

CARATTERISTICHE COMPONENTI

Codifica EEFR10002BGL00009

Rev. 00 del 21/06/2010

Pag. **1** di 3

Elettrodotto a 150 kV doppia terna

"S.E. Troia - Celle San Vito / Faeto"

CARATTERISTICHE COMPONENTI

Storia dell	Storia delle revisioni							
Rev. 00	Del 21/06/2010	Prima emissione						

Elaborato		Verificato			Approvato
Bisignano S.					Paternò P.
SRI-PRI NA					SRI-PRI NA

CARATTERISTICHE COMPONENTI

Codifica EEFR10002BGL00009

Rev. 00 del 21/06/2010

Pag. **2** di 3

CONDUTTORI ED ARMAMENTI

RQUT0000C2	LUG. 2002	Conduttore a corda di Alluminio - Acciaio diametro 31,5
LC 21	GEN. 1995	Corda di guardia di Acciaio Ø 10,5
UX LC58	GEN. 2009	Fune di guardia con Fibre Ottiche diametro
		nom. 10,5 mm
UX LC25	GEN. 2008	Fune di guardia con Fibre Ottiche diametro
		nom. 11,5 mm
UX LJ 1	APR. 2009	Isolatori cappa e perno di tipo normale in vetro temperato
LJ 2	LUG. 1989	Isolatori cappa e perno di tipo antisale in vetro temperato
LM 11	OTT. 1994	Armamento per sospensione semplice del conduttore
		AllAcc. Ø31,5
LM 12	OTT. 1994	Armamento per sospensione doppia del conduttore
		AllAcc. Ø31,5
LM 13	OTT. 1994	Armamento per sospensione doppia con doppio
		morsetto del conduttore AllAcc. Ø31,5
LM 111	OTT.1994	Armamento per amarro semplice del conduttore
		AllAcc. Ø31,5
LM 112	OTT. 1994	Armamento per amarro doppio del conduttore
		AllAcc. Ø31,5
LM 201	LUG. 1994	Armamento per sospensione della corda di guardia
DM 204	GIU. 1998	Armamento di sospensione della fune di guardia
		Ø 10,5 mm incorporante Fibre Ottiche
LM 251	OTT. 1994	Armamento per amarro della corda di guardia di acciaio
		Ø10,5
DM 261	GIU. 1998	Armamento di amarro della fune di guardia Ø 10,5 mm
		incorporante Fire Ottiche
DM 205	LUG. 1996	Armamento di sospensione della fune di guardia Ø11,5
		mm incorporante Fibre Ottiche
DM 271	LUG. 1996	Armamento di amarro della fune di guardia Ø 11,5 mm
		incorporante Fibre Ottiche

LF 21

APR. 1992

CARATTERISTICHE COMPONENTI

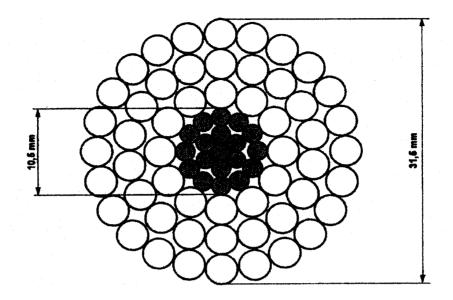
Codifica **EEFR10002BGL00009**

Rev. 00 del 21/06/2010

Pag. **3** di 3

SOSTEGNI		
LS 800	GIU. 2007	Semplice terna a triangolo
		Tabella delle corrispondenze sostegni - gruppi mensole
LS 808	GEN. 2007	Semplice terna a triangolo - Sostegni tipo C
LS 809	GEN. 2007	Semplice terna a triangolo - Sostegni tipo E
LS 810	GIU. 2007	Semplice terna a triangolo - Gruppi mensole tipo D
LS 850	GIU. 2007	Doppia terna
		Tabella delle corrispondenze sostegni - gruppi mensole
LS 853	GEN. 2007	Doppia terna - Sostegni tipo N
LS 854	GEN. 2007	Doppia terna - Sostegni tipo M
LS 855	GIU. 2007	Doppia terna - Gruppi mensole tipo G
LS 856	GEN. 2007	Doppia terna - Sostegni tipo V
LS 857	GEN. 2007	Doppia terna - Gruppi mensole tipo H
LS 858	GEN. 2007	Doppia terna - Sostegni E
LS 859	GEN. 2007	Doppia terna - Gruppi mensole tipo Q
P005UES02	SETT. 2007	132/150kV Semplice Terna a triangolo – Tiro Pieno
		Utilizzazione dei sostegni "E"
P006UM002	SETT. 2007	132/150kV Doppia Terna – Tiro Pieno
		Utilizzazione del sostegno "M"
P006UE002	SETT. 2007	132/150kV Doppia Terna – Tiro Pieno
		Utilizzazione del sostegno "E"
FONDAZIONI		
150STINFON	MAG. 2009	150 kV Semplice Terna a triangolo - Fondazioni CR
		Corrispondenza sostegni - monconi - fondazioni
150DTINFON	MAG. 2009	150kV Doppia Terna - Fondazioni CR
		Corrispondenza sostegni - monconi – fondazioni
LF1	DIC. 1993	Fondazione di classe "CR"
LF 20	MAR. 1992	Fondazioni su pali trivellati

Fondazioni ad ancoraggio a mezzo di tiranti



LINEE AEREE A.T. CONDUTTORE A CORDA DI ALLUMINIO - ACCIAIO DIAMETRO 31,5

RQ UT 0000C2

Revisione: 01

Pagina: 1/2

TIPO COMPUTTORE		C 2/1	C 2/2 (*)
TIPO CONDUTTORE		NORMALE	INGRASSATO
FORMAZIONE	Alluminio	54 x 3,50	54 x 3,50
	Acciaio	19 x 2,10	19 x 2,10
SEZIONI TEORICHE (mm²)	Alluminio	519,5	519,5
, ,	Acciaio	65,80	65,80
	Totale	585,30	585,30
TIPO DI ZINCATURA DELL'A	ACCIAIO	Normale	Maggiorata
MASSA TEORICA (Kg/m)		1,953	2,071(**)
RESISTENZA ELETTR. TEC	PRICA A 20°C (ohm/km)	0,05564	0,05564
CARICO DI ROTTURA (daN)	16852	16516
MODULO ELASTICO FINAL	E (N/mm²)	68000	68000
COEFFICIENTE DI DILATAZ		19,4 x 10 ⁻⁶	19,4 x 10 ⁻⁶

- (*) Per zone ad alto inquinamento salino
- (**) Compresa massa grasso pari a 103,39 gr/m.

1. Materiale:

Mantello esterno in Alluminio ALP E 99,5 UNI 3950

Anima in acciaio a zincatura normale tipo 170 (CEI 7-2), zincato a caldo

Anima in acciaio a zincatura maggiorata tipo 3 secondo prescrizioni ENEL DC 3905 Appendice A

2. Prescrizioni:

Per la costruzione ed il collaudo: DC 3905

Per le caratteristiche dei prodotti di protezione: prEN50326

Per le modalità di ingrassaggio: EN50182

3. Imballo e pezzature:

Bobine da 2.000 m (salvo diversa prescrizione in sede di ordinazione)

Rev.	Data	Descrizione della revisione	Elaborato	Verificato	Collaborazioni	Approvato
			G-D'Ambrosa	A. Posati		R. Rendina
			A	Am		order
01	25-07-2002	Aggiornata massa conduttore ingrassato				······································
00	21-01-2002	PRIMA EMISSIONE	RIS/IML	RIS/IML		RIS/IML

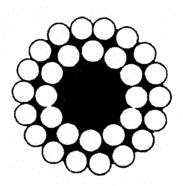
LINEE AEREE A.T. CONDUTTORE A CORDA DI ALLUMINIO - ACCIAIO DIAMETRO 31,5

RQ UT 0000C2

Revisione: 01

Pagina: 2/2

4. Unità di misura:


L'unità di misura con la quale deve essere espressa la quantità del materiale è la massa in chilogrammi (Kg)

5. Modalità di applicazione dei prodotti di protezione:

Il conduttore C 2/2 dovrà essere completamente ingrassato, ad eccezione della superficie esterna dei fili elementari del mantello esterno.

Le modalità di ingrassaggio devono essere rispondenti alla norma EN 50182 del Maggio 2001 Caso 4 Figura B.1, annesso B.

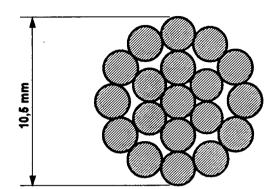
La massa teorica di grasso espressa in gr/m, con una densità di 0,87 gr/cm³, calcolata secondo la norma EN 50182 dovrà essere pari a 103,39 gr/m.

Cfr. Norma EN 50182 Maggio 2001 Caso 4 Figura B.1, annesso B

6. Caratteristiche dei prodotti di protezione:

Il grasso utilizzato dovrà essere conforme alla norma prEN 50326 Ottobre 2001 tipo 20A180 ovvero 20B180.

Il Fornitore del conduttore, dovrà consegnare la documentazione di conformità del grasso utilizzato.


ENEL

CORDA DI GUARDIA DI ACCIAIO Ø 10,5

31 73 A

LC 21

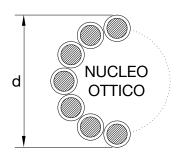
Gennaio 1995 Ed.6 - 1/1

TIPO	21/1	21/2
N. MATRICOLA	31 73 03	31 73 04
TIPO ZINCATURA	NORMALE	MAGGIORATA
MASSA UNITARIA DI ZINCO (g/m²)	214	550
FORMAZIONE	19 x 2,1	19 x 2,1
SEZIONE TEORICA (mm²)	65,81	65,81
MASSA TEORICA (kg/m)	0,517	0,532
RESISTENZA ELETTR. TEORICA A 20 °C (Ω/km)	2,416	2,416
CARICO DI ROTTURA (daN)	10196	8874
MODULO ELASTICO FINALE (N/mm²)	175000	175000
COEFFICENTE DI DILATAZIONE (1/°C)	11,5 x 10 ⁻⁶	11,5 x 10 ⁻⁶

- 1 Materiale: acciaio Tipo170 (CEI 7-2) zincato a caldo per i fili a "zincatura normale".
 acciaio Tipo 1, zincato a caldo secondo le prescrizioni DC 3905 appendice A per i fili a "zincatura maggiorata"
- 2 Prescrizioni per la costruzione ed il collaudo: DC 3905
- 3 Prescrizioni per la fornitura: DC 3911
- 4 Imballo e pezzature: bobine da 2.000 m (salvo diversa prescrizione in sede di ordinazione)
- 5 L'unità di misura con la quale deve essere espressa la quantità del materiale è la massa in chilogrammi (Kg)

Descrizione ridotta:

CORDA ACC DIAM 10,5 NOR UE


Tabella dati CORDA DI GUARDIA CON 24 FIBRE OTTICHE Ø10,5 mm

Codifica:

UX LC58

Rev. 00
del 07/01/2009

Pag. 1 di 1

DIAMETRO NOMINALE ES	STERNO	(mm)	≤ 10,5	
MASSA UNITARIA TEORIO	CA (Eventuale grasso	(kg/m)	≤ 0,4	
RESISTENZA ELETTRICA	(ohm/km)	≤ 1,2		
CARICO DI ROTTURA	(daN)	≥ 5200		
MODULO ELASTICO FINA	(daN/mm²)	≥ 11500		
COEFFICIENTE DI DILATA	(1/°C)	≤ 16,0E-6		
MAX CORRENTE C.TO C.	TO DURATA 0,5 s	(kA)	≥ 7	
	NUMERO		(n°)	24
FIRRE OTTIONE ON B	ATTENUAZIONE	a 1310 nm	(dB/km)	≤ 0,36
FIBRE OTTICHE SM-R (Single Mode Reduced)	ATTENUAZIONE	a 1550 nm	(dB/km)	≤ 0,22
(Oiligic Wode Reddecd)	DISPERSIONE	a 1310 nm	(ps/nm · km)	≤ 3,5
	CROMATICA	a 1550 nm	(ps/nm · km)	≤ 20

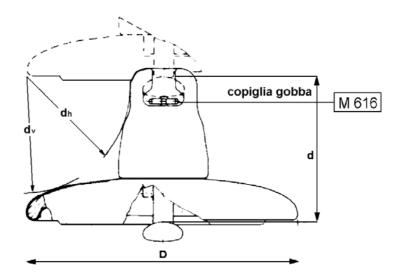
- 1. Prescrizioni per la costruzione ed il collaudo: C3907.
- 2. Prescrizioni per la fornitura: C3911.
- 3. Imballo e pezzature: bobine da 4000 m (salvo diversa prescrizione in sede di ordinazione).
- 4. Unità di misura: la quantità del materiale deve essere espressa in m.
- 5. Sigillatura: eseguita mediante materiale termoresistente e autovulcanizzante.

Descrizione ridotta:

COR GUAR	ACS	2 4 x	F I B R	OTT	1 0 , 5
Matricola SAP:					
1 0 1 1 2 1 5					

Storia de	lle revisioni	
Rev. 00	del 07/01/2009	Prima emissione.

Elaborato		Verificato			Approvato
S. Tricoli		A. Posati			R. Rendina
ING-PRI		ING-ILC			ING-ILC


Isolatori Cappa e Perno di Tipo Normale in Vetro Temprato

Codifica:

UX LJ1

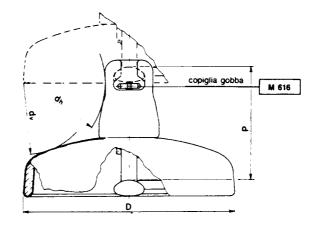
Rev. 00
del 03/04/2009

Pag. 1 di 1

	TIPO	1/1	1/2	1/3	1/4	1/5	1/6
Carico di Rottura (kN)	70	120	160	210	400	300
Diametro Nominale P	arte Isolante (mm)	255	255	280	280	360	320
Passo (mm)		146	146	146	170	205	195
Accoppiamento CEI 3	66-10 (grandezza)	16	16	20	20	28	24
Linea di Fuga Nomina	ale Minima (mm)	295	295	315	370	525	425
Dh Nominale Minimo	(mm)	85	85	85	95	115	100
Dv Nominale Minimo	(mm)	102	102	102	114	150	140
Condizioni di Prova	Numero di Isolatori Costituenti la Catena	9	13	21	18	15	16
in Nebbia Salina	Tensione (kV)	98	142	243	243	243	243
Salinità di Tenuta (**)	(kg/ m³)	14	14	14	14	14	14
Matricola SAP.		1004120	1004122	1004124	1004126	1004128	01012241

- (**) La salinità di tenuta, verificata su una catena, viene convenzionalmente assunta come caratteristica propria del tipo di elemento isolante.
 - 1. Materiale: parte isolante in vetro sodocalcico temprato; cappa in ghisa malleabile (UNI EN 1562) zincata a caldo; perno in acciaio al carbonio (UNI EN 10083-1) zincato a caldo; copiglia in acciaio inossidabile.
 - 2. Tolleranze:
 - sul valore nominale del passo: secondo la pubblicazione IEC 305 par. 3
 - sugli altri valori nominali: secondo la Norma CEI 36-5 par. 24.
 - Su ciascun esemplare deve essere marcata la sigla U seguita dal carico di rottura dell'isolatore, il marchio di fabbrica del costruttore e l'anno di fabbricazione
 - 4. Prescrizioni per la costruzione ed il collaudo: J 3900.
 - 5. Prescrizioni per la fornitura: J 3901 per quanto applicabile.
 - 6. Tensione di tenuta alla perforazione elettrica f.i.: in olio, 80 kV eff. (J1/1, J1/2); 100 kV eff. (J1/3, J1/4, J1/5, J1/6).
 - 7. Tensione di tenuta alla perforazione elettrica ad impulso in aria: 2,5 p.u. (per unità della tensione di scarica 50% a impulso atmosferico standard di polarità negativa).
 - 8. L'unità di misura con la quale deve essere espressa la quantità di materiale è il numero di esemplari: n.

Storia de	lle revisioni	
Rev. 00	del 03/04/2009	Prima emissione. Sostituisce la J1 Rev.07.


Elaborato	Verificato		Approvato	
M. Meloni	A.Posati		R.Rendina	1
ING-ILC-COL	ING-ILC-COL		ING-ILC	

ISOLATORI CAPPA E PERNO DI TIPO ANTISALE IN VETRO TEMPRATO

30 24 B

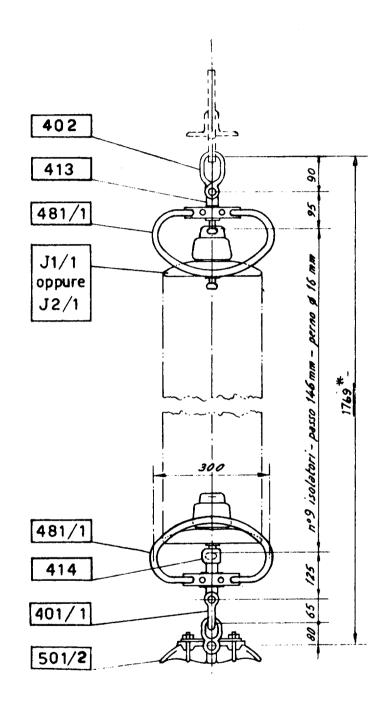
LJ 2

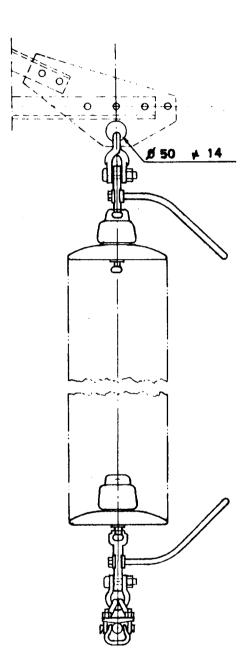
Luglio 1989 Ed. 6 - 1/1

	MATRICOLA		30 24 21	30 24 25	30 24 53	30 24 55
	TIPO		2/1 (*)	2/2	2/3	2/4
Carico di rottura		(kN)	70	120	160	210
Diametro nominale della	a parte isolante	(mm)	280	280	320	320
Passo		(mm)	146	146	170	170
Accoppiamento CEI-UN	EL 39161 e 39162	(grandezza)	16	16	20	20
Linea di fuga nominale	minima	(mm)	430	425	525	520
d _h nominale minimo		(mm)	75	75	90	90
d _√ nominale minimo		(mm)	85	85	100	100
Condizioni di prova	Numero di isolatori costituenti la catena		9	13	18	18
in nebbia salina	Tensione di prova	(kV)	98	142	243	243
Salinità di tenuta (**)		(Kg/m³)	56	56	56	56

- (*) In alternativa a questo tipo può essere impiegato il tipo J 4 in porcellana.
- 1. Materiale: parte isolante in vetro sodocalcico temprato; cappa in ghisa malleabile (UNI ISO 5922) zincata a caldo; perno in acciaio al carbonio (UNI 7845-7874) zincato a caldo; copiglia in acciaio inossidabile.
- 2. Tolleranze:
 - sul valore nominale del passo: secondo la pubblicazione IEC 305 (1974) par. 3
 - sugli altri valori nominali: secondo la Norma CEI 36-5 (1979) par. 24.
- Su ciascun esemplare deve essere marcata la sigla U seguita dal carico di rottura dell'isolatore, il marchio di fabbrica del costruttore e l'anno di fabbricazione.
- 4. Prescrizioni per la costruzione ed il collaudo: DJ 3900.
- 5. Prescrizioni per la fornitura: DJ 3901.
- 6. Tensione di tenuta alla perforazione elettrica a f.i.: in olio, 80 kV eff. (J 2/1, J 2/2); 100 kV eff. (J 2/3, J 2/4).
- 7. Tensione di tenuta alla perforazione elettrica ad impulso in aria: 2,5 p.u. (per unità della tensione di scarica 50% a impulso atmosferico standard di polarità negativa).
- 8. L'unità di misura con la quale deve essere espressa la quantità di materiale è il numero di esemplari: n.
- (**) La salinità di tenuta, verificata su una catena, viene convenzionalmente assunta come caratteristica propria del tipo di elemento isolante. Esempio di designazione abbreviata:

1	ı	5	3	0	L	1	1	Т	()	F	ł	Ε	1		A	١	N	-	Γ	1	1	S	-	٧	' !	Ε	-	Т	F	₹:	O) [C) [Α	F	2	Е	Ξ	R	1	۱	C)		2	! i '	1	0) 🗄	Κ	١	1	U	E	Ξ	
• •		• • • •													• • • •	• • • •	• • •				• • • •		• • • •	 	• • •			٠			• • •			• • •			•••						• • • •				• • • •		• • • •							 • • • • •			


ENEL


LINEA A 132 - 150 kV ARMAMENTO PER SOSPENSIONE SEMPLICE DEL CONDUTTORE ALL.- ACC. Φ 31,5

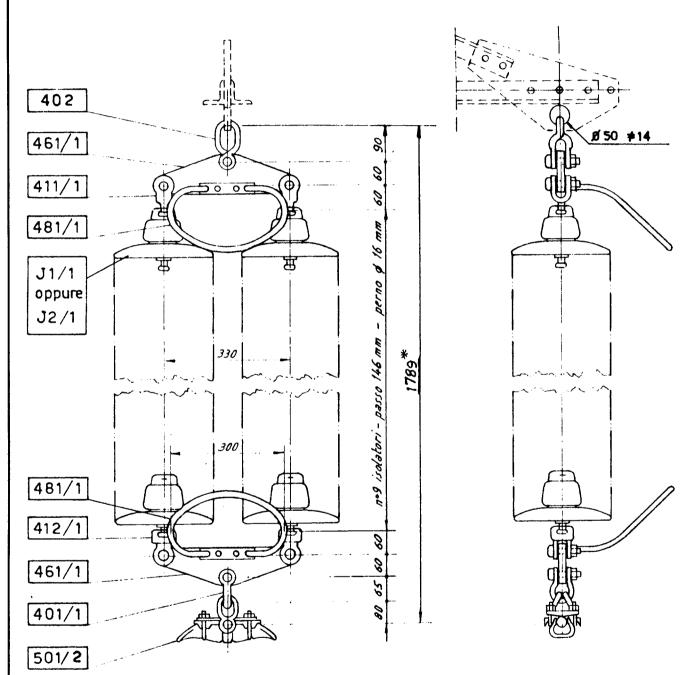
25 XX E

LM 11

Ottobre 1994 Ed. 4 - 1/1

Riferimento. C2

^{*} La quota aumenta di 584 mm nel caso di impiego di n° 13 isolatori J 2/1 (vedi J 121)


ENEL

LINEA A 132 - 150 kV ARMAMENTO PER SOSPENSIONE DOPPIA DEL CONDUTTORE ALL.- ACC. 31,5

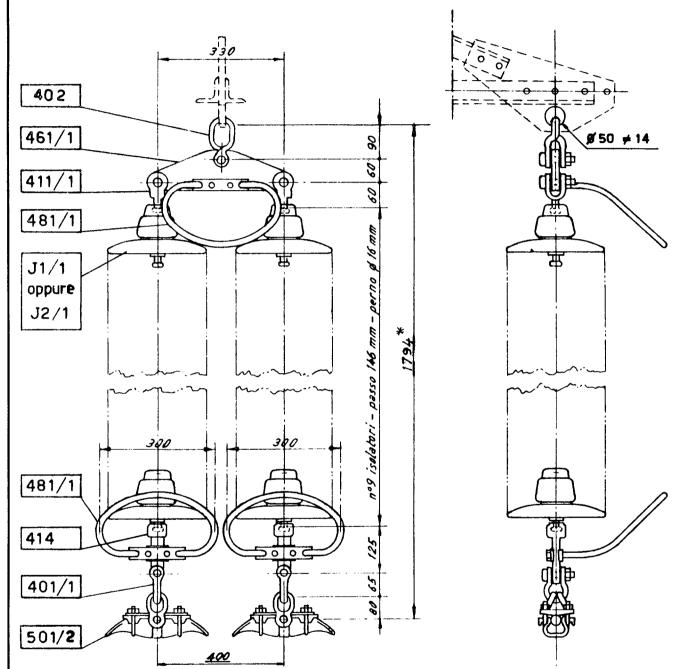
25 XX F

LM 12

Ottobre 1994 Ed. 4 - 1/1

Riferimento. C2

^{*} La quota aumenta di 584 mm nel caso di impiego di n° 13 isolatori J 2/1 (vedi J 121)


ENEL

LINEA A 132 - 150 kV ARMAMENTO PER SOSPENSIONE DOPPIA CON DOPPIO MORSETTO DEL CONDUTTORE ALL.- ACC. Φ31,5

25 XX G

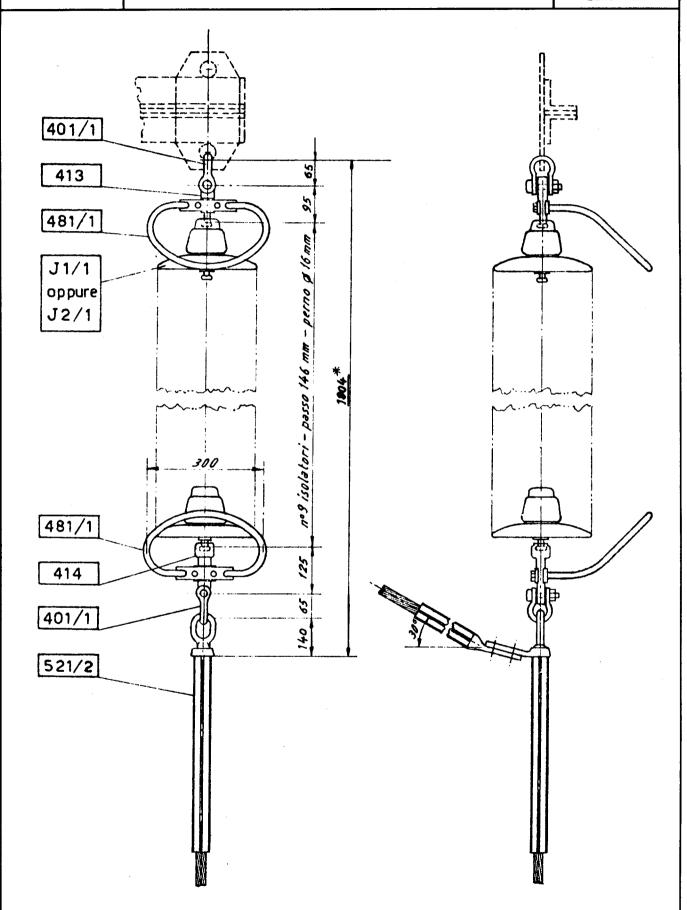
LM 13

Ottobre 1994 Ed. 4 - 1/1

* La quota aumenta di 584 mm nel caso di impiego di n° 13 isolatori J 2/1 (vedi J 121)

Riferimento. C2

DDI - VICE DIREZIONE TECNICA


ENEL

LINEA A 132 - 150 kV ARMAMENTO PER AMARRO SEMPLICE DEL CONDUTTORE ALL.- ACC. Φ 31,5

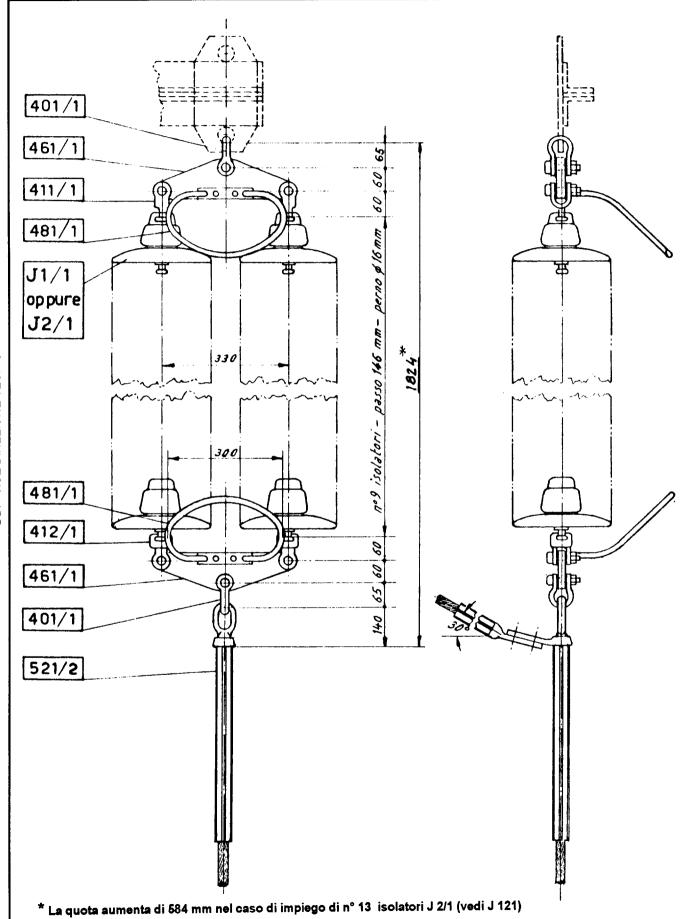
25 XX AK

LM 111

Ottobre 1994 Ed. 3 - 1/1

DDI - VICE DIREZIONE TECNICA

* La quota aumenta di 584 mm nel caso di impiego di n° 13 isolatori J 2/1 (vedi J 121)


Riferimento. C2

ENEL

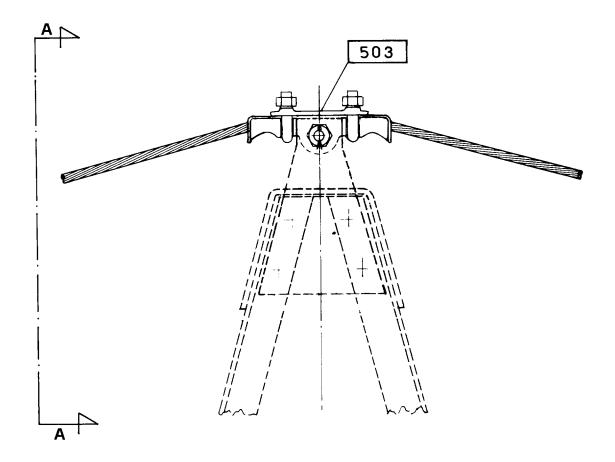
LINEA A 132 - 150 kV ARMAMENTO PER AMARRO DOPPIO DEL CONDUTTORE ALL.- ACC. Φ 31,5 25 XX AL

LM 112

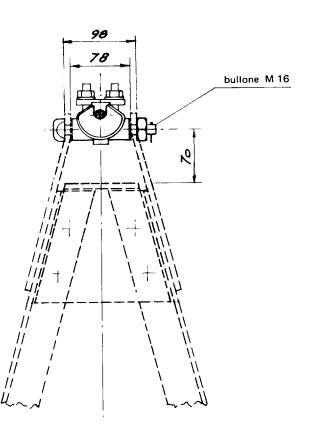
Ottobre 1994 Ed. 3 - 1/1

DDI - VICE DIREZIONE TECNICA

Riferimento. C2



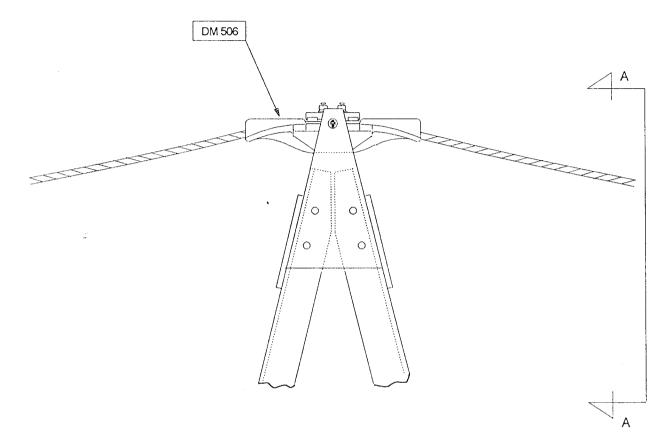
LINEE A 132 - 150 - 220 kV ARMAMENTO PER SOSPENSIONE DELLA CORDA DI GUARDIA

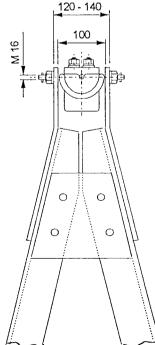

25 XX BB

LM 201

Luglio 1994 Ed. 4 - 1/1

VISTA A-A


Riferimenti: C21, C23, C51

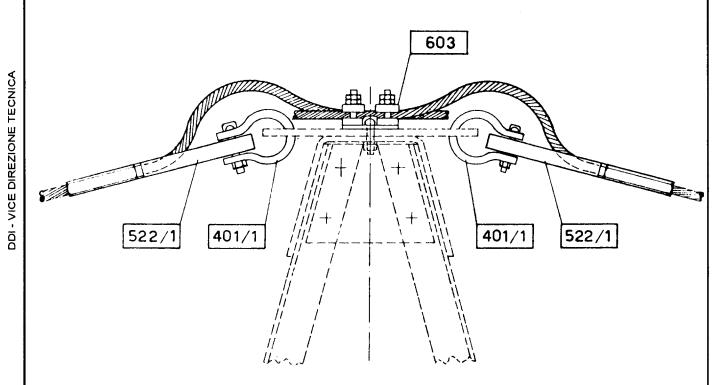

ENEL

LINEE A 132+150 kV ARMAMENTO DI SOSPENSIONE DELLA FUNE DI GUARDIA Ø 10.5 mm INCORPORANTE FIBRE OTTICHE

DM 204

BOZZA Giugno 1998

VISTA A-A

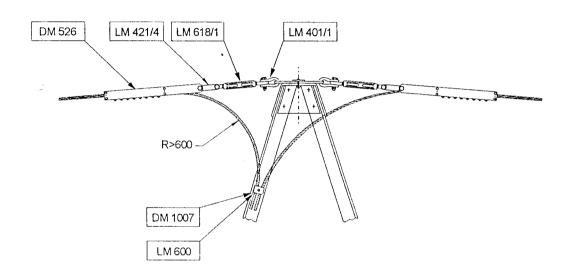


LINEE A 132 - 150 kV ARMAMENTO PER AMARRO DELLA CORDA DI GUARDIA DI ACCIAIO Φ 10,5

25 XX BD

LM 251

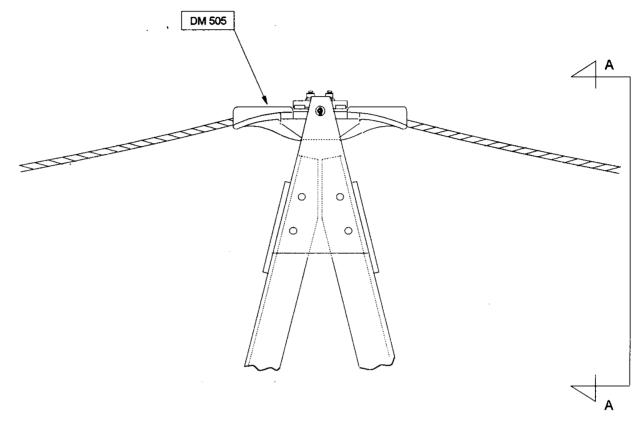
Ottobre 1994 Ed. 3 - 1/1

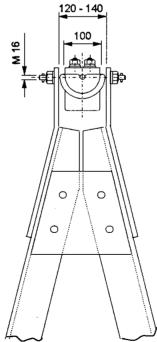

Riferimento. C21

LINEE A 132÷150 kV ARMAMENTO DI AMARRO DELLA FUNE DI GUARDIA Ø 10.5 mm INCORPORANTE FIBRE OTTICHE

DM 261

BOZZA Giugno 1998

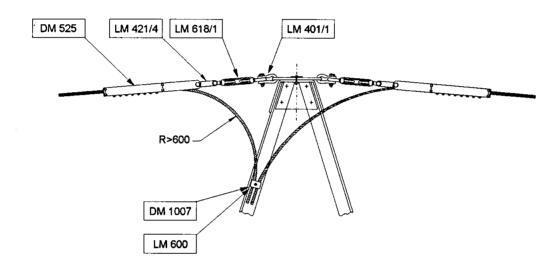

Nota: Le quantità dei morsetti bifilari DM 1007 e delle staffe di fissaggio LM 600 per la discesa della fune di guardia alla scatola di giunzione sono riportate negli schemi di montaggio dei sostegni unificati.


ENEL

LINEE A 132+150 kV ARMAMENTO DI SOSPENSIONE DELLA FUNE DI GUARDIA Ø 11.5 mm INCORPORANTE FIBRE OTTICHE

DM 205

Luglio 1996 Ed. 1 - 1/1


VISTA A - A

LINEE A 132+150 kV ARMAMENTO DI AMARRO DELLA FUNE DI GUARDIA Ø 11.5 mm INCORPORANTE FIBRE OTTICHE

DM 271

Luglio 1996 Ed. 1 - 1/1

Nota:

Le quantità dei morsetti bifilari DM 1007 e delle staffe di fissaggio LM 600 per la discesa della fune di guardia alla scatola di giunzione sono riportate negli schemi di montaggio dei sostegni unificati.

Tabella delle corrispondenze sostegni – gruppi mensole

Codifica: LS800

Rev. 05
del 15/06/2007

Pag. 1 di 2

sos	STEGNI	МЕ	ENSOLE
TIPO	RIFERIMENTO	GRUPPO	RIFERIMENTO
L	LS801	Α	LS804/1-2
N	LS802	Α	LS804/3÷12
М	LS803	А	LS804/13÷22
Р	LS805	В	LS807/1÷10
V	LS806	В	LS807/11÷20
С	LS808	D	LS810/1÷12
Е	L\$809	D	LS810/13÷24

Storia de	elle revisioni	
Rev. 04	del 29/01/2007	Sostituisce la LS800 Ed. 3.
Rev. 05	del 15/06/2007	Aggiornamento dei riferimenti.

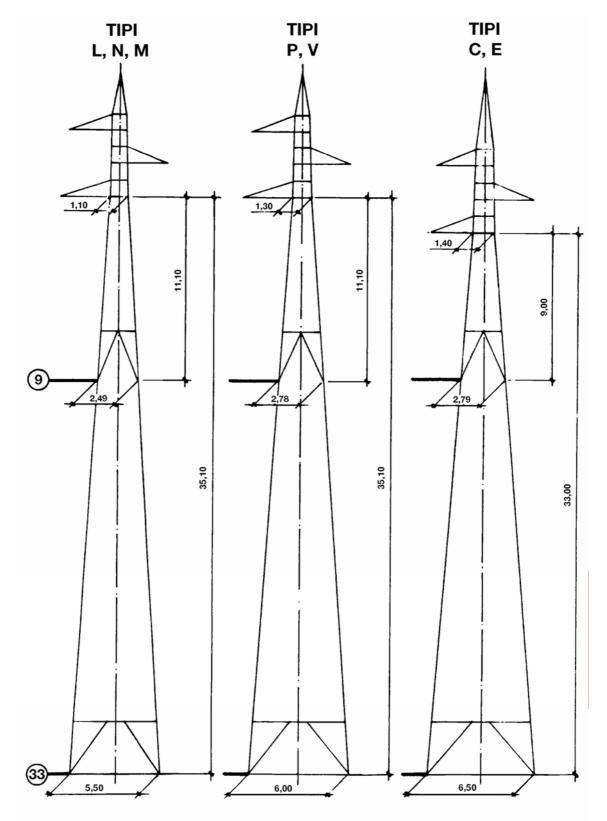

Elaborato	Verificato		Approvato
P. Berardi ING-ILC-COL	L. Alario ING-ILC-COL	A. Posati ING-ILC-COL	R. Rendina ING-ILC
ING-ILC-COL	ING-ILC-COL	ING-ILC-COL	ING-ILC

Tabella delle corrispondenze sostegni – gruppi mensole

Codifica: LS800

Rev. 05 Pag. **2** di 2

N. B. - I tronchi e le basi del sostegno E* hanno schema identico a quello dei sostegni C, E

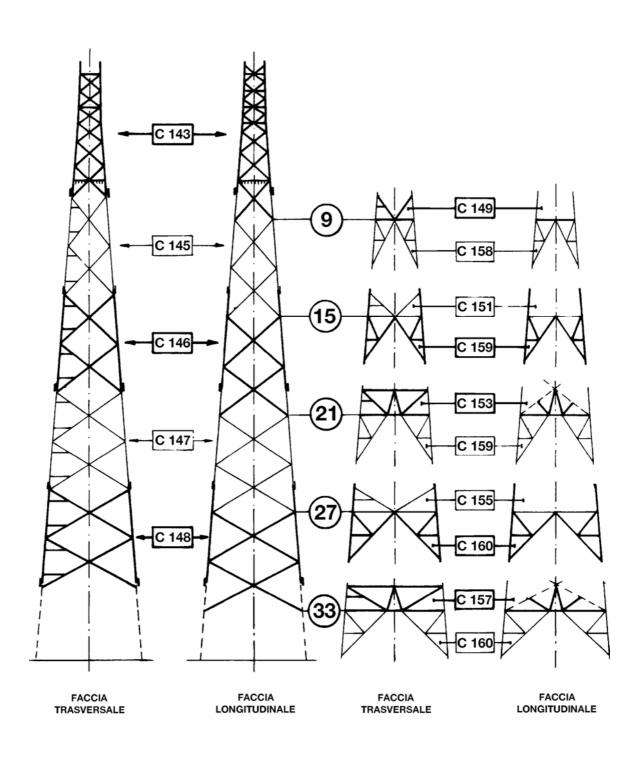
Codifica:									
LS	308								
Rev. 00 del 29/01/2007	Pag. 1 di 3								

ELEMENTI STRUTTURALI COMPONENTI I SOSTEGNI

0	(kg) (*)		2729	3705	4155	5043	5823	2999	7402	8308	9285
Moncone (**)		<u> </u>	48/1	48/2	48/2	49/2	49/2	49/2	49/4	49/4	49/4
Fondazione normale (**)		RIF. LF.	104/4	104/5	104/5	104/5	104/5	104/5	104/6	104/6	105/5
Piedi (n. 4 pezzi)			C158 (1036)	C158 (1036)	C159 (1024)	C159 (1024)	C159 (1024)	C159 (1024)	C160 (1130)	C160 (1130)	C160 (1130)
Base			C149 (267)	C150 (803)	C151 (371)	C152 (819)	C153 (686)	C154 (1080)	C155 (651)	C156 (1116)	C157 (836)
	=										
	₹										
	>										
	>	(_*)									
IHON	≥	JTTURALI				-	-			-	C148 (1698)
TRONCHI	≡	ELEMENTI STRUTTURALI LS (*)							C147 (1508)	C147 (1508)	C147 (1508)
	=	ELEM	,				C146 (1354)	C146 (1354)	C146 (1354)	C146 (1354)	C146 (1354)
	-		-	-	C145 (1333)						
Montante ausiliario			ı	C144 (440)		C144 (440)		C144 (440)		C144 (440)	
Parte			C143 (1426)								
SOSTEGNI	ŗ	Ę.	808/1	808/2	808/3	808/4	808/5	9/808	2/808	808/8	808/6
SOS	Ç	2	60	C12	C15	C18	C21	C24	C27	C30	C33

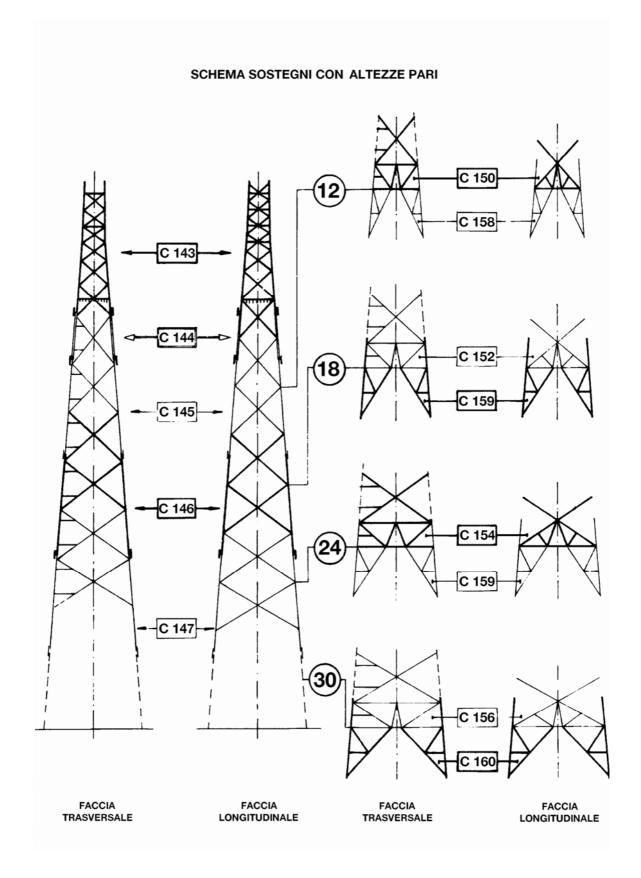
(*) – il peso totale (esclusi i monconi) e dei singoli elementi strutturali (indicato tra parentesi) è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in kg

(**) - fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 132STINFDM, 132STINFON, 132STINMNC


Storia de	lle revisioni	
Rev. 00	del 29/01/2007	Prima emissione. Sostituisce la DS808 Ed. 5

Elaborato	Ve	erificato		Approvato
P. Berardi	L.	Alario	A. Posati	R. Rendina
ING-ILC-COL	IN	NG-ILC-COL	ING-ILC-COL	ING-ILC

Codifica:	
LS	808
Rev. 00	Pag. 2 di 3


SCHEMA SOSTEGNI CON ALTEZZE DISPARI

Codifica: LS808

Rev. 00 Pag. **3** di 3

Codifica:	
LS	309
Rev. 00	Pag. 1 di 7

ELEMENTI STRUTTURALI COMPONENTI I SOSTEGNI

PESO (kg) (*)			3241	4481	5055	6255	7191	8319	9347	10552	11713	
Moncone (**)		ц;	49/2	49/4	49/4	50/4	50/4	50/4	50/4	50/4	50/4	
Fondazione normale (**)	Ì	RIF. LF.	104/5	104/6	105/5	105/5	105/5	105/5	105/5	105/5	105/5	
Piedi (n. 4 pezzi)			E176 (1185)	E176 (1185)	E177 (1195)	E177 (1195)	E177 (1195)	E177 (1195)	E178 (1302)	E178 (1302)	E178 (1302)	
Base			E167 (283)	E168 (865)	E169 (393)	E170 (935)	E171 (700)	E172 (1170)	E173 (690)	E174 (1237)	E175 (895)	
	₹										ı	
	=			-				-			-	
	>						1			1		
	>	(_*)			-				-		-	
IHO?	≥	ENTI STRUTTURALI	ELEMENTI STRUTTURALI LS (*)	1	-	-		1	-	-	1	E166 (2162)
TRONCHI	≡				ı	1			ı	E165 (2059)	E165 (2059)	E165 (2059)
	=	ELEMI					E164 (1829)	E164 (1829)	E164 (1829)	E164 (1829)	E164 (1829)	
	_				E163 (1693)							
Montante ausiliario				E162 (658)		E162 (658)		E162 (658)		E162 (658)		
Parte			E161 (1773)	E161 (1773)	E161 (1773)	E161 (1773)	E161 (1773)	E161 (1773)	E161 (1773)	E161 (1773)	E161 (1773)	
SOSTEGNI	ū	Ľ	1/608	809/2	8/608	809/4	809/5	9/608	2/608	8/608	6/608	
.sos	C G F	2	E9	E12	E15	E18	E21	E24	E27	E30	E33	

(*) – il peso totale (esclusi i monconi) e dei singoli elementi strutturali (indicato tra parentesi) è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in kg

(**) – fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 132STINFDM, 132STINFON, 132STINMNC

Storia de	lle revisioni	
Rev. 00	del 29/01/2007	Prima emissione. Sostituisce la DS809 Ed. 5

Elaborato	Verificato		Approvato	l
P. Berardi	L. Alario	A. Posati	R. Rendina	1
ING-ILC-COL	ING-ILC-COL	ING-ILC-COL	ING-ILC	

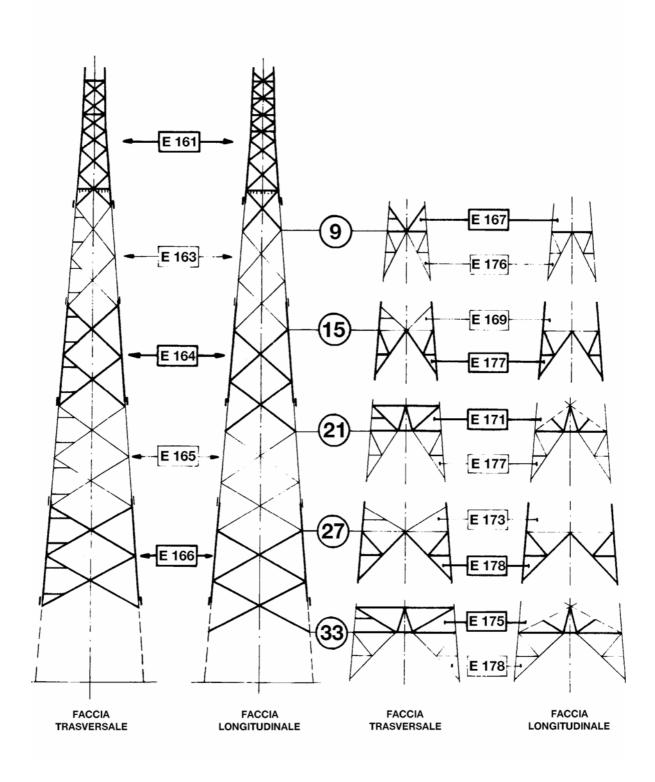
Codifica:

L\$809

Rev. 00 Pag. **2** di 7

ELEMENTI STRUTTURALI COMPONENTI I SOSTEGNI

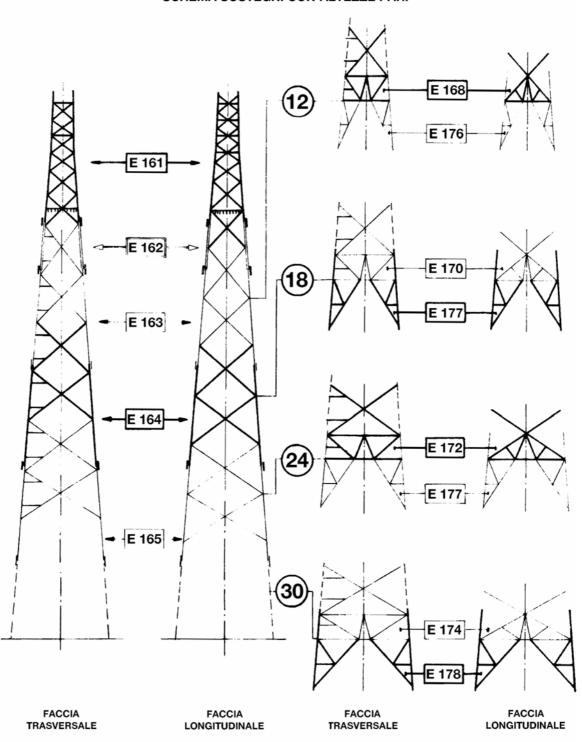
PESO (kg) (*)			3861	4787	5774	6995	7913	9059	10071	11295	12441	
Moncone (**)		Ľ,	49/2	49/4	49/4	50/4	50/4	50/4	50/4	50/4	50/4	
Fondazione	(**)	RIF. LF.	104/5	104/6	105/5	105/5	105/5	105/5	105/5	105/5	105/5	
Piedi	(n. 4 pezzi)		E*202 (506)	E*190 (1139)	E*177 (1200)	E*177 (1200)	E*177 (1200)	E*177 (1200)	E*178 (1305)	E*178 (1305)	E*178 (1305)	
Base				E*189 (293)	E*169 (310)	E*170 (857)	E*171 (617)	E*172 (1088)	E*173 (607)	E*174 (1156)	E*175 (812)	
	>											
	>	ELEMENTI STRUTTURALI LS (*)			-	-	-	-				
7	2		(_*)		1					1		E*166 (2165)
TRONCHI	≡			1					E*165 (2063)	E*165 (2063)	E*165 (2063)	
	II		EMENTI SI			-	-	E*164 (1832)	E*164 (1832)	E*164 (1832)	E*164 (1832)	E*164 (1832)
	-	ELE		1	E*191 (926)							
Montante	ausiliario				ı	E*79 (675)	ı	E*79 (675)		E*79 (675)		
Bracci			E*76 (2723)	E*76 (2723)	E*76 (2706)							
Trave			E*75 (631)	E*75 (631)	E*75 (631)	E*75 (631)	E*75 (631)	E*75 (631)	E*75 (631)	E*75 (631)	E*75 (631)	
SOSTEGNI	ח	Ž	809/20	809/21	809/22	809/23	809/24	809/25	809/26	809/27	809/28	
SOS	Cair		6*Э	E*12	E*15	E*18	E*21	E*24	E*27	E*30	E*33	


(*) — il peso totale (esclusi i monconi) e dei singoli elementi strutturali (indicato tra parentesi) è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in kg

(**) - fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 132STINFDM, 132STINFON, 132STINMNC

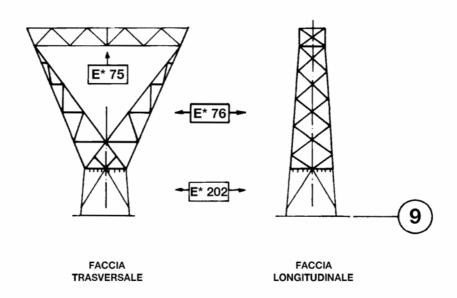
Codifica: **LS809**Rev. 00 Pag. **3** di 7

SCHEMA SOSTEGNI CON ALTEZZE DISPARI



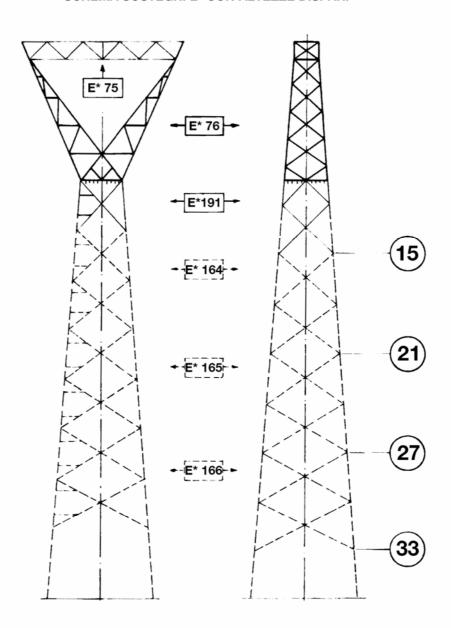
Codifica: LS809

Rev. 00 Pag. **4** di 7


SCHEMA SOSTEGNI CON ALTEZZE PARI

Codifica: **LS809**Rev. 00 Pag. **5** di 7

SCHEMA SOSTEGNO E* 9



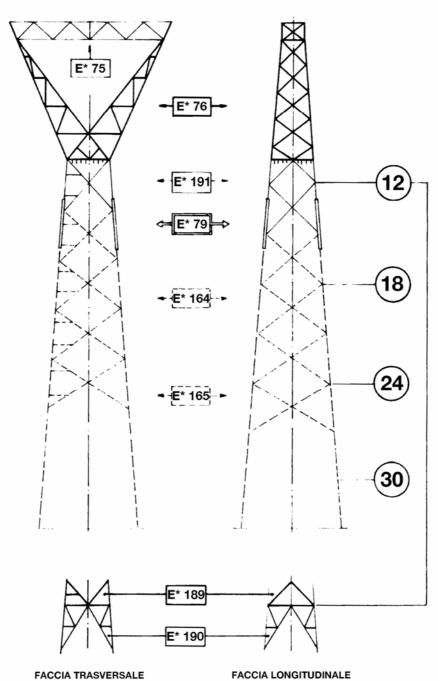
Codifica: LS809

Rev. 00 Pag. **6** di 7

SCHEMA SOSTEGNI E* CON ALTEZZE DISPARI

FACCIA TRASVERSALE

FACCIA LONGITUDINALE


Per le altezze 15, 21, 27, 33 vedi foglio 3

Codifica: L\$809

Rev. 00 Pag. **7** di 7

SCHEMA SOSTEGNI E* CON ALTEZZE PARI

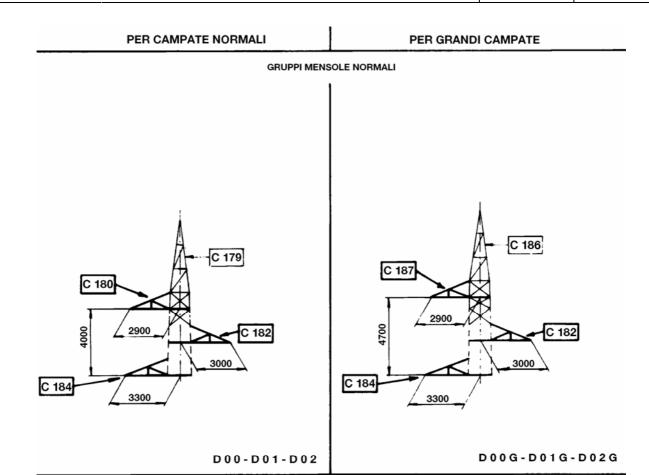
Per le altezze 18, 24, 30 vedi foglio 4

Codifica:	
LS	310
Rev. 01 del 15/06/2007	Pag. 1 di 8

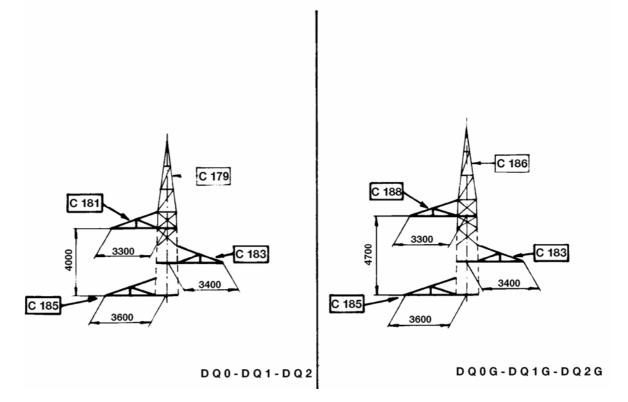
ELEMENTI STRUTTURALI COMPONENTI I GRUPPI

PESO	(kg) (*)	862	938	1033	946	1021	1117	1155	1293	1441	1235	1373	1519
	n. Pezzi							-			-		•
ō	Bassa	-		C205 (92)	-	-	C205 (92)	-	1	C209 (147)	-	-	C209 (147)
Mensole di giro	Media	-	C204 (76)	-	-	C204 (76)	-	-	C208 (138)		-	C208 (138)	•
×	Alta	-		C203 (79)		-	C206 (79)	-		C207 (139)	-		C210 (137)
Mensola bassa		C184 (157)	C184 (157)	C184 (157)	C184 (157)	C184 (157)	C184 (157)	C185 (252)	C185 (252)	C185 (252)	C185 (252)	C185 (252)	C185 (252)
Mensola media	TURALI LS (*)	C182 (135)	C182 (135)	C182 (135)	C182 (135)	C182 (135)	C182 (135)	C183 (239)	C183 (239)	C183 (239)	C183 (239)	C183 (239)	C183 (239)
Mensola alta	ELEMENTI STRUTTURALI LS (*)	C180 (135)	C180 (135)	C180 (135)	C187 (138)	C187 (138)	C187 (138)	C181 (230)	C181 (230)	C181 (230)	C188 (229)	C188 (229)	C188 (229)
Cimino	ELEN	C179 (435)	C179 (435)	C179 (435)	C186 (516)	C186 (516)	C186 (516)	C179 (435)	C179 (435)	C179 (435)	C186 (516)	C186 (516)	C186 (516)
JPPI	RIF.	810/1	810/2	810/3	810/4	810/5	810/6	810/7	810/8	810/9	810/10	810/11	810/12
GRUPPI MENSOLE	ТІРО	D00	D01	D02	D00G	D01G	D02G	DQ0	DQ1	DQ2	DQ0G	DQ1G	DQ2G

(*) – il peso totale e dei singoli elementi strutturali (indicato tra parentesi) è comprensivo della zincatura. I pesi sono espressi in kg

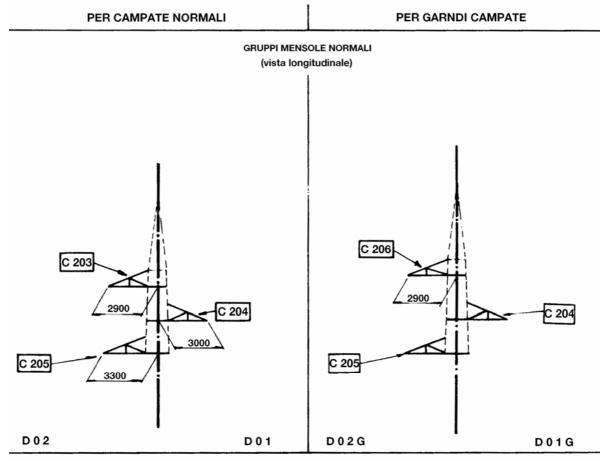

Storia de	elle revisioni	
Rev. 00	del 29/01/2007	Prima emissione. Sostituisce la DS810 Ed. 5.
Rev. 01	del 15/06/2007	Aggiornamento dei riferimenti.

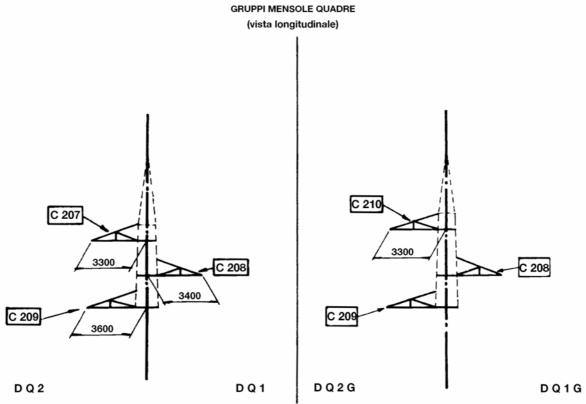
Elaborato	Ve	erificato		Approvato
P. Berardi	L.	Alario	A. Posati	R. Rendina
ING-ILC-COL	IN	NG-ILC-COL	ING-ILC-COL	ING-ILC



Codifica: LS810

Rev. 01 Pag. **2** di 8





Codifica: LS810

Rev. 01 Pag. **3** di 8

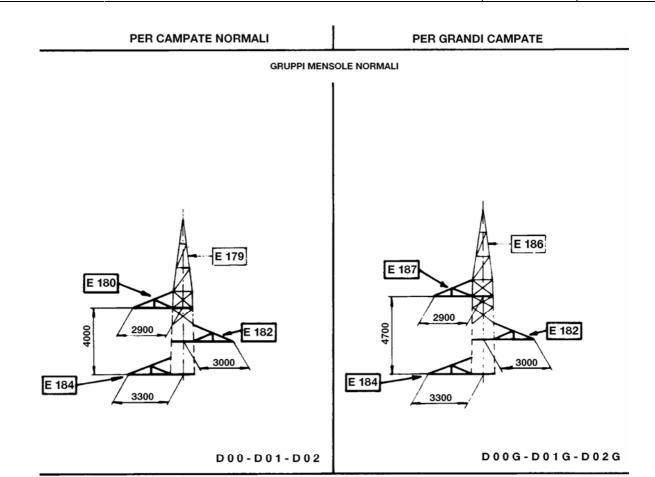
Codifica: **LS810**Rev. 01 Pag. **4** di 8

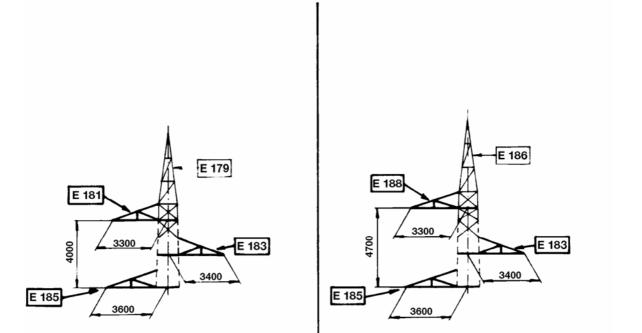
ELEMENTI STRUTTURALI COMPONENTI I GRUPPI

PESO	(kg) (*)	863	626	1034	949	1025	1120	1157	1295	1442	1239	1377	1523
	n. Pezzi							-					-
Q.	Bassa	1	-	E205 (92)	-		E205 (92)	-	-	E209 (146)	1	1	E209 (146)
Mensole di giro	Media		E204 (76)	-	-	E204 (76)	-	-	E208 (138)			E208 (138)	-
Š	Alta			E203 (79)			E206 (79)			E207 (139)		1	E210 (137)
Mensola bassa		E184 (157)	E184 (157)	E184 (157)	E184 (157)	E184 (157)	E184 (157)	E185 (252)	E185 (252)	E185 (252)	E185 (252)	E185 (252)	E185 (252)
Mensola media	rurali LS (*)	E182 (135)	E182 (135)	E182 (135)	E182 (135)	E182 (135)	E182 (135)	E183 (239)	E183 (239)	E183 (239)	E183 (239)	E183 (239)	E183 (239)
Mensola alta	ELEMENTI STRUTTURALI LS (*)	E180 (135)	E180 (135)	E180 (135)	E187 (138)	E187 (138)	E187 (138)	E181 (230)	E181 (230)	E181 (230)	E188 (229)	E188 (229)	E188 (229)
Cimino	ELEN	E179 (436)	E179 (436)	E179 (436)	E186 (519)	E186 (519)	E186 (519)	E179 (436)	E179 (436)	E179 (436)	E186 (519)	E186 (519)	E186 (519)
GRUPPI MENSOLE	RIF.	810/13	810/14	810/15	810/16	21/018	810/18	810/19	810/20	810/21	810/22	810/23	810/24
GRU	TIPO	D00	D01	D02	D00G	D01G	D02G	DQ0	DQ1	DQ2	DQ0G	DQ1G	DQ2G

(*) – il peso totale e dei singoli elementi strutturali (indicato tra parentesi) è comprensivo della zincatura. I pesi sono espressi in kg

Riferimenti: LS809

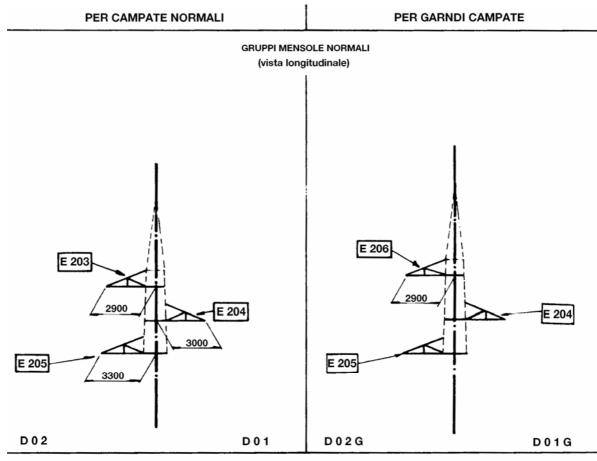


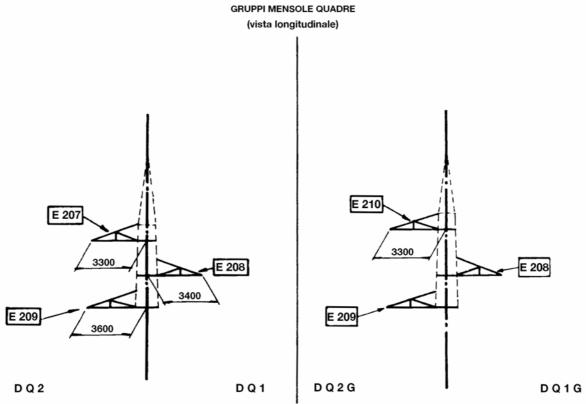

Codifica:

LS810

Rev. 01 Pag. **5** di 8

DQ0G-DQ1G-DQ2G


DQ0-DQ1-DQ2


GRUPPI MENSOLE QUADRE

Codifica: LS810

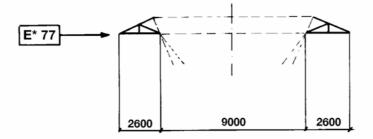
Rev. 01 Pag. **6** di 8

LS810

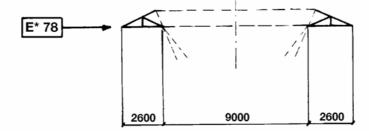
Rev. 01 Pag. **7** di 8

ELEMENTI STRUTTURALI COMPONENTI I GRUPPI

PESO (kg) (*)		242	328						
	n. Pezzi		2	2					
Q		Bassa	-						
Mensole di giro		Media	-	-					
Ň		Alta	-	-					
Mensole		(*)	E*77 (121)	E*78 (164)					
		ALI TAB. LS (1					
		ELEMENTI STRUTTURALI TAB. LS (*)	•	1					
		ELEMEI							
GRUPPI MENSOLE		RIF.	800/13	800/14					
GRU		TIPO	DOY	DQY					


(*) – il peso totale e dei singoli elementi strutturali (indicato tra parentesi) è comprensivo della zincatura. I pesi sono espressi in kg

Riferimenti: LS 808 – LS 809


Codifica: **LS810**Rev. 01 Pag. **8** di 8

GRUPPI MENSOLE NORMALI

D0Y

GRUPPI MENSOLE QUADRE

DQY

Tabella delle corrispondenze sostegni – gruppi mensole

Codifica: **LS850**Rev. 03
del 15/06/2007

Pag. **1** di 2

sos	STEGNI	MENSOLE				
TIPO	RIFERIMENTO	GRUPPO	RIFERIMENTO			
L	LS851	F	LS852/1			
N	LS853	G	LS855/1÷3			
М	LS854	G	LS855/4÷6			
V	LS856	Н	LS857//1÷3			
E	LS858	Q	LS859/1÷4			

Storia de	elle revisioni	
Rev. 02	del 31/01/2007	Sostituisce la LS850 Ed. 1.
Rev. 03	del 15/06/2007	Aggiornamento dei riferimenti.

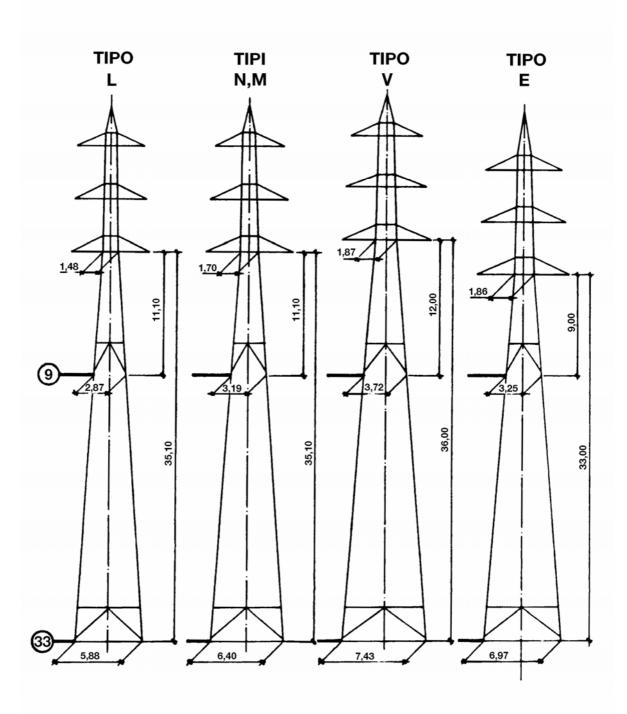

Elaborato	Verificato	Approvato		
P. Berardi ING-ILC-COL	L. Alario ING-ILC-COL	A. Posati ING-ILC-COL		R. Rendina ING-ILC
ING-ILC-COL	ING-ILC-COL	ING-ILC-COL		ING-ILC

Tabella delle corrispondenze sostegni – gruppi mensole

Codifica: LS850

Rev. 03 Pag. **2** di 2

Codifica:	
LS	8853
Rev. 00	D- 4 # C
del 31/01/2007	Pag. 1 di 6

ELEMENTI STRUTTURALI COMPONENTI I SOSTEGNI

C G	kg (*)		2845	3204	3728	4280	4688	5317	5813	6486	7079
Fondazione Moncone normale (**)		ь;	44/2	43/5	43/4	43/4	43/5	44/6	44/6	44/6	44/6
		RIF. LF.	102/1	102/2	102/9	102/9	102/2	102/10	102/10	102/10	102/10
Piedi (n. 4 pezzi)			N96 (542)	N97 (572)	N97 (572)	N97 (572)	N97 (572)	(609)	(609)	N98 (609)	(609)
Base			N88 (524)	N89 (272)	N90 (601)	N91 (492)	N92 (702)	N93 (589)	N94 (887)	N95 (717)	N32 (1116)
	₹									-	
	=	ELEMENTI STRUTTURALI LS (*)									
	>			-	-		-	-	-	-	
	>		-	-	-	-	-	-	-	-	
TRONCHI	≥			-	-		-	-	-	N86 (1037)	N86 (1037)
Ė	≡						-	(806)	(806)	N85 (908)	N85 (908)
	=	ELE	ı	ı	ı	N84 (855)	N84 (855)	N84 (855)	N84 (855)	N84 (855)	N84 (855)
	-		,	N83 (777)							
Montante			N82 (195)	ı	N82 (195)	ı	N82 (195)	ı	N82 (195)	-	N82 (195)
Parte			N26 (1583)								
SOSTEGNI	ğ		853/1	853/2	853/3	853/4	853/5	853/6	853/7	853/8	853/9
SOS	Ç		6N	N12	N15	N18	N21	N24	N27	08N	N33

(*) — il peso totale (esclusi i monconi) e dei singoli elementi strutturali (indicato tra parentesi) è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in kg

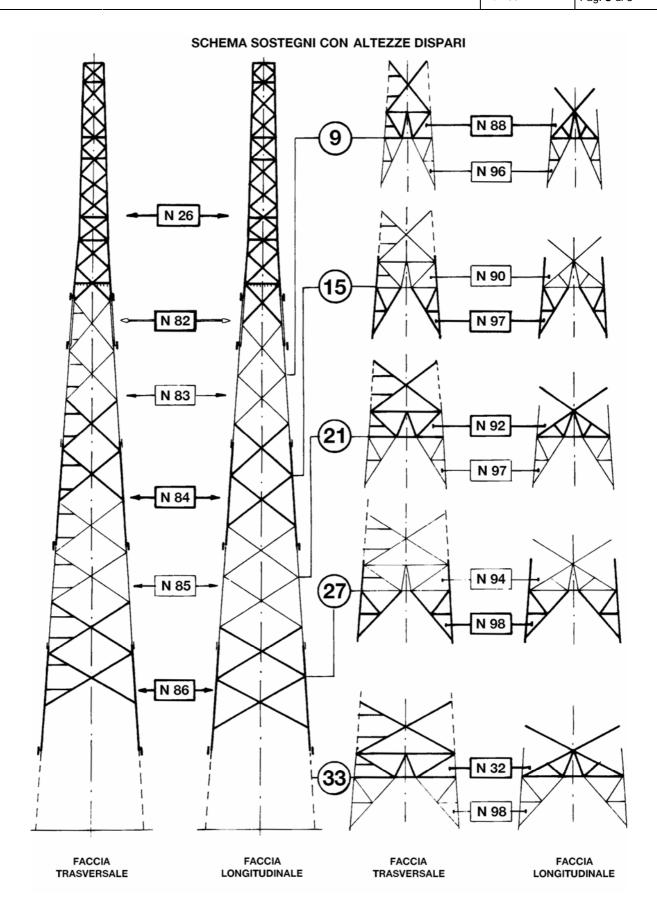
(**) - fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 132DTINFDM, 132DTINFON, 132DTINMNC

Storia de	lle revisioni	
Rev. 00	del 31/01/2007	Prima emissione. Sostituisce la DS853 Ed. 2

Elaborato	Verificato		Approvato
P. Berardi	L. Alario	A. Posati	R. Rendina
ING-ILC-COL	ING-ILC-COL	ING-ILC-COL	ING-ILC

Codifica: **LS853**Rev. 00 Pag. **2** di 6

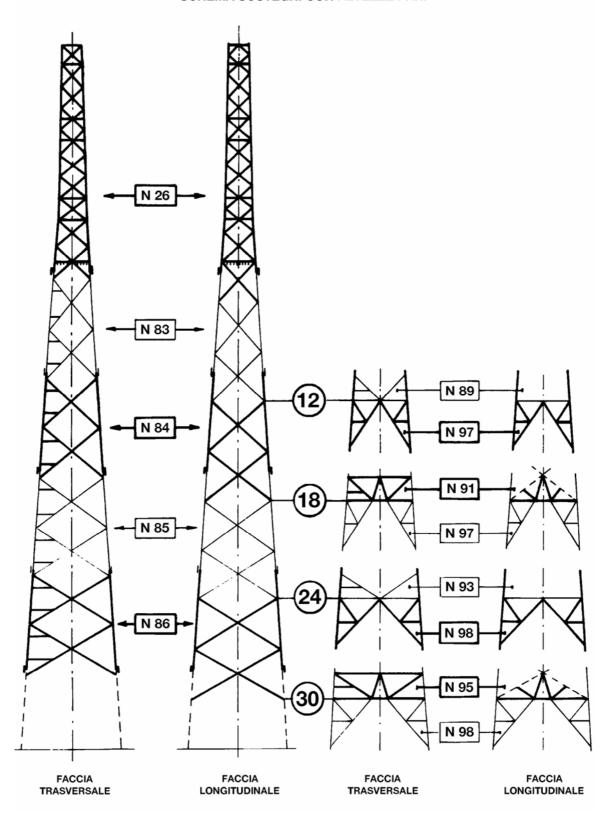
	PESO kg (*)		7674	8844	10006	10874			
Fondazione Moncone (**)		щ	44/6	46/1	46/1	46/1			
		RIF. LF.	102/10	103/6	103/6	103/6			
	(n. 4 pezzi)		N98/6 (1203)	N201 (760)	N201 (760)	N201 (760)			
Base			N32 (1116)	N194 (1416)	N199 (1070)	N200 (1743)			
	■/		1						
	II/			-	1	1			
	N	(*)		ı	N193 (1703)	N193 (1703)			
=	۸	TURALI LS	1	N192 (1313)	N192 (1313)	N192 (1313)			
TRONCHI	IV	ELEMENTI STRUTTURALI LS (*)	N86 (1037)	N86 (1037)	N86 (1037)	N86 (1037)			
	≡	ELEMEN	(806)	(806)	(806)	(806)			
	=		N84 (855)	N84 (855)	N84 (855)	N84 (855)			
	-		N83 (777)	N83 (777)	N83 (777)	N83 (777)			
Montante	ausiliario		N82 (195)	N82 (195)	ı	N82 (195)			
Parte	comune		N26 (1583)	N26 (1583)	N26 (1583)	N26 (1583)			
SOSTEGNI	n d	Ę.	853/10	853/11	853/12	853/13			
SOS	C g F	<u> </u>	N36	6EN	N42	N45			


(*) — il peso totale (esclusi i monconi) e dei singoli elementi strutturali (indicato tra parentesi) è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in kg

(**) - fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 132DTINFDM, 132DTINFON, 132DTINMNC

Codifica: LS853

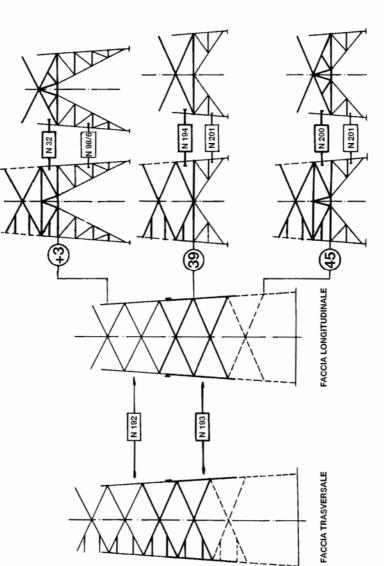
Rev. 00 Pag. **3** di 6



Codifica: LS853

Rev. 00 Pag. **4** di 6

SCHEMA SOSTEGNI CON ALTEZZE PARI

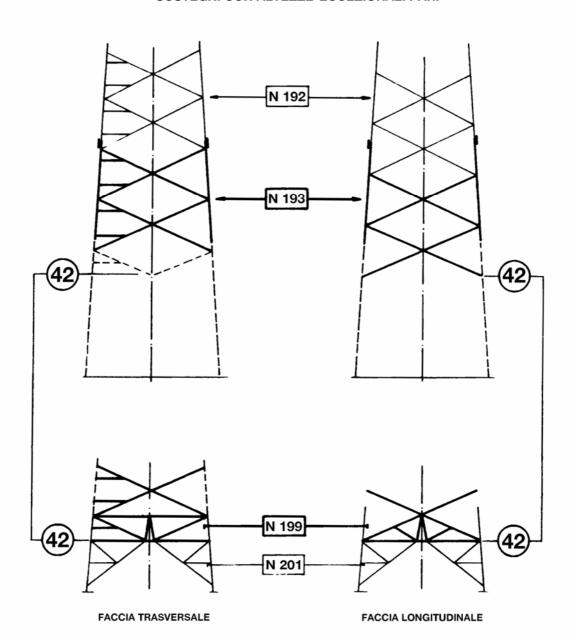


SOSTEGNI CON ALTEZZE ECCEZIONALI DISPARI

Sostegni tipo N

Codifica: LS853 Pag. **5** di 6 Rev. 00

L'altezza 36 si ottiene con l'altezza 33 e i piedini +3 N 98/6


FACCIA LONGITUDINALE

FACCIA TRASVERSALE

Codifica:	
LS	853
Rev. 00	Pag. 6 di 6

SOSTEGNI CON ALTEZZE ECCEZIONALI PARI

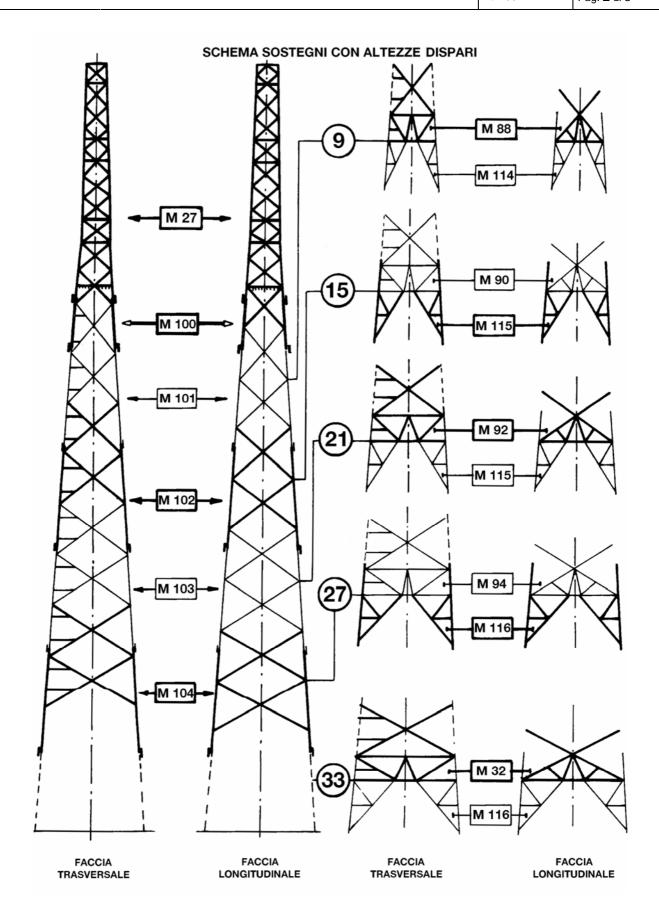
Codifica:	
LS	854
Rev. 00	Dan 1 4: 2
del 31/01/2007	Pag. 1 di 3

ELEMENTI STRUTTURALI COMPONENTI I SOSTEGNI

PESO kg (*)			3277	3707	4350	4994	5554	6286	6923	1657	8379
Moncone (**)	Moncone (**)		45/4	45/4	45/2	45/2	45/2	45/3	45/3	45/3	45/3
Fondazione normale		RIF. LF.	102/10	102/10	103/6	103/6	103/6	103/3	103/3	103/3	103/3
Piedi (n. 4 pezzi)			M114 (704)	M115 (783)	M115 (783)	M115 (783)	M115 (783)	M116 (768)	M116 (768)	M116 (768)	M116 (768)
Base			M88 (517)	M89 (274)	M90 (603)	M91 (493)	M92 (740)	M93 (588)	M94 (910)	M95 (719)	M32 (1127)
	₩										
	=	ELEMENTI STRUTTURALI LS (*)									
	>										
	۸			-	-	-	-	-	-	-	
TRONCHI	ΛΙ			-	-	-			-	M104 (1240)	M104 (1240)
TRC	III			-	-	-		M103 (1213)	M103 (1213)	M103 (1213)	M103 (1213)
	II			-	-	M102 (1067)	M102 (1067)	M102 (1067)	M102 (1067)	M102 (1067)	M102 (1067)
	-			M101 (908)	M101 (908)	M101 (908)	M101 (908)	M101 (908)	M101 (908)	M101 (908)	M101 (908)
Montante ausiliario			M100 (314)	ı	M100 (314)	ı	M100 (314)	ı	M100 (314)	ı	M100 (314)
Parte			M27 (1741)	M27 (1741)	M27 (1741)	M27 (1741)	M27 (1741)	M27 (1741)	M27 (1741)	M27 (1741)	M27 (1741)
SOSTEGNI	Ľ	L	854/1	854/2	854/3	854/4	854/5	854/6	854/7	854/8	854/9
SOS	C	=	6W	M12	M15	M18	M21	M24	M27	M30	M33

(*) — il peso totale (esclusi i monconi) e dei singoli elementi strutturali (indicato tra parentesi) è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in kg

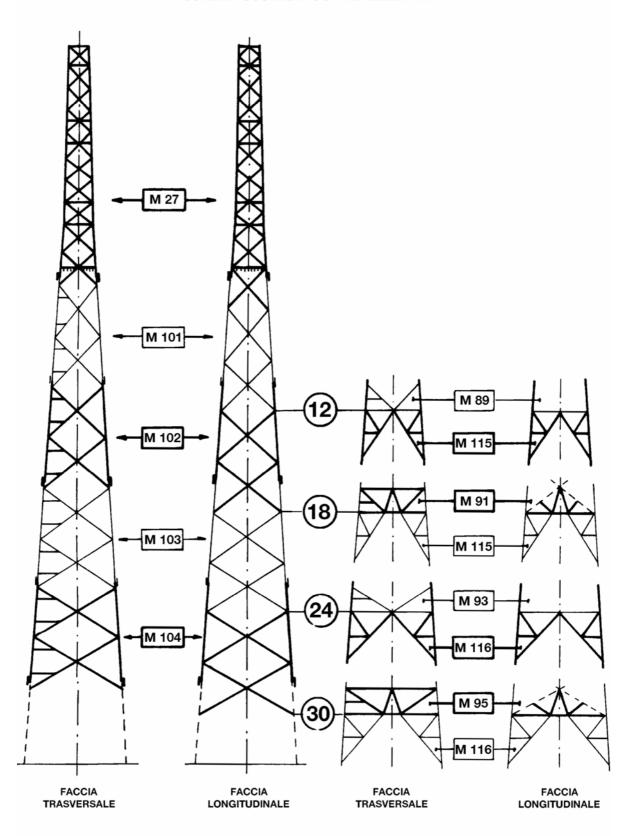
(**) – fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 132DTINFDM, 132DTINFON, 132DTINMNC


Storia de	lle revisioni	
Rev. 00	del 31/01/2007	Prima emissione. Sostituisce la DS854 Ed. 2

Elaborato		Verificato	Approvato		
P. Berardi		L. Alario	A. Posati		R. Rendina
ING-ILC-COL		ING-ILC-COL	ING-ILC-COL		ING-ILC

Codifica: LS854

Rev. 00 Pag. **2** di 3



Codifica: LS854

Rev. 00 Pag. **3** di 3

SCHEMA SOSTEGNI CON ALTEZZE PARI

Linee 132 - 150 kV Doppia terna

Gruppi mensole tipo G

Codifica:	
LS	855
Rev. 01	Do n. 1 di 4
del 15/06/2007	Pag. 1 di 4

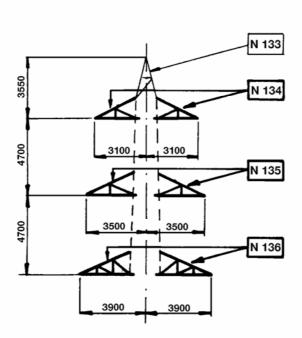
ELEMENTI STRUTTURALI COMPONENTI I GRUPPI

PESO (Kg) (*)			628	190	77	000	97/		
Pendino		n° Pezzi	1		ε	1	ε		
Pen					N66 (13)		N67 (15)		
Mensola bassa		.S (*)	N136 (104)	N139 (71)	N142 (137)	N139 (71)	N142 (137)		
Mensola Mensola alta media		RUTTURALIL	N135 (87)	N138 (68)	N141 (129)	N138 (68)	N141 (129)		
		ELEMENTI STRUTTURALI LS (*)	N134 (79)	N137 (67)	N140 (124)	N137 (67)	N140 (124)		
Cimino			N133 (86)	N133	(86)	N133	(86)		
GRUPPI MENSOLE		RIF.	855/1	0	7/000	0	c /cco		
GR MEN		TIPO	09	Č	3	**	ŝ		

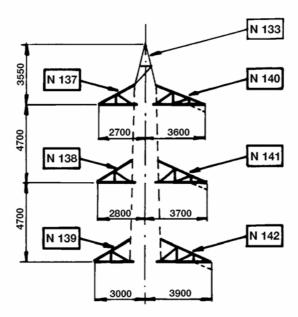
(*) – il peso totale e dei singoli elementi strutturali (indicato tra parentesi) è comprensivo della zincatura. I pesi sono espressi in kg

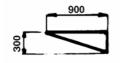
Riferimenti: LS853

Storia delle revisioni								
Rev. 00	del 31/01/2007	Prima emissione. Sostituisce la DS855 Ed. 2.						
Rev. 01	del 15/06/2007	Aggiornamento dei riferimenti.						


Elaborato		Verificato	Approvato		
P. Berardi		L. Alario	A. Posati		R. Rendina
ING-ILC-COL		ING-ILC-COL	ING-ILC-COL		ING-ILC

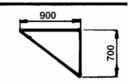
Codifica: LS855


Rev. 01 Pag. **2** di 4



G 0

GRUPPO MENSOLE CON PENDINO


G 3

N 66

PENDINI

N 67

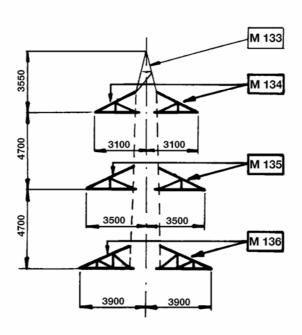
Codifica: LS855

Rev. 01 Pag. **3** di 4

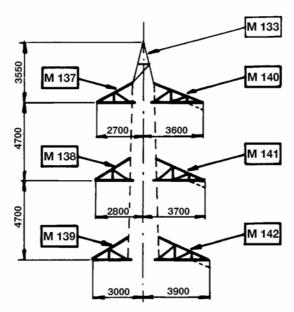
ELEMENTI STRUTTURALI COMPONENTI I GRUPPI

	(kg) (*)		628	7	02/	002	07/		
Pendino					3		3		
Per			1		M66 (13)		M67 (15)		
Mensola bassa		''' TR (*)	M136 (104)	M139 (71)	M142 (137)	M139 (71)	M142 (137)		
Mensola media		ELEMENTI STRUTTURALI LS (*)	M135 (87)	M138 (68)	M141 (129)	M138 (68)	M141 (129)		
Mensola alta		ELEMENTI	M134 (79)	M137 (67)	M140 (124)	M137 (67)	M140 (124)		
Cimino			M133 (86)	M133	(98)	M133	(98)		
GRUPPI MENSOLE		RIF.	855/4	יין עי	c/cc9	c c	0/000		
GR MEN		TIPO	09	Č	5	***************************************	ŝ		

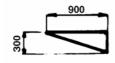
(*) – il peso totale e dei singoli elementi strutturali (indicato tra parentesi) è comprensivo della zincatura. I pesi sono espressi in kg


Riferimenti:LS854

Codifica: LS855

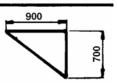

Rev. 01 Pag. **4** di 4

GRUPPO MENSOLE NORMALI



G 0

GRUPPO MENSOLE CON PENDINO


G 3

M 66

PENDINI

M 67

Codifica:	
LS	356
Rev. 00	Dan 1 di 2
del 31/01/2007	Pag. 1 di 3

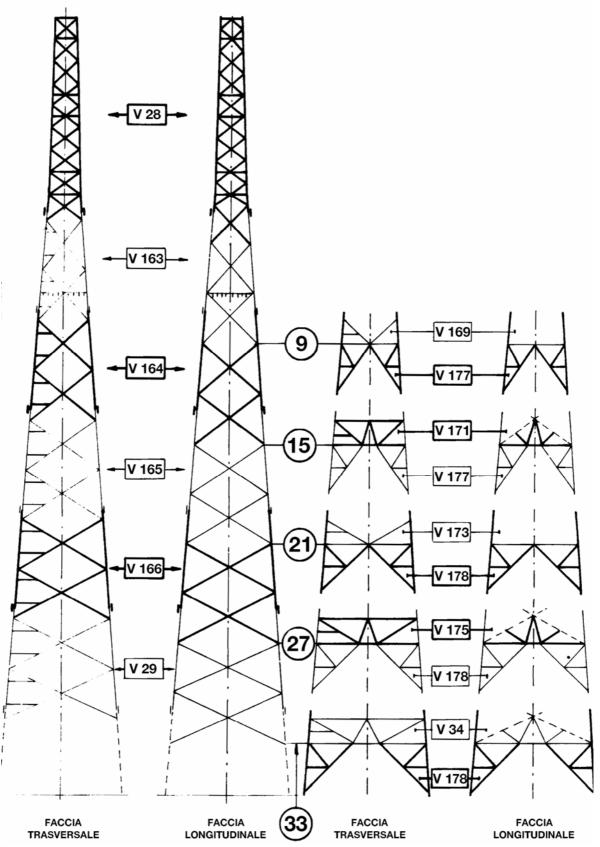
ELEMENTI STRUTTURALI COMPONENTI I SOSTEGNI

PESO kg (*)			5405	6613	7539	9298	9702	10909	12068	13309	14532
Moncone (**)		и <u>;</u>	49/1	49/1	49/1	49/1	50/1	50/1	50/2	50/2	50/3
Fondazione normale (**)	-	RIF. LF.	104/4	104/4	104/4	104/4	104/4	104/4	104/5	104/5	104/8
Piedi (n. 4 pezzi)			V177 (1200)	V177 (1200)	V177 (1200)	V177 (1200)	V178 (1305)	V178 (1305)	V178 (1305)	V178 (1305)	V178 (1305)
Base			V169 (354)	V170 (901)	V171 (656)	V172 (1132)	V173 (651)	V174 (1197)	V175 (853)	V33 (1432)	V34 (1040)
	₹		1			1				1	1
	=			-	-			-	-		1
	>		'	'				'	'		1
	>	ELEMENTI STRUTTURALI LS (*)	ı	ı	ı	ı	ı	ı	ı	ı	V29 (2277)
TRONCHI	≥						1		V166 (2165)	V166 (2165)	V166 (2165)
TRC	≡						V165 (2026)	V165 (2026)	V165 (2026)	V165 (2026)	V165 (2026)
	=	ELE			V164 (1832)						
	-		V163 (1761)								
Montante ausiliario				V162 (661)		V162 (661)		V162 (661)	,	V162 (661)	,
Parte comune			V28 (2090)								
SOSTEGNI	ŗ	<u>г</u>	856/1	856/2	856/3	856/4	856/5	9/958	856/7	8/958	6/958
SOS	C C F	<u></u>	6/	V12	V15	V18	V21	V24	V27	V30	V33

(*) — il peso totale (esclusi i monconi) e dei singoli elementi strutturali (indicato tra parentesi) è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in kg

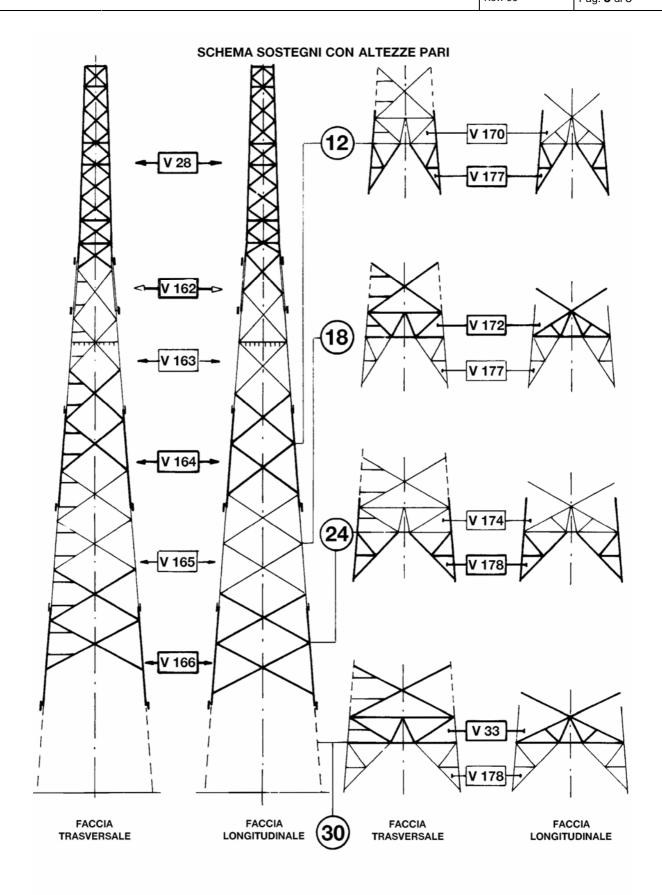
(**) – fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 132DTINFDM, 132DTINFON, 132DTINMNC

Storia delle revisioni						
Rev. 00	del 31/01/2007	Prima emissione. Sostituisce la DS856 Ed. 2				


Elaborato		Verificato	Approvato		
P. Berardi		L. Alario	A. Posati		R. Rendina
ING-ILC-COL		ING-ILC-COL	ING-ILC-COL		ING-ILC

Codifica: LS856

Rev. 00 Pag. **2** di 3



Codifica: LS856

Rev. 00 Pag. **3** di 3

Linee 132 - 150 kV Doppia terna

Gruppi mensole tipo H

Codifica:	
LS	857
Rev. 00	Dan 1 4: 2
del 31/01/2007	Pag. 1 di 2

ELEMENTI STRUTTURALI COMPONENTI I GRUPPI

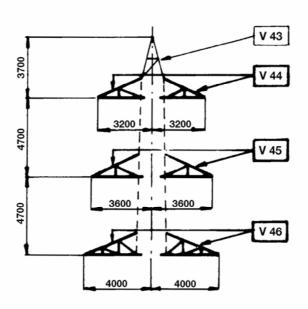
	PESO (kg) (*)		646	ć	000	0) 00		
Pendino		n° Pezzi	1		ε		8		
Per					V128 (16)		V129 (22)		
Mensola bassa		.S (*)	V46 (104)	V49 (75)	V52 (174)	V49 (75)	V52 (174)		
Mensola media		RUTTURALIL	V45 (88)	V48 (72)	V51 (164)	V48 (72)	V51 (164)		
Mensola alta		ELEMENTI STRUTTURALI LS (*)	V44 (80)	V47 (67)	V50 (158)	V47 (67)	V50 (158)		
Cimino			V43 (101)	V43	(101)	V43	(101)		
GRUPPI MENSOLE		RIF.	857/1	0	7//69	0,577,0	6//60		
GRI		TIPO	Н	<u>c</u>	2	<u>*</u>	2		

(*) – il peso totale e dei singoli elementi strutturali (indicato tra parentesi) è comprensivo della zincatura. I pesi sono espressi in kg

Riferimenti: LS856

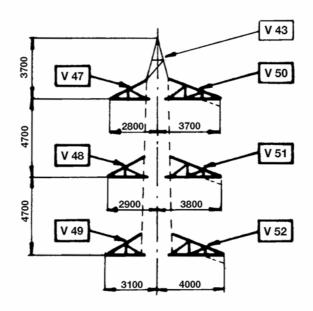
Storia de	lle revisioni	
Rev. 00	del 31/01/2007	Prima emissione. Sostituisce la DS857 Ed. 2

Elaborato	Verificato		Approvato
P. Berardi	L. Alario	A. Posati	R. Rendina
ING-ILC-COL	ING-ILC-COL	ING-ILC-COL	ING-ILC



Codifica:

L\$857


Rev. 00 Pag. **2** di 2

GRUPPO MENSOLE NORMALI

Н0

GRUPPI MENSOLE CON PENDINO

Н3

Linee 132 - 150 kV Doppia terna

Gruppi mensole tipo H

Codifica:	
LS	857
Rev. 00	Dan 1 4: 2
del 31/01/2007	Pag. 1 di 2

ELEMENTI STRUTTURALI COMPONENTI I GRUPPI

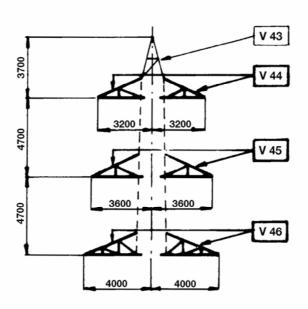
	PESO (kg) (*)		646	ć	000	0) 00		
Pendino		n° Pezzi	1		ε		8		
Per					V128 (16)		V129 (22)		
Mensola bassa		.S (*)	V46 (104)	V49 (75)	V52 (174)	V49 (75)	V52 (174)		
Mensola media		RUTTURALIL	V45 (88)	V48 (72)	V51 (164)	V48 (72)	V51 (164)		
Mensola alta		ELEMENTI STRUTTURALI LS (*)	V44 (80)	V47 (67)	V50 (158)	V47 (67)	V50 (158)		
Cimino			V43 (101)	V43	(101)	V43	(101)		
GRUPPI MENSOLE		RIF.	857/1	0	7//69	0,577,0	6//60		
GRI		TIPO	Н	<u>c</u>	2	<u>*</u>	2		

(*) – il peso totale e dei singoli elementi strutturali (indicato tra parentesi) è comprensivo della zincatura. I pesi sono espressi in kg

Riferimenti: LS856

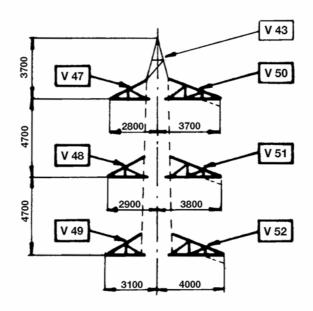
Storia de	lle revisioni	
Rev. 00	del 31/01/2007	Prima emissione. Sostituisce la DS857 Ed. 2

Elaborato	Verificato		Approvato
P. Berardi	L. Alario	A. Posati	R. Rendina
ING-ILC-COL	ING-ILC-COL	ING-ILC-COL	ING-ILC



Codifica:

L\$857


Rev. 00 Pag. **2** di 2

GRUPPO MENSOLE NORMALI

Н0

GRUPPI MENSOLE CON PENDINO

Н3

Codifica:	
LS	858
Rev. 00	Dan 1 di 2
del 31/01/2007	Pag. 1 di 3

ELEMENTI STRUTTURALI COMPONENTI I SOSTEGNI

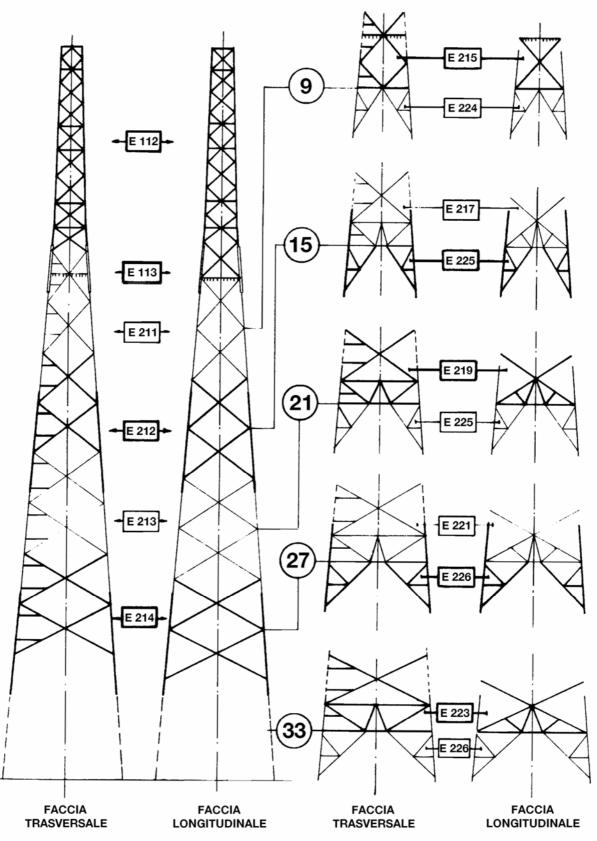
C	kg (*)		6333	7457	9145	10315	11737	13116	14834	16513	18109
Moncone (**)		ц;	53/1	53/2	53/2	53/2	54/1	54/1	54/1	54/1	54/1
Fondazione normale (**)	-	RIF. LF.	105/7	105/8	106/6	106/6	106/6	106/6	106/6	106/6	106/6
Piedi (n. 4 pezzi)			E224 (1685)	E225 (1674)	E225 (1674)	E225 (1674)	E225 (1674)	E226 (1862)	E226 (1862)	E226 (1862)	E226 (1862)
Base			E215 (641)	E216 (370)	E217 (1059)	E218 (794)	E219 (1217)	E220 (627)	E221 (1345)	E222 (1014)	E223 (1611)
	₹									-	
	=							1		•	
	>	(-	•
	>	rs (*		-	-	-	-	-	-	-	
TRONCHI	≥	JTTURALI								E214 (3010)	E214 (3010)
TRO	≡	ELEMENTI STRUTTURALI LS (*)						E213 (2780)	E213 (2780)	E213 (2780)	E213 (2780)
	=	ELEN				E212 (2434)	E212 (2434)	E212 (2434)	E212 (2434)	E212 (2434)	E212 (2434)
	-			E211 (2406)							
Montante ausiliario			E113 (999)		E113 (999)		E113 (999)		E113 (999)	-	E113 (999)
Parte comune			E112 (3008)								
SOSTEGNI	ņ		858/1	858/2	858/3	858/4	858/5	9/858	2/858	828/8	858/9
sos	Ç	2	E9	E12	E15	E18	E21	E24	E27	E30	E33

(*) – il peso totale (esclusi i monconi) e dei singoli elementi strutturali (indicato tra parentesi) è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in kg

(**) - fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 132DTINFDM, 132DTINFON, 132DTINMNC

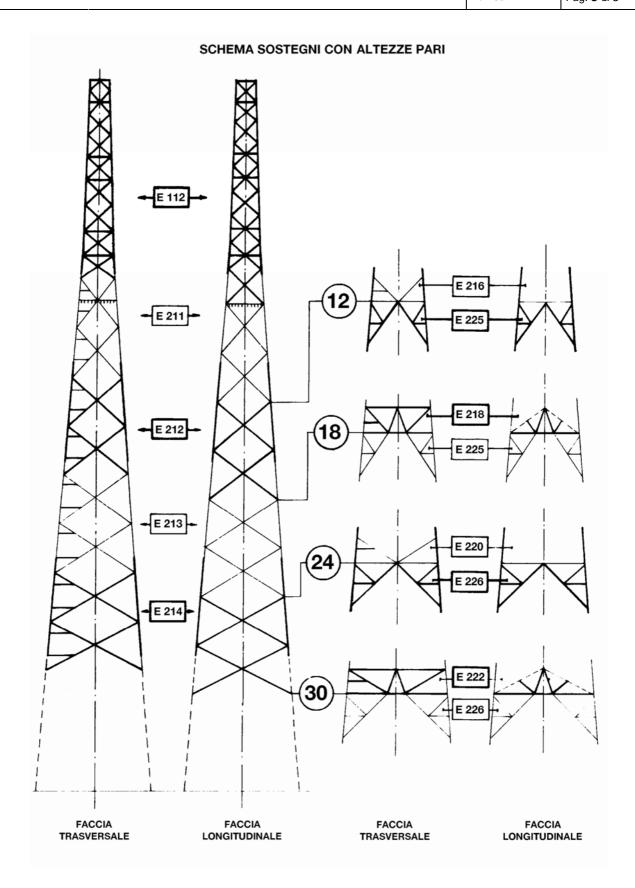
Storia delle revisioni

Rev. 00 del 31/01/2007 Prima emissione. Sostituisce la DS858 Ed. 2


Elaborato	Verificato		Approvato
P. Berardi	L. Alario	A. Posati	R. Rendina
ING-ILC-COL	ING-ILC-COL	ING-ILC-COL	ING-ILC

Codifica: LS858

Rev. 00 Pag. **2** di 3


SCHEMA SOSTEGNI CON ALTEZZE DISPARI

Codifica: LS858

Rev. 00 Pag. **3** di 3

Linee 132 – 150 kV Doppia terna

Gruppi mensole tipo Q

Codifica:	
LS	859
Rev. 00 del 31/01/2007	Pag. 1 di 3

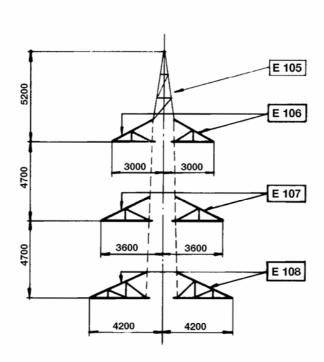
ELEMENTI STRUTTURALI COMPONENTI I GRUPPI

	PESO (kg) (*)		1027	1544	1310	2029	
O	Bassa				E229 (116)	E232 (179)	
Mensole di giro	Media		-	-	E228 (89)	E231 (161)	
M	Alta	(*			E227 (78)	E230 (144)	
Mensola	bassa	TTURALI LS (;	E108 (160)	E111 (245)	E108 (160)	E111 (245)	
Mensola	media	ELEMENTI STRUTTURALI LS (*)	E107 (136)	E110 (223)	E107 (136)	E110 (223)	
Mensola	alta	ELE	E106 (126)	E109 (212)	E106 (126)	E109 (212)	
			E105 (185)	E105 (185)	E105 (185)	E105 (185)	
GRUPPI MENSOLE		R F	1/658	859/2	829/3	859/4	
GR		TIPO	000	000	Q03	003	

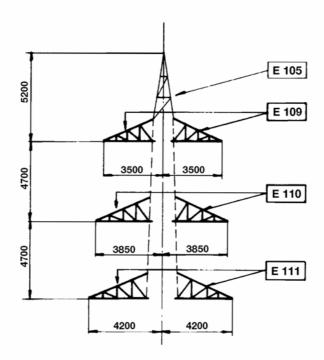
(*) – il peso totale e dei singoli elementi strutturali (indicato tra parentesi) è comprensivo della zincatura. I pesi sono espressi in kg

Riferimenti: LS858

Storia de	lle revisioni	
Rev. 00	del 31/01/2007	Prima emissione. Sostituisce la DS859 Ed. 2

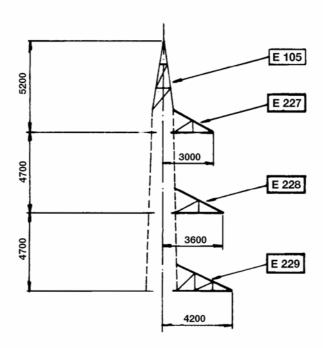

Elaborato	Verificato			Approvato
P. Berardi	L. Alario	A. Posati		R. Rendina
ING-ILC-COL	ING-ILC-COL	ING-ILC-COL		ING-ILC

Codifica: LS859

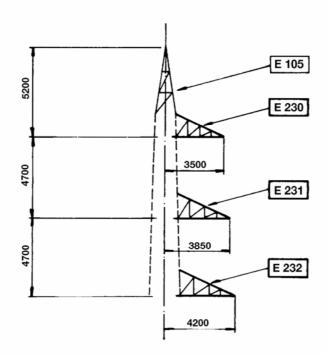

Rev. 00 Pag. **2** di 3

Q00

GRUPPO MENSOLE QUADRE


QQ0

Codifica: LS859


Rev. 00 Pag. **3** di 3

GRUPPO MENSOLE NORMALI (vista longitudinale)

Q03

GRUPPO MENSOLE QUADRE (vista longitudinale)

QQ3

132-150 kV Semplice terna a triangolo Conduttore singolo Ø 31,5 – Tiro pieno UTILIZZAZIONE DEL SOSTEGNO "E" CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Codifica	
P00	5UE002
Rev. 00	Pagina 1 di 12
del 13/09/2007	· ·

LINEA ELETTRICA AEREA A 132-150 kV	SEMPLICE TERNA	A TRIANGOLO –	TIRO PIENO
CONDUTTORI Ø 31	,5 mm – EDS 18% - 2	ZONA "B"	

UTILIZZAZIONE DEL SOSTEGNO "E"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia d	lelle revisioni	
Rev. 00	del 13/09/2007	Prima emissione

Elaborato		Verificato			Approvato
L. Alario		L. Alario			R. Rendina
ING-ILC-COL		ING-ILC-COL			ING-ILC

132-150 kV Semplice terna a triangolo Conduttore singolo Ø 31,5 – Tiro pieno UTILIZZAZIONE DEL SOSTEGNO "E" CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

P005UE002

Rev. 00

del 13/09/2007

Pagina 2 di 12

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. A7014921 – Rev.0 – Settembre 2007**

132-150 kV Semplice terna a triangolo Conduttore singolo Ø 31,5 − Tiro pieno UTILIZZAZIONE DEL SOSTEGNO "E" CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Codifica P005UE002 Rev. 00 Pagina 3 di 12 del 13/09/2007

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (RQUT0000C2)
Corda di guardia	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50) (*)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	7 m tra i conduttori esterni

2) CONDUTTORI E CORDA DI GUARDIA

0.4 0.4 0.4 T.T.E.D	CONDUTTORE	CORDA DI GUARDIA				
2.1 CARATTERISTICHE PRINCIPALI			RQUT0000C2	LC 23	LC 51	LC 50
MATERIALE			All. Acc.	Acciaio	Acc.rivestito di All.	Al + Lega Al + Acciaio
DIAM	DIAMETRO CIRCOSCRITTO (mm)			11,5	11,5	17,9
	ALLUMINIO	(mm²)	519,50	0	0	118,90 (Al + Lega Al)
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70
	TOTALE	(mm²)	583,30	78,94	80,65	176,60
MASSA UNITARIA (Kg/m)		1,953	0,621	0,537	0,820	
MODULO DI ELASTICITA' (N/mm²)		68000	175000	155000	88000	
COEFFICIENTE DI DILATAZIONE (1/°C)		19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10 ⁻⁶	17 X 10 ⁻⁶	
CARICO DI ROTTURA (daN)			16852	12231	9000	10600

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

(Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE	CORDA DI GUARDIA		
	RQUT0000C2	LC 23	LC 51	LC 50
TIRO ORIZZONTALE T _O (daN)	3034	1113	1008	1537

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

MSB: -20°C, vento alla velocità di 65 km/h, manicotto di ghiaccio di 12 mm

Corde di guardia di altra tipologia potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda indicata.

132-150 kV Semplice terna a triangolo Conduttore singolo Ø 31,5 – Tiro pieno UTILIZZAZIONE DEL SOSTEGNO "E" CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

P005UE002

Rev. 00
del 13/09/2007

Rev. 00
Pagina 4 di 12

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha (\Theta_d - \Theta_b) + \frac{1}{SE} (T_d - T_b) = \frac{p'_d^2 L^2}{24 T_d^2} - \frac{p'_b^2 L^2}{24 T_b^2}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'_d = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	CORDA DI GUARDIA (**)		*)
		RQUT0000C2	LC 23	LC 51	LC 50
	V (daN/m)	0	0	0	0
CONDIZIONE EDS	P (daN/m)	1,9159	0,6090	0,5270	0,8044
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)
	V (daN/m)	0,9800	0,6268 (0,6962)	0,6268 (0,6962)	0,7399 (0,8092)
CONDIZIONE MSB	P (daN/m)	3,3959	1,4086 (1,5884)	1,3266 (1,5064)	1,8217 (2,0015)
	P' (daN/m)	3,5345	1,5418 (1,7343)	1,4672 (1,6595)	1,9663 (2,1589)

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum \text{Li}^3}{\sum \text{Li}}}$$
 ove le Li sono le campate reali comprese fra due successivi amarr $\hat{\textbf{I}}$

Codifica					
P005UE002					
Rev. 00	Dogina E di 10				
del 13/09/2007	Pagina 5 di 12				

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nelle due ipotesi MSA e MSB.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases}
Azione trasversale & T = v Cm + 2 sen \delta/2 T_0 + t^* \\
Azione verticale & P = p Cm + K T_0 + p^*
\end{cases}$ (2)

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

p* = peso di isolatori e morsetteria
 T_o = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

	CONDUTTORE			CORDA DI GUARDIA (**)					
	RQUT0000C2	ISOLATORI E MORSETTERIA		LC 23	LC 51	LC 50		OLATORI E RSETTERIA	
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)	
MSA	4650	120	170	1835 (2393)	1821 (2397)	2807 (3380)	0	0	
MSB	5670	30	170	2735 (3050)	2702 (3025)	3640 (3970)	0	0	

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

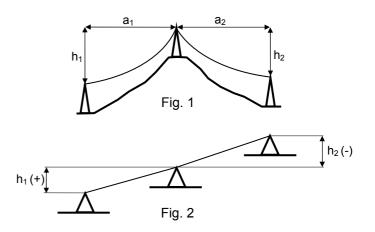
I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 \div 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

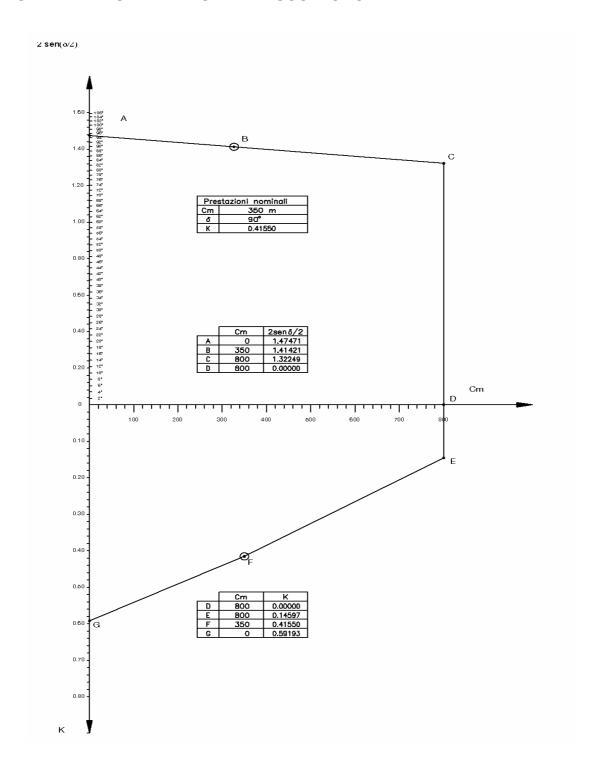

caratteristiche geometriche del picchetto:

Cm = campata media δ = angolo di deviazione

K = costante altimetrica (*)

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig.1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P005UE002

Rev. 00
del 13/09/2007

Rev. 00
Pagina 6 di 12

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica P005UE002

Rev. 00 del 13/09/2007

Pagina 7 di 12

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i, δ_i) è necessario che i punti (Cm_i, δ_i) e (Cm_i, K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

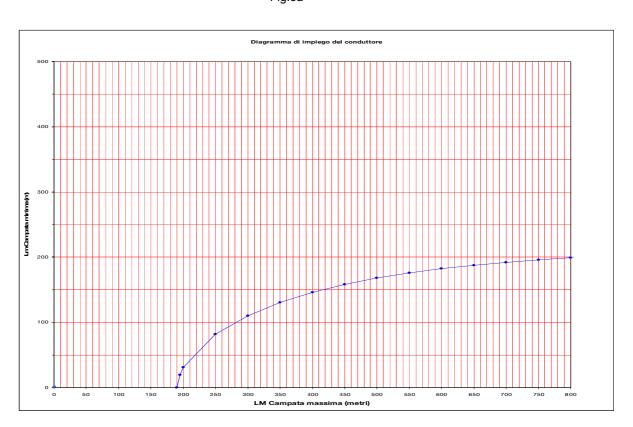
Sono state determinate le azioni esterne per il calcolo del sostegno in condizioni MSA e MSB, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

- Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)

-Azioni longitudinali:

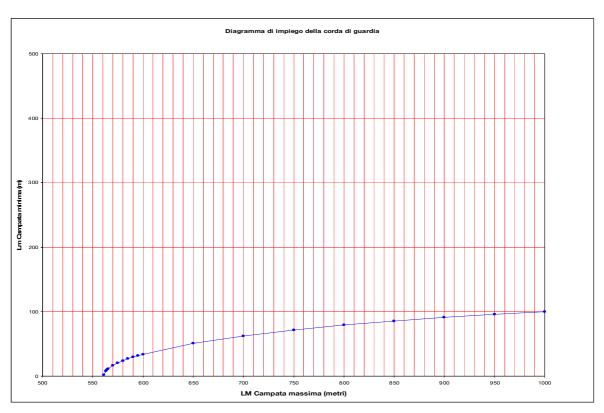

Sia per i conduttori che per le corde di guardia è stato considerato uno squilibrio di tiro per tener conto rispettivamente della diversa lunghezza delle campate equivalenti delle due tratte adiacenti al sostegno (conduttori) e della diversa lunghezza delle campate reali adiacenti al sostegno (corda di guardia).

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettive differenza di tiro nelle condizioni MSA e MSB, sia minore o eguale dei valori di squilibrio considerati per il calcolo del sostegno.

Per un' indagine rapida sono stati costruiti i diagrammi riportati in fig. 3, che tiene conto dei massimi squilibri relativi al conduttore fig. 3a e alla corda di guardia calcolato con l'impiego delle sfere di segnalazione fig 3b.

Riportando in ascisse la campata maggiore (L_M) [campata equivalente per i conduttori fig.3a – campata reale per la corda di guardia fig.3b] tra le due adiacenti al sostegno e in ordinata la minore (L_m) , se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

Fig.3a



Codifica **P005UE002**

Rev. 00 del 13/09/2007

Pagina 8 di 12

IPOTESI ECCEZIONALE:

- Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t^*) ed il loro peso (p^*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

- Azioni longitudinali:

sono state assunte pari al tiro T_0

P005UE002

Rev. 00

Pagina 9 di 12

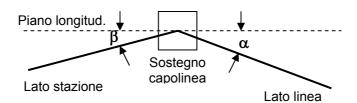
del 13/09/2007

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella sequente tabella:

		CONDUTTORE			CORDA DI GUARDIA (*)		
STATO DEI CONDUTTORI	IPOTESI	R	QUT0000C	2	LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
	NORMALE	8050	2923	220	(5704)	(2001)	(1100)
MCA	NORMALE	8050	0	220	(5704)	(0)	(1100)
MSA		4085	1547	4650	(2852)	(1001)	(3380)
	ECCEZIONALE (**)	4085	0	4650	(2852)	(0)	(3380)
	NORMALE	8392	3715	100	(5898)	(2350)	(1300)
MCD	NORMALE	8392	0	100	(5898)	(0)	(1300)
MSB —	ECCEZIONALE (**)	4211	1943	5670	(2949)	(1175)	(3970)
	ECCEZIONALE (**)	4211	0	5670	(2949)	(0)	(3970)

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

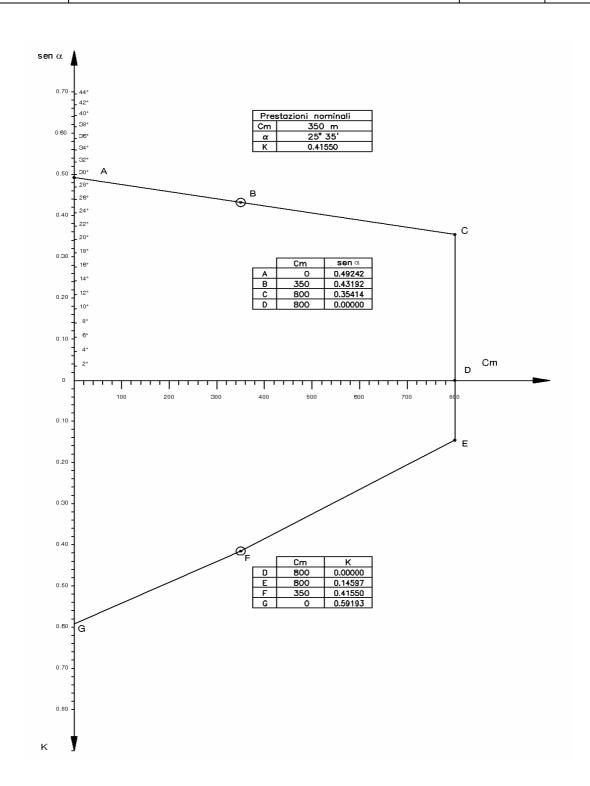

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nelle condizioni MSA e MSB risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

4) UTILIZZAZIONE MECCANICA DEL SOSTEGNO IMPIEGATO COME CAPOLINEA

Il sostegno E viene impiegato anche come capolinea, qui di seguito viene riportato il diagramma di utilizzazione relativo a tale impiego.

In esso si è indicato con α l'angolo di deviazione della linea rispetto al piano di simmetria longitudinale del sostegno (vedi Fig.4)



P005UE002

Rev. 00
Pagina 10 di 12

del 13/09/2007

P005UE002

Rev. 00

Pagina 11 di 12

del 13/09/2007

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

I valori delle azioni esterne per il calcolo del sostegno sono riportati nella seguente tabella:

		CONDUTTORE			CORDA DI GUARDIA (*)		
STATO DEI CONDUTTORI	IPOTESI	R	QUT0000C	2	LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
	NORMALE	3620	2923	4650	(3424)	(2001)	(3380)
	NORMALE	3620	0	4650	(3424)	(0)	(3380)
MSA		0	0	0	(0)	(0)	(0)
	ECCEZIONALE (**)	0	0	0	(0)	(0)	(0)
	NORMALE	2822	3715	5670	(3228)	(2350)	(3970)
Med	NORMALE	2822	0	5670	(3228)	(0)	(3970)
MSB		0	0	0	(0)	(0)	(0)
	ECCEZIONALE (**)	0	0	0	(0)	(0)	(0)

Per quanto riguarda le prestazioni orizzontali i valori di T e di L sono stati determinati in base alla condizione di uguaglianza della loro somma T + L nelle condizioni di amarro e di capolinea, ed assunto per L il valore massimo di To

In una generica condizione di impiego del sostegno capolinea le azioni trasversali e longitudinali sono espresse dalle seguenti relazioni:

Conduttori
$$\begin{cases} & \text{Azione trasversale} & \text{T = v Cm + T}_0 \text{ sen } \alpha \text{ + t* (2')} \\ & \text{Azione longitudinale} & \text{L = T}_0 \cos \alpha \text{ + t*} \end{cases}$$

Si può verificare che per tutte le prestazioni geometriche (Cm, α) comprese nel "campo di utilizzazione trasversale" la somma dei valori T ed L ricavati mediante la (2') e (3') (sia per i conduttori che per la corda di guardia in entrambe le condizioni MSA e MSB) risulti inferiore od eguale alla somma dei valori T ed L riportati in tabella e relativi alla condizione di impiego α = 0 cui corrisponde il massimo valore della azione longitudinale.

Per quanto riguarda le prestazioni verticali, esse sono rimaste invariate rispetto a quelle stabilite per il sostegno impiegato come amarro.

Si noti ancora che il sostegno è stato calcolato considerato nullo il tiro della campata di collegamento al portale di stazione.

N.B. Nella realtà tale tiro avrà un valore non nullo, benché modesto, ma ciò è a favore della sicurezza, purche l'angolo β (vedi Fig.4) non superi il valore di 45°.
 Infatti se T'o ≠ 0 è il tiro ridotto, le espressioni 2' e 3' diventano:

Conduttori
$$\begin{cases} &\text{Azione trasversale} &\text{T = v Cm} + T_0 sen α + T'_0 sen β + t^* \\ &\text{Azione longitudinale} &\text{L = T}_0 cos α - T_0 cos β \end{cases}$$

E quindi la somma T + L non supera il valore del calcolo finche rimanga:

sen $\beta \le \cos \beta$ ossia $\beta \le 45^{\circ}$

P005UE002

Rev. 00

del 13/09/2007

Pagina 12 di 12

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nelle condizioni MSA e MSB risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Codifica	
P0	06UM002
Rev. 00	Pagina 1 di 8
del 13/09/2007	Fagilia i di 6

LINEA ELET	TTRICA AEREA	A 132-150 kV	DOPPIA 7	ΓERNA – TIRC) PIENO
	CONDUTTORI	Ø 31,5 mm −	EDS 18%	- ZONA "B"	

UTILIZZAZIONE DEL SOSTEGNO "M"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia d	lelle revisioni	
Rev. 00	del 13/09/2007	Prima emissione

Elaborato		Verificato	Approvato	
L. Alario		L. Alario		R. Rendina
ING-ILC-COL		ING-ILC-COL		ING-ILC

P006UM002

Rev. 00
Pagina 2 di 8

del 13/09/2007

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. A7014924 – Rev.0 – Settembre 2007**

Codifica P006UM002 Rev. 00 Pagina 3 di 8 del 13/09/2007

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (RQUT0000C2)
Corda di guardia	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50) (*)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	8,4 m tra i conduttori esterni

2) CONDUTTORI E CORDA DI GUARDIA

2.1 CARATTERISTICHE PRINCIPALI			CONDUTTORE		CORDA DI GUARDIA		
			RQUT0000C2	LC 23	LC 51	LC 50	
MATERIALE			All. Acc.	Acciaio	Acc.rivestito di All.	Al + Lega Al + Acciaio	
DIAMETRO CIRCOSCRITTO (mm)		31,5	11,5	11,5	17,9		
	ALLUMINIO	(mm²)	519,50	0	0	118,90 (Al + Lega Al)	
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70	
	TOTALE	(mm²)	583,30	78,94	80,65	176,60	
MASS	A UNITARIA	(Kg/m)	1,953	0,621	0,537	0,820	
MODU	ILO DI ELASTICITA'	(N/mm ²)	68000	175000	155000	88000	
COEFFICIENTE	E DI DILATAZIONE	(1/°C)	19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10 ⁻⁶	17 X 10 ⁻⁶	
CARICO DI RO	TTURA	(daN)	16852	12231	9000	10600	

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

(Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE	CORDA DI GUARDIA LC 23 LC 51 LC 50			
	RQUT0000C2				
TIRO ORIZZONTALE T _O (daN)	3034	1113	1008	1537	

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

MSB: -20°C, vento alla velocità di 65 km/h, manicotto di ghiaccio di 12 mm

Corde di guardia di altra tipologia potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda indicata.

P006UM002

Rev. 00
del 13/09/2007

Rev. 00
Pagina 4 di 8

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha (\Theta_d - \Theta_b) + \frac{1}{SE} (T_d - T_b) = \frac{p'_d^2 L^2}{24 T_d^2} - \frac{p'_b^2 L^2}{24 T_b^2}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'_d = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	С	ORDA DI GUARDIA (*	*)
		RQUT0000C2	LC 23	LC 51	LC 50
CONDIZIONE EDS	V (daN/m)	0	0	0	0
	P (daN/m)	1,9159	0,6090	0,5270	0,8044
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)
	V (daN/m)	0,9800	0,6268 (0,6962)	0,6268 (0,6962)	0,7399 (0,8092)
CONDIZIONE MSB	P (daN/m)	3,3959	1,4086 (1,5884)	1,3266 (1,5064)	1,8217 (2,0015)
	P' (daN/m)	3,5345	1,5418 (1,7343)	1,4672 (1,6595)	1,9663 (2,1589)

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum \text{Li}^3}{\sum \text{Li}}}$$
 ove le Li sono le campate reali comprese fra due successivi amarr \hat{I}

P006UM002

Rev. 00
del 13/09/2007

Rev. 00
Pagina 5 di 8

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nelle due ipotesi **MSA** e **MSB**.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases}
Azione trasversale & T = v Cm + 2 sen \delta/2 T_0 + t^* \\
Azione verticale & P = p Cm + K T_0 + p^*
\end{cases}$ (2)

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

p* = peso di isolatori e morsetteria
 T_o = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

	CONDUTTORE			CORDA DI GUARDIA (**)						
	RQUT0000C2	ISOLA MORSE	TORI E TTERIA	LC 23	LC 51	LC 50		TORI E TTERIA		
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)		
MSA	4650	100	150	1835 (2393)	1821 (2397)	2807 (3380)	0	0		
MSB	5670	25	150	2735 (3050)	2702 (3025)	3640 (3970)	0	0		

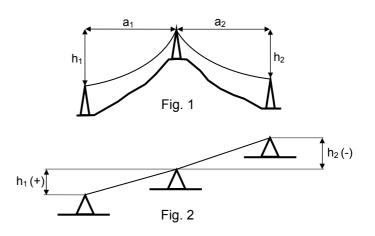
(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 \div 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

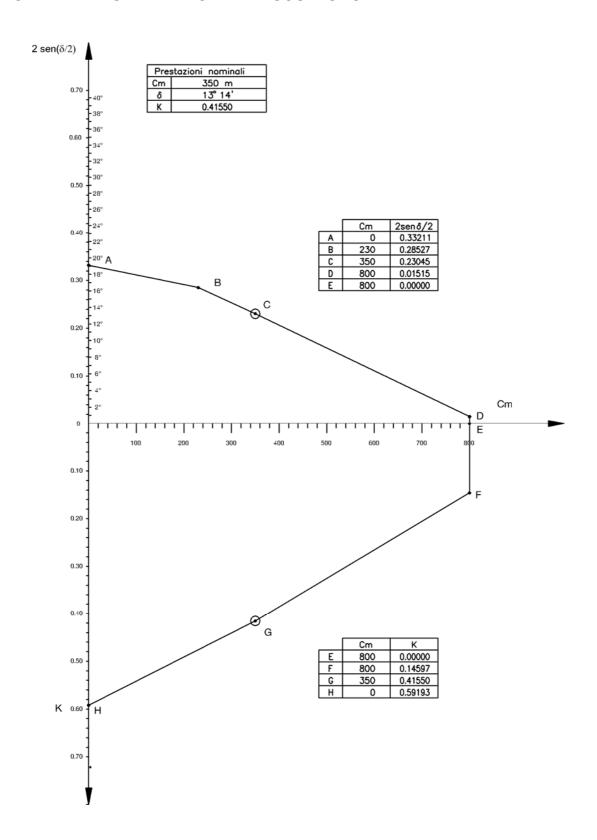

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

Cm = campata media δ = angolo di deviazione K = costante altimetrica (*)

$$k = \frac{h_1}{2} + \frac{h_2}{2}$$
 (vedi fig. 1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P006UM002

Rev. 00
del 13/09/2007

Rev. 00
Pagina 6 di 8

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica

P006UM002

Rev. 00 del 13/09/2007

Pagina 7 di 8

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i , δ_i) è necessario che i punti (Cm_i , δ_i) e (Cm_i , K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

Sono state determinate le azioni esterne per il calcolo del sostegno in condizioni MSA e MSB, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

-Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)

- Azioni longitudinali:

per la corda di guardia (amarrata ad ogni sostegno) è stato considerato uno squilibrio di tiro per tenere conto della diversa lunghezza delle campate adiacenti al sostegno.

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettiva differenza di tiro in condizioni MSA e MSB, per la corda di guardia che si intende impiegare sia minore o eguale dei valori di squilibrio considerati per il calcolo del sostegno.

Per un' indagine rapida è stato costruito il diagramma di fig. 3 , che tiene conto dei massimi squilibri, relativi alla corda di guardia, calcolato con l'impiego delle sfere di segnalazione sia sulla campata minima che sulla campata massima.

Riportando in ascisse la campata maggiore (L_m) tra le due adiacenti al sostegno e in ordinata la minore (L_m) , se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

P006UM002

Rev. 00

del 13/09/2007 Pagina 8 di 8

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t*) ed il loro peso (p*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

- Azioni longitudinali:

sono state assunte pari al tiro T₀

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella seguente tabella:

		C	ONDUTTOR	E	CORDA DI GUARDIA (*)			
STATO DEI CONDUTTORI	IPOTESI	R	QUT0000C	2	LC50 (***)			
		T(daN)	P(daN)	L(daN)	T(daN)		L(daN)	
	NORMALE	1951	2903	0	(1319)	(2001)	(1100)	
MSA	NORMALE	1951	0	0	(1319)	(0)	(1100)	
WSA	FOOTZIONALE (**)	1026	1527	4650	(660)	(1001)	(3380)	
	ECCEZIONALE (**)	1026	0	4650	(660)	(0)	(3380)	
	NORMALE	1909	3695	0	(1319)	(2350)	(1300)	
MSB	NORMALE	1909	0	0	(1319)	(0)	(1300)	
	ECCEZIONALE /**\	967	1923	5670	(660)	(1175)	(3970)	
	ECCEZIONALE (**)	967	0	5670	(660)	(0)	(3970)	

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 6 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nelle condizioni MSA e MSB risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Codifica	
P00	06UE002
Rev. 00 del 13/09/2007	Pagina 1 di 12

LINEA ELETTR	ICA AEREA	A 132-150 k	V DOPPIA	TERNA –	TIRO F	IENO
СО	NDUTTORI	Ø 31.5 mm -	– EDS 18%	- ZONA "	В"	

UTILIZZAZIONE DEL SOSTEGNO "E"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia delle revisioni					
Rev. 00	del 13/09/2007	Prima emissione			

Elaborato	Verificato		Approvato	
L. Alario	L. Alario			R. Rendina
ING-ILC-COL	ING-ILC-COL			ING-ILC

P006UE002

Rev. 00

del 13/09/2007

Pagina 2 di 12

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. A7014927 – Rev.0 – Settembre 2007**

Codifica P006UE002 Rev. 00 Pagina 3 di 12 del 13/09/2007

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (RQUT0000C2)
Corda di guardia	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50) (*)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	8,4 m tra i conduttori esterni

2) CONDUTTORI E CORDA DI GUARDIA

0.4 CADATTED	ICTICLIE DDING!	2411	CONDUTTORE		CORDA DI GUAR	DIA
2.1 CARATTER	ISTICHE PRINCIF	ALI	RQUT0000C2	LC 23	LC 51	LC 50
	MA	TERIALE	All. Acc.	Acciaio	Acc.rivestito di All.	Al + Lega Al + Acciaio
DIAMETRO CIRCOSCRITTO (mm)		31,5	11,5	11,5	17,9	
	ALLUMINIO	(mm²)	519,50	0	0	118,90 (Al + Lega Al)
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70
	TOTALE	(mm²)	583,30	78,94	80,65	176,60
MASS	A UNITARIA	(Kg/m)	1,953	0,621	0,537	0,820
MODU	ILO DI ELASTICITA'	(N/mm ²)	68000	175000	155000	88000
COEFFICIENTE	E DI DILATAZIONE	(1/°C)	19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10 ⁻⁶	17 X 10 ⁻⁶
CARICO DI RO	TTURA	(daN)	16852	12231	9000	10600

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

(Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE	CORDA DI GUARDIA		
	RQUT0000C2	LC 23	LC 51	LC 50
TIRO ORIZZONTALE T _O (daN)	3034	1113	1008	1537

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

MSB: -20°C, vento alla velocità di 65 km/h, manicotto di ghiaccio di 12 mm

Corde di guardia di altra tipologia potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda indicata.

P006UE002

Rev. 00
del 13/09/2007

Pagina 4 di 12

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha \left(\Theta_{d} - \Theta_{b}\right) + \frac{1}{SE} \left(T_{d} - T_{b}\right) = \frac{p'_{d}^{2}L^{2}}{24 T_{d}^{2}} - \frac{p'_{b}^{2}L^{2}}{24 T_{b}^{2}}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'_d = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	С	ORDA DI GUARDIA (*	*)
		RQUT0000C2	LC 23	LC 51	LC 50
	V (daN/m)	0	0	0	0
CONDIZIONE EDS	P (daN/m)	1,9159	0,6090	0,5270	0,8044
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)
	V (daN/m)	0,9800	0,6268 (0,6962)	0,6268 (0,6962)	0,7399 (0,8092)
CONDIZIONE MSB	P (daN/m)	3,3959	1,4086 (1,5884)	1,3266 (1,5064)	1,8217 (2,0015)
	P' (daN/m)	3,5345	1,5418 (1,7343)	1,4672 (1,6595)	1,9663 (2,1589)

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum \text{Li}^3}{\sum \text{Li}}}$$
 ove le Li sono le campate reali comprese fra due successivi amarr \hat{I}

P006UE002

Rev. 00
del 13/09/2007

Rev. 00
Pagina 5 di 12

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nelle due ipotesi **MSA** e **MSB**.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Azione trasversale $T = v Cm + 2 sen \delta/2 T_0 + t^*$ (2)

Azione verticale $P = p Cm + K T_0 + p^*$ (3)

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

p* = peso di isolatori e morsetteria
 T_o = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

	CONDUTTORE			CORDA DI GUARDIA (**)						
	RQUT0000C2	ISOLA MORSE	TORI E TTERIA	LC 23	LC 51	LC 50		TORI E TTERIA		
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)		
MSA	4650	120	170	1835 (2393)	1821 (2397)	2807 (3380)	0	0		
MSB	5670	30	170	2735 (3050)	2702 (3025)	3640 (3970)	0	0		

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

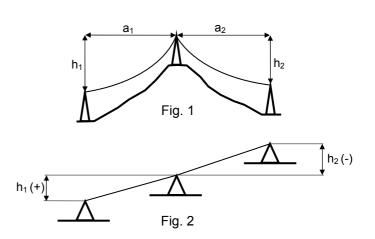
I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 \div 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

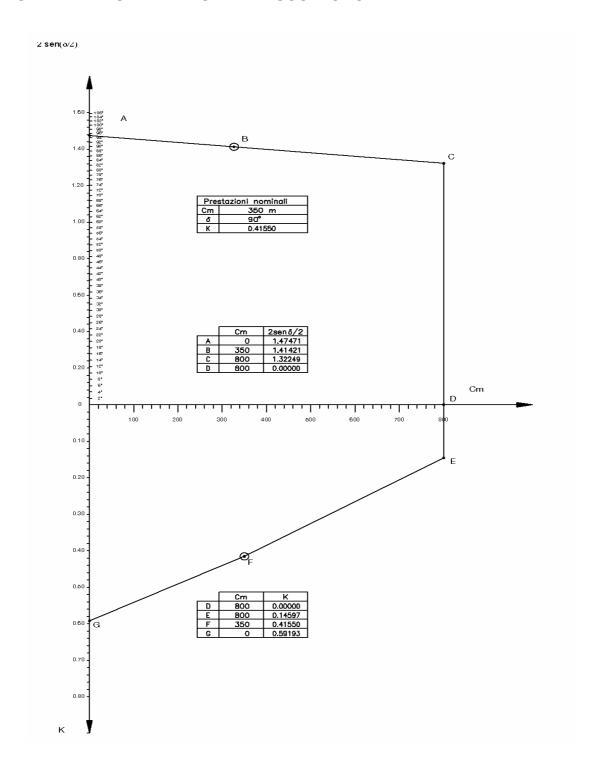

caratteristiche geometriche del picchetto:

Cm = campata media

δ = angolo di deviazione K = costante altimetrica (*)

 $=\frac{h_1}{h_2}+\frac{h_2}{h_2}$ (vedi fig.1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P006UE002

Rev. 00
del 13/09/2007

Rev. 00
Pagina 6 di 12

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica P006UE002

Rev. 00 del 13/09/2007

Pagina 7 di 12

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i , δ_i) è necessario che i punti (Cm_i , δ_i) e (Cm_i , K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

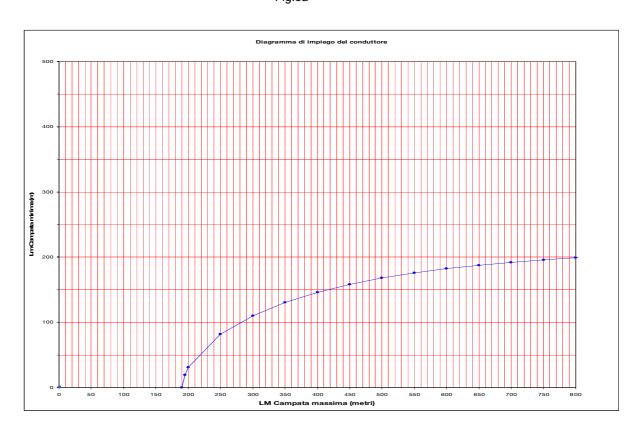
Sono state determinate le azioni esterne per il calcolo del sostegno in condizioni MSA e MSB, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

-Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)

-Azioni longitudinali:

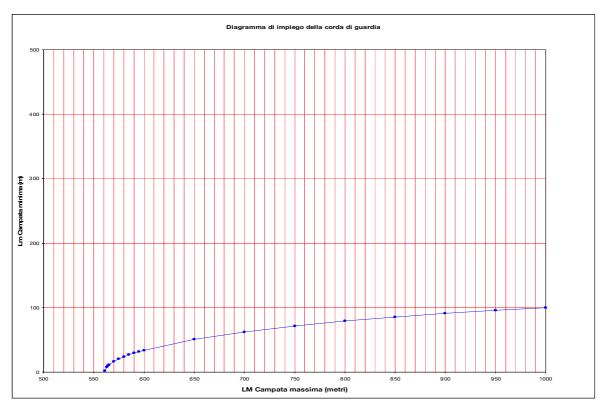

Sia per i conduttori che per le corde di guardia è stato considerato uno squilibrio di tiro per tener conto rispettivamente della diversa lunghezza delle campate equivalenti delle due tratte adiacenti al sostegno (conduttori) e della diversa lunghezza delle campate reali adiacenti al sostegno (corda di guardia).

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettive differenza di tiro nelle condizioni MSA e MSB, sia minore o eguale dei valori di squilibrio considerati per il calcolo del sostegno.

Per un' indagine rapida sono stati costruiti i diagrammi riportati in fig. 3, che tiene conto dei massimi squilibri relativi al conduttore fig. 3a e alla corda di guardia calcolato con l'impiego delle sfere di segnalazione fig 3b.

Riportando in ascisse la campata maggiore (L_M) [campata equivalente per i conduttori fig.3a – campata reale per la corda di guardia fig.3b] tra le due adiacenti al sostegno e in ordinata la minore (L_m) , se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

Fig.3a



Codifica P006UE002

Rev. 00 del 13/09/2007

Pagina 8 di 12

IPOTESI ECCEZIONALE:

- Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t^*) ed il loro peso (p^*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

- Azioni longitudinali:

sono state assunte pari al tiro T_0

P006UE002

Rev. 00

Pagina 9 di 12

del 13/09/2007

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella sequente tabella:

		C	ONDUTTOR	E	CORDA DI GUARDIA (*)			
STATO DEI CONDUTTORI	IPOTESI	R	QUT0000C	2	LC50 (***)			
		T(daN)	P(daN)	L(daN)	T(daN)		L(daN)	
	NORMALE	8050	2923	220	(5704)	(2001)	(1100)	
MSA	NORMALE	8050	0	220	(5704)	(0)	(1100)	
MSA	ECCEZIONALE (**)	4085	1547	4650	(2852)	(1001)	(3380)	
		4085	0	4650	(2852)	(0)	(3380)	
	NORMALE	8392	3715	100	(5898)	(2350)	(1300)	
MCD	NORMALE	8392	0	100	(5898)	(0)	(1300)	
MSB	ECCEZIONALE (**)	4211	1943	5670	(2949)	(1175)	(3970)	
	ECCEZIONALE (**)	4211	0	5670	(2949)	(0)	(3970)	

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 6 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

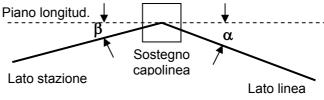
Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nelle condizioni MSA e MSB risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

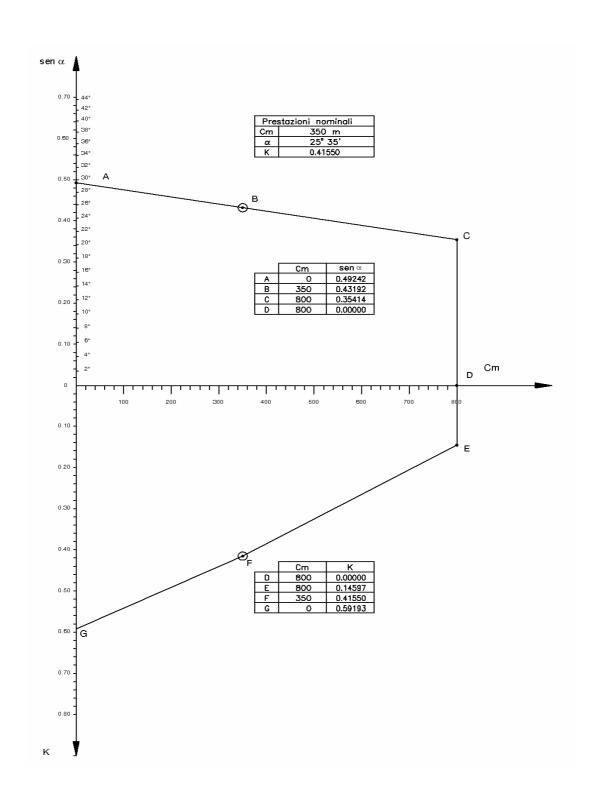
(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

4) UTILIZZAZIONE MECCANICA DEL SOSTEGNO IMPIEGATO COME CAPOLINEA

Il sostegno E viene impiegato anche come capolinea, qui di seguito viene riportato il diagramma di utilizzazione relativo a tale impiego.

In esso si è indicato con α l'angolo di deviazione della linea rispetto al piano di simmetria longitudinale del sostegno (vedi Fig.4)




Fig. 4

P006UE002

Rev. 00
Pagina 10 di 12

del 13/09/2007

P006UE002

Rev. 00

Pagina 11 di 12

del 13/09/2007

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

I valori delle azioni esterne per il calcolo del sostegno sono riportati nella seguente tabella:

		CONDUTTORE			CORDA DI GUARDIA (*)			
STATO DEI CONDUTTORI	IPOTESI	R	QUT0000C	2		LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)	
	NORMALE	3620	2923	4650	(3424)	(2001)	(3380)	
	NORMALE	3620	0	4650	(3424)	(0)	(3380)	
MSA	E00E7IONALE (**)	0	0	0	(0)	(0)	(0)	
	ECCEZIONALE (**)	0	0	0	(0)	(0)	(0)	
	NORMALE	2822	3715	5670	(3228)	(2350)	(3970)	
MCD	NORMALE	2822	0	5670	(3228)	(0)	(3970)	
MSB	ECCEZIONALE (**)	0	0	0	(0)	(0)	(0)	
	ECCEZIONALE (**)	0	0	0	(0)	(0)	(0)	

Per quanto riguarda le prestazioni orizzontali i valori di T e di L sono stati determinati in base alla condizione di uguaglianza della loro somma T + L nelle condizioni di amarro e di capolinea, ed assunto per L il valore massimo di To.

In una generica condizione di impiego del sostegno capolinea le azioni trasversali e longitudinali sono espresse dalle sequenti relazioni:

Conduttori
$$\begin{cases} & \text{Azione trasversale} & \text{T = v Cm + T}_0 \text{ sen } \alpha \text{ + t* (2')} \\ & \text{Azione longitudinale} & \text{L = T}_0 \cos \alpha \text{ + t*} \end{cases}$$

Si può verificare che per tutte le prestazioni geometriche (Cm, α) comprese nel "campo di utilizzazione trasversale" la somma dei valori T ed L ricavati mediante la (2') e (3') (sia per i conduttori che per la corda di guardia in entrambe le condizioni MSA e MSB) risulti inferiore od eguale alla somma dei valori T ed L riportati in tabella e relativi alla condizione di impiego α = 0 cui corrisponde il massimo valore della azione longitudinale.

Per quanto riguarda le prestazioni verticali, esse sono rimaste invariate rispetto a quelle stabilite per il sostegno impiegato come amarro.

Si noti ancora che il sostegno è stato calcolato considerato nullo il tiro della campata di collegamento al portale di stazione.

N.B. Nella realtà tale tiro avrà un valore non nullo, benché modesto, ma ciò è a favore della sicurezza, purche l'angolo β (vedi Fig.4) non superi il valore di 45°.
 Infatti se T'o ≠ 0 è il tiro ridotto, le espressioni 2' e 3' diventano:

Conduttori
$$\begin{cases} & \text{Azione trasversale} & \text{T = v Cm + T}_0 \text{ sen } \alpha \text{ + T'}_0 \text{ sen } \beta \text{ + t*} \\ & \text{Azione longitudinale} & \text{L = T}_0 \cos \alpha \text{ - T}_0 \cos \beta \end{cases}$$

E quindi la somma T + L non supera il valore del calcolo finche rimanga:

sen $\beta \le \cos \beta$ ossia $\beta \le 45^{\circ}$

P006UE002

Rev. 00

del 13/09/2007

Pagina 12 di 12

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 6 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nelle condizioni MSA e MSB risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

150 kV Semplice terna a triangolo

FONDAZIONI CR (σt_{amm}= 2.0 – 3.9 daN/cmq)
TABELLA DELLE CORRISPONDENZE
SOSTEGNI – MONCONI - FONDAZIONI

Codifica:	
1509	TINFON
Rev. 04 del 22/05/2009	Pag. 1 di 3

150 kV Semplice terna a triangolo

Conduttore singolo Ø 31,5 – Zona A EDS 21% - Zona B EDS 18%

Fondazioni CR (σt_{amm}= 2.0 - 3.9 daN/cmq)

Tabelle delle corrispondenze sostegni – monconi - fondazioni

Storia de	Storia delle revisioni				
Rev. 00	del 31/12/2007	Prima Emissione.			
Rev. 01	del 04/08/2008	Inserita tabella delle corrispondenze sostegni - monconi - fondazioni per terreni con $\sigma t_{amm} \leq 2.0$ daN/cmq.			
Rev. 02	del 04/08/2008	Eseguite modifiche redazionali.			
Rev. 03	del 05/12/2008	Per i sostegni E – E* sono state aggiornate le tabelle di corrispondenza sostegni – monconi – fondazioni per terreni con $\sigma t_{amm} \leq 2.0 \ daN/cmq \ e \ \sigma t_{amm} \leq 3.9 \ daN/cmq.$			
Rev. 04	del 22/05/2009	Eseguite modifiche redazionali.			

Elaborato	Verificato		Approvato	
L.Alario	L.Alario	A.Posati	R.Rendina	1
ING-ILC-COL	ING-ILC-COL	ING-ILC-COL	ING-ILC	

150 kV Semplice terna a triangolo

FONDAZIONI CR (σt_{amm} = 2.0 – 3.9 daN/cmq) TABELLA DELLE CORRISPONDENZE SOSTEGNI – MONCONI - FONDAZIONI

Codifica: 150STINFON

Rev. 04 Pag. **2** di 3

• Fondazioni CR – $\sigma t_{amm} \leq 2.0 \text{ daN/cmq}$

	SOSTEGNO		MONCONE		FONDAZIONE	
TIPO	ALTEZZA (PIEDI)	TIPO	ALTEZZA (MM)	TIPO	ALTEZZA (CM)	
L	9 (-2/+3) ÷ 33 (-2/+3)	LF 43	3700	LF 103	335	
	9 (-2/+3) ÷ 12 (-2/+3)	LF 43	3700	15.400	335	
N	15 (-2/+3) ÷ 18 (-2/+3)	LF 44	3700	LF 103	333	
	21 (-2/+3) ÷ 42 (-2/+3)	LF 44	3500	LF 104	315	
M	9 (-2/+1)	LF 44	3700	LF 103	335	
IVI	9 (+2/+3) ÷ 33 (-2/+3)	LF 44	3500	LF 104	315	
	9 (-2/+3) ÷ 21 (-2/+3)	LF 44	3500		315	
Р	24 (-2/+3)	LF 44	3900	LF 104	355	
	27 (-2/+3) ÷ 48 (-2/+3)	LF 48	3900		355	
	9 (-2/+3) ÷ 18 (-2/+3)	15.45	3900	LF 104	355	
V	21 (-2/+3) ÷ 24 (-2/+3)	LF 45	4200	LF 110	385	
	27 (-2/+3) ÷ 42 (-2/+3)	LF 46	4200		385	
С	9 (-2/+3) ÷ 12 (-2/+3)	LF 49	4200	LF 110	385	
C	15 (-2/+3) ÷ 33 (-2/+3)	LF 49	4000	LF 106	365	
	9 (-2/ -1) (*)		2750	LF 301	240	
E	9 (±0/+3) (*) ÷ 18 (-2/+3)	LF 50	4400	LF 113	405	
	21 (-2/+3) ÷ 27 (-2/+3)	LF 50	4000	LF 106	365	
	30 (-2/+3) ÷ 33 (-2/+3)		3800	LF 111	345	
	9 (±0/+3)	LF 46	4400	15.442	405	
	12 (-2/+3)	LF 54	4400	LF 113	405	
E*	15 (-2/-1)	LF 50	4100	LF 114	375	
	15 (±0/+3) ÷ 24 (-2/+3)	LF 50	3800	1 - 444	345	
	27 (-2/+3) ÷ 33 (-2/+3)	LF 53	3800	LF 111	345	

^(*) Per il sostegno E base H 9 con zoppicature di diversa dimensione si dovrà impiegare come fondazioni dei pali trivellati.

150 kV Semplice terna a triangolo

FONDAZIONI CR (σt_{amm}= 2.0 – 3.9 daN/cmq)
TABELLA DELLE CORRISPONDENZE
SOSTEGNI – MONCONI - FONDAZIONI

Codifica: 150STINFON

Rev. 04 Pag. **3** di 3

• Fondazioni CR – $\sigma t_{amm} \leq 3.9 \text{ daN/cmq}$

SOSTEGNO		MONCONE		FONDAZIONE	
TIPO	ALTEZZA (PIEDI)	TIPO	ALTEZZA (MM)	TIPO	ALTEZZA (CM)
L	9 (-2/+3) ÷ 12 (-2/+3)	LF 43	3100	LF 102	275
L	15 (-2/+3) ÷ 33 (-2/+3)	LF 43	3300	LF 102	295
	9 (-2/+3) ÷ 12 (-2/+3)	LF 43	3300	LE 402	205
	15 (-2/+3) ÷ 18 (-2/+3)		3300	LF 102	295
N	21 (-2/+3)	LF 44	3100		275
	24 (-2/+3) ÷ 39 (-2/+3)	LF 44	3200	LF 103	285
	42 (-2/+3)		3300		295
	9 (-2/+1)		3300	LF 102	295
	9 (+2/+3) ÷ 12 (-2/+3)	15.44	3100		275
M	15 (-2/+3) ÷ 21 (-2/+3)	LF 44	3200	LF 103	285
	24 (-2/+3) ÷ 33 (-2/+3)		3300		295
	9 (-2/+2)		3100		275
	9 (+3) ÷ 12 (-2/+3)	15.44	3200		285
	15 (-2/+3) ÷ 21 (-2/+3)	LF 44	3300	LF 103	295
Р	24 (-2/+3)		3400		005
	27 (-2/+3) ÷ 36 (-2/+3)	LF 48	3400		305
	39 (-2/+3) ÷ 42 (-2/+3)				005
	45 (-1/+3) ÷ 48 (-1/+3)		3600		325
	9 (-2/+3) ÷ 18 (-2/+3)	15.45	3600	LF 103	325
	21 (-2/+3) ÷ 24 (-2/+3)	LF 45	3400	LF 104	005
V	27 (-2/+3) ÷ 30 (-2/+3)	15.40	3400		305
	33 (-2/+3) ÷ 42 (-2/+3)	LF 46	3500		315
	9 (-2/+3) ÷ 12 (-2/+3)		3500	LF 104	315
С	15 (-2/+3) ÷ 21 (-2/+3)	LF 49	3600		325
	24 (-2/+3) ÷ 33 (-2/+3)		3700	LF 105	335
	9 (-2/±0)		4100	LF 115	375
_	9 (+1/+3) ÷ 18 (-2/+3)	1.5.50	3700	LF 109	335
E	21 (-2/+3) ÷ 27 (-2/+3)	LF 50	3800	LF 105	345
	30 (-2/+3) ÷ 33 (-2/+3)		3400	LF 107	305
	9 (±0)	. =	4100	LF 115	375
	9 (+1/+3)	LF 46	3600		325
F+	12 (-2/+3)	LF 54	3700	LF 109	335
E*	15 (-2/±0)	1 =	4000		365
İ	15 (+1/+3) ÷ 24 (-2/+3)	LF 50	3400		
	27 (-2/+3) ÷ 33 (-2/+3)	LF 53	3400	LF 107	305

150 kV Doppia terna

FONDAZIONI CR (σt_{amm} = 2.0 – 3.9 daN/cmq)
TABELLA DELLE CORRISPONDENZE
SOSTEGNI – MONCONI - FONDAZIONI

Codifica:	
150DT	INFON
Rev. 04 del 22/05/2009	Pag. 1 di 3

150 kV Doppia Terna

Conduttore singolo Ø 31,5 – Zona A EDS 21% - Zona B EDS 18%

Fondazioni CR (σt_{amm}= 2.0 - 3.9 daN/cmq)

Tabella delle corrispondenze sostegni – monconi - fondazioni

Storia de	Storia delle revisioni				
Rev. 00	del 31/12/2007	Prima Emissione.			
Rev. 01	del 04/08/2008	Inserita tabella delle corrispondenze sostegni - monconi - fondazioni per terreni con σt _{amm} = 2.0 daN/cmq.			
Rev. 02	del 04/08/2008	Eseguite modifiche redazionali.			
Rev. 03	del 05/12/2008	Per il sostegno E sono stata aggiornate le tabelle di corrispondenza sostegni – monconi – fondazioni per terreni con $\sigma t_{amm} \leq 2.0 \ daN/cmq \ e \ \sigma t_{amm} \leq 3.9 \ daN/cmq.$			
Rev. 04	del 22/05/2009	Eseguite modifiche redazionali.			

Elaborato	Verificato		Approvato
L.Alario ING-ILC-COL	L.Alario ING-ILC-COL	A.Posati ING-ILC-COL	R.Rendina ING-ILC

150 kV Doppia terna

FONDAZIONI CR (σt_{amm}= 2.0 – 3.9 daN/cmq)
TABELLA DELLE CORRISPONDENZE
SOSTEGNI – MONCONI - FONDAZIONI

Codifica:	
15	0DTINFON
Rev. 04	Pag. 2 di 3

• Fondazioni CR – $\sigma t_{amm} \le 2.0 \text{ daN/cmq}$

SOSTEGNO		MONCONE		FONDAZIONE	
TIPO	ALTEZZA (PIEDI)	TIPO	ALTEZZA (MM)	TIPO	ALTEZZA (CM)
L	9 (-2/+3) ÷ 21 (-2/+3)		3500	LF 104	315
L	24 (-2/+3) ÷ 33 (-2/+3)	LF 44	3900	LF 104	355
	9 (-2/+3)	LF 44	3500		315
N	12 (-2/+3) ÷ 21 (-2/+3)	LI 11	3900	LF 104	355
	24 (-2/+3) ÷ 45 (-2/+3)	LF 48	3900		333
	9 (-2/+3)	LF 45	3900	LF 104	355
М	12 (-2/+3) ÷ 21 (-2/+3)		4200	LF 110	385
	27 (-2/+3) ÷ 33 (-2/+3)	LF 46	4200		
	9 (-2/+3) ÷ 18 (-2/+3)	LF 54	4000	LF 106	365
V	21 (-2/+3) ÷ 39 (-2/+3)	LF 50	4000	LI 100	303
	42 (-2/+3)	Li 30	3800	LF 111	345
	9 (-2/+3) ÷ 15 (-2) (*)		2750	LF 302	240
E	15 (-1/+3) ÷ 21 (-2/+3)	LF 55	4400	LF 112	405
	24 (-2/+3) ÷ 33 (-2/+3)	LF 56	4400	LI IIZ	405

^(*) Per il sostegno E per le basi H 9 -12 -15 con zoppicature di diversa dimensione si dovranno impiegare come fondazioni dei pali trivellati.

150 kV Doppia terna

FONDAZIONI CR (σt_{amm}= 2.0 – 3.9 daN/cmq) TABELLA DELLE CORRISPONDENZE SOSTEGNI – MONCONI - FONDAZIONI

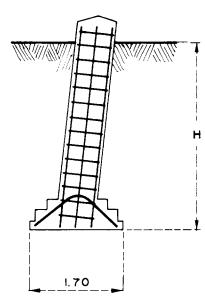
Codifica:	
18	0DTINFON
Rev. 04	Pag. 3 di 3

Fondazioni CR – σt_{amm} ≤ 3.9 daN/cmq

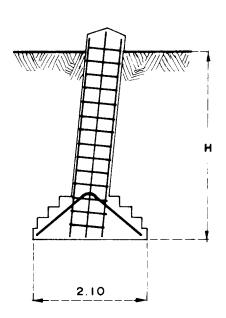
SOSTEGNO		MONCONE		FONDAZIONE	
TIPO	ALTEZZA (PIEDI)	TIPO	ALTEZZA (MM)	TIPO	ALTEZZA (CM)
L	9 (-2/+3) ÷ 21 (-2/+3)	LF 44	3300	LF 103	295
	24 (-2/+3) ÷ 33 (-2/+3)		3400		305
N	9 (-2/+3)	LF 44	3300	LF 103	295
	12 (-2/+3) ÷ 21 (-2/+3)		3400		305
	24 (-2/+3) ÷ 27 (-2/+3)	LF 48	3400		
	30 (-2/+3) ÷ 45 (-2/+3)		3600		325
М	9 (-2/+3)	LF 45	3600	LF 103	325
	12 (-2/+3) ÷ 21 (-2/+3)		3400	LF 104	305
	24 (-2/+3)	LF 46	3400		
	27 (-2/+3) ÷ 33 (-2/+3)		3500		315
V	9 (-2/+3) ÷ 18 (-2/+3)	LF 54	3700		225
	21 (-2/+3) ÷ 24 (-2/+3)	LF 50	3700	LF 105	335
	27 (-2/+3) ÷ 39 (-2/+3)		3800		345
	42 (-2/+3)		3400	LF 107	305
	9 (-2/+3) (*)	LF 55	3350	LF 303	300
	12 (-2/+1) (*)				
	12 (+2/+3) (*)		4400	LF 116	405
	15 (-2)		3350	LF 303	300
Е	15 (-1/+2)		4400	LF 116	405
	15 (+3)		3800	LF 108	345
	18 (-2/-1)		4400	LF 116	405
	18 (±0/+3) ÷ 21 (-2/+3)		3800	1 5 400	245
	24 (-2/+3) ÷ 33 (-2/+3)	LF 56	3800	LF 108	345

^(*) Per il sostegno E per le basi H 9 - 12 - 15 con zoppicature di diversa dimensione si dovranno impiegare come fondazioni dei pali trivellati.

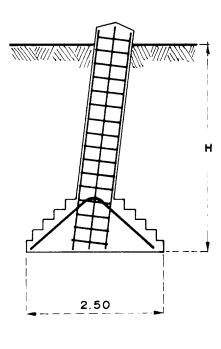
UNIFICAZIONE

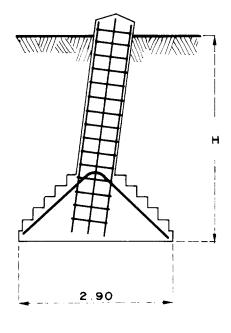

DCO - AITC - UNITÀ INGEGNERIA IMPIANTISTICA 2

FONDAZIONI DI CLASSE "CR"


LF 1

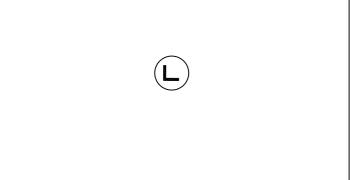
Dicembre 1993 Ed.8 - 1/2

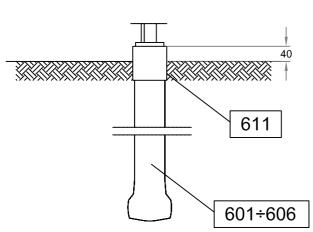


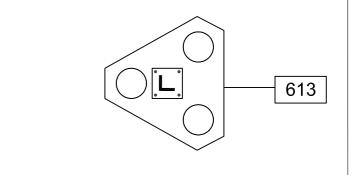

103

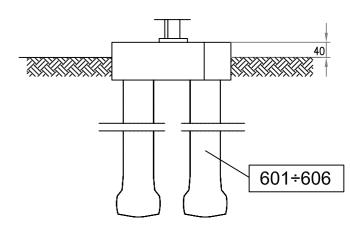
104

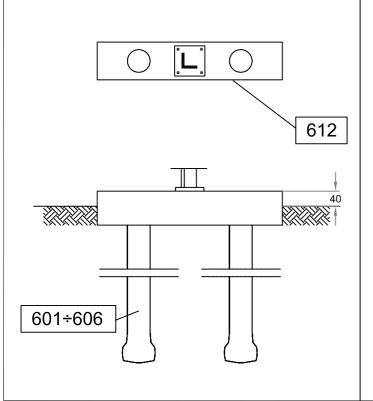
105

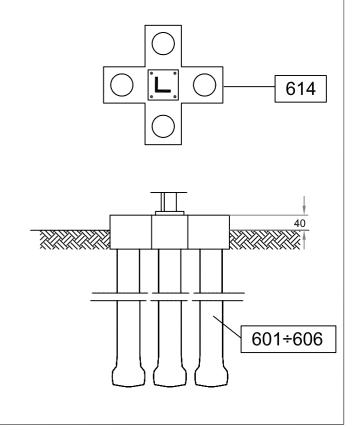

UNIFICAZIONE **LF 1 ENEL** Dicembre 1993 Ed.8 - 2/2 107 106 DCO - AITC - UNITÀ INGEGNERIA IMPIANTISTICA 2 3.70 3.30 108 4.10


UNIFICAZIONE **ENEL**

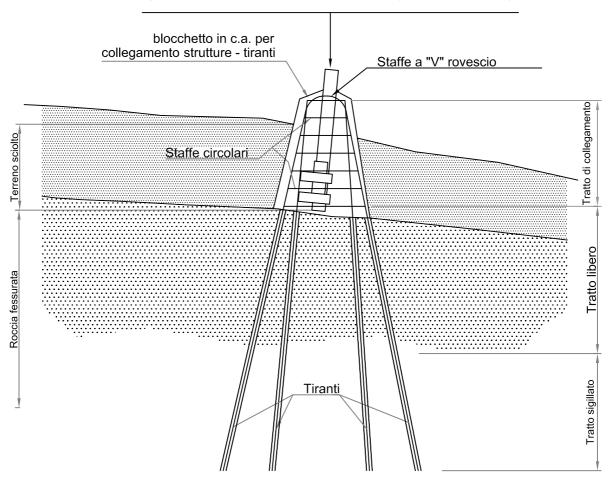

FONDAZIONI SU PALI TRIVELLATI


LF 20


Marzo 1992 Ed. 1 - 1/1



UNIFICAZIONE



FONDAZIONI "AD ANCORAGGIO" A MEZZO DI TIRANTI

LF 21

Aprile 1992 Ed. 1 - 1/1

montante in angolare d'acciaio per collegamento con la struttura sovrastante (munito di quadrette per la trasmissione degli sforzi di trazione)

