

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO PER LA PRODUZIONE DI ENERGIA MEDIANTE LO SFRUTTAMENTO DEL VENTO NEI TERRITORI COMUNALI DI PIOMBINO E CAMPIGLIA MARITTIMA (LI) LOC. CAMPO ALL'OLMO POTENZA NOMINALE 57,6 MW

PROGETTO DEFINITIVO - SIA

PROGETTAZIONE E SIA

ing. Fabio PACCAPELO
ing. Andrea ANGELINI
ing. Antonella Laura GIORDANO
ing. Francesca SACCAROLA
COLLABORATORI

ing. Giulia MONTRONE ing. Francesco DE BARTOLO

STUDI SPECIALISTICI

GEOLOGIA geol. Matteo DI CARLO ACUSTICA ing. Antonio FALCONE

NATURA E BIODIVERSITÀ BIOPHILIA - dr. Gianni PALUMBO dr. Michele BUX

STUDIO PEDO-AGRONOMICO dr. Gianfranco GIUFFRIDA

ARCHEOLOGIA
ARSARCHEO - dr. archeol. Manuele PUTTI dr. archeol. Gabriele MONASTERO

INTERVENTI DI COMPENSAZIONE E VALORIZZAZIONE

arch. Gaetano FORNARELLI arch. Andrea GIUFFRIDA

SIA.ES. STUDI SPECIALISTICI	REV.	DATA	DESCRIZIONE
ES.1 Indagine anemologica del sito e analisi della producibilità attesa			
HOLE .			

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO PER LA PRODUZIONE DI ENERGIA MEDIANTE LO SFRUTTAMENTO DEL VENTO NEL TERRITORIO COMUNALE DI PIOMBINO E CAMPIGLIA MARITTIMA (LI) LOC. CAMPO ALL'OLMO POTENZA NOMINALE 57,6 MW

INDICE

1	DES	CRIZIONE DEGLI INTERVENTI	2
	1.1	FINALITÀ DELL'INTERVENTO	2
	1.2	LOCALIZZAZIONE DEL SITO	2
	1.3	DESCRIZIONE DEGLI INTERVENTI	4
2	MOE	DELLIZZAZIONE E STIMA DEL VENTO	9
3	ANA	LISI DEI DATI METEREOLOGICI COMPARATIVI: ATLANTE EOLICO	10
4	VAL	UTAZIONE PRELIMINARE DELLA PRODUZIONE ATTESA	12

1 DESCRIZIONE DEGLI INTERVENTI

1.1 FINALITÀ DELL'INTERVENTO

Scopo del progetto è la realizzazione di un "Parco Eolico" per la produzione di energia elettrica da fonte rinnovabile (vento) e l'immissione dell'energia prodotta, attraverso un'opportuna connessione, nella Rete di Trasmissione Nazionale (RTN).

La società proponente l'intervento in oggetto è la San Nicola Energia S.r.l., con sede legale in Via Lanzone, 31 - 20123 Milano, P.I. e C.F. n. 12420950961.

La presente relazione è, quindi, relativa all'iniziativa di installazione ed esercizio di un impianto eolico e relative opere accessorie di connessione alla RTN nei comuni di Piombino e Campiglia Marittima (LI). Il parco eolico, caratterizzato da potenza complessiva pari a 57,6 MW, consta di n. 8 aerogeneratori, di potenza unitaria fino a 7,2 MW, con altezza al tip della pala pari a 236 m, altezza al mozzo pari a 150 m e diametro rotorico pari a 172 m.

1.2 LOCALIZZAZIONE DEL SITO

Il progetto di parco eolico prevede la realizzazione di n. 8 aerogeneratori posizionati in un'area agricola nei territori comunali di Piombino e Campiglia Marittima (LI). In Tabella, si riportano le coordinate degli aerogeneratori:

WTG	COORDINATE WGS84 FUSO 32N								
WIG	EST	NORD							
PB1	626416.91	4760797.78							
PB2	626455.14	4761770.22							
PB3	624964.94	4762192.78							
PB4	628549.42	4759547.74							
PB5	632826.13	4759662.36							
CMP1	632533.31	4761947.79							
CMP2	633617.14	4762307.04							
CMP3	632938.19	4763738.36							

Rispetto all'aerogeneratore più prossimo, gli abitati più vicini distano:

San Vincenzo (LI)2,6 km a nord;

Suvereto (LI)2,8 km a nord-est

Follonica (GR)8 km ad est;

Rio (LI)18 km a sud-ovest

La distanza dalla costa tirrenica è di circa 3 km in direzione sud.

L'area di intervento propriamente detta occupa un'area di circa 1 kmq: n. 5 aerogeneratori sono localizzati in comune di Piombino loc. Campo all'Olmo, in un'area costeggiata dalla SS 1 (Via Aurelia); n. 3 aerogeneratori sono ubicati al confine sud-est del comune di Campiglia Marittima con il comune di Piombino.

Con riferimento al Piano di indirizzo territoriale con valenza di piano paesaggistico (PIT), l'intorno di riferimento rientra nell'ambito di paesaggio n. 16 "Colline Metallifere".

Come da STMG (codice pratica 202300959) fornita da Terna con nota del 03/052022 prot. P20230046074, è previsto che la connessione alla Rete di Trasmissione Nazionale avvenga a 132 kV su un futuro ampliamento della Stazione Elettrica (SE) della RTN a 132 kV denominata "Populonia", previo:

- raccordo in entra-esce dalla linea "Colmata Suvereto" all'ampliamento della suddetta SE;
- intervento 349-P del Piano di Sviluppo Terna.

A seguito dell'accettazione del preventivo di connessione, la società ha inviato a Terna la richiesta di apertura di tavolo tecnico di coordinamento delle opere RTN prescritte nel preventivo.

La distribuzione degli aerogeneratori sul campo è stata progettata tenendo conto dell'efficienza tecnica, delle valutazioni sugli impatti attesi e delle indicazioni contenute nella letteratura pubblicata da autorevoli associazioni ed enti specializzati. La disposizione e le reciproche distanze stabilite in fase progettuale sono tali da scongiurare l'effetto selva e la mutua interferenza tra le macchine.

L'analisi di possibili effetti combinati, in termini di impatti attesi con altre fonti di disturbo presenti sul territorio, si è concentrata sulla eventuale interazione con altri impianti esistenti o con altri progetti approvati a conoscenza degli scriventi. Si rimanda all'allegato *SIA.S.4 Analisi degli impatti cumulativi* per i necessari approfondimenti.

Inquadramento di area vasta

Area parco eolico

1.3 DESCRIZIONE DEGLI INTERVENTI

Gli interventi di progetto comprendono la realizzazione di tutte le opere ed infrastrutture indispensabili alla connessione dell'impianto alla RTN. I principali componenti dell'impianto sono:

- Aerogeneratori;
- Opere di fondazione degli aerogeneratori costituite da strutture in calcestruzzo armato e da pali di fondazione trivellati;
- Viabilità di servizio al parco eolico;
- Elettrodotti per il trasporto dell'energia elettrica prodotta dal parco alla sottostazione utente (SSE);
- Sistema di accumulo elettrochimico di energia di potenza pari a 18 MW e 72 MWh di accumulo;
- Sottostazione di Trasformazione e connessione (SSE) alla Rete di Nazionale, ovvero tutte le apparecchiature (interruttori, sezionatori, TA, TV, ecc.) necessarie alla realizzazione della connessione elettrica dell'impianto.

Nello specifico, come da STMG (codice pratica 202300959) fornita da Terna con nota del 03/052022 prot. P20230046074, è previsto che la connessione alla Rete di Trasmissione Nazionale avvenga a 132 kV su un futuro ampliamento della Stazione Elettrica (SE) della RTN a 132 kV denominata "Populonia", previo:

- raccordo in entra-esce dalla linea "Colmata Suvereto" all'ampliamento della suddetta SE;
- intervento 349-P del Piano di Sviluppo Terna.

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO PER LA PRODUZIONE DI ENERGIA MEDIANTE LO SFRUTTAMENTO DEL VENTO NEL TERRITORIO COMUNALE DI PIOMBINO E CAMPIGLIA MARITTIMA (LI) LOC. CAMPO ALL'OLMO POTENZA NOMINALE 57,6 MW

Il nuovo elettrodotto in antenna a 132 kV per il collegamento della centrale sulla Stazione Elettrica della RTN costituisce impianto di utenza per la connessione, mentre lo stallo arrivo produttore a 132 kV nella suddetta stazione costituisce impianto di rete per la connessione.

I sottocampi di progetto saranno collegati alla RTN attraverso cavidotti interrati in media tensione a 30 kV, che confluiranno nella cabina di elevazione 132/30 kV. Il percorso del cavidotto sarà in parte su strade non asfaltate esistenti o di nuova realizzazione, in parte su strade provinciali asfaltate ed in parte su terreni agricoli. La profondità di interramento sarà compresa tra 1,50 e 2,0 m.

Aerogeneratori

Le turbine in progetto saranno montate su torri tubolari di altezza (base-mozzo) pari a 150 m, con rotori a 3 pale e aventi diametro massimo di 172 m.

La realizzazione delle fondazioni degli aerogeneratori deve essere preceduta da uno scavo di sbancamento per raggiungere le quote delle fondazioni definite in progetto, dal successivo compattamento del fondo dello scavo e dall'esecuzione degli eventuali rilevati da eseguire con materiale proveniente dagli scavi opportunamente vagliato ed esente da argilla.

I plinti di fondazione saranno circolari con diametro di 29 m e profondità di 3,00 m circa dal piano campagna, con 12 pali di fondazione del diametro di 1,2 m e lunghezza pari a 25,00 m.

Le fondazioni saranno progettate sulla base di puntuali indagini geotecniche per ciascuna torre, saranno realizzate in c.a., con la definizione di un'armatura in ferro che terrà conto di carichi e sollecitazioni in riferimento al sistema fondazione suolo ed al regime di vento misurato sul sito.

La progettazione strutturale esecutiva sarà riferita ai plinti di fondazione del complesso torre tubolare – aerogeneratore.

Partendo dalle puntuali indagini geologiche effettuate, essa verrà redatta secondo i dettami e le prescrizioni riportate nelle "D.M. 14 gennaio 2008 - Norme tecniche per le costruzioni", che terminato il periodo transitorio è entrato definitivamente in vigore il 1° luglio 2009.

In linea con la filosofia di detto testo normativo, le procedure di calcolo e di verifica delle strutture, nonché le regole di progettazione che saranno seguite nella fase esecutiva, seguiranno i seguenti indirizzi:

- mantenimento del criterio prestazionale;
- coerenza con gli indirizzi normativi a livello comunitario, sempre nel rispetto delle esigenze di sicurezza del Paese e, in particolare, coerenza di formato con gli Eurocodici, norme europee EN ormai ampiamente diffuse;
- approfondimento degli aspetti connessi alla presenza delle azioni sismiche;
- approfondimento delle prescrizioni ed indicazioni relative ai rapporti delle opere con il terreno
 e, in generale, agli aspetti geotecnici;
- concetto di vita nominale di progetto;
- classificazione delle varie azioni agenti sulle costruzioni, con indicazione delle diverse combinazioni delle stesse nelle le verifiche da eseguire.

Le indagini geologiche, effettuate puntualmente in corrispondenza dei punti in cui verrà realizzato il plinto di fondazione, permetteranno di definire:

- la successione stratigrafica con prelievo di campioni fino a 30 m di profondità;
- la natura degli strati rocciosi (compatti o fratturati);
- la presenza di eventuali "vuoti" colmi di materiale incoerente.

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO PER LA PRODUZIONE DI ENERGIA MEDIANTE LO SFRUTTAMENTO DEL VENTO NEL TERRITORIO COMUNALE DI PIOMBINO E CAMPIGLIA MARITTIMA (LI) LOC. CAMPO ALL'OLMO POTENZA NOMINALE 57,6 MW

In definitiva, sulla base della tipologia di terreno e dell'esperienza di fondazioni simili, ci si aspetta di avere fondazioni di tipo diretto con le seguenti caratteristiche:

Fondazioni dirette:

Ingombro in pianta: circolare

Forma: tronco conica

Diametro massimo 29 m

Altezza massima 2.8 m circa

- Interrate, ad una profondità misurata in corrispondenza della parte più alta del plinto di circa
 0,5 m (solo la parte centrale della fondazione, in corrispondenza del concio di ancoraggio in acciaio, sporgerà dal terreno per circa 5/10 cm)
- volume complessivo 1110,00 mc circa

Pali di fondazione (n. 16 per plinto):

Ingombro in pianta: circolare a corona

Forma: cilindrica

Diametro pali 1200 mm

Lunghezza pali 25,00 m

Piazzole di montaggio

In corrispondenza di ciascun aerogeneratore sarà realizzata una piazzola di montaggio. Attorno alla piazzola saranno allestite sia le aree per lo stoccaggio temporaneo degli elementi della torre, sia le aree necessarie per il montaggio e sollevamento della gru tralicciata. Tale opera avrà la funzione di garantire l'appoggio alle macchine di sollevamento necessarie per il montaggio della macchina e di fornire lo spazio necessario al deposito temporaneo di tutti i pezzi costituenti l'aerogeneratore stesso.

Le caratteristiche realizzative della piazzola dovranno essere tali da consentire la planarità della superficie di appoggio ed il defluire delle acque meteoriche.

Al termine dei lavori di realizzazione del parco eolico si procederà alla rimozione delle piazzole, a meno della superficie in prossimità della torre, che sarà utilizzata per tutto il periodo di esercizio dell'impianto; le aree saranno oggetto di ripristino mediante rimozione del materiale utilizzato e la ricostituzione dello strato di terreno vegetale rimosso.

Trincee e cavidotti

Gli scavi a sezione ristretta necessari per la posa dei cavi (trincee) avranno ampiezza variabile in relazione al numero di terne di cavi che dovranno essere posate (fino ad un massimo di 80 cm e profondità di 2,0 m).

I cavidotti saranno segnalati in superficie da appositi cartelli, da cui si potrà evincere il loro percorso. Il percorso sarà ottimizzato in termini di impatto ambientale, intendendo con questo che i cavidotti saranno realizzati per quanto più possibile al lato di strade esistenti ovvero delle piste di nuova realizzazione.

Dette linee in cavo a 36 kV permetteranno di convogliare tutta l'energia prodotta dagli aerogeneratori al futuro ampliamento della Stazione Elettrica di connessione e consegna da realizzarsi unitamente al Parco Eolico.

Sistema di Accumulo Elettrochimico di Energia

La tecnologia più promettente, per le applicazioni di accumulo distribuito di taglia medio-grande, è quella delle batterie agli ioni di litio che presenta una vita attesa molto lunga (fino a 5000 cicli di carica/ scarica a DOD

80%), un rendimento energetico significativamente alto (generalmente superiore al 90%) con elevata energia specifica. Esse sono adatte ad applicazioni di potenza, sia tradizionali, sia quelle a supporto del sistema elettrico. Le caratteristiche delle batterie litio-ioni in termini di prestazioni relative alla potenza specifica, energia specifica, efficienza e durata, rendono queste tecnologie di accumulo particolarmente interessanti per le applicazioni "in potenza" e per il settore dell'automotive.

Nel caso specifico saranno utilizzati accumulatori a ioni di litio (LFP: litio-ferro-fosfatato) che permettono di ottenere elevate potenze specifiche in rapporto alla capacità nominale.

Le batterie sono alloggiate all'interno di container e sono raggruppate in stringhe. Le stringhe vengono messe in parallelo e associate a ciascun PCS attraverso un Box di parallelo che consente l'interfaccia con il PCS.

Le batterie sono di tipo ermetico e sono in grado di resistere, ad involucro integro, a sollecitazioni termiche elevate ed alla fiamma diretta. Esse non costituiscono aggravio al carico di incendio.

Di seguito si riportano i dati della singola cella:

	Battery Pack	
	General	
Model	LUNA2000-2.0MWH-1H0	LUNA2000-2.0MWH-2H
Cell Material	LFP	LFP
Pack Configuration	16S 1P	18S 1P
Rated Voltage	51.2 V	57.6 V
Nominal Capacity	320 Ah / 16.38 kWh	280 Ah / 16.13 kWh
Supported Charge & Discharge Rate	≤ 1 C	≤ 0.5 C
Weight	≤ 140 kg	≤ 140 kg
Dimensions (W x H x D)	442 x 307 x 660 mm	442 x 307 x 660 mm

Le celle sono collegate in serie (16 oppure 18) per raggiungere la tensione massima in corrente continua al PCS (inverter bidirezionali CC/CA) e parallelati per raggiungere la potenza e la capacità di progetto (2 MWh per Container).

L'impianto di accumulo sarà costituito da 36 Container Batteria ognuno di capacità pari a 2 MWh, disposti ed assemblati per dare una potenza complessiva pari a 18 MW.

Nel particolare, si formerà una piazzola composta da 3 trasformatori da 6,8 MVA e 18 PCS formati ognuno da 5 inverter da 200 kW di potenza da 1 MW dove saranno collegati 36 container accumulo distribuiti sui 18 PCS.

Nell'area dell'accumulo, a cui corrisponde un'occupazione di suolo pari a circa 3.600 mq localizzata in corrispondenza della SSE utente, si prevede la realizzazione di opere di mitigazione/compensazione quali, ad esempio, la realizzazione di schermature arboree o arbustive e la piantumazione di specie autoctone.

Strade e piste di cantiere

La viabilità esistente, nell'area di intervento, sarà integrata con la realizzazione di piste necessarie al raggiungimento dei singoli aerogeneratori, sia nella fase di cantiere che in quella di esercizio dell'impianto.

Le strade di servizio (piste) di nuova realizzazione, necessarie per raggiungere le torri con i mezzi di cantiere, avranno ampiezza di 5 m circa e raggio interno di curvatura variabile e di almeno 45 m. Lo sviluppo delle strade di nuova realizzazione, all'interno dell'area di intervento, determinerà un'occupazione territoriale di 9.600,00 mq circa. Per quanto l'uso di suolo agricolo è comunque limitato, allo scopo di minimizzarlo ulteriormente per raggiungere le torri saranno utilizzate, per quanto possibile, le strade già esistenti, come peraltro si evince dagli elaborati grafici di progetto. Nei tratti in cui sarà necessario, tali strade esistenti saranno oggetto di interventi di adeguamento del fondo stradale e di pulizia da pietrame ed arbusti eventualmente presenti, allo scopo di renderle completamente utilizzabili.

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO PER LA PRODUZIONE DI ENERGIA MEDIANTE LO SFRUTTAMENTO DEL VENTO NEL TERRITORIO COMUNALE DI PIOMBINO E CAMPIGLIA MARITTIMA (LI) LOC. CAMPO ALL'OLMO POTENZA NOMINALE 57,6 MW

Le piste non saranno asfaltate e saranno realizzate con inerti compattati, parzialmente permeabili di diversa granulometria. Una parte del materiale rinveniente dagli scavi delle fondazioni verrà riutilizzato per realizzare o adequare tale viabilità.

Sottostazione elettrica di elevazione MT/AT 30/132 kV e consegna in AT

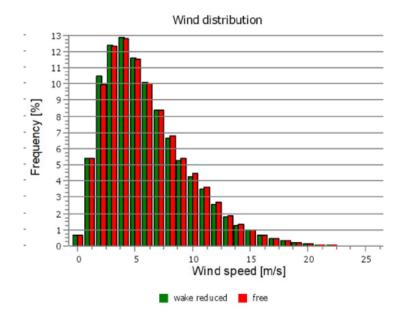
La società proponente ha intenzione di realizzare una Sottostazione di Trasformazione utente 132/30 kV condivisa con altri produttori, atta a ricevere l'energia prodotta dall'impianto eolico.

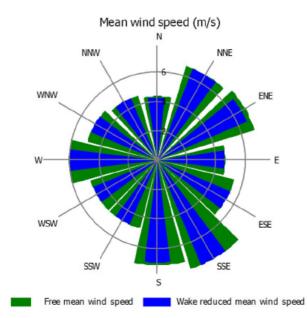
All'interno della Sottostazione di Trasformazione la tensione viene innalzata da 30 kV (tensione nominale del sistema di rete di raccolta tra le torri) a 132 kV e da qui con collegamento rigido si collega alle sbarre futuro ampliamento della Stazione Elettrica (SE) della RTN a 132 kV denominata "Populonia".

La Sottostazione sarà composta da:

- Uno stallo AT per il collegamento del Trasformatore, come di seguito specificato;
- fabbricato quadri, come da elaborato grafico allegato, con i locali MT, il locale telecontrollo e BT, locale gruppo elettrogeno;
- locali per controllo aerogeneratori e misure;

Le apparecchiature ed il macchinario AT saranno dimensionati per sopportare la tensione massima nominale a frequenza industriale della rete a 132 kV.



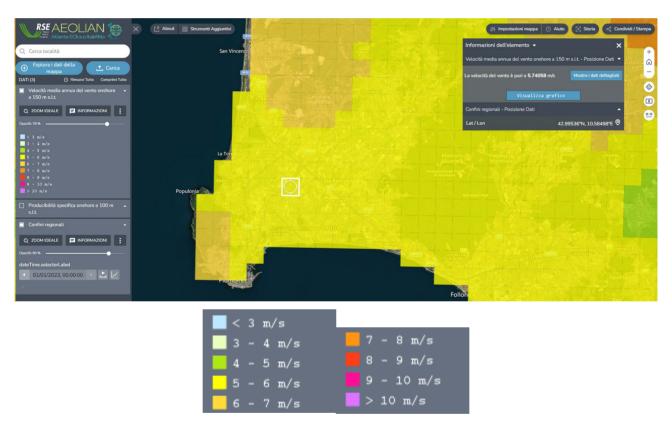

2 MODELLIZZAZIONE E STIMA DEL VENTO

La stima preliminare della risorsa eolica al sito è estrapolata da un Anemometro Virtuale scalato ad una località ritenuta rappresentativa dell'Area di interesse. Le statistiche dell'Anemometro Virtuale sono ottenute utilizzando le fonti disponibili in un intorno considerato rappresentativo dell'Area di interesse, come i dati di vento misurati e i dati di mesoscala.

Occorre comunque evidenziare che l'Anemometro Virtuale non sostituisce una torre di misura tradizionale al sito e quindi qualsiasi valutazione sulla produzione di energia implica necessariamente un elevato grado di incertezza. Per questo i risultati devono intendersi come una sola stima preliminare.

Il regime di vento di lungo termine atteso al sito è stato valutato usando un nodo di rianalisi su un periodo di 20 anni (ERA5 Rectangular Grid), ovvero ampiamente superiore a 1 anno di osservazione, e attraverso correlazioni mensili. Le figure sottostanti riproducono le rose dei venti in termini di frequenza, potenza e velocità e la distribuzione del vento per l'Anemometro Virtuale creato in sito (UTM (north)-WGS84 Zone: 32 East: 632.546 North: 4.761.848) per l'altezza richiesta pari a 150 m.

Distribuzione del vento e venti prevalenti

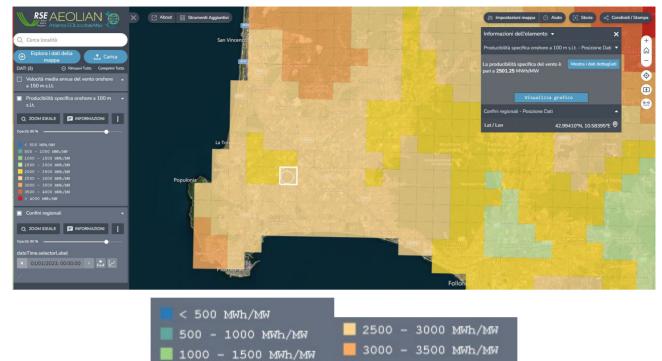

3 ANALISI DEI DATI METEREOLOGICI COMPARATIVI: ATLANTE EOLICO

In una accurata analisi metereologica è necessario correlare i dati puntuali misurati in campo con dati spaziali simulati dai modelli matematici, tra i più conosciuti ed utilizzati è l'Atlante Eolico Italiano AEOLIAN di RSE disponibile sul sito https://atlanteeolico.rse-web.it/.

Di seguito, si riportano una prima figura rappresentativa della velocità media annua del vento onshore a 150 m s.l.t. e una seconda con indicazione della producibilità specifica annua a 100m s.l.t..

Si specifica che è stato scelto come rappresentazione delle velocità media quella a livello 150m, in quanto più rappresentativo del vento all'altezza del mozzo del rotore della turbina eolica individuata, ovvero la piattaforma Vestas EnVentus V172-7.2 con altezza all'hub pari a 150 m e diametro del rotore pari a 172 m. In Figura, si può osservare una certa omogeneità della carta nell'area di progetto, che riporta una ventosità tra 5 e 7 m/s.

Con riferimento alla Figura successiva si evidenzia, invece, un valore di producibilità specifico annuo a 100m s.l.t. superiore a 2250 MWh/MW.



Atlante eolico AEOLIAN: Velocità del vento misurata a 150 m s.l.t.

1500 - 2000 MWh/MW

2000 - 2500 MWh/MW

Atlante eolico AEOLIAN: Producibilità specifica onshore a 100 m s.l.t.

3500 - 4000 MWh/MW

> 4000 MWh/MW

4 VALUTAZIONE PRELIMINARE DELLA PRODUZIONE ATTESA

Di seguito sono riportati i risultati ottenuti dalla valutazione preliminare della produzione attesa dell'impianto, stimata con la configurazione richiesta, usando la distribuzione di frequenza di lungo periodo ottenuta all'altezza mozzo proposta, tramite l'utilizzo del software WindPro 3.6 di EMD International.

Le produzioni tengono conto delle perdite per effetto della scia che si genera internamente tra gli aerogeneratori dell'impianto, nonché delle perdite dovute alla densità dell'aria alla quota del sito.

In particolare, le tabelle riportano le seguenti informazioni:

Site ID: numero identificativo dell'aerogeneratore nelle tavole

Site X [m]: longitudine E in coordinate UTM-WGS84, Fuso 32

Site Y [m]: latitudine N in coordinate UTM-WGS84, Fuso 32

Elev. [m]: quota sul livello del mare in m

HH [m]: altezza del mozzo in m

V [m/s]: velocità media del vento stimata dal modello all'altezza del mozzo

Gross [GWh]: produzione lorda attesa

Net [GWh]: produzione attesa al netto delle perdite per effetto scia

Loss [%]: perdita percentuale di produzione per effetto scia

Net Hours [h]: produzione specifica attesa al netto delle perdite per scia (ore/anno)

Produzione attesa Vestas V172-7.2 MW

ID	X [m]	Y [m]	Elev. [m]	HH [m]	V [m/s]	Gross [MWh]	Net [GWh]	Loss [%]
CMP1	632.533,31	4.761.947,79	9,70	150,00	6,00	16.753,97	16.361,30	2,40
CMP2	633.617,14	4.762.307,04	11,70	150,00	5,93	16.400,14	16.221,70	1,10
CMP3	632.938,19	4.763.738,36	13,70	150,00	5,88	16.147,12	15.815,00	2,10
PB1	626.416,91	4.760.797,78	2,30	150,00	6,12	17.421,74	17.096,90	1,90
PB2	626.455,14	4.761.770,22	4,20	150,00	6,11	17.324,93	16.885,90	2,60
PB3	624.964,94	4.762.192,78	13,80	150,00	6,11	17.361,57	17.155,70	1,20
PB4	628.549,42	4.759.547,74	2,00	150,00	6,16	17.593,70	17.419,50	1,00
PB5	632.826,13	4.759.662,36	4,60	150,00	6,07	17.066,94	16.948,30	0,70
				Media	6,05	17.008,76	16.738,04	1,63
					Totale		133.904,30	

Alla producibilità netta sopra riportata e pari a **133.904 MWh/anno**, corrisponde un valore di ore equivalenti annuo pari a **2.325 h/y**. Si evidenzia che questa produzione di energia tiene conto delle solo perdite dovute agli effetti scia, mentre non sono incluse altre tipologie di perdite.

Si allegano di seguito i report delle elaborazioni effettuate relativamente ai dati meteo dell'intorno considerato e alla producibilità attesa.

Licensed user Iron solar s.r.l. via Lanzone, 31 IT-20122 Milano +393487125089

Fabio Paccapelo / francesca.saccarola@hopegroup.it

24/10/2023 18:51/3.6.377

PARK - Main Result

Calculation: WON023_Piombino_VESTAS V172 7.2MW

Setup AEP scaled to a full year based on number of samples Scaling factor from 30,8 years to 1 year: 0,032

Calculation performed in UTM (north)-WGS84 Zone: 32 At the site centre the difference between grid north and true north is: 1,1°

Wake Model: N.O. Jensen (RISØ/EMD) Park 2 2018

Wake decay constant
Wake decay constant: 0,090 DTU default onshore
Hub height independent

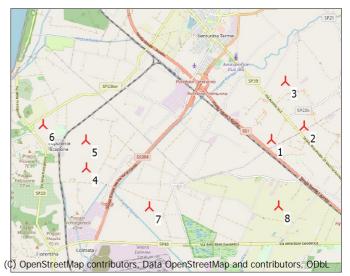
Reference WTG: VESTAS V172-7.2 7200 172.0 !O! hub: 150,0 m (TOT: 236,0 m) (1)

Scaler/wind data

Scale! / Will didta
Name
Terrain scaling
Micro terrain flow model
Used period
Meteo object(s)
Displacement height: Sector-wise from calculator
WASP version

EMD Default Measurement Mast Scaler

EMD Derault measurement Mast Scaler
Measured Data Scaling (WAsP Stability / A-Parameter)
WASP IBZ from Site Data
01/01/1993 01:00:00 - 16/10/2023
ERAS(T) Rectangular Grid_N43,00_E010,50 (4), 150,00m - D Scale
calculator height
WASP 12 Version 12.08.0032


Power correction

Power curve correction (adjusted IEC method, improved to match turbine control)

Min Max Avg Corr. Neg. Pos. corr. corr. [%] [%] [%]

Air density ERA5(T) Rectangular Grid_N43,00_E010,50 (4) - 2,00 m [°C] [Pa] [Pa] [°C] -1,4 29,4 15,8 [hPa] 992,6 996,0 994,5 [kg/m³] 1,146 1,274 1,200 [%] 93,5 104,0 97,9 From air density settings Resulting air density Relative to 15°C at sea level

-1,3 -1,4 0,1

Scale 1:125.000

New WTG

Calculated Annual Energy for Wind Farm

				Specific	results¤)		Wind s	peed
WTG combination	Result	GROSS (no loss)	Wake loss	Capacity	Mean WTG	Full load	free	wake reduced
	PARK	Free WTGs		factor	result	hours		
	[MWh/y]	[MWh/y]	[%]	[%]	[MWh/y]	[Hours/year]	[m/s]	[m/s]
Wind farm	133.904,3	136.085,4	1,6	26,5	16.738,0	2.325	6,0	6,0

¤) Based on wake reduced results and any curtailments.

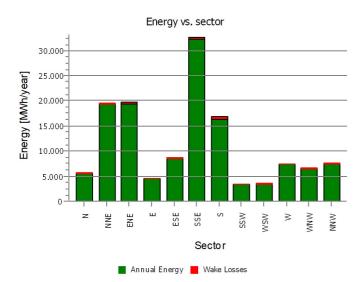
Calculated Annual Energy for each of 8 new WTGs with total 57,6 MW rated power

WTG	type						Power	curve	Annual E	nergy	Wind sp	peed
Valid	Manufact.	Type-generator	Power,	Rotor	Hub	Displacement	Creator	Name	Result	Wake	free	reduced
			rated	diameter	height	height				loss		
			[kW]	[m]	[m]	[m]			[MWh/y]	[%]	[m/s]	[m/s]
1 Yes	VESTAS	V172-7.2-7.200	7.200	172,0	150,0	Sector wise	USER	Level 0 - Calculated - PO7200 - 04-2022	16.361,3	2,4	6,00	5,93
2 Yes	VESTAS	V172-7.2-7.200	7.200	172,0	150,0	Sector wise	USER	Level 0 - Calculated - PO7200 - 04-2022	16.221,7	1,1	5,93	5,89
3 Yes	VESTAS	V172-7.2-7.200	7.200	172,0	150,0	Sector wise	USER	Level 0 - Calculated - PO7200 - 04-2022	15.815,0	2,1	5,88	5,82
4 Yes	VESTAS	V172-7.2-7.200	7.200	172,0	150,0	Sector wise	USER	Level 0 - Calculated - PO7200 - 04-2022	17.096,9	1,9	6,12	6,06
5 Yes	VESTAS	V172-7.2-7.200	7.200	172,0	150,0	Sector wise	USER	Level 0 - Calculated - PO7200 - 04-2022	16.885,9	2,6	6,11	6,03
6 Yes	VESTAS	V172-7.2-7.200	7.200	172,0	150,0	Sector wise	USER	Level 0 - Calculated - PO7200 - 04-2022	17.155,7	1,2	6,11	6,08
7 Yes	VESTAS	V172-7.2-7.200	7.200	172,0	150,0	Sector wise	USER	Level 0 - Calculated - PO7200 - 04-2022	17.419,5	1,0	6,16	6,13
8 Yes	VESTAS	V172-7.2-7.200	7.200	172,0	150,0	Sector wise	USER	Level 0 - Calculated - PO7200 - 04-2022	16.948,3	0,7	6,07	6,04

Annual Energy results includes shown losses. For expected NET AEP (expected sold production), see report Loss & Uncertainty.

WTG siting

	UTM (noi	rth)-WGS8	4 Zo	ne: 32										Calculation	period
	Easting	Northing	Z	Row dat	a/Descrip	tion								Start	End
			[m]												
1 New	632.546	4.761.848	9,7	VESTAS	V172-7.2	7200	172.0	!O! hu	o: 150),0 m	(TOT:	236,0	m) (1)	01/01/1993	16/10/2023
2 New	633.604	4.762.317	11,7	VESTAS	V172-7.2	7200	172.0	!O! hu	o: 150),0 m	(TOT:	236,0	m) (2)	01/01/1993	16/10/2023
3 New	632.966	4.763.765	13,7	VESTAS	V172-7.2	7200	172.0	!O! hu	o: 150),0 m	(TOT:	236,0	m) (3)	01/01/1993	16/10/2023
4 New	626.417	4.760.798	2,3	VESTAS	V172-7.2	7200	172.0	!O! hu	o: 150),0 m	(TOT:	236,0	m) (4)	01/01/1993	16/10/2023
5 New	626.379	4.761.714	4,2	VESTAS	V172-7.2	7200	172.0	!O! hu	o: 150),0 m	(TOT:	236,0	m) (5)	01/01/1993	16/10/2023
6 New	624.959	4.762.191	13,8	VESTAS	V172-7.2	7200	172.0	!O! hu	o: 150),0 m	(TOT:	236,0	m) (6)	01/01/1993	16/10/2023
7 New	628.517	4.759.536	2,0	VESTAS	V172-7.2	7200	172.0	!O! hu	o: 150),0 m	(TOT:	236,0	m) (7)	01/01/1993	16/10/2023
8 New	632.826	4.759.662	4,6	VESTAS	V172-7.2	7200	172.0	!O! hul	o: 150),0 m	(TOT:	236,0	m) (8)	01/01/1993	16/10/2023



Licensed user:
Iron solar s.r.l.
via Lanzone, 31
IT-20122 Milano
+ 393487125089
Fabio Paccapelo / francesca.saccarola@hopegroup.it
calculated:
24/10/2023 18:51/3.6.377

PARK - Production Analysis

 $\begin{tabular}{ll} Calculation: WON023_Piombino_VESTAS\ V172\ 7.2MW & WTG: All\ new\ WTGs,\ Air\ density\ varies\ with\ WTG\ position\ 1,205\ kg/m^3\ -\ 1,206\ kg/m^3\ Directional\ Analysis \\ \end{tabular}$

Sector		0 N	1 NNE	2 ENE	3 E	4 ESE	5 SSE	6 S	7 SSW	8 WSW	9 W	10 WNW	11 NNW	Total
Model based energy	[MWh]	5.739,1	19.468,9	19.632,0	4.595,9	8.630,4	32.593,7	16.792,6	3.502,0	3.569,8	7.368,3	6.693,7	7.499,0	136.085,4
-Decrease due to wake losses	[MWh]	283,8	64,4	280,4	70,6	187,5	347,1	467,5	23,4	72,4	54,7	176,0	153,1	2.181,1
Resulting energy	[MWh]	5.455,3	19.404,5	19.351,6	4.525,3	8.442,9	32.246,6	16.325,1	3.478,6	3.497,3	7.313,6	6.517,7	7.345,9	133.904,3
Specific energy	[kWh/m ²]													720
Specific energy	[kWh/kW]													2.325
Decrease due to wake losses	[%]	4,9	0,3	1,4	1,5	2,2	1,1	2,8	0,7	2,0	0,7	2,6	2,0	1,60
Full Load Equivalent	[Hours/year]	95	337	336	79	147	560	283	60	61	127	113	128	2.325

WON023

Iron solar s.r.l. via Lanzone, 31 IT-20122 Milano +393487125089 Fabio Paccapelo / francesca.saccarola@hopegroup.it 24/10/2023 18:51/3.6.377

PARK - Power Curve Analysis

Calculation: WON023_Piombino_VESTAS V172 7.2MW WTG: 1 - VESTAS V172-7.2 7200 172.0 !O!, Hub height: 150,0 m

Level 0 - Calculated - PO7200 - 04-2022

Source: Vestas

Source/Date Created by Created Edited Stop wind speed Power control CT curve type Generator type Specific power kW/m² [m/s]25/04/2022 **USER** 26/08/2021 26/04/2022 25,0 Pitch User defined Variable 0,31

Document no.: 0114-3777 V01

HP curve comparison - Note: For standard air density

Vmean	[m/s]	5	6	/	8	9	10
HP value Pitch, variable speed (2013)	[MWh]	11.840	18.085	24.147	29.566	34.148	37.822
VESTAS V172-7.2 7200 172.0 !O! Level 0 - Calculated - PO7200 - 04-2022	[MWh]	10.658	16.674	22.641	27.985	32.399	35.755
Check value	[%]	11	8	7	6	5	6

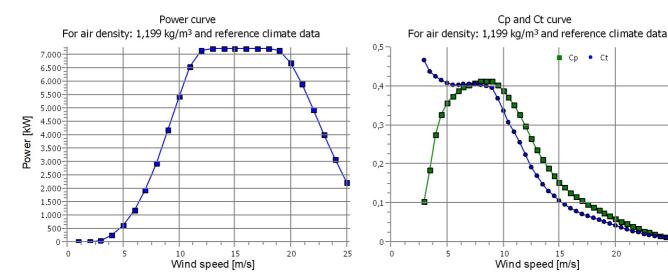
The table shows comparison between annual energy production calculated on basis of simplified "HP-curves" which assume that all WTGs performs quite similar - only specific power loading (kW/m^2) and single/dual speed or stall/pitch decides the calculated values. Productions are without wake losses.

For further details, ask at the Danish Energy Agency for project report J.nr. 51171/00-0016 or see the windPRO manual.

The method is refined in EMD report "20 Detailed Case Studies comparing Project Design Calculations and actual Energy Productions for Wind Energy Projects worldwide", jan 2003.

Use the table to evaluate if the given power curve is reasonable - if the check value are lower than -5%, the power curve probably is too optimistic due to uncertainty in power curve measurement.

Power curve


Original data, Air density: 1,225 kg/m³

Origina	II ual	a, P	iii dens	11y. 1,22
Wind speed	Power	Ср	Wind speed	Ct curve
[m/s]	[kW]		[m/s]	
3,0	42,0	0,11	3,0	0,93
3,5	113,0	0,19	3,5	0,87
4,0	254,0	0,28	4,0	0,85
4,5	426,0	0,33	4,5	0,83
5,0	633,0	0,36	5,0	0,81
5,5	883,0	0,37	5,5	0,81
6,0	1.189,0	0,39	6,0	0,81
6,5	1.549,0	0,40	6,5	0,81
7,0	1.969,0		7,0	0,81
7,5	2.449,0		7,5	0,81
8,0	2.994,0		8,0	0,80
8,5	3.607,0	0,41	8,5	0,80
9,0	4.277,0		9,0	0,79
9,5	4.914,0	0,40	9,5	0,73
10,0	5.519,0		10,0	0,67
10,5	6.098,0		10,5	0,62
11,0	6.647,0		11,0	0,57
11,5	7.015,0		11,5	0,51
12,0	7.158,0		12,0	0,44
12,5	7.189,0		12,5	0,38
13,0	7.198,0		13,0	0,34
13,5	7.200,0		13,5	0,30
14,0	7.200,0		14,0	0,26
14,5	7.200,0		14,5	0,23
15,0	7.200,0		15,0	0,21
15,5	7.200,0		15,5	0,19
16,0	7.200,0		16,0	0,17
16,5	7.200,0		16,5 17,0	0,16
17,0	7.200,0	0,10		0,14
17,5	7.200,0 7.200.0	0,09	17,5	0,13
18,0 18.5	7.191.0	0,09	18,0 18.5	0,12 0.11
19.0	7.191,0	0.07	19.0	0,11
19,5	6.956,0		19,5	0,09
20.0	6.682.0	0.06	20.0	0,08
20,5	6.305,0	0,05	20,5	0,07
21.0	5.865.0	0.04	21.0	0.06
21,5	5.397,0	0,04	21,5	0,06
22.0	4.928.0	0,03	22,0	0,05
22,5	4.459,0	0,03	22,5	0,04
23.0	3.984.0		23,0	0.04
23,5	3.514.0	0,02	23,5	0,03
24,0	3.049,0		24,0	0,03
24.5	2.598.0	0.01	24.5	0.02
25,0	2.202,0		25,0	0,02
23,0	,0	_,0.	25,0	-,

Power and efficiency vs. wind speed

Data used in calculation, Mean air density: 1,199 kg/m³

Wind speed	Power	Ср
[m/s]	[kW]	
1,0	0,0	0,00
2,0	0,0	0,00
3,0	38,9	0,10
4,0	245,8	0,28
5,0	618,0	0,35
6,0	1.162,4	0,39
7,0	1.926,4	0,40
8,0	2.930,3	0,41
9,0	4.181,5	0,41
10,0	5.407,9	0,39
11,0	6.514,3	0,35
12,0	7.114,7	0,30
13,0	7.194,9	0,24
14,0	7.200,0	0,19
15,0	7.200,0	0,15
16,0	7.200,0	0,13
17,0	7.200,0	0,11
18,0	7.200,0	0,09
19,0	7.113,0	0,07
20,0	6.682,0	0,06
21,0	5.865,0	0,05
22,0	4.928,0	0,03
23,0	3.984,0	0,02
24,0	3.049,0	0,02
25,0	2.202,0	0,01

1

0,8

0,6

0,4

0,2

0

Licensed user: I ron solar s.r.l. via Lanzone, 31 IT-20122 Milano +393487125089

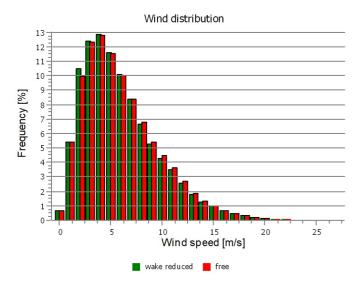
Fabio Paccapelo / francesca.saccarola@hopegroup.it

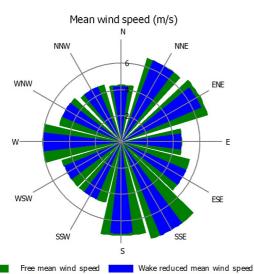
24/10/2023 18:51/3.6.377

PARK - Wind Data Analysis

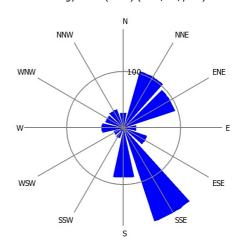
Calculation: WON023_Piombino_VESTAS V172 7.2MW Wind data: 1 - VESTAS V172-7.2 7200 172.0 !O! hub: 150,0 m (TOT: 236,0 m) (1); Hub height: 150,0

Site coordinates

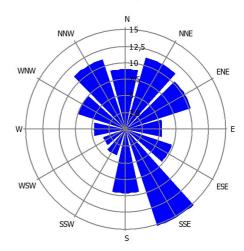

UTM (north)-WGS84 Zone: 32 East: 632.546 North: 4.761.848


VESTAS V172-7.2 7200 172.0 !O! hub: 150,0 m (TOT: 236,0 m) (1)

Masts used Take nearest


Winddata for site

Sector	Free mean wind speed	Wake reduced mean wind	Frequency
		speed	
	[m/s]	[m/s]	[%]
0 N	4,4	4,3	9,1
1 NNE	6,7	6,7	11,3
2 ENE	7,0	6,7	10,4
3 E	4,7	4,7	5,6
4 ESE	5,5	5,5	7,3
5 SSE	7,8	7,8	15,3
6 S	7,2	7,1	9,6
7 SSW	4,8	4,8	4,1
8 WSW	4,8	4,8	3,6
9 W	6,1	6,0	4,8
10 WNW	5,0	5,0	7,6
11 NNW	4,6	4,6	11,2
All	6,0	5,9	100,0



Energy Rose (WTG) (kWh/m²/year)

Frequency (%)

Licensed user: I ron solar s.r.l. via Lanzone, 31 IT-20122 Milano +393487125089

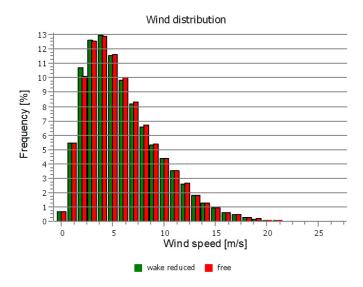
Fabio Paccapelo / francesca.saccarola@hopegroup.it

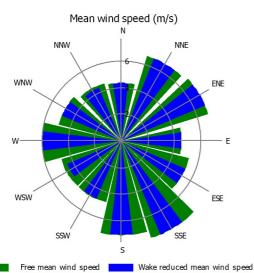
24/10/2023 18:51/3.6.377

PARK - Wind Data Analysis

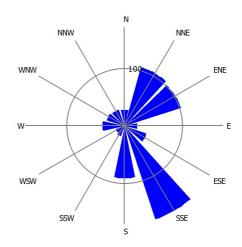
Calculation: WON023_Piombino_VESTAS V172 7.2MW Wind data: 2 - VESTAS V172-7.2 7200 172.0 !O! hub: 150,0 m (TOT: 236,0 m) (2); Hub height: 150,0

Site coordinates

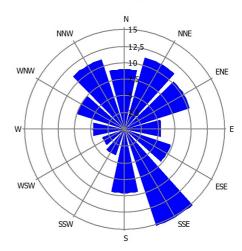

UTM (north)-WGS84 Zone: 32 East: 633.604 North: 4.762.317


VESTAS V172-7.2 7200 172.0 !O! hub: 150,0 m (TOT: 236,0 m) (2)

Masts used Take nearest

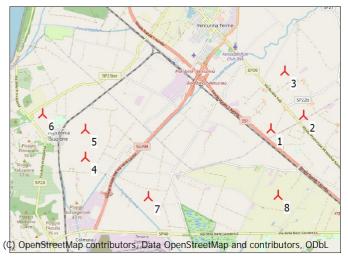

Winddata for site

Secto	r Free mean v	vind speed	Wake reduced	mean wind	Frequency
			speed		
	[m/s]		[m/s]		[%]
0 N		4,4		4,4	9,1
1 NNE		6,7		6,7	11,3
2 ENE		6,9		6,9	10,4
3 E		4,6		4,6	5,6
4 ESE		5,3		5,3	7,3
5 SSE		7,7		7,7	15,3
6 S		7,1		7,1	9,6
7 SSW		4,8		4,7	4,1
8 WSV	V	4,8		4,5	3,6
9 W		6,0		6,0	4,8
10 WN\	N	4,9		4,9	7,6
11 NNV	V	4,6		4,4	11,2
All		5,9		5,9	100,0



Energy Rose (WTG) (kWh/m²/year)

Frequency (%)



Licensed user: Iron solar s.r.l. via Lanzone, 31 IT-20122 Milano +393487125089 Fabio Paccapelo / francesca.saccarola@hopegroup.it 24/10/2023 18:51/3.6.377

PARK - WTG distances

Calculation: WON023_Piombino_VESTAS V172 7.2MW WTG distances

	Z	Nearest WTG	est WTG Z Hori dis		Distance in rotor diameters
	[m]		[m]	[m]	
1	9,7	2	11,7	1.157	6,7
2	11,7	1	9,7	1.157	6,7
3	13,7	2	11,7	1.583	9,2
4	2,3	5	4,2	917	5,3
5	4,2	4	2,3	917	5,3
6	13,8	5	4,2	1.498	8,7
7	2,0	4	2,3	2.450	14,2
8	4,6	1	9,7	2.204	12,8
Min	2,0		2,3	917	5,3
Max	13,8		11,7	2.450	14,2

Scale 1:125.000

New WTG

WON023

Licensed user Iron solar s.r.l. via Lanzone, 31 IT-20122 Milano +393487125089

Fabio Paccapelo / francesca.saccarola@hopegroup.it

24/10/2023 18:51/3.6.377

PARK - Wind Speeds Inside Wind Farm

Calculation: WON023_Piombino_VESTAS V172 7.2MW

Setup
AEP scaled to a full year based on number of samples Scaling factor from 30,8 years to 1 year: 0,032

Calculation performed in UTM (north)-WGS84 Zone: 32 At the site centre the difference between grid north and true north is: 1,1°

Wake Model: N.O. Jensen (RISØ/EMD) Park 2 2018

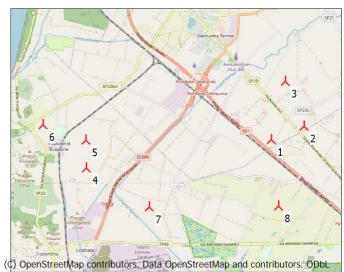
Wake decay constant
Wake decay constant: 0,090 DTU default onshore
Hub height independent Reference WTG: VESTAS V172-7.2 7200 172.0 !O! hub: 150,0 m (TOT: 236,0 m) (1)

Scaler/wind data

SCATER / VIIII
Name
Terrain scaling
Micro terrain flow model
Used period
Meteo object(s)
Displacement height: Sector-wise from calculator
WASP version

EMD Default Measurement Mast Scaler

EMD Default Measurement Mast scaler
Measured Data Scaling (WASP Stability / A-Parameter)
WASP IBZ from Site Data
01/01/1993 01:00:00 - 16/10/2023
ERA5(T) Rectangular Grid_N43,00_E010,50 (4), 150,00m - D Scale
calculator height
WASP 12 Version 12.08.0032

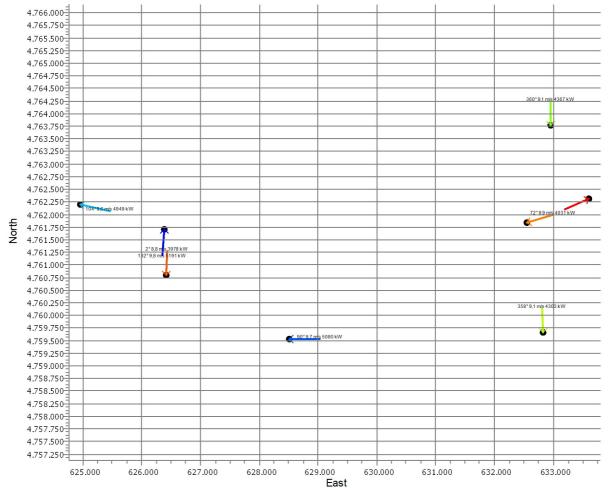

Power correction

Power curve correction (adjusted IEC method, improved to match turbine control)

Max Avg Corr. Neg. Pos corr. corr [%] [%] [%]

Air density ERA5(T) Rectangular Grid_N43,00_E010,50 (4) - 2,00 m [°C] [Pa] [Pa] -1,4 29,4 15,8 992,6 996,0 994,5 1,146 1,274 1,200 93,5 104,0 97,9 From air density settings Resulting air density Relative to 15°C at sea level

[kg/m³] [%] -1,3 -1,4 0,1



Scale 1:125.000

New WTG

Free Wind Speed: 10,5 m/s

Maximum Reduced Wind Speed Inside Wind Farm and the Concurrent Direction

9 79 m/s

9,69 m/s 9,58 m/s

9,48 m/s

9,37 m/s

9,27 m/s

8,84 m/s

8,74 m/s

Licensed user: I ron solar s.r.l. via Lanzone, 31 IT-20122 Milano +393487125089

Fabio Paccapelo / francesca.saccarola@hopegroup.it 24/10/2023 18:51/3.6.377

PARK - Time varying AEP

Calculation: WON023_Piombino_VESTAS V172 7.2MW

Windfarm: 57,6 MW based on 8 turbines of type VESTAS V172-7.2 7200 172.0 !O!.

Selection: All new WTGs

Calculated mean yield per month and hour [MWh]. The result includes wake losses and any curtailment losses.

Values are scaled to a full year, see correction factors at main result page.

Hour/Month [MWh]	1	2	3	4	5	6	7	8	9	10	11	12	Grand Total
0	620	553	565	449	342	260	246	245	347	493	615	626	5.362
1	630	567	574	468	348	262	251	246	350	500	629	635	5.459
2	631	573	585	473	353	265	251	245	357	510	641	646	5.532
3	641	578	591	480	355	263	238	241	370	514	647	651	5.569
4	652	579	593	488	363	263	232	229	377	520	649	653	5.598
5	659	580	596	492	371	266	230	226	383	528	660	654	5.646
6	664	579	602	495	375	268	231	225	385	532	664	654	5.674
7	662	578	608	496	373	262	229	222	390	541	667	653	5.679
8	657	584	607	489	363	249	223	214	388	544	667	652	5.639
9	652	584	600	477	353	242	220	207	380	539	661	648	5.564
10	647	575	594	468	347	243	215	199	363	521	647	646	5.466
11	608	538	548	426	337	234	213	184	326	488	615	606	5.123
12	620	546	553	440	357	264	249	200	321	479	614	613	5.255
13	623	539	558	461	386	304	302	242	333	469	611	613	5.440
14	622	530	564	487	414	344	352	291	348	460	611	617	5.640
15	619	527	571	506	435	361	382	331	363	457	607	624	5.783
16	626	533	581	515	440	370	387	343	375	456	605	633	5.862
17	639	543	587	515	431	359	375	336	382	462	615	641	5.883
18	653	553	586	504	412	332	354	320	382	471	620	648	5.836
19	660	555	580	495	397	314	332	301	386	485	620	648	5.772
20	658	552	570	478	383	303	321	281	386	493	617	643	5.685
21	650	550	565	470	368	287	301	261	379	502	617	638	5.589
22	641	552	567	459	360	271	280	246	373	509	619	640	5.516
23	606	539	551	436	349	259	259	242	361	504	606	621	5.333
Grand Total	15.341	13.387	13.894	11.466	9.009	6.846	6.673	6.078	8.807	11.977	15.124	15.302	133.904

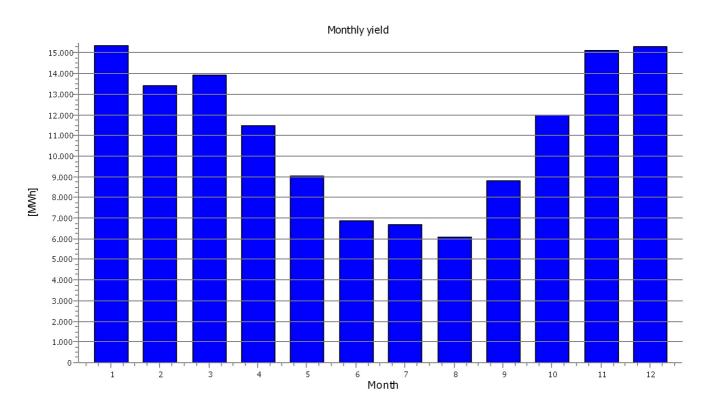
Hour/Month	1	2	3	4	5	6	7	8	9	10	11	12	Grand Total
[MW]													
0	20,0	19,7	18,2	15,0	11,0	8,7	7,9	7,9	11,6	15,9	20,5	20,2	14,7
1	20,3	20,2	18,5	15,6	11,2	8,7	8,1	7,9	11,7	16,1	21,0	20,5	15,0
2	20,4	20,5	18,9	15,8	11,4	8,8	8,1	7,9	11,9	16,4	21,4	20,8	15,2
3	20,7	20,7	19,0	16,0	11,4	8,8	7,7	7,8	12,3	16,6	21,6	21,0	15,3
4	21,0	20,7	19,1	16,3	11,7	8,8	7,5	7,4	12,6	16,8	21,6	21,1	15,3
5	21,2	20,7	19,2	16,4	12,0	8,9	7,4	7,3	12,8	17,0	22,0	21,1	15,5
6	21,4	20,7	19,4	16,5	12,1	8,9	7,4	7,3	12,8	17,2	22,1	21,1	15,5
7	21,3	20,6	19,6	16,5	12,0	8,7	7,4	7,2	13,0	17,4	22,2	21,1	15,6
8	21,2	20,9	19,6	16,3	11,7	8,3	7,2	6,9	12,9	17,5	22,2	21,0	15,4
9	21,0	20,9	19,4	15,9	11,4	8,1	7,1	6,7	12,7	17,4	22,0	20,9	15,2
10	20,9	20,5	19,2	15,6	11,2	8,1	6,9	6,4	12,1	16,8	21,6	20,8	15,0
11	19,6	19,2	17,7	14,2	10,9	7,8	6,9	5,9	10,9	15,8	20,5	19,6	14,0
12	20,0	19,5	17,8	14,7	11,5	8,8	8,0	6,5	10,7	15,4	20,5	19,8	14,4
13	20,1	19,2	18,0	15,4	12,4	10,1	9,7	7,8	11,1	15,1	20,4	19,8	14,9
14	20,1	18,9	18,2	16,2	13,4	11,5	11,3	9,4	11,6	14,9	20,4	19,9	15,5
15	20,0	18,8	18,4	16,9	14,0	12,0	12,3	10,7	12,1	14,8	20,2	20,1	15,8
16	20,2	19,0	18,8	17,2	14,2	12,3	12,5	11,1	12,5	14,7	20,2	20,4	16,1
17	20,6	19,4	18,9	17,2	13,9	12,0	12,1	10,8	12,7	14,9	20,5	20,7	16,1
18	21,1	19,8	18,9	16,8	13,3	11,1	11,4	10,3	12,7	15,2	20,7	20,9	16,0
19	21,3	19,8	18,7	16,5	12,8	10,5	10,7	9,7	12,9	15,6	20,7	20,9	15,8
20	21,2	19,7	18,4	15,9	12,4	10,1	10,3	9,1	12,9	15,9	20,6	20,7	15,6
21	21,0	19,7	18,2	15,7	11,9	9,6	9,7	8,4	12,6	16,2	20,6	20,6	15,3
22	20,7	19,7	18,3	15,3	11,6	9,0	9,0	7,9	12,4	16,4	20,6	20,6	15,1
23	19,6	19,2	17,8	14,5	11,3	8,6	8,4	7,8	12,0	16,3	20,2	20,0	14,6
Grand Total	20,6	19,9	18,7	15,9	12,1	9,5	9,0	8,2	12,2	16,1	21,0	20,6	15,3

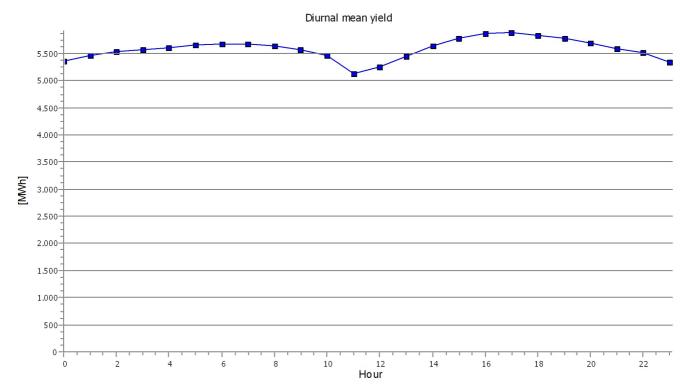
Project:

WON023

Licensed user:
Iron solar s.r.l.
via Lanzone, 31
IT-20122 Milano
+ 393487125089
Fabio Paccapelo / francesca.saccarola@hopegroup.it
calculated:
24/10/2023 18:51/3.6.377

PARK - Time varying AEP


Calculation: WON023_Piombino_VESTAS V172 7.2MW


Windfarm: 57,6 MW based on 8 turbines of type VESTAS V172-7.2 7200 172.0 !O!.

Selection: All new WTGs

Calculated mean yield per month and hour [MWh]. The result includes wake losses and any curtailment losses.

Values are scaled to a full year, see correction factors at main result page.

WON023

Licensed user: Iron solar s.r.l. via Lanzone, 31 IT-20122 Milano +393487125089 Fabio Paccapelo / francesca.saccarola@hopegroup.it 24/10/2023 18:51/3.6.377

PARK - Time varying AEP

Calculation: WON023_Piombino_VESTAS V172 7.2MW

Windfarm: 57,6 MW based on 8 turbines of type VESTAS V172-7.2 7200 172.0 !O!.

Selection: All new WTGs

Calculated mean yield per month and hour [MWh]. The result includes wake losses and any curtailment losses.

Hours	Hours [%]	Hours accumulated	Power [MW]	Power (MW/WTG)
213	2,4	213	57,6	7,2
537	6,1	751	55,1 - 57,6	6,9 - 7,2
129	1,5	879	52,6 - 55,1	6,6 - 6,9
105	1,2	984	50,1 - 52,6	6,3 - 6,6
104	1,2	1088	47,6 - 50,1	5,9 - 6,3
100	1,1	1188	45,1 - 47,6	5,6 - 5,9
104	1,2	1292	42,6 - 45,1	5,3 - 5,6
108	1,2	1400	40,1 - 42,6	5,0 - 5,3
108	1,2	1508	37,6 - 40,1	4,7 - 5,0
114	1,3	1621	35,1 - 37,6	4,4 - 4,7
115	1,3	1737	32,6 - 35,1	4,1 - 4,4
116	1,3	1853	30,1 - 32,6	3,8 - 4,1
131	1,5	1984	27,5 - 30,1	3,4 - 3,8
143	1,6	2127	25,0 - 27,5	3,1 - 3,4
166	1,9	2293	22,5 - 25,0	2,8 - 3,1
189	2,2	2482	20,0 - 22,5	2,5 - 2,8
218	2,5	2700	17,5 - 20,0	2,2 - 2,5
245	2,8	2946	15,0 - 17,5	1,9 - 2,2
292	3,3	3238	12,5 - 15,0	1,6 - 1,9
357	4,1	3595	10,0 - 12,5	1,3 - 1,6
453	5,2	4048	7,5 - 10,0	0,9 - 1,3
601	6,9	4649	5,0 - 7,5	0,6 - 0,9
851	9,7	5500	2,5 - 5,0	0,3 - 0,6
1757	20,0	7257	0,0 - 2,5	0,0 - 0,3
1509	17,2	8766	0,0	0,0

Duration curve 57,6 MW WindFarm 56-52 50-48 46-44 42-40-38 36 34 32-30 \leq 28 26 24 22-20-18-16-14 12 10-8 6 = 4 2 1.000 2.000 3.000 4.000 5.000 6.000 7.000 Hours

Project:

WON023

Licensed user: Iron solar s.r.l. via Lanzone, 31 IT-20122 Milano +393487125089

Fabio Paccapelo / francesca.saccarola@hopegroup.it

24/10/2023 18:51/3.6.377

PARK - Scaling info

Calculation: WON023_Piombino_VESTAS V172 7.2MW

Scaler settings

Name EMD Default Measurement Mast Scaler

Terrain scaling Measured Data Scaling (WAsP Stability / A-Parameter)

No RIX correction RIX correction Displacement height from calculator Sector-wise from calculator calculator height Micro terrain flow model Site data: STATGEN (5)

Site Data: Site data: STATGEN (5)

Obstacles:

All obstacles used

Roughness:

Terrain data files used in calculation:

D:\Nelke Srl\Ufficio tecnico - Documenti\Progetti\WON023_Piombino\1_Supporto\WINDPRO\producibilità\ROUGHNESSLINE_WON023_1.wpo Min X: 605.595, Max X: 650.598, Min Y: 4.739.361, Max Y: 4.786.074, Width: 45.003 m, Height: 46.713 m

Orography:

Terrain data files used in calculation:

D:\Nelke Srl\Ufficio tecnico - Documenti\Progetti\WON023_Piombino\1_Supporto\WINDPRO\WON023_EMDGrid_1.wpg Min X: 604.964, Max X: 653.594, Min Y: 4.739.540, Max Y: 4.783.760, Width: 48.630 m, Height: 44.220 m

1,0000 Overall factor Overall offset 0,0000 By sector Nο By month Nο By hour No By wind speed No

Project:

WON023

Licensed user: Iron solar s.r.l. via Lanzone, 31 IT-20122 Milano +393487125089 Fabio Paccapelo / francesca.saccarola@hopegroup.it 24/10/2023 18:51/3.6.377

PARK - Displacement height

Calculation: WON023_Piombino_VESTAS V172 7.2MW

Sector-wise from calculator: calculator height Forest description is based on height grid object

WTG displacement height set to 1,00 of forest height.

WTG displacement height are adjusted to a factor of 50,0 of forest height in up wind direction. WTG displacement height are adjusted to a factor of 25,0 of forest height in down wind direction.

Sector wise displacement heights for masts

Sector	wise dispiace	ement neignts for	masts														
				DH (0)	DH (1)	DH (:	2) DF	1 (3)	DH (4)	DH (5)	DH (6)	DH (7)	DH (8)) DH (9)	DH (10)) DF	Ⅎ (11)
				[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]		[m]
ERA5(T) Rectangula	ar Grid N43,00 E	010,50 (4	0,00	0,00	0,0	00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	00	0,00
`	, 3			,								·					
Sector	wise displace	ement heights for	WTGs														
Valid	Manufact.	Type-generator	Power,	Rotor	Hub	DH	DH	DH	DH	DH (4)	DH (5)	DH (6)	DH (7)	DH (8)	DH (9)	DH	DH
		31 0	rated	diameter	height	(0)	(1)	(2)	(3)		• ,					(10)	(11)
			[kW]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]
1 Yes	VESTAS	V172-7.2-7.200	7.200	172,0	150,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,17	0,00	0,00	0,00	0,00
2 Yes	VESTAS	V172-7.2-7.200	7.200	172,0	150,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
3 Yes	VESTAS	V172-7.2-7.200	7.200	172,0	150,0	0,00	0,00	0,22	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,37
4 Yes	VESTAS	V172-7.2-7.200	7.200	172,0	150,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
5 Yes	VESTAS	V172-7.2-7.200	7.200	172,0	150,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
6 Yes	VESTAS	V172-7.2-7.200	7.200	172,0	150,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
7 Yes	VESTAS	V172-7.2-7.200	7.200	172,0	150,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
8 Yes	VESTAS	V172-7.2-7.200	7.200	172,0	150,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

Licensed user: Iron solar s.r.l. via Lanzone, 31 IT-20122 Milano +393487125089 Fabio Paccapelo / francesca.saccarola@hopegroup.it 24/10/2023 18:51/3.6.377

PARK - Map

Calculation: WON023_Piombino_VESTAS V172 7.2MW

4 km Map: EMD OpenStreetMap , Print scale 1:75.000, Map center UTM (north)-WGS84 Zone: 32 East: 629.281 North: 4.761.650 New WTG

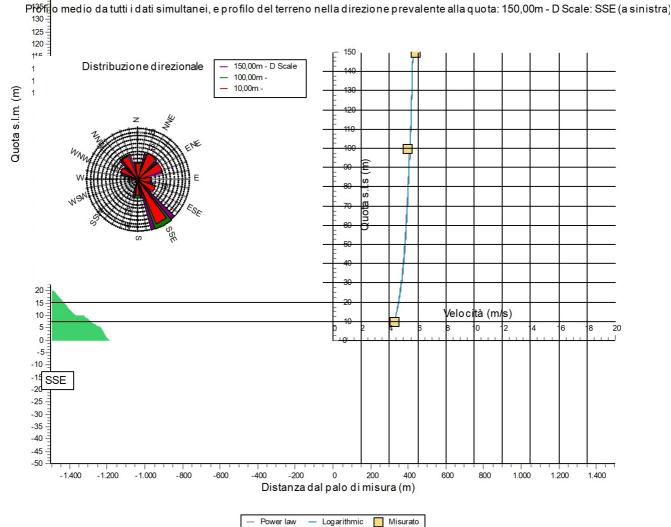
Utente autorizzato:
Iron solar s.r.l.
via Lanzone, 31
IT-20122 Milano
+393487125089
Fabio Paccapelo / francesca.saccarola@hopegroup.it
Redatto ii:
24/10/2023 19:11

Relazione dati meteo - Risultati principali

Palo di misura: ERA5(T) Rectangular Grid_N43,00_E010,50 (4); WON023_Meteo Periodo: Ultimo anno completo: 01/01/2022 - 31/12/2022

Posizione del palo: UTM (north)-WGS84 Zone: 32 Est: 622.264 Nord: 4.761.906

Quote di misura e velocità del vento I dati disabilitati non sono inclusi nella tabella


ID	Altezza	Dati abilitati	Dati	U_max	U_media *)
	[m]	[%]		[m/s]	[m/s]
150,00m - D Scale#)	150,00	100,0	8760	20,2	5,8
100,00m -	100,00	100,0	8760	18,6	5,3
10,00m -	10,00	100,0	8760	15,0	4,4

*) U_media è la semplice media aritmetica

#) Selezionata come altezza fissa nel grafico del profilo verticale

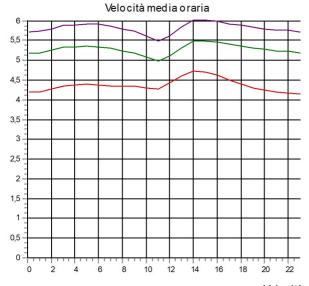
La recorda de 150 00m a D. Caralas COE (a aire

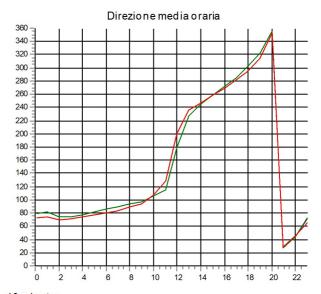
Parametri del miglior fit, basato su tutti i dati (i valori hanno piena validità solo su terreno pianeggiante): Esponente del gradiente 0,0987 (profilo a legge di potenza)

Lunghezza di rugosità 0,0015 m classe 0,40 (rugosità equivalente per il profilo logaritmico)

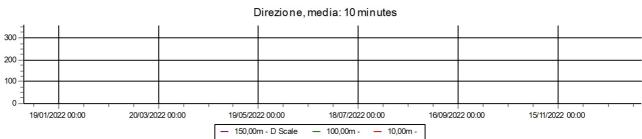
Utente autorizzato: I ron solar s.r.l. via Lanzone, 31 IT-20122 Milano +393487125089

Fabio Paccapelo / francesca.saccarola@hopegroup.it Redatto II: 24/10/2023 19:11


Relazione dati meteo - Risultati principali


Palo di misura: ERA5(T) Rectangular Grid_N43,00_E010,50 (4); WON023_Meteo Periodo: Ultimo anno completo: 01/01/2022 - 31/12/2022

Distribuzione direzionale delle velocità


Statistica

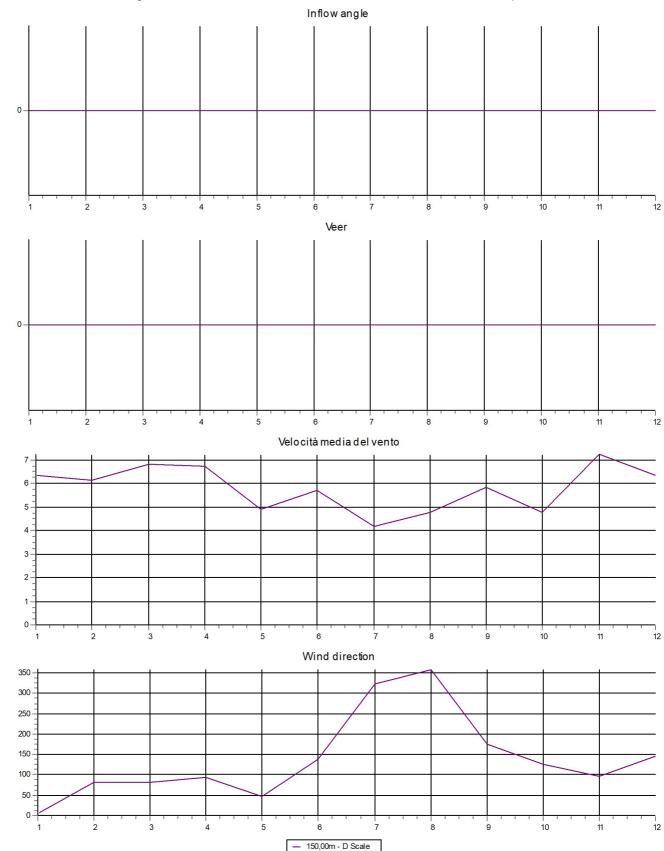
	Parametro	Unità	N. dati	Percentuale del totale [%]	Media	Weibull media	Weibull A	Weibull k
	Velocità media del vento, tutti i dati Wind direction, tutti i dati	m/s Gradi Degrees/m	8760 8760 0		5,81 81,35	5,81	6,53	1,77
	Inflow angle, tutti i dati	Gradi	8760		0,00			
100,00m -	Velocità media del vento, tutti i dati	m/s	8760			5,27	5,92	1,74
100,00m -	Wind direction, tutti i dati	Gradi	8760		81,42			
10,00m - 10,00m -	Velocità media del vento, tutti i dati Wind direction, tutti i dati	m/s Gradi	8760 8760		4,37 75,23	4,35	4,90	1,84

Utente autorizzato: Iron solar s.r.l. via Lanzone, 31 IT-20122 Milano +393487125089 Fabio Paccapelo / francesca.saccarola@hopegroup.it 24/10/2023 19:11

Relazione dati meteo - Velocità medie mensili

Palo di misura: ERA5(T) Rectangular Grid_N43,00_E010,50 (4); WON023_Meteo Periodo: Ultimo anno completo: 01/01/2022 - 31/12/2022 Velocità medie mensili

150,00m - D Scale

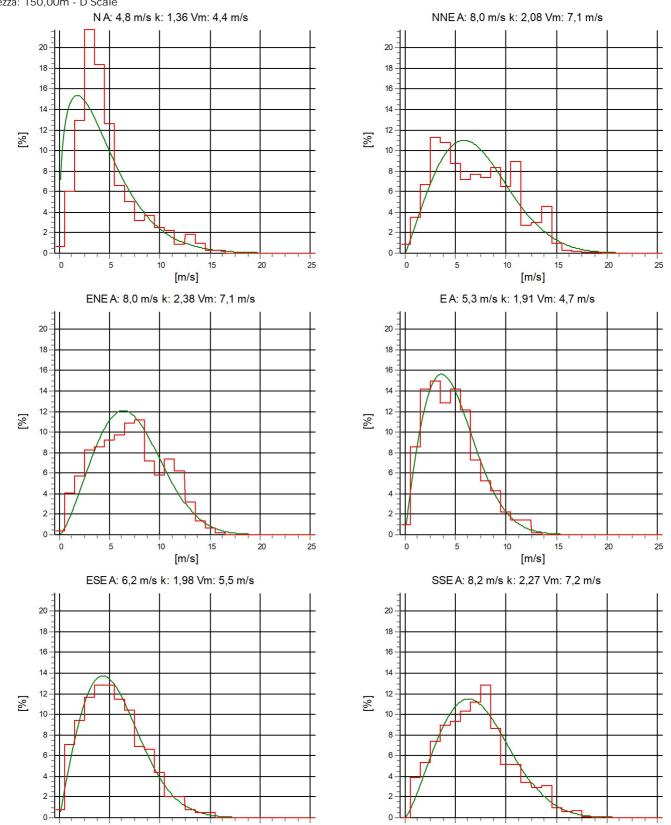

Mese	2022	2023	Media	Media mensile
Gennaio	6,37		6,37	6,37
Febbraio	6,15		6,15	6,15
Marzo	6,81		6,81	6,81
Aprile	6,75		6,75	6,75
Maggio	4,90		4,90	4,90
Giugno	5,71		5,71	5,71
Luglio	4,19		4,19	4,19
Agosto	4,79		4,79	4,79
Settembre	5,86		5,86	5,86
Ottobre	4,76		4,76	4,76
Novembre	7,25		7,25	7,25
Dicembre	6,34		6,34	6,34
Media, tutti i dati	5,81		6,14	
media dei mesi	5,82			6,14

Utente autorizzato:
Iron solar s.r.l.
via Lanzone, 31
IT-20122 Milano
+393487125089
Fabio Paccapelo / francesca.saccarola@hopegroup.it
Redatto II:
24/10/2023 19:11

Relazione dati meteo - Grafici mensili cumulativi

Palo di misura: ERA5(T) Rectangular Grid_N43,00_E010,50 (4); WON023_Meteo Periodo: Ultimo anno completo: 01/01/2022 - 31/12/2022

Utente autorizzato Iron solar s.r.l. via Lanzone, 31 IT-20122 Milano +393487125089 Fabio Paccapelo / francesca.saccarola@hopegroup.it 24/10/2023 19:11

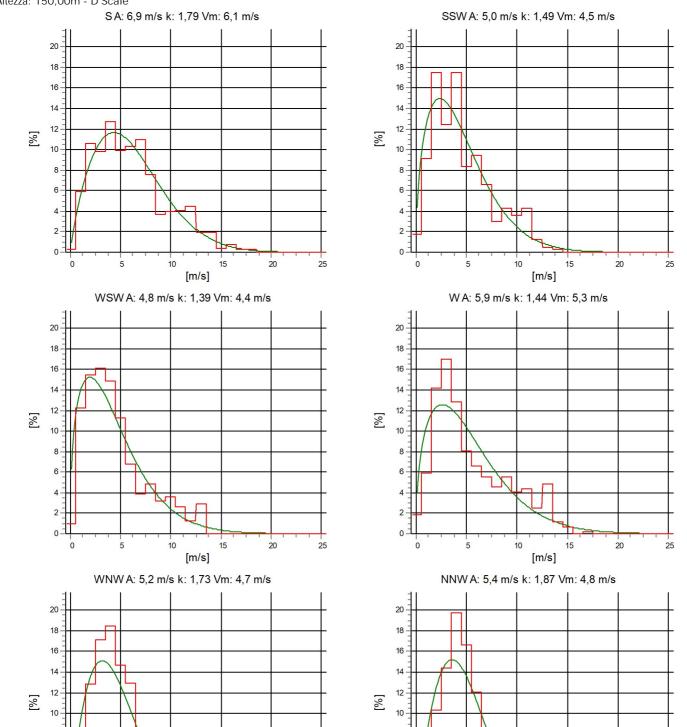

Relazione dati meteo - Grafici mensili dettagliati

Palo di misura: ERA5(T) Rectangular Grid_N43,00_E010,50 (4); WON023_Meteo Periodo: Ultimo anno completo: 01/01/2022 - 31/12/2022 Altezza: 150,00m - D Scale Gennaio Febbraio Marzo Aprile Maggio Giugno Luglio Agosto Settembre Ottobre Novembre Dicembre 15 - 20 m/s <5 m/s >20 m/s 5 - 10 m/s 10 - 15 m/s

Utene autorizzato:
Iron solar s.r.l.
via Lanzone, 31
IT-20122 Milano
+393487125089
Fabio Paccapelo / francesca.saccarola@hopegroup.it
Redatto II:
24/10/2023 19:11

Relazione dati meteo - Grafici settoriali di frequenza e Weibull

Palo di misura: ERA5(T) Rectangular Grid_N43,00_E010,50 (4); WON023_Meteo Periodo: Ultimo anno completo: 01/01/2022 - 31/12/2022 Altezza: 150,00m - D Scale


[m/s]

[m/s]

Iron solar s.r.l. via Lanzone, 31 IT-20122 Milano +393487125089 Fabio Paccapelo / francesca.saccarola@hopegroup.it 24/10/2023 19:11

Relazione dati meteo - Grafici settoriali di frequenza e Weibull

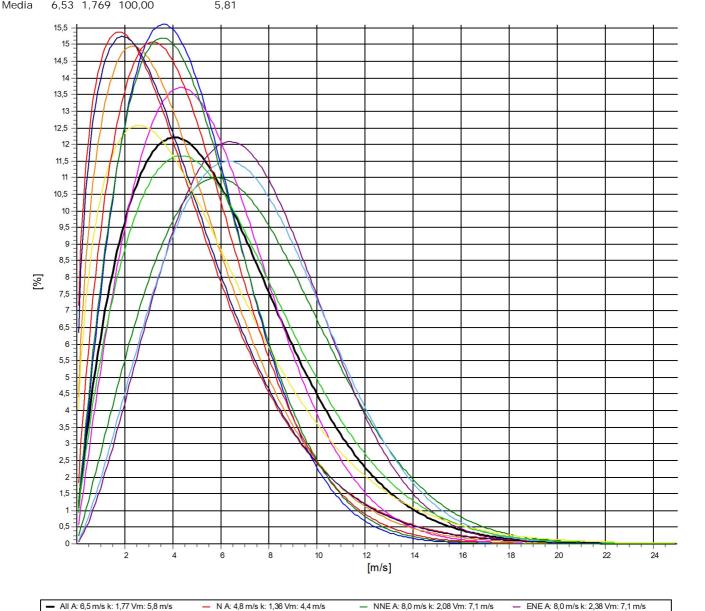
Palo di misura: ERA5(T) Rectangular Grid_N43,00_E010,50 (4); WON023_Meteo Periodo: Ultimo anno completo: 01/01/2022 - 31/12/2022 Altezza: 150,00m - D Scale

6

[m/s]

[m/s]

Utente autorizzato: Iron solar s.r.l. via Lanzone, 31 IT-20122 Milano +393487125089 Fabio Paccapelo / francesca.saccarola@hopegroup.it 24/10/2023 19:11


Relazione dati meteo - Compendio dati Weibull

Palo di misura: ERA5(T) Rectangular Grid_N43,00_E010,50 (4); WON023_Meteo Periodo: Ultimo anno completo: 01/01/2022 - 31/12/2022

Altezza: 150,00m - D Scale

Dati Weibull

Settore	Α	k	f	Velocità media
	[m/s]			[m/s]
0-N	4,77	1,355	8,13	4,37
1-NNE	8,01	2,081	10,51	7,09
2-ENE	8,04	2,379	10,03	7,12
3-E	5,34	1,912	6,12	4,74
4-ESE	6,21	1,978	7,76	5,51
5-SSE	8,15	2,269	17,43	7,22
6-S	6,88	1,787	8,63	6,12
7-SSO	4,97	1,489	4,50	4,49
8-OSO	4,82	1,388	3,54	4,40
9-0	5,87	1,444	4,98	5,33
10-ONO	5,23	1,732	8,03	4,66
11-NNO	5,40	1,865	10,34	4,80
Media	6.53	1 760	100 00	5.81

SSE A: 8,2 m/s k: 2,27 Vm: 7,2 m/s

W A: 5,9 m/s k: 1,44 Vm: 5,3 m/s

24/10/2023 19:11 / 8

S A: 6,9 m/s k: 1,79 Vm: 6,1 m/s WNW A: 5,2 m/s k: 1,73 Vm: 4,7 m/s

ESE A: 6,2 m/s k: 1,98 Vm: 5,5 m/s

WSW A: 4,8 m/s k: 1,39 Vm: 4,4 m/s

E A: 5,3 m/s k: 1,91 Vm: 4,7 m/s

SSW A: 5,0 m/s k: 1,49 Vm: 4,5 m/s

NNW A: 5,4 m/s k: 1,87 Vm: 4,8 m/s