Regione Sardegna

COMUNE DI GONNOSFANADIGA

COMUNE DI GUSPINI

Provincia Sud Sardegna

PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DELLA POTENZA COMPLESSIVA DI 24.307,92 KWp DA REALIZZARE NEI COMUNI DI GONNOSFANADIGA E GUSPINI (SU) E RELATIVE OPERE DI CONNESSIONE ALLA R.T.N.

Relazione preliminare delle strutture

ELABORATO

PR04.1

PROPONENTE:

DSIT17

DS ITALIA 17 SRL

Sede legale: Roma (RM) Via del Plebiscito n. 112 - CAP 00186 P.IVA 16658161001 dsitalia17@legalmail.it

PROGETTISTI:

Via Caduti di Nassiriya 55 70124- Bari (BA) pec: atechsrl@legalmail.it

DIRETTORE TECNICO
Dott. Ing. Orazio TRICARICO

Dott. Ing. Alessandro ANTEZZA

INGEGNERE Alessandro Antezza * Sez. A - 10743 * DIENTETERAMENTALE DIENTETERAMENTALE DIENTETERAMENTALE DIENTETERAMENTALE DIENTETERAMENTALE DIENTETERAMENTALE

Dott. Agr. Paolo MESSINA

Consulenti:

Dott. ssa Archeologa Adele BARBIERI

Dott. Geol. Simone ASONI

Dott. Rocco CARONE

COORDINAMENTO DELLA PROGETTAZIONE:

0	SETT 2023	B.B.	A.A.	O.T.	Progetto definitivo
EM./REV.	DATA	REDATTO	VERIFICATO	APPROVATO	DESCRIZIONE

1. PREM	/IES	SA3	}
1.1.	CA	ARATTERISTICHE GEOMETRICHE, FUNZIONALI E COSTRUTTIVE DEI TRACKER	3
1.2.	CA	ARATTERISTICHE STRUTTURALI 4	ŀ
1.3.	lPo	OTESI DI CALCOLO E NORMATIVE DI RIFERIMENTO	;
2. CALC	COL	I STATICI7	,
2.1.	A١	IALISI DEI CARICHI	,
2.2.	CA	ARICHI PERMANENTI 7	,
2.3.	CA	ARICHI VARIABILI	}
2.3	.1.	AZIONI SISMICHE	8
2.3	.2.	CARICO NEVE	14
2.3	.3.	AZIONI DEL VENTO	17
2.3	.4.	AZIONI DELLA TEMPERATURA	25
2.3	.5.	RIASSUNTO FINALE CARICHI VARIABILI	26
3. COMI	BIN	AZIONI DI CARICO27	,
4. MODI	ELL	AZIONE STRUTTURALE30)
4.1.	GE	EOMETRIA PORTALE TIPO 30)
5. OUTF	PUT	DEI RISULTATI33	}
6. CLAS	SIF	TICAZIONE SEZIONI37	,
7. VERII	FIC	HE DEI COLLEGAMENTI38	;
8. CABI	NE	ELETTRICHE40)
9. SOTT	os	TAZIONE DI TRASFORMAZIONE E CONSEGNA42	<u> </u>

10.	INDICAZIONE PER FONDAZIONI DELLE CABINE	42
11.	SPECIFICHE TECNICHE RECINZIONE E CANCELLI	44
	CALCOLO DELLA CAPACITÀ PORTANTE PER CARICO VERTICALE DI UN F	
13.	VERIFICA DELLA CAPACITÀ PORTANTE	47
14.	VERIFICA DI TIRO E RIBALTAMENTO PER VENTO	47
15.	SOFTWARE UTILIZZATI –TIPO DI ELABORATORE	48
15.	1. PREMESSA	48
15.2	2. CODICE DI CALCOLO, SOLUTORE E AFFIDABILITÀ DEI RISULTATI	48
15.	3. VALUTAZIONE DEI RISULTATI E GIUDIZIO MOTIVATO SULLA LORO ACCETTABILITÀ	50
16.	PRESTAZIONI ATTESE AL COLLAUDO	50
17.	ACCIAIO PER CARPENTERIA METALLICA	51
17.	1. GENERALITÀ	51

1. PREMESSA

Il presente elaborato è relativo ai calcoli statici e dinamici ed ai disegni esecutivi relativi alle strutture in acciaio ed in c.a. relative alle opere da installarsi, nell'ambito della realizzazione di un impianto agrovoltaico da realizzare su terreni collocati all'interno dei territori comunali delle città di Gonnosfanadiga e Guspini in provincia di Sud Sardegna (SU).

I comuni di Gonnosfanadiga (SU) e Guspini (SU), secondo la normativa vigente, risultano classificati come zona sismica, pertanto per l'elaborazione ed il calcolo delle strutture in calcestruzzo armato ed acciaio si farà riferimento alla normativa vigente per le costruzioni in zona sismica.

Segue inquadramento geografico del progetto:

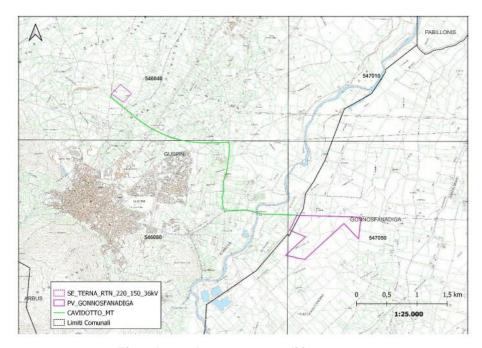


Fig.1. Inquadramento area di intervento

1.1. Caratteristiche geometriche, funzionali e costruttive dei tracker

Il "MODULO STANDARD" utilizzato in questo campo è costituito da una struttura in elevazione in acciaio TIPO TRACKER DI SUPPORTO MODULI FOTOVOLTAICI TILT +/-60A ANCORAGGIO CON VITI DI PROFONDITA' infissa nel terreno per circa 2 - 2,5 mt, come in figura, collegati superiormente da un Tubo Quadro 120*120*3 sul quale poggiano attraverso elementi in OMEGA 65x30x25 i moduli fotovoltaici. L'angolo d'inclinazione è variabile.

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

Per maggiore chiarezza si rimanda alle tavole grafiche del progetto definitivo allegate.

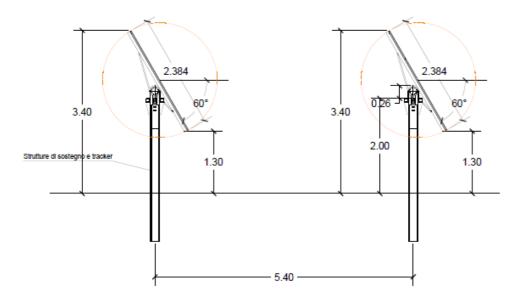


Fig.2. Schema della struttura - sezione

La struttura di sostegno del tipo mobile ad inseguitore solare monoassiale, o tracker, utilizza dispositivi elettromeccanici, che gli consentono di seguire il sole durante tutto il giorno da Est a Ovest sull'asse di rotazione orizzontale Nord-Sud (inclinazione 0°). I layout di campo con inseguitori monoasse orizzontali sono molto flessibili. La semplice geometria permette di mantenere tutti gli assi di rotazione paralleli l'uno all'altro in modo da posizionare opportunamente i tracker l'uno rispetto all'altro.

1.2. Caratteristiche strutturali

L'intera struttura è realizzata completamente in acciaio ed è caratterizzata da 5 portali, posti ad interasse 7930 e 7980 mm. Gli elementi strutturali costituenti sono rappresentati da un pilastro centrale (ove è posizionato il rotore) di sezione HEA160 e 4 PROFILI A Z 150x50x20, tutti gli elementi precedenti sono collegati superiormente da un Tubo Quadro120*120*3.

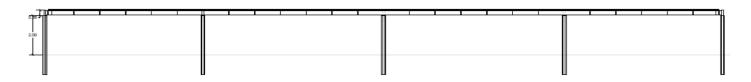


Fig.3. Schema della struttura – vista longitudinale

Consulenza: **Atech srl**Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva

di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei

Comuni di Gonnosfanadiga e Guspini (SU)

L'elemento di appoggio del pannello fotovoltaico è costituito, come già indicato, da elementi

Reiforced omega 65x30x25 l=460 mm, Aluzinc S280GD+AZ185 e profili A Z 25x65x25 di bordo,

disposti con un passo pari a circa 445 mm e inclinazione variabile.

1.3. Ipotesi di calcolo e normative di riferimento

I metodi di calcolo adottati per il calcolo sono i seguenti:

1) Per i carichi statici: METODO DELLE DEFORMAZIONI;

2) Per i carichi sismici: metodo dell'ANALISI MODALE o dell'ANALISI SISMICA STATICA

EQUIVALENTE.

Proponente: DS Italia 17 srl

Il calcolo statico-dinamico delle strutture è stato eseguito secondo i metodi della scienza e della

tecnica delle costruzioni.

L'analisi sismica dinamica è stata svolta con il metodo dell'analisi modale; la ricerca dei modi e delle

relative frequenze è stata perseguita con il metodo delle "iterazioni nel sottospazio".

I modi di vibrazione considerati sono in numero tale da assicurare l'eccitazione di più dell'85% della

massa totale della struttura.

Per ciascuna direzione di ingresso del sisma si sono valutate le forze modali che vengono applicate

su ciascun nodo spaziale (tre forze, in direzione X, Y e Z, e tre momenti).

Per la verifica della struttura si è fatto riferimento all'analisi modale, pertanto sono prima calcolate le

sollecitazioni e gli spostamenti modali e poi viene calcolato il loro valore efficace.

I valori delle sollecitazioni sismiche sono combinate linearmente (in somma e in differenza) con

quelle per carichi statici per ottenere le sollecitazioni per sisma nelle tre direzioni di calcolo.

Per la verifica delle strutture si è seguito il metodo agli stati limite facendo riferimento alle seguenti

normative:

1. Decreto Ministeriale 17/01/2018 "Norme Tecniche per le Costruzioni"

2. Circolare Ministero delle infrastrutture e dei trasporti 21 gennaio 2019, n. 7 - "Istruzioni per

l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al

decreto ministeriale 17 gennaio 2018" (Gazzetta Ufficiale 11/2/2019, n. 35 - Suppl. ord. n. 5)".

Elaborato: Relazione preliminare delle strutture

Consulenza: Atech srl Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Proponente: DS Italia 17 srl

Comuni di Gonnosfanadiga e Guspini (SU)

Si sono analizzate le possibili condizioni di carico e si è proceduto al dimensionamento delle parti per le condizioni più gravose. Il calcolo e la verifica delle strutture in acciaio è stato eseguito con il software agli elementi finiti CDSWIN 2019.

Di seguito, in dettaglio si descrivono le principali caratteristiche del software di calcolo.

1. SISTEMA GLOBALE DELLA STRUTTURA SPAZIALE

Il sistema di riferimento globale è costituito da una terna destra di assi cartesiani ortogonali (O-XYZ) dove l'asse Z rappresenta l'asse verticale rivolto verso l'alto. Le rotazioni sono considerate positive se concordi con gli assi vettori:

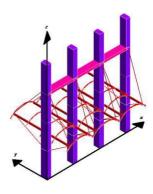


Fig.4. Esempio di modello realizzato con CDSWIN 2019

2. SISTEMA LOCALE DELLE ASTE

Il sistema di riferimento locale delle aste, inclinate o meno, è costituito da una terna destra di assi cartesiani ortogonali che ha l'asse Z coincidente con l'asse longitudinale dell'asta ed orientamento dal nodo iniziale al nodo finale, gli assi X ed Y sono orientati come nell'archivio delle sezioni:

3. UNITÀ DI MISURA

Si adottano le seguenti unità di misura: [lunghezze] = m; mm

[forze] = kgf / daN; KN

[tempo] = sec

[temperatura] = °C

4. CONVENZIONI SUI SEGNI I carichi agenti sono:

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

Carichi e momenti distribuiti lungo gli assi coordinati;

Forze e coppie nodali concentrate sui nodi.

Le forze distribuite sono da ritenersi positive se concordi con il sistema di riferimento locale dell'asta, quelle concentrate sono positive se concordi con il sistema di riferimento globale. I gradi di libertà nodali sono gli omologhi agli enti forza, e quindi sono definiti positivi se concordi a questi ultimi.

2. CALCOLI STATICI

2.1. Analisi dei carichi

Per determinare i carichi agenti sulla struttura si è fatto riferimento ai dati ottenuti dal progettista dell'opera indicati in seguito e alle schede tecniche.

Specification	Data
Cell Type	Poly-crystalline
Cell Arrangement	144 [2 X (12 X 6)]
Dimensions	2108 X 1048 X 40 mm
Difficusions	(83.0 X 41.3 X 1.57 in)
Weight	24.9 kg (54.9 lbs)
Front Cover 3.2 mm tempered glass	
Framo	Anodized aluminium alloy,
Frame	crossbar enhanced
J-Box	IP68, 3 bypass diodes
Cable	4 mm ² (IEC), 12 AWG (UL)
Cable Length (Including Connector)	Portrait: 500 mm (19.7 in) (+) / 350 mm (13.8 in) (-); landscape: 1400 mm (55.1 in); leap-frog connection: 1670 mm (65.7 in)*
Connector	T4 series
Per Pallet	27 pieces

 $[\]mbox{\ensuremath{\,^*}}$ For detailed information, please contact your local Canadian Solar sales and technical representatives.

Fig.5. Scheda pannello

2.2. Carichi permanenti

Pannello Fotovoltaico + elementi di montaggio 15,00 daN/m²

Per Container (40' HQ) 594 pieces

MECHANICAL DATA

Elaborato: Relazione preliminare delle strutture

2.3. Carichi variabili

2.3.1. Azioni sismiche

Per la definizione del sisma si fa riferimento al paragrafo 3.2 Azione sismica del D.M.

17/01/2018, all'Allegato A alle Norme Tecniche per le Costruzioni: Pericolosità sismica ed all'Allegato B

alle Norme Tecniche per le Costruzioni: Tabelle dei parametri che definiscono l'azione sismica del DM

17/01/2018.

La struttura ricade nel comune di Gonnosfanadiga, collocato in Provincia di Sud Sardegna. Le

coordinate geografiche (Latitudine e Longitudine), utili per la definizione dell'azione sismica, risultano

pari a LAT: 39,539° e LON: 8,627° rispettivamente.

Si è considerato un terreno di categoria E secondo la classificazione riportata dalla

"Tabella 3.2.II Categorie di sottosuolo" al paragrafo 3.2.2 "Categorie di sottosuolo e condizioni

topografiche" del DM 17/01/2018 in base alle indicazioni scaturite dall'indagine geologico-tecnica

condotta nell'area destinata alla realizzazione del parco fotovoltaico ubicata in agro di Gonnosfanadiga

(SU) e Guspini (SU) come contenute nella relazione geologia redatta dallo Studio del Dott. Geol.

Simone Giulio Asoni.

Si è considerata una categoria topografica T1 – Superficie pianeggiante, pendii e rilievi isolati con

inclinazione i<15° secondo la classificazione riportata dalla "Tabella 3.2.III - Categorie

topografiche" al "paragrafo 3.2.2 Categorie di sottosuolo e condizioni topografiche" del DM

17/01/2018.

Sulla base di tali informazioni di latitudine e longitudine, terreno e categoria topografica, si

determinano gli spettri di risposta elastici secondo le seguenti formule:

✓ Componente orizzontale (paragrafo 3.2.3.2.1 Spettro di risposta elastico in accelerazione

delle componenti orizzontali):

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

✓ Componente verticale (paragrafo 3.2.3.2.2 Spettro di risposta elastico in accelerazione della componente verticale)

$$\begin{split} 0 &\leq T < T_B \\ S_{ve}(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_v} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C \\ S_{ve}(T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D \\ S_{ve}(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T \end{split}$$

Viene considerato un comportamento strutturale non dissipativo, cui ci si riferisce quando si progetta per gli stati limite di esercizio, in cui gli effetti combinati delle azioni sismiche e delle altre azioni sono calcolati, indipendentemente dalla tipologia strutturale adottata, senza tener conto delle non linearità di comportamento (di materiale e geometriche) se non rilevanti.

Nel caso di comportamento non dissipativo si adottano unicamente i modelli lineari.

Quando si utilizza l'analisi lineare per sistemi non dissipativi, come avviene per gli stati limite di esercizio, gli effetti delle azioni sismiche sono calcolati, quale che sia la modellazione per esse utilizzata, riferendosi allo spettro di progetto ottenuto assumendo un fattore di struttura q unitario. Per la resistenza delle membrature e dei collegamenti non è necessario soddisfare i requisiti di duttilità fissati nella norma.

Secondo il paragrafo **7.3.2 Analisi statica o dinamica del DM 17/01/2018**, il metodo d'analisi lineare di riferimento per determinare gli effetti dell'azione sismica, sia su sistemi dissipativi sia su sistemi non dissipativi, è l'analisi modale con spettro di risposta o "analisi lineare dinamica". In essa

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

l'equilibrio è trattato dinamicamente e l'azione sismica è modellata direttamente attraverso lo spettro di progetto definito al paragrafo 3.2.3.4 Spettri di progetto per gli stati limite di operatività del DM 17/01/2018 (struttura non dissipativa) per cui "... lo spettro di progetto da utilizzare sia per le componenti orizzontali che per la componente verticale, è lo spettro elastico corrispondente, riferito alla probabilità di superamento nel periodo di riferimento

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

Consulenza: **Atech srl** Proponente: **DS Italia 17 srl**

P considerata".

In funzione del quadro normativo applicato si determinano i seguenti parametri, utili per la definizione dell'azione sismica. In accordo al paragrafo **2.4** "Vita nominale, classi d'uso e periodo di riferimento" si determinano:

Vita nominale

In seguito alla tabella 2.4.1 "Valori minimi della Vita nominale VN di costruzioni" riportata di seguito:

Tab. 2.4.I – Valori minimi della Vita nominale V_N di progetto per i diversi tipi di costruzioni

		TIPI DI COSTRUZIONI	$egin{aligned} \mathbf{V_{alori}} & \mathbf{minimi} \ \mathbf{di} & \mathbf{V_{N}} & (\mathbf{anni}) \end{aligned}$
	1	Costruzioni temporanee e provvisorie	10
Ľ	2	Costruzioni con livelli di prestazioni ordinari	50
	3	Costruzioni con livelli di prestazioni elevati	100

si assume una vita nominale maggiore di 50 anni.

Classi d'uso

In accordo al **paragrafo 2.4.2 "Classi d'uso"** si associa a tale struttura una CLASSE III definita come: "Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente".

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

Periodo di riferimento per l'azione sismica

Il periodo di riferimento $V_{\mathcal{R}}$ è definita dalla relazione

$$V_R = V_N \cdot C_U$$

dove il valore di C_U è definito in accordo alla tabella 2.4.II "Valore del coefficiente d'uso

$$C_{\scriptscriptstyle U}$$
 ".

In base alle assunzioni fatte e alle considerazioni fatte si ottiene che:

$$V_R = 50 \cdot 1,5 = 75 \ anni$$

L'azione sismica è definita sotto forma di spettro di risposta. Per poter definire la forma spettrale, in funzione della probabilità di superamento del periodo di riferimento $V_{\scriptscriptstyle R}$, si devono determinare i seguenti parametri:

- $a_{\rm g}$ accelerazione orizzontale massima al sito;
- $F_{\scriptscriptstyle 0}$ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T^* periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

Consulenza: **Atech srl** Proponente: **DS Italia 17 srl**

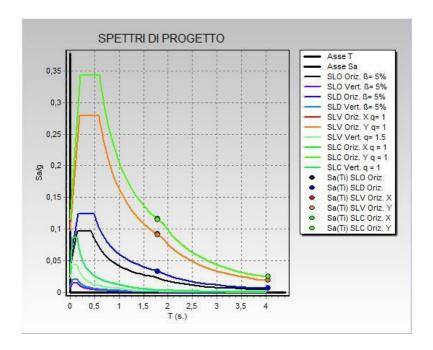
Tali parametri sono tabellati a mezzo di coordinate geografiche nell'Allegato B alle Norme Tecniche per le Costruzioni: Tabelle dei parametri che definiscono l'azione sismica.

Per il Comune di **Gonnosfanadiga (SU)** e **Guspini (SU)** si ha che le coordinate geografiche, utili per la determinazione dei parametri sismici e per la determinazione dello spettro, sono le seguenti:

Longitudine: 8,627;

Latitudine: 39,539.

Quindi, a partire dalle coordinate geografiche e dal periodo di riferimento per la costruzione si ottengono i periodi di ritorno per la determinazione dell'azione sismica per i vari stati limite così come definiti al paragrafo 3.2.1. Stati limite e relative probabilità di superamento del Decreto Ministeriale 17/01/2018 "Norme Tecniche per le Costruzioni" e secondo le indicazioni della tabella C.3.2.I – Valori di T_R espressi in funzione di V_R della Circolare Ministero delle infrastrutture e dei trasporti 21 gennaio 2019, n. 7.


Tabella C.3.2.I.- Valori di T_R espressi in funzione di V_R

Stati Limite		Valori in anni del periodo di ritorno T_R al variare del periodo di riferimento V_R
Stati Limite di	SLO	(2) 30 anni $\leq T_R = 0,60 \cdot V_R$
Esercizio (SLE)	SLD	$T_R = V_R$
Stati Limite	SLV	$T_R = 9,50 \cdot V_R$
Ultimi (SLU)	SLC	$T_R = 19,50 \cdot V_R \le 2475 \text{ anni (}^1\text{)}$

Nella tabella seguente si riportano i parametri caratteristici per la determinazione dello spettro di risposta per i vari stati limite:

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

2.3.2. Carico neve

Il carico neve sulla copertura sarà valutato in osservanza di quanto prescritto dal **DM 17/01/2018 al punto 3.4 Azioni della neve** con la seguente espressione:

$$q_s = \mu_i \cdot q_{sk} \cdot C_E \cdot C_t$$

dove:

 q_s è il carico neve sulla copertura;

 μ_i è il coefficiente di forma della copertura;

 q_{sk} è il valore di riferimento del carico neve al suolo;

 C_E è il coefficiente di esposizione;

 C_t è il coefficiente termico

Il carico agisce in direzione verticale ed è riferito alla proiezione orizzontale della superficie della copertura.

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

In base alla zone di neve nelle quali è stata classificata il territorio nazionale, come si vede dalla figura 3.4.1 – Zone di carico neve del DM 17/01/2018.

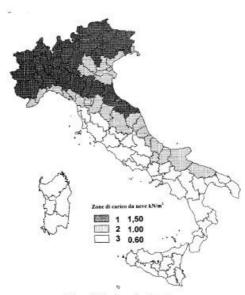


Figura 3.4.1 - Zone di carico da neve

si riscontra che la struttura ricade in zona III mediterranea, in Sardegna.

Nota la quota sul livello del mare, circa 180 metri, si ottiene il carico neve al suolo dalla seguente relazione:

Zona III: as < 200 m, a vantaggio di sicurezza è stato considerato un carico qsk = 1,0 KN/m²

Il coefficiente di esposizione C_E, in funzione della **tabella 3.4.I Valori di C_E per diverse classi di topografia** del **DM 17/01/2018**, è pari a 1.0 assumendo a vantaggio di sicurezza che la topografia del terreno ove sorge l'opera possa essere definita "*normale*".

Tabella 3.4.I - Valori di Ca per diverse classi di topografia

Topografia	Descrizione	C _E
Battuta dai venti	Aree pianeggianti non ostruite esposte su tutti i lati, senza costruzioni o alberi più alti.	0,9
Normale	Aree in cui non è presente una significativa rimozione di neve sulla costruzione prodotta dal vento, a causa del terreno, altre costruzioni o alberi.	1,0
Riparata	Aree in cui la costruzione considerata è sensibilmente più bassa del circostante terreno o circondata da costruzioni o alberi più alti	1,1

Consulenza: **Atech srl**Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva
di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei

Comuni di Gonnosfanadiga e Guspini (SU)

Il coefficiente termico C_t, in funzione del **paragrafo 3.4.5. Coefficiente termico** del **DM 17/01/2018**, è pari a 1.

Per quanto riguarda il coefficiente di forma della copertura, trattandosi di una copertura piana inclinata, dal **paragrafo 3.4.5.1 Coefficiente di forma per le coperture** del **DM 17/01/2018**, si deduce che il valore del coefficiente di forma $\mu_{\rm l}$ è determinato dalla **tabella 3.4.II Valori dei coefficienti di forma** del **DM 17/01/2018** ed è pari 0.80 in quanto l'angolo di inclinazione della copertura è variabile.

Tabella 3.4.II – Valori del coefficiente di forma

Coefficiente di forma	0° ≤ α ≤ 30°	30° < α < 60°	α ≥ 60°
μ_1	0,8	$0.8 \cdot \frac{(60 - \alpha)}{30}$	0,0

Quindi si ottiene un valore di carico neve sulla copertura pari a:

$$q_s = \mu_i \cdot q_{sk} \cdot C_E \cdot C_t =$$

$$0.8 \cdot 0.6 \cdot 1 \cdot 1 =$$
0.48 KN/m_2

Comuni di Gonnosfanadiga e Guspini (SU)

Si considera la distribuzione del carico neve in funzione del paragrafo 3.4.5.2 "Copertura ad una falda" del DM 17/01/2018, per la valutazione della neve nel caso più sfavorevole.

2.3.3. Azioni del vento

L'azione del vento è definita secondo quanto definito nella normativa DM 17/01/2018 al paragrafo "3.3 AZIONE DEL VENTO".

Secondo quanto definito nella **tabella 3.3.1 Valori dei parametri** $v_{b,0}$, a_0 , k_a l'opera in oggetto ricade nella **Zona 3 Sardegna** con altitudine massima pari a 500 metri. Considerando un'altezza di circa 90 metri s.l.m per il calcolo del vento si utilizza la seguente formula:

$$V_b = V_{b.0}$$

dove
$$v_{b,0} = 27 \text{ m/sec}$$
, $a_0 = 500 \text{ m}$ ed $k_a = 0.02 \text{ l/sec}$

Per cui si ottiene che per $a_s \le a_0$:

$$v_b = 27 \ \frac{m}{\text{sec}}$$

riferita ad un periodo di ritorno di 50 anni.

In funzione della classificazione dell'opera in termini di vita nominale e coefficienti d'uso definiti per il calcolo dell'azione sismica, si assume che il periodo di ritorno pari a:

$$T_{\scriptscriptstyle R}=50~{\rm anni}$$

Secondo quanto prescritto al paragrafo C3.3.2 Circolare Ministero delle infrastrutture e dei trasporti 21 gennaio 2019, n. 7- "Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018" (Gazzetta Ufficiale 11/2/2019, n. 35 - Suppl. ord. n. 5)" si ottiene che la velocità di riferimento del vento per un generico periodo di ritorno è:

$$v_b\left(T_R\right) = \alpha_R \cdot v_b$$

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

dove $\alpha_{\scriptscriptstyle R}$

è un coefficiente fornito dalla figura sottostante.

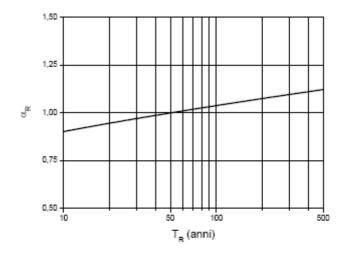


Figura C3.3.1 – Valori del coefficiente α_R in funzione del periodo di ritorno T_R

Consulenza: **Atech srl**Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva

di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei

Comuni di Gonnosfanadiga e Guspini (SU)

Essendo il periodo di ritorno pari a 50 anni, $\alpha_R = 0.98$ ed il valore della velocità di riferimento del vento risulta pari a 26,46 m/sec.

L'azione del vento viene espressa in termini di pressione esercitata sulle pareti investite in direzione ortogonali alla direzione del vento; si determina dalla formula esplicitata al **paragrafo 3.3.4**Pressione del vento del DM 17/01/2018, secondo la formula:

$$p = q_{\text{b}} \cdot c_{\text{e}} \cdot c_{\text{p}} \cdot c_{\text{d}}$$

dove:

 q_b è la pressione cinetica di riferimento

C_e è il coefficiente di esposizione

 $c_{\,p}\,$ è il coefficiente di forma, funzione della tipologia e della geometria della costruzione e del suo

orientamento rispetto alla direzione del vento

 c_d è il coefficiente dinamico, con cui si tiene conto degli effetti riduttivi associati alla non contemporaneità delle massime pressioni locali e degli effetti amplificativi dovuti alle vibrazioni

strutturali

La pressione cinetica di riferimento q_b è determinato al **paragrafo 3.3.6 Pressione cinetica di** riferimento del **DM 17/01/2018**, secondo la formula:

$$q_b = \frac{1}{2} \rho \cdot v_b^2 \quad \left[\frac{N}{m^2} \right]$$

dove la densità dell'aria $\rho = 1.25 \, \text{kg/m}^3$

Si ottiene quindi

$$q_b = 437.6 \ \frac{N}{m^2}$$

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

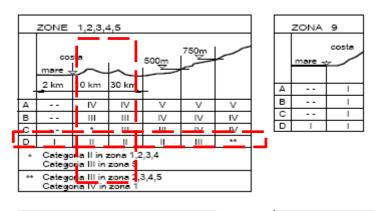
Si definisce il coefficiente di esposizione delle velocità in accordo alle prescrizioni del **paragrafo**3.3.7 Coefficiente di esposizione del DM 17/01/2018 è pari a:

$$c_e(z) = k_r^2 c_t \ln\left(\frac{z}{z_0}\right) \left[7 + c_t \ln\left(\frac{z}{z_0}\right)\right]$$

dove considerando l'altezza della costruzione sul suolo di circa 1.5 metri:

considerando una classe di rugosità del terreno di tipo D secondo la "tabella 3.3.III – Classi di rugosità del terreno" del DM 17/01/2018,

Tab. 3.3.III - Classi di rugosità del terreno


Classe di rugosità del terreno	Descrizione	
A	Aree urbane in cui almeno il 15% della superficie sia coperto da edifici la cui altezza media superi i 15 m	
В	Aree urbane (non di classe A), suburbane, industriali e boschive	
С	Aree con ostacoli diffusi (alberi, case, muri, recinzioni,); aree con rugosità non riconducibile alle classi A, B, D	
D	a) Mare e relativa fascia costiera (entro 2 km dalla costa); b) Lago (con larghezza massima pari ad almeno 1 km) e relativa fascia costiera (entro 1 km dalla costa)	
2	c) Aree prive di ostacoli o con al più rari ostacoli isolati (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate,)	

L'assegnazione della classe di rugosità non dipende dalla conformazione orografica e topografica del terreno. Si può assumere che il sito appartenga alla Classe A o B, purché la costruzione si trovi nell'area relativa per non meno di 1 km e comunque per non meno di 20 volte l'altezza della costruzione, per tutti i settori di provenienza del vento ampi almeno 30°. Si deve assumere che il sito appartenga alla Classe D, qualora la costruzione sorga nelle aree indicate con le lettere a) o b), oppure entro un raggio di 1 km da essa vi sia un settore ampio 30°, dove il 90% del terreno sia del tipo indicato con la lettera c). Laddove sussistano dubbi sulla scelta della classe di rugosità, si deve assegnare la classe più sfavorevole (l'azione del vento è in genere minima in Classe A e massima in Classe D).

Si definisce la categoria di esposizione II del sito, definita dalla Figura 3.3.3. Definizione delle categorie di esposizione del DM 17/01/2018:

Consulenza: **Atech srl**Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva
di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei
Comuni di Gonnosfanadiga e Guspini (SU)

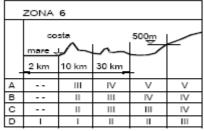


Figura 3.3.2 - Definizione delle categorie di esposizione

In virtù della "Tabella 3.3.II – Parametri per la definizione del coefficiente di esposizione",

Tabella $3.3.\Pi$ – Parametri per la definizione del coefficiente di esposizione

Categoria di esposizione del sito	\mathbf{k}_{r}	Z ₀ [m]	z_{\min} [m]	
I	0.17	0,01	2	L
П	0,19	0,05	4	١
ш	0,20	0,10	5	Γ
IV	0,22	0,30	8	ı
v	0,23	0,70	12	ı

si determinano:

$$> k_r = 0.19$$

$$> z_0 = 0.05 \text{ m}$$

$$>$$
 $Z_{min} = 4 \text{ m}$

$$ightharpoonup c_t = 1$$

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

Consulenza: **Atech srl** Proponente: **DS Italia 17 srl**

> Il coefficiente di esposizione è dato dalle seguenti relazioni, funzione della quota (z) considerata:

$$c_{_{e}}(z) = k_{_{r}}^{2} \cdot ln \left(\frac{z_{_{min}}}{z_{_{0}}}\right) \cdot c_{_{t}}(z_{_{min}}) \cdot \left[ln \left(\frac{z_{_{min}}}{z_{_{0}}}\right) \cdot c_{_{t}}(z_{_{min}}) + 7 \right] \quad \text{ per } z \leq z_{_{min}}$$

$$c_{e}(z) = k_{r}^{2} \cdot ln\left(\frac{z}{z_{0}}\right) \cdot c_{t}(z) \cdot \left[ln\left(\frac{z}{z_{0}}\right) \cdot c_{t}(z) + 7\right]$$
 per $z > z_{min}$

Con:

z quota verticale, $0 \le z \le 90$;

ct(z), ct(zmin) coefficiente di topografia, posto pari a 1 per zone pianeggianti.

Calcolo della pressione cinetica di picco (qp): A partire dalla pressione cinetica di riferimento di progetto (qr) e dal coefficiente di esposizione (ce), si determina la pressione cinetica di picco (qp) dalla relazione:

$$q_n(z) = q_r \cdot c_o(z)$$

 $q(z = 11.0m) = q_r \cdot c_o \cdot c_d = 0.456 \cdot 2.413 \cdot 1 = 1.100 \, KN / m^2$

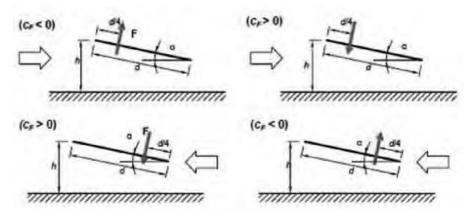
(11 m dal piano campagna è la massima elevazione della linea di colmo).

Conformemente a quanto indicato a nella CM 21/01/2019 "Istruzioni per l'Applicazione dell'Aggiornamento della Norme tecniche per le Costruzioni di cui al Decreto Ministeriale 17/01/2018", ai paragrafi rif. C3.3.8.2.1 e C3.3.8.1.2, per il vento spirante in direzione parallela alla linea di colmo (direzione Y) si sono considerate le azioni relative alle Coperture Piane, utilizzando il coefficiente

Tabella C3.3.III - Edifici rettangolari: cpe per coperture piane.

Fascia sopravento di profondità pari al minimo tra $b/2$ e h :	$c_{\text{pe,A}} = -0.80$
Restanti zone	$c_{\text{pe,B}} = \pm 0.20$

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)


Consulenza: **Atech srl** Proponente: **DS Italia 17 srl**

cpa,A = -0.80, e pertanto una pressione normale alla copertura diretta verso l'alto di intensità 0.95 kN/m. Le relative azioni sono state applicate agli elementi shell in copertura. Lo stesso carico è stato utilizzato anche per la direzione del vento -Y.

Per il vento spirante in direzione normale alla linea di colmo (direzione X), sono state configurate le quattro combinazioni di carico per le verifiche globali, definite nei casi di carico con i nomi:

- V.Glob.X+_cf-
- V.Glob.X+ cf+
- V.Glob.X- cf-
- V.Glob.X-_cf+

Relative alle combinazioni normative riportate all'immagine che segue.

Di seguito il calcolo dei coefficienti:

Cf pos 0,37

Cf neg -1,4
$$f = 1$$

Assieme alle azioni su citate sono state considerate le azioni del vento tangenziale calcolate come segue ed applicate ad ambo le direzioni X e Y di applicazione dei carichi

Azione tangente del vento.

L'azione tangente per unità di superficie parallela alla direzione del vento è data dall'espressione:

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

$$p_f = q_b \cdot c_e \cdot c_f \quad \begin{bmatrix} N \\ \hline m^2 \end{bmatrix}$$

dove:

 q_b è la pressione cinetica di picco definita precedentemente;

C_e è il coefficiente di esposizione;

 c_f è il coefficiente d'attrito funzione della scabrezza della superficie sulla quale il vento esercita l'azione tangente.

Tale valore di c_f è definito dalla **Tabella C3.3.XIX Valori del coefficiente d'attrito** della Circolare Ministeriale n°7 del 21 gennaio 2019 – Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018".

Tabella C3.3.XIX - Valori del coefficiente d'attrito

Superficie	Coefficiente d'attrito c
Liscia (acciaio, cemento a faccia liscia)	0,01
Scabra (cemento a faccia scabra, catrame)	0,02
Molto scabra (ondulata, costolata, piegata)	0,04

Nel nostro caso si assumerà c_f pari a 0.01.

In definitiva si ottiene che l'azione del vento tangente è pari a:

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

$$p_f = 7.88 \ \frac{N}{m^2}$$

Non si sono considerati i carichi del vento radente in quanto lo SI RITIENE TRASCURABILE (Vradente= 11.6 daN per una superficie TOTALE di 2,645x5,50 mt).

2.3.4. Azioni Della Temperatura

Variazioni giornaliere e stagionali della temperatura esterna, irraggiamento solare e convezione comportano variazioni della distribuzione di temperatura nei singoli elementi strutturali.

La severità delle azioni termiche è in generale influenzata da più fattori, quali le condizioni climatiche del sito, l'esposizione, la massa complessiva della struttura e la eventuale presenza di elementi non strutturali isolanti. In relazione al punto 3.5.2. e 3.5.3 si considera:

- per la temperatura dell'area esterna, in mancanza di dati specifici relativi al sito in esame,
- possono assumersi i valori: Tmax = 45 °C; Tmin = -15 °C

e per la temperatura dell'area interna, in mancanza di più precise valutazioni, legate alla tipologia della costruzione ed alla sua destinazione d'uso, la temperatura dell'aria interna, "Tint", può essere assunta pari a 20 °C.

Per la valutazione degli effetti delle azioni termiche, si può fare riferimento ai coefficienti di dilatazione termica a temperatura ambiente a T riportati in Tab. 3.5.III.:

Tabella 3.5.III - Coefficienti di dilatazione termica a temperatura ambiente

Materiale	α _T [10 ⁻⁶ /°C]				
Alluminio	24				
Acciaio da carpenteria	12				
Calcestruzzo strutturale	10				
Strutture miste acciaio-calcestruzzo	12				
Calcestruzzo alleggerito	7				
Muratura	6 ÷ 10				
Legno (parallelo alle fibre)	5				
Legno (ortogonale alle fibre)	30 ÷ 70				

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

2.3.5. Riassunto finale carichi variabili

Neve: carico q₁ 1.58 KN/m²

Vento: in pressione 1.24 KN/m²

tangenziale: 0.008 KN/m²

3. COMBINAZIONI DI CARICO

Nel caso di costruzioni civili ed industriali le verifiche agli stati limite ultimi o di esercizio devono essere effettuate per la combinazione dell'azione sismica con le altre azioni secondo la relazione

$$G_1 + G_2 + P + E + \sum_{i} \psi_{2i} Q_{kj}$$

E rappresenta l'azione sismica per lo stato limite in esame.

Per tale azione si combina il sisma nelle due direzioni principali ortogonali tra loro e quella verticale secondo le combinazioni:

$$E_x + 0.33 \cdot E_y + 0.33 \cdot E_z$$

$$0.33 \cdot E_x + E_y + 0.33 \cdot E_z$$

$$0.33 \cdot E_x + 0.33 \cdot E_y + E_z$$

 G_1 rappresenta il peso proprio di tutti gli elementi strutturali; peso proprio del terreno, quando pertinente; forze indotte dal terreno; forze risultanti dalla pressione dell'acqua;

 G_2 rappresenta il peso proprio di tutti gli elementi non strutturali

P valore dell'azione di precompressione e pretensione

 $\Psi_{2,j}$ coefficiente di combinazione delle azioni variabili Q_i

 $Q_{k,j}$ rappresentano le azioni sulla struttura o sull'elemento strutturale con valori istantanei che possono risultare sensibilmente diversi nel tempo.

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

Oltre alla combinazione delle azioni agenti con il sisma vanno considerate anche le combinazioni dell'azioni agenti, per ogni stato limite considerato.

In dettaglio al "paragrafo 2.5.3. Combinazioni delle azioni" del DM 17/01/2018, si ha:

✓ Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi

$$\gamma_{G1}G_1 + \gamma_{G2}G_2 + \gamma_P P + \gamma_{Q1}Q_{k1} + \sum_{i=2} \psi_{0i}\gamma_{Q1}Q_{ki}$$

✓ Combinazione frequente (SLE), generalmente impiegata per gli stati limite di esercizio reversibili

$$G_1 + G_2 + P + \psi_{11}Q_{k1} + \sum_{i=2} \psi_{2i}Q_{ki}$$

✓ Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine

$$G_1 + G_2 + P + \psi_{21}Q_{k1} + \sum_{i=2} \psi_{2i}Q_{ki}$$

I valori dei coefficienti per la determinazione delle combinazioni sono riportate nella **tabella 2.5.I –** Valori dei coefficienti di combinazione del DM 17/01/2018:

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei

Comuni di Gonnosfanadiga e Guspini (SU)

Tabella 2.5.I - Valori dei coefficienti di combinazione

Categoria/Azione variabile	Ψ 0j	Ψıj	₩ 2j
Categoria A Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B Uffici	0,7	0,5	0,3
Categoria C Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN)	0,7	0,7	0,6
Categoria G Rimesse e parcheggi (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H Coperture	0,0	0,0	0,0
Vento	0,6	0,2	0,0
Neve (a quota ≤ 1000 m s.l.m.)	0,5	0,2	0,0
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

Per quanto riguarda le verifiche agli SLU, queste devono essere eseguite per tutte le più gravose condizioni di carico.

Al paragrafo 2.6.1. Stati limite ultimi del DM 17/01/20018 si distinguono 3 stati limite ultimi:

Lo stato limite di equilibrio come corpo rigido (EQU)

Lo stato limite di resistenza della struttura compresi gli elementi di fondazione (STR)

Lo stato limite di resistenza del terreno (GEO)

Consulenza: Atech srl

Proponente: DS Italia 17 srl

Per la struttura in oggetto si sono considerati gli stati limite di equilibrio (EQU) e lo stato limite di resistenza (STR). In base a tale scelta ed alla tabella 2.6.I – Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche allo SLU del DM 17/01/2018.

Tab. 2.6.I – Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

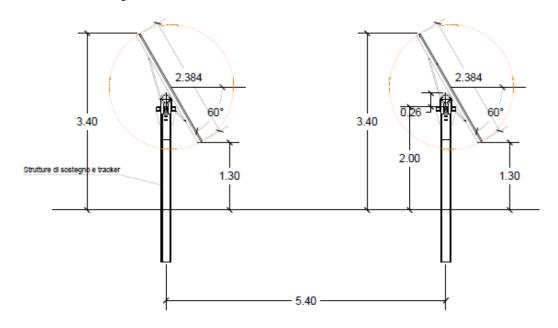
		Coefficiente Y _F	EQU	A1	A2
Carichi permanenti G1	Favorevoli	2/	0,9	1,0	1,0
	Sfavorevoli	ΥGI	1,1	1,3	1,0
Carichi permanenti non strutturali G2(1)	Favorevoli	2/	0,8	0,8	0,8
	Sfavorevoli	γ _{G2}	1,5	1,5	1,3
Azioni variabili Q	Favorevoli	2/	0,0	0,0	0,0
	Sfavorevoli	YQi	1,5	1,5	1,3

Nel caso in cui l'intensità dei carichi permanenti non strutturali o di una parte di essi (ad es. carichi permanenti portati) sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti parziali validi per le azioni permanenti.

si sono determinati i coefficienti parziali $\gamma_{\rm G1}$ $\gamma_{\rm G2}$ $\gamma_{\rm Qi}$ per le varie combinazioni agli SLU.

4. MODELLAZIONE STRUTTURALE

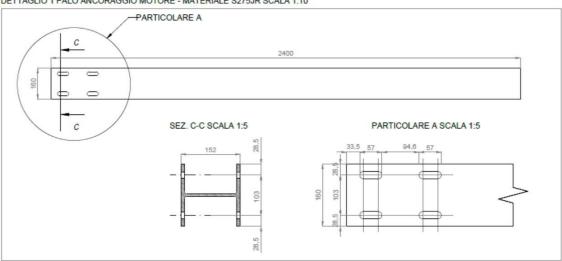
Si è implementato il modello strutturale con il programma di calcolo CDS2018. Gli elementi strutturali, quali arcarecci, puntone, pilastri, montanti e controventi si sono modellati tramite elementi "frame".

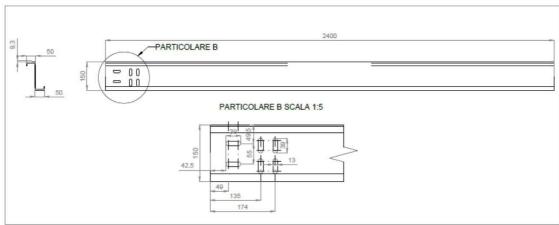

4.1. Geometria portale tipo

Pendenza della copertura TILT VAR Passo portali 7930 e 7980 mm.

Schema statico: Portali in acciaio incastrati alla base

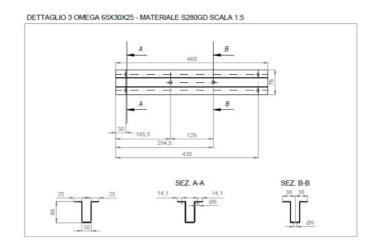
Acciaio utilizzato: S275JR $f_d = 275 \text{ N/mm}^2 \text{ e S235JR } f_d = 235 \text{ N/mm}^2$


I profili utilizzati come in figura



Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

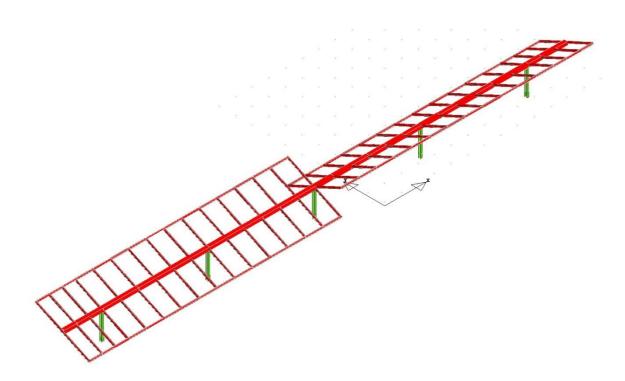
DETTAGLIO 1 PALO ANCORAGGIO MOTORE - MATERIALE S275JR SCALA 1:10



DETTAGLIO 5 PROFILO A Z 150x50x20 - MATERIALE S355JR SCALA 1:10

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

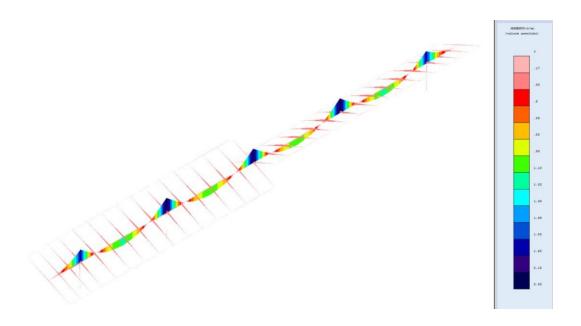
Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei

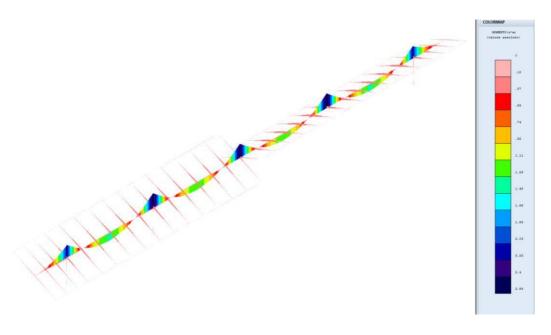

Comuni di Gonnosfanadiga e Guspini (SU)

5. OUTPUT DEI RISULTATI

Si sono effettuate le verifiche sui profilati considerando nel calcolo delle sollecitazioni l'effettivo peso degli elementi costituenti il portale, comprendendo anche profilati, fazzoletti di collegamento, imbottiture irrigidenti, saldature e bullonature, con il programma di calcolo CDSWIN 2019.

Considerate le seguenti combinazioni di carico di seguito i risultati delle verifiche:


DESCRIZIONI	1	2	3	4	5	6	7	8	9	10
Peso Strutturale	1,30	1,30	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
PERM	1,50	1,50	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
NEVE	1,50	0,75	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
VENTO	0,90	1,50	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sisma direz. grd 0	0,00	0,00	1,00	1,00	-1,00	-1,00	0,30	0,30	-0,30	-0,30
Sisma direz. grd 90	0,00	0,00	0,30	-0,30	0,30	-0,30	1,00	-1,00	1,00	-1,00


MODELLO TRIDIMENSIONALE

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

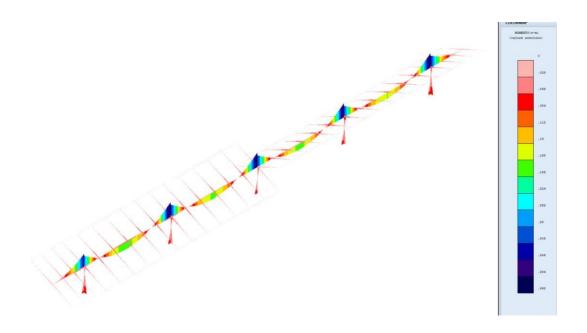

DIAGRAMMA SOLLECITAZIONI MX-MY COMB.1

DIAGRAMMA SOLLECITAZIONI MX-MY COMB.2 (VENTO)

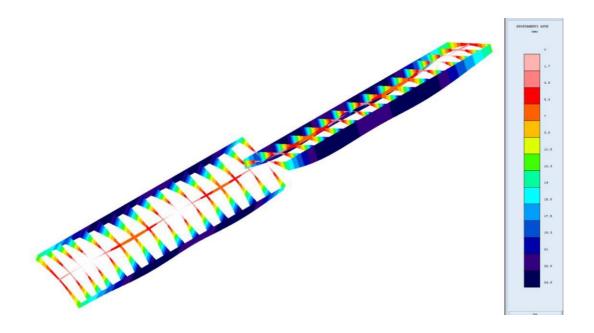
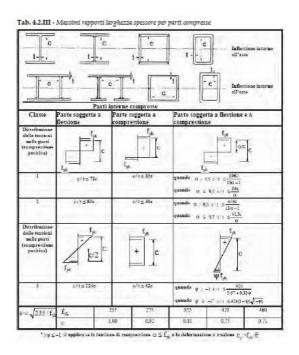

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

DIAGRAMMA SOLLECITAZIONI MX-MY COMB.3 (SISMICA)

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)


DIAGRAMMA SPOSTAMENTI COMB.2 (VENTO)

6. CLASSIFICAZIONE SEZIONI

Tali profili vengono classificati in accordo con le prescrizioni del paragrafo 4.2.3.1 – Classificazione delle sezioni del DM 17/01/2018, delle Tabelle 4.2.III – Massimi rapporti larghezza spessore per parti compresse e del paragrafo C4.2.12.1.4 – Classificazione delle sezioni, instabilità locale e distorsione delle sezioni trasversali della Circolare Ministeriale n° 7 del 21/01/2019

Le sezioni trasversali si classificano in funzione della loro capacità rotazionale.

Dalla classificazione risulta che il profilo **Tubo Quadro 120*120*3 E OMEGA 65x30x25** sono di classe 3, mentre il profilo HEA160 è di classe 1.

7. VERIFICHE DEI COLLEGAMENTI

Per tutte le unioni si utilizzeranno bulloni ad alta resistenza ed in particolare:

Viti classe 8.8 Dadi classe 8G

conformi con le caratteristiche di resistenza della Tabella 11.3. XIIb del paragrafo 11.3.4.6. Bulloni e chiodi del DM 17/01/2018

Tab. 11.3.XIII.b

Classe	4.6	4.8	5.6	5.8	6.8	8.8	10.9
f _{vb} (N/mm ²)	240	320	300	400	480	640	900
f_{tb} (N/mm ²)	400	400	500	500	600	800	1000

La resistenza di calcolo a taglio dei bulloni viene definita in accordo con le prescrizioni del paragrafo 4.2.8.1.1 Unioni con bulloni e chiodi del DM 17/01/2018 con la formulazione:

$$F_{v,Rd} = 0.6 \frac{f_{ib} \cdot A_{res}}{\gamma_{m2}}$$

dove

f_{tb} indica la resistenza a rottura del materiale impiegato

A_{res} indica l'area resistente della vite e si adotta quando il piano di taglio interessa la parte filettata della vite

 γ_{m2} è un coefficiente di sicurezza definito dalla Tabella 4.2.XII del paragrafo 4.2.8.1.1 Unione con bulloni e chiodi del DM 17/01/2018

La resistenza di calcolo a rifollamento F_{b,Rd} del piatto dell'unione, bullonata o chiodata, può essere definita in accordo con la formula presente al paragrafo C4.12.2.6.4.1 Bulloni soggetti a taglio della Circolare Ministero delle infrastrutture e dei trasporti 21 gennaio 2019, n. 7- "Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018" (Gazzetta Ufficiale 11/2/2019, n. 35 - Suppl. ord. n. 5)"

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

$$F_{b,Rdl} = \frac{2, 5 \cdot k_t \cdot \alpha_b \cdot f_{tk} \cdot d \cdot t}{\gamma_{m2}}$$

C4.12.2.6 Unioni della Circolare Ministero delle infrastrutture e dei trasporti 21 gennaio 2019, n. 7-"Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"»

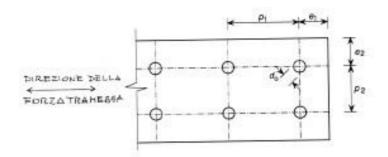


Figura C4.2.34 - Parametri significativi per i collegamenti

Consulenza: **Atech srl**Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva

di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei

Comuni di Gonnosfanadiga e Guspini (SU)

$$h_{t} = \frac{0.8t + 1.5}{2.5}$$
 per $t \le 1.25mm$

$$k_t = 1 \text{ per } t > 1,25mm$$

 γ_{m2} è un coefficiente di sicurezza definito dalla **Tabella 4.2.XII** del **paragrafo 4.2.8.1.1 Unione con** bulloni e chiodi del DM 17/01/2018.

8. CABINE ELETTRICHE

Le cabine elettriche saranno del tipo prefabbricato in cemento armato vibrato o posate in opera con pannelli prefabbricati, comprensive di vasca di fondazione posata in opera in calcestruzzo armato con maglie elettrosaldate (D=12 mm, passo 20 cm in entrambe le direzioni), con porta di accesso e griglie di aereazione in vetroresina, impianto elettrico di illuminazione, copertura impermeabilizzata con guaina bituminosa e rete di messa a terra interna ed esterna.

Il manufatto dovrà presentare una notevole rigidità strutturale ed una grande resistenza agli agenti esterni atmosferici che lo renderanno adatto all'uso anche in ambienti con atmosfera inquinata ed aggressiva.

Consulenza: Atech srl Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva Proponente: DS Italia 17 srl

di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei

Comuni di Gonnosfanadiga e Guspini (SU)

L'armatura interna della cabina sarà totalmente collegata elettricamente, dovrà creare una vera gabbia di Faraday tale da proteggere tutto il sistema da sovratensioni atmosferiche limitando inoltre, a

valori trascurabili, gli effetti delle tensioni di passo e di contatto.

L'armatura metallica sarà costituita da barre d'armatura e/o rete elettrosaldata in acciaio del tipo

B450C.

Le pareti esterne dovranno essere trattate con un rivestimento murale plastico idrorepellente

costituito da resine sintetiche pregiate, polvere di quarzo, ossidi coloranti ed additivi che garantiscono il

perfetto ancoraggio sul manufatto, inalterabilità del colore e stabilità agli sbalzi di temperatura.

Per approfondimenti si rimanda agli allegati tabulati di calcolo.

Proponente: DS Italia 17 srl

9. SOTTOSTAZIONE DI TRASFORMAZIONE E CONSEGNA

Per l'esecuzione del progetto sono necessarie le seguenti opere civili:

recinzione dell'area della sottostazione con pannelli di rete metallica galvanizzata, di altezza pari a

2,00 m, su fondazioni in calcestruzzo.

strutture di fondazione degli apparati elettromeccanici costituite da travi, platee e plinti in cemento

armato;

reti di cavidotti interrati;

pavimentazioni dei piazzali con bitume per le parti carrabili e inghiaiate per le restanti;

fabbricato per gli apparati di protezione, sezionamento e controllo.

Tutte le opere strutturali saranno dimensionate e verificate rispetto alle Norme Tecniche per le

Costruzioni (NTC) 2018. Per approfondimenti si rimanda agli allegati tabulati di calcolo.

10. INDICAZIONE PER FONDAZIONI DELLE CABINE

Le fondazioni saranno del tipo platea armata, ubicate ad una profondità minima di m 1,0 di profondità

dall'attuale piano campagna.

Nella fase di Studio Geologico esecutivo si eseguiranno dettagliate indagini geologiche, con la

esecuzione di sondaggi meccanici spinti almeno fino a 5 metri, con prelievo di campioni indisturbati e

prove geotecniche di laboratorio.

Le fondazioni da realizzare sono di varie dimensioni geometriche, dimensionate per trasferimento

delle azioni permanenti e dei pesi propri delle cabine elettriche di conversione e consegna al terreno di

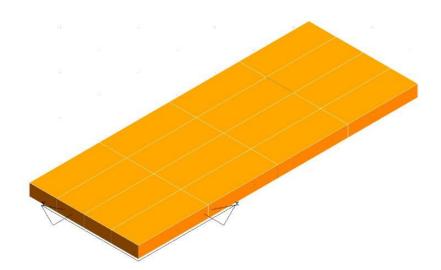
fondazione meglio definito nella relazione geologica allegata.

Per la modellazione e la determinazione sia degli spessori delle piastre che delle sezioni delle

armature presenti nell'elaborato grafico allegato si sono considerate tutte le situazioni di carico previste

in progetto considerando la piastra di fondazione avente lunghezza e larghezza variabili da un minimo

di 15,50 m ad un massimo di 24,00 m per la lunghezza, nonché da un minimo di 4,50 m ad un massimo


di 6,00 m con riferimento alla larghezza.

I pesi propri delle cabine prefabbricate in c.a.v. e delle apparecchiature in esse alloggiate sono stati forniti dai progettisti/costruttori dell'impianto.

Le piastre saranno di tipologia:

- N. 2 Piastre di dimensioni $24,00 \times 6,00 \times 0,20$ Cabina di distribuzione e trasformazione nn. 1 e 2 (peso proprio pari a 16.000 daN e 2000 daN di sovraccarico);
- N. 2 Piastre di dimensioni $20,00 \times 6,00 \times 0,20$ Cabina di distribuzione e trasformazione nn. 3 e 4 (peso proprio pari a 16.000 daN e 2000 daN di sovraccarico);
 - N. 1 Piastra di dimensioni 15,50 x 4,50 x 0,20 Cabina di consegna;

Le pressioni sul terreno derivano dalle azioni agenti sulla struttura fattorizzate con i coefficienti A1 secondo la combinazione:

$$Ed = \gamma G \cdot GK + \gamma P \cdot PK + S (\psi 2i \cdot \gamma Q \cdot QKi)$$

Dalla relazione di calcolo della struttura si evince che la pressione massima sul terreno è di: Ed = 0.35 Kg/cm2

Verifica:

Rd >Ed (verificato)

Consulenza: Atech srl

Proponente: DS Italia 17 srl

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei

Comuni di Gonnosfanadiga e Guspini (SU)

Pertanto alla luce dei risultati ottenuti non può che esprimersi un giudizio positivo sulla stabilità del

complesso terreno - struttura di fondazione - sovrastruttura.

Facendo salvi ulteriori accertamenti che si rendesse necessario eseguire nel corso dei lavori di

scavo, si ritiene l'area prescelta, con il tipo di fondazione indicato, idonea all'edificazione prevista.

Per gli esecutivi si rimanda alle tavole, mentre in allegato alla presente relazione sono presenti i

tabulati di calcolo dei basamenti previsti in progetto (cabina di smistamento, cabina MT/BT,

basamento e sostegni sistema sbarre AT, impianto di accumulo, sottostazione AT/MT).

SPECIFICHE TECNICHE RECINZIONE E CANCELLI 11.

Il progetto prevede la realizzazione di una recinzione che delimiterà le aree di installazione

dell'impianto fotovoltaico.

Essa sarà della seguente tipologia:

pali in acciaio zincato, infissi nel terreno e collegati tra loro attraverso morsetti doppi;

rete a maglia sciolta, fissata ai pali mediante tensori di acciaio.

I pali sono particolarmente resistenti tali da evitare la torsione del palo in caso di sollecitazioni e

forzature. Tale tipologia di recinzione garantisce un basso impatto e quindi un'integrità ambientale. La

recinzione avrà un'altezza di 2,00 m.

I cancelli d'ingresso saranno realizzati in acciaio zincato, sorretti da pilastri in scatolare metallico e da

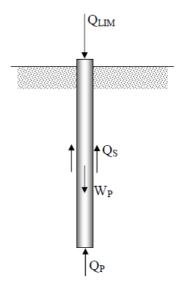
basamento completamente interrato. Il posizionamento e le dimensioni saranno tali da permettere un

agevole ingresso dei mezzi pesanti impiegati in fase di realizzazione e manutenzione. Tutto il sistema di

recinzione sarà direttamente infisso nel terreno senza la realizzazione di alcun basamento in

calcestruzzo.

Eventualmente sarà valutata la possibilità di stabilizzare l'infissione dei pali metallici con gettata di


calcestruzzo.

Elaborato: Relazione preliminare delle strutture

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

12. CALCOLO DELLA CAPACITÀ PORTANTE PER CARICO VERTICALE DI UN PALO ISOLATO IN CONDIZIONI STATICHE

Per stimare la capacità portante per carico verticale di un palo di fondazione isolato si fa riferimento allo schema di seguito riportato. Il palo è un corpo che oppone resistenza alla penetrazione nel terreno mediante tensioni tangenziali di attrito e/o di aderenza sulla superficie laterale e tensioni di compressione alla base. Le tensioni tangenziali si sviluppano per uno scorrimento relativo tra la superficie laterale del palo e il terreno circostante, in parte dovuto alla traslazione rigida e in parte alla compressione assiale del palo. Le tensioni di compressione alla base si sviluppano per un cedimento della base.

Schema per il calcolo della capacità portante di un palo isolato

La stima della capacità portante per carico verticale di un palo isolato QLIM mediante formule statiche è ottenuta valutando i valori massimi mobilizzabili, in condizioni di equilibrio limite, della resistenza laterale QS e di quella di punta QP:

essendo WP il peso proprio del palo.

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

Stima di QP

In generale, la capacità portante di punta dei pali in terreni coesivi è stimata con l'equazione: Nel nostro caso trattandosi di terreni incoerenti la formula si riduce alla seguente espressione: **Stima di QS**

La capacità portante per aderenza e/o per attrito laterale per un palo di diametro D e lunghezza L è per definizione, utilizzando il metodo di Bustamente e Doix:

$$Q_s = \pi \cdot D \cdot \alpha \cdot L \cdot s$$

dove:

 α è un coefficiente maggiorativo del diametro di perforazione adottato che è possibile ricavare in funzione della litologia e della tecnologia di iniezione adottata, attraverso abachi forniti dagli stessi autori;

s è il valore della resistenza tangenziale all'interfaccia fra zona iniettata e terreno ed è determinabile dagli abachi di Bustamente e Doix in base alla litologia dell'ammasso e alla tecnologia di iniezione ed è pari a 0,2MPa.

Terreno	Valori	di α	Quantità minima di miscela		
	IRS	IGU	consigliata		
Ghiaia	1,8	1,3 - 1,4	1,5 V _S		
Ghiaia sabbiosa	1,6 - 1,8	1,2 - 1,4	1,5 V _S		
Sabbia ghiaiosa	1,5 - 1,6	1,2 - 1,3	1,5 V _s		
Sabbia grossa	1,4 - 1,5	1,1 - 1,2	1,5 V _S		
Sabbia media	1,4 - 1,5	1,1 - 1,2	1,5 V _S		
Sabbia fine	1,4 - 1,5	1,1 - 1,2	1,5 V _S		
Sabbia limosa	1,4 - 1,5	1,1 - 1,2	IRS: (1,5 - 2)V _S ; IGU: 1,5 V _S		
Limo	1,4 - 1,6	1,1 - 1,2	IRS: 2V _S ; IGU: 1,5V _S		
Argilla	1,8 - 2,0	1,2	IRS: (2,5 - 3)V _S ; IGU: (1,5-2)V _S		
Marne	1,8	1,1 - 1,2	(1,5 - 2)V _S per strati compatti		
Calcari marnosi	1,8	1,1 - 1,2			
Calcari alterati o fratturati	1,8	1,1 - 1,2	(2 - 6)V _S o più per strati fratturati		
Roccia alterata e/o fratturata 1,2		1,1	(1,1-1,5)V _S per strati poco fratturati 2V _S o più per strati fratturati		

Valori del coefficiente α

Quindi il valore del carico limite laterale è pari a

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

$$Q_{\rm S} = 75.40 kN$$
.

Dividendo tale valore per un fattore di sicurezza pari a

$$F_s = 2.5$$

si ottiene un valore del carico limite laterale ammissibile pari a

$$Q_{\rm S} = 30.16kN$$
.

13. VERIFICA DELLA CAPACITÀ PORTANTE

La capacità portante per carico verticale del micropalo QLIM è pari a:

$$Q_{LIM} = Q_S + Q_P - W_P = 3016 daN + 1753 daN - 113 daN = 4656 daN$$

Dal programma di calcolo la sollecitazione di sforzo normale di compressione agente, secondo la combinazione più gravosa, è pari a

Essendo questa inferiore al carico limite la verifica risulta essere soddisfatta.

14. VERIFICA DI TIRO E RIBALTAMENTO PER VENTO

La forza di tiro relativa ad ogni palo infisso della struttura per effetto dell'azione del vento è data da:

$$F_{TIRO} = \frac{S \cdot P_{(VENTO)}}{7}$$

La verifica si ritiene soddisfatta in quanto tale valore risulta essere inferiore al valore del carico limite laterale ammissibile pari a $Q_S=3016 daN$.

15.1. Premessa

Le analisi e le verifiche sono state condotte con il metodo degli stati limite (SLU ed SLE) utilizzando i

coefficienti parziali della normativa di cui al DM 17.01.2018 come in dettaglio specificato negli

allegati tabulati di calcolo.

L'analisi delle sollecitazioni è stata effettuata in campo elastico lineare, per l'analisi sismica si è

effettuata un'analisi dinamica modale.

SOFTWARE UTILIZZATI: CDSWin versione 2019 prodotto dalla:

S.T.S. s.r.l. Software Tecnico Scientifico S.r.l. Via Tre Torri nº11 - Compl. Tre Torri, 95030

Sant'Agata li Battiati (CT).

SismiCad vers. 12.17 licenza n. 9368914 prodotto dalla Concrete S.r.l. con sede in Padova (PD) alla

via Della Pieve 19.

Codice di calcolo, solutore e affidabilità dei risultati 15.2.

Come previsto al punto 10.2 delle norme tecniche di cui al D.M. 17.01.2018 l'affidabilità del codice

utilizzato è stata verificata sia effettuando il raffronto tra casi prova di cui si conoscono i risultati esatti sia

esaminando le indicazioni, la documentazione ed i test forniti dal produttore stesso. Si allega alla

presente i test sui casi prova forniti dalla S.T.S. s.r.l. a riprova dell'affidabilità dei risultati ottenuti. La

S.T.S. s.r.l. a riprova dell'affidabilità dei risultati ottenuti fornisce direttamente on-line i test sui casi

prova (http://www.stsweb.it/STSWeb/ITA/homepage.htm)

Il software è inoltre dotato di filtri e controlli di autodiagnostica che agiscono a vari livelli sia della

definizione del modello che del calcolo vero e proprio.

I controlli vengono visualizzati, sotto forma di tabulati, di videate a colori o finestre di messaggi.

In particolare il software è dotato dei seguenti filtri e controlli:

Filtri per la congruenza geometrica del modello di calcolo generato

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

- Controlli a priori sulla presenza di elementi non connessi, interferenze, mesh non congruenti o non adeguate.
- Filtri sulla precisione numerica ottenuta, controlli su eventuali mal condizionamenti delle matrici,
- verifica dell'indice di condizionamento.
- Controlli sulle verifiche sezionali e sui limiti dimensionali per i vari elementi strutturali in funzione della normativa utilizzata.
- Controlli e verifiche sugli esecutivi prodotti.

Valutazione dei risultati e giudizio motivato sulla loro accettabilità 15.3.

Il software utilizzato permette di modellare analiticamente il comportamento fisico della struttura

utilizzando la libreria disponibile di elementi finiti.

Le funzioni di visualizzazione ed interrogazione sul modello permettono di controllare sia la coerenza

geometrica che le azioni applicate rispetto alla realtà fisica.

Inoltre la visualizzazione ed interrogazione dei risultati ottenuti dall'analisi quali sollecitazioni,

tensioni, deformazioni, spostamenti, reazioni vincolari hanno permesso un immediato controllo con i

risultati ottenuti mediante schemi semplificati di cui è nota la soluzione in forma chiusa nell'ambito della

Scienza delle Costruzioni.

Si è inoltre controllato che le reazioni vincolari diano valori in equilibrio con i carichi applicati, in

particolare per i valori dei taglianti di base delle azioni sismiche si è provveduto a confrontarli con

valori ottenuti da modelli SDOF semplificati.

Le sollecitazioni ottenute sulle travi per i carichi verticali direttamente agenti sono stati confrontati

con semplici schemi a trave continua.

Per gli elementi inflessi di tipo bidimensionale si è provveduto a confrontare i valori ottenuti

dall'analisi FEM con i valori di momento flettente ottenuti con gli schemi semplificati della Tecnica

delle Costruzioni.

Si è inoltre verificato che tutte le funzioni di controllo ed autodiagnostica del software abbiano dato

esito positivo.

16. PRESTAZIONI ATTESE AL COLLAUDO

La struttura a collaudo dovrà essere conforme alle tolleranze dimensionali prescritte nella presente

relazione, inoltre relativamente alle prestazioni attese esse dovranno essere quelle di cui al § 9 del

D.M. 17.01.2018.

Ai fini della verifica delle prestazioni il collaudatore farà riferimento ai valori di tensioni, deformazioni e

spostamenti desumibili dall'allegato fascicolo dei calcoli statici per il valore delle azioni pari a quelle di

esercizio.

17.1. Generalità

Consulenza: Atech srl

Proponente: DS Italia 17 srl

Per la realizzazione di strutture metalliche e di strutture composte si dovranno utilizzare, secondo

quanto riportato al "paragrafo 11.3.4 Acciai per strutture metalliche e per strutture composte" del DM

17/01/2018, acciai conformi alle norme armonizzate della serie UNI EN 10025 (per i laminati), UNI EN

10210 (per i tubi senza saldatura) e UNI EN 10219-1 (per i tubi saldati), recanti la Marcatura CE, cui si

applica il sistema di attestazione della conformità 2+.

Per gli acciai di cui alle norme armonizzate UNI EN 10025, UNI EN 10210 ed UNI EN 10219-1, in

assenza di specifici studi statistici di documentata affidabilità, ed in favore di sicurezza, per i valori

delle tensioni caratteristiche di snervamento fyk e di rottura ftk da utilizzare nei calcoli si assumono i

valori nominali fy= ReH e ft = Rm riportati nelle relative norme di prodotto.

Gli elementi da porsi in opera dovranno rispettare le modalità di qualificazione e di controllo della

produzione previste dalla normativa vigente e riportata in seguito.

In sede di progettazione, per gli acciai di cui alle norme europee EN 10025, EN 10210 ed

EN 10219-1, si possono assumere nei calcoli i valori nominali delle tensioni caratteristiche di

snervamento fyk e di rottura ftk riportati nelle tabelle seguenti.

Si utilizzeranno in particolare acciai di tipo S 275 JR per i vari elementi costituenti la struttura da

realizzare come indicato nella tavola grafica.

Elaborato: Relazione preliminare delle strutture

Rev. 0 – Settembre 2023

Progetto per la realizzazione di un impianto agrivoltaico della potenza complessiva di 24.307,92 kWp e relative opere di connessione alla RTN da realizzarsi nei Comuni di Gonnosfanadiga e Guspini (SU)

Tabella 11.3.IX – Laminati a caldo con profili a sezione aperta

Norme e qualità	Spessore nominale dell'elemento							
degli acciai	t ≤ 4	0 mm	40 mm < t ≤ 80 mm					
	$f_{vk} [N/mm^2]$	f _{tk} [N/mm ²]	f _{vk} [N/mm ²]	$f_{tk} [N/mm^2]$				
UNI EN 10025-2	•							
S 235	235	360	215	360				
S 275	275	430	255	410				
S 355	355	510	335	470				
S 450	440	550	420	550				
UNI EN 10025-3								
S 275 N/NL	275	390	255	370				
S 355 N/NL	355	490	335	470				
S 420 N/NL	420	520	390	520				
S 460 N/NL	460	540	430	540				
UNI EN 10025-4								
S 275 M/ML	275	370	255	360				
S 355 M/ML	355	470	335	450				
S 420 M/ML	420	520	390	500				
S 460 M/ML	460	540	430	530				
UNI EN 10025-5								
S 235 W	235	360	215	340				
S 355 W	355	510	335	490				

Consulenza: Atech srl

Proponente: Whysol-E Sviluppo Srl

Progetto per la realizzazione di un impianto agrivoltaico avente potenza nominale pari a 4.255 kw e potenza moduli pari a 5.169,71 kwp con relativo collegamento alla rete elettrica, sito in Brindisi (BR) – impianto 13B

Tabella 11.3.X - Laminati a caldo con profili a sezione cava

Norme e qualità	Spessore nominale dell'elemento							
degli acciai	t ≤ 4	0 mm	40 mm < t	≤ 80 mm				
	f _{vk} [N/mm ²]	f _{tk} [N/mm ²]	f _{vk} [N/mm ²]	$f_{tk} [N/mm^2]$				
UNI EN 10210-1								
S 235 H	235	360	215	340				
S 275 H	275	430	255	410				
S 355 H	355	510	335	490				
S 275 NH/NLH	275	390	255	370				
S 355 NH/NLH	355	490	335	470				
S 420 NH/NLH	420	540	390	520				
S 460 NH/NLH	460	560	430	550				

UNI EN 10219-1			
S 235 H	235	360	
S 275 H	275	430	
S 355 H	355	510	
S 275 NH/NLH	275	370	
S 355 NH/NLH	355	470	
S 333 NH/NLH	333	4/0	
S 275 MH/MLH	275	360	
S 355 MH/MLH	355	470	
S 420 MH/MLH	420	500	
S460 MH/MLH	460	530	

Nei calcoli statici che si andranno ad effettuare si assumono convenzionalmente i seguenti valori nominali delle proprietà del materiale:

- o modulo elastico
- modulo di elasticità trasversale
- o coefficiente di Poisson
- o coefficiente di espansione termica lineare (per T fino a 100°C)
- o densità

Consulenza: Atech srl

Proponente: Whysol-E Sviluppo Srl

Progetto per la realizzazione di un impianto agrivoltaico avente potenza nominale pari a 4.255 kw e potenza moduli pari a 5.169,71 kwp con relativo collegamento alla rete elettrica, sito in Brindisi (BR) – impianto 13B

$$E = 210000N / mm^2$$

$$G = E/[2(1+\nu)]$$

$$v = 0.3$$

$$\alpha = 12 \cdot 10^{-6} \text{ per } {}^{\circ}\text{C}^{-1}$$

$$\rho = 7850 kg/m^3$$

Gli elementi secondari saranno realizzati con profili a freddo, secondo le Norme UNI EN 10326:2004 "Nastri e lamiere di acciaio per impieghi strutturali rivestiti per immersione a caldo in continuo - Condizioni tecniche di fornitura", si ordineranno della qualità S350GD e quindi dalla tabella seguente si ottiene la caratteristica meccanica del materiale.

Rispettivamente fyk= 350 N/mm².

Table 1 — Steel grades and mechanical properties (longitudinal test pieces)

Designation		Chemical composition % by mass max.			Mechanical properties					
Steel grade		Symbols for the types of hot-dip coating	С	Si	Mn	Р	S	0,2 %-proof strength	Tensile strength	Elongation
Steel name	Steel number							$R_{\rm p0,2}$ a	R _m b	A80 c
								MPa *	MPa *	%
								min.	min.	min.
S220GD	1.0241	+Z,+ZF,+ZA,+AZ	0,20	0,20 0,60				220	300	20
S250GD	1.0242	+Z,+ZF,+ZA,+AZ,+AS						250	330	19
S280GD	1.0244	+Z,+ZF,+ZA,+AZ,+AS						280	360	18
S320GD	1.0250	+Z,+ZF,+ZA,+AZ,+AS			1,70	0,10	0,045	320	390	17
S350GD	1.0529	+Z,+ZF,+ZA,+AZ,+AS						350	420	16
S550GD	1.0531	+Z,+ZF,+ZA,+AZ						550	560	-

¹MPa = 1 N/mm2.

^{*} If the yield point is pronounced, the values apply to the upper yield point (R_{ett}).

^b For all grades except S550GD, a range of 140 MPa can be expected for tensile strength.

For product thicknesses ≤ 0.70 mm (including coating) the minimum elongation values (A_{00}) shall be reduced by 2 units.