast	A.Eff
1	S	0.04	1736.44	2680.81	93.9	70.1	2.500	1.000	0.0	32.4(0.0)
2	S	1.31	2687.18	2159.02	75.7	134.5	2.500	1.000	0.0	32.4(0.0)
3	S	1.19	2673.05	2170.10	75.6	134.1	2.500	1.000	0.0	32.6(0.0)

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Direzione Progettazione e Realizzazione Lavori

5.6 134.1 2.500 1.000 0.0 32.6(0.0)

4	S	1.19	2673.05	2170.10	75.6	134.1	2.500	1.000	0.0	32.6(0.0)
5	S	1.09	2673.09	2170.05	75.6	134.1	2.500	1.000	0.0	32.6(0.0)
6	S	1.31	2688.78	2160.74	75.7	134.6	2.500	1.000	0.0	32.4(0.0)
7	S	0.81	1733.91	2675.07	93.9	70.0	2.500	1.000	0.0	32.4(0.0)
8	S	1.30	2686.04	2158.85	75.5	134.8	2.500	1.000	0.0	32.5(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]
Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Ss min Minima tensione (negativa se di trazione) nell'acciaio [MPa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)
Ac eff.
As eff.
As eff.
As eff.
Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	0.01	-35.0	100.0	-0.4	68.9	6.1	2427	22.9
2	S	0.00	75.0	0.0	-0.2	-28.9	93.9	1130	12.7
3	S	0.00	75.0	0.0	-0.1	-28.9	93.9	1258	12.7
4	S	0.00	-75.0	50.0	0.0	68.9	6.1	733	7.6
5	S	0.00	-35.0	100.0	-0.1	68.9	6.1	2314	22.9
4	C	0.00	2E 0	100.0	0.0	40.0	4 1	E70	E 1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
											-
1	S	0.00000	0.00000	0.500	18.0	52	0.00000 (0.00000)	501	0.001 (990.00)	652.65	-5.97
2	S	0.00000	0.00000	0.500	18.0	52	0.00000 (0.00000)	449	0.000 (990.00)	-454.88	26.95
3	S	0.00000	0.00000	0.500	18.0	52	0.00000 (0.00000)	479	0.000 (990.00)	-415.78	154.28
4	S	0.00000	0.00000	0.500	18.0	52	0.00000 (0.00000)	471	0.000 (990.00)	210.48	-579.37
5	S	0.00000	0.00000	0.500	18.0	52	0.00000 (0.00000)	486	0.000 (990.00)	612.15	0.00
6	S	0.00000	0.00000	0.500	18.0	52	0.00000 (0.00000)	525	0.000 (990.00)	412.27	-413.31

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	0.01	-35.0	100.0	-0.4	68.9	6.1	2314	22.9
2	S	0.00	-75.0	0.0	-0.2	28.9	93.9	1085	12.7
3	S	0.00	75.0	0.0	-0.2	-28.9	93.9	1123	12.7
4	S	0.00	-75.0	0.0	-0.2	28.9	93.9	1123	12.7
5	S	0.00	-35.0	100.0	-0.1	68.9	6.1	2314	22.9
6	S	0.00	-75.0	0.0	-0.2	28.9	93.9	1085	12.7

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max wk	Mx fess	My fess
1	S	0.00000	0.00000	0.500	18.0	52	0.00000 (0.00000) 486 0.001 (0.40)	656.09	-0.32
2	S	0.00000	0.00000	0.500	18.0	52	0.00000 (0.00000) 438 0.000 (0.40)	-457.97	0.00
3	S	0.00000	0.00000	0.500	18.0	52	0.00000 (0.00000) 447 0.000 (0.40)	-448.68	23.10
4	S	0.00000	0.00000	0.500	18.0	52	0.00000 (0.00000) 447 0.000 (0.40)	-448.68	-23.10
5	S	0.00000	0.00000	0.500	18.0	52	0.00000 (0.00000) 486 0.000 (0.40)	653.73	0.00
6	S	0.00000	0.00000	0.500	18.0	52	0.00000 (0.00000) 438 0.000 (0.40)	-460.87	-0.55

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	0.01	-35.0	100.0	-0.4	68.9	6.1	2314	22.9
2	S	0.00	-75.0	0.0	-0.2	28.9	93.9	1085	12.7
3	S	0.00	75.0	0.0	0.0	-28.9	93.9	1095	12.7
4	S	0.00	-75.0	0.0	0.0	28.9	93.9	1089	12.7
5	S	0.00	35.0	100.0	0.0	-68.9	6.1	2314	22.9
6	S	0.00	75.0	0.0	-0.2	-28.9	93.9	1085	12.7

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	0.00000	0.00000	0.500	18.0	52	0.00000 (0.00000)	486	0.001 (0.30)	659.08	-0.35
2	S	0.00000	0.00000	0.500	18.0	52	0.00000 (0.00000)	438	0.000 (0.30)	-455.19	0.00
3	S	0.00000	0.00000	0.500	18.0	52	0.00000 (0.00000)	440	0.000 (0.30)	-464.58	8.88
4	S	0.00000	0.00000	0.500	18.0	52	0.00000 (0.00000)	439	0.000 (0.30)	-465.35	-7.53
5	S	0.00000	0.00000	0.500	18.0	52	0.00000 (0.00000)	486	0.000 (0.30)	679.47	0.00
6	S	0.00000	0.00000	0.500	18.0	52	0.00000 (0.00000)	438	0.000 (0.30)	-458.63	0.68

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A.

NOME SEZIONE: trave rovescia SLV_rev01

(Percorso File: Z:\0260 TreValli Esecutivo\committente\Ricevuti\23-03-24 PD\Editabili\J_OPERE-D'ARTE-MINOR\FABBRICATO\travi rovesce\trave rovescia SLV_rev01.sez)

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave di fondazione in combinazione sismica

Normativa di riferimento: N.T.C.

Percorso sollecitazione:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

A Sforzo Norm. costante
Assi x,y principali d'inerzia
Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C30/37	
	Resis. compr. di progetto fcd:	17.0	MPa
	Resis. compr. ridotta fcd':	8.5	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	32836.0	MPa
	Resis. media a trazione fctm:	2.90	MPa
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Resist. snerv. di progetto fyd:
Resist. ultima di progetto ftd:
Deform. ultima di progetto Epu:
Modulo Elastico Ef

391.3 MPa
0.068

0.068

4aN/cm²

Diagramma tensione-deformaz.: Bilineare finito

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del D Classe Calces		Poligonale C30/37
N°vertice:	X [cm]	Y [cm]
1	-75.0	0.0
2	-75.0	50.0
3	-35.0	50.0
4	-35.0	100.0
5	35.0	100.0
6	35.0	50.0
7	75.0	50.0
8	75.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-68.9	6.1	18
2	-68.9	43.9	18
3	-28.9	43.9	18
4	-28.9	93.9	18
5	28.9	93.9	18
6	28.9	43.9	18
7	68.9	43.9	18
8	68.9	6.1	18
9	-29.0	6.1	18
10	29.0	6.1	18

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

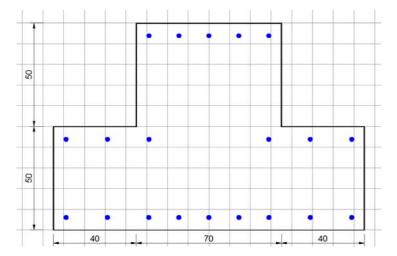
N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	9	10	3	18
2	4	5	3	18
3	2	3	1	18
4	6	7	1	18
5	1	9	1	18
6	10	8	1	18

ARMATURE A TAGLIO

Diametro staffe: 12 mm Passo staffe: 10.0 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA



PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	Му	Vy	Vx
1	60.68	105.26	8.67	25.76	24.49
2	0.71	-69.07	-24.47	73.84	-10.58
3	43.82	-13.51	85.36	102.29	34.49
4	-37.02	-41.74	-85.36	95.37	-34.49
5	2.85	62.36	5.68	-5.01	38.52
6	3.83	12.41	24.47	109.48	10.58
7	-56.33	-54.89	-49.91	-96.15	-27.29
8	62.17	-0.51	49.98	-82.88	27.36

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.2 cm Interferro netto minimo barre longitudinali: 12.7 cm Copriferro netto minimo staffe: 4.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata
N Sforzo normale assegnato [kN] nel baricentro B sezione els (nositivo se di

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)
Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia

My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia N Res Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex § 7.2.6 NTC

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	60.68	105.26	8.67	60.84	840.63	68.85	7.98	38.2(22.0)
2	S	0.71	-69.07	-24.47	0.83	-507.86	-178.60	7.35	28.0(22.0)
3	S	43.82	-13.51	85.36	43.99	-126.61	810.40	9.49	30.5(22.0)

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Direzione Progettazione e Realizzazione Lavori

4	S	-37.02	-41.74	-85.36	-36.83	-356.07	-714.56	8.38	30.5(22.0)
5	S	2.85	62.36	5.68	2.57	808.78	73.76	12.97	38.2(22.0)
6	S	3.83	12.41	24.47	3.80	270.53	535.67	21.87	25.4(22.0)
7	S	-56.33	-54.89	-49.91	-56.32	-445.87	-403.78	8.05	22.9(22.0)
8	S	62.17	-0.51	49.98	62.30	-7.11	745.65	14.92	28.0(22.0)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

$N^{\circ}Comb$	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00070	0.007	25.0	100.0	0.000/1	20.0	02.0	0.00107	/0.0	/ 1
I	0.00079	0.287	35.0	100.0	0.00061	28.9	93.9	-0.00196	-68.9	6.1
2	0.00050	0.205	-75.0	0.0	0.00035	-68.9	6.1	-0.00196	28.9	93.9
3	0.00062	0.241	75.0	0.0	0.00051	68.9	6.1	-0.00196	-68.9	43.9
4	0.00085	0.302	-75.0	0.0	0.00067	-68.9	6.1	-0.00196	28.9	93.9
5	0.00077	0.282	35.0	100.0	0.00059	28.9	93.9	-0.00196	-68.9	6.1
6	0.00058	0.229	75.0	50.0	0.00043	68.9	43.9	-0.00196	-68.9	6.1
7	0.00068	0.257	-75.0	0.0	0.00051	-68.9	6.1	-0.00196	28.9	93.9
8	0.00066	0.251	75.0	50.0	0.00053	68.9	43.9	-0.00196	-68.9	6.1

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c
Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d
Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C.Rid.
Coeff. di riduz. momenti per sola flessione in travi continue

C.Riu. Coeii. ui fiuuz. filoifiefili pei sola fiessione iii travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000002446	0.000026527	-0.001949809	0.287	0.799
2	-0.000002259	-0.000023701	0.000334331	0.205	0.700
3	0.000017712	-0.000000680	-0.000706296	0.241	0.742
4	-0.000014589	-0.000013718	-0.000246792	0.302	0.818
5	0.000002636	0.000026085	-0.001934018	0.282	0.792
6	0.000014277	0.000010995	-0.001039866	0.229	0.726
7	-0.000006603	-0.000020749	0.000182673	0.257	0.762
8	0.000016813	0.000004413	-0.000825013	0.251	0.754

VERIFICHE A TAGLIO

Diam. Staffe: 12 mm

Passo staffe: 10.0 cm [Passo massimo di normativa = 33.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata

Ved Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro
Vcd Taglio compressione resistente [kN] lato calcestruzzo [formula (4.1.28)NTC]

Vwd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

Dmed Altezza utile media pesata [cm] valutata lungo strisce ortog. all'asse neutro.

La resistenza delle travi è calcolata assumendo il valore di 0.9 Dmed come coppia interna.

I pesi della media sono le lunghezze delle strisce.(Sono esluse le strisce totalmente non compresse).

bw Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Ctg Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo
Acw Coefficiente maggiorativo della resistenza a taglio per compressione
Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]
A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Tra parentesi è indicata la quota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	Dmed	bw	Ctg	Acw	Ast	A.Eff
1	S	27.90	1712.52	1844.33	92.6	69.9	2.500	1.003	0.3	22.6(0.0)
2	S	72.50	2639.11	1493.99	75.0	133.4	2.500	1.000	1.1	22.6(0.0)
3	S	30.53	1867.97	2803.81	140.8	50.2	2.500	1.002	0.2	22.6(0.0)
4	S	40.21	1595.18	2094.52	105.2	57.5	2.500	1.000	0.4	22.6(0.0)
5	S	1.11	1692.90	1846.48	92.7	69.2	2.500	1.000	0.0	22.6(0.0)
6	S	75.18	2476.41	1806.62	90.7	103.5	2.500	1.000	0.9	22.6(0.0)
7	S	99.90	2112.88	1650.50	82.9	96.6	2.500	1.000	1.4	22.6(0.0)
8	S	5.42	2471.27	2078.98	104.4	89.4	2.500	1.003	0.1	22.6(0.0)

Realizzazione Lavori

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

15.2 Verifiche geotecniche della trave rovescia

Si effettua di seguito la verifica a scorrimento e carico limite della trave rovescia di fondazione sia in condizioni statiche (SLU-GEO) sia in condizioni sismiche (SLU-SISMICHE) come riportato al punto 6.4.2. dell'NTC 2018.

Le verifiche devono essere effettuate nei confronti dei seguenti stati limite:

SLU di tipo geotecnico (GEO)

- collasso per carico limite dell'insieme fondazione-terreno;
- collasso per scorrimento sul piano di posa;

SLU di tipo sismico (SISMA)

- collasso per carico limite dell'insieme fondazione-terreno;
- collasso per scorrimento sul piano di posa;

Tali verifiche devono essere effettuate applicando la combinazione (A1+M1+R3) di coefficienti parziali prevista dall'Approccio 2.

Tab. 6.4.I – Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di fondazioni superficiali

Verifica	Coefficiente
	parziale
	(R3)
Carico limite	$\gamma_R = 2.3$
Scorrimento	$\gamma_R = 1,1$

Di seguito si riportano le verifiche in condizioni statiche e sismiche dei 4 nodi di base più sollecitati e i rispettivi coefficienti di sicurezza.

	CONDIZIONI STATICHE							
	FS capacità	FS	FS ribaltamento	FS ribaltamento				
	portante	scorrimento	intorno x	intorno y				
nodo 1	6.18	7.52	6.2	17.66				
nodo 3	5.55	9.26	19.4	15.94				
nodo 5	6.18	7.53	6.21	17.69				
nodo 7	5.49	9.56	6.48	65.77				

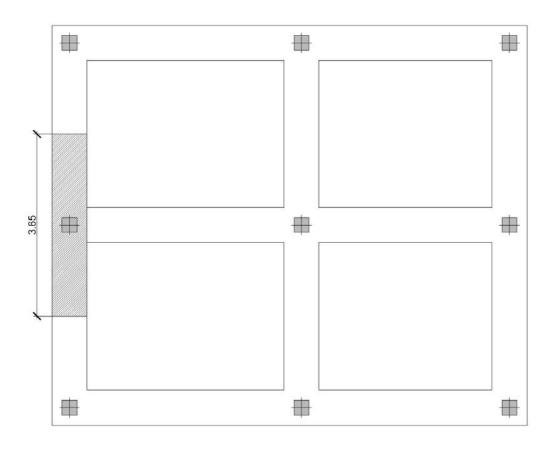
PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

	CONDIZIONI SISIMICHE						
	FS capacità FS FS ribaltamento FS			FS ribaltamento			
	portante	scorrimento	intorno x	intorno y			
nodo 1	4.99	4.98	3.6	10.45			
nodo 3	4.29	5.33	3.58	10.81			
nodo 5	4.99	4.98	3.6	10.45			
nodo 7	5.17	5.79	4.65	11.96			

Dai dati risulta che il nodo maggiormente sollecitato è il nodo 3.

Di seguito sono riportate le sollecitazioni utilizzate per le verifiche.

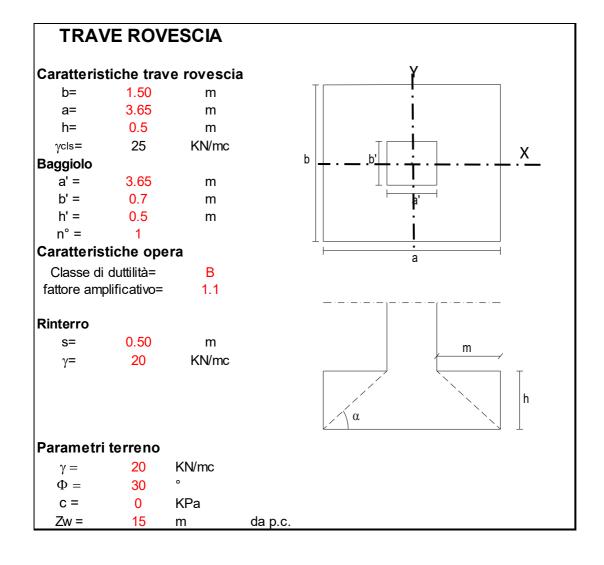

		Joint	OutputCase	F1	F2	F3	M1	M2	M3
		Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
maxF1	KN	3	SLU_11	11.46	0.00	118.32	0.00	14.12	0.00
minF1	KN	3	SLU_6	-14.07	0.00	131.33	0.00	-15.31	0.00
maxF2	KN	3	SLU_13	3.62	3.67	116.87	-6.25	6.31	-0.01
minF2	KN	3	SLU_8	-2.73	-3.67	131.63	6.25	-5.40	0.01
maxF3	KN	3	SLU_2	1.94	0.00	138.77	0.00	-0.74	0.00
minF3	KN	3	SLU_36	-0.97	0.00	85.83	0.00	3.65	0.00
maxM1	KN-m	3	SLU_8	-2.73	-3.67	131.63	6.25	-5.40	0.01
minM1	KN-m	3	SLU_13	3.62	3.67	116.87	-6.25	6.31	-0.01
maxM2	KN-m	3	SLU_15	10.44	0.00	112.48	0.00	14.90	0.00
minM2	KN-m	3	SLU_6	-14.07	0.00	131.33	0.00	-15.31	0.00
maxM3	KN-m	3	SLU_8	-2.73	-3.67	131.63	6.25	-5.40	0.01
minM3	KN-m	3	SLU_13	3.62	3.67	116.87	-6.25	6.31	-0.01

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

		Joint	OutputCase	F1	F2	F3	M1	M2	M3
		Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
maxF1	KN	3	Sismica_SLU_+1.0_X_+0.3Y	12.56	5.29	91.03	8.89	22.68	0.17
minF1	KN	3	Sismica_SLU_+1.0_X_+0.3Y	-11.80	-5.29	78.44	-8.89	-21.89	-0.17
maxF2	KN	3	Sismica_SLU_+0.3_X_+1.0Y	4.03	16.29	86.63	27.40	7.08	0.30
minF2	KN	3	Sismica_SLU_+0.3_X_+1.0Y	-3.27	-16.29	82.85	-27.40	-6.29	-0.30
maxF3	KN	3	Sismica_SLU_+1.0_X_+0.3Y	12.56	5.29	91.03	8.89	22.68	0.17
minF3	KN	3	Sismica_SLU_+1.0_X_+0.3Y	-11.80	-5.29	78.44	-8.89	-21.89	-0.17
maxM1	KN-m	3	Sismica_SLU_+0.3_X_+1.0Y	4.03	16.29	86.63	27.40	7.08	0.30
minM1	KN-m	3	Sismica_SLU_+0.3_X_+1.0Y	-3.27	-16.29	82.85	-27.40	-6.29	-0.30
maxM2	KN-m	3	Sismica_SLU_+1.0_X_+0.3Y	12.56	5.29	91.03	8.89	22.68	0.17
minM2	KN-m	3	Sismica_SLU_+1.0_X_+0.3Y	-11.80	-5.29	78.44	-8.89	-21.89	-0.17
maxM3	KN-m	3	Sismica_SLU_+0.3_X_+1.0Y	4.03	16.29	86.63	27.40	7.08	0.30
minM3	KN-m	3	Sismica_SLU_+0.3_X_+1.0Y	-3.27	-16.29	82.85	-27.40	-6.29	-0.30

Le verifiche sono state svolte considerando una porzione di trave rovescia di lunghezza pari a 3.65 m in corrispondenza di tale nodo.


PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Nonostante il profilo geotecnico mostra un terreno marnoso arenaceo affiorante, si considera a favore di sicurezza un terreno costituito da alluvioni recenti e attuali caratterizzato dai seguenti parametri:

γt	c'	φ°
[kN/mc]	[kPa]	[°]
20÷21	0÷10	30÷35°

Si riportano di seguito le verifche a ribaltamento, a scorrimento ed a carico limite.

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Cari	ichi di pro	getto		
			_	

Peso della trave rovescia P = 130 KN

SCARICHI STRUTTURA IN ELEVAZIONE

Sollecitazioni di progetto SLU STATICHE alla base

Mx = 6.25 KNm My = 15.31 KNm Vy = 3.67 KN Vx = 14.07 KN N = 138.77 KN

Sollecitazioni di progetto SLU SISMICHE alla base

Mx = 27.40 KNm My = 22.68 KNm Vy = 16.29 KN Vx = 12.56 KN N = 91.03 KN

SCARICHI AMPLIFICATI

Sollecitazioni di progetto SLU STATICHE alla base

Mx = 6.88 KNm My = 16.84 KNm Vy = 4.04 KN Vx = 15.48 KN N = 152.65 KN

Sollecitazioni di progetto SLU SISMICHE alla base

Mx = 30.14 KNm My = 24.95 KNm Vy = 17.92 KN Vx = 13.82 KN N = 100.13 KN

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

INTORNO X

VERIFICA A RIBALTAMENTO IN CONDIZIONI STATICHE

Approccio A1+M1+R3:

coefficiente azioni permanenti $\gamma g=$ 1.00 coefficiente azioni variabili $\gamma s=$ 1.50

Sollecitazioni di progetto :

N Vy Mx KN KN KN*m 152.65 4.04 6.88

Sollecitazioni finali sulla plinto :

Ntot Vy Mxtot KN KN KN*m 282.2 4.04 10.91

Momento ribaltante MR = 10.91 KN m

Momento stabilizzante Ms = 211.67 KN m

FS = MS/MR = 19.40 ≥ 1.15 verifica soddisfatta

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

VERIFICA A RIBALTAMENTO IN CONDIZIONI SISMICHE

Approccio E+M1+R3::

coefficiente azioni permanenti $\gamma g = 1.00$ coefficiente azioni variabili $\gamma s = 1.50$

Sollecitazioni di progetto :

N Vy Mx KN KN KN*m 100.13 17.92 30.14

Sollecitazioni finali sulla plinto :

 Ntot
 Vy
 Mxtot

 KN
 KN *m

 229.7
 17.919
 48.06

Momento ribaltante MR = 48.06 KN m

Momento stabilizzante Ms = 172.28 KN m

FS = Ms/MR = 3.58 ≥ 1.15 verifica soddisfatta

INTORNO Y

VERIFICA A RIBALTAMENTO IN CONDIZIONI STATICHE

Approccio A1+M1+R3:

coefficiente azioni permanenti $\gamma g=$ 1.00 coefficiente azioni variabili $\gamma s=$ 1.50

Sollecitazioni di progetto :

N Vx My KN KN KN*m 152.6 15.5 16.8

Sollecitazioni finali sulla plinto :

 Ntot
 Vx
 Mytot

 KN
 KN
 KN*m

 282.2
 15.477
 32.32

Momento ribaltante MR = 32.32 KN m

Momento stabilizzante Ms = 515.06 KN m

FS = Ms/MR = 15.94 ≥ 1.15 verifica soddisfatta

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

VERIFICA A RIBALTAMENTO IN CONDIZIONI SISMICHE

Approccio A1+M1+R3:

coefficiente azioni permanenti $\gamma g = 1.00$ coefficiente azioni variabili $\gamma s = 1.50$

Sollecitazioni di progetto :

N Vx My KN KN KN*m 100.13 14 25

Sollecitazioni finali sulla plinto :

Ntot Vx Mytot KN KN KN*m 229.7 13.816 38.76

Momento ribaltante MR = 38.76 KN m

Momento stabilizzante Ms = 419.22 KN m

FS = Ms/MR = 10.81 ≥ 1.15 verifica soddisfatta

VERIFICA A SCORRIMENTO E CAPACITA' PORTANTE IN CONDIZIONI STATICHE

Approccio 2 A1+M1+R3:

coefficiente azioni permanenti	γg=	1.00
coefficiente azioni variabili	γs=	1.50
coefficiente M1 parametri geotecnici	γφ=	1.00
coefficiente R3 scorrimento	$\gamma_R =$	1.10
coefficiente R3 capacità portante	$\gamma_R =$	2.30

Sollecitazioni di progetto :

N	Vy	Mx	Vx	My
KN	KN	KN*m	KN	KN*m
152.65	4.04	6.88	15.48	16.84

Sollecitazioni finali sul plinto :

N tot	Vy	M xtot	Vx	My tot
KN	KN	KN*m	KN	KN*m
282	4.04	10.91	15.48	32.32

STRADA DELLE TRE VALLI UMBRE

Tratto Eggi-Acquasparta – I° Stralcio Baiano-Firenzuola

PROGETTO ESECUTIVO

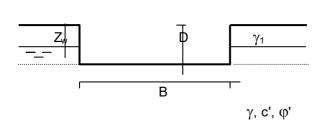
Relazione tecnica e di calcolo

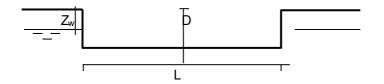
 $qlim = c'*Nc* sc*dc*ic*bc*gc + q*Nq*sq*dq*iq*bq*gq + 0,5*\gamma*B*N\gamma*s\gamma*d\gamma*i\gamma*b\gamma*g\gamma$

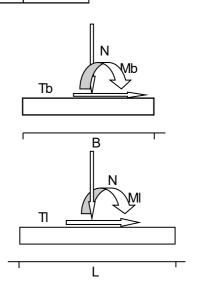
D = Profondità del piano di appoggio

e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = Ml/N) (per fondazione nastriforme e_L = 0; L* = L)


 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)


 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)


(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

		az	ioni	proprietà d	lel terreno
Metodo di calcolo		permanenti	temporanee variabili	tan φ'	c'
Stato limite ultimo	\circ	1.00	1.30	1.25	1.25
Tensioni ammissibili	\circ	1.00	1.00	1.00	1.00
definiti dall'utente	•	1.00	1.00	1.00	1.00

(Per fondazione nastriforme L = 100 m)

B = 1.50 (m)

L = 3.65 (m)

D = 1.00 (m)

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

AZIONI

	valori o	Valori di	
	permanenti	temporanee	calcolo
N [kN]	282.22	0.00	282.22
Mb [kNm]	10.91	0.00	10.91
MI [kNm]	32.32	0.00	32.32
Tb [kN]	4.04	0.00	4.04
TI [kN]	15.48	0.00	15.48
H [kN]	15.99	0.00	15.99

Peso unità di volume del terreno

20.00 = (kN/mc) γ1 20.00 (kN/mc) γ

Valori caratteristici di resistenza del terreno

Valori di progetto 0.00 (kN/mq) 0.00 (kN/mq)30.00 30.00 φ' = (°) (°)

Profondità della falda

15.00 Zw = (m)

0.04 B* = 1.42 (m) (m) $e_B =$ 0.11 L* = 3.42 $e_L =$ (m) (m)

q: sovraccarico alla profondità D

20.00 (kN/mq) q =

γ : peso di volume del terreno di fondazione

(kN/mc) $\gamma =$ 20.00

Nc, Nq, Nγ: coefficienti di capacità portante

Nq =
$$\tan^2(45 + \phi'/2)^*e^{(\pi^*tg_{\phi'})}$$

$$Nq = 18.40$$

$$Nc = (Nq - 1)/tan\phi'$$

$$Ny = 2*(Nq + 1)*tan\phi'$$

$$Ny = 22.40$$

s_c , s_q , s_γ : fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1.25$$

$$s_0 = 1 + B*tan\phi' / L*$$

$$s_q = 1.24$$

$$s_{y} = 1 - 0.4*B* / L*$$

$$s_{y} = 0.83$$

$i_c,\,i_q,\,i_\gamma:\underline{fattori\ di\ inclinazione\ del\ carico}$

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

$$m_l = (2 + L^* / B^*) / (1 + L^* / B^*) =$$

$$i_q = (1 - H/(N + B^*L^* c' \cot q\phi'))^m$$

$$i_0 = 0.93$$

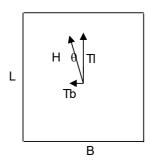
$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 0.92$$

$$i_{\gamma} = (1 - H/(N + B^*L^* c' \cot g\phi'))^{(m+1)}$$

$$i_{\gamma} = 0.87$$

1.71
$$\theta = \operatorname{arctg}(\mathsf{Tb}/\mathsf{Tl}) =$$


1.29

$$m = 1.32$$
 (-)

14.62

(°)

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

d_c, d_q, d_γ : fattori di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan ϕ ' (1 - sen ϕ ')² / B*

per D/B*> 1;
$$d_q = 1 + (2 \tan \varphi' (1 - \sin \varphi')^2) * \arctan (D / B*)$$

$$d_{q} = 1.20$$

$$d_c = d_q - (1 - d_q) / (N_c \tan \varphi')$$

$$d_c = 1.21$$

$$d_{v} = 1$$

$$d_{\gamma} = 1.00$$

b_c, b_q, b_γ : fattori di inclinazione base della fondazione

$$b_{q} = (1 - \beta_{f} \tan \varphi')^{2}$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_{q} = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi')$$

$$b_c = 1.00$$

$$b_v = b_q$$

$$b_{y} = 1.00$$

g_c , g_q , g_γ : fattori di inclinazione piano di campagna

$$g_q = (1 - \tan \beta_p)^2$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_q = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi')$$

$$g_c = 1.00$$

$$g_{\gamma} = g_{q}$$

$$g_{\gamma} = 1.00$$

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Carico limite unitario

$$q_{lim} = 740.36 (kN/m^2)$$

Pressione massima agente

$$q = N/B^*L^*$$

$$q = 57.99 (kN/m2)$$

Coefficiente di sicurezza

Fs =
$$q_{lim} / q$$
 = 5.55 > 1 verifica soddisfatta

VERIFICA A SCORRIMENTO

$$Hd = 15.99$$
 (kN)

$$Sd = N * tan(\phi') + c' B* L*$$

$$Sd = 162.94$$
 (kN)

Coefficiente di sicurezza allo scorrimento

Fscorr = 9.26 > 1 verifica soddisfatta

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

VERIFICA A SCORRIMENTO E CAPACITA' PORTANTE IN CONDIZIONI SISMICHE

Approccio 2 E+M1+R3:

coefficiente azioni permanenti	γg=	1.00
coefficiente azioni variabili	γs=	1.50
coefficiente M1 parametri geotecnici	γφ=	1.00
coefficiente R3 scorrimento	$\gamma_R =$	1.10
coefficiente R3 capacità portante	$\gamma_R =$	2.30

Sollecitazioni di progetto :

N	Vy	Mx	Vx	My
KN	KN	KN*m	KN	KN*m
100.13	17.92	30.14	13.82	24.95

Sollecitazioni finali sul plinto :

229.71	17.92	48.06	13.82	38.76
KN	KN _	KN*m	KN	KN*m
N tot	Vy	M xtot	Vx	Mytot

STRADA DELLE TRE VALLI UMBRE

PROGETTO ESECUTIVO

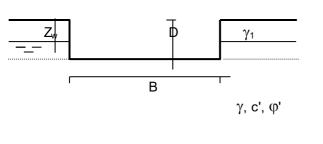
Relazione tecnica e di calcolo

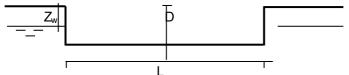
$qlim = c'*Nc* sc*dc*ic*bc*gc + q*Nq*sq*dq*iq*bq*gq + 0,5*\gamma*B*N\gamma*s\gamma*d\gamma*i\gamma*b\gamma*g\gamma$

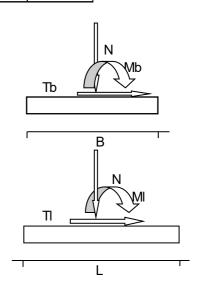
D = Profondità del piano di appoggio

e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = Ml/N) (per fondazione nastriforme e_L = 0; L* = L)


 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)


L* = Lunghezza fittizia della fondazione (L* = L - 2*e_L)


(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

		az	ioni	proprietà d	lel terreno
Metodo di calcolo		permanenti	temporanee variabili	tan φ'	c'
Stato limite ultimo	\circ	1.00	1.30	1.25	1.25
Tensioni ammissibili	\circ	1.00	1.00	1.00	1.00
definiti dall'utente	•	1.00	1.00	1.00	1.00

(Per fondazione nastriforme L = 100 m)

B = 1.50 (m

L = 3.65 (m)

D = 1.00 (m)

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Valori di progetto

AZIONI

	valori d	Valori di	
	permanenti	temporanee	calcolo
N [kN]	229.71	0.00	229.71
Mb [kNm]	48.06	0.00	48.06
MI [kNm]	38.76	0.00	38.76
Tb [kN]	17.92	0.00	17.92
TI [kN]	13.82	0.00	13.82
H [kN]	22.63	0.00	22.63

Peso unità di volume del terreno

 $\gamma_1 = 20.00 \text{ (kN/mc)}$ $\gamma = 20.00 \text{ (kN/mc)}$

Valori caratteristici di resistenza del terreno

c' = 0.00 (kN/mq) c' = 0.00 (kN/mq) $\phi' = 30.00$ (°) $\phi' = 30.00$ (°)

Profondità della falda

$$Zw = 15.00$$
 (m)

 $e_B = 0.21$ (m) $B^* = 1.08$ (m) $e_L = 0.17$ (m) $L^* = 3.31$ (m)

q : sovraccarico alla profondità D

q = 20.00 (kN/mq)

γ : peso di volume del terreno di fondazione

 $\gamma = 20.00 \text{ (kN/mc)}$

Nc, Nq, Nγ: coefficienti di capacità portante

Ng =
$$\tan^2(45 + \varphi'/2)^*e^{(\pi^*tg\varphi')}$$

$$Nq = 18.40$$

$$Nc = (Nq - 1)/tan\phi'$$

$$Nc = 30.14$$

$$Ny = 2*(Nq + 1)*tan\phi'$$

$$N\gamma = 22.40$$

s_c , s_q , s_γ : fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1.20$$

$$s_q = 1 + B*tan\phi' / L*$$

$$s_q = 1.19$$

$$s_v = 1 - 0.4*B* / L*$$

$$s_v = 0.87$$

i_c, i_q, i_γ : fattori di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*)$$

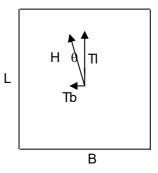
1.75 $\theta = \operatorname{arctg}(\mathsf{Tb}/\mathsf{TI}) =$

$$m_l = (2 + L^* / B^*) / (1 + L^* / B^*)$$

1.25

 $i_q = (1 - H/(N + B^*L^* c' \cot g\phi'))^m$

$$i_q = 0.85$$


$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 0.84$$

$$i_{y} = (1 - H/(N + B*L* c' \cot g\phi'))^{(m+1)}$$

$$i_{\gamma} = 0.77$$

(m=2 nel caso di fondazione nastriforme e m=($m_b sin^2 \theta + m_l cos^2 \theta$) in tutti gli altri casi)

d_c, d_q, d_y: fattori di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan ϕ ' (1 - sen ϕ ')² / B*
per D/B*> 1; d_q = 1 +(2 tan ϕ ' (1 - sen ϕ ')²) * arctan (D / B*)

$$d_{q} = 1.27$$

$$d_c = d_q - (1 - d_q) / (N_c \tan \varphi')$$

$$d_c = 1.28$$

$$d_{v} = 1$$

$$d_{v} = 1.00$$

$b_c,\,b_q,\,b_\gamma$: fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f \tan \varphi')^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_q = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi')$$

$$b_c = 1.00$$

$$b_{\gamma} = b_{q}$$

$$b_{v} = 1.00$$

g_c, g_q, g_γ: fattori di inclinazione piano di campagna

$$g_q = (1 - \tan \beta_p)^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_{q} = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi')$$

$$g_c = 1.00$$

$$g_y = g_q$$

$$g_{y} = 1.00$$

PROGETTO ESECUTIVO

Relazione tecnica e di calcolo

Carico limite unitario

$$q_{lim} = 632.61 (kN/m^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 64.12 (kN/m2)$$

Coefficiente di sicurezza

Fs =
$$q_{lim} / q$$
 = 4.29 > 1 verifica soddisfatta

VERIFICA A SCORRIMENTO

$$Hd = 22.63$$
 (kN)

$$Sd = N * tan(\phi') + c' B* L*$$

$$Sd = 132.62$$
 (kN)

Coefficiente di sicurezza allo scorrimento

Fscorr = 5.33 > 1 verifica soddisfatta