Dott. Geol. Cosima Atzori

info@gaiaconsulting.eu

Emissione per validazione

Descrizione

Loc. Scala Sa Perda sn, 09028 SESTU (CA)

Studio Tecnico di Geologia Applicata all'Ingegneria e all'Ambiente

Elaborato

Cosima Atzori

Verificato

Approvato

REDATTORE

consulting

Data

08/2023

Rev.

02 01

00

Relazione sulla Pericolosità Sismica di Base

INDICE

			Pag.
LIST	A DELL	LE TABELLE	2
LIST	A DELL	LE FIGURE	2
1	PREM	ESSA	3
2	NORM.	IATIVA DI RIFERIMENTO	4
3	STUDI	E INDAGINI DI RIFERIMENTO	5
4	INQUA	ADRAMENTO GEOGRAFICO GENERALE	6
5	INQUA	ADRAMENTO GEOLOGICO	10
6	INQUA	ADRAMENTO GEOMORFOLOGICO	15
	6.1	LINEAMENTI GEOMORFOLOGICI DELL'AREA DI STUDIO	15
	6.2	DEFINIZIONE DELL'AREA GEOMORFOLOGICAMENTE SIGNIFICATIVA	18
7	INQUA	ADRAMENTO SISMICO	21
	7.1	AZIONE SISMICA	21
	7.2	VITA NOMINALE, CLASSI D'USO E PERIODO DI RIFERIMENTO	22
	7.3	AMPLIFICAZIONE STRATIGRAFICA E TOPOGRAFICA	23
8	INDAG	GINI GEOGNOSTICHE	24
	8.1	INDAGINI SISMICHE: MASW	24
	8.2	SPECIFICHE DELLE INDAGINI SVOLTE	25
	8.3	CARATTERISTICHE DELLA STRUMENTAZIONE IMPIEGATA	26
	8.4	INTERPRETAZIONE DEI SEGNALI ACQUISITI	26
	8.5	CATEGORIE DI SOTTOSUOLO - D.M. 19.01.2018 (NTC 2018)	26
	8.6	UBICAZIONE DELLE INDAGINI ESEGUITE	28
	8.7	29	
		8.7.1 Masw M1	29
	8.8	RISULTATI DELLE INDAGINI DEL SITO M2-R2	31
		8.8.1 Masw M2	31
	8.9	RISULTATI DELLE INDAGINI DEL SITO M3-R3	33
		8.9.1 Masw M3	33
	8.10	RISULTATI DELLE INDAGINI DEL SITO M4-R4	35
		8.10.1 Masw M4	35
	8.11	CATEGORIE DI SOTTOSUOLO E PARAMETRI DI PERICOLOSITÀ SISMICA	37
9	CONC	LUSIONI	39

Relazione sulla Pericolosità Sismica di Base

LISTA DELLE TABELLE

Tabella 1 Valori di coefficiente d'uso CU	23
Tabella 2 Categorie topografiche (NTC 2018 3.2 - Tab. 3.2.II)	23
Tabella 3 Valori massimi del coefficiente di amplificazione topografica ST (NTC 2018 3.2 - Tab. 3.2.V)	23
Tabella 6 Ubicazione degli stendimenti	24
Tabella 7 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche	30
Tabella 8 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche	32
Tabella 9 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche	34
Tabella 9 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche	36

LISTA DELLE FIGURE

Figura 1 Localizzazione del progetto	6
Figura 2 Inquadramento topografico su C.T.R. RAS scala 1:10000, quadro d'unione	7
Figura 3 Inquadramento topografico su I.G.M. scala 1:25000	8
Figura 4 Paesaggio caratteristico dell'area di studio	9
Figura 5 Schema tettonico-strutturale della Sardegna	10
Figura 12 Carta Geologica del sito	13
Figura 13 Legenda della Carta Geologica	14
Figura 21 Schema dell'evoluzione geomorfologica del complesso paleozoico (non in scala)	15
Figura 22 sezione geologica dell'area vasta. vedasi l'evidenza della superficie di spianamento base d' del successivo espandimento lavico (Progetto CARG)	appoggio 15
Figura 23 Morfologia del paesaggio paleozoico nei ressi dell'area di Studio.	16
Figura 24 Particolare del tableau basaltico e sue cornici (vista da turbina NIR14)	17
Figura 25 Particolare del tableau basaltico a NW . Monte Guzzini e C.ru Casas (dicco)	17
Figura 26 Legenda Carta Geomorfologica	20
Figura 17 Carta della pericolosità sismica del territorio nazionale	21
Figura 18 Valori minimi della Vita nominale VN di progetto per i diversi tipi di costruzioni.	22
Figura 45 Geometria di acquisizione - MASW con 24 geofoni, interdistanza di 3,0 m, lunghezza cor 69.0 25	nplessiva

Relazione sulla Pericolosità Sismica di Base

1 PREMESSA

Nell'ambito della redazione del Progetto Definitivo del Parco Eolico denominato "GUZZINI" dislocato nel territorio comunale di Nurri Provincia del Sud Sardegna (SU), al fine di avere un quadro maggiormente dettagliato del contesto geologico, geomorfologico e idrogeologico in relazione alle opere e alla loro potenziale interazione con le matrici suolo, sottosuolo e acque è stata redatta la presente Relazione sulla Pericolosità Sismica di Base, la cui stesura ottempera quanto previsto dal D.M. del 17/01/2018 recante le nuove Norme Tecniche per le Costruzioni (di seguito NTC2018).

In data 05-06/07/2023 è stata eseguita una prospezione sismica eseguita con la tecnica MASW (stendimenti denominati M1 – M2 – M3 – M4) al fine di determinare la categoria di sottosuolo.

2 NORMATIVA DI RIFERIMENTO

La presente è redatta in osservanza a quanto stabilito dalla vigente normativa in materia, con particolare riferimento a:

- D.M LL.PP. 11.03.1988 "Norme Tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii attuali e delle scarpate, i criteri generali e le prescrizioni pe la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione in applicazione della Legge 02.02.1974 n°64.
- 2. Circ. Min. LL.PP. n° 30483 del 24.09.1988 Istruzioni per l'applicazione del D.M. LL.PP.11.03.1988.
- Raccomandazioni, programmazione ed esecuzione delle indagini geotecniche, 1975 Associazione Geotecnica Italiana.
- 4. D.M. Infrastrutture 17.01.2018 Norme Tecniche per le Costruzioni. (§3.2. Azione Sismica).
- 5. Circ. Min. Infrastrutture e Trasporti 21.01.2019 n°7 Istruzioni per l'applicazione delle Norme Tecniche per le Costruzioni di cui al Decreto Ministeriale 17.01.2018.

3 STUDI E INDAGINI DI RIFERIMENTO

Le informazioni topografiche e geologiche dell'area oggetto della presente sono state ricavate dalle pubblicazioni ufficiali e cartografia tematica esistente. Si elencano di seguito:

- 6. Carta Topografica I.G.M. scala in 1:25000
- 7. Carta Tecnica Regionale in scala 1:10000
- 8. Carta Geologica dell'Italia in scala 1:100000
- 9. Carta Geologica dell'Italia in scala 1:50.000 (CARG).
- 10. Cartografia Geologica di base della R.A.S. in scala 1:25.000
- 11. RAS Carta dell'Uso del Suolo della Regione Sardegna, 2008
- 12. I.S.P.R.A. Archivio nazionale delle indagini nel sottosuolo (legge 464/84)
- 13. RAS Studio dell'Idrologia Superficiale della Sardegna, annali idrologici 1922-2009
- 14. RAS Autorità di Bacino Piano Stralcio d'Assetto Idrogeologico
- 15. RAS Autorità di Bacino Piano di Tutela delle Acque
- 16. RAS Autorità di Bacino Piano Stralcio delle Fasce Fluviali
- 17. Foto aeree, Regione Sardegna

I dati a disposizione sono stati integrati con le informazioni derivanti dai sopralluoghi effettuati dalla scrivente in sito e dagli esiti della campagna di indagini geognostiche eseguite rispettivamente in data 05-06/07/2023 nella zona di interesse.

4 INQUADRAMENTO GEOGRAFICO GENERALE

Nurri è un comune della provincia del Sud Sardegna situato nella Sardegna centro-meridionale, e confina con il comune di Esterzili, Isili, Mandas, Orroli, Sadali, Serri, Siurgus Donigala e Villanova Tulo. L'area che interessa le opere in progetto è situata nel territorio a nord-ovest dell'abitato di Nurri.

Il territorio comunale di Nurri fu abitato già in epoca prenuragica, nuragica, punica e romana, per la presenza nel territorio di numerose Domus de Janas e di diversi nuraghi. Accanto al paese si trovava la città punico-romana di Biora, distrutta dai Goti, di cui rimangono alcuni resti, come alcuni ruderi, mosaici e tombe. Il paese attuale fu fondato probabilmente dai profughi di Biora intorno al 550 d.C.

Nel Medioevo il paese appartenne al Giudicato di Cagliari e fece parte della curatoria di Siurgus. Alla caduta del giudicato (1258) passò sotto il dominio pisano e dal 1324 sotto quello aragonese. Gli aragonesi nel 1604 incorporarono il paese nel ducato di Mandas, feudo dei Maza. In epoca sabauda la signoria passò ai Tellez-Giron d'Alcantara, ai quali fu riscattato nel 1839 con la soppressione del sistema feudale.

Ai sensi della Legge Regionale n. 9 del 12 luglio 2001, che ha previsto l'istituzione delle nuove province sarde, il comune di Nurri, che era in provincia di Nuoro, avrebbe dovuto essere aggregato alla neonata provincia del Medio Campidano; con successiva Legge Regionale n. 10 del 13 ottobre 2003 si stabilì invece che passasse a quella di Cagliari, di cui fece parte fino alla successiva riforma del 2016.

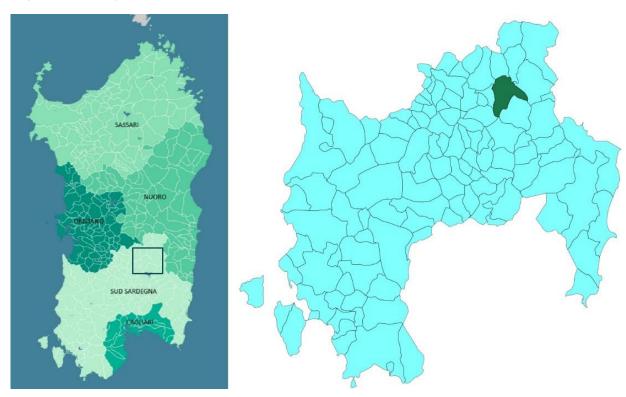


Figura 1 Localizzazione del progetto

L'inquadramento cartografico di riferimento è il seguente:

- Cartografia ufficiale dell'Istituto Geografico Militare I.G.M scala 1:25 000. Serie 25 -Fogli: 540 sez. I "Nurri".
- 2. Carta Tecnica Regionale scala 1:10 000 Fogli: 540070 "Nurri".

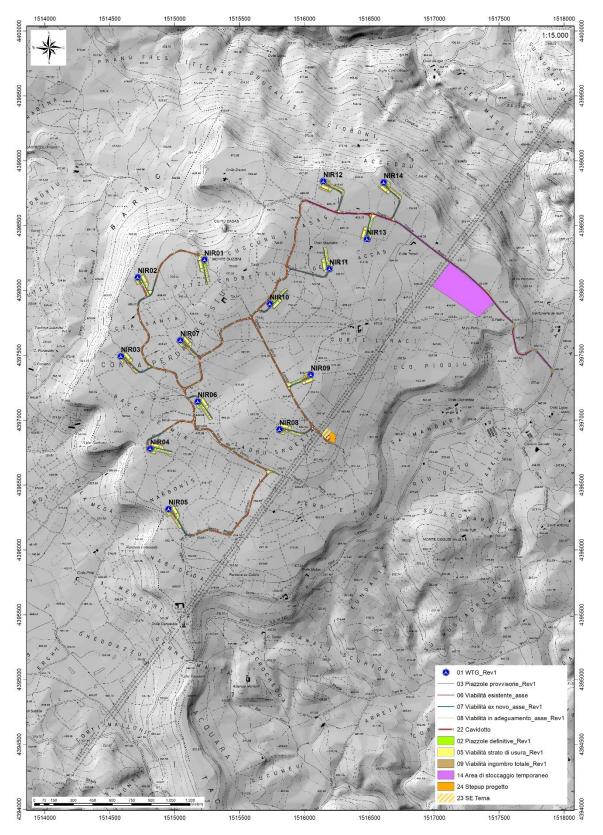


Figura 2 Inquadramento topografico su C.T.R. RAS scala 1:10000, quadro d'unione

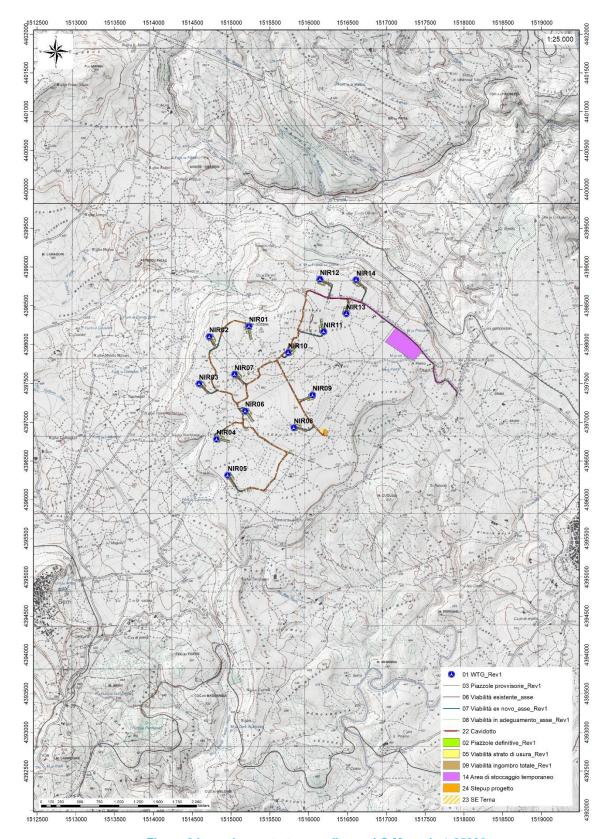


Figura 3 Inquadramento topografico su I.G.M. scala 1:25000

Figura 4 Paesaggio caratteristico dell'area di studio

5 INQUADRAMENTO GEOLOGICO

A partire dal Paleozoico si sono susseguiti una serie di eventi geologici sviluppatisi nell'arco di circa mezzo miliardo di anni, che hanno reso la Sardegna una delle regioni geografiche più antiche del Mediterraneo centrale e, morfologicamente e cronologicamente eterogenea. L'isola riflette una storia geologica molto articolata, che testimonia, in maniera più o meno completa, alcuni dei grandi eventi geodinamici degli ultimi 400 milioni di anni. L'orogenesi Caledoniana, la più antica, le cui tracce si rinvengono principalmente nel nord della Gran Bretagna e nella Scandinavia occidentale, fu causata dalla progressiva chiusura dell'oceano Giapeto, a seguito della collisione dei continenti Laurentia, Baltica e Avalonia, dando così origine al super continente Laurussia.

La successiva fase dell'orogenesi Ercinica (o Varisica) ha avuto corso a partire dal Carbonifero, circa 350 Ma fa e si è protratta fino al Permiano determinando un'estesa catena montuosa ubicata tra il Nord America e l'Europa. Quest'orogenesi ha prodotto in Sardegna tre zone metamorfiche principali. Procedendo dal nucleo orogenetico verso l'avanfossa si trovano le zone dette: Assiale (Sardegna NE) - a Falde interne (Sardegna centrale) - a Falde esterne (Sardegna SW).

Successivamente, tra il Carbonifero Sup. e il Permiano Inf., il basamento paleozoico è stato oggetto di intenso magmatismo. Intrusioni di differente composizione, danno luogo a un batolite granitico composito a carattere calcoalcalino, la cui ossatura fondamentale affiora in continuità nella Sardegna Settentrionale e nella Corsica Occidentale.

Si tratta di plutoni messi in posto durante le fasi estensionali di collasso gravitativo della catena ercinica, e che caratterizzano l'area di studio.

L'area di studio ricade nella zona a Falde Esterne del basamento varisico sardo; principalmente è costituita dalle metamorfiti di basso grado, appartenenti all'Unità Tettonica del Gerrei, dalle metamorfiti dell'Unità tettonica di Meana Sardo e da quelle dell'unità di Riu Gruppa, dalle coperture sedimentarie eoceniche, dalle rocce della successione vulcano-sedimentaria Miocenica, e dai quaternari.

Le Unità Tettoniche affioranti sono costituite da originarie successioni sedimentarie e vulcaniche di età compresa tra il Cambriano e il Carbonifero inferiore.

L'impilamento tettonico delle Falde esterne, nell'area di studio, vede alla base L'Unità tettonica di Riu Gruppa, su cui sovrascorre l'Unità del Gerrei a sua volta sovrascorsa

dall'Unità di Meana Sardo. Queste tre unità tettoniche sono caratterizzate da significative differenze nella successione stratigrafica, soprattutto nella successione vulcanica dell'Ordoviciano medio.

L'Unità tettonica del Gerrei è divisa in due sottounità: la Sottounità di Arcu de su Bentu e la Sottounità di M. Lora.

Le due sottounità si caratterizzano per la presenza dei

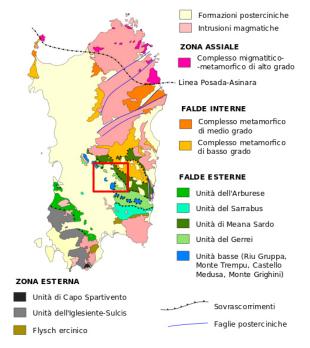


Figura 5 Schema tettonico-strutturale della Sardegna

Porfiroidi nella sottounità di Arcu de su Bentu e delle Vulcaniti di Monte Santa Vittoria in quella di Monte Lora.

Le unità tettoniche sono interessate da una serie di fasi plicative compressive, tardo compressive e distensive che generano sistemi di pieghe e una foliazione pervasiva di piano assiale. Tra le strutture plicative maggiori che interessano il settore di studio vi è l'Antiforme del Flumendosa al cui nucleo affiora l'unità tettonica di Riu Gruppa.

Il basamento varisico è stato interessato da più fasi di emersione a partire dal Permiano; nel Cretaceo si ha nuovamente emersione, che sembra aver interessato tutta l'isola, che ha generato una lacuna che comprende quasi tutto il Paleocene, ricoperta dai depositi trasgressivi dell'Eocene inferiore e del Miocene, dai prodotti dell'attività vulcanica Pliocenica, e dalle coperture dei depositi quaternari costituiti da depositi di versante coltri eluvio colluviali e depositi alluvionali.

Relazione sulla Pericolosità Sismica di Base

In particolare nell'area vasta affiorano le litologie descritte di seguito, riportate con la nomenclatura adottata dalla RAS nella stesura della cartografia geologica in scala 1:25000.

Depositi quaternari:

- **b2 Coltri eluvio-colluviali.** Detriti immersi in matrice fine, talora con intercalazioni di suoli più o meno evoluti, che hanno subito trasporto per gravità nullo o limitato. OLOCENE
- **a Depositi di versante.** Accumuli detritici eterogenei cementati e sciolti, messi in posto per gravità. OLOCENE bna Depositi alluvionali terrazzati. Depositi fluviali: barre ghiaiose (bna). OLOCENE

Successione vulcanica Pliocenica:

BGR – Basalti delle Giare. Basalti da alcalini a sub-alcalini in espandimenti e colate (BGR), con brecce scoriacee prossimali ai centri eruttivi (BGRa), e rari dicchi (M.te Guzzini).

Successione Oligo-Miocenica:

- **ARX Formazione di Aragixi:** Tufi pomicei grossolani biancastri alla base e tufi cineritici rosati al tetto, ricchi in Bt, spesso alterati in bentonite. ACQUITANIANO SUP. BURDIGALIANO INF.
- **GST Marne di Gesturi.** Marne, marne arenacee e arenarie fini (GST); generalmente alla base, arenarie grossolane e conglomerati (GSTc); livelli di arenarie bioclastiche e calcareniti a litotamni (GSTb); a tetto, tufi pomicei intercalati ed arenarie feldspatiche (GSTa). BURDIGALIANO SUP. LANGHIANO MEDIO.
- **NLL Formazione di Nurallao.** "Arenarie di Serra Longa": sabbie e conglomerati (NLL2); nella parte medio-alta sono presenti bancate metriche di arenarie fossilifere e biocalcareniti (NLL2a). "Conglomerato di Duidduru": conglomerati poligenici eterometrici e sabbie con locali livelli di biocalcareniti, talvolta con componente vulcanica (NLL1); localmente, alla base, conglomerati grossolani ad elementi di dimensioni metriche (NLL1a). OLIGOCENE SUP. –BURDIGALIANO.
- **USS Formazione di Ussana.** Conglomerati e brecce, grossolani, eterometrici a spese perlopiù di basamento cristallino paleozoico e di carbonati giurassici; livelli argilloso-arenacei rossastri talora prevalenti nella base (USS), con intercalate rare vulcaniti oligoceniche (USSe) e calcari con fauna limnicola (USSg), o depositi travertinosi (USSf). OLIGOCENE SUP. MIOCENE INF. (AQUITANIANO INF.).

Successione sedimentaria Mesozoica:

- **DOR Formazione di Dorgali:** Dolomie, dolomie arenacee, calcari dolomitici, da litorali a circalitorali, con foraminiferi e alghe calcaree. GIURASSICO MEDIO-SUP. (DOGGER MALM)
- GNS Formazione di Genna Selole: conglomerati quarzosi molto maturi con, alla base, livelli carboniosi e argille. GIURASSICO MEDIO (DOGGER)
- **MUK Muschelkalk auct.:** Dolomie gialle in strati decimetrici con Dasicladaceae e pseudomorfi evaporitici. TRIASSICO MEDIO (LADINICO)
- **BUN Bundsandstein auct.:** Conglomerati poligenici eterometrici e arenarie grossolane con argille varicolori. TRIASSICO MEDIO (ANISICO)

Successione vulcano-sedimentaria tardo Paleozoica:

LUD – Formazione Riu su Luda: alla base, conglomerati con matrice arenacea fortemente arrossata (LUDa). Sedimenti clastici da grossolani a medio fini, con importante componente vulcanica; intercalazioni di tufi, marne e calcari con rare selci lacustri (LUDb). Siltiti e argilliti laminari nere con abbondanti resti di piante, sporomorfi e pollini; rari livelli di arenarie e conglomerati (LUDc).

Corteo filoniano:

fp - Filoni e ammassi di porfidi granitici: Porfidi di colore prevalentemente rosa e rosso, a struttura isotropa, porfirica per fenocristalli di Qtz, K-feldspato e rara Bt, in massa di fondo granofirica. CARBONIFERO SUP. - PERMIANO

Unità tettonica di Meana Sardo:

ORR – Formazione di Orroeledu. Metapeliti grigio verdastre e metasiltiti fossilifere (ORR), con alternati livelli di metarcose e metagrovacche arcosiche, quarziti e metaconglomerati quarzosi in grossi banchi o massivi (ORRa). ORDOVICIANO SUP.

MSV –Formazione di Monte Santa Vittoria. Metagrovacche e metandesiti (MSVb): metagrovacche vulcaniche e più raramente metandesiti (formazione di "Serra Tonnai" Auct). Metaepiclastiti (MSVa): metaepiclastiti a matrice vulcanica, metaquarzogrovacche e metarenarie, metaconglomerati a prevalenti componenti di vulcaniti acide (formazione di "Manixeddu" Auct.). Metarioliti (MSVc): metarioliti afanitiche (formazione di Monte Corte Cerbos" Auct.). ORDOVICIANO ? MEDIO

Relazione sulla Pericolosità Sismica di Base

SVI – Formazione delle Arenarie San Vito: alternanze irregolari di metaquarzoareniti, metarenarie micacee e metapeliti (SVI), con livelli di metacalcari intercalati nella parte alta (SVIb), CAMBRIANO MEDIO – ORDOVICIANO INF.

Unità tettonica del Gerrei:

SGA – **Scisti a Graptoliti AUCT.** Metapeliti carboniose e metasiltiti con graptoliti, livelli di diaspri neri (liditi) (SGA). Metacalcari (SGAa): metacalcari scuri e metacalcari nodulari fossiliferi. SILURIANO - DEVONIANO MEDIO

ACN – Argilloscisti di Rio Canoni. Metasiltiti grigio-verdastre, metasiltiti carbonatiche fossilifere (ACN) con intercalazioni di metacalcari talora silicizzati (ACNa) e metavulcaniti basiche (ACNc). ORDOVICIANO SUPERIORE **MGM – Metarcose di Genna Mesa.** Metarcose e metagrovacche arcosiche, metaquarzoareniti e metaconglomerati quarzosi, in grossi banchi o massicci. ORDOVICIANO SUP.

PRF - Porfiroidi AUCT. Metarioliti e metariodaciti con struttura occhiadina, metaepiclastiti (PRF). Porfiroidi a grossi fenocristalli (PRFa): metarioliti e metariodaciti con fenocristalli di Kfs di grandi dimensioni. ORDOVICIANO ?MEDIO MSV - Formazione di Monte Santa Vittoria. Metavulcaniti a chimismo intermedio e basico, metaepiclastiti, metarenarie feldspatiche e metaconglomerati con componente vulcanica. ORDOVICIANO ?MEDIO

SVI - Arenarie di San Vito. Alternanze irregolari di metaquarzoareniti, metarenarie micacee, e metapeliti. CAMBRIANO MEDIO - ORDOVICIANO INF.

Unità tettonica di Riu Gruppa:

PMN – Formazione di Pala Manna. Alternanze di metasiltiti e metarenarie micacee (PMN), metaconglomerati e metabrecce a liditi (PMNa); metaquarzoareniti grossolane di colore scuro (PMNb). ?SILURIANO – ?CARBONIFERO INF.

ASU – Marmi di Asuni: Marmi, marmi dolomitici e rari calcescisti, con rari resti di crinoidi. DEVONIANO MED. – CARBONIFERO INF.

SGA - Scisti a Graptoliti. Metapeliti carboniose e metasiltiti con livelli di diaspri neri (liditi) (SGA) e di metacalcari grigi (SGAa). SILURIANO – CARBONIFERO INF.

MGM - Metarcose di Genna Mesa: quarziti chiare e metarenarie quarzose, con alternate filladi e livelli di metacalcari silicizzati. ORDOVICIANO SUP.

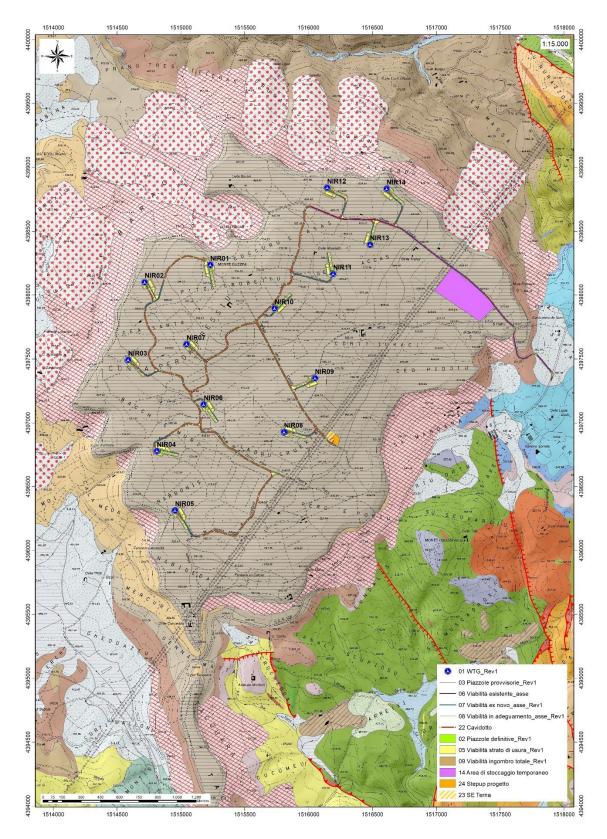


Figura 6 Carta Geologica del sito

Relazione sulla Pericolosità Sismica di Base

Figura 7 Legenda della Carta Geologica

6 INQUADRAMENTO GEOMORFOLOGICO

La forma prevalentemente pianeggiante di alcuni rilievi presenti nei pressi dell'area di studio sulle litologie plioceniche a nord e paleozoiche a sud est è il risultato della graduale demolizione del rilievo ad opera degli agenti erosivi, avvenuta in diverse fasi temporali, che ha portato alla formazione di una estesa superficie strutturale nota con il nome di "penepiano ercinico" sulle litologie paleozoiche.

I successivi fenomeni di sollevamento tettonico, imputabili all'orogenesi alpina, hanno ridefinito la morfologia del paesaggio operando un ringiovanimento del rilievo. La superficie strutturale paleozoica si è quindi trovata ad una quota maggiore.

Questo ha innescato una nuova azione geomorfogenetica ad opera degli agenti atmosferici (acqua, vento in primis) che hanno rimodellato l'altopiano così come lo conosciamo, ovvero solcato da profonde incisioni vallive che riprendono le linee di fratturazione tettoniche, che isolano il settore montano distinguendolo nettamente dalle aree pianeggianti circostanti.

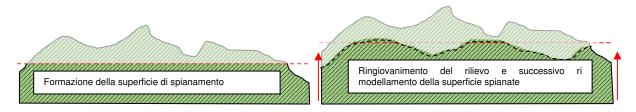


Figura 8 Schema dell'evoluzione geomorfologica del complesso paleozoico (non in scala)

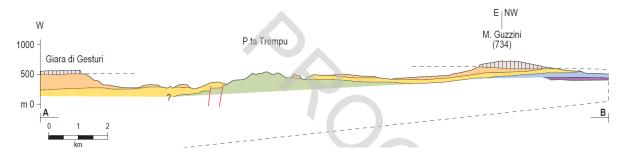


Figura 9 sezione geologica dell'area vasta. vedasi l'evidenza della superficie di spianamento base d'appoggio del successivo espandimento lavico (Progetto CARG)

I prodotti di erosione sia della prima fase che della seconda e attuale vengono trasportati dall'acqua e dal vento e si depositano in relazione alla loro dimensione e all'energia di trasporto delle acque lungo le pendici dei versanti e nelle valli andando a costituire le coperture sedimentarie.

Le morfologie osservabili in quest'area sono strettamente connesse alle caratteristiche di messa in posto delle litologie e dalle caratteristiche fisico-chimiche delle litologie presenti e dalla tipologia ed intensità degli agenti modellanti predominanti.

6.1 LINEAMENTI GEOMORFOLOGICI DELL'AREA DI STUDIO

La geomorfologia dell'area vasta è caratterizzata dalla presenza di una estesa superficie di spianamento che è tuttora ben preservata al di sotto dei basalti delle Giare. Essa taglia indistintamente tutte le formazioni pre-basaltiche giungendo ad interessare il basamento. Questa morfologia che interessava larga parte della Sardegna meridionale,

Relazione sulla Pericolosità Sismica di Base

costituisce la base di partenza alla successiva evoluzione dell'area. Rappresenta la testimonianza di un'importante fase erosiva, verificatesi al livello del mare e successivamente sollevata da movimenti tettonici.

La messa in posto dei plateaux basaltici su questa superficie e il successivo sviluppo di un reticolo idrografico spesso a controllo tettonico hanno determinato la morfologia attuale dell'area vasta con rilievi tabulari sub-orizzontali spesso isolati come testimoni di un antico espandimento lavico che interessava diverse centinaia di kmq.

I tratti geomorfologici del settore sud est di studio sono dati da estesi rilievi collinari del basamento paleozoico, incisi dai corsi d'acqua principali e dai loro affluenti. I corsi d'acqua incidono il basamento paleozoico, formando valli con versanti poco acclivi. Il basamento paleozoico che affiora nell'area di studio appare inciso da un reticolo idrografico impostato sui principali lineamenti strutturali, tale aspetto è fortemente connesso con l'evoluzione tettonica dell'intero settore e in particolar modo con l'evoluzione oligo-miocenica e plio-quaternaria.

Le superfici morfologiche principali sono rappresentate da modesti rilievi sub arrotondati e dai resti di un altipiano profondamente dissecato dai processi erosivi lineari. L'originale superficie di spianamento è conservata solo per alcuni tratti mentre nella maggior parte dell'area è riconoscibile solo da rilievi di uguale altezza. I rilievi principali hanno altezze intorno ai 450-500 metri (Genna Ruina 457 m, Monte Piddiu 494 m, Bruncu Crabili 475 m, Serra S'Astula 506m) e il Monte Guzzini (734m) ; lo stesso lungo il perimetro termina con orli di scarpata subverticali che tendono ad arretrare per fenomeni franosi di crollo-ribaltamento.

Il reticolo idrografico dell'area di studio mostra valli quasi sempre poco incassate, con prevalente andamento N-S. Alcuni corsi d'acqua presentano un caratteristico andamento a meandri ereditati nel basamento paleozoico per la sovraimposizione a seguito dell'asportazione delle coperture sedimentarie terziarie o, in qualche caso, influenzati dalla litologia. I versanti vallivi modellati negli scisti paleozoici sono localmente asimmetrici.

E' presente un'area caratterizzata da numerosi picchi e creste rocciose costituiti dai litotipi più resistenti del basamento paleozoico (Monte santa vittoria Fm.), in quest'area sono presenti nelle parti più impervie anche falde di detrito e canaloni con scariche di detrito.

Laddove invece le litologie sono più tenere e nei depositi quaternari si osservano morfologie erosive come superfici con solchi di ruscellamento e di dilavamento concentrato. La terminazione del cavidotto e la relativa sottostazione a est del parco poggiano ancora sul tavolato basaltico ad una quota di circa 680mslm

Figura 10 Morfologia del paesaggio paleozoico nei ressi dell'area di Studio.

Figura 11 Particolare del tableau basaltico e sue cornici (vista da turbina NIR14)

Figura 12 Particolare del tableau basaltico a NW . Monte Guzzini e C.ru Casas (dicco)

Relazione sulla Pericolosità Sismica di Base

6.2 DEFINIZIONE DELL'AREA GEOMORFOLOGICAMENTE SIGNIFICATIVA

La predisposizione naturale di un territorio a fenomeni di instabilità legata alle dinamiche geomorfologiche deriva in generale dall'interazione di diversi fattori come natura geologica dei terreni, loro assetto sia deposizionale che geostrutturale, circolazione delle acque superficiali e sotterranee con la morfologia, cioè la geometria del territorio. L'area oggetto di intervento, in base delle caratteristiche suddette non presenta allo stato attuale evidenze di dissesto di natura geologico-geomorfologica in atto, mentre, potenziali fenomeni di dissesto potrebbero presentarsi con la naturale evoluzione del pendio.

L'area geomorfologicamente significativa per le azioni di progetto è quell'area in cui si esplicano tutti i processi geomorfici, il cui effetto può generare interazioni con le dinamiche ambientali. Pertanto la stessa, nello specifico, si individua nei versanti e nei sub-bacini idrografici presenti che interferiscono con l'opera.

Relazione sulla Pericolosità Sismica di Base

Relazione sulla Pericolosità Sismica di Base

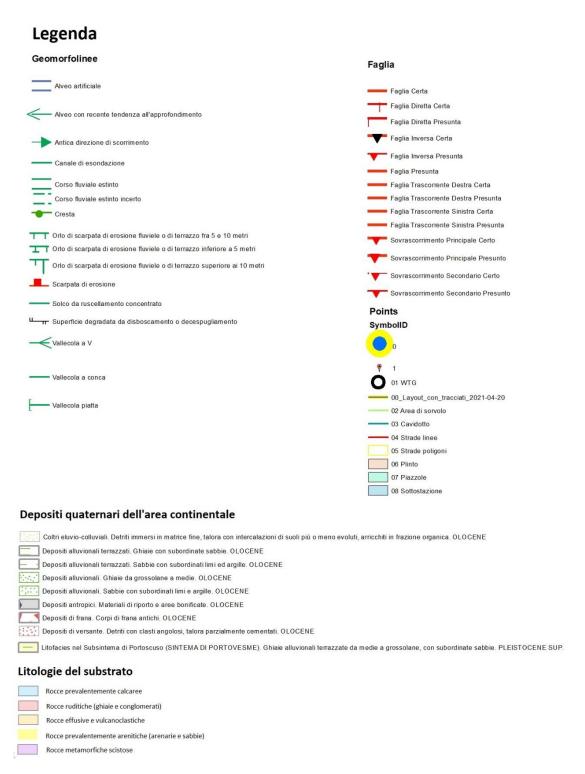


Figura 13 Legenda Carta Geomorfologica

7 INQUADRAMENTO SISMICO

La sismicità indica la frequenza e la forza con cui si manifestano i terremoti, ed è una caratteristica fisica del

territorio. Sulla base delle conoscenze relative alla frequenza e all'energia associate ai terremoti che caratterizzano un territorio, si attribuisce un valore di probabilità al verificarsi di un evento sismico di una data magnitudo in un certo intervallo di tempo, possiamo definirne la pericolosità sismica. La pericolosità sismica sarà tanto più elevata quanto più probabile sarà il verificarsi di un terremoto di elevata magnitudo, a parità di intervallo di tempo considerato.

Le conseguenze di un terremoto dipendono anche dalle caratteristiche di resistenza delle costruzioni alle azioni di una scossa sismica. La predisposizione di una costruzione ad essere danneggiata si definisce vulnerabilità. Quanto più un edificio è vulnerabile (per tipologia, progettazione inadeguata, scadente qualità dei materiali e modalità di costruzione, scarsa manutenzione), tanto maggiori saranno le conseguenze.

Infine, la maggiore o minore presenza di beni esposti al rischio, la possibilità cioè di subire un danno economico, ai beni culturali, la perdita di vite umane, è definita esposizione.

Il rischio sismico, determinato dalla combinazione della pericolosità, dalla vulnerabilità e dall'esposizione, è la misura dei danni attesi in un dato intervallo di tempo, in base al tipo di sismicità, di resistenza delle costruzioni e di antropizzazione (natura, qualità e quantità dei beni esposti).

Per quanto concerne la sismicità, ai sensi della normativa di settore citata in precedenza, il territorio comunale di Nurri ricade in Zona 4 a bassa pericolosità, vengono indicati i parametri sismici da utilizzare nelle verifiche secondo quanto previsto dalle NTC 2018.

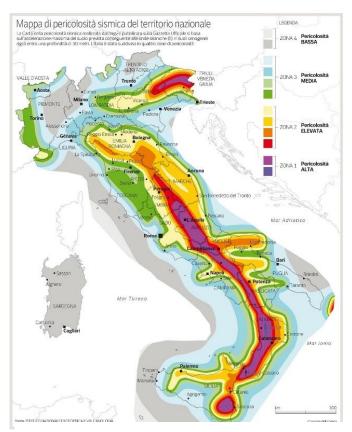


Figura 14 Carta della pericolosità sismica del territorio nazionale

7.1 AZIONE SISMICA

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione e sono funzione delle caratteristiche morfologiche e stratigrafiche che determinano la risposta sismica locale.

Dalla normativa vigente NTC2018 si evince che la pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa ag in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (di categoria A come definita al § 3.2.2), nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente Se(T), con riferimento a prefissate probabilità di eccedenza PVR come

Relazione sulla Pericolosità Sismica di Base

definite nel § 3.2.1, nel periodo di riferimento VR, come definito nel § 2.4. inoltre, in alternativa è ammesso l'uso di accelerogrammi, purché correttamente commisurati alla pericolosità sismica locale dell'area della costruzione.

Le forme spettrali sono definite, per ciascuna delle probabilità di superamento PVR nel periodo di riferimento VR, a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale: ag accelerazione orizzontale massima al sito;

Fo valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

TC* valore di riferimento per la determinazione del periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.1

Per i valori di ag, Fo e TC*necessari per la determinazione delle azioni sismiche, si fa riferimento agli Allegati A e B al Decreto del Ministro delle Infrastrutture 14 gennaio 2008, pubblicato nel S.O. alla Gazzetta Ufficiale del 4 febbraio 2008, n.29, ed eventuali successivi aggiornamenti.

7.2 VITA NOMINALE, CLASSI D'USO E PERIODO DI RIFERIMENTO

La tipologia di costruzioni previste in progetto (NTC2018 - par.2.4) ha vita nominale ≥ 50 anni e appartiene alla classe d'uso IV.

	TIPI DI COSTRUZIONI	$egin{aligned} \mathbf{V_{alori}} & \mathbf{minimi} \ \mathbf{di} & \mathbf{V_{N}} & (\mathbf{anni}) \end{aligned}$
1	Costruzioni temporanee e provvisorie	10
2	Costruzioni con livelli di prestazioni ordinari	50
3	Costruzioni con livelli di prestazioni elevati	100

Figura 15 Valori minimi della Vita nominale VN di progetto per i diversi tipi di costruzioni.

- Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.
- Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.
- Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.
- Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento VR che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale VN per il coefficiente d'uso CU :

$$V_R = V_N \times C_U$$

Per i valori di ag, Fo e TC*necessari per la determinazione delle azioni sismiche, si fa riferimento agli Allegati A e B al Decreto del Ministro delle Infrastrutture 14 gennaio 2008, pubblicato nel S.O. alla Gazzetta Ufficiale del 4 febbraio 2008, n.29, ed eventuali successivi aggiornamenti.

Relazione sulla Pericolosità Sismica di Base

Il valore del coefficiente d'uso CU è definito, al variare della classe d'uso, come mostrato in Tab. 2.4.II (Figura 5.3). Nel Caso specifico Cu = 2.

CLASSE D'USO	I	II	III	IV
COEFFICIENTE C _U	0,7	1,0	1,5	2,0

Tabella 1 Valori di coefficiente d'uso CU

Il valore del periodo di riferimento è V_r= 100

7.3 AMPLIFICAZIONE STRATIGRAFICA E TOPOGRAFICA

Nel caso di pendii con inclinazione maggiore di 15° e altezza maggiore di 30 m, l'azione sismica di progetto deve essere opportunamente incrementata o attraverso un coefficiente di amplificazione topografica o in base ai risultati di una specifica analisi bidimensionale della risposta sismica locale, con la quale si valutano anche gli effetti di amplificazione stratigrafica

Per le aree di installazione delle turbine la categoria topografica è la T1 a cui corrisponde un valore del fattore di amplificazione pari a 1.0.

Categoria	Caratteristiche della suverficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°
T2	Pendii con inclinazione media i > 15°
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

Tabella 2 Categorie topografiche (NTC 2018 3.2 - Tab. 3.2.II)

Tab. 3.2.V – Valori massimi del coefficiente di amplificazione topografica S_T

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta di un rilievo con pendenza media minore o uguale a 30°	1,2
T4	In corrispondenza della cresta di un rilievo con pendenza media maggiore di 30°	1,4

Tabella 3 Valori massimi del coefficiente di amplificazione topografica ST (NTC 2018 3.2 - Tab. 3.2.V)

Al fine di definire l'azione sismica di progetto, basata sull'identificazione della categoria del sottosuolo di riferimento, si è voluto definire il parametro fondamentale per la "classificazione sismica dei terreni", e quindi per la determinazione della categoria, **corrispondente alla velocità equivalente di propagazione delle onde di taglio VS**₃₀, valutata entro i primi 30 m di profondità dal piano campagna ma nel caso specifico relativa alla quota di imposta delle fondazioni.

Per tale scopo, in accordo agli approcci semplificati proposti dal D.M. 17/01/2018 - Tab. 3.2.II (Figura 5.4) la determinazione del parametro delle onde di taglio VS₃₀ è stato stimato mediante misura delle velocità sismiche attraverso l'esecuzione di quattro **prospezioni geofisiche MASW** di seguito descritte in dettaglio.

8 INDAGINI GEOGNOSTICHE

La necessità di integrare le informazioni di tipo geologico e geotecnico derivanti da studi pregressi, dalla letteratura di settore e dai rilievi geologici e geostrutturali in sito, ha reso necessario predisporre un piano di indagini geognostiche propedeutiche alla definizione del modello geologico di riferimento di sito funzionale alle opere previste in progetto così come richiamato dalle Norme Tecniche sulle Costruzioni (NTC2018 - §Cap. 6.2.1). L'obiettivo delle indagini realizzate è stato:

- 1. Definire la stratigrafia ed i rapporti tra le formazioni geologiche interessate dagli interventi;
- 2. Definire le caratteristiche fisico-meccaniche degli ammassi rocciosi coinvolti nelle opere in progetto;
- 3. Individuare la presenza di circolazione d'acqua sotterranea alle profondità di interesse in relazione ai volumi significativi delle opere (fondazioni, piazzole, trincee e rilevati stradali, stabilità dei pendii)

La metodica utilizzata è quella indiretta in sito, ovvero l'indagine geofisica, questa costituisce parte integrante delle indagini geognostiche dirette e indirette legate alla caratterizzazione dei terreni di fondazione. In particolare, si pone come obbiettivo la ricostruzione dell'assetto sismo-stratigrafico dei terreni sede di posa delle opere di fondazione nonché la classificazione del suolo di fondazione per le categorie semplificate indicate nel Decreto 17 gennaio 2018 - NTC 2018 aggiornamento delle "Norme tecniche per le costruzioni".

Sono stati eseguiti di n°4 stendimenti di sismica con tecnica MASW.

È stato inoltre eseguito il Rilievo topografico tramite GPS (geofoni, punti di shot, elettrodi /picchetti) e restituzione dei profili altimetrici da impiegare nelle sezioni di sismica.

Sono stati infine elaborati i dati ottenuti tramite analisi delle prospezioni acquisite in campagna, applicazione filtri, e restituzione grafica delle sezioni sismiche con l'impiego di software specialistici.

Stendimento	Metodo di indagine	Orientamento	Geofoni/Picch etti	Interdistanza tra geofoni (m)	Lunghezza (m)
M 1 (SM01)	MASW	SE-NO	24	3,00	69,0
M 2 (SM02)	MASW	SE-NO	24	3,00	69,0
M 3 (SM03)	MASW	SSO-NNE	24	3,00	69,0
M 4 (SM04)	MASW	SSE-NNO	24	3,00	69,0

Tabella 4 Ubicazione degli stendimenti

8.1 INDAGINI SISMICHE: MASW

Metodologia

La geofisica osserva il comportamento delle onde che si propagano all'interno dei materiali. Un segnale sismico, infatti, si modifica in funzione delle caratteristiche del mezzo che attraversa. Le onde possono essere generate in modo artificiale attraverso l'uso di masse battenti, di scoppi, etc.

Moto del segnale sismico

Il segnale sismico può essere scomposto in più fasi ognuna delle quali identifica il movimento delle particelle investite dalle onde sismiche. Le fasi possono essere:

- P-Longitudinale: onda profonda di compressione;
- S-Trasversale: onda profonda di taglio;
- · L-Love: onda di superficie, composta da onde P e S;
- R-Rayleigh: onda di superficie composta da un movimento ellittico e retrogrado.

Onde di Rayleigh - "R"

In passato gli studi sulla diffusione delle onde sismiche si sono concentrati sulla propagazione delle onde profonde (P,S) considerando le onde di superficie come un disturbo del segnale sismico da analizzare. Recenti studi hanno consentito di creare dei modelli matematici avanzati per l'analisi delle onde di superficie in mezzi a differente rigidezza.

Analisi del segnale con tecnica MASW

Secondo l'ipotesi fondamentale della fisica lineare (Teorema di Fourier) i segnali possono essere rappresentati come la somma di segnali indipendenti, dette armoniche del segnale. Tali armoniche, per analisi monodimensionali, sono funzioni trigonometriche seno e coseno, e si comportano in modo indipendente non interagendo tra di loro. Concentrando l'attenzione su ciascuna componente armonica il risultato finale in analisi lineare risulterà equivalente alla somma dei comportamenti parziali corrispondenti alle singole armoniche. L'analisi di Fourier (analisi spettrale

Relazione sulla Pericolosità Sismica di Base

FFT) è lo strumento fondamentale per la caratterizzazione spettrale del segnale. L'analisi delle onde di Rayleigh, mediante tecnica MASW, viene eseguita con la trattazione spettrale del segnale nel dominio trasformato dove è possibile, in modo abbastanza agevole, identificare il segnale relativo alle onde di Rayleigh rispetto ad altri tipi di segnali, osservando, inoltre, che le

onde di Rayleigh si propagano con velocità che è funzione della frequenza. Il legame velocità frequenza è detto spettro di dispersione. La curva di dispersione individuata nel dominio f-k è detta curva di dispersione sperimentale, e rappresenta in tale dominio le massime ampiezze dello spettro.

Modellizzazione

E' possibile simulare, a partire da un modello geotecnico sintetico caratterizzato da spessore, densità, coefficiente di Poisson, velocità delle onde S e velocità delle Onde P, la curva di dispersione teorica la quale lega velocità e lunghezza d'onda secondo la relazione:

$$v = \lambda \times v$$

Modificando i parametri del modello geotecnico sintetico, si può ottenere una sovrapposizione della curva di dispersione teorica con quella sperimentale: questa fase è detta di inversione e consente di determinare il profilo delle velocità in mezzi a differente rigidezza.

Modi di vibrazione

Sia nella curva di inversione teorica che in quella sperimentale è possibile individuare le diverse configurazioni di vibrazione del terreno. I modi per le onde di Rayleigh possono essere: deformazioni a contatto con l'aria, deformazioni quasi nulle a metà della lunghezza d'onda e deformazioni nulle a profondità elevate.

Profondità di indagine

Le onde di Rayleigh decadono a profondità circa uguali alla lunghezza d'onda. Piccole lunghezze d'onda (alte frequenze) consentono di indagare zone superficiali mentre grandi lunghezze d'onda (basse frequenze) consentono indagini a maggiore profondità.

8.2 SPECIFICHE DELLE INDAGINI SVOLTE

L'indagine si sviluppa mediante la materializzazione sul terreno di una linea retta mediante la posa di una fettuccia metrica. A seguire vengono posizionati i geofoni intervallati ad una distanza pari a 3,0 m in funzione anche della disponibilità di spazio. Esternamente alla stesa geofonica, da ora base sismica, a distanza di interesse che può essere pari ad un multiplo della distanza intergeofonica ma anche variabile (in funzione delle disponibilità di cantiere), sia in andata (ovvero in prossimità del geofono 1) che al ritorno (ovvero all'ultimo geofono posizionato sulla base sismica), vengono svolte delle energizzazioni mediante massa battente pari a Kg 10,0. Nel caso in esame, sono state svolte le energizzazioni in "andata" e in "ritorno" con distanza dal geofono 1 e dal geofono 24 crescente e pari a multipli della distanza intergeofonica (v. schema), oltre che una battuta al centro della base sismica.

Il numero di geofoni utile all'esecuzione ottimale di un'indagine M.A.S.W. è risultato, per il cantiere svolto, di 24 geofoni dei quali sono state utilizzate tutte le tracce. Il tempo dell'acquisizione è stato definito tra 1.00 e 2.00 secondi.



Figura 16 Geometria di acquisizione - MASW con 24 geofoni, interdistanza di 3,0 m, lunghezza complessiva 69,0

8.3 CARATTERISTICHE DELLA STRUMENTAZIONE IMPIEGATA

Per l'esecuzione del cantiere d'interesse, è stata utilizzata una strumentazione di acquisizione DoReMi, prodotto dalla SARA electronicinstruments, 24bit con frequenza di campionamento 1000 Hz per ognuno dei canali registrati, ciascuno attrezzato con geofoni verticali SARA electronics con frequenza propria di 4.5 Hz.Per l'energizzazione è stata utilizzata una mazza battente da 10 kg impattante su piastra di battuta in duralluminio, diametro 18 cm, spessore 4 cm, peso 2 kg

8.4 INTERPRETAZIONE DEI SEGNALI ACQUISITI

Il metodo interpretativo della M.A.S.W. si compone dei seguenti passaggi di analisi dei segnali acquisiti:

- individuazione della variazione del segnale acquisito nel tempo
- analisi di Fourier con definizione dei contenuti spettrali acquisiti nei segnali
- stacking dello spostamento di fase con definizione delle velocità di rotazione retrograda compatibile con il campo di frequenza definita.

A posteriori dell'analisi matematica del segnale acquisito, definito un modello stratigrafico compatibile con la geologia locale, si provvede all'inversione della curva di dispersione ottenendo la sismo-stratigrafia.

L'elaborazione dei dati che ha prodotto il profilo di velocità è stata realizzata grazie all'impiego del software ZondST2D.

8.5 CATEGORIE DI SOTTOSUOLO - D.M. 19.01.2018 (NTC 2018)

Le "Norme Tecniche per le Costruzioni" – Decreto del 19/01/2018 definiscono le regole per progettare l'opera sia in zona sismica che in zona non sismica. La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione

$$V_{S,eq} = \frac{H}{\displaystyle\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

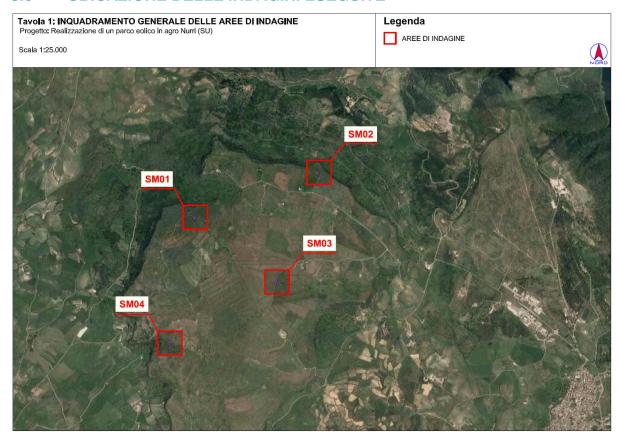
con:

hi spessore dell'i-esimo strato;

VS,i velocità delle onde di taglio nell'i-esimo strato;

N numero di strati;

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

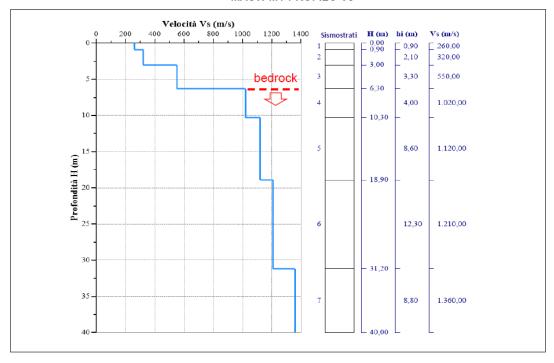

Per le fondazioni superficiali, la profondità del substrato H è riferita al piano di imposta delle stesse, mentre per le fondazioni su pali è riferita alla testa dei pali. Nel caso di opere di sostegno di terreni naturali, la profondità è riferita alla testa dell'opera. Per muri di sostegno di terrapieni, la profondità è riferita al piano di imposta della fondazione. Le categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato sono definite in Tab. 3.2.II. Per queste cinque categorie di sottosuolo, le azioni sismiche sono definibili come descritto al § 3.2.3 delle NTC 2018. Per qualsiasi condizione di sottosuolo non classificabile nelle categorie precedenti, è necessario predisporre specifiche analisi di risposta locale per la definizione delle azioni sismiche.

Relazione sulla Pericolosità Sismica di Base

Tabella 3.2.II. Categorie di sottosuolo (Fonte NTC 2018)

Categoria	Descrizione
А	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
E	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

8.6 UBICAZIONE DELLE INDAGINI ESEGUITE


8.7 RISULTATI DELLE INDAGINI DEL SITO M1-R1

8.7.1 Masw M1

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs dello stendimento M1, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs.

Profondità [m sotto il pc]	Descrizione
0,0 - 0,9	1° sismostrato con ∀s di 260 m/s Terre poco addensate
0,9 - 3,0	2° sismostrato con ∨s di 320 m/s Terre mediamente addensate
3,0 - 6,3	3° sismostrato con ∨s di 550 m/s Terre da mediamente addensate a molto addensate
6,3 - 10,3	4° sismostrato con ∀s di 1020 m/s Substrato roccioso intensamente fratturato
10,3 - 18,9	5° sismostrato con ∀s di 1120 m/s Substrato roccioso da intensamente a moderatamente fratturato
18,9 - 31,2	6° sismostrato con ∀s di 1210 m/s Substrato roccioso da leggermente fratturato a sano
31,2 - 40,0	7° sismostrato con ∀s di 1360 m/s Substrato roccioso sano

MASW M1-PROFILO Vs

Sismostratigrafia e calcolo Vs eq

Nr.	Profondità (m)	Spessori (m)	Vs (m/s)	Hcalc (m)	hi calc (m)	Hi/Vs (s)
1	0,90	0,90	260,00	0,90	0,90	0,00346
2	3,00	2,10	320,00	3,00	2,10	0,00656
3	6,30	3,30	550,00	6,30	3,30	0,00600
4	10,30	4,00	1020,00	10,30	4,00	
5	18,90	8,60	1120,00	18,90	8,60	
6	31,20	12,30	1210,00	30,00	11,10	
7	40,00	8,80	1360,00	0,00	0,00	

Relazione sulla Pericolosità Sismica di Base

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

con:

hi spessore dell'i-esimo strato;

V_{S,i} velocità delle onde di taglio nell'i-esimo strato;

N numero di strati;

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Esaminato il profilo delle Vs si pone come profondità del substrato 6,30 m (Vs>800 m/s).

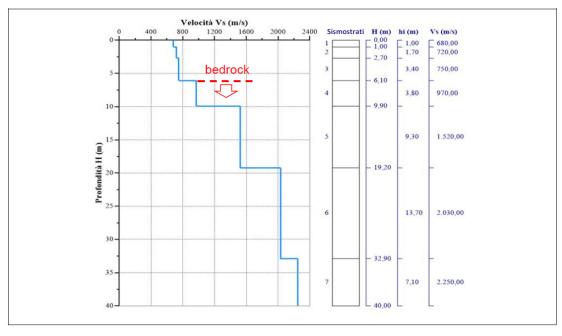
La velocità equivalente di propagazione delle onde di taglio calcolata per il substrato posto a 6,30 m di profondità dal p.c. è pari a: Vs_{eq} = 6,30/0,0160=393,16 m/s che dà luogo ad una categoria B, ossia:

Categoria B: Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.

Tabella 5 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche

Sismo strato	Prof/ zona	CT*	Densità Y	Vp	Vs	Coefficiente di Poisson v	Modulo di Young dinamico Ed	Modulo di Young statico Ed	Modulo di taglio G₀	Modulo di comprimibil ità o di Bulk - K
			[Kg/m ³]	[m/s]	[m/s]	[adim]	[MPa]	[MPa]	[MPa]	[MPa]
1	0,0 - 0,9	terre	1.800	520	260	0,33	324	39	118	324
2	0,9 - 3,0	terre	2.000	640	320	0,33	549	66	206	549
3	3,0 - 6,3	terre	2.100	1.100	550	0,33	1.697	204	637	1.697
4	6,3 - 10,3	12%	2.200	2.040	1020	0,33	6.100	732	2.285	6.100
5	10,3 - 18,9	15%	2.350	2.240	1120	0,33	7.865	1.180	2.952	7.865
6	18,9 - 31,2	22%	2.400	2.420	1210	0,33	9.375	2.063	3.511	9.375
7	31,2 - 40,0	25%	2.450	2.720	1360	0,33	12.082	3.020	4.531	12.082

*CT: coefficiente di trasformazione (per la roccia)


8.8 RISULTATI DELLE INDAGINI DEL SITO M2-R2

8.8.1 Masw M2

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs dello stendimento M2, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs.

Profondità [m sotto il pc]	Descrizione
0,0 - 1,0	1° sismostrato con Vs di 680 m/s Terre poco addensate
1,0 - 2,7	2° sismostrato con Vs di 720 m/s Terre mediamente addensate
2,7 - 6,1	3° sismostrato con Vs di 750 m/s Terre da addensate a molto
6,1 - 9,9	4° sismostrato con Vs di 970 m/s Substrato roccioso intensamente fratturato
9,9 - 19,2	5° sismostrato con Vs di 1520 m/s Substrato roccioso da mediamente a leggermente fratturato
19,2 - 32,9	6° sismostrato con Vs di 2030 m/s Substrato roccioso sano
32,9 - 40,0	7° sismostrato con Vs di 2250 m/s Substrato roccioso sano

MASW M2-PROFILO Vs

Sismostratigrafia e calcolo Vs eq

Nr.	Profondità (m)	Spessori (m)	Vs (m/s)	Hcalc (m)	hi calc (m)	Hi/Vs (s)
1	1,00	1,00	680,00	1,00	1,00	0,00147
2	2,70	1,70	720,00	2,70	1,70	0,00236
3	6,10	3,40	750,00	6,10	3,40	0,00453
4	9,90	3,80	970,00	9,90	3,80	
5	19,20	9,30	1520,00	19,20	9,30	
6	32,90	13,70	2030,00	30,00	10,80	
7	40,00	7,10	2250,00	0,00	0,00	

Relazione sulla Pericolosità Sismica di Base

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

con:

hi spessore dell'i-esimo strato;

V_{S,i} velocità delle onde di taglio nell'i-esimo strato;

N numero di strati;

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Esaminato il profilo delle Vs si pone come profondità del substrato 6,10 m (Vs>800 m/s).

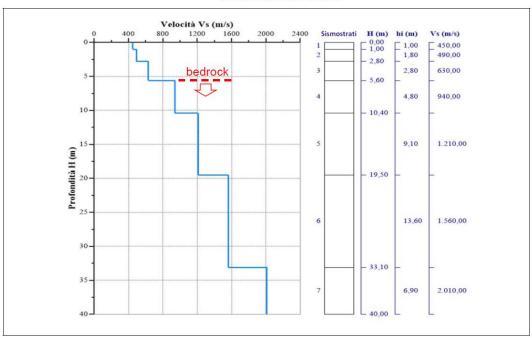
La velocità equivalente di propagazione delle onde di taglio calcolata per il substrato posto a **6,10** m di profondità dal p.c. è pari a: **Vs**_{eq} = **6,10/0,0083=729,23** m/s che dà luogo ad una categoria B, ossia:

Categoria B: Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.

Tabella 6 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche

Sismo strato	Prof/ zona	CT*	Densità Y	Vp	Vs	Coefficiente di Poisson v	Modulo di Young dinamico Ed	Modulo di Young statico Ed	Modulo di taglio G₀	Modulo di comprimibil ità o di Bulk - K
			[Kg/m ³]	[m/s]	[m/s]	[adim]	[MPa]	[MPa]	[MPa]	[MPa]
1	0,0 - 1,0	terre	1.800	1.360	680,00	0,33	2.216	267	834	2.216
2	1,0 - 2,7	terre	2.000	1.440	720,00	0,33	2.766	333	1.040	2.766
3	2,7 - 6,1	terre	2.100	1.500	750,00	0,33	3.148	380	1.177	3.148
4	6,1 - 9,9	12%	2.200	1.940	970,00	0,33	5.521	663	2.069	5.521
5	9,9 - 19,2	15%	2.350	3.040	1520,00	0,33	14.475	2.171	5.433	14.475
6	19,2 - 32,9	22%	2.400	4.060	2030,00	0,33	26.371	5.802	9.895	26.371
7	32,9 - 40,0	25%	2.450	4.500	2250,00	0,33	33.078	8.270	12.406	33.078

*CT: coefficiente di trasformazione (per la roccia)


8.9 RISULTATI DELLE INDAGINI DEL SITO M3-R3

8.9.1 Masw M3

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs dello stendimento M3, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs.

Profondità [m sotto il pc]	Descrizione
0,0 - 1,0	1° sismostrato con Vs di 450 m/s Terre poco addensate
1,0 - 2,8	2° sismostrato con Vs di 490 m/s Terre mediamente addensate
2,8 - 5,6	3° sismostrato con Vs di 630 m/s Terre molto addensate
5,6 - 10,4	4° sismostrato con Vs di 940 m/s Substrato roccioso intensamente fratturato
10,4 - 19,5	5° sismostrato con Vs di 1210 m/s Substrato roccioso mediamente fratturato
19,5 - 33,1	6° sismostrato con Vs di 1560 m/s Substrato roccioso da poco fratturato a sano
33,1 - 40,0	7° sismostrato con Vs di 2010 m/s Substrato roccioso sano

MASW M3-PROFILO Vs

Sismostratigrafia e calcolo Vs eq

Nr.	Profondità (m)	Spessori (m)	Vs (m/s)	Hcalc (m)	hi calc (m)	Hi/Vs (s)
1	1,00	1,00	450,00	1,00	1,00	0,00222
2	2,80	1,80	490,00	2,80	1,80	0,00367
3	5,60	2,80	630,00	5,60	2,80	0,00444
4	10,40	4,80	940,00	10,40	4,80	
5	19,50	9,10	1210,00	19,50	9,10	
6	33,10	13,60	1560,00	30,00	10,50	
7	40,00	6,90	2010,00	0,00	0,00	

Relazione sulla Pericolosità Sismica di Base

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

con:

hi spessore dell'i-esimo strato;

V_{S,i} velocità delle onde di taglio nell'i-esimo strato;

N numero di strati;

H profondità del substrato, definito come quella formazione costituita da roccia

o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Esaminato il profilo delle Vs si pone come profondità del substrato 5,60 m (Vs>800 m/s).

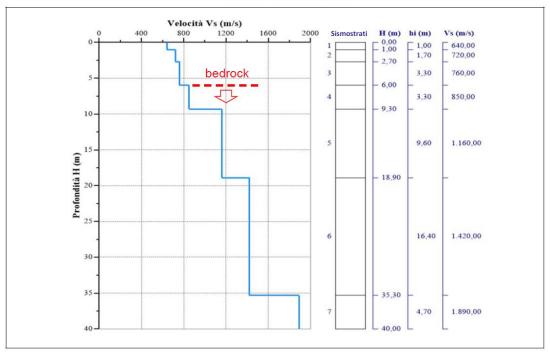
La velocità equivalente di propagazione delle onde di taglio calcolata per il substrato posto a 5,60 m di profondità dal p.c. è pari a: Vs_{eq} = 5,6/0,0103=541,58 m/s che dà luogo ad una categoria B, ossia:

Categoria B: Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.

Tabella 7 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche

Sismo strato	Prof/ zona	CT*	Densità Y	Vp	Vs	Coefficiente di Poisson v	Modulo di Young dinamico Ed	Modulo di Young statico Ed	Modulo di taglio G₀	Modulo di comprimibil ità o di Bulk - K
			[Kg/m ³]	[m/s]	[m/s]	[adim]	[MPa]	[MPa]	[MPa]	[MPa]
1	0,0 - 1,0	terre	1.800	900	450	0,33	971	117	363	971
2	1,0 - 2,8	terre	2.000	980	490	0,33	1.285	155	481	1.285
3	2,8 - 5,6	terre	2.100	1.260	630	0,33	2.226	268	834	2.226
4	5,6 - 10,4	12%	2.200	1.880	940	0,33	5.188	623	1.942	5.188
5	10,4 - 19,5	15%	2.350	2.420	1210	0,33	9.179	1.377	3.442	9.179
6	19,5 - 33,1	22%	2.400	3.120	1560	0,33	15.573	3.426	5.845	15.573
7	33,1 - 40,0	25%	2.450	4.020	2010	0,33	26.400	6.600	9.895	26.400

*CT: coefficiente di trasformazione (per la roccia)


8.10 RISULTATI DELLE INDAGINI DEL SITO M4-R4

8.10.1 Masw M4

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs dello stendimento M4, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs.

Profondità [m sotto il pc]	Descrizione
0,0 - 1,0	1° sismostrato con Vs di 640 m/s Terre addensate
1,0 - 2,7	2° sismostrato con Vs di 720 m/s Terre molto addensate
2,7 - 6,0	3° sismostrato con Vs di 760 m/s Substrato roccioso intensamente fratturato
6,0 - 9,3	4° sismostrato con Vs di 850 m/s Substrato roccioso intensamente fratturato
9,3 - 18,9	5° sismostrato con Vs di 1160 m/s Substrato roccioso da fratturato a sano
18,9 - 35,3	6° sismostrato con Vs di 1420 m/s Substrato roccioso sano
35,3 - 40,0	7° sismostrato con Vs di 1890 m/s Substrato roccioso sano

MASW M4-PROFILO Vs

Sismostratigrafia e calcolo Vs eq

Nr.	Profondità (m)	Spessori (m)	Vs (m/s)	Hcalc (m)	hi calc (m)	Hi/Vs (s)
1	1,00	1,00	640,00	1,00	1,00	0,00156
2	2,70	1,70	720,00	2,70	1,70	0,00236
3	6,00	3,30	760,00	6,00	3,30	0,00434
4	9,30	3,30	850,00	9,30	3,30	
5	18,90	9,60	1160,00	18,90	9,60	
6	35,30	16,40	1420,00	30,00	11,10	
7	40,00	4,70	1890,00	0,00	0,00	

Relazione sulla Pericolosità Sismica di Base

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

con:

hi spessore dell'i-esimo strato;

V_{S,i} velocità delle onde di taglio nell'i-esimo strato;

N numero di strati;

H profondità del substrato, definito come quella formazione costituita da roccia

o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Esaminato il profilo delle Vs si pone come profondità del substrato 6,00 m (Vs>800 m/s).

La velocità equivalente di propagazione delle onde di taglio calcolata per il substrato posto a **6,00** m di profondità dal p.c. è pari a: Vs_{eq} = **6,0/0,0082=725,89** m/s che dà luogo ad una categoria A, ossia:

Categoria B: Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.

Tabella 8 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche

Sismo strato	Prof/ zona	CT*	Densità γ	Vp	Vs	Coefficiente di Poisson v	Modulo di Young dinamico Ed	Modulo di Young statico Ed	Modulo di taglio G₀	Modulo di comprimibil ità o di Bulk - K
			[Kg/m ³]	[m/s]	[m/s]	[adim]	[MPa]	[MPa]	[MPa]	[MPa]
1	0,0 - 1,0	terre	1.800	1.280	640	0,33	1.961	236	736	1.961
2	1,0 - 2,7	terre	2.000	1.440	720	0,33	2.766	333	1.040	2.766
3	2,7 - 6,0	terre	2.100	1.520	760	0,33	3.236	390	1.216	3.236
4	6,0 - 9,3	12%	2.200	1.700	850	0,33	4.237	508	1.589	4.237
5	9,3 - 18,9	15%	2.350	2.320	1160	0,33	8.434	1.265	3.158	8.434
6	18,9 - 35,3	22%	2.400	2.840	1420	0,33	12.906	2.839	4.835	12.906
7	35,3 - 40,0	25%	2.450	3.780	1890	0,33	23.340	5.835	8.748	23.340

*CT: coefficiente di trasformazione (per la roccia)

8.11 CATEGORIE DI SOTTOSUOLO E PARAMETRI DI PERICOLOSITÀ SISMICA

Attraverso le indagini con la tecnica MASW si evince la presenza di sismostrati con velocità Vs crescente con la profondità sino ad incontrare il bed rock con andamento e spessori indicati nei precedenti paragrafi. La velocità equivalente di propagazione delle onde di taglio calcolata per i differenti siti di indagine, che si ricorda sarà anche funzione del piano di posa delle fondazioni è riportata nel seguente schema riassuntivo:

Sigla Stendimento			Categoria sottosuolo (NTC2018)
M1 (SM01)	6,30	393,16	В
M2 (SM02)	6,10	729,23	В
M3 (SM03)	5,60	541,58	В
M4 (SM04)	6,00	725,89	В

Il substrato roccioso (Vs>800 m/s) si rileva profondità variabile tra 5,60m e 6,30m che dà luogo alle categoria B come specificato nello schema sottostante.

Tab. 3.2.II – Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.

Categoria	Caratteristiche della superficie topografica
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
E	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

In base ai dati di localizzazione, tipologia dell'opera e classe d'uso si quindi sono calcolati i parametri sismici relativi alle verifiche SLO, SLD, SLV e SLC:

Relazione sulla Pericolosità Sismica di Base

Stato Limite	Tr [anni]	a _g [g]	Fo	Tc* [s]
Operatività (SLO)	30	0.019	2.610	0.273
Danno (SLD)	35	0.020	2.628	0.280
Salvaguardia vita (SLV)	332	0.045	2.855	0.332
Prevenzione collasso (SLC)	682	0.055	2.930	0.356
Periodo di riferimento per l'azione sismica:	35			

Stato Limite di Danno (SLD)

Stati limite ultimi Stato Limite di Operatività (SLO) Stato Limite di salvaguardia della Vita (SLV) Stato Limite di prevenzione del Collasso (SLC) ag accelerazione orizzontale massima al sito

 ${f Fo}$ valore massimo del fattore di ampl. dello spettro in accelerazione orizzontale T^*C periodo di inizio del tratto a velocità costante dello spettro in acc.orizzontale

Relazione sulla Pericolosità Sismica di Base

9 CONCLUSIONI

Il territorio comunale di Nurri ricade in Zona 4 a bassa pericolosità sismica.

Le indagini condotte hanno permesso di definire le condizioni dei terreni secondo quanto richiesto dalle NTC 2018 in relazione alla pericolosità sismica di base.

I terreni investigati appartengono alla categoria di sottosuolo B – Rocce tenere e/o depositi a grana grossa molto addensati o terreni a grana fina molto consistenti, con velocità equivalenti comprese tra 360m/s e 798m/s.