

Direzione Tecnica

S.S 685 "DELLE TRE VALLI UMBRE"

TRATTO SPOLETO - ACQUASPARTA 1º stralcio: Madonna di Baiano-Firenzuola

PROGETTO ESECUTIVO

COD. PG143

ATI SINTAGMA - GDG - ICARIA PROGETTAZIONE:

IL RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE:

Dott. Ing. Nando Granieri

Ordine degli Ingegneri della Prov. di Perugia n° A351

IL PROGETTISTA:

Dott. Ing. Federico Durastanti

Ordine degli Ingegneri della Prov. di Terni n° Terni n° A844

Dott. Geol. Giorgio Cerquiglini

Ordine dei Geologi della Regione Umbria n°108

IL COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE:

Dott. Ing. Filippo Pambianco

Ordine degli Ingegneri della Prov. di Perugia n° A1373

Il Responsabile di Progetto

Arch. Pianificatore Marco Colazza

Il Responsabile del Procedimento

Dott. Ing.

Alessandro Micheli

PROTOCOLLO DATA IL GRUPPO DI PROGETTAZIONE:

MANDATARIA:

MANDANTI:

Dott. Ing. Dott. Ing.

Dott. Ing.

Dott. Ing.

Bintagma

N.Granieri

GEOTECHNICAL DESIGN GROUP

Dott. Ing.

società di ingegneria

Dott.Ing. Dott.Arch. Dott.Ing. Dott.Arch. Dott.Ing. Dott.Ing. Dott.Geol. Geom.

Dott.Ing.

Dott.Ing.

Dott. Agr.

N.Kamenicky V.Truffini A.Bracchini F.Durastanti E.Bartolocci G.Cerquiglini Dott.Ing. Dott.Ing. E.Sellari Dott.Ing.

S.Scopetta L.Sbrenna L.Dinelli L.Nani F.Pambianco

F.Berti Nulli

D.Carlaccini S.Sacconi C.Consorti E.Loffredo C.Chierichini

Dott. Ing. Geom. Dott. Ing. Dott. Ing. Geom.

V.Rotisciani F.Macchioni C.Vischini V.Piunno G.Pulli C.Sugaroni

MANDO GRANIERI

SETTORE CIVICE E AMBIENTALE SETTORE INDUSTRIALE SETTORE DELI/INFORMAZIONE

08. VIADOTTI E PONTI 08.02 VIADOTTO MOLINO VECCHIO

Relazione di calcolo Opere Provvisionali Pile

CODICE PROGET	LIV. PROG. ANNO	NOME FILE	102STRRE06B			REVISIONE	SCALA:
DTPG1		CODICE TOOVIO2STRRE06		0 6	В	-	
В	Rev. A seguito istr. ANAS			Set 2023	P.Manni	F.Durastanti	N.Granieri
Α	Emissione			Ago 2023	P.Manni	F.Durastanti	N.Granieri
REV.	DESCRIZIONE			DATA	REDATTO	VERIFICATO	APPROVATO

anas Direzione Progettazione e

Realizzazione Lavori

STRADA DELLE TRE VALLI UMBRE

Tratto Eggi-Acquasparta – I° Stralcio Firenzuola-Acquasparta

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

INDICE

1	INTRODUZIONE	3
	1.1 OGGETTO E SCOPO	3
	1.2 DESCRIZIONE DELL'OPERA	
	1.2.1 Opera provvisionale Pila 12	
_	• •	
2	RIFERIMENTI NORMATIVI	9
3	MATERIALI	10
	3.1 CALCESTRUZZO MAGRONE	
	3.2 CALCESTRUZZO CORDOLI	
	3.3 ACCIAIO TUBI PER MICROPALI	
	3.5 TIRANTI DI ANCORAGGIO	
4	SOFTWARE DI CALCOLO	
5		
6		
	6.1 OPERA PROVVISIONALE PILA 12	
	6.2 OPERA PROVVISIONALE PILA 14	
7	DESCRIZIONE MODELLO DI CALCOLO	
	7.1 OPERA PROVVISIONALE PILA 12	
	7.2 OPERA PROVVISIONALE PILA 14	
8	ANALISI DEI CARICHI	36
	8.1 PESO PROPRIO DELLA STRUTTURA	36
	8.2 SPINTA DELLE TERRE	
	8.3 CARICHI ACCIDENTALI DA TRAFFICO	
_		
9	CRITERI DI VERIFICA	38
1	0 SINTESI RISULTATI	39
	10.1OPERA PROVVISIONALE PILA 12	
	10.20PERA PROVVISIONALE PILA 14	44
1	1 COMBINAZIONI DI CARICO	49
1	2 VERIFICHE STRUTTURALI	51
	12.10PERA PROVVISIONALE PILA 12	
	12.1.1 MIcropali in acciaio	51
		51 55
	12.1.1 MIcropali in acciaio	51 55 55
	12.1.1 MIcropali in acciaio	51 55 55 56

Realizzazione Lavori

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

12.20PERA PROVVISIONALE PILA 14	59
12.2.1 MIcropali in acciaio	
13 VERIFICHE GEOTECNICHE	63
13.1Opera provvisionale Pila 12	63
13.2OPERA PROVVISIONALE PILA 14	63
14 TABULATO PARATIE PLUS	64
14.1Opera provvisionale Pila 12	64
14 20 DERA PROVIZIONALE PILA 14	106

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

1 INTRODUZIONE

1.1 Oggetto e scopo

La presente relazione ha per oggetto ha per oggetto il dimensionamento e le verifiche di resistenza secondo il metodo semiprobabilistico agli Stati Limite (S.L.) dell'opera provvisionale delle pile 12 e 14 del viadotto Molino Vecchio L'opera stradale servita è denominata "Strada delle tre valli umbre" e si snoda fra lo svincolo di progetto della S.G.C. E45 in località Acquasparta e lo svincolo della nuova Flaminia (SS.3) in località Eggi per una lunghezza di 20+885 km. L'opera è ubicata nell'area del comune di Spoleto (PG) in prossimità della frazione Madonna di Baiano.

Si riportano le immagini del sito di ubicazione delle opere e delle planimetrie di progetto:

Figura 1-1. Localizzazione geografica dell'opera

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

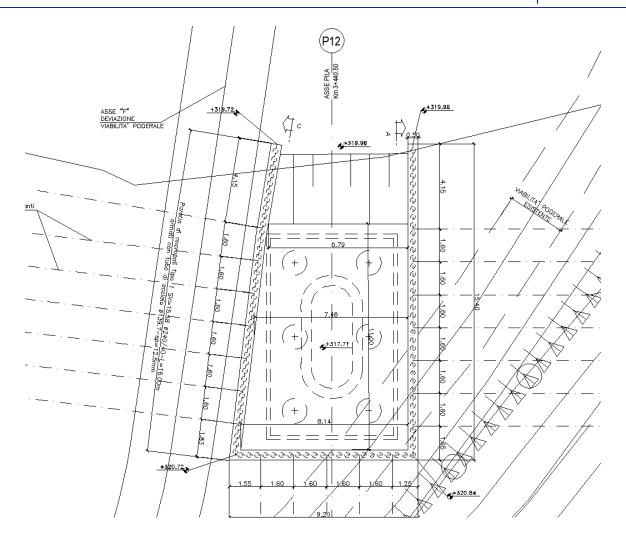


Figura 1-2. Planimetria dell'opera provvisionale Pila 12

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

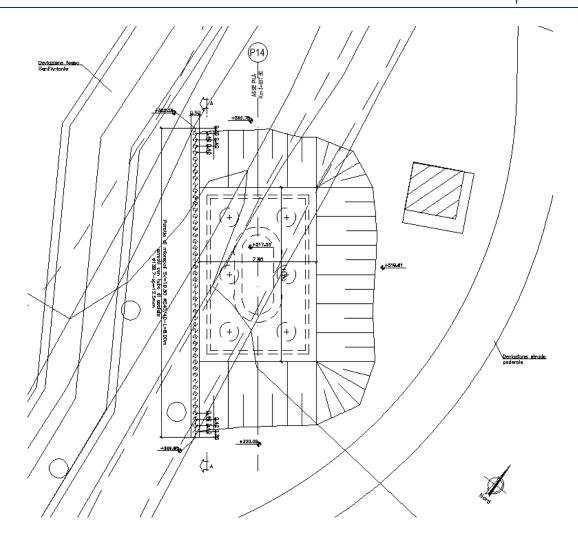


Figura 1-3. Planimetria dell'opera provvisionale Pila 14

Le analisi strutturali e le verifiche di sicurezza sono state effettuate secondo il DM 17 gennaio 2018.

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

1.2 Descrizione dell'opera

1.2.1 Opera provvisionale Pila 12

L'opera consiste in una paratia di micropali Φ 240 passo 0.40m e lunghezza L=7.0m, armati con tubolare CHS 139.7x12.5mm in acciaio. L'altezza di scavo di calcolo è pari a 3.5m, avendo incrementato l'altezza effettiva di scavo di un'aliquota pari al 10% della medesima, come previsto al §6.5.2.2 delle NTC2018. È previsto l'inserimento di un ordine di tiranti di lunghezza L=11.0m (lunghezza libera L=3.0m e lunghezza bulbo $L_b=8.0m$) e interasse i=1.6m, inclinati di 20° rispetto all'orizzontale. I tiranti sono costituiti da 3 trefoli da 0.6" in acciaio armonico.

Di seguito si riportano i prospetti dell'opera:

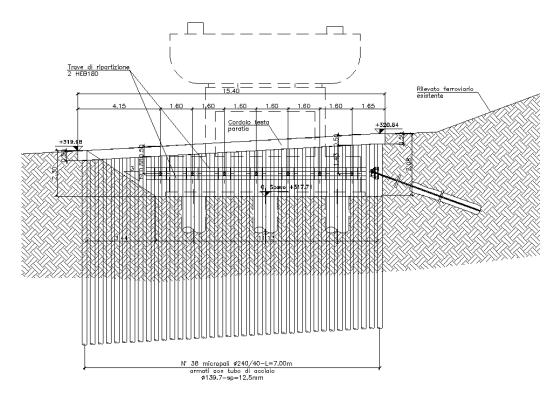


Figura 1-4. Prospetto A-A dell'opera

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

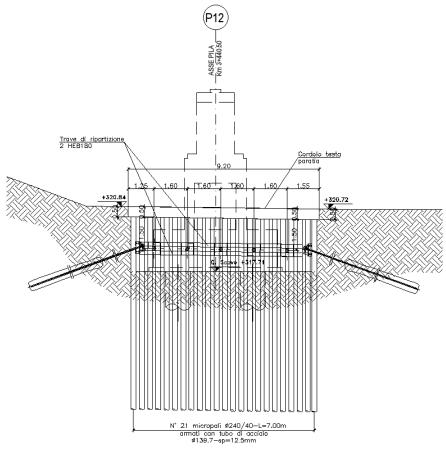


Figura 1-5. Prospetto B-B dell'opera

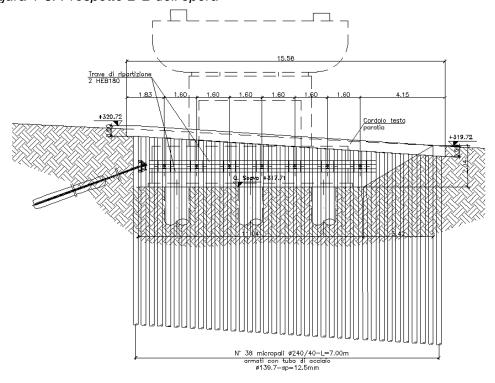


Figura 1-6. Prospetto C-C dell'opera

MANDATARIA

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

1.2.2 Opera provvisionale Pila 14

L'opera consiste in una paratia di micropali Φ 240 passo 0.40m e lunghezza L= 8.0m, armati con tubolare CHS 139.7x12.5mm in acciaio. L'altezza di scavo di calcolo è pari a 3.2m, avendo incrementato l'altezza effettiva di scavo di un'aliquota pari al 10% della medesima, come previsto al §6.5.2.2 delle NTC2018.

Di seguito si riporta un prospetto dell'opera:

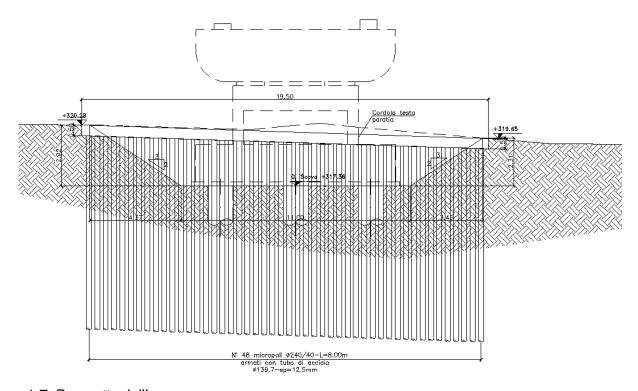


Figura 1-7. Prospetto dell'opera

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

2 RIFERIMENTI NORMATIVI

La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

- Norme Tecniche per le Costruzioni, DM del 17/01/2018;
- Legge 05/01/1971 n°1086: Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica;
- Legge 02/02/1974 n°64: Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche;
- C.M. 21/01/2019 n.7: Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni;
- UNI EN 1991-1-4:2005: Eurocodice 1 Azioni sulle strutture Parte 1-4: Azioni in generale Azioni del vento:
- UNI EN 1992-1-1:2005: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-
- 1: Regole generali e regole per gli edifici;
- UNI EN 1992-2:2006: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 2: Ponti;
- UNI EN 1993-1-1:2005: Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici;
- UNI EN 1993-2:2007: Eurocodice 3 Progettazione delle strutture di acciaio Parte 2: Ponti;
- UNI EN 1998-1:2005: Eurocodice 8 Progettazione delle strutturE per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici;
- UNI EN 1998-2:2006: Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 2: Ponti;

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

3 MATERIALI

3.1 Calcestruzzo magrone

Conglomerato classe di resistenza C12/15 - Rck 15MPa

Resistenza caratteristica cubica: $Rck = 15 \text{ N/mm}^2$ Resistenza caratteristica cilindrica: $fck = 12 \text{ N/mm}^2$

3.2 Calcestruzzo cordoli

Conglomerato classe di resistenza C28/35 – Rck 35MPa

Resistenza caratteristica cubica: $Rck = 35 \text{ N/mm}^2$ Resistenza caratteristica cilindrica: $fck = 28 \text{ N/mm}^2$

Classe di esposizione: XC2
Classe di consistenza slump: S4

Copriferro armatura principale 50 mm

3.3 Acciaio tubi per micropali

Acciaio S355

Tensione caratteristica di snervamento: fyk = 355 MPa

3.4 Miscele cementizie per cementazione micropali e iniezione tiranti

Conglomerato classe di resistenza C25/30 - Rck 30MPa

Resistenza caratteristica cubica: $Rck = 30 \text{ N/mm}^2$ Resistenza caratteristica cilindrica: $fck = 25 \text{ N/mm}^2$

3.5 Tiranti di ancoraggio

Tiranti a trefoli da 0.6" in acciaio armonico

Tensione caratteristica di rottura: fptk = 1860 MPaTensione caratteristica all'1% f(1)tk = 1670 MPa

di deformazione totale

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

4 SOFTWARE DI CALCOLO

Si è utilizzato il software di calcolo PARATIE PLUS versione 21 [Ce.A.S. s.r.l. - Milano] per il calcolo delle sollecitazioni sugli elementi strutturali e per le verifiche dei pali.

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

5 INQUADRAMENTO GEOTECNICO

Si riportano di seguito i parametri geotecnici ell'unità geologica intercettata dall'opera:

Unità ALL:

 $\gamma_k = 18 - 19 \text{ kN/m}^3$

 $c_k' = 0 \text{ kPa}$

 $\phi_{k'} = 38^{\circ}-42^{\circ}$

 $E_k = 25 - 50 \text{ MPa}$

Ai fini delle verifiche si adotteranno i seguenti parametri:

 $\gamma = 18.5 \text{ kN/m}^3$

c' = 0 kPa

 $\phi' = 40^{\circ}$

E = 37.5 MPa

La falda si trova ad una profondità di circa 9.0 m dal p.c. per la pila 12 e ad una profondità di circa 10.0m dal p.c. per la pila 14.

Dalle indagini condotte si evince una categoria stratigrafica di suolo pari a 'C'.

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Ss = 1.456

6 INQUADRAMENTO SISMICO

6.1 Opera provvisionale Pila 12

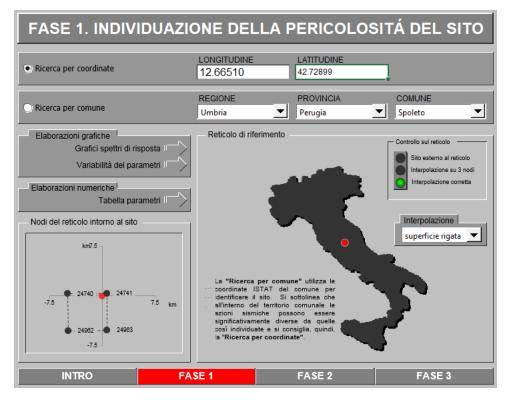
Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 17gennaio 2018.

Sulla base delle indicazioni delle NTC2018 si assumono i seguenti valori per determinare l'azione sismica di riferimento.

L'ubicazione della pila 12 (Long: 12.665098°; Lat: 42.728990°):

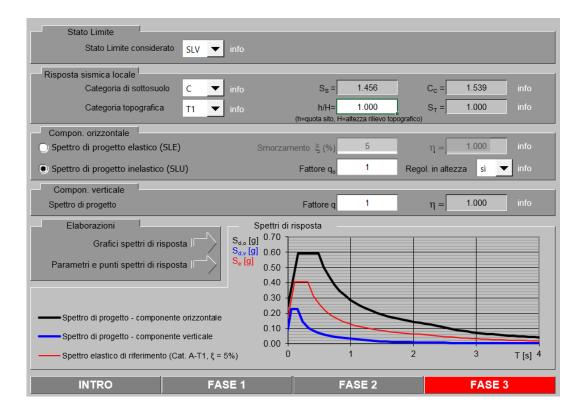
Coefficiente di amplificazione stratigrafica

-	Classe d'uso:	IV
-	Coefficiente d'uso:	Cu (IV) = 2.0
-	Categoria topografica:	T1
-	Coefficiente di amplificazione topografica	S _T =1
-	Categoria di sottosuolo	С
-	Vita nominale:	VN = 10 anni
-	Vita di riferimento	VR = 35 anni



VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

MANDATARIA



VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

SLATO	T _R	a g	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	30	0.064	2.465	0.269
SLD	35	0.069	2.465	0.272
SLV	332	0.168	2.416	0.314
SLC	682	0.214	2.446	0.325

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV

Parametri indipendenti

STATO LIMITE	SLV
a _o	0.168 g
F _o	2.416
T _c *	0.314 s
Ss	1.456
Cc	1.539
S _T	1.000
q	1.000

Parametri dipendenti

S	1.456
η	1.000
TB	0.161 s
Tc	0.483 s
T _D	2.273 s

Espressioni dei parametri dipendenti

 $S = S_x \cdot S_T$ (NTC-08 Eq. 3.2.5)

 $\eta = \sqrt{10/(5+\xi)} \ge 0.55$; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

 $T_B = T_C/3$ (NTC-07 Eq. 3.2.8)

 $T_{C} = C_{C} \cdot T_{C}^{\dagger}$ (NTC-07 Eq. 3.2.7)

 $T_0 = 4.0 \cdot a_o / g + 1.6$ (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ \end{split}$$

Lo spettro di progetto $S_a(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_a(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

aniu u	Tr-1	
	T [s]	Se [g]
т.	0.000	0.245
T₀◀	0.161	0.592
Tℯ ⋖	0.483	0.592
	0.568	0.503
	0.653	0.438
	0.739	0.387
	0.824	0.347
	0.909	0.314
	0.994	0.288
	1.080	0.265
	1.165	0.245
	1.250	0.229
	1.336	0.214
	1.421	0.201
	1.506 1.591	0.190
		0.180
	1.677 1.762	0.171 0.162
	1.847	0.155
	1.932	0.133
	2.018	0.142
	2.103	0.136
	2.188	0.131
T₀ ∢ −	2.273	0.126
	2.356	0.117
	2.438	0.109
	2.520	0.102
	2.602	0.096
	2.684	0.090
	2.767	0.085
	2.849	0.080
	2.931	0.076
	3.013	0.072
	3.096	0.068
	3.178	0.064
	3.260	0.061
	3.342	0.058
	3.424	0.055
	3.507	0.053
	3.589	0.050
	3.671	0.048
	3.753	0.046
	3.836	0.044
	3.918	0.042
	4.000	0.041

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Spettri di risposta (componenti orizz. e vert.) per lo stato lim SLV

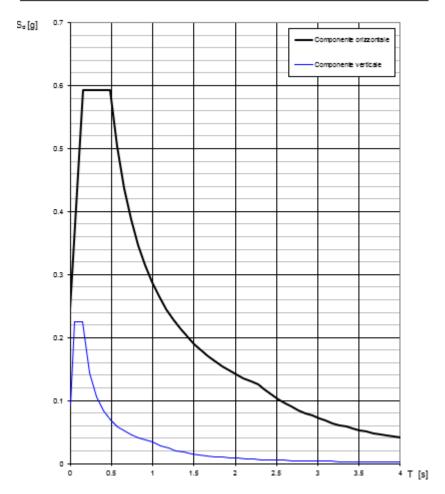


Figura 6.1. Spettro di Risposta SLV. Componenti orizzontali e orizzontali del sisma

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

VR = 35 anni

Ss = 1.456

6.2 Opera provvisionale Pila 14

Vita di riferimento

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 17gennaio 2018.

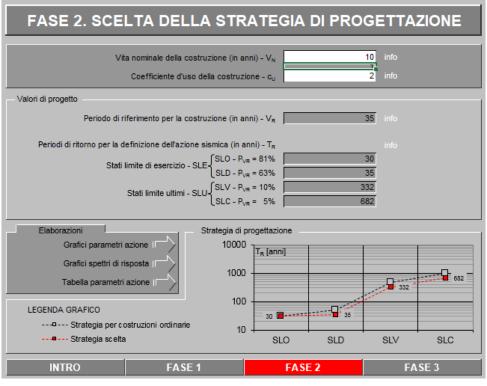
Sulla base delle indicazioni delle NTC2018 si assumono i seguenti valori per determinare l'azione sismica di riferimento.

L'ubicazione della pila 14 (Long: 12.665870°; Lat: 42.729487°):

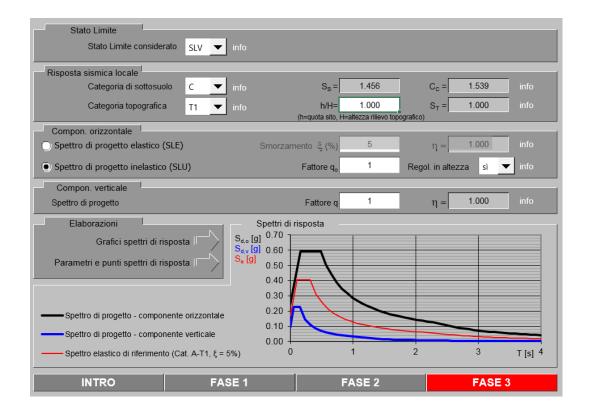
Coefficiente di amplificazione stratigrafica

-	Classe d'uso:	IV
-	Coefficiente d'uso:	Cu (IV) = 2.0
-	Categoria topografica:	T1
-	Coefficiente di amplificazione topografica	S _T =1
-	Categoria di sottosuolo	С
-	Vita nominale:	VN = 10 anni





VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile



VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

SLATO	T _R	\mathbf{a}_{g}	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	30	0.064	2.465	0.269
SLD	35	0.069	2.465	0.272
SLV	332	0.169	2.415	0.314
SLC	682	0.214	2.446	0.325

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV

Paramet	ri indi	pend	enti
---------	---------	------	------

. arametr malpendent		
STATO LIMITE	SLV	
a _o	0.169 g	
F _o	2.415	
T _c '	0.314 s	
Ss	1.456	
Cc	1.539	
S _⊤	1.000	
q	1.000	

Parametri dipendenti

S	1.456
η	1.000
T _B	0.161 s
T _c	0.483 s
T _D	2.274 s

Espressioni dei parametri dipendenti

 $\mathbb{S} = \mathbb{S}_{\mathbb{S}} \cdot \mathbb{S}_{\mathbb{T}} \tag{NTC-08 Eq. 3.2.5}$

 $\eta = \sqrt{10/(5+\xi)} \ge 0.55$; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

 $T_B = T_C/3$ (NTC-07 Eq. 3.2.8)

 $T_{c} = C_{c} \cdot T_{c}^{\dagger}$ (NTC-07 Eq. 3.2.7)

 $T_0 = 4,0 \cdot a_a / g + 1,6$ (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B \\ & S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ & T_B \leq T < T_C \\ & S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \\ & T_C \leq T < T_D \\ & S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ & T_D \leq T \\ & S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_a(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_a(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	T [s]	Se [g]
	0.000	0.245
T₽◀	0.161	0.593
Tℯ 	0.483	0.593
	0.568	0.504
	0.653	0.438
	0.739	0.387
	0.824	0.347
	0.909	0.315
	0.995	0.288
	1.080	0.265
	1.165	0.246
	1.251	0.229
	1.336	0.214
	1.421	0.201
	1.507	0.190
	1.592	0.180
	1.677	0.171
	1.763	0.162
	1.848	0.155
	1.933	0.148
	2.018	0.142
	2.104	0.136
т.	2.189	0.131
T₀◀─	2.274	0.126
	2.357	0.117
	2,439	0.109
	2.521	0.102
	2,603	0.096
	2.685	0.090
	2.767 2.850	0.085 0.080
	2.932	0.080
	3.014	0.072
	3.096	0.068
	3.178	0.064
	3.260	0.061
	3.343	0.058
	3,425	0.056
	3.507	0.053
	3.589	0.051
	3.671	0.048
	3.753	0.046
	3.836	0.044
	3.918	0.042
	4.000	0.041

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Spettri di risposta (componenti orizz. e vert.) per lo stato lim SLV

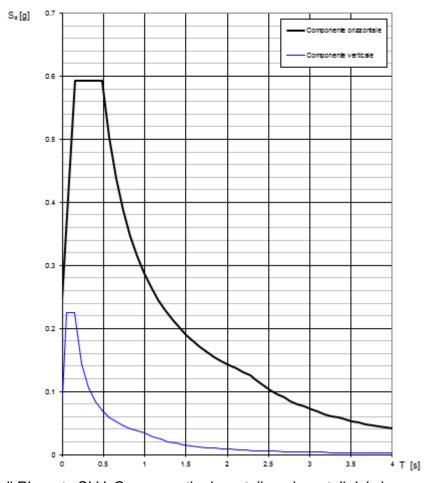
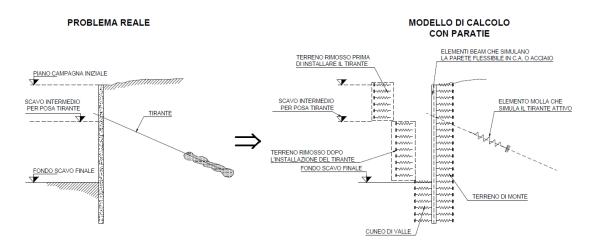


Figura 6.2. Spettro di Risposta SLV. Componenti orizzontali e orizzontali del sisma

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

7 DESCRIZIONE MODELLO DI CALCOLO


Al fine di rappresentare il comportamento delle paratie durante le varie fasi di lavoro (scavi e/o eventuale inserimento degli elementi di contrasto), è necessario l'impiego di un metodo di calcolo iterativo atto a simulare l'interazione in fase elasto-plastica terreno-paratia.

Lo studio del comportamento di un elemento di paratia inserito nel terreno viene effettuato tenendo conto della deformabilità dell'elemento stesso, considerato in regime elastico, e soggetto alle azioni derivanti dalla spinta dei terreni, dalle eventuali differenze di pressione idrostatiche, dalle spinte dovute ai sovraccarichi esterni e dalla presenza degli elementi di contrasto.

La paratia viene discretizzata con elementi finiti monodimensionali a due gradi di libertà per nodo (spostamento orizzontale e rotazione).

Il terreno viene schematizzato con delle molle secondo un modello elasto-plastico; esso reagisce elasticamente sino a valori limite dello spostamento, raggiunti i quali la reazione corrisponde, a seconda del segno dello stesso spostamento, ai valori limite della pressione attiva o passiva.

Gli spostamenti sono computati a partire dalla situazione di spinta "a riposo".

Al fine di ottenere informazioni attendibili sull'entità delle sollecitazioni e delle deformazioni nelle paratie è necessario poterne seguire il comportamento durante le principali fasi esecutive.

A tal riguardo, l'interazione fra la paratia e il terreno, è simulata modellando la prima con elementi finiti caratterizzati da una rigidezza flessionale ed il secondo con molle elasto-plastiche connesse ai nodi della paratia di rigidezza proporzionale al modulo di rigidezza del terreno.

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Inoltre, è possibile modellare eventuali elementi di sostegno della paratia (tiranti, puntoni) con molle dotate di opportuna rigidezza.

In particolare, la paratia è schematizzata attraverso un diaframma di spessore equivalente ricavato attraverso la seguente espressione:

$$s_{eq} = \sqrt[3]{12E_m J_p}$$

dove:

- E_m: modulo elastico del materiale costituente la paratia

- J_p: inerzia della sezione della paratia

Il terreno si comporta come un mezzo elastico sino a che il rapporto tra la tensione orizzontale efficace (σ 'h) e la tensione verticale efficace (σ 'v) risulta compreso tra il coefficiente di spinta attivo (ka) e passivo (kp), mentre quando il rapporto è pari a ka o a kp il terreno si comporta come un mezzo elasto-plastico.

Questo modello, nella sua semplicità concettuale, derivato direttamente dal modello di Winkler, consente una simulazione del comportamento del terreno adeguata agli scopi progettuali. In particolare, sono superate le limitazioni dei più tradizionali metodi dell'equilibrio limite, non idonei a seguire il comportamento della struttura al variare delle fasi esecutive.

I parametri di deformabilità del terreno compaiono nella definizione della rigidezza delle molle. Per un letto di molle distribuite la rigidezza di ciascuna di esse, k, è data da:

$$k = E / L$$

dove E è un modulo di rigidezza del terreno mentre L è una grandezza geometrica caratteristica.

Poiché nel programma PARATIE le molle sono posizionate a distanze finite Δ , la rigidezza di ogni molla è:

$$k=E\Lambda/L$$

dove E è un modulo di rigidezza del terreno mentre L è una grandezza geometrica caratteristica.

Il valore di Δ è fornito dalla schematizzazione ad elementi finiti. Il valore di L è fissato automaticamente dal programma. Esso rappresenta una grandezza caratteristica che è diversa

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

a valle e a monte della paratia perché diversa è la zona di terreno coinvolta dal movimento in zona attiva e passiva. Si è scelto:

in zona attiva (uphill):

$$L_A = \frac{2}{3} \ell_A \tan(45^\circ - \phi'/2)$$

in zona passiva (downhill):

$$L_p = \frac{2}{3} \ell_p \tan(45^\circ + \phi'/2)$$

con:

I = altezza totale della paratia

H = altezza corrente dello scavo.

La logica di questa scelta è illustrata nella pubblicazione di Becci e Nova (1987). Si assume in ogni caso un valore di H non minore di 1/10 dell'altezza totale della parete.

Il programma consente di seguire le fasi evolutive degli scavi a valle dell'opera, determinando, per ciascuna fase di scavo prevista, la deformata dell'opera e le sollecitazioni e gli stati tensionali nel terreno con essa interagente. Il software consente di tener conto anche della presenza di vincoli lungo la paratia, sia di tipo elastico (molle /tiranti) che di tipo rigido.

La presenza dei tiranti viene infine schematizzata dal software come dei vincoli elastici, la cui deformabilità dipende dalle caratteristiche della sezione resistente in acciaio dei tiranti e dalla lunghezza libera degli stessi, eventualmente incrementata di una quantità funzione dell'efficienza (≤ 1) associata al bulbo di ancoraggio. Il software utilizzato, consente di modellare l'interazione con il terreno della struttura, in particolare le spinte statiche e dinamiche delle terre, durante tutte le fasi intermedie e nella configurazione finale, in modo da valutare l'evoluzione dello stato deformativo e sollecitativo. La sezione di calcolo considerata è quella parallela al tracciato ferroviario.

Di seguito si riportano le fasi di calcolo modellate.

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

7.1 Opera provvisionale Pila 12

- FASE 1: stato di fatto;
- FASE 2: esecuzione cordolo e micropali e applicazione carico accidentale;
- FASE 3: scavo preliminare per la realizzazione dei tiranti di ancoraggio;
- FASE 4: realizzazione dei tiranti di ancoraggio;
- FASE 5: scavo finale:
- FASE 6: applicazione dell'azione sismica allo SLV:

FASE 1

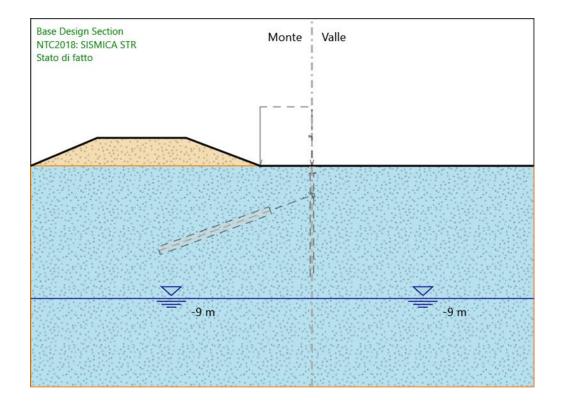


Figura 7-1. Fase 1 – Stato di fatto

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

FASE 2

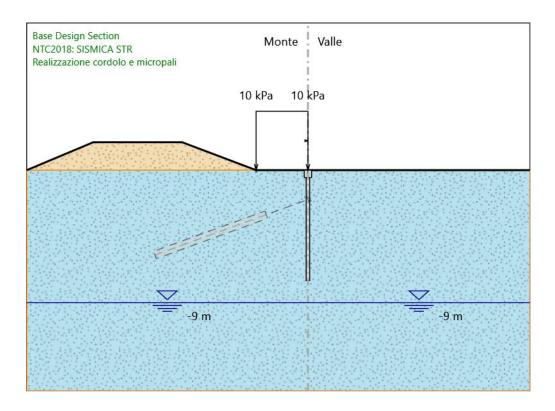


Figura 7-2. Fase 2 - Esecuzione cordolo e micropali e applicazione carico accidentale

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

FASE 3

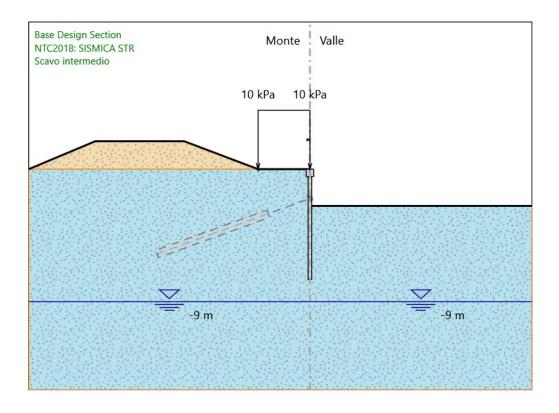


Figura 7-3. Fase 3 -Scavo preliminare per la realizzazione dei tiranti di ancoraggio

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

FASE 4

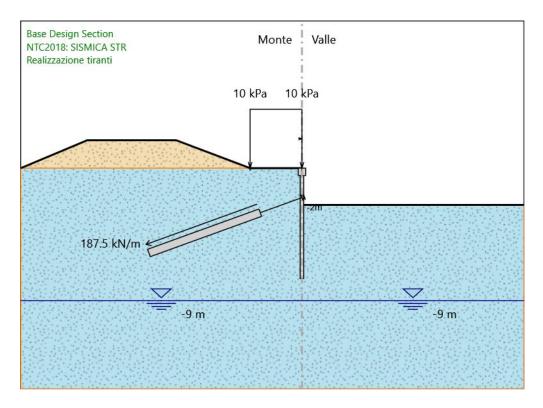


Figura 7-4. Fase 4 – Realizzazione dei tiranti di ancoraggio

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

FASE 5

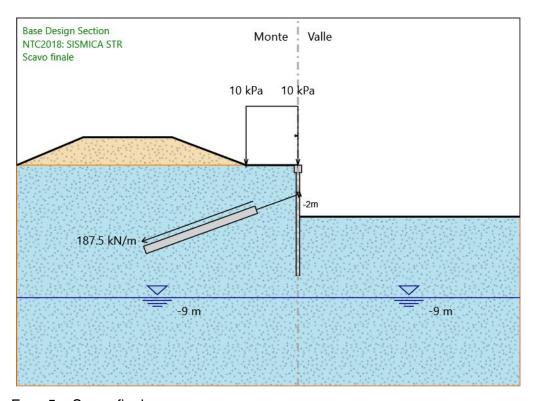


Figura 7-5. Fase 5 – Scavo finale

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

FASE 6

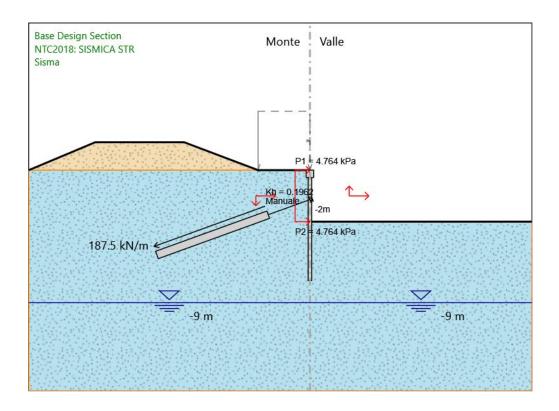


Figura 7-6. Fase 6 – Applicazione dell'azione sismica allo SLV

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

7.2 Opera provvisionale Pila 14

- FASE 1: stato di fatto;
- FASE 2: esecuzione cordolo e micropali e applicazione carico accidentale;
- FASE 3: scavo;
- FASE 4: applicazione dell'azione sismica allo SLV:

FASE 1

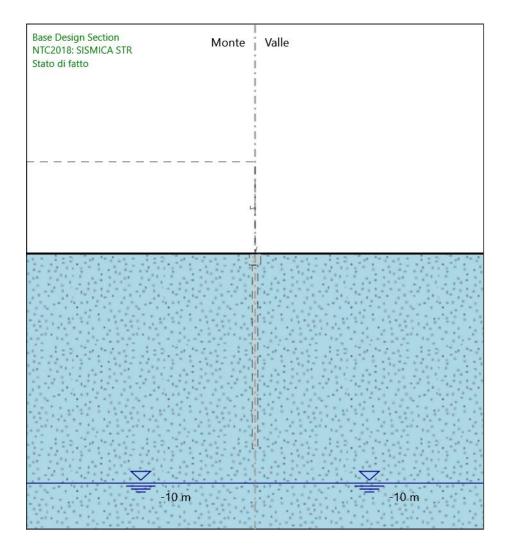


Figura 7-7. Fase 1 – Stato di fatto

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

FASE 2

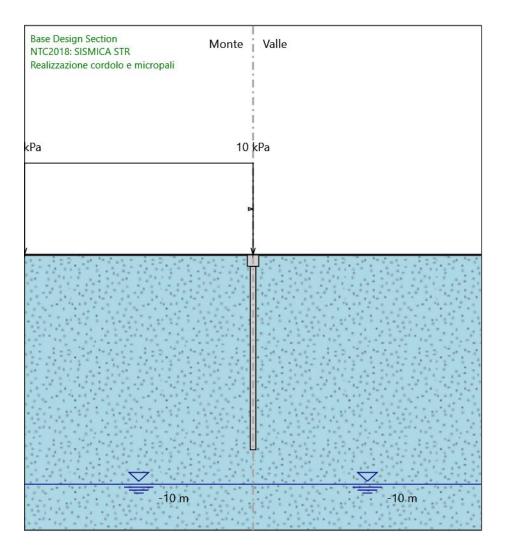


Figura 7-8. Fase 2 - Esecuzione cordolo e micropali e applicazione carico accidentale

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

FASE 3

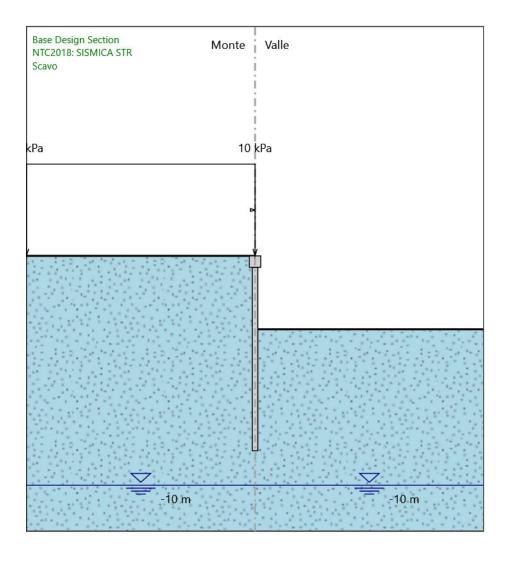


Figura 7-9. Fase 3 -Scavo

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

FASE 4

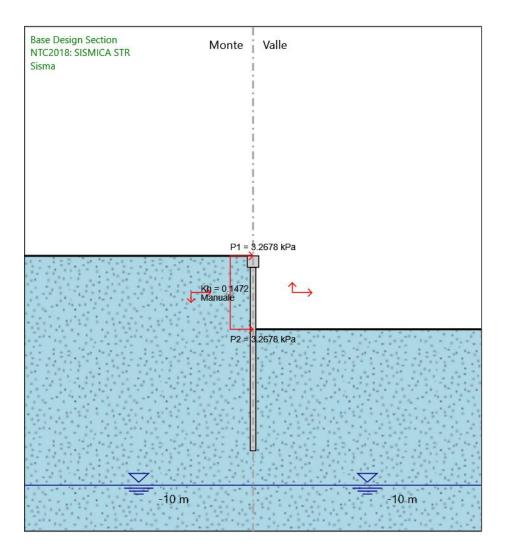


Figura 7-10. Fase 4 – Applicazione dell'azione sismica allo SLV

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Firenzuola-Acquasparta

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

8 ANALISI DEI CARICHI

8.1 Peso proprio della struttura

Il peso proprio degli elementi strutturali viene calcolato considerando per il c.a. γ_c = 25 kN/m³. Il peso proprio viene automaticamente calcolato dai software di calcolo in base alle dimensioni delle sezioni degli elementi.

8.2 Spinta delle terre

L'entità della spinta delle terre sull'opera di scavalco è determinata fase per fase dal software di calcolo, a partire da condizioni iniziali di spinta a riposo.

8.3 Carichi accidentali da traffico

Si è considerato un carico accidentale da traffico (mezzi di cantiere) a monte della paratia pari a 10 kN/m².

8.4 Azioni sismiche

L'azione sismica è stata individuata in accordo con le normative vigenti sulla base dei seguenti parametri riportati al Capitolo 6 della presente relazione.

Il calcolo viene eseguito con il metodo pseudostatico. In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

In base alle accelerazioni massime attese sul sito in esame si valutano, alla luce dei parametri valutati sopra nella condizione di SLV., i coefficienti di intensità sismica da utilizzarsi nelle analisi pseudo statiche, con le espressioni che seguono.

$$k_h = a_a/a \cdot S_S \cdot S_T \cdot \alpha \cdot \beta$$
 $k_v = 0.5 \cdot k_h$

Nella precedente espressione, i coefficienti β e α assumono i valori desunti dalle Figg. 7.11.2 e 7.11.3 delle NTC.

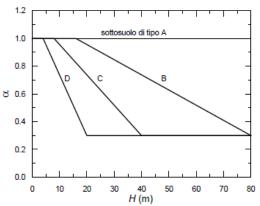


Fig. 7.11.2 – Diagramma per la valutazione del coefficiente di deformabilità α

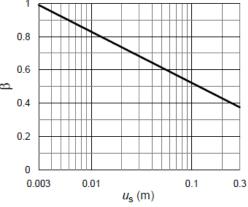


Fig. 7.11.3 – Diagramma per la valutazione del coefficiente di spostamento β .

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Firenzuola-Acquasparta

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

9 CRITERI DI VERIFICA

Le verifiche strutturali e geotecniche dei micropali e dei tiranti sono eseguite tramite PARATIE PLUS.

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

10 SINTESI RISULTATI

Di seguito si riportano in forma grafica gli andamenti ed i valori delle sollecitazioni derivanti dal modello di calcolo.

10.1 Opera provvisionale Pila 12

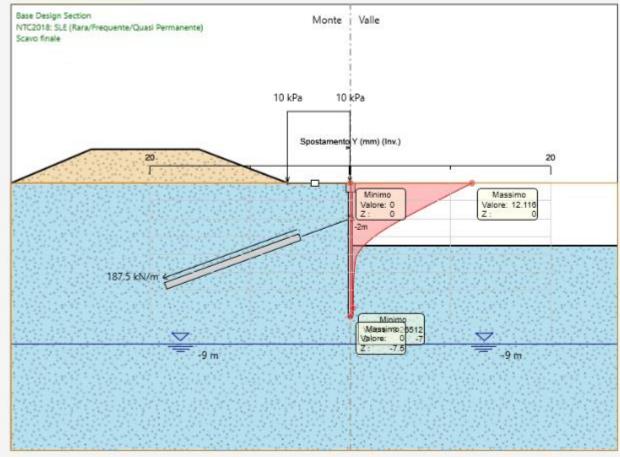


Figura 10-1. Deformate delle paratie allo SLE (valore massimo = 12.11 mm)

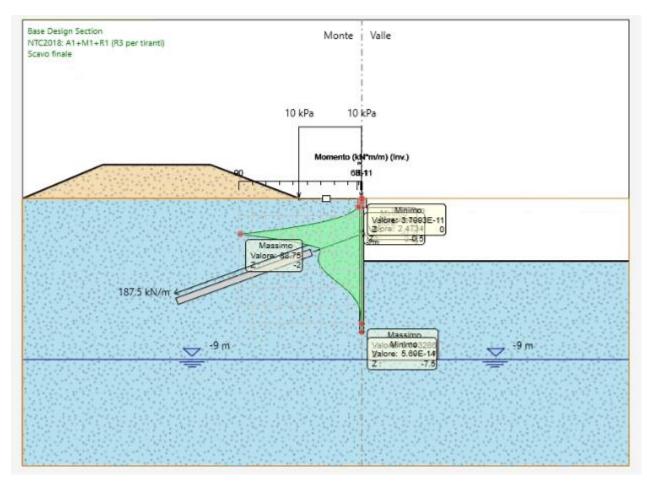


Figura 10-2. Momenti flettenti sulle paratie allo SLU (condizioni statiche) (valore massimo = 88.75 kNm/m)

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

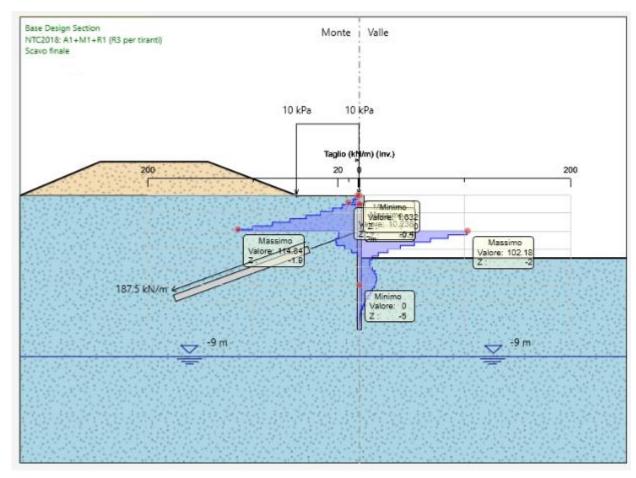


Figura 10-3. Forze di taglio sulle paratie allo SLU (condizioni statiche) (valore massimo = 114.84 kN/m)

MANDATARIA

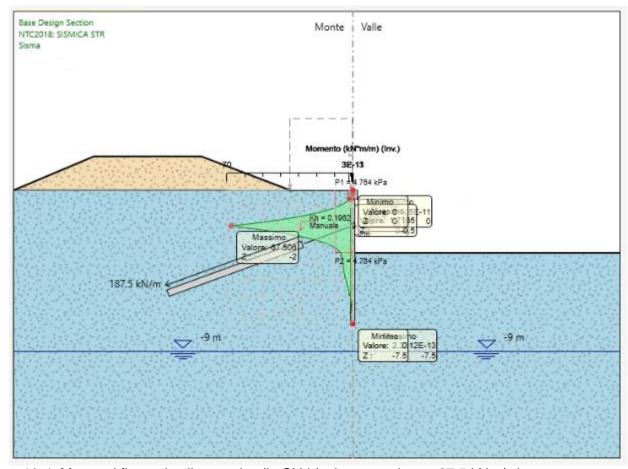


Figura 10-4. Momenti flettenti sulle paratie allo SLV (valore massimo = 67.5 kNm/m)

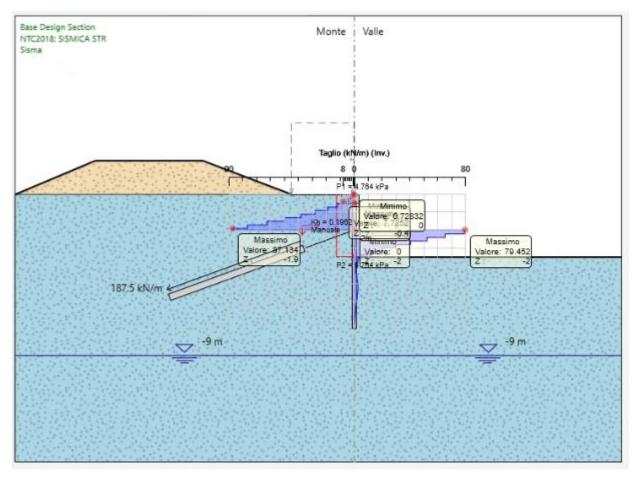


Figura 10-5. Forze di taglio sulle paratie allo SLV (valore massimo = 87.13 kN/m)

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

10.2 Opera provvisionale Pila 14

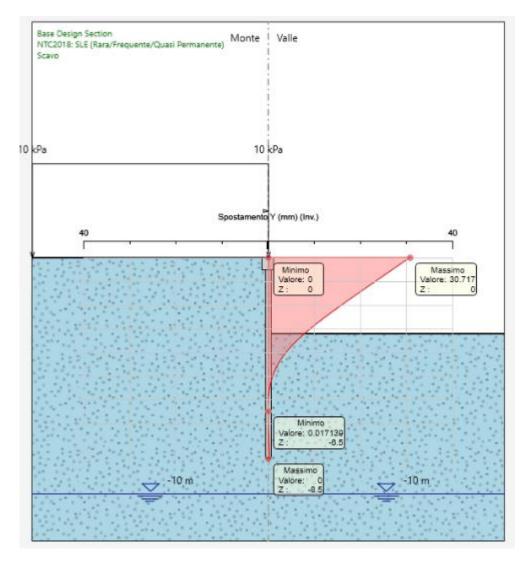


Figura 10-6. Deformate delle paratie allo SLE (valore massimo = 30.72 mm)

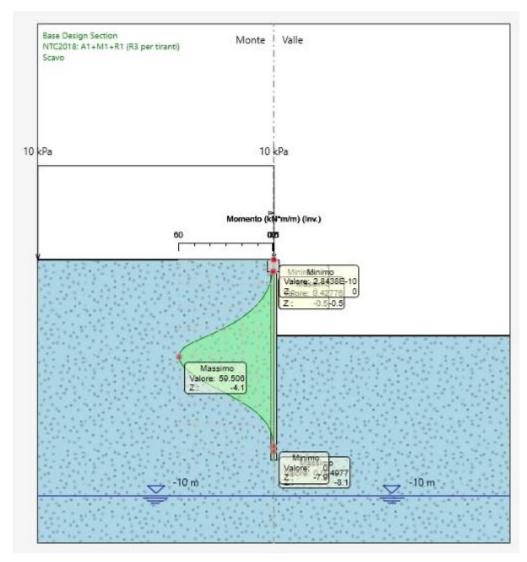


Figura 10-7. Momenti flettenti sulle paratie allo SLU (condizioni statiche) (valore massimo = 59.5. kNm/m)

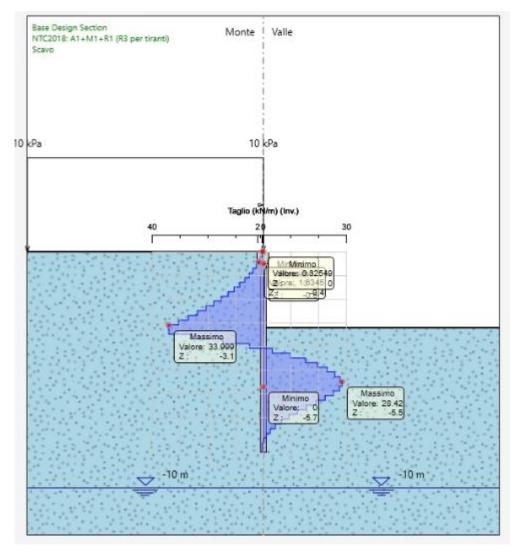


Figura 10-8. Forze di taglio sulle paratie allo SLU (condizioni statiche) (valore massimo = 33.0 kN/m)

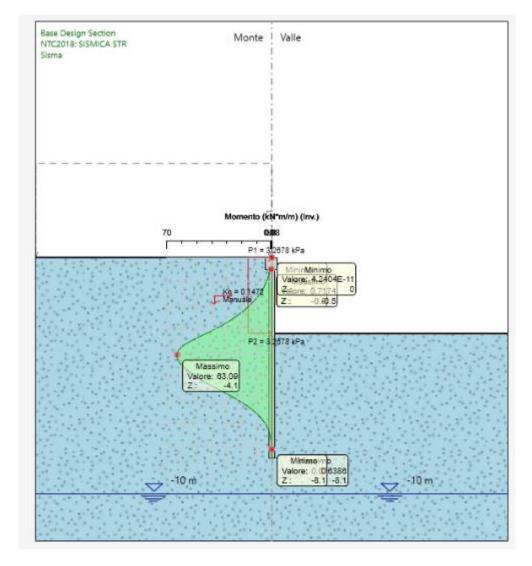


Figura 10-9. Momenti flettenti sulle paratie allo SLV (valore massimo = 63.1 kNm/m)

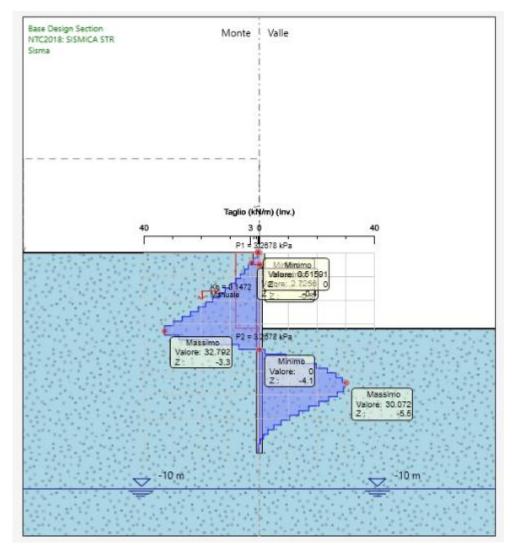


Figura 10-10. Forze di taglio sulle paratie allo SLV (valore massimo = 32.8 kN/m)

STRADA DELLE TRE VALLI UMBRE

Tratto Eggi-Acquasparta – lº Stralcio Firenzuola-Acquasparta

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

11 COMBINAZIONI DI CARICO

Le combinazioni di carico prese in considerazione nelle verifiche sono state definite in base a quanto prescritto dalle NTC-2018 al par.2.5.3:

Combinazione fondamentale, impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{O2} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{O3} \cdot Q_{k3} + \dots;$$

Combinazione caratteristica rara, impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche delle tensioni d'esercizio:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} \dots;$$

Combinazione caratteristica frequente, impiegata per gli stati limite di esercizio (SLE) reversibili, da utilizzarsi nelle verifiche a fessurazione:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} \dots;$$

Combinazione quasi permanente, generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} \dots$$

Combinazione sismica:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2}...$$

Per le verifiche SLU si adottano i valori dei coefficienti parziali riportati nella seguente tabella.

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Tab. 2.6.I – Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente	EQU	A1	A2
		$\gamma_{\scriptscriptstyle F}$			
Conidition and the Co	Favorevoli	2/	0,9	1,0	1,0
Carichi permanenti Gı	Sfavorevoli	ΥG1	1,1	1,3	1,0
Ci-1:	Favorevoli		0,8	0,8	0,8
Carichi permanenti non strutturali G2 ⁽¹⁾	Sfavorevoli	Υ _{G2}	1,5	1,5	1,3
A minumi manada bidi O	Favorevoli	2/	0,0	0,0	0,0
Azioni variabili Q	Sfavorevoli	ΥQi	1,5	1,5	1,3

⁽¹⁾Nel caso in cui l'intensità dei carichi permanenti non strutturali o di una parte di essi (ad es. carichi permanenti portati) sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti parziali validi per le azioni permanenti.

Nella Tab. 2.6.I il significato dei simboli è il seguente:

γ_{G1} coefficiente parziale dei carichi permanenti G₁;

γ_{G2} coefficiente parziale dei carichi permanenti non strutturali G2;

γ_{Qi} coefficiente parziale delle azioni variabili Q.

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

12 VERIFICHE STRUTTURALI

Di seguito si descrivono le verifiche strutturali svolte su ciascuno degli elementi.

12.1 Opera provvisionale Pila 12

12.1.1 Mlcropali in acciaio

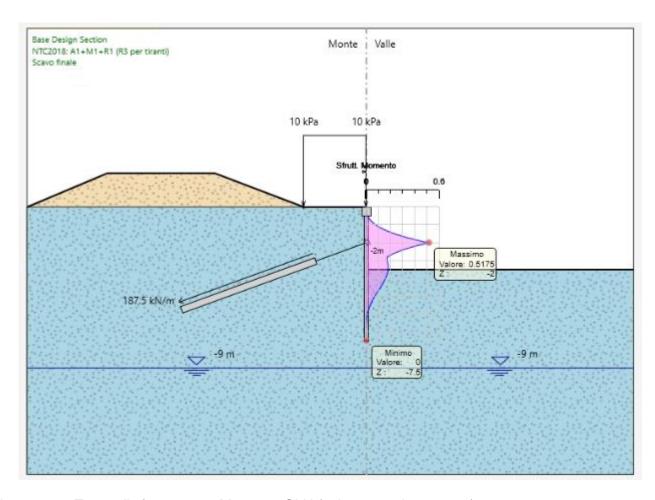


Figura 12-1. Tasso di sfruttamento Momento SLU (valore massimo = 0.52)

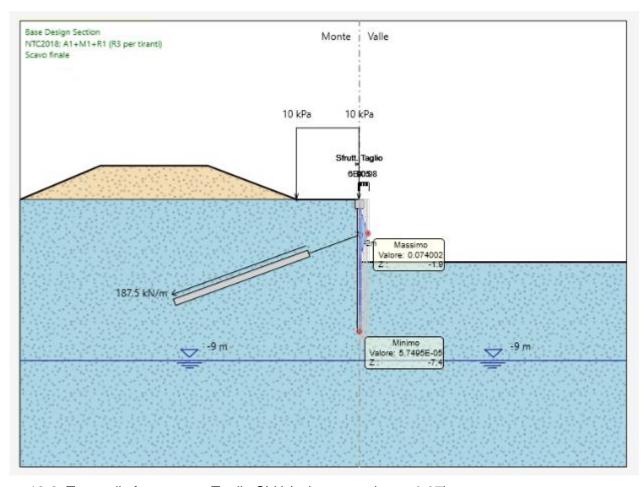


Figura 12-2. Tasso di sfruttamento Taglio SLU (valore *massimo* = 0.07)

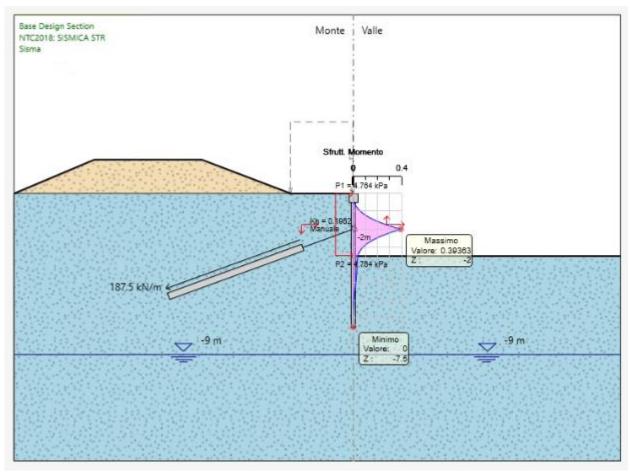


Figura 12-3. Tasso di sfruttamento Momento SLV (valore massimo = 0.39)

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

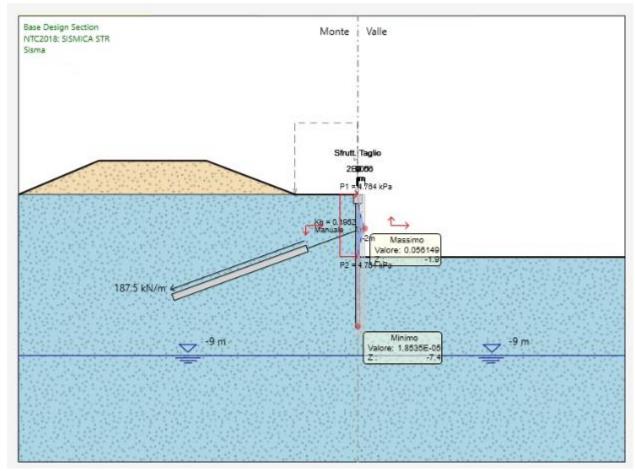
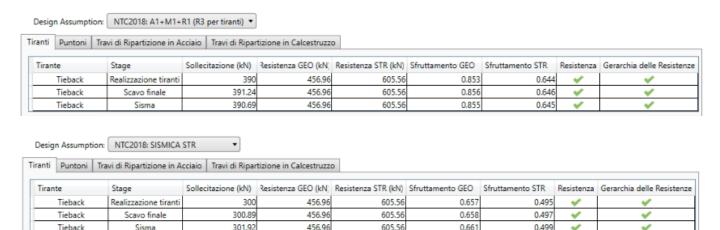


Figura 12-4. Tasso di sfruttamento Taglio SLV (valore massimo = 0.06)

In figura 10.1 della presente relazione è riportato il diagramma degli spostamenti laterali allo SLE dal quale si evince uno spostamento massimo in testa al micropalo pari a 12.11 mm. Di seguito si riporta la verifica dello spostamento massimo ammissibile del micropalo:

		m	mm		limite spostamento paratia a SLE		risultato sle	
check 1	0.005H	0.035	35	m	mm		mm	
check 2	1/100H _{scavo}	0.035	35	0.035	35	>	12.11	ok


STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Firenzuola-Acquasparta

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

12.1.2 Tiranti di ancoraggio

Di seguito si riportano in forma tabellare le verifiche GEO e STR dei tiranti di ancoraggio:

12.1.2.1 Verifica a trazione dell'armatura

La resistenza caratteristica della sezione in acciaio è calcolata secondo la relazione:

$$R_{ak} = f_{p(1)k} \cdot A_s$$

dove:

- A_s=n·A_t area della sezione di armatura;
- At area del singolo trefolo;
- n numero di trefoli;
- $f_{p(1)k}$ tensione caratteristica all'1% di deformazione totale.

La resistenza di progetto risulterà quindi:

$$R_{ad} = R_{ak}/\gamma$$

con γ_s = 1.15, coefficiente parziale di sicurezza per l'acciaio.

Pertanto:

 $R_{a,k} = 1670 \text{ N/mm}^2 \text{ x } 3 \text{ x } 139 \text{ mm}^2 = 696.39 \text{ kN}$

 $R_{a,d} = 696.39 \text{ kN} / 1.15 = 605.56 \text{ kN}$

La sollecitazione massima agente sul tirante è pari a 391.24 kN, pertanto la verifica risulta soddisfatta con FS = 1.55.

Realizzazione Lavori

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Firenzuola-Acquasparta

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

12.1.2.2 Verifica a sfilamento del bulbo di ancoraggio

La resistenza di calcolo allo sfilamento dell'ancoraggio è stata valutata attraverso la formulazione di Bustamante e Doix (1985):

$$R_{cal} = \pi \cdot D_s \cdot L_s \cdot 1$$

in cui:

- D_s=αD dove D è il diametro di perforazione e *a* un coefficiente maggiorativo che tiene conto della tipologia di terreno e del metodo di iniezione;
- L_s è la lunghezza del bulbo;
- τ è la resistenza tangenziale.

Si assume per l'unità geologica ALL, cautelativamente, un valore di α pari a 1.2 e un valore di τ pari a 150 kPa.

Il valore caratteristico della resistenza $R_{a,k}$ è dato dal minore dei valori ottenuti applicando alla resistenza calcolata R_{cal} i fattori di correlazione ξ_a riportati nella Tabella 6.6. Il delle *NTC2018*, in funzione del numero n di verticali di indagine. È stato assunto un fattore x_{a3} pari a 1.8:

$$R_{a,k} = min\left[\left(R_{a,c}\right)_{media}/\xi_{a3};\left(R_{a,c}\right)_{min}/\xi_{a4}\right]$$

numero di	1	2	3	4	≥ 5
verticali indagate					
ξ _{a3}	1.80	1.75	1.70	1.65	1.60
ξ _{a4}	1.80	1.70	1.65	1.60	1.55

Il valore di progetto $R_{a,d}$ della resistenza si ottiene a partire dal valore caratteristico applicando il coefficiente parziale $\gamma_{Ra} = 1.1$, previsto per ancoraggi provvisionali, come indicato nella Tabella 6.6.I delle *NTC2018*.

	simbolo γ _R	coefficiente parziale
temporanei	γ _{Ra,t}	1.1
permanenti	γ _{Ra,p}	1.2

Pertanto:

 $R_{cal} = \pi (1.2 \times 0.20 \text{m}) \times 8.0 \text{m} \times 150 \text{kPa} = 904.32 \text{ kN}$

 $R_{a,k} = 904.32 \text{ kN} / 1.8 = 502.40 \text{ kN}$

 $R_{a,d} = 502.40 \text{ kN} / 1.1 = 456.73 \text{ kN}$

La sollecitazione massima agente sul tirante è pari a 391.24 kN, pertanto la verifica risulta soddisfatta con FS = 1.17.

Realizzazione Lavori

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Firenzuola-Acquasparta

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

12.1.2.3 Verifica aderenza malta

Per eseguire la verifica in questione, è stato utilizzato l'applicativo della "Geostru".

Di seguito, si riportano i dati di input e l'esito della verifica.

DATI GENERALI	vers 3.1 (27/11/2017					
Metodo di calcolo	Schneebeli Bustamante Doix Gli ancoraggi sono elementi strutturali opportunamente collegati al terreno, in grado di sostenere forze di trazione.					
Descrizione						
NORMATIVA		NTC (A1+N	M1+R3) ~			
Ancoraggi temporanei			1.10			
Ancoraggi permanenti			1.20			
Lunghezza della zona ancorata		L _a	8 m			
Resistenza di aderenza della malta al foro						
Tensione di aderenza (valori indicativi riportati in tabella)		τ	0.6 MPa			
TERRENO	Tensione di aderenza unitaria maita-terreno [Mpa]					

	TERRENO		sione di za unitaria rreno [Mpa]
ROC	CIA		
~	Basalto	5.50	6.00
-	Calcare	2.80	4.80
~	Arenaria	1.50	1.70
~	Dolomite	1.70	1.90
4	Scisti	0.50	0.70
-	Scisti alterati	0.30	0.50
~	Gesso	0.60	0.80
	Ardesia	1.60	1.80
SCIO	LTO		
~	Limi argillosi	0.06	0.09
	Argilla satura	0.05	0.08
-	Argilla sabbiosa compatta	0.20	0.40
~	Sabbia medio fine compatta	0.20	0.60
-	Argilla medio plastica dura	0.20	0.50
4	Argilla medio plastica media	0.16	0.29
~	Sabbia grossa e ghiaia compatta	0.29	0.60

E. Segre, "Proposta di metodo di prove semplici per tiranti di ancoraggio" (Industria Italiana del Cemento 6/88)

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Firenzuola-Acquasparta

PROGETTO ESECUTIVO

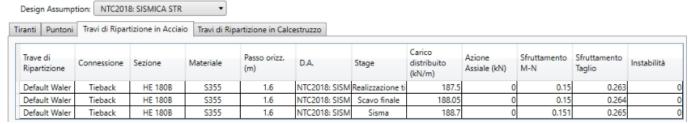
VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Verifica dell'aderenza acciaio-malta d'iniezione

Verifica dell'aderenza malta-guaina corrugata

Verifica dell'aderenza della malta al foro

La = 800.00 >= 1.31 (cm) - Soddisfatta


La = 800.00 >= 1.27 (cm) - Soddisfatta

La = 800.00 >= 11.14 (cm) - Soddisfatta

12.1.3 Trave di ripartizione

Di seguito si riportano in forma tabellare le verifiche strutturali della trave di ripartizione:

MANDATARIA

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

12.2 Opera provvisionale Pila 14

Di seguito si descrivono le verifiche strutturali svolte su ciascuno degli elementi.

12.2.1 Mlcropali in acciaio

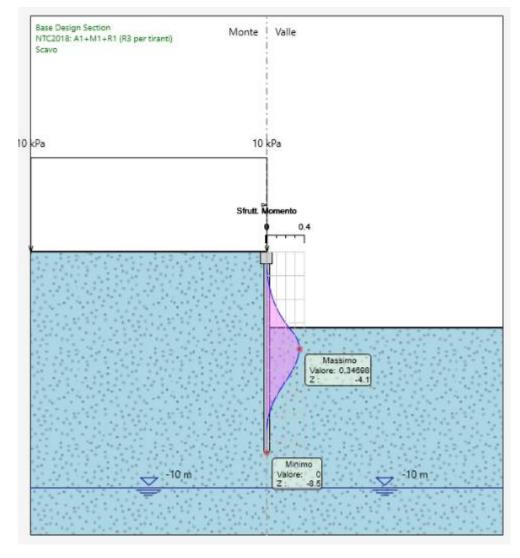


Figura 12-5. Tasso di sfruttamento Momento SLU (valore massimo = 0.35)

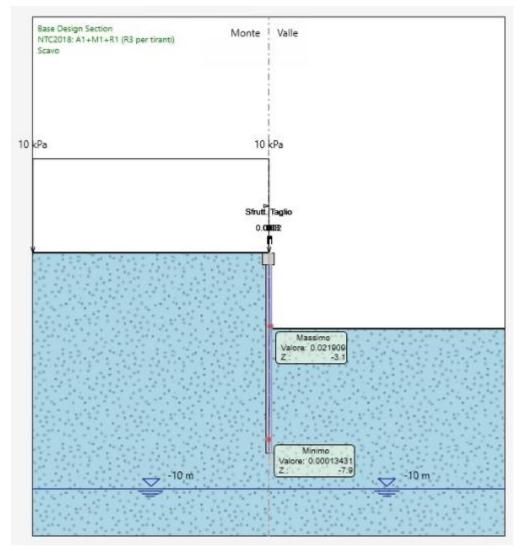


Figura 12-6. Tasso di sfruttamento Taglio SLU (valore *massimo* = 0.02)

Figura 12-7. Tasso di sfruttamento Momento SLV (valore massimo = 0.37)

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

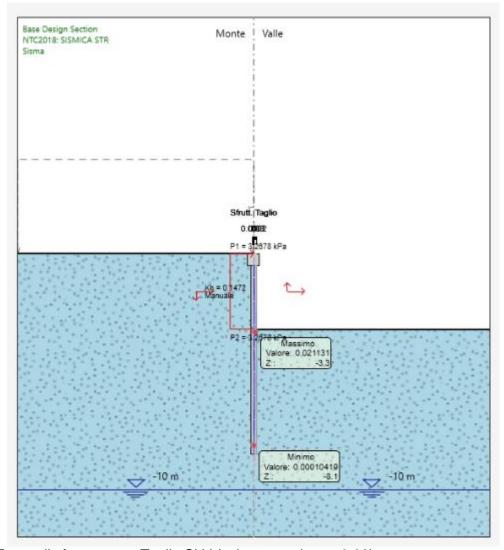


Figura 12-8. Tasso di sfruttamento Taglio SLV (valore massimo = 0.02)

In figura 10.1 della presente relazione è riportato il diagramma degli spostamenti laterali allo SLE dal quale si evince uno spostamento massimo in testa al micropalo pari a 30.72 mm. Di seguito si riporta la verifica dello spostamento massimo ammissibile del micropalo:

		m	mm		limite spostamento paratia a SLE		risultato sle	
check 1	0.005H	0.04	40	m	mm		mm	
check 2	1/100H _{scavo}	0.032	32	0.032	32	>	30.72	ok

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

13 VERIFICHE GEOTECNICHE

Di seguito si riportano i risultati delle verifiche di tipo geotecnico sui micropali, ovvero la resistenza passiva mobilitata a valle della paratia.

13.1 Opera provvisionale Pila 12

Il grado di mobilitazione della resistenza passiva a valle dei micropali a brebe termine risulta pari a circa il 16%.

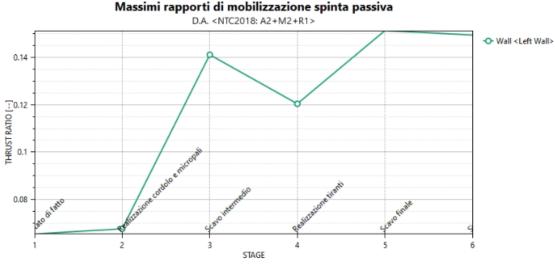


Figura 13-1. Diagramma mobilitazione spinta passiva

13.2 Opera provvisionale Pila 14

Il grado di mobilitazione della resistenza passiva a valle dei micropali a brebe termine risulta pari a circa il 16%.

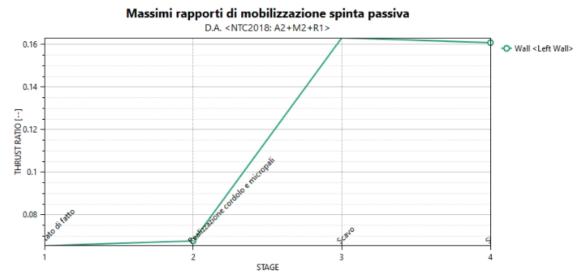


Figura 13-2. Diagramma mobilitazione spinta passiva

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Firenzuola-Acquasparta

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

14 TABULATO PARATIE PLUS

14.1 Opera provvisionale Pila 12

Descrizione della Stratigrafia e degli Strati di Terreno

Tipo : HORIZONTAL Quota : 1.9 m OCR : 1

Tipo: HORIZONTAL

Quota: 0 m OCR: 1

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Firenzuola-Acquasparta

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Descrizione Pareti

X:0 m

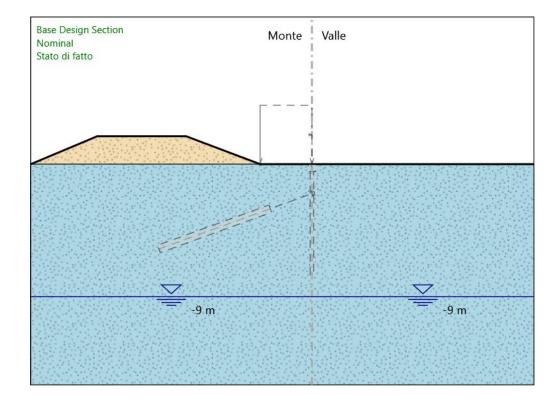
Quota in alto : -0.5 m Quota di fondo : -7.5 m

Muro di sinistra

X:0 m

Quota in alto : 0 m Quota di fondo : -0.5 m

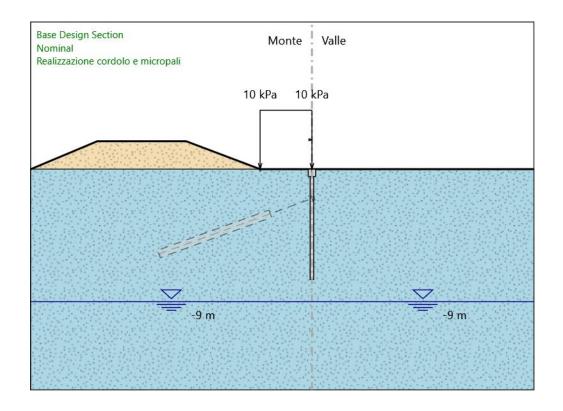
Muro di sinistra



VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Fasi di Calcolo

Stato di fatto



VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Realizzazione cordolo e micropali

Realizzazione cordolo e micropali

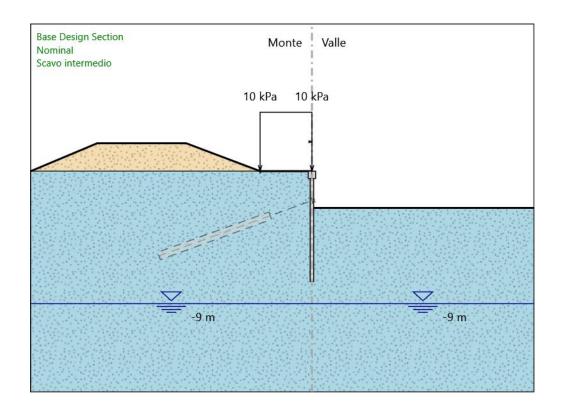
Elementi strutturali

Paratia : micropali X : 0 m

> Quota in alto: -0.5 m Quota di fondo: -7.5 m Sezione: MICROPALI

Paratia : cordolo X : 0 m

Quota in alto : 0 m Quota di fondo : -0.5 m Sezione : CORDOLO



VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Scavo intermedio

Scavo intermedio

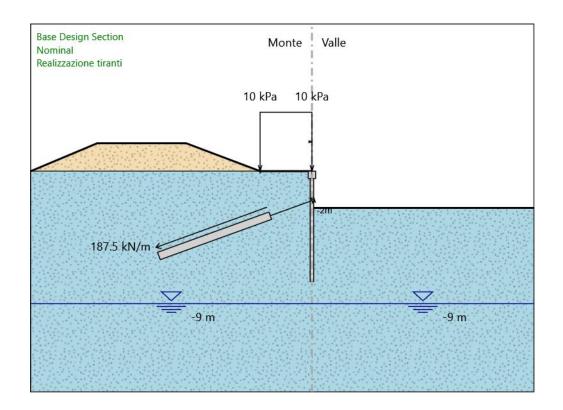
Elementi strutturali

Paratia : micropali X : 0 m

> Quota in alto : -0.5 m Quota di fondo : -7.5 m Sezione : MICROPALI

Paratia : cordolo X : 0 m

Quota in alto : 0 m Quota di fondo : -0.5 m Sezione : CORDOLO



VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Realizzazione tiranti

Realizzazione tiranti

Elementi strutturali

Paratia : micropali X : 0 m

> Quota in alto: -0.5 m Quota di fondo: -7.5 m Sezione: MICROPALI

Paratia : cordolo X : 0 m

> Quota in alto : 0 m Quota di fondo : -0.5 m Sezione : CORDOLO

Tirante : Tieback X : 0 m Z : -2 m

> Lunghezza bulbo : 8 m Diametro bulbo : 0.2 m Lunghezza libera : 3 m

STRADA DELLE TRE VALLI UMBRE Tratto Eggi-Acquasparta – I° Stralcio Firenzuola-Acquasparta

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Spaziatura orizzontale: 1.6 m

Precarico : 300 kN Angolo : 20 °

Sezione: #3STRANDS

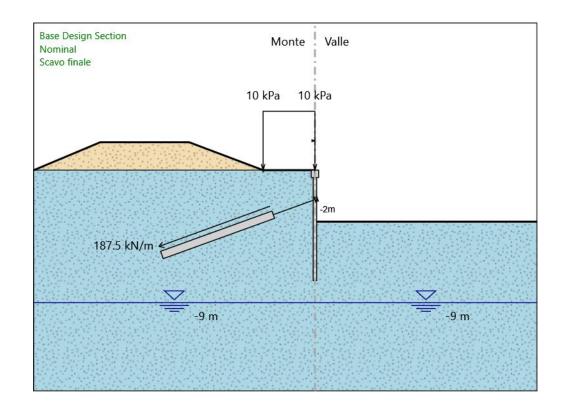
Tipo di barre : Barre trefoli

Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Trave di Ripartizione : Default Waler Sezione : Waler Section 2 steel

HE 180B

Materiale: S355



VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Scavo finale

Scavo finale

Elementi strutturali

Paratia : micropali X : 0 m

> Quota in alto: -0.5 m Quota di fondo: -7.5 m Sezione: MICROPALI

Paratia : cordolo X : 0 m

Quota in alto : 0 m Quota di fondo : -0.5 m Sezione : CORDOLO

Tirante : Tieback X : 0 m Z : -2 m

> Lunghezza bulbo : 8 m Diametro bulbo : 0.2 m Lunghezza libera : 3 m

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Spaziatura orizzontale: 1.6 m

Precarico : 300 kN Angolo : 20 °

Sezione: #3STRANDS

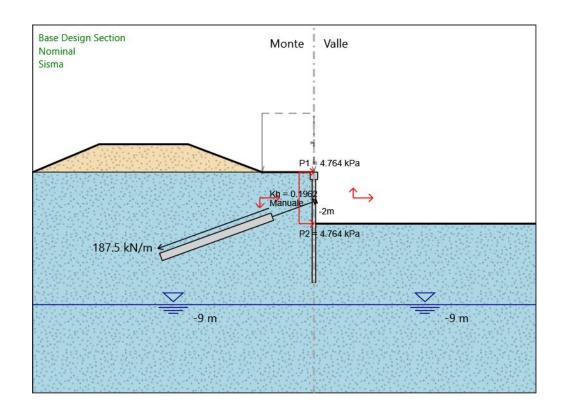
Tipo di barre : Barre trefoli

Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Trave di Ripartizione : Default Waler Sezione : Waler Section 2 steel

HE 180B

Materiale: S355



VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Sisma

Sisma

Elementi strutturali

Paratia : micropali X : 0 m

> Quota in alto : -0.5 m Quota di fondo : -7.5 m Sezione : MICROPALI

Paratia : cordolo

X : 0 m

Quota in alto : 0 m Quota di fondo : -0.5 m Sezione : CORDOLO

Tirante : Tieback X : 0 m

Z : -2 m

Lunghezza bulbo : 8 m Diametro bulbo : 0.2 m Lunghezza libera : 3 m

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Spaziatura orizzontale: 1.6 m

Precarico : 300 kN Angolo : 20 °

Sezione: #3STRANDS

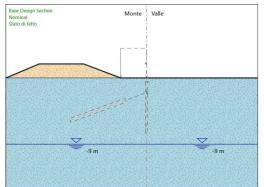
Tipo di barre : Barre trefoli

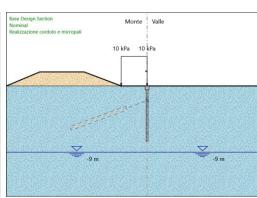
Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

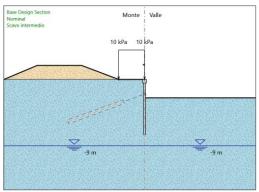
Trave di Ripartizione : Default Waler Sezione : Waler Section 2 steel

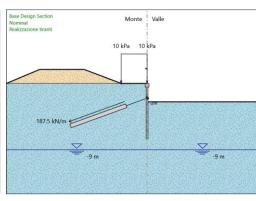
HE 180B

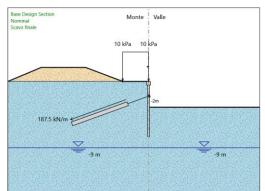
Materiale: S355

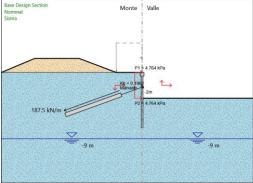







VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile


Tabella Configurazione Stage (Nominal)



VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Descrizione Coefficienti Design Assumption

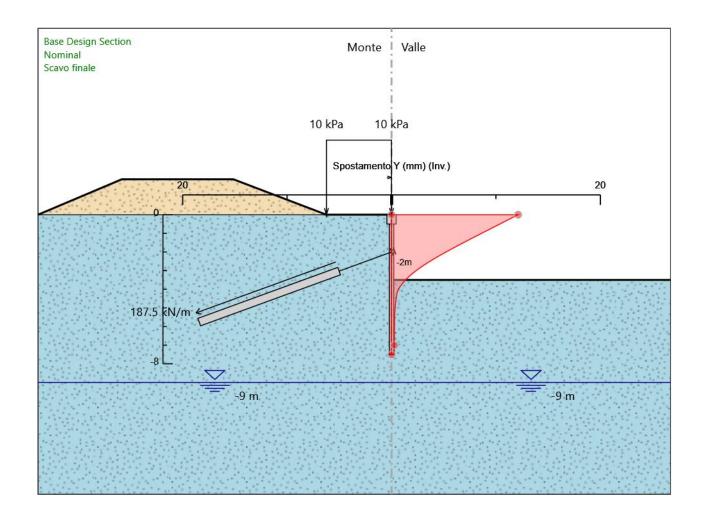
Nome	Carichi Permanenti	Carichi Permanenti	Carichi Variabili	Carichi Variabili	Carico Sismico	Pressioni	Pressioni	Cari
	Sfavorevoli	Favorevoli	Sfavorevoli	Favorevoli	(F_seism_load)	Acqua Lato	Acqua Lato	Perma
	(F_dead_load_unfavour	r) (F_dead_load_favour) (F_live_load_unfavour) (F_live_load_favour)	Monte	Valle	Destabil
					_	(F_WaterDR)	(F_WaterRes)	(F_UPL_C
Simbolo	γG	γG	γQ	γQ	γQE	γG	γG	γGd
Nominal	1	1	1	1	1	1	1	1
NTC2018: SLE	1	1	1	1	0	1	1	1
(Rara/Frequente/Quasi								
Permanente)								
NTC2018: A1+M1+R1	1.3	1	1.5	1	0	1.3	1	1
(R3 per tiranti)								
NTC2018: A2+M2+R1	1	1	1.3	1	0	1	1	1
NTC2018: SISMICA STR	1	1	1	1	1	1	1	1
NTC2018: SISMICA	1	1	1	1	1	1	1	1
GEO								

Nome	Parziale su tan(ø') (F_Fr)	Parziale su c' (F_eff_cohe)	Parziale su Su (F_Su)	Parziale su qu (F_qu)	Parziale su peso specifico (F_gamma)
Simbolo	γф	ус	γcu	γqu	γγ
Nominal	1	1	1	1	1
NTC2018: SLE (Rara/Frequente/Quasi	1	1	1	1	1
Permanente)					
NTC2018: A1+M1+R1 (R3 per tiranti)	1	1	1	1	1
NTC2018: A2+M2+R1	1.25	1.25	1.4	1	1
NTC2018: SISMICA STR	1	1	1	1	1
NTC2018: SISMICA GEO	1	1	1	1	1

Nome	Parziale resistenza terreno (es. Kp) (F Soil Res walls)	Parziale resistenza Tiranti permanenti (F Anch P)	Parziale resistenza Tiranti temporanei (F Anch T)	Parziale elementi strutturali (F wall)
Simbolo	γRe	уар	γat	structurum (r_man)
Nominal	1	1	1	1
NTC2018: SLE	1	1	1	1
(Rara/Frequente/Quasi				
Permanente)				
NTC2018: A1+M1+R1 (R3 per tiranti)	1	1.2	1.1	1
NTC2018: A2+M2+R1	1	1.2	1.1	1
NTC2018: SISMICA STR	1	1.2	1.1	1
NTC2018: SISMICA GEO	1	1.2	1.1	1

Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stato di fatto Rea	lizzazione cordolo e micro	opali Scavo intermedio I	Realizzazione tirai	nti Scavo final	e Sisma
NTC2018: SLE (Rara/Frequente/Quasi Permanente) V	V	V	V	V	
NTC2018: A1+M1+R1 (R3 per tiranti)	V	V	V	V	V	
NTC2018: A2+M2+R1	V	V	V	V	V	
NTC2018: SISMICA STR						V
NTC2018: SISMICA GEO						V



VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Descrizione sintetica dei risultati delle Design Assumption (Inviluppi) Grafico Inviluppi Spostamento

Spostamento

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

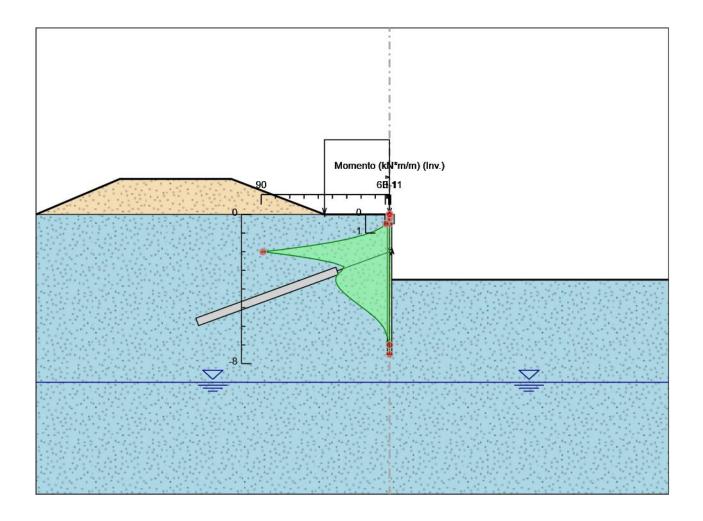
Tabella Inviluppi Momento micropali

Selected Design Assumptions	Inviluani: Momento	Muro: micropali
•	Lato sinistro (kN*m/m)	•
-0.5	2.473	0
-0.7	5.61	0
-0.9	10.623	0
-1.1	17.932	0
-1.3	27.932	0
-1.5	40.983	0
-1.7	57.39	0
-1.9	77.375	0
-2	88.751	0
-2.2	68.316	0
-2.4	51.814	0.015
-2.6	39.216	0.034
-2.8	32.036	0.045
-3	33.334	0.048
-3.2	36.346	0.042
-3.4	37.676	0.032
-3.6	37.651	0.021
-3.8	36.558	0.015
-4	34.644	0.01
-4.2	32.12	0.004
-4.4	29.158	0
-4.6	25.893	0
-4.8	22.434	0
-5	18.913	0
-5.2	15.422	0
-5.4	12.156	0
-5.6	9.242	0
-5.8	6.751	0
-6	4.704	0
-6.2	3.259	0
-6.4	2.326	0
-6.6	1.547	0
-6.8	0.927	0.054
-7	0.467	0.093
-7.2	0.166	0.059
-7.4	0.018	0.009
-7.5	0	0

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Tabella Inviluppi Momento cordolo

Selected Design Assumptions	Inviluppi: Momento	Muro: cordolo
Z (m)	Lato sinistro (kN*m/m)	Lato destro (kN*m/m)
0	0	0
-0.2	0.326	0
-0.4	1.45	0
-0.5	2.473	0



VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Grafico Inviluppi Momento

Momento

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

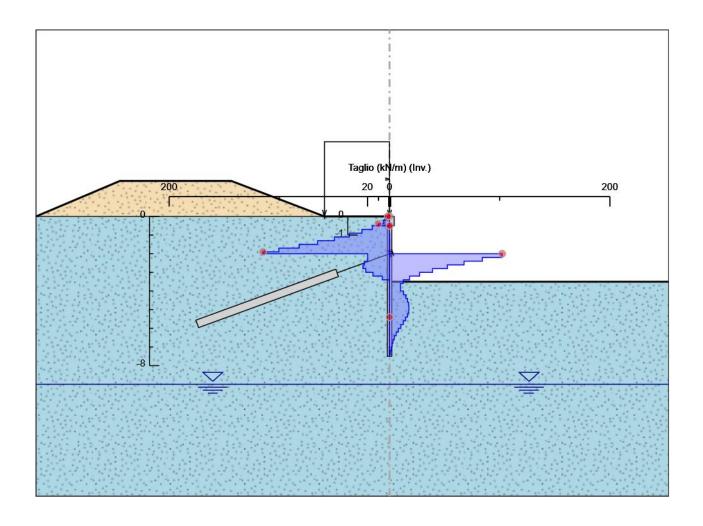
Tabella Inviluppi Taglio micropali

Selected Design Assumptions	Inviluppi: Taglio	Muro: micropali
Z (m)	Lato sinistro (kN/m)	Lato destro (kN/m)
-0.5	15.681	0
-0.7	25.068	0
-0.9	36.544	0.094
-1.1	50	0.17
-1.3	65.256	0.201
-1.5	82.035	0.204
-1.7	100.449	0.223
-1.9	114.839	0.266
-2	114.839	102.178
-2.2	19.853	102.178
-2.4	22.886	84.308
-2.6	24.11	67.617
-2.8	24.11	52.476
-3	21.505	39.051
-3.2	15.061	27.363
-3.4	6.65	18.168
-3.6	0.056	12.432
-3.8	0.053	9.98
-4	0.045	12.62
-4.2	0.036	14.815
-4.4	0.026	16.324
-4.6	0.021	17.293
-4.8	0.015	17.605
-5	0.01	17.605
-5.2	0.005	17.455
-5.4	0.001	16.332
-5.6	0	14.568
-5.8	0	12.458
-6	0	10.231
-6.2	0	8.049
-6.4	0	6.03
-6.6	0	4.248
-6.8	0	3.1
-7	0.173	2.296
-7.2	0.249	1.506
-7.4	0.249	0.739
-7.5	0.089	0.182

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Tabella Inviluppi Taglio cordolo

Selected Design Assumptions	Inviluppi: Taglio	Muro: cordolo
Z (m)	Lato sinistro (kN/m) I	Lato destro (kN/m)
0	1.632	0
-0.2	5.616	0
-0.4	10.238	0
-0.5	10.238	0



VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Grafico Inviluppi Taglio

Taglio

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Inviluppo Spinta Reale Efficace / Spinta Passiva

Design Assumption	Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Passiva
				%
NTC2018: A2+M2+R1Re	alizzazione tirar	nti Left Wall	LEFT	8.61
NTC2018: A2+M2+R1	Scavo finale	Left Wall	RIGHT	15.13

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Inviluppo Spinta Reale Efficace / Spinta Attiva

Design Assumption	Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Attiva
				%
NTC2018: A2+M2+R1S	cavo intermedi	o Left Wall	LEFT	109.2
NTC2018: A2+M2+R1	Stato di fatto	Left Wall	RIGHT	125.7

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Normative adottate per le verifiche degli Elementi Strutturali

Normative Verifiche

Calcestruzzo NTC Acciaio NTC Tirante NTC

Coefficienti per Verifica Tiranti

GEO FS 1 ξa3 1.8 γs 1.15

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stato di fatto Real	izzazione cordolo e micro	pali Scavo intermedio F	Realizzazione tira	nti Scavo finale	e Sisma
NTC2018: SLE (Rara/Frequente/Quasi Permanente) V	V	V	V	V	
NTC2018: A1+M1+R1 (R3 per tiranti)	V	V	V	V	V	
NTC2018: A2+M2+R1	V	V	V	V	V	
NTC2018: SISMICA STR						V
NTC2018: SISMICA GEO						V

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Risultati SteelWorld

Tabella Inviluppi Tasso di Sfruttamento M-N - SteelWorld: LEFT

Inviluppi Tasso di Sfruttamento M-N - SteelWorld	l LEFT
Z (m)	Tasso di Sfruttamento M-N - SteelWorld
-0.5	0.014
-0.7	0.033
-0.9	0.062
-1.1	0.105
-1.3	0.163
-1.5	0.239
-1.7	0.335
-1.9	0.451
-2	0.518
-2.2	0.398
-2.4	0.302
-2.6	0.229
-2.8	0.187
-3	0.194
-3.2	0.212
-3.4	0.22
-3.6	0.22
-3.8	0.213
-4	0.202
-4.2	0.187
-4.4	0.17
-4.6	0.151
-4.8	0.131
-5	0.11
-5.2	0.09
-5.4	0.071
-5.6	0.054
-5.8	0.039
-6	0.027
-6.2	0.019
-6.4	0.014
-6.6	0.009
-6.8	0.005
-7	0.003
-7.2	0.001
-7.4	0
-7.5	0

PROGETTO ESECUTIVO

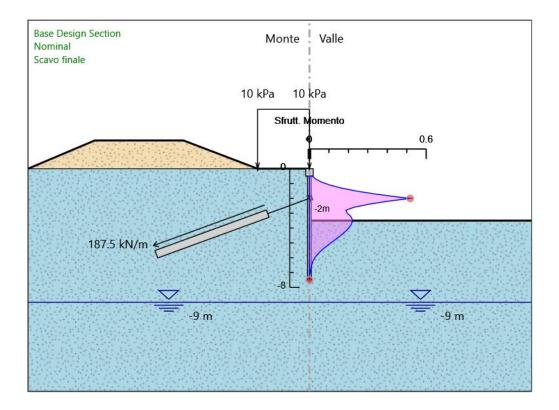
VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Inviluppi Tasso di Sfruttamento M-N - SteelWorld

LEF.

Z (m)

Tasso di Sfruttamento M-N - SteelWorld



VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Grafico Inviluppi Tasso di Sfruttamento M-N - SteelWorld

.

Inviluppi

Tasso di Sfruttamento M-N - SteelWorld

MANDANTE

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Tabella Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld : LEFT

Inviluppi Tasso di Sfruttamento a Taglio - SteelWorl	d LEFT
Z (m)	Tasso di Sfruttamento a Taglio - SteelWorld
-0.5	0.01
-0.7	0.016
-0.9	0.024
-1.1	0.032
-1.3	0.042
-1.5	0.053
-1.7	0.065
-1.9	0.074
-2	0.066
-2.2	0.054
-2.4	0.044
-2.6	0.034
-2.8	0.025
-3	0.018
-3.2	0.012
-3.4	0.008
-3.6	0.005
-3.8	0.006
-4	0.008
-4.2	0.01
-4.4	0.011
-4.6	0.011
-4.8	0.011
-5	0.011
-5.2	0.011
-5.4	0.009
-5.6	0.008
-5.8	0.007
-6 -6.2	0.005
	0.004
-6.4 -6.6	0.003
	0.002
-6.8 -7	0.001
-/ -7.2	0.001 0
-7.2 -7.4	0
-7.4 -7.5	0
-7.5	U

PROGETTO ESECUTIVO

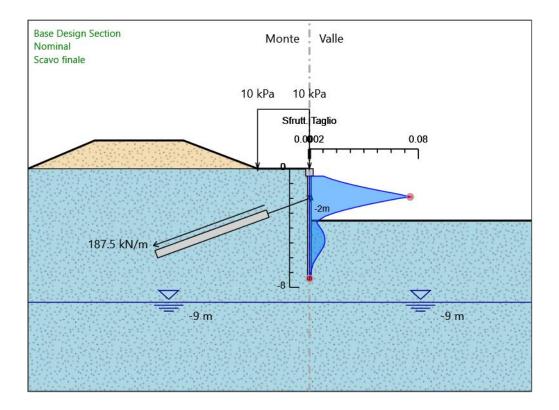
VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld

LEFT

Z (m)

Tasso di Sfruttamento a Taglio - SteelWorld



VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Grafico Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld

.

Inviluppi

Tasso di Sfruttamento a Taglio - SteelWorld

MANDANTE

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Verifiche Tiranti NTC2018: SLE (Rara/Frequente/Quasi Permanente)

Design Assumption: NTC2018: SLE	Tipo Risultato:				NTC2018			
(Rara/Frequente/Quasi Permanente)	Verifiche Tiranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza	Resistenza	Ratio GEO	Ratio	Resistenza (Gerarchia delle
		(kN)	GEO (kN)	STR (kN)		STR		Resistenze
Tieback	Realizzazione tiranti	300	904.779	605.557	0.332	0.495		NO
Tieback	Scavo finale	300.887	904.779	605.557	0.333	0.497		NO
Tieback	Sisma	300.52	904.779	605.557	0.332	0.496		NO

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Verifiche Tiranti NTC2018: A1+M1+R1 (R3 per tiranti)

Design Assumption: NTC2018:	Tipo Risultato:				NTC2018			
A1+M1+R1 (R3 per tiranti)	Verifiche Tiranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza	Resistenza STR	Ratio GEO	Ratio	Resistenza	Gerarchia delle
		(kN)	GEO (kN)	(kN)		STR		Resistenze
Tieback	Realizzazione tiranti	390	456.959	605.557	0.853	0.644		
Tieback	Scavo finale	391.24	456.959	605.557	0.856	0.646		
Tieback	Sisma	390.688	456.959	605.557	0.855	0.645		

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Verifiche Tiranti NTC2018: A2+M2+R1

Design Assum	ption: Tipo Risultato:				NTC2018			
NTC2018: A2+I	M2+R1 Verifiche Tiranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resistenza	Gerarchia delle
		(kN)	(kN)	(kN)		STR		Resistenze
Tieback	Realizzazione tiranti	300	456.959	605.557	0.657	0.495		
Tieback	Scavo finale	301.571	456.959	605.557	0.66	0.498		
Tieback	Sisma	301.007	456.959	605.557	0.659	0.497		

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Verifiche Tiranti NTC2018: SISMICA STR

Design Assumption: NTC2018:	Tipo Risultato:				NTC2018			
SISMICA STR	Verifiche Tiranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resistenza	Gerarchia delle
		(kN)	(kN)	(kN)		STR		Resistenze
Tieback	Realizzazione tiranti	300	456.959	605.557	0.657	0.495		
Tieback	Scavo finale	300.887	456.959	605.557	0.658	0.497		
Tieback	Sisma	301.915	456.959	605.557	0.661	0.499		

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Verifiche Tiranti NTC2018: SISMICA GEO

Design Assumption: NTC2018:	Tipo Risultato:				NTC2018			
SISMICA GEO	Verifiche Tiranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resistenza	Gerarchia delle
		(kN)	(kN)	(kN)		STR		Resistenze
Tieback	Realizzazione tiranti	300	456.959	605.557	0.657	0.495		
Tieback	Scavo finale	300.887	456.959	605.557	0.658	0.497		
Tieback	Sisma	301.915	456.959	605.557	0.661	0.499		

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

	Tipo Risultato:								
	Verifiche Tiranti								•
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio	Ratio	Resistenza	Gerarchia delle	Design Assumption
		(kN)	(kN)	(kN)	GEO	STR		Resistenze	
Tieback	Scavo finale	391.24	456,959	605.557	0.856	0.646			NTC2018: A1+M1+R1 (R3

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Verifiche Travi di Ripartizione Nominal

Design Assumption:	Tipo Risultato: Verifiche Travi di Ripartizione								
Trave di Ripartizione	Elemento strutturale	Sezione	Materiale	Stage	Carico distribuito	Assiale	Ratio	Ratio	Instabilità
					(kN/m)	(kN)	M-N	taglio	
Default Waler	Tieback	HE 180B	S355	Realizzazione tiranti	187.5	0	0	0	0
Default Waler	Tieback	HE 180B	S355	Scavo finale	188.054	0	0	0	0
Default Waler	Tieback	HE 180B	S355	Sisma	188.697	0	0	0	0

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Verifiche Travi di Ripartizione NTC2018: SLE (Rara/Frequente/Quasi Permanente)

Design Assumption: NTC2018: SLE	Tipo Risultato: Verifiche	NTC2018							
(Rara/Frequente/Quasi Permanente)	Travi di Ripartizione	(ITA)							
Trave di Ripartizione	Elemento strutturale	Sezione	Materiale	Stage	Carico	Assiale	Ratio	Ratio	Instabilità
					distribuito	(kN)	M-N	taglio	
					(kN/m)				_
Default Waler	Tieback	HE 180B	S355	Realizzazione	187.5	0	0.15	0.263	0
				tiranti					
Default Waler	Tieback	HE 180B	S355	Scavo finale	188.054	0	0.15	0.264	0
Default Waler	Tieback	HE 180B	S355	Sisma	187.825	0	0.15	0.264	0

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Verifiche Travi di Ripartizione NTC2018: A1+M1+R1 (R3 per tiranti)

Design Assumption: NTC2018:	Tipo Risultato: Verifiche	NTC2018							
A1+M1+R1 (R3 per tiranti)	Travi di Ripartizione	(ITA)							
Trave di Ripartizione	Elemento strutturale	Sezione	Materiale	Stage	Carico distribuito	Assiale	Ratio	Ratio	Instabilità
					(kN/m)	(kN)	M-N	taglio	
Default Waler	Tieback	HE 180B	S355	Realizzazione tiranti	243.75	0	0.195	0.342	0
Default Waler	Tieback	HE 180B	S355	Scavo finale	244.525	0	0.195	0.343	0
Default Waler	Tieback	HE 180B	S355	Sisma	244.18	0	0.195	0.343	0

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Verifiche Travi di Ripartizione NTC2018: A2+M2+R1

Design Assumption:	Tipo Risultato: Verifiche Travi	NTC2018							
NTC2018: A2+M2+R1	di Ripartizione	(ITA)							
Trave di Ripartizione	Elemento strutturale	Sezione	Materiale	Stage	Carico distribuito	Assiale	Ratio	Ratio	Instabilità
					(kN/m)	(kN)	M-N	taglio	
Default Waler	Tieback	HE 180B	S355	Realizzazione tiranti	187.5	0	0.15	0.263	0
Default Waler	Tieback	HE 180B	S355	Scavo finale	188.482	0	0.15	0.265	0
Default Waler	Tieback	HE 180B	S355	Sisma	188.129	0	0.15	0.264	0

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Verifiche Travi di Ripartizione NTC2018: SISMICA STR

Design Assumption:	Tipo Risultato: Verifiche	NTC2018							
NTC2018: SISMICA STR	Travi di Ripartizione	(ITA)							
Trave di Ripartizione	Elemento strutturale	Sezione	Materiale	Stage	Carico distribuito	Assiale	Ratio	Ratio	Instabilità
					(kN/m)	(kN)	M-N	taglio	
Default Waler	Tieback	HE 180B	S355	Realizzazione tiranti	187.5	0	0.15	0.263	0
Default Waler	Tieback	HE 180B	S355	Scavo finale	188.054	0	0.15	0.264	0
Default Waler	Tieback	HE 180B	S355	Sisma	188.697	0	0.151	0.265	0

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Design Assumption:	Tipo Risultato: Verifiche	NTC2018							
NTC2018: SISMICA GEO	Travi di Ripartizione	(ITA)							
Trave di Ripartizione	Elemento strutturale	Sezione	Materiale	Stage	Carico distribuito	Assiale	Ratio	Ratio	Instabilità
					(kN/m)	(kN)	M-N	taglio	
Default Waler	Tieback	HE 180B	S355	Realizzazione tiranti	187.5	0	0.15	0.263	0
Default Waler	Tieback	HE 180B	S355	Scavo finale	188.054	0	0.15	0.264	0
Default Waler	Tieback	HE 180B	S355	Sisma	188.697	0	0.151	0.265	0

MANDANTE

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

14.2 Opera provvisionale Pila 14

Descrizione della Stratigrafia e degli Strati di Terreno

Tipo: HORIZONTAL

Quota: 0 m OCR: 1

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Descrizione Pareti

X:0 m

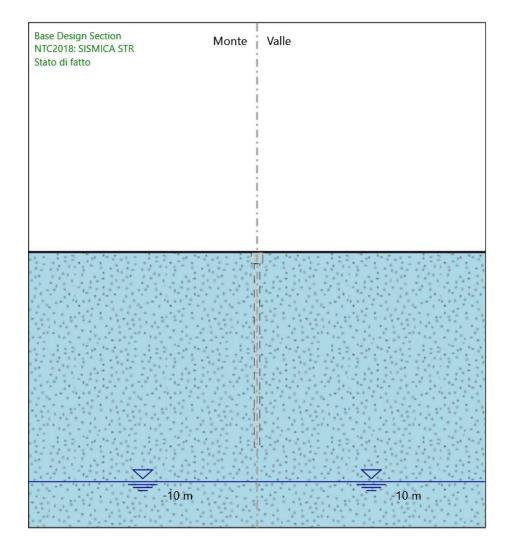
Quota in alto : -0.5 m Quota di fondo : -8.5 m

Muro di sinistra

X:0 m

Quota in alto : 0 m Quota di fondo : -0.5 m

Muro di sinistra

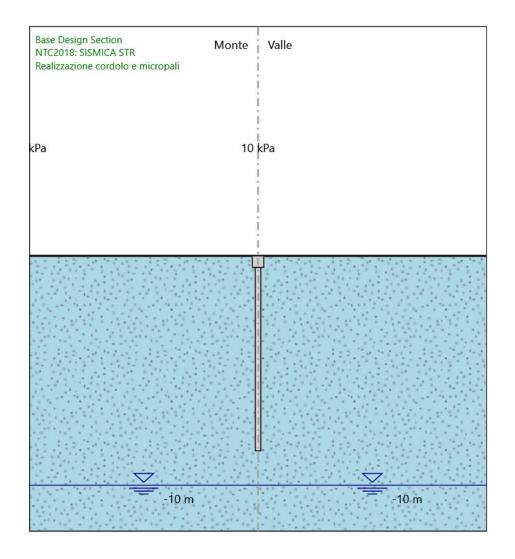


PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Fasi di Calcolo

Stato di fatto



VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Realizzazione cordolo e micropali

Realizzazione cordolo e micropali

Elementi strutturali

Paratia : micropali X : 0 m

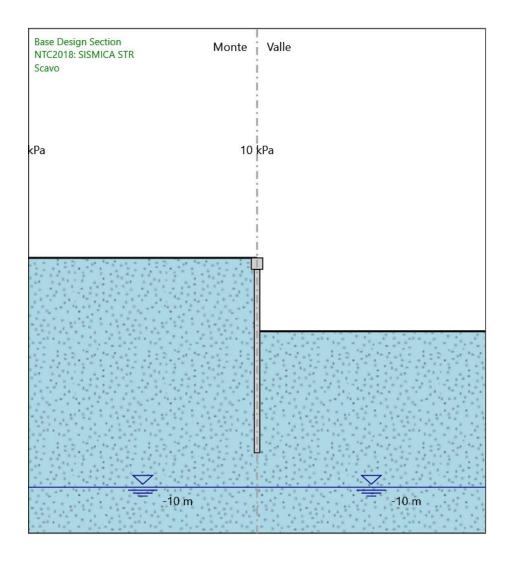
> Quota in alto : -0.5 m Quota di fondo : -8.5 m Sezione : MICROPALI

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Paratia : cordolo X : 0 m

Quota in alto: 0 m Quota di fondo: -0.5 m Sezione: CORDOLO



VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Scavo

Scavo

Elementi strutturali

Paratia : micropali X : 0 m

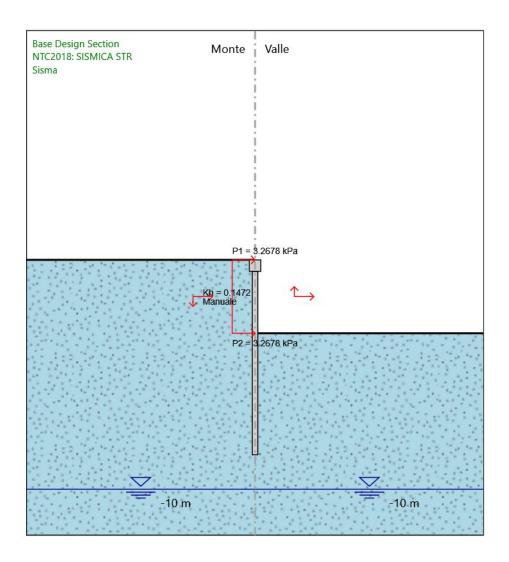
> Quota in alto : -0.5 m Quota di fondo : -8.5 m Sezione : MICROPALI

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Paratia : cordolo X : 0 m

Quota in alto: 0 m Quota di fondo: -0.5 m Sezione: CORDOLO



VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Sisma

Elementi strutturali

Paratia : micropali X : 0 m

> Quota in alto : -0.5 m Quota di fondo : -8.5 m Sezione : MICROPALI

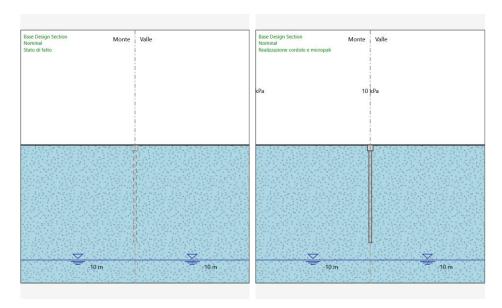
PROGETTO ESECUTIVO

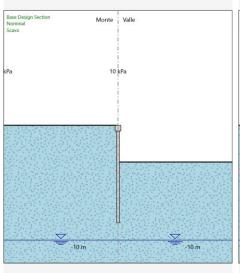
VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

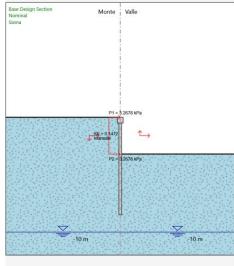
Paratia : cordolo

X:0 m

Quota in alto : 0 m Quota di fondo : -0.5 m Sezione : CORDOLO







VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Tabella Configurazione Stage (Nominal)

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Descrizione Coefficienti Design Assumption

Nome	Carichi Permanenti	Carichi Permanenti	Carichi Variabili	Carichi Variabili	Carico Sismico	Pressioni	Pressioni	Cari
	Sfavorevoli	Favorevoli	Sfavorevoli	Favorevoli	(F_seism_load)	Acqua Lato	Acqua Lato	Perma
1	(F_dead_load_unfavour	r) (F_dead_load_favour) ((F_live_load_unfavour) (F_live_load_favour)	Monte	Valle	Destabil
-						(F_WaterDR)	(F_WaterRes))(F_UPL_c
Simbolo	γG	γG	γQ	γQ	γQE	γG	γG	γGd
Nominal	1	1	1	1	1	1	1	1
NTC2018: SLE	1	1	1	1	0	1	1	1
(Rara/Frequente/Quasi Permanente)								
NTC2018: A1+M1+R1 (R3 per tiranti)	1.3	1	1.5	1	0	1.3	1	1
NTC2018: A2+M2+R1	1	1	1.3	1	0	1	1	1
NTC2018: SISMICA STR	1	1	1	1	1	1	1	1
NTC2018: SISMICA GEO	1	1	1	1	1	1	1	1

Nome	Parziale su tan(ø')	Parziale su c'	Parziale su Su	Parziale su qu	Parziale su peso specifico
	(F_Fr)	(F_eff_cohe)	(F_Su)	(F_qu)	(F_gamma)
Simbolo	γф	γс	γcu	γqu	γγ
Nominal	1	1	1	1	1
NTC2018: SLE (Rara/Frequente/Quasi	1	1	1	1	1
Permanente)					
NTC2018: A1+M1+R1 (R3 per tiranti)	1	1	1	1	1
NTC2018: A2+M2+R1	1.25	1.25	1.4	1	1
NTC2018: SISMICA STR	1	1	1	1	1
NTC2018: SISMICA GEO	1	1	1	1	1

Nome	Parziale resistenza terreno (es. Kp) (F_Soil_Res_walls)	Parziale resistenza Tiranti permanenti (F_Anch_P)	Parziale resistenza Tiranti temporanei (F_Anch_T)	Parziale elementi strutturali (F_wall)
Simbolo	γRe	үар	γat	
Nominal	1	1	1	1
NTC2018: SLE	1	1	1	1
(Rara/Frequente/Quasi Permanente)				
NTC2018: A1+M1+R1 (R3 per tiranti)	1	1.2	1.1	1
NTC2018: A2+M2+R1	1	1.2	1.1	1
NTC2018: SISMICA STR	1	1.2	1.1	1
NTC2018: SISMICA GEO	1	1.2	1.1	1

Riepilogo Stage / Design Assumption per Inviluppo

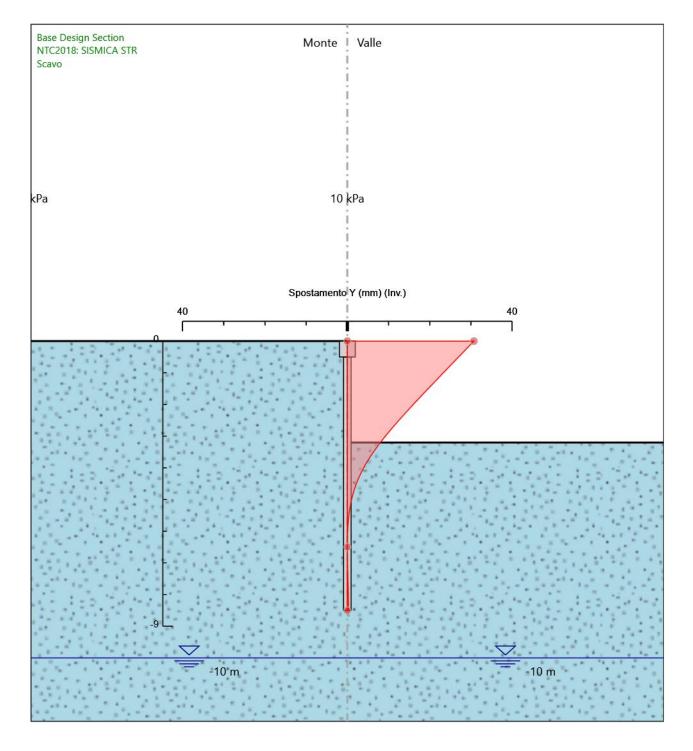
Design Assumption	Stato di fatto Re	alizzazione cordolo e mic	ropali Scavo Sisma
NTC2018: SLE (Rara/Frequente/Quasi Permanente)) V	V	V
NTC2018: A1+M1+R1 (R3 per tiranti)	V	V	V
NTC2018: A2+M2+R1	V	V	V
NTC2018: SISMICA STR			V
NTC2018: SISMICA GEO			V

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)

Grafico Inviluppi Spostamento



VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Spostamento

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

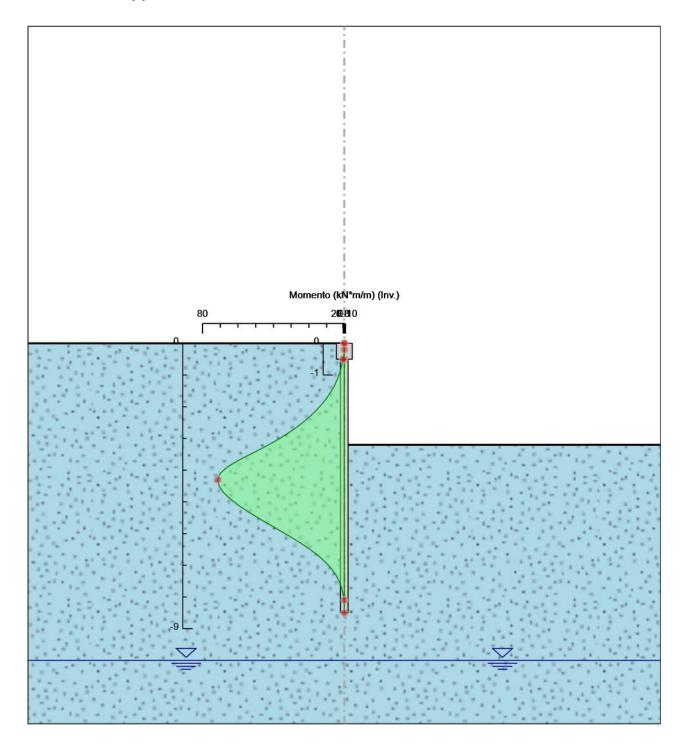
Tabella Inviluppi Momento micropali

Selected Design Assumptions	Inviluppi: Momento	Muro: micropali
Z (m)	Lato sinistro (kN*m/m)	Lato destro (kN*m/m)
-0.5	0.717	0
-0.7	1.448	0
-0.9	2.436	0
-1.1	3.714	0
-1.3	5.314	0
-1.5	7.269	0
-1.7	9.609	0
-1.9	12.369	0
-2.1	15.579	0
-2.3	19.272	0
-2.5	23.479	0
-2.7	28.234	0
-2.9	33.567	0.002
-3.1	39.512	0.006
-3.3	46.063	0.009
-3.5	53.043	0.01
-3.7	60.093	0.01
-3.9	66.004	0.014
-4.1	70.009	0.015
-4.3	71.393	0.015
-4.5	70.662	0.013
-4.7	68.261	0.011
-4.9	64.578	0.009
-5.1	59.938	0.006
-5.3	54.616	0.004
-5.5	48.834	0.002
-5.7	42.766	0.001
-5.9	36.601	0
-6.1	30.499	0
-6.3	24.675	0
-6.5	19.351	0
-6.7	14.661	0
-6.9	10.677	0
-7.1	7.419	0
-7.3	4.858	0
-7.5	2.946	0.001
-7.7	1.605	0.001
-7.9	0.742	0.053
-8.1	0.257	0.095
-8.3	0.044	0.047
-8.5	0	0

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Tabella Inviluppi Momento cordolo

Selected Design Assumptions	Inviluppi: Momento	Muro: cordolo
Z (m)	Lato sinistro (kN*m/m) La	ato destro (kN*m/m)
0	0	0
-0.2	0.103	0
-0.4	0.445	0
-0.5	0.717	0



VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Grafico Inviluppi Momento

Momento

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

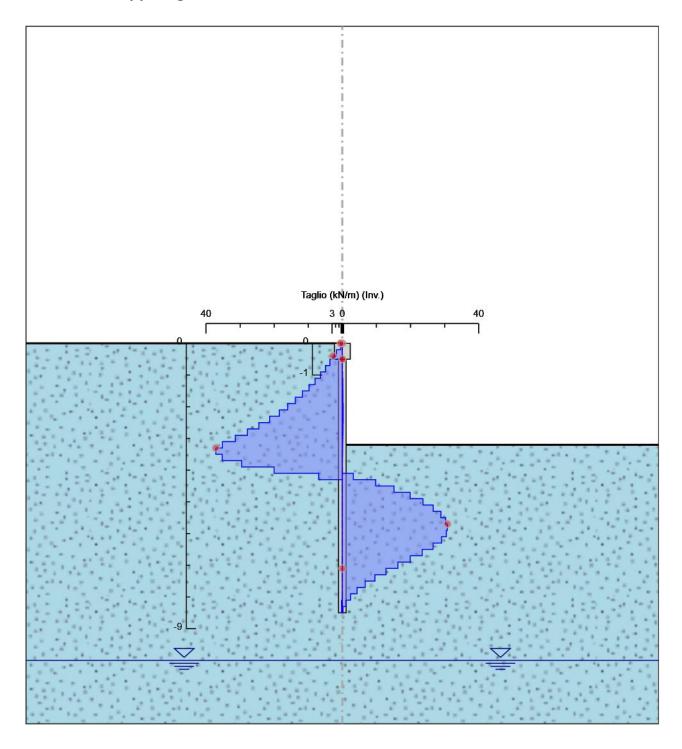
Tabella Inviluppi Taglio micropali

Selected Design Assumptions	s Inviluppi: Taglio	Muro: micropali
Z (m)	Lato sinistro (kN/m)	Lato destro (kN/m)
-0.5	3.651	0
-0.7	4.94	0
-0.9	6.391	0.084
-1.1	8.001	0.144
-1.3	9.773	0.177
-1.5	11.704	0.192
-1.7	13.797	0.196
-1.9	16.05	0.258
-2.1	18.464	0.268
-2.3	21.348	0.268
-2.5	24.484	0.253
-2.7	27.836	0.225
-2.9	31.395	0.18
-3.1	35.16	0.138
-3.3	37.121	0.104
-3.5	37.121	0.069
-3.7	35.249	0.044
-3.9	29.553	0.02
-4.1	20.024	3.231
-4.3	6.92	9.8
-4.5	0.009	15.17
-4.7	0.013	19.89
-4.9	0.013	23.652
-5.1	0.013	26.654
-5.3	0.009	28.911
-5.5	0.009	30.336
-5.7	0.007	30.829
-5.9	0.002	30.829
-6.1	0.002	30.508
-6.3	0.001	29.119
-6.5	0.001	26.625
-6.7	0.001	23.448
-6.9	0	19.918
-7.1	0	16.292
-7.3	0	12.804
-7.5	0	9.563
-7.7	0	6.701
-7.9	0.001	4.314
-8.1	0.241	2.428
-8.3	0.241	1.062
-8.5	0.234	0.222

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Tabella Inviluppi Taglio cordolo

Selected Design Assumptions	Inviluppi: Taglio	Muro: cordolo
Z (m)	Lato sinistro (kN/m) I	.ato destro (kN/m)
0	0.516	0
-0.2	1.708	0
-0.4	2.726	0
-0.5	2.726	0



VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Grafico Inviluppi Taglio

Taglio

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Inviluppo Spinta Reale Efficace / Spinta Passiva

Design Assumption	Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Passiva
				%
NTC2018: A2+M2+R1Sta	ato di fatto	Left Wall	LEFT	6.54
NTC2018: A2+M2+R1	Scavo	Left Wall	RIGHT	16.32

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

Design Assumption	Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Attiva
				%
NTC2018: A2+M2+R1	Scavo	Left Wall	LEFT	109.4
NTC2018: A2+M2+R1Sta	ato di fatt	o Left Wall	RIGHT	125.7

PROGETTO ESECUTIVO

VIADOTTO MOLINO VECCHIO – Relazione di calcolo opere provvisionali pile

