REGION	IE PUGLIA	PROVINCIA DI BARLETTA - ANDRIA - TRANI	COMUNE DI SPINAZZOLA
Denominazione impianto:		MASSERIA D'ERRICO	
Ubicazione	Comu Local	ine di Spinazzola (BT) tà "Masseria D'Errico"	Foglio: 82-83-84 Particelle: varie
e potenza i PROPONENTE APOLLO SOL	n località "Masse in immissione pa APOL AR 2 Viale de	ria D'Errico", potenza nominale pa ri a 27,9MW AC, e delle relative op ricadenti nello stesso Comune. LO SOLAR 2 S.r.I. ella Stazione n°7, 39100 BOLZANO (BZ)	ri a 29,57MW in DC pere di connessione alla RTN
		Dollosolar2srl@legalmail.it	ITÀ
	EULUGICA		Scala
₽ Numero Data	Motivo		Eseguito Verificato Approvato
E Rev 0 Marzo	2023 Istanza via art.23 387/03.	D.Lgs. 152/06 - Istanza Autorizzazione Unica an	
$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ Rev 1 $\begin{bmatrix} 1 \\ 2023 \end{bmatrix}$	Meridionale- Sede	Basilicata	
			 Spazio riservato agli Enti
GRM GROUP s.r.l. Via Caduti di Nassir 70022 Altamura (BA P. IVA 0781612072 PEC: grmgroupsrl@ Tel: 080 4168931 IL TECNICO Dott. Geol. Pietro Pl Via Mauro Parsia 7	iya n°179 \) 4 pec.it EPE	CIRM CIROUP	-
(BA) Ordine dei Geologi Email: pietropepe@ Cell: 339/6828496	- / ∪∪∠∠ Altamura della Puglia n.402 <i>libero.it</i>	DEI GEO Dolt. Groß D PEPE PIETRO X. 402 X. COGLIN	

1	PREMESSA	4
2	INQUADRAMENTO GEOLOGICO REGIONALE	7
2	2.1 Caratteristiche geologiche generali	7
2	2.2 Successione stratigrafica	
2	2.3 Inquadramento Strutturale e morfologico	9
2	2.4 Inquadramento Idrografico	
2	2.5 Inquadramento Idrogeologico	
3	ANALISI DEI VINCOLI	
3	3.1 Vincoli del PPTR	
3	 Piano Stralcio per la Difesa dal Rischio Idrogeologico 	
4	DATI PO77I ISPRA	14
5		
ی ۔		
5	5.1 Stratigrafia del sondaggio a carotaggio continuo	
6	CONSIDERAZIONI SISMOLOGICHE	
6	5.1 Aspetti generali	
_ 6	5.2 Caratteristiche sismiche di riferimento del territorio	
7	PROSPEZIONI SISMICHE	
7	7.1 Prospezioni sismiche di superficie in onde P	
	Descrizione del metodo e della strumentazione	
	Acquisizione dei dati	
	Elaborazione dei dati	
	Rappresentazione dei dati	
	Interpretazione dei risultati	
8	Prospezione sismica in onde S e stima del VS,eq	
8	8.1 Masw (Multichannel Analysis of Surface Waves) - Descrizione del metodo e della s	trumentazione.33
	MASW - Acquisizione dei dati	
	MASW - Rappresentazione dei risultati	
	MASW – Interpretazione dei risultati	
9	STIMA DEI MODULI ELASTICI DINAMICI	
10	PROVE PENETROMETRICHE DINAMICHE CONTINUE (DPSH)	
	Penetrometri in uso in Italia	43
	Correlazione con Nsnt	
	1 1 1 Valutazione resistenza dinamica alla nunta Ron	
	Metodologia di elaborazione	++ 11
	Valutazioni statistiche e correlazioni	++ 15
	Pressione ammissibile	
	Correlazioni geotecniche terreni incoerenti	45 16
	Correlazioni geotecniche terreni coesivi	
	Risultati delle prove DPSH eseguita	+0 50
11	ANALISI DI STABILITA' DEL VERSANTE	
11	11.1 Definizione	
1	11.1 Dutititituita	
1	11.2 Introduzione an anansi ui stabilità	
1	11.5 Niciouo equinorio ininie (LENI)	
1	11.4 Metodo di Fallenius (1027)	
1	11.5 Metodo di Richon (1927)	
1	11.0 Niciouo ui Disilop (1755)	
1	11.7 Iviciouo ui Jailou (1907)	
1	11.0 Natodo di Sarma (1072)	
1	11.7 Iviciouo ui Saillia (1973)	
1	11.10 Microuol di Spelleel (1907)	
1	11.11 Interout di Morgensieri e Price (1903)	
1	11.12 Ivictodo di Zeng e Liang (2002)	
1	11.15 valutazione della azione sismica	
1	11.14 Kiterca della superficie di scorrimento critica	
1	11.15 Stabilizzazione di pendii con i utilizzo di pali	
1	11.10 Canco infine relativo ali interazione ira i pali ed il terreno laterale	
1	11.17 Ivietodo del carico limite di Broms	
I	LI IX Elemento Kintorzo	

INDICE

11.19 Risultati del calcolo Profilo A	
11.20 Risultati del calcolo Profilo B	77
12 DEFINIZIONE DELLE UNITA' LITOTECNICHE	
12.1 Classificazione geotecnica dei terreni	
13 COMPATIBILITÀ IDROGEOLOGICA RISPETTO AL PAI	
14 MODELLO GEOLOGICO E CONSIDERAZIONI CONCLUSIVE	85
ALLEGATO 01 - CARTA GEOLOGICA E SEZIONE GEOLOGICA	
ALLEGATO 02 - CARTA GEOMORFOLOGICA	
ALLEGATO 03 - CARTA IDROGEOLOGICA	89
ALLEGATO 04 - CARTA DEL RISCHIO (PAI BASILICATA)	
ALLEGATO 05 – PLANIMETRIA UBICAZIONE INDAGINI	
ALLEGATO 06 – PROVE DPSH	
1 Stima dei parametri geotecnici DPSH01	
2 Stima dei parametri geotecnici DPSH02	
3 Stima dei parametri geotecnici DPSH03	
4 Stima dei parametri geotecnici DPSH04	
5 Stima dei parametri geotecnici DPSH05	
6 Stima dei parametri geotecnici DPSH06	
ALLEGATO 07A - PROSPEZIONE SISMICA	106
ALLEGATO 07B: PROSPEZIONI SISMICHE PER LA STIMA DEL VS,EQ	114
ALLEGATO 07B: PROSPEZIONI SISMICHE PER LA STIMA DEL VS,EQ Elaborati indagine MASW	114 115
ALLEGATO 07B: PROSPEZIONI SISMICHE PER LA STIMA DEL VS,EQ Elaborati indagine MASW MASW01	114 115 115
ALLEGATO 07B: PROSPEZIONI SISMICHE PER LA STIMA DEL VS,EQ Elaborati indagine MASW MASW01 MASW02	114 115 115 118

RIFERIMENTI NORMATIVI E BIBLIOGRAFICI

- Autorità di Bacino Distrettuale dell'Appennino Meridionale sede della Basilicata Piano Stralcio per la Difesa dal Rischio Idrogeologico – "Carta del Rischio"
- Azzaroli A, Radina B., Perno U. (1968) "Note illustrative della Carta Geologica D'Italia, scala 1:100.000, Foglio 188 "Gravina in Puglia";
- Ciaranfi N et al (1983) "Carta Neotettonica dell'Italia Meridionale", Consiglio Nazionale delle Ricerche, Progetto finalizzato Geodinamica, Pubbl. n. 515 del P.F. Geodinamica, Bari;
- AA.VV (1999) "Guide Geologiche Regionali Puglia e Monte Vulture", Società Geologica Italiana;
- Decreto Ministero LL.PP.11/03/ "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione ed il collaudo delle opere di sostegno delle terre e delle opere di fondazione".
- Ordinanza PCM 3519 (28/04/2006) "Criteri generali per l'individuazione delle zone sismiche e per la formazione e l'aggiornamento degli elenchi delle medesime zone" (G.U. n.108 del 11/05/2006)
- Ordinanza PCM 3274 (20/03/2003) "Primi elementi in materia di criteri generali per la classificazione del territorio nazionale e di normative tecniche" (G.U. n.105 del 08/05/2003).
- Gruppo di Lavoro MPS (2004) "Redazione della mappa di pericolosità sismica prevista dall'Ordinanza PCM 3274 del 20 marzo 2003". Rapporto Conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, aprile 2004, 65 pp. + 5 appendici.
- Convenzione INGV-DPC 2004 2006 "Progetto S1 Proseguimento della assistenza al DPC per il completamento e la gestione della mappa di pericolosità sismica prevista dall'Ordinanza PCM 3274 e progettazione di ulteriori sviluppi"
- Ordinanza PCM 3519 del 28 aprile 2006 All. 1b "Pericolosità sismica di riferimento per il territorio nazionale".
- "Norme Tecniche per le Costruzioni D. Min. Infrastrutture" del 17 gennaio 2018 (Suppl. Ord. G. U. 20.2.2018, n. 42);
- Circolare n. 7 dell'11/02/2019 "Istruzione per l'applicazione dell'aggiornamento delle Norme Tecniche delle Costruzioni".

1 PREMESSA

A supporto del Progetto Definitivo per la realizzazione di un **"impianto agrovoltaico da ubicare in agro del comune di Spinazzola (TA) in località "Masseria D'Errico", potenza nominale pari a 29,57MW in DC e potenza in immissione pari a 27,9MW AC, e delle relative opere di connessione alla RTN ricadenti nello stesso Comune", e per le richieste di integrazione formulate dall'Autorità di Bacino Distrettuale dell'Appennino Meridionale – Sede Basilicata, con protocollo n. 133741 del 18/08/2023, è stato svolto il presente studio geologico finalizzato in primo luogo alla definizione delle caratteristiche litostratigrafiche, morfologiche, tettoniche ed idrogeologiche dell'area in esame, in secondo luogo alla valutazione delle proprietà fisico-meccaniche dei terreni coinvolti dall'opera in progetto, della sismicità dell'area e della stabilità del versante impegnato.**

Scopo dell'indagine è stato quello di:

- definire le caratteristiche litostratigrafiche, morfologiche, geotecniche e tettoniche dell'area interessata dal progetto;
- descrivere i livelli interessati dalle fondazioni;
- individuare l'eventuale presenza di una falda superficiale;
- determinare la capacità portante ammissibile del terreno di fondazione;
- verificare l'eventuale presenza di situazioni stratigrafiche anomale tali da precludere la possibilità di edificare;
- verificare la vincolistica presente relativa al rischio frane, alluvioni e piani territoriali;
- stimare il valore del Vs_{eq} e determinare la classe di apparteneza del terreno di fondazione secondo quanto è previsto dell'OPCM 3274 del 20/03/2003 e successive modifiche ed integrazioni dell'O.P.C.M. 3519 del 28/04/2006, "Criteri generali per l'individuazione delle zone sissmiche e per la formazione e l'aggiornamento delle medesime zone" G.U. n. 108 del 11/05/2006, poi recepite nelle Norme Tecniche per le Costruzioni (DM 17/01/2018) allo scopo di verificare la congruità tra i parametri progettuali e la risposta elastico-dinamica dei terreni di fondazione.

Dopo un sopralluogo ricognitivo sul sito, si è proceduto con ulteriori sopralluoghi finalizzati a delineare i caratteri geologici di superficie allo scopo di inquadrare l'area in oggetto nel contesto geologico regionale ed ottenere così un quadro generale della situazione. In questa fase è stata consultata anche la biblio-cartografia esistente oltre che ad alcuni lavori professionali eseguiti dallo scrivente in aree adiacenti e geologicamente analoghe.

In particolare, durante il rilevamento geologico sono state condotte su porzioni di ammasso terroso affiorante poste nell'intorno del sito in esame osservazioni sul grado di alterazione e compattezza del litotipo costituente il sottosuolo.

Al fine di conoscere le caratteristiche del sottosuolo e individuare eventualmente le criticità presenti in corrispondenza dell'area di progetto sono state eseguite le seguenti indagini:

- ✓ N.6 prove penetrometriche dinamiche continue (DPSH);
- n. 2 prospezione sismica a rifrazione in onde P (BS01÷BS02) di lunghezza pari a 75 m per la quale sono stati utilizzati n. 24 geofoni;

- ✓ n. 2 prospezione sismica eseguita sia con tecnica MASW per la determinazione delle onde di taglio (S), MASW 01 e MASW02, tale tecnica ha consentito di stimare il valore delle Vs,eq e quindi attribuire al sottosuolo in esame una delle categorie di suolo di fondazione contemplata dalle Norme Tecniche delle Costruzioni 2018;
- n. 2 verifiche di stabilità dei pendii in cui sono presenti le perimetrazioni R1

Di seguito si mostra la ubicazione delle indagini rispetto all'area di interesse.

Inoltre è stato consultato un sondaggio geognostico a carotaggio continuo posto a pochi metri di distanza dal sito in esame e su terreni similari. Di seguito si mostra uno stralcio planimetrico con l'indicazione dell'area di interesse rispetto all'area dell'indagine geognostica presa come riferimanto.

Il presente lavoro è conforme alle normative vigenti ed in particolare, al DPR 380/01 – D.M. 11.03.88 – D.M. 17.01.2018 e che rispettano le prescrizioni del vigente Piano dell'AdB Distrettuale dell'Appennino Meridionale sede Basilicata.

2 INQUADRAMENTO GEOLOGICO REGIONALE

2.1 Caratteristiche geologiche generali

L'area di intervento ricade nella zona nord-orientale del Foglio 452 "Rionero in Vulture" della Carta Geologica d'Italia, in scala 1:50000, in particolare al confine Nord-orientale con il territorio di Spinazzola, nel contesto geologico della Fossa bradanica.

La Fossa bradanica è un'ampia depressione tettonica, allungata da NO a SE, colmata soprattutto da sedimenti argillosi e sabbioso-conglomeratici plio-quaternari. Essa si estende tra l'Avampaese apulo ad E e l'Appennino meridionale ad O e costituisce il segmento meridionale dell'Avanfossa adriatica.

Dal punto di vista geodinamico, l'origine dell'avanfossa va inquadrata nel processo di subduzione, subito dalla Placca apula verso O ed alla successive retroflessione della stessa placca verso E. Tale fenomeno ha portato alla graduale migrazione ed ampliamento dell'avanfossa verso E, divenendo così sede di subsidenza e di sedimentazione. Questi fenomeni si sono concretizzati, a partire dal Pliocene, nel graduale abbassamento per faglie dei margini della piattaforma calcarea apula e nella formazione dell'ampia depressione tettonica bradanica.

A partire dal Pleistocene medio il bacino ha subito una inversione di tendenza, con un progressivo sollevamento, che ha portato gradualmente alla superficializzazione ed emersione dell'area.

All'inizio del Pliocene medio, l'ingressione marina, ipotizzata per cause tettoniche, ha portato alla trasgressione direttamente sul substrato carbonatico cretaceo dei depositi rappresentati dalla Calcarenite di Gravina (Pliocene medio-Pleistocene inf.), caratteristici di un ambiente litorale e di piattaforma (Boenzi et alii, 1971; Caldara, 1987; Ciaranfi et ali, 1988).

Questa formazione segna la progressiva transizione delle aree dal dominio di avampaese a quello di avanfossa. In una fase successiva, l'avanzamento del mare verso E ha portato ad un approfondimento delle stesse aree e alla sedimentazione delle Argille subappennine (Pleistocene inf.) sulla Calcarenite di Gravina (Ciaranfi et alii., 1979).

In seguito, il progressivo sollevamento dell'area ha portato alla deposizione delle Sabbie di Monte Marano e del Conglomerato di Irsina (Pleistocene inf.-medio), con la chiusura del ciclo sedimentario della Fossa bradanica. Con l'emersione dell'area è iniziata la sedimentazione dei depositi alluvionali ad opera dei corsi d'acqua e un'azione erosiva conseguente all'approfondimento del reticolo idrografico, che ha portato all'incisione degli stessi depositi.

Secondo quanto rappresentato l'area in esame ricade sui sedimenti lacustri e fluvio-lacustri composti da conglomerati poligenici, sabbie, argille più o meno sabbiose con intercalazioni di calcare concrezionale, posti in trasgressione sulle Argille subappenniniche appartenenti alla Formazione delle Argille di Gravina. L'area in esame ricade in un paesaggio modellato dagli eventi atmosferici e tettonici, con rilievi collinari e reticoli idrografici che si ramificano verso quote inferiori; nello specifico le ramificazioni che sono presenti in vari punti, ad una breve distanza dalle opera in progetto, confluiscono verso il Torrente Basentello diretto affluente del Fiume Bradano.

2.2 Successione stratigrafica

Di seguito si riporta in maniera schematica la locale successione stratigrafica, basandosi sui dati del rilevamento geologico e sulle infornazioni derivanti dalle indagini consultate nei pressi del sito; dal più recente al più antico abbiamo:

• Primo strato (da 0.00m a 8.00/10.00m) –limi argillosi e sabbiosi da poco a mediamente addensati e/o consistenti, con inclusioni di piccoli ciottoli; tale strato non è continuo su tutta l'area e si rinviene prevalentemente sul settore sud- occidentale delle aree di interesse, alle quote più basse;

• Secondo strato (da partire da 8.00/10.00m) - Conglomerati poligenici di base in matrice sabbioso limosa addensata e/o consistente, con lenti argillo-limose, di deposizione fluviale.

La falda è presente nei livelli superficiali dove sono presenti sabbie e/o ghiaie su un letto impermeabile argilloso/limoso.

2.3 Inquadramento Strutturale e morfologico

Il territorio di studio è situato in zona di transizione tra l'Avanfossa Bradanica e l'Avampaese Apulo, ed è caratterizzato da ripiani con morfologia generalmente tabulare e scarpate profondamente incise, risultato del modellamento operato dagli agenti esogeni in sinergia con le ripetute oscillazioni marine legate a fenomeni eustatici e tettonici, verificatisi a partire dal Pleistocene medio.

Da un punto di vista strutturale a NE rispetto all'area di intervento si individua l'altopiano calcareo delle Murge che rappresenta uno dei settori più rialzati dell'Avampaese Apulo. Questo si sviluppa lungo un trend WNW-ESE con una serie di ripiani, aventi immersione verso SSW e un assetto monoclinalico. La superficie dell'altopiano si configura in forme debolmente ondulate e incise a cui si intervallano distese pianeggianti o ampiamente depresse. La struttura delle Murge è il risultato di una serie di eventi tettonici che hanno avuto inizio nel Cretaceo superiore e sono proseguiti, in modo intermittente, sino al Miocene con l'instaurarsi della tettogenesi appenninica.

A SE dell'altopiano delle Murge si sviluppa l'ampio bacino della fossa Bradanica, entro cui si colloca l'area di interesse. Il passaggio fra l'altopiano delle Murge e il bacino è marcato da un ciglio di scarpata netto, sul quale si sviluppano estesi solchi di natura torrentizia. Il paesaggio bradanico è caratterizzato da rilievi poco pronunciati che si susseguono fra loro secondo strette dorsali, caratterizzati da versanti debolmente ondulati e rimodellati dall'azione degli agenti erosivi secondo tipiche forme cupoliformi. L'erosione differenziale e la natura litologica del bacino danno frequentemente luogo anche a tipici rilievi isolati e fortemente delineati, caratterizzati da pendici molto acclivi sulle quali i fenomeni di dilavamento agiscono in misura incisiva.

In particolare, per quanto riguarda la morfologia locale, l'area di studio si individua su una superficie prevalentemente sub-pianeggiante con porzioni leggermente in pendenza verso S ovvero verso il Torrente Basentello. L'area è posta ad una quota compresa tra i 380.0 e 420 m s.l.m.m.

2.4 Inquadramento Idrografico

Il reticolo idrografico è fortemente influenzato dalle caratteristiche litologiche dei terreni affioranti, risultando scarsamente sviluppato in corrispondenza dell'altopiano carsico delle Murge, caratterizzato da flussi effimeri di carattere torrentizio, che si attivano solo a seguito di precipitazioni particolarmente intense. I processi di infiltrazione risultano qui nettamente prevalenti rispetto a quelli di deflusso superficiale, a seguito della marcata permeabilità per fessurazione che caratterizza i calcari cretacei. Di contro, sui versanti argillosi del bacino bradanico, il reticolo idrografico risulta ben sviluppato e ramificato, in ragione delle caratteristiche litologiche dei terreni ivi affioranti.

In conseguenza delle caratteristiche litologiche il territorio presenta un reticolo idrografico ben sviluppato; in corrispondenza dell'area di intervento si individuano diversi corsi d'acqua o canali affluenti del Torrente "Basentello", uno dei maggiori tributari del fiume Bradano, localizzato in direzione NE rispetto all'area. Infatti, le acque meteoriche tendono prevalentemente a circolare laminarmente lungo la superficie topografica in parte percolando attraverso i depositi sabbiosi in parte confluiscono immediatamente a sud-est dell'area nel Torrente Basentello.

Sulla base delle caratteristiche del reticolo idrografico e in funzione del carattere stagionale dei deflussi superficiali si ritiene altresì che le ramificazioni limitrofe all'area di interesse, ad ovest e ad est, posti in entrambi i casi ad una distanza di oltre 100m non comportino particolari rischi di natura idrogeologica.

A sud del sito in esame il principale corso d'acqua è rappresentato dal Torrente Basentello, mentre subito a nord dell'area in esame è presente lo spartiacue con il bacino idrografico dell'Ofanto.

2.5 Inquadramento Idrogeologico

Sulla base di una serie di stratigrafie eseguite dall'Ente Irrigazione e Trasformazione fondiaria in Puglia e Lucania è stato caratterizzato il comportamento idrogeologico dei terreni clastici della Fossa Bradanica e gli aspetti principali della circolazione idrica sotterranea. La falda acquifera trova sede quasi esclusivamente nelle sabbie più o meno argillose e nelle lenti conglomeratiche ad esse intercalate. I livelli acquiferi risultano disposti in profondità secondo grosse lenti comprese fra orizzonti impermeabili. Questo assetto dà luogo a notevoli variazioni di portata anche fra pozzi attigui. In conseguenza della diversità litologica, della variabilità negli spessori e della discontinuità dei corpi impermeabili, la falda acquifera assume caratteri isolati con evidenti difficoltà nell' emungimento.

Considerata la stratigrafia del sito, costituita da depositi limosi in superficie, moderatamente permeabili e ghiaie sabbioso limose permeabili si suggerisce, dai dati di letteratura, di considerare dei valori di permeabilità K compreso tra **1*10**⁻⁶ e **1*10**⁻⁴ cm/sec.

Valori orientativi del coefficiente di permeabilità orizzontale in metri/sec per terreni sciolti a granulometria decrescente delle ghiaie alle argille

3 ANALISI DEI VINCOLI

3.1 Vincoli del PPTR

La consultazione del database cartografico del PPTR (Piano Paesaggistico Territoriale Regionale) della Regione Puglia ha evidenziato che le aree di intervento sono comprese nella perimetrazione a vincolo idrogeologico per la quale, in ottemperanza a quanto è stato disposto per le aree assoggettate al vincolo idrogeologico ex R.D.L. n.3267/1923 (Regolamento Regionale 11 marzo 2015, n. 9), La normativa in parola non esclude, tuttavia, la possibilità di utilizzazione delle aree sottoposte a vincolo idrogeologico, che devono in ogni modo rimanere integre e fruibili nel rispetto dei valori paesaggistici dell'ambiente, pertanto sarà avviata la procedura, propedeutica all'esecuzione delle opere, consistente nella richiesta del Nulla-Osta al Servizio Foreste dell'Area Politiche per lo Sviluppo Rurale della Regione Puglia - Sezione Provinciale di Bari.

Per quanto riguarda le aree in cui ricadono le perimetrazioni dei fiumi e torrenti, e relative fasce di pertinenza, sono state evitate già in sede di progettazione come mostrato nello stralcio PPTR seguente.

3.2 Piano Stralcio per la Difesa dal Rischio Idrogeologico

Ai fini della verifica delle condizioni di assetto idraulico e geomorfologico dell'area d'intervento, si è proceduto alla verifica della pericolosità idrogeologica dell'area attraverso la consultazione della *"Carta del Rischio"* del Piano stralcio per la Difesa dal Rischio Idrogeologico dell'Autorità di Bacino Distrettuale dell'Appennino Meridionale sede della Basilicata, relativa alle aree a rischio idrogeologico. In base ai criteri di perimetrazione e di valutazione adottati nel Piano è stato verificato che nelle aree in cui ricadono i campi fotovoltaici sono presenti porzioni di aree a rischio R1, entro le quali, secondo le NTA del PAI all'Art.19, *"sono consentiti gli interventi di cui all'art.17, c.3, punto 3.1 (cambiamenti di destinazione d'uso che non comportino aumento delle condizioni di opere esistenti, così come definiti dalla legislazione vigente, realizzati con modalità che non determinino situazioni di pericolosità idrogeologica.*

Dalla consultazione della cartografia IFFI (Inventario dei Fenomeni Franosi in Italia) non sono state rilevate presenze di dissesti in atto.

4 DATI POZZI ISPRA

Ai fini della modellazione geologica sono stati analizzati anche alcuni dati relativi a pozzi trivellati in zone prossime all'area di indagine. Dalle stratigrafie dei pozzi, disponibili sul sito <u>http://sgi2.isprambiente.it</u>, è stato possibile verificare che al disotto dello strato sabbiosolimoso e conglomeratico sono presenti argille grigio-azzurre appartenenti alla formazione delle argille subappennine.

Di seguito si mostrano le ubicazioni dei pozzi rispetto all'area di indagine.

POZZO 162626 (A MONTE)

Dati generali			Ubicazione	indicativa dell'area d'indagine
Codice: 162626				
Regione: BASILICATA				
Provincia: POTENZA			+	
Comune: MONTEMILONE				
Tipologia: PERFORAZION	E			
Opera: POZZO PER ACQU	A		The second second	Stradi
Profondità (m): 101,00			S 55 100.0	
Quota pc sim (m): 413,00)			
Anno realizzazione: 1988	3			
Numero diametri: 0				
Presenza acqua: NO			at hat the	
Portata massima (I/s): N	D			
Portata esercizio (I/s): Ni	D			
Numero falde: 0			The second second	
Numero filtri: 0			a second to the second	
Numero piezometrie: 0			and the second s	and the second s
Stratigrafia: SI				
Certificazione(*): SI			1634	
Numero strati: 5			, là	
Longitudine WGS84 (dd)	: 15,997561			
Latitudine WGS84 (dd): 4	0,970381		100 B	
Longitudine WGS84 (dm:	s): 15" 59' 51.22" E		2 - 3	
Latitudine WG584 (dms)	40° 58' 13.38' N			
/*))	2.00000			A CONTRACTOR DESIGNATION
()Indica la presenza di u	n proressionista ne	ana compliazione		/www.www.cpus
uella stratigrafia				
		STRATIG	RAFIA	
Progr Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1 0,00	1,00	1,00		TERRENO VEGETALE
	and an and a second	and the second sec		

Progr	Da profondita (m)	ndita (m) A profondita (m)		Eta geologica	Descrizione litologica		
1	0,00 1,00		1,00		TERRENO VEGETALE		
2	1,00	24,00	23,00		CIOTTOLI, GHIAIE E SABBIE SCIOLTE		
3	24,00	43,00	19,00		LIMO ARGILLOSO		
4	43,00	82,00	39,00		SABBIE GIALLE		
5	82,00	101,00	19,00		ARGILLA GRIGIO AZZURRA		

POZZO 162856 (A VALLE)

Stampa Dati generali

Codice: 162856 Regione: BASILICATA Provincia: POTENZA Comune: PALAZZO SAN GERVASIO Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA Profondită (m): 52,00 Quota pc slm (m): 378,00 Anno realizzazione: 1992 Numero diametri: 2 Presenza acqua: SI Portata massima (I/s): 6,000 Portata esercizio (1/s): 5,000 Numero falde: 1 Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): NO Numero strati: 7 Longitudine WG584 (dd): 15,975900 Latitudine WG584 (dd): 40,956211 Longitudine WGS84 (dms): 15° 58' 33.24" E Latitudine WGS84 (dms): 40° 57' 22.37" N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

DIAMETRI PERFORAZIONE							
Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)			
1	0,00	25,00	25,00	400			
2	25,00	52,00	27,00	300			

FALDE ACQUIFERE						
Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)			
1	0,00	52,00	52,00			

POSIZIONE FILTRI						
Progr	Da profondită (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)		
1	35,00	36,00	1,00	200		

Data ri	ilevamento	Livello statico (m)	Livello dinamico (m) Abbassam	ento (m)	Portata (I/s)
nov/19	992	35,00	45,00	10,00		5,000
			STRATIGRAFIA			
Progr	Da profondită (m) A profondità (m) Spessore (m)	Etã geologica	Descrizion	e litologica
1	0,00	2,00	2,00	16	TERRENO	VEGETALE
2	2,00	25,00	23,00	16	CONGLOM	ERATO
3	25,00	31,00	6,00	16	ARGILLA G	IALLA
4	31,00	42,00	11,00	16	CONGLOM	ERATO
5	42,00	46,00	4,00	16	ARGILLA G	IALLA
6	46,00	49,00	3,00	16	ARENARIA	ACQUIFERA
7	49,00	52,00	3,00		ARGILLA B	LU

5 INDAGINE GEOGNOSTICA PREGRESSA

Per il presente studio geologico è stata consultata una indagine sismica, per la stima della VS, eq, ai sensi delle NTC2018, eseguita dallo scrivente, in una campagna geognostica pregressa nell'ambito delle realizzazione di un parco eolico posto a sud dell'area di intervento.

Inoltre si riporta anche una stratigrafia di un sondaggio a carotaggio continuo eseguito sempre nell'ambito degli stessi lavori.

Di seguito si mostra uno stralcio planimetrico con l'indicazione dell'area di interesse rispetto all'area dell'indagine geognostica presa come riferimanto.

5.1 Stratigrafia del sondaggio a carotaggio continuo

Stratigrafia del Sondaggio n.01 (da 0m a 20m) Committente: FV-SPIN ALTAMURA S.R.L. Regione: BASILICATA Comune: PALAZZO SAN GERVASIO Oggetto: Indagini geognostiche per parco eolico Località: S.P.21 delle murge Taglio CTR: 452081 nei territori di Palazzo San Gervasio e COORD. (UTM33 WGS84): X: 582986.02 Y: 4532982.52 Z: 381 Montemilone (Pz) Metodo di perforazione: Carotaggio Continuo Impresa esecutrice: Apogeo S.r.I. Doppio carotiere: NO ApoGeo Via Caduti di Nassiriya 170- 70022 Altamura (BA) Att. SOA OS20A Class. I - OS20B Class. II Rivestimento foro: SI Diametro di perforazione: 101mm Redattore Stratigrafia: Dott. Geol. Pietro PEPE Data: Giugno 2013 % CAROTAGGIO TENDENZA A FRANARE IMIDITA' NATURALE TATO CONSISTENZ CAMPIONI GEOTECNICI Profondità (metri) CAMPIONI AMBIENTALI Colonna Stratigrafica (Kg/cm2) RICAVATA DA: Spessori (metri) R.Q.D. (%) DESCRIZIONE LITOLOGICA Passo 1ml (Mit call?) FALDA 0.5 Suolo vegetale sabbioso limoso di colore bruno scuro N.A NA 90 4.4 1 5.7 2 5.4 3 5.3 4 Limo argilloso con sabbia, di colore marrone, di buona 8.0 0 100 consistenza, con inclusioni di ciottoli poligenici di piccole 5.4 5 dimensioni ASCIUTTO 3.4 6 S 5.1 7 8 3.8 4.1 9 Limo debolmente sabbioso di colore marrone, passante a 4.0 10 2.6 0 100 limo argilloso; inclusioni di ciottoli di piccole dimensioni 11 4.0 12 >6 Limo sabbioso di colore marroncino, consistente, Odimu 0 100 ricco di inclusioni di ciottoli di piccole dimensioni 13 4.7 4.0 14 S 3.0 15 BAGNATO Limo argilloso, debolmente sabbioso, di colore 4.8 0 100 marrone-rossiccio 3.2 16 17 3.4 6.0 18 SATURO Limo sabbioso di colore marrone, con tracce di 2.0 19 2.0 alterazione (ossidazione) ed inclusione di clasti poligenici di piccole dimensioni 2.2

Stratigrafia del Sondaggio n.01

(da 20m a 30m)

Comm	nittente:	FV-SP	IN ALTAMURA S.R.L.	Regione: BASILICAT	A C	om	une	: P.	AL	AZZC	SAN	GERV	ASIO
Ogge	Oggetto: Indagini geognostiche per parco eolico		Località: S.P.21 delle murge Taglio CTR: 452081										
Monte	milone	Palazz (Pz)	to San Gervasio e	COORD. (UTM33 WGS84):)	K: 58	2986	.02	Y: 4	1532	982.52	2 Z: 38	31	
Impresa esecutrice: Apogeo S.r.I.			Metodo di perforazion	e: C	aro	agg	gio	Co	ntinuc)			
Ápo	Geo	/ia Cadut	i di Nassiniya 170- 70022 Altamura (BA)	Doppio carotiere: NO	R	ives	tim	ent	o fo	oro: S	1		
				Diametro di perforazio	ne:	101	mm	1					
Redat	tore Stra	atigrafia	a: Dott. Geol. Pietro PEPE	Data: Giugno 2013	_			_				· · · · ·	
lità	R				100112-0	GGIO			URALE	_ <u></u>	_₹	STATO CON (Kg/c	ISISTENZA 202)
etr)	grafic	tri)			(%) .	OTA	VZA A		INATI		NO!	RIGAVA	R DA:
e E d	Strati	spes (me		OLOGICA	0.0	CAR	RANAF	ALDA	MIDITA	AMP	MBI	POCKET	(Passo In
					<u></u>	*	FE	E.	5	00	0 <	N.A.	*
21													
												4.2	
22			Limo sabbioso di colore marrone	e con tracca di		-					3		
		5.0	alterazione (ossidazione) ed incl	lusione di clasti poligenici	0	100						>6	
23			di piccole dimensioni									3.0	
24													
									RO			4.0	
25						_	S		ATL			COMPLET	
						100			S		2	>6	
26							D					4.0	
27	Sala												
		50	Sabbia di colore origio scuro, de	holmente limosa, a orana								4.5	
28			media con inclusioni clastiche di	probabile origine	0								
			vulcanica									3.0	
29												3.0	
30											3	0.0	
20	-			20m									
			FUNDO FORO	JUII									
26 27 28 30		5.0	Sabbia di colore grigio scuro, de media con inclusioni clastiche di vulcanica	bolmente limosa, a grana probabile origine	D	100						4.0	

6 CONSIDERAZIONI SISMOLOGICHE

6.1 Aspetti generali

Il Comune di Spinazzola (BAT) D.G.R. n. 1626 del 15.09.2009, confermata dalla recente classificazione del territorio nazionale italiano del marzo 2022, ricade in **zona sismica 2** (ovvero zone in cui si possono verificare terremoti abbastanza forti - *livello di pericolosità medio*).

6.2 Caratteristiche sismiche di riferimento del territorio

Sulla base dell'indagine sismica eseguita è stato possibile stimare la categoria di suolo per il sito in esame. Dalle risultanze della prospezione sismica, è emerso che il territorio in esame, dal punto di vista della caratterizzazione sismica, è classificato come categoria di suolo di fondazione di tipo "B", poiché è stato ottenuto un valore di **Vs,eq compreso tra 360 e 800m/s** calcolato fino a 30 metri di profondità.

Alla luce delle attuali conoscenze si ritiene che non si pongono particolari problemi alla realizzazione dell'opera in oggetto. Naturalmente si terrà conto di quanto riportato nelle Norme Tecniche delle Costruzioni del Gennaio 2018 che all'opera si deve attribuire un'accelerazione massima orizzontale con probabilità di superamento del 10% in 50 anni di ag compreso tra 0.15g e 0.25g, pari ad un'accelerazione orizzontale di ancoraggio dello spettro di risposta elastico sulla formazione di base (suoli di categoria "A") di ag=0.25g.

In particolare, le recenti Norme Tecniche per le Costruzioni (17/01/2018) e l'OPCM del 28 aprile 2006 n. 3519 superano il concetto della classificazione del territorio in zone, imponendo nuovi e precisi criteri di verifica dell'azione sismica nella progettazione delle nuove opere ed in quelle esistenti, valutata mediante una analisi della risposta sismica locale. In assenza di queste analisi, la stima preliminare dell'azione sismica può essere effettuata sulla scorta delle "categorie di sottosuolo" e della definizione di una "pericolosità di base"

fondata su un reticolo di punti di riferimento, costruito per l'intero territorio nazionale. Ai punti del reticolo sono attribuiti, per nove differenti periodi di ritorno del terremoto atteso, i valori di ag e dei principali "parametri spettrali" riferiti all'accelerazione orizzontale, da utilizzare per il calcolo dell'azione sismica (fattore di amplificazione massima F₀ e periodo di inizio del tratto a velocità costante T*C). Il reticolo di riferimento ed i dati di pericolosità sismica vengono forniti dall'INGV e pubblicati nel sito <u>http://esse1.mi.ingv.it/</u>.

Secondo le NTC l'area in questione del Comune di Spinazzola è caratterizzata da un'accelerazione compresa tra 0.150 - 0.175 g, come evidenziato nella figura in cui è riportata la mappa di pericolosità sismica per il sito in questione, con probabilità di eccedenza del 10% in 50 anni, riferita a suoli rigidi (categoria A, Vs>800m/sec).

Inoltre, per la per la caratterizzarzione sismicità del sito in argomento, sono stati presi in considerazione i seguenti fattori:

- il terreno di fondazione è costituito prevalentemente da depositi conglomeratici in matrice sabbiosa e da un deposito di limo argilloso e sabbioso da poco a mediamente consistente;
- nell'area in esame non sono presenti faglie o importanti fratture, attive, del substrato geologico;
- la falda freatica superficiale, delle prove dirette consultate potrebbe essere presente entro 10-15 metri di profondità;
- in questo caso il valore del fattore S che tiene conto della categoria di sottosuolo e delle condizioni topografiche del sitoespressa dalla relazione seguente S =SS × ST (dove SS è il coefficiente di amplificazione stratigrafica e ST è il coefficiente di amplificazione topografica, opportunamente tabellati nelle NTC 2018) è pari a: S = 1.2.

Inoltre, alla luce della recente normativa *"Norme Tecniche per le Costruzioni D. Min. Infrastrutture"* 17 gennaio 2018 (Suppl Ord. G. U. 20.2.2018, n. 8) di seguito si riportano i parametri di pericolosità sismica dell'area in esame in corrispondenza del punto in cui si realizzerà l'opera in esame:

	BASILICATA PUGLIA Sirada Pro	Latitudine (WGS84) 40.96300122	Lo	Longitudine (WGS84) 15.97913028					
	77	Latitudine (ED50) 40.964696	Lo	o <mark>ngitudine</mark> 5.98001	(ED50) 9				
		Altitudine (mt)				390			
	111	Classe dell'edificio I: Costruzioni con pres	senza so	lo occasi	onale di	pers 🗸			
		Vita Nominale Struttura .			50	~			
A A		Periodo di Riferimento pe	er l'azione	e sismica .		35			
	The Vi	Parametri di perico	olosità S	Sismica					
	3 M 17	Stato Limite	T _r [anni]	a _g /g [-]	F _o [-]	T* _c [s]			
0.90	nn lans	Operatività	30	0.042	2.518	0.280			
*011-0-1A	14 Martin	Danno	35	0.045	2.518	0.285			
74	The second second	Salvaguardia Vita	332	0.134	2.478	0.415			
	Kerstelle	Prevenzione Collasso	682	0.186	2.535	0.422			

Secondo le Norme Tecniche per le Costruzioni del D.M. 17.01.2018 (NTC 18), all. A, l'azione sismica sulle costruzioni è valutata a partire dalla pericolosità di base, che costituisce l'elemento di conoscenza primario per la determinazione delle azioni sismiche.

La pericolosità sismica deve essere compatibile con le NTC, dotata di sufficiente livello di dettaglio, sia in termini geografici che in termini temporali.

Le azioni di progetto si ricavano dalle accelerazioni a_g e dai parametri che permettono di definire gli spettri di risposta ai sensi delle NTC e dalle relative forme spettrali.

Le forme spettrali previste sono definite, su sito di riferimento rigido orizzontale, in funzione dei tre parametri:

1. "ag" accelerazione orizzontale massima al terreno;

2. " F_{o} " valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

3. " T_c *" periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Valutazione dell'azione sismica

Le azioni sismiche di progetto si definiscono a partire dalla "*pericolosità sismica di base*" del sito di costruzione e costituiscono l'elemento di conoscenza primario per la determinazione delle azioni sismiche.

La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale, nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente S_e (T), con riferimento a prefissate probabilità di eccedenza PVR, nel periodo di riferimento VR.

In alternativa è ammesso l'uso di accelerogrammi, purché correttamente commisurati alla pericolosità sismica del sito.

Le forme spettrali sono definite, per ciascuna delle probabilità di superamento nel periodo di riferimento PVR, a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

- ag accelerazione orizzontale massima al terreno;
- $\bullet~F_{o}$ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- $\bullet~T_c^*$ periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Individuazione della pericolosità del sito

Le NTC_18 (norme tecniche delle costruzioni) ridefiniscono il concetto di pericolosità sismica di riferimento e di conseguenza sono state ridefinite le azioni sismiche di progetto-verifica.

Tramite il programma sperimentale (Spettri–NTC ver.1.03) è possibile determinare i relativi spettri di risposta, in funzione del sito e del tipo di costruzione, per ciascuno degli stati limite previsti dalla normativa.

La pericolosità sismica è lo strumento di previsione delle azioni sismiche attese in un determinato sito. Può essere definita in termini statistici e/o probabilistici.

Dal punto di vista statistico la severità di un evento sismico è descritta dalle curve di pericolosità. Ogni sito del territorio nazionale è caratterizzato da proprie curve di pericolosità che presentano in ascissa una misura della severità del terremoto come ad esempio accelerazione di picco del terreno o S_e (ordinata della risposta spettrale in

accelerazione) ed in ordinata la frequenza media annua di ricorrenza $\lambda=1/Tr$ (Tr è il periodo di ritorno del sisma espresso in anni) in scala logaritmica.

Una volta individuati tutti i parametri geografici (longitudine, latitudine, ecc.) vengono visualizzati i quattro nodi del reticolo che circoscrivono il sito stesso.

I primi dati che si possono rilevare durante questa prima fase sono:

• i grafici degli spettri di risposta ottenuti in corrispondenza di ciascuno dei nove periodi di ritorno considerati in S1_INGV;

- i grafici che rappresentano la variabilità dei parametri a_g , F_o , T_c^* in funzione dl periodo di ritorno T_r .

Segue una tabella riassuntiva dei valori degli stessi parametri a_g , F_o , T_c^* per ciascuno dei nove periodi di ritorno considerati in S1_INGV.

T _R	ag	F。	T _c *
[anni]	[g]	[-]	[s]
30	0,042	2,519	0,283
50	0,055	2,585	0,295
72	0,067	2,502	0,331
101	0,080	2,491	0,343
140	0,093	2,497	0,355
201	0,110	2,460	0,404
475	0,167	2,512	0,408
975	0,231	2,448	0,422
2475	0,353	2,360	0,435

Valori dei parametri a_g, F_o, T_C^{*} per i periodi di ritorno T_R di riferimento

Strategia di progettazione

Nel nostro caso abbiamo una struttura con vita nominale V_n pari a 50 anni ed appartenente alla classe d'uso I, a cui pertanto corrisponde un coefficiente d'uso della costruzione Cu=0.7.

In base a tali valori viene determinato il periodo di riferimento per la costruzione Vr che risulta in questo caso pari a 35 anni.

Sono quindi calcolati i valori dei periodi di ritorno corrispondenti alle probabilità di superamento per i quattro stati limite previsti dalle NTC_18.

I dati in uscita in questa fase rappresentano una selezione effettuata sui dati ottenuti nella fase precedente in corrispondenza dei valori previsti per il periodo di ritorno dei quattro stati limite considerati.

Valori di progetto dei parametri a_g , F_o , T_c^* in funzione del periodo di ritorno T_R

Spettri di risposta elastici per i diversi Stati Limite

Valori dei parametri a_g , F_o , T_c^* per i periodi di ritorno T_R associati a ciascuno SL

SLATO	T _R	a _g	Fo	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	30	0,042	2,519	0,283
SLD	35	0,046	2,540	0,287
SLV	332	0,140	2,490	0,406
SLC	682	0,196	2,479	0,415

7 PROSPEZIONI SISMICHE

Nell'ambito dei lavori in oggetto è stata eseguita una campagna d'indagine geognostica a carattere geofisico di tipo sismico.

Tale indagine ha consentito in primo luogo di rilevare l'andamento della sismostratigrafia del sottosuolo, ricercando le superfici di discontinuità fisica – rifrattori – ed in particolare quelle superfici che separano porzioni di ammasso terroso con differente grado di densità e compattezza; in secondo luogo di ricavare lo spessore e le caratteristiche geomeccaniche degli strati così riconosciuti, calcolare i valori di Rigidità Sismica dei singoli orizzonti al fine di valutare ad esempio l'amplificazione sismica locale e classificare i terreni alla luce della recente normativa sismica, sulla base del valore delle Vs,_{eq}, secondo quanto definito dal D.M. 17/01/2018.

7.1 Prospezioni sismiche di superficie in onde P Descrizione del metodo e della strumentazione

L'indagine geosismica del tipo a rifrazione di superficie, come tutti i metodi d'indagine indiretta del sottosuolo, permette di investigare un certo volume di sottosuolo variabile a seconda sia della lunghezza dei profili eseguiti ma anche della natura litologica del sito.

Il metodo consiste nell'inviare nel terreno un impulso sismico, tramite un'opportuna sorgente a impatto o esplosiva e nel rilevare il primo arrivo di energia, costituito da un'onda elastica diretta e da una rifratta. L'onda rifratta, emergente in superficie, è generata da interfacce rifrangenti che separano mezzi a differente velocità sismica (sismostrati), generalmente, crescente con la profondità.

I primi arrivi, individuati su sismogrammi rilevati dai geofoni e registrati tramite un sismografo, sono riportati su grafici tempo-distanza (dromocrone), in seguito interpretati per ottenere informazioni sismo-stratigrafiche.

Per il caso in esame, la strumentazione utilizzata è consistita in un sismografo a 24 canali, della "MAE" modello X610/S con acquisizione computerizzata dei dati e in una sorgente del tipo ad impatto verticale per la generazione di onde rilevate da 24 geofoni di frequenza pari a 14Hz per le onde P.

Acquisizione dei dati

Nell'ambito del presente studio, sono state eseguite n. 2 prospezioni sismiche a rifrazione, **BS01÷ BS02** in onde P, di lunghezza pari a 125 m e offset pari a 5 m; per la quale sono stati effettuati cinque scoppi e utilizzati 24 geofoni per la determinazione delle onde P.

Infatti, per quanto riguarda la geometria adottata in riferimento alla base sismica, i 24 geofoni sono stati disposti sul terreno con una spaziatura di 5 m, i punti di scoppio A e B sono a 2 m dal 1° e dal 24° geofono, in posizione esterna allo stendimento geofonico, lo scoppio C è posto al centro dello stendimento stesso (fra il 12° e il 13° geofono), mentre gli altri due

scoppi intermedi D ed E rispettivamente tra 6° e 7° geofono e tra il 18° e il 19° geofono. L'ubicazione dei profili sismici è mostrata negli **Allegati 05**.

<u>Elaborazione dei dati</u>

L'elaborazione dei dati è stata eseguita secondo la procedura descritta schematicamente di seguito:

- Inserimento delle geometrie mediante il software Pickwin (distanze fra geofoni e posizioni dei punti di scoppio);
- Applicazione dei i filtri "low-pass" e "high-pass" per la lettura ottimale dei primi arrivi eliminando le frequenze di disturbo;
- Picking dei primi arrivi;
- Export delle dromocrone;
- Inversione tomografica dei dati attraverso l'applicativo Plotrefa;
- Definizione del modello sismostratigrafico.

Rappresentazione dei dati

I dati elaborati sono stati esportati e restituiti come di seguito riportato:

 In Allegato 07A sono riportati i sismogrammi relativi ai cinque punti di scoppio, le dromocrone, la sezione tomografica e il modello sismostratigrafico. In particolare l'elaborazione tomografica rappresenta l'andamento dei sismostrati, lungo la sezione corrispondente al profilo in superfice, ottenuta dall'elaborazione ed inversione dei dati sismici; il modello sismostratigrafico rappresenta invece l'interpretazione degli stessi sismostrati in funzione della geologia del sito, ottenuto correlando le velocità medie di ciascun sismostrato con i dati geologici noti e le loro velocità sismiche caratteristiche.

Interpretazione dei risultati

Ai fini della corretta interpretazione dei risultati dell'indagine sismica è importante precisare che generalmente:

a) i sismostrati non sono necessariamente associabili a litotipi ben definiti, ma sono rappresentativi di livelli con simili caratteristiche elastiche, in cui le onde sismiche si propagano con la stessa velocità;

b) la risoluzione del metodo è funzione della profondità di indagine e la risoluzione diminuisce con la profondità: considerato uno strato di spessore h ubicato a profondità z dal piano campagna, in generale non è possibile individuare sismostrati in cui h<0.25*z.

c) nelle indagini superficiali, le onde di taglio, meno veloci, arrivano in un tempo successivo, per cui il segnale registrato sarà la risultante delle onde S con le onde P e quindi la lettura dei tempi di arrivo delle onde S può risultare meno precisa della lettura dei tempi di arrivo delle onde P;

d) i terreni esaminati possono ricoprire un ampio campo delle velocità sismiche, in relazione alla presenza di materiale di riporto, di terreno vegetale e di acqua di falda nonché ai vari gradi di stratificazione, carsificazione e di fratturazione dell'ammasso roccioso.

Di seguito sono stati riportati, in tabella, i valori di velocità delle onde sismiche di compressione tipici di ogni litotipo.

LITOTIPO Vp (m/sec) Areato superficiale 300-800 1100-2900 Argille Sabbia asciutta 200-1000 Sabbie umida 600-1800 Terreni alluvionali sciolti 400-2100 Acqua 1400-1500 Calcare fratturato 700-4200 Calcare compatto 2800-6400 5700-6400 Calcare cristallino Piroclastiti coerenti (tufo) 750-2450 Piroclastiti incoerenti (pozzolana) 350-1000 1400-4500 Arenaria Granito, Monzonite, Granodiorite, Gabbro, Diabase, Basalto 4000-6000 Anidride 3500-5500 Gesso 1800-4000 Gneiss e scisti 3500-7500

Valori di velocità per le onde di compressione (da "Le indagini geofisiche per lo studio del sottosuolo" di Carrara – Rapolla – Roberti, "Il manuale del geologo" di Cassadio – Elmi).

Dai valori di velocità di propagazione delle onde P, è stato possibile ricavare la sismostruttura del sottosuolo in corrispondenza della Base Sismica.

Il sottosuolo investigato è stato distinto in tre sismostrati, ognuno caratterizzato da un determinato valore di velocità delle onde di compressione.

Generalmente, data la lunghezza dello stendimento eseguito e la natura litologica dei terreni esaminati, è stato possibile investigare il sottosuolo fino ad una profondità di circa 20.0 m, a partire dalla superficie topografica.

Di seguito si riportano le risultanze delle basi sismiche eseguite:

✓ BS01 in onde P ed S (mediante MASW01): si individuano tre sismo strati

	Velocità Onde P in m/s	Velocità Onde S in m/s	Intervallo di profondità (m)	Descrizione
1	451	175	0.0-3.00	Suolo vegetale e limi argilloso sabbiosi poco consistente e/o addensato
2	679	321	3.00-10.00	Limi argilloso sabbiosi poco consistente e/o addensato
3	1368	528	10.00-20.00	Limi e limi ghiaiosi mediamente addensati

✓ BS02 in onde P ed S (mediante MASW02): si individuano tre sismo strati

	Velocità Onde P in m/s	Velocità Onde S in m/s	Intervallo di profondità (m)	Descrizione
1	300	126	0.00-1.50	Suolo vegetale e limi argilloso sabbiosi poco consistente e/o addensato
2	882	398	1.50-5.50	Limi argilloso sabbiosi poco consistente e/o addensato
	1341	398	5.50-16.0	Limi e limi ghiaiosi mediamente addensati

8 Prospezione sismica in onde S e stima del VS,eq

8.1 Masw (Multichannel Analysis of Surface Waves) - Descrizione del metodo e della strumentazione

La recente Normativa sismica nazionale NTC 2018 impone la classificazione sismica del sottosuolo in base al parametro V_{S,eq} per la progettazione in zona sismica. Tale parametro, che rappresenta la velocità equivalente delle onde di taglio nel pacchetto di strati sovrastante il "bedrock sismico" <u>ovvero</u> suolo rigido o ammasso roccioso caratterizzato da valori delle velocità di taglio >800m/s.

Nel presente lavoro è stato preso in esame il metodo di prospezione sismica MASW 1D (Multichannel Analysis of Surface Waves) metodologia che consente di ottenere un modello verticale delle Vs, a partire dalle modalità di propagazione delle onde di superficie: le onde di Rayleigh. In campo è stata fatta l'acquisizione (MASW) da un lato di ognino dei due lineamenti sismici prescelti, opportunamente orientati rispetto al Nord.

È noto ormai che poiché il terreno in natura si presenta generalmente in strati e trasversalmente isotropo lo stesso sarà caratterizzato da diverse velocità e quindi da diverse frequenze legate alle varie lunghezze d'onda. Queste interessano il terreno a diverse

profondità e risultano influenzate dalle caratteristiche elastiche, appunto variabili con la profondità.

Questo comportamento viene definito dispersione in frequenza ed è fondamentale nello sviluppo dei metodi sismici che utilizzano le onde di superficie: lunghezze d'onda più grandi corrispondono alle frequenze più basse e interessano il terreno più in profondità mentre lunghezze d'onda più piccole poiché sono associate alle frequenze più alte rimangono nelle immediate vicinanze della superficie.

I metodi di prospezione sismica che utilizzano le onde di superficie si basano su modelli fisico-matematici nei quali il sottosuolo viene schematizzato come una serie di strati sovrapposti; dalla prospezione tale modello a strati si ricava partendo da una curva di dispersione rilevata.

La procedura utilizzata può essere suddivisa in tre fasi:

- Acquisizione: registrazione e osservazione dei dati sismici "grezzi" contenenti le onde di Rayleigh per un intervallo sufficientemente ampio di frequenze;
- Processing: trattamento dei dati attraverso filtraggio e altre tecniche finalizzate all'estrazione delle caratteristiche di dispersione ossia espresse come velocità di fase in funzione delle frequenze;
- Inversione: uso di un modello del terreno che permette di ricavare un profilo monodimensionale della velocità delle onde S ed altri parametri in funzione della profondità.

Il metodo impiegato presenta una sostanziale diversità di fondo rappresentata dal tipo di sorgente con la quale viene prodotta la perturbazione sismica: il metodo MASW impiega una sorgente artificiale appositamente creata, è stata utilizzata una sorgente del tipo ad impatto verticale (massa battente di 8Kg).

La strumentazione necessaria per l'indagine consiste in: un sismografo a 24 canali, della "MAE" modello A6000/S, con acquisizione computerizzata dei dati e geofoni a frequenza di 4.5Hz (ad asse verticale).

La fase di acquisizione viene effettuata con una serie di accorgimenti e precauzioni da prendere in sito e nella pianificazione della registrazione: infatti, tutto è finalizzato alla registrazione di dati contenenti la migliore informazione possibile riguardo la propagazione delle onde di Rayleigh con buon rapporto segnale-rumore.

Per quanto riguarda il MASW, la presenza di rumore di tipo casuale risulta di notevole disturbo, a questo scopo si procede sommando i segnali di successive energizzazioni rendendo in tal modo la potenza del segnale superiore a quella del rumore.

MASW - Acquisizione dei dati

Le fasi operative possono essere così schematizzate:

 Predisposizione dello stendimento, cioè una serie di 24 geofoni regolarmente spaziati e in linea retta, di lunghezza pari a 115m con offset a 10.0m dal primo geofono, su cui sono state acquisite diverse tracce in modo da ottenere sufficientemente dati da correlare le informazioni del sottosuolo;

- controllo dei dati raccolti con prima elaborazione in situ del profilo, in modo da verificare la coerenza del segnale, l'effettivo raggiungimento della profondità d'investigazione richiesta ed eventualmente apportare le necessarie variazioni dei parametri d'acquisizione prima di ripetere la registrazione;
- i dati raccolti sono registrati nell'hd dell'A6000/S.

MASW - Rappresentazione dei risultati

L'analisi prevede la formattazione dei files dati, l'analisi spettrale con l'individuazione della curva di dispersione e la modellazione del profilo. È importante rilevare che il profilo si sia ottenuto coinvolgendo nelle misurazioni un'estesa porzione del sito da investigare, esso quindi, pur non avendo la risoluzione di un profilo ottenuto ad esempio con la tecnica downhole, risulta più rappresentativo a larga scala rispetto a quello ottenibile da un rilievo puntuale.

Ai fini dell'interpretazione dei risultati delle indagini geofisiche è di fondamentale importanza la conoscenza geologica dell'area e la taratura delle prospezioni geofisiche con indagini di tipo diretto, così come è stato possibile fare in questo caso. Infatti, è possibile che terreni diversi siano caratterizzati dalle stesse velocità sismiche. Inoltre i ranges delle velocità delle varie formazioni sono molto variabili, in funzione delle condizioni locali.

Nell'**Allegato 07B** sono riportati i risultati dell'elaborazione della tecnica MASW (n. 6 grafici, oltre ai sismogrammi medi, sommatoria di tutte le registrazioni).

Il primo grafico mette in relazione le frequenze contenute nel segnale registrato con il reciproco della velocità di fase e il rapporto spettrale: permette di riconoscere l'energia delle Onde di Rayleigh e fissare i punti che rappresentano l'andamento della curva di dispersione, funzione della distribuzione della velocità negli strati del sottosuolo.

Nel secondo grafico, invece, è riportata la curva calcolata tramite l'inversione di un modello di sottosuolo, ottenuto per "aggiustamenti" successivi da un modello iniziale, cercando ovviamente di trovare la migliore corrispondenza con i punti prima individuati.

Nell'ultimo grafico, come già detto, viene riporta il modello del sottosuolo in termini di strati con diversa velocità di propagazione delle Onde S da cui è così possibile calcolare il valore del Vs,eq e di conseguenza caratterizzare il sito in una delle categorie di suolo di fondazione.

MASW – Interpretazione dei risultati

Alla luce della recente normativa in materia di costruzione NTC 2018 è stato introdotto il calcolo di un nuovo parametro, il Vs,eq, in sostituzione del Vs30, ottenuto attraverso la seguente formula:
$$Vs_{,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{s,1}}}$$

$$hi = \text{Spessore in metri dello strato i-esimo}$$

$$Vs_i = \text{velocità delle onde di taglio nell'i-esimo strato}$$

$$N = \text{Numero di strati}$$

$$H = \text{profondità del substrato, definito come quella formazione costituita}$$

$$da \text{ roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/sec}$$

In tale formula appare evidente come il calcolo delle velocità sismiche di taglio non si riferisce più necessariamente alla profondità di 30m, ma alla reale profondità del bedrock, ovvero, alla profondità di quella formazione rocciosa o terreno molto rigido, caratterizzato da Vs non inferiore a 800m/s, pertanto la profondità del bedrock varierà di volta in volta a seconda dell'assetto geologico del sottosuolo.

Basandosi sull'indagine sismica eseguita è stato calcolato il valore del Vs,eq,: in questo caso, per la natura intrinseca del terreno, l'indagine pur avendo raggiuto una profondità investigativa superiore ai 30m, non ha permesso di individuare alcun bedrock o suolo rigido caratterizzato da un Vs≥ 800m/s e dunque, così come enuncia la nuova norma il valore del Vs,eq è definito dal parametro Vs30 ottenuto ponendo H=30m nella attuale espressione e considerando le proprietà degli strati di terreno fino a tale profondità.

Come si osserva dai fogli di calcolo riportati di seguito il valore del Vs,eq ottenuto mediante l'indagine MASW01 e 02 è compreso tra **360m/s**
Vs,eq<**800m/s** avendoli calcolato a partire dal p.c..

STIMA DEL Vs,eq - MASW 01					
Strati	Litotipo	Spessore strato (m)	Velocità onda S misurata in sito (m/s)	Rapporto spessore velocità	Tempi parziali in secondi (onda S misurata)
h ₁	STRATO 1	3,3	177,00	h_1/V_1	0,019
h ₂	STRATO 2	7,3	321,00	h_2/V_2	0,023
h ₃	STRATO 3	8,8	528,00	h ₃ /V ₃	0,017
h ₄	STRATO 4	10,3	596,00	h ₄ /V ₄	0,017
h ₅	STRATO 5	0,3	622,00	h_5/V_5	0,000
н		30,0		Σ hi/Vi	0,076
V _{S,eq} (misurata) = m/s 396					

STIMA DEL Vs,eq - MASW 02					
Strati	Litotipo	Spessore strato (m)	Velocità onda S misurata in sito (m/s)	Rapporto spessore velocità	Tempi parziali in secondi (onda S misurata)
h ₁	STRATO 1	1,5	114,00	h_1/V_1	0,013
h ₂	STRATO 2	6,2	398,00	h_2/V_2	0,015
h ₃	STRATO 3	6,5	502,00	h ₃ /V ₃	0,013
h ₄	STRATO 4	9,2	595,00	h ₄ /V ₄	0,015
h ₅	STRATO 5	6,6	637,00	h ₅ /V ₅	0,010
н		30,0		Σ hi/Vi	0,067
V _{S,eq} (misurata) = m/s 444					

Da tale stima il sottosuolo investigato rientra nella categoria di suolo "B" avendo ottenuto in generale un valore del 360m/s<Vs,eq<800m/s che viene nuovamente così definita:

Categoria	Caratteristiche della superficie topografica
А	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteri- stiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consi- stenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi- stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consi- stenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
Е	<i>Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le catego-</i> <i>rie C o D,</i> con profondità del substrato non superiore a 30 m.

 Tab. 3.2.II – Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.

Mediante il metodo MASW1D, si ricavano i valori di velocità delle onde S lungo la verticale rispettivamente a 1/3 della lunghezza dello stendimento avendo eseguito uno scoppio ad una distanza di 10 metri dal primo geofono. I profili sismostratigrafici ricavati da tale tecnica risultano raggiungere la massima profondità di investigazione fino a circa 1/2 la lunghezza dello stendimento; in questo caso i profili sismostratigrafici hanno raggiunto una profondità investigativa di circa 30 m.

9 STIMA DEI MODULI ELASTICI DINAMICI

Dalle velocità sismiche, ricavate dall'indagine a rifrazione superficiale classica in onde P e dalla metodologia RE.MI., sono stati calcolati alcuni parametri geotecnici.

Assegnando, infatti, la densità in sito, ricavata empiricamente mediante l'equazione di Gardner, che lega la densità alla velocità delle onde longitudinali (Vp), sono stati calcolati il coefficiente di Poisson e alcuni moduli elastici dinamici. Le determinazioni dei moduli elastici, eseguite mediante tali metodologie sismiche, sono riferibili a volumi significativi di terreno in condizioni relativamente indisturbate a differenza delle prove geotecniche di laboratorio che, pur raggiungendo un elevato grado di sofisticazione ed affidabilità, soffrono della limitazione di essere puntuali cioè relative ad un modesto volume di roccia.

I moduli elastici sismici possono essere correlati ai normali moduli statici attraverso un fattore di riduzione (Rzhevsky et alii,1971) semplicemente evidenziando che si riferiscono, in virtù delle energie movimentate dall'indagine e del conseguente basso livello di deformazione raggiunto, ad un modulo statico tangente iniziale.

Edin = 8.3Estat + 0,97

Infine, con i dati ottenuti dall'indagine eseguita è possibile calcolare il coefficiente di reazione del terreno Ks (Kg/cm3) attraverso la relazione di Vesic (1961): Ks = Es/B*(1 - υ 2) dove B = larghezza della fondazione; Es = modulo di elasticità del terreno; υ = coefficiente di Poisson.

Per quanto riguarda l'analisi dei pali sottoposti a forze orizzontali e nella verifica a svergolamento è stato determinato, indirettamente, il coefficiente di reazione orizzontale, Kh. Tale modulo viene determinato dalla formula di Chiarugi Maia secondo la quale è funzione di: modulo edometrico, modulo elastico del palo, diametro del palo, coefficiente di Poisson. In ultimo per effettuare un ulteriore verifica sui fattori di deformabilità delle terre, attraverso la relazione di Imai and Yoshimura, del 1977 sono stati determinati i valori di resistenza alla deformabilità del tipo SPT attraverso i valori delle velocità sismiche di taglio.

Di seguito sono riportati i principali moduli elastici dei terreni riguardanti la base sismica eseguita; tali valori si riferiscono all'ammasso pertanto devono essere intesi come valori medi.

Note bibliografiche			
Parametro calcolato	Bibliografia	Unità di misura	Formula
Modulo di Poisson (Bowles 1988)	Simeon Denis Poisson (Fisico e matematico francese)	Grandezza adimensionale	$\frac{V_{p}}{V_{g}} = \sqrt{\frac{1-\sigma}{0.5-\sigma}}$
Densità naturale	Equazione di Gardner	gr/cm ³	ρ=0,23Vp ^{0,25}
Correlazione empirica tra Vs e SPT	Imai and Yoshimura, 1977	Grandezza adimensionale	Vs=f/(Nspt)
Coefficiente di sottofondo	Vesic, 1961	Kg/cm ³	k=E/[B(1-n2)]
Coefficiente di sottofondo verticale	Vol I di Geotecnica e tecnica delle fondazioni – Cestelli Guidi	Kg/cm ³	$K_v = a_2 * Ed/b dove a2=2/loge(b+2H)/b$
Coefficiente di sottofondo orizzontale	Metodo Chiarugi-Maia	Kg/cm ³	$\begin{split} k_{k} &= \frac{E_{d}}{D \cdot (1 - D^{2})} \cdot \left(\frac{E_{d} \cdot D^{4}}{E_{p} \cdot J} \right)^{\frac{1}{2}} \\ \\ E_{e} & \text{Module edometrico} \\ \text{u: Coefficients di Poteson} \\ E_{p} & \text{Module edometrico} \\ \text{Montrio of invizia della sezione, se in ca (Ep= 16000 × \sqrt{Rck.)} \\ D & \text{Diametro del palo} \\ J, & \text{Mominio of invizia della sezione se circolare (J = \pi \times D^{4} / 64) \\ \end{split}$
Modulo di Young dinamico	Bowles 1988	Мра	$E = Vs^2 \rho . [3Vp^2 - 4Vs^2 / Vp^2 - Vs^2]$
Modulo di Young statico	Rzhevsky et all., 1971	Мра	E _{din} = 8.3E _{stat} + 0,97
Modulo di Bulk	Bowles 1988	Мра	K=E _{din} /(3*(1-2*n))
Modulo di taglio dinamico	Bowles 1988	Мра	$G_{din} = E_{din}/((2*(1+n)))$
Modulo di taglio statico	Bowles 1988	Мра	$G_{stat}=E_{stat}/(2*(1+n))$
Modulo di Compressione Edometrica	Relazione di Navier	Kh/cm ²	M = E * [(1-n) / (1-n-2*n ²)]

BASE SISMICA 01 - STIMA DEI MODULI DINAMICI			
	STRATO 1	STRATO 2	STRATO 3
Velocità onde P (m/s):	451	679	1368
Velocità onde S (m/s):	175	321	528
V _{LAB} = Velocità onde P di laboratorio (m/s):	6000	6000	6000
SPESSORE MEDIO STRATO (m)	3,00	7,00	10,00
Profondità Media Strato (m)	1,50	6,50	15,00
Modulo di Poisson (ν)	0,41	0,36	0,41
Densità naturale (ρ in gr/cm³) = 0,23x Vp^{0,23} (Gardner at al., 1974)	1,43	1,58	1,89
Correlazione Rzhesvky e Novik (1971)	46,53%	44,40%	37,96%
MOD. di YOUNG DINAMICO - (E _{din} in Kg/cm ²)	1235	4422	14848
MOD. di TAGLIO DINAMICO (G _{din} in Kg/cm ²)	438	1631	5256
$Gdin = Edin/((2^*(1+\nu)))$			
$K = E_{din}/(3^{*}(1-2^{*}\nu))$	2322	5122	28274
MOD. di YOUNG STATICO (E _{stat} in Kg/cm ²) (Rzhevsky et alii, 1971)	149	533	1789
MOD. di TAGLIO STATICO (G _{stat} in Kg/cm ²)	53	196	633
MOD. DI COMPRESSIONE EDOMETRICA (M in Kg/cm ²)	0.2	7.	0000
(da velocità onde P e densità) $\rho^* Vp^2$ (valido per le terre)	30	74	360
MOD. DI COMPRESSIONE EDOMETRICA (M in Kg/cm ²) M=((Vp*Vp* ρ *(1+ ν)*(1-2* ν)/(1- ν)) (relazione di NAVIER)	13	45	151
MOD DI PIASTRA ovvero DEFORMABILITA' (M in			
Megapascal)	00.00	70.04	000.00
Md=D* Δ p/ Δ s=((1- ν^2)* π /4)/E _{stat} (normativa Svizzera SNV)	22,36	76,21	269,28
670317a)			
Rigidità Sismica (γ*V _p) (Tonn/m ² *sec)	250	508	995
Frequenza dello Strato	15	11	13
Periodo dello Strato	0,07	0,09	0,08
STIMA PARAMETRI GEOTECNICI (VALIDO PER LE TERRE)			
N _{SPT} (Imai and Yoshimura, 1977)	13	>50	>50
N _{SPT} =7,24E-07xVs ^{3,15} (Formazioni a prevalente componente argillosa)	8	>50	>50
N _{SPT} =1,77E-06xVs ^{2,80} (Formazioni argillose con intercalazioni litoidi)	3	18	>50
N _{SPT} =1,60E-06xVs ^{2,90} (Depositi Alluvionali)	5	30	>50
Φ = -80,942* ν^2 -105,19* ν +73,668 (angolo di attrito da modello elastico)	17	26	17
Φ min =Vs ₁ ^{0,44} -6,2 (angolo di resistenza al taglio minimo)	32	43	55
Φ max =Vs ₁ ^{0,44} (angolo di resistenza al taglio massimo)	38	49	62
Cu (coesione non drenata in Kg/cm ² = (Vs/23) ^{1/0,475} *0,010197 (Dickenson 1990))	0,73	2,62	7,47
Cu=(coesione non drenata=(Vs-17,5)/2,63 *0,010197 (Oh et al. 2008))	0,61	1,18	1,98
Cu=(coesione non drenata=(Vs/7,93) ^{1/0,63} *0,010197 (Levesques et al. 2007)	1,38	3,63	7,99
Cu=(coesione non drenata=(Vs/187) ^{1/0,372} *0,010197*100 da prove DH - Likitlersuang e Kyaw (2010)	0,85	4,36	16,61
Cu=(coesione non drenata=(Vs/228) ^{1/0,310} *0,010197*100 da prove MASW - Likitlersuang e Kyaw (2010	0,61	1,99	5,29
COFFFICIENTE DI SOTTOFONDO			
B (ipotesi, dimensione fondazione superficiale in cm)	100	100	100
D (ipotesi diametro palo in m)	0.50	0.50	0.50
K = (Coeff. di Winkler in Kg/cm ³ >VESIC 1961) k=E/[B(1-ν ²)]	1,79	6,10	21,56
k = 17,2*Vs ^{1,25} Kg/cm ³ (Bowles 1997, Keceli, Imai e Yoshimura 2012)	1,12	2,38	4,44
K_v (Coeff. di Winkler verticale in Kg/cm ³ > $K_v = \alpha 2^*$ Ed/b dove $\alpha 2=2/log_e$ (b+2H)/b	0,21	1,06	4,00
K _h (Coeff. di Winkler orizzontale in Kg/cm ³ - Chiarugi-Maia)	0,60	6,35	82,18
INDICAZIONI SU CAPACITA' PORTANTE FONDAZIONE SUPERFICIALE			
Fs (Fattore di sicurezza= Vp/Vs)	2,6	2,1	2,6
Q_{ult} (kg/cm²) = γ _{nat} *vs*(0,1) (Keceli 2012)	2,50	5,08	9,95
Q _{amm} =Q _{uit} /Fs	0,97	2,40	3,84

BASE SISMICA 01 - STIMA DEI MODULI DINAMICI			
	STRATO 1	STRATO 2	STRATO 3
Velocità onde P (m/s):	300	882	1341
Velocità onde S (m/s):	126	398	502
V _{LAB} = Velocità onde P di laboratorio (m/s):	6000	6000	6000
SPESSORE MEDIO STRATO (M) Profondità Media Strato (m)	1,50	4,00	10,00
Modulo di Poisson (ν)	0,75	0.37	0.42
Densità naturale (ρ in gr/cm ³) = 0.23xVp ^{0,25} (Gardner at al., 1974)	1.29	1,69	1.88
Porosità % (Ø)	1,20	1,00	1,00
(correlazione Rzhesvky e Novik (1971)	47,94%	42,50%	38,21%
MOD. di YOUNG DINAMICO - (E.e. in Ka/cm ²)	571	7344	13412
MOD di TAGLIO DINAMICO (Gain in Kg/cm ²)	011		10112
$Gdin = Edin/((2*(1+\nu)))$	205	2676	4727
MOD. di BULK (K) (Kq/cm2):			
K=E _{din} /(3*(1-2*ν))	888	9574	27431
MOD. di YOUNG STATICO (E _{stat} in Kg/cm ²)	69	885	1616
(Rzhevsky et alii, 1971)	25	300	570
MOD. DI COMPRESSIONE EDOMETRICA (M in Ka/cm ²)	20	322	570
(da velocità onde P e densità) $\alpha^* Vn^2$ (valido per le terre)	12	134	344
MOD DI COMPRESSIONE EDOMETRICA (M in Ka/cm2)			
$M=((Vp^*Vp^*\rho^*(1+\nu)^*(1-2^*\nu)/(1-\nu)) \text{ (relazione di NAVIER)}$	6	75	137
MOD DI PIASTRA ovvero DEFORMABILITA' (M in			
Megapascal)			
Md=D* Δ p/ Δ s=((1- ν^2)* π /4)/E _{stat} (normativa Svizzera SNV)	10,14	128,29	244,71
670317a)			
6/031/a	400	070	
670317a) Rigidità Sismica ($\gamma^* V_p$) (Tonn/m ^{2*} sec)	163	672	942
670317a) Rigidità Sismica (γ*V _p) (Tonn/m ² *sec) Frequenza dello Strato Periodo dello Strato	163 21 0.05	672 25	942 13 0.08
670317a) Rigidità Sismica (γ*V _p) (Tonn/m ² *sec) Frequenza dello Strato Periodo dello Strato	163 21 0,05	672 25 0,04	942 13 0,08
670317a) Rigidità Sismica (γ*V _p) (Tonn/m ² *sec) Frequenza dello Strato Periodo dello Strato CARATTERISTICHE GEOTECNICHE AMMASSO ROCCIOSO (NON VALIDO P	163 21 0,05 ER LE TERRE)	672 25 0,04	942 13 0,08
670317a) Rigidità Sismica (γ*V _p) (Tonn/m ² *sec) Frequenza dello Strato Periodo dello Strato CARATTERISTICHE GEOTECNICHE AMMASSO ROCCIOSO (NON VALIDO P RMR Bieniawsky (valido solo per le rocce da E statico)	163 21 0,05 ER LE TERRE) NA	672 25 0,04 32	942 13 0,08 43
670317a) Rigidità Sismica (γ*V _p) (Tonn/m ² *sec) Frequenza dello Strato Periodo dello Strato CARATTERISTICHE GEOTECNICHE AMMASSO ROCCIOSO (NON VALIDO P RMR Bieniawsky (valido solo per le rocce da E statico) Φ (angolo di attrito in °)	163 21 0,05 ER LE TERRE) NA NA	672 25 0,04 32 28	942 13 0,08 43 29
Frequenza dello Strato Periodo dello Strato CARATTERISTICHE GEOTECNICHE AMMASSO ROCCIOSO (NON VALIDO P RMR Bieniawsky (valido solo per le rocce da E statico) Φ (angolo di attrito in °) C (coesione in kg/cm ²)	163 21 0,05 ER LE TERRE) NA NA NA	672 25 0,04 32 28 1,7	942 13 0,08 43 29 2,2
670317a) Rigidità Sismica (γ*V _p) (Tonn/m ² *sec) Frequenza dello Strato Periodo dello Strato CARATTERISTICHE GEOTECNICHE AMMASSO ROCCIOSO (NON VALIDO P RMR Bieniawsky (valido solo per le rocce da E statico) Φ (angolo di attrito in °) C (coesione in kg/cm ²) Rapporto di velocità VR (utilizzando per il valore delle)/p in laboratoin 6000m/sec)	163 21 0,05 ER LE TERRE) NA NA NA	672 25 0,04 32 28 1,7 0,147	942 13 0,08 43 29 2,2 0,224
670317a) Rigidità Sismica (γ^*V_p) (Tonn/m ² *sec) Frequenza dello Strato Periodo dello Strato CARATTERISTICHE GEOTECNICHE AMMASSO ROCCIOSO (NON VALIDO P RMR Bieniawsky (valido solo per le rocce da E statico) Φ (angolo di attrito in °) C (coesione in kg/cm ²) Rapporto di velocità VR (utilizzando per il valore delleVp in laboratoio 6000m/sec) Rapporto di velocita al guadrato (VR ²)	163 21 0,05 ER LE TERRE) NA NA NA NA	672 25 0,04 32 28 1,7 0,147 0.022	942 13 0,08 43 29 2,2 0,224 0,224
670317a) Rigidità Sismica (γ^*V_p) (Tonn/m ² *sec) Frequenza dello Strato Periodo dello Strato CARATTERISTICHE GEOTECNICHE AMMASSO ROCCIOSO (NON VALIDO P RMR Bieniawsky (valido solo per le rocce da E statico) Φ (angolo di attrito in °) C (coesione in kg/cm ²) Rapporto di velocità VR (utilizzando per il valore delleVp in laboratoio 6000m/sec) Rapporto di velocita al quadrato (VR ²) RQD (0.97x(Vp/VLAB)2*100	163 21 0,05 ER LE TERRE) NA NA NA NA NA	672 25 0,04 32 28 1,7 0,147 0,022 2,1%	942 13 0,08 43 29 2,2 0,224 0,050 4.8%
670317a) Rigidità Sismica (γ*V _p) (Tonn/m ² *sec) Frequenza dello Strato Periodo dello Strato CARATTERISTICHE GEOTECNICHE AMMASSO ROCCIOSO (NON VALIDO P RMR Bieniawsky (valido solo per le rocce da E statico) Φ (angolo di attrito in °) C (coesione in kg/cm ²) Rapporto di velocità VR (utilizzando per il valore delleVp in laboratoio 6000m/sec) Rapporto di velocita al quadrato (VR ²) RQD (0,97x(Vp/VLAB)2*100 RQD (relazione empirica sui calcari - F. Zezza 1976)	163 21 0,05 ER LE TERRE) NA NA NA NA NA NA NA	672 25 0,04 32 28 1,7 0,147 0,022 2,1% 8,4%	942 13 0,08 43 29 2,2 0,224 0,050 4,8% 15.0%
670317a) Rigidità Sismica (γ*V _p) (Tonn/m ² *sec) Frequenza dello Strato Periodo dello Strato CARATTERISTICHE GEOTECNICHE AMMASSO ROCCIOSO (NON VALIDO P RMR Bieniawsky (valido solo per le rocce da E statico) Φ (angolo di attrito in °) C (coesione in kg/cm ²) Rapporto di velocità VR (utilizzando per il valore delleVp in laboratoio 6000m/sec) Rapporto di velocita al quadrato (VR ²) RQD (0,97x(Vp/VLAB)2*100 RQD (relazione empirica sui calcari - F. Zezza 1976)	163 21 0,05 ER LE TERRE) NA NA NA NA NA NA NA NA	672 25 0,04 32 28 1,7 0,147 0,022 2,1% 8,4%	942 13 0,08 43 29 2,2 0,224 0,050 4,8% 15,0%
670317a) Rigidità Sismica (γ^*V_p) (Tonn/m ² *sec) Frequenza dello Strato Periodo dello Strato CARATTERISTICHE GEOTECNICHE AMMASSO ROCCIOSO (NON VALIDO P RMR Bieniawsky (valido solo per le rocce da E statico) Φ (angolo di attrito in °) C (coesione in kg/cm ²) Rapporto di velocità VR (utilizzando per il valore delleVp in laboratoio 6000m/sec) Rapporto di velocita al quadrato (VR ²) RQD (0,97x(Vp/VLAB)2*100 RQD (relazione empirica sui calcari - F. Zezza 1976) COEFFICIENTE DI SOTTOFONDO	163 21 0,05 ER LE TERRE) NA NA NA NA NA NA NA	672 25 0,04 32 28 1,7 0,147 0,022 2,1% 8,4%	942 13 0,08 43 29 2,2 0,224 0,050 4,8% 15,0%
670317a) Rigidità Sismica (γ*V _p) (Tonn/m ² *sec) Frequenza dello Strato Periodo dello Strato CARATTERISTICHE GEOTECNICHE AMMASSO ROCCIOSO (NON VALIDO P RMR Bieniawsky (valido solo per le rocce da E statico) Φ (angolo di attrito in °) C (coesione in kg/cm ²) Rapporto di velocità VR (utilizzando per il valore delleVp in laboratoio 6000m/sec) Rapporto di velocita al quadrato (VR ²) RQD (0,97x(Vp/VLAB)2*100 RQD (relazione empirica sui calcari - F. Zezza 1976) COEFFICIENTE DI SOTTOFONDO B (ipotesi dimensione fondazione superficiale in cm)	163 21 0,05 ER LE TERRE) NA NA NA NA NA NA NA NA NA	672 25 0,04 32 28 1,7 0,147 0,022 2,1% 8,4% 100	942 13 0,08 43 29 2,2 0,224 0,050 4,8% 15,0% 100
670317a) Rigidità Sismica (γ*V _p) (Tonn/m ² *sec) Frequenza dello Strato Periodo dello Strato CARATTERISTICHE GEOTECNICHE AMMASSO ROCCIOSO (NON VALIDO P RMR Bieniawsky (valido solo per le rocce da E statico) Φ (angolo di attrito in °) C (coesione in kg/cm ²) Rapporto di velocità VR (utilizzando per il valore delleVp in laboratoio 6000m/sec) Rapporto di velocita al quadrato (VR ²) RQD (0,97x(Vp/VLAB)2*100 RQD (relazione empirica sui calcari - F. Zezza 1976) COEFFICIENTE DI SOTTOFONDO B (ipotesi dimensione fondazione superficiale in cm) D (ipotesi diametro palo in m)	163 21 0,05 ER LE TERRE) NA NA NA NA NA NA NA NA NA 100 0,50	672 25 0,04 32 28 1,7 0,147 0,022 2,1% 8,4% 100 0,50	942 13 0,08 43 29 2,2 0,224 0,050 4,8% 15,0% 100 0,50
670317a) Rigidità Sismica (γ^*V_p) (Tonn/m ² *sec) Frequenza dello Strato Periodo dello Strato CARATTERISTICHE GEOTECNICHE AMMASSO ROCCIOSO (NON VALIDO P RMR Bieniawsky (valido solo per le rocce da E statico) Φ (angolo di attrito in °) C (coesione in kg/cm ²) Rapporto di velocità VR (utilizzando per il valore delleVp in laboratoio 6000m/sec) Rapporto di velocita al quadrato (VR ²) RQD (0,97x(Vp/VLAB)2*100 RQD (relazione empirica sui calcari - F. Zezza 1976) COEFFICIENTE DI SOTTOFONDO B (ipotesi dimensione fondazione superficiale in cm) D (ipotesi diametro palo in m) K = (Coeff. di Winkler in Kg/cm ³ >VESIC 1961) k=E/[B(1-v ²)]	163 21 0,05 ER LE TERRE) NA NA NA NA NA NA NA NA NA 0,50 0,81	672 25 0,04 32 28 1,7 0,147 0,022 2,1% 8,4% 9 100 0,50 10,27	942 13 0,08 43 29 2,2 0,224 0,050 4,8% 15,0% 100 0,50 19,59
670317a) Rigidità Sismica (γ^*V_p) (Tonn/m ² *sec) Frequenza dello Strato Periodo dello Strato CARATTERISTICHE GEOTECNICHE AMMASSO ROCCIOSO (NON VALIDO P RMR Bieniawsky (valido solo per le rocce da E statico) Φ (angolo di attrito in °) C (coesione in kg/cm ²) Rapporto di velocità VR (utilizzando per il valore delleVp in laboratoio 6000m/sec) Rapporto di velocita al quadrato (VR ²) RQD (0,97x(Vp/VLAB)2*100 RQD (relazione empirica sui calcari - F. Zezza 1976) COEFFICIENTE DI SOTTOFONDO B (ipotesi dimensione fondazione superficiale in cm) D (ipotesi diametro palo in m) K = (Coeff. di Winkler in Kg/cm ³ >VESIC 1961) k=E/[B(1-\nu ²)] k = 17,2*Vs ^{1,25} Kg/cm ³ (Bowles 1997, Keceli, Imai e Yoshimura 2012)	163 21 0,05 ER LE TERRE) NA NA NA NA NA NA NA NA 0,50 0,81 0,74	672 25 0,04 32 28 1,7 0,147 0,022 2,1% 8,4% 8,4% 100 0,50 10,27 3,12	942 13 0,08 43 29 2,2 0,224 0,050 4,8% 15,0% 100 0,50 19,59 4,17
670317a) Rigidità Sismica (γ*V _p) (Tonn/m ² *sec) Frequenza dello Strato Periodo dello Strato CARATTERISTICHE GEOTECNICHE AMMASSO ROCCIOSO (NON VALIDO P RMR Bieniawsky (valido solo per le rocce da E statico) Φ (angolo di attrito in °) C (coesione in kg/cm ²) Rapporto di velocità VR (utilizzando per il valore delleVp in laboratoio 6000m/sec) Rapporto di velocita al quadrato (VR ²) RQD (0,97x(Vp/VLAB)2*100 RQD (relazione empirica sui calcari - F. Zezza 1976) COEFFICIENTE DI SOTTOFONDO B (ipotesi dimensione fondazione superficiale in cm) D (ipotesi diametro palo in m) K = (Coeff. di Winkler in Kg/cm ³ >VESIC 1961) k=E/[B(1-ν ²)] k = 17,2*Vs ^{1,25} Kg/cm ³ (Bowles 1997, Keceli, Imai e Yoshimura 2012) K _v (Coeff. di Winkler verticale in Kg/cm ³ > K _v = α2*Ed/b dove α2=2/log _e (b+2H)/b	163 21 0,05 ER LE TERRE) NA NA NA NA NA NA NA NA 0,50 0,81 0,74 0,07	672 25 0,04 32 28 1,7 0,147 0,022 2,1% 8,4% 8,4% 100 0,50 10,27 3,12 1,43	942 13 0,08 43 29 2,2 0,224 0,050 4,8% 15,0% 100 0,50 19,59 4,17 3,62
670317a) Rigidità Sismica (γ*V _p) (Tonn/m ² *sec) Frequenza dello Strato Periodo dello Strato CARATTERISTICHE GEOTECNICHE AMMASSO ROCCIOSO (NON VALIDO P RMR Bieniawsky (valido solo per le rocce da E statico) Φ (angolo di attrito in °) C (coesione in kg/cm ²) Rapporto di velocità VR (utilizzando per il valore delleVp in laboratoio 6000m/sec) Rapporto di velocita al quadrato (VR ²) RQD (0,97x(Vp/VLAB)2*100 RQD (relazione empirica sui calcari - F. Zezza 1976) COEFFICIENTE DI SOTTOFONDO B (ipotesi dimensione fondazione superficiale in cm) D (ipotesi diametro palo in m) K = (Coeff. di Winkler in Kg/cm ³ >VESIC 1961) k=E/[B(1-ν ²)] k = 17,2*Vs ^{1,25} Kg/cm ³ (Bowles 1997, Keceli, Imai e Yoshimura 2012) K _v (Coeff. di Winkler verticale in Kg/cm ³ > K _v = α2*Ed/b dove α2=2/log _e (b+2H)/b K _h (Coeff. di Winkler orizzontale in Kg/cm ³ > K _v = α2*Ed/b dove α2=2/log _e (b+2H)/b	163 21 0,05 ER LE TERRE) NA NA NA NA NA NA NA 0,07 0,07 0,11	672 25 0,04 32 28 1,7 0,147 0,022 2,1% 8,4% 3,4% 100 0,50 10,27 3,12 1,43 6,73	942 13 0,08 43 29 2,2 0,224 0,050 4,8% 15,0% 100 0,50 19,59 4,17 3,62 55,96
670317a) Rigidità Sismica (γ*V _p) (Tonn/m ² *sec) Frequenza dello Strato Periodo dello Strato CARATTERISTICHE GEOTECNICHE AMMASSO ROCCIOSO (NON VALIDO P RMR Bieniawsky (valido solo per le rocce da E statico)	163 21 0,05 ER LE TERRE) NA NA NA NA NA NA NA 100 0,50 0,81 0,74 0,07 0,11	672 25 0,04 32 28 1,7 0,147 0,022 2,1% 8,4% 8,4% 100 0,50 10,27 3,12 1,43 6,73	942 13 0,08 43 29 2,2 0,224 0,050 4,8% 15,0% 100 0,50 19,59 4,17 3,62 55,96
67/0317a) Rigidità Sismica (γ*V _p) (Tonn/m ² *sec) Frequenza dello Strato Periodo dello Strato CARATTERISTICHE GEOTECNICHE AMMASSO ROCCIOSO (NON VALIDO P RMR Bieniawsky (valido solo per le rocce da E statico) $Φ$ (angolo di attrito in °) C (coesione in kg/cm ²) Rapporto di velocità VR (utilizzando per il valore delleVp in laboratoio 6000m/sec) Rapporto di velocita al quadrato (VR ²) RQD (0,97x(Vp/VLAB)2*100 RQD (relazione empirica sui calcari - F. Zezza 1976) COEFFICIENTE DI SOTTOFONDO B (ipotesi dimensione fondazione superficiale in cm) D (ipotesi diametro palo in m) K = (Coeff. di Winkler in Kg/cm ³ >VESIC 1961) k=E/[B(1-ν ²)] k = 17,2*Vs ^{1,25} Kg/cm ³ (Bowles 1997, Keceli, Imai e Yoshimura 2012) K _v (Coeff. di Winkler verticale in Kg/cm ³ > K _v = α2*Ed/b dove α2=2/log _e (b+2H)/b K _h (Coeff. di Winkler orizzontale in Kg/cm ³ > K _v = α2*Ed/b dove α2=2/log _e (b+2H)/b K _h (Coeff. di Winkler orizzontale in Kg/cm ³ -> K _v = α2*Ed/b dove α2=2/log _e (b+2H)/b Fs (Fattore di sicurezza= Vp/Vs)	163 21 0,05 ER LE TERRE) NA NA NA NA NA NA NA 0,74 0,07 0,11	672 25 0,04 32 28 1,7 0,147 0,022 2,1% 8,4% 3,4% 100 0,50 10,27 3,12 1,43 6,73	942 13 0,08 43 29 2,2 0,224 0,050 4,8% 15,0% 100 0,50 19,59 4,17 3,62 55,96 2,7
67/0317a) Rigidità Sismica (γ*V _p) (Tonn/m ^{2*} sec) Frequenza dello Strato Periodo dello Strato CARATTERISTICHE GEOTECNICHE AMMASSO ROCCIOSO (NON VALIDO P RMR Bieniawsky (valido solo per le rocce da E statico)	163 21 0,05 ER LE TERRE) NA NA NA NA NA NA NA 0,07 0,71 0,07 0,11 2,4 1,63	672 25 0,04 32 28 1,7 0,147 0,022 2,1% 8,4% 3,4% 100 0,50 10,27 3,12 1,43 6,73 2,2 6,72	942 13 0,08 43 29 2,2 0,224 0,050 4,8% 15,0% 100 0,50 19,59 4,17 3,62 55,96 2,7 9,42

10 PROVE PENETROMETRICHE DINAMICHE CONTINUE (DPSH)

In corrispondenza dell'area di studio è stata condotta una campagna geognostica per la quale sono state eseguite:

• n.6 prove penetrometriche dinamiche superpesanti (DPSH01÷DPSH06), spinte sino alla profondità di 10.0m;

Le prove sono ubicate così come riportato in allegato01.

La prova penetrometrica dinamica consiste nell'infiggere nel terreno una punta conica (per tratti consecutivi δ) misurando il numero di colpi N necessari; sono molto diffuse ed utilizzate nel territorio da geologi e geotecnici, data la loro semplicità esecutiva, economicità e rapidità di esecuzione.

La loro elaborazione, interpretazione e visualizzazione grafica consente di "catalogare e parametrizzare" il suolo attraversato con un'immagine in continuo, che permette anche di avere un raffronto sulle consistenze dei vari livelli attraversati e una correlazione diretta con sondaggi geognostici per la caratterizzazione stratigrafica. La sonda penetrometrica permette, inoltre, di individuare con un buon grado di precisione lo spessore delle coltri dal substrato, la quota di eventuali falde e superfici di rottura sui pendii, e la consistenza in generale del terreno.

L'utilizzo dei dati, ricavati da correlazioni indirette, facendo riferimento a vari autori, dovrà comunque essere trattato con le opportune cautele e, possibilmente, dopo esperienze geologiche acquisite in zona.

Gli elementi caratteristici del penetrometro dinamico sono i seguenti:

- peso massa battente M;
- altezza libera caduta H;
- punta conica: diametro base cono D, area base A (angolo di apertura α);
- avanzamento (penetrazione) δ
- presenza o meno del rivestimento esterno (fanghi bentonitici).
- Con riferimento alla classificazione ISSMFE (1988) dei diversi tipi di penetrometri dinamici (vedi tabella sotto riportata) si rileva una prima suddivisione in quattro classi (in base al peso M della massa battente):
- tipo LEGGERO (DPL)
- tipo MEDIO (DPM)
- tipo PESANTE (DPH)
- tipo SUPERPESANTE (DPSH)

Тіро	Sigla di riferimento	Peso della massa M (kg)	Profondità max indagine
			battente (m)
Leggero	DPL (Light)	M <10	8
Medio	DPM (Medium)	10 <m <40<="" td=""><td>20-25</td></m>	20-25
Pesante	DPH (Heavy)	40 <m <60<="" td=""><td>25</td></m>	25
Super pesante (Super	DPSH	M>60	25
Heavy)			

Classificazione ISSMFE dei penetrometri dinamici:

Penetrometri in uso in Italia

- In Italia risultano attualmente in uso i seguenti tipi di penetrometri dinamici (non rientranti però nello Standard ISSMFE):
- DINAMICO LEGGERO ITALIANO (DL-30) (MEDIO secondo la classifica ISSMFE): massa battente M = 30 kg, altezza di caduta H = 0.20 m, avanzamento = 10 cm, punta conica (δ =60-90°), diametro D=35.7 mm, area base cono A=10 cm² rivestimento / fango bentonitico: talora previsto;
- DINAMICO LEGGERO ITALIANO (DL-20) (MEDIO secondo la classifica ISSMFE): massa battente M = 20 kg, altezza di caduta H=0.20 m, avanzamento = 10 cm, punta conica (δ = 60-90°), diametro D 35.7 mm, area base cono A=10 cm² rivestimento / fango bentonitico: talora previsto;
- DINAMICO PESANTE ITALIANO (SUPERPESANTE secondo la classifica ISSMFE): massa battente M = 73 kg, altezza di caduta H=0.75 m, avanzamento δ =30 cm, punta conica (α = 60°), diametro D = 50.8 mm, area base cono A=20.27 cm², rivestimento: previsto secondo precise indicazioni;
- DINAMICO SUPERPESANTE (Tipo EMILIA): massa battente M=63.5 kg, altezza caduta H=0.75 m, avanzamento δ =20-30 cm, punta conica conica (α = 60°-90°) diametro D = 50.5 mm, area base cono A = 20 cm², rivestimento / fango bentonitico talora previsto.

Correlazione con Nspt

Poiché la prova penetrometrica standard (SPT) rappresenta, ad oggi, uno dei mezzi più efficaci e vantaggiosi economicamente per ricavare informazioni circa la natura litologica e la condizione geologica del sottosuolo, occorre correlare i risultati delle due prove, quella in foro (Standard Penetration Test) e quella eseguita a partire dalla superficie (Prova Penetrometrica Dinamica); ciò risulta possibile utilizzando la seguente equazione:

$$Nspt = \beta_t N$$

dove:

 $\beta_t = \frac{Q}{Q_{SPT}}$

in cui Q è l'energia specifica per colpo e Qspt è quella riferita alla prova SPT.

L'energia specifica per colpo viene calcolata come segue:

$$Q = \frac{M^2 \cdot H}{A \cdot \delta \cdot (M + M')}$$

dove

M = peso massa battente;

M' = peso aste;

H = altezza di caduta;

A = area base punta conica;

 δ = passo di avanzamento.

1.1.1 Valutazione resistenza dinamica alla punta Rqp

Formula Olandesi

$$Rpd = \frac{M^2 \cdot H}{\left[A \cdot e \cdot (M+P)\right]} = \frac{M^2 \cdot H \cdot N}{\left[A \cdot \delta \cdot (M+P)\right]}$$

R_{pd} = resistenza dinamica punta (area A);

e = infissione media per colpo (δ / N);

M = peso massa battente (altezza caduta H);

P = peso totale aste e sistema battuta.

Metodologia di elaborazione

Le elaborazioni sono state effettuate mediante un programma di calcolo automatico Dynamic Probing della *GeoStru Software*.

Tale programma calcola il rapporto delle energie trasmesse (coefficiente di correlazione con SPT) tramite le elaborazioni proposte da Pasqualini 1983 - Meyerhof 1956 - Desai 1968 - Borowczyk-Frankowsky 1981 permettendo inoltre di utilizzare i dati ottenuti dall'effettuazione delle prove penetrometriche per estrapolare utili informazioni geotecniche e geologiche.

- Una vasta esperienza acquisita, unitamente ad una buona interpretazione e correlazione, permettono spesso di ottenere dati utili e alquanto attendibili ai fini della progettazione. In particolare tale metodologia consente di ottenere informazioni su:
- l'andamento verticale e orizzontale degli intervalli stratigrafici;
- la caratterizzazione litologica delle unità stratigrafiche;
- i parametri geotecnici suggeriti da vari autori in funzione dei valori del numero dei colpi e delle resistenza alla punta.

Valutazioni statistiche e correlazioni

Elaborazione Statistica

- Il programma di calcolo utilizzato, inoltre, permette l'elaborazione statistica dei dati numerici di Dynamic Probing, utilizzando nel calcolo dei valori rappresentativi dello strato considerato un valore inferiore o maggiore della media aritmetica dello strato (dato comunque maggiormente utilizzato); i valori possibili in immissione sono:
- → *Media*: Media aritmetica dei valori del numero di colpi sullo strato considerato;
- → *Media minima*: valore statistico inferiore alla media aritmetica dei valori del numero di colpi sullo strato considerato;
- → *Massimo*: valore massimo dei valori del numero di colpi sullo strato considerato;
- → *Minimo*: valore minimo dei valori del numero di colpi sullo strato considerato;
- → **Scarto quadratico medio**: Valore statistico di scarto dei valori del numero di colpi sullo strato considerato;
- → *Media deviata:* valore statistico di media deviata dei valori del numero di colpi sullo strato considerato;
- → Media scarto (valore statistico) dei valori del numero di colpi sullo strato considerato;
- \rightarrow **Distribuzione normale R.C.:** Il valore di Nspt,k viene calcolato sulla base di una distribuzione normale o gaussiana, fissata una probabilità di non superamento del 5%, secondo

la seguente relazione: $Nspt_{,k} = Nspt_{,medio} - 1.645 \cdot (\sigma_{_{Nspt}})$

dove Nspt è la deviazione standard di Nspt;

→ **Distribuzione normale R.N.C.:** Il valore di Nspt,k viene calcolato sulla base di una distribuzione normale o gaussiana, fissata una probabilità di non superamento del 5%, trattando

i valori medi di Nspt distribuiti normalmente: $Nspt_{k} = Nspt_{medio} - 1.645 \cdot (\sigma_{Nspt}) / \sqrt{n}$ dove nè il numero di letture.

Pressione ammissibile

Nel programma la pressione ammissibile specifica sull'interstrato (con effetto di riduzione energia per svergolamento aste o no) viene calcolata secondo le note elaborazioni proposte da Herminier, applicando un coefficiente di sicurezza (generalmente = 20-22) che corrisponde ad un coefficiente di sicurezza standard delle fondazioni pari a 4, con una geometria fondale standard di larghezza pari a 1 m ed immorsamento d = 1 m.

Correlazioni geotecniche terreni incoerenti

Correzione Nspt in presenza di falda

In presenza di falda il valore Nspt viene corretto e quindi Nspt corretto = 15 + 0.5 × (Nspt - 15) dove Nspt è il valore medio nello strato.

Si specifica che la correzione viene applicata in presenza di falda solo se il numero di colpi è maggiore di 15 (la correzione viene eseguita se tutto lo strato è in falda).

<u>Angolo di Attrito</u>

- Peck-Hanson-Thornburn-Meyerhof 1956 Correlazione valida per terreni non molli a prof. < 5 m; correlazione valida per sabbie e ghiaie rappresenta valori medi. Correlazione storica molto usata, valevole per prof. < 5 m. per terreni sopra falda e < 8 m. per terreni in falda (tensioni < 8-10 t/mq);
- Meyerhof 1956 Correlazioni valide per terreni argillosi ed argillosi-marnosi fessurati, terreni di riporto sciolti e coltri detritiche (da modifica sperimentale di dati);
- Sowers 1961)- Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. < 4 m. sopra falda e < 7 m. per terreni in falda) >5 t/mq;
- De Mello Correlazione valida per terreni prevalentemente sabbiosi e sabbioso-ghiaiosi (da modifica sperimentale di dati) con angolo di attrito < 38°;
- Malcev 1964 Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. > 2 m. e per valori di angolo di attrito < 38°).
- Schmertmann 1977- Angolo di attrito (gradi) per vari tipi litologici (valori massimi). N.B. valori spesso troppo ottimistici poiché desunti da correlazioni indirette da Dr %;
- Shioi-Fukuni 1982 (ROAD BRIDGE SPECIFICATION) Angolo di attrito in gradi valido per sabbie sabbie fini o limose e limi siltosi (cond. ottimali per prof. di prova > 8 mt. sopra falda e > 15 mt. per terreni in falda) 2>15 t/mq;
- Shioi-Fukuni 1982 (JAPANESE NATIONALE RAILWAY) Angolo di attrito valido per sabbie medie e grossolane fino a ghiaiose;
- Angolo di attrito in gradi (Owasaki & Iwasaki) valido per sabbie sabbie medie e grossolaneghiaiose (cond. ottimali per prof. > 8 m sopra falda e > 15 mt. per terreni in falda) s>15 t/mq;
- Meyerhof 1965 Correlazione valida per terreni per sabbie con % di limo < 5% a profondità < 5 mt. e con % di limo > 5% a profondità < 3 mt;
- Mitchell e Katti (1965) Correlazione valida per sabbie e ghiaie.

<u>Densità relativa (%)</u>

• Gibbs & Holtz (1957) correlazione valida per qualunque pressione efficace, per ghiaie Dr viene sovrastimato, per limi sottostimato;

- Skempton (1986) elaborazione valida per limi e sabbie e sabbie da fini a grossolane NC a qualunque pressione efficace, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato;
- Meyerhof (1957);
- Schultze & Menzenbach (1961) per sabbie fini e ghiaiose NC, metodo valido per qualunque valore di pressione efficace in depositi NC, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.

<u>Modulo Di Young (Ey)</u>

- Terzaghi elaborazione valida per sabbia pulita e sabbia con ghiaia senza considerare la pressione efficace;
- Schmertmann (1978), correlazione valida per vari tipi litologici;
- Schultze-Menzenbach, correlazione valida per vari tipi litologici;
- D'Appollonia ed altri (1970), correlazione valida per sabbia, sabbia SC, sabbia NC e ghiaia;
- Bowles (1982), correlazione valida per sabbia argillosa, sabbia limosa, limo sabbioso, sabbia media, sabbia e ghiaia.

Modulo Edometrico

- Begemann (1974) elaborazione desunta da esperienze in Grecia, correlazione valida per limo con sabbia, sabbia e ghiaia;
- Buismann-Sanglerat, correlazione valida per sabbia e sabbia argillosa;
- Farrent (1963) valida per sabbie, talora anche per sabbie con ghiaia (da modifica sperimentale di dati);
- Menzenbach e Malcev valida per sabbia fine, sabbia ghiaiosa e sabbia e ghiaia.

<u>Stato di consistenza</u>

• Classificazione A.G.I. 1977.

<u>Peso di Volume Gamma</u>

• Meyerhof ed altri, valida per sabbie, ghiaie, limo, limo sabbioso.

<u>Peso di volume saturo</u>

• Bowles 1982, Terzaghi-Peck 1948-1967. Correlazione valida per peso specifico del materiale pari a circa 2,65 t/mc e per peso di volume secco variabile da 1,33 (Nspt = 0) a 1,99 (Nspt = 95).

Modulo di poisson

Classificazione A.G.I..

Potenziale di liquefazione (Stress Ratio)

• Seed-Idriss 1978-1981. Tale correlazione è valida solamente per sabbie, ghiaie e limi sabbiosi, rappresenta il rapporto tra lo sforzo dinamico medio e la tensione verticale di consolidazione per

la valutazione del potenziale di liquefazione delle sabbie e terreni sabbio-ghiaiosi attraverso grafici degli autori.

Velocità onde di taglio Vs (m/sec)

• Tale correlazione è valida solamente per terreni incoerenti sabbiosi e ghiaiosi.

Modulo di deformazione di taglio (G)

- Ohsaki & Iwasaki elaborazione valida per sabbie con fine plastico e sabbie pulite;
- Robertson e Campanella (1983) e Imai & Tonouchi (1982) elaborazione valida soprattutto per sabbie e per tensioni litostatiche comprese tra 0,5 4,0 kg/cmq.

<u>Modulo di reazione (Ko)</u>

• Navfac 1971-1982 - elaborazione valida per sabbie, ghiaie, limo, limo sabbioso.

Resistenza alla punta del Penetrometro Statico (Qc)

• Robertson 1983 Qc.

Correlazioni geotecniche terreni coesivi

Coesione non drenata

- Benassi & Vannelli- correlazioni scaturite da esperienze ditta costruttrice Penetrometri SUNDA 1983;
- Terzaghi-Peck (1948-1967), correlazione valida per argille sabbiose-siltose NC con Nspt <8, argille limose-siltose mediamente plastiche, argille marnose alterate-fessurate;
- Terzaghi-Peck (1948). Cu min-max;
- Sanglerat, da dati Penetr. Statico per terreni coesivi saturi, tale correlazione non è valida per argille sensitive con sensitività > 5, per argille sovraconsolidate fessurate e per i limi a bassa plasticità;
- Sanglerat, (per argille limose-sabbiose poco coerenti), valori validi per resistenze penetrometriche < 10 colpi, per resistenze penetrometriche > 10 l'elaborazione valida è comunque quella delle "argille plastiche " di Sanglerat;
- (U.S.D.M.S.M.) U.S. Design Manual Soil Mechanics Coesione non drenata per argille limose e argille di bassa media ed alta plasticità, (Cu-Nspt-grado di plasticità);
- Schmertmann 1975 Cu (Kg/cmq) (valori medi), valida per argille e limi argillosi con Nc=20 e Qc/Nspt=2;
- Schmertmann 1975 Cu (Kg/cmq) (valori minimi), valida per argille NC;
- Fletcher 1965 (Argilla di Chicago) . Coesione non drenata Cu (Kg/cmq), colonna valori validi per argille a medio-bassa plasticità;
- Houston (1960) argilla di media-alta plasticità;
- Shioi-Fukuni 1982, valida per suoli poco coerenti e plastici, argilla di media-alta plasticità;
- Begemann;
- De Beer.

Resistenza alla punta del Penetrometro Statico (Qc)

Robertson 1983 Qc

Modulo Edometrico-Confinato (Mo)

- Stroud e Butler (1975) per litotipi a media plasticità, valida per litotipi argillosi a media-medioalta plasticità - da esperienze su argille glaciali;
- Stroud e Butler (1975), per litotipi a medio-bassa plasticità (IP< 20), valida per litotipi argillosi a medio-bassa plasticità (IP< 20) - da esperienze su argille glaciali;
- Vesic (1970) correlazione valida per argille molli (valori minimi e massimi);
- Trofimenkov (1974), Mitchell e Gardner Modulo Confinato -Mo (Eed) (Kg/cmq)-, valida per litotipi argillosi e limosi-argillosi (rapporto Qc/Nspt=1.5-2.0);
- Buismann- Sanglerat, valida per argille compatte (Nspt <30) medie e molli (Nspt <4) e argille sabbiose (Nspt=6-12).

<u>Modulo Di Young (EY)</u>

- Schultze-Menzenbach (Min. e Max.), correlazione valida per limi coerenti e limi argillosi con I.P.
 >15;
- D'Appollonia ed altri (1983) correlazione valida per argille sature-argille fessurate.

<u>Stato di consistenza</u>

Classificazione A.G.I. 1977.

<u>Peso di Volume</u>

• Meyerhof ed altri, valida per argille, argille sabbiose e limose prevalentemente coerenti.

<u>Peso di volume saturo</u>

• Correlazione Bowles (1982), Terzaghi-Peck (1948-1967), valida per condizioni specifiche: peso specifico del materiale pari a circa G=2,70 (t/mc) e per indici dei vuoti variabili da 1,833 (Nspt=0) a 0,545 (Nspt=28).

Risultati delle prove DPSH eseguita

- Le prove DPSH eseguite hanno consentito di caratterizzare il sottosuolo fino ad una profondità massima di 10.0 m, discretizzandolo in una serie di superfici a differente comportamento in funzione del numero di colpi misurati durante le fasi di avanzamento.
- I valori ottenuti del numero di colpi e dell'Rpd sono rappresentati in maniera grafica in allegato05.
- Di seguito, ai fini di una più agevole consultazione dei dati, sono stati sintetizzati i valori dei parametri geotecnici ritenuti di interesse.

Sono stati considerati i parametri relativi a terreni coesivi.

In particolare:

- "densità relativa" si è considerata la correlazione di Skempton 1986;
- "angolo di resistenza al taglio" si è considerata la correlazione Shioi-Fukuni 1982;
- "modulo edometrico" la correlazione considerata è quella di Trofimenkov (1974), Mitchell e Gardner;
- "modulo di Young" la correlazione considerata è quella di Schultze;
- "peso unità di volume": la correlazione considerata è quella di Meyerhof;
- "peso unità di volume saturo": la correlazione considerata è quella di Meyerhof;
- "modulo di Poisson" si è considerata la correlazione AGI;
- "modulo di deformazione a taglio dinamico" si è considerata la correlazione di Campanella (1983) e Imai & Tonouchi (1982);
- "velocità onde di taglio" in questo caso specifico, essendo state eseguite prove geofisiche in sito, sono state omesse nel report della presente prova;
- "modulo di reazione" Navfac 1971-1982 correlazione valida per sabbie, ghiaie, limi e limi sabbiosi;
- "resistenza alla punta" si è considerata la correlazione di Robertson 1983;

11 ANALISI DI STABILITA' DEL VERSANTE

11.1 Definizione

Per pendio s'intende una porzione di versante naturale il cui profilo originario è stato modificato da interventi artificiali rilevanti rispetto alla stabilità. Per frana s'intende una situazione di instabilità che interessa versanti naturali e coinvolgono volumi considerevoli di terreno.

11.2 Introduzione all'analisi di stabilità

La risoluzione di un problema di stabilità richiede la presa in conto delle equazioni di campo e dei legami costitutivi. Le prime sono di equilibrio, le seconde descrivono il comportamento del terreno. Tali equazioni risultano particolarmente complesse in quanto i terreni sono dei sistemi multifase, che possono essere ricondotti a sistemi monofase solo in condizioni di terreno secco, o di analisi in condizioni drenate.

Nella maggior parte dei casi ci si trova a dover trattare un materiale che se saturo è per lo meno bifase, ciò rende la trattazione delle equazioni di equilibrio notevolmente complicata. Inoltre è praticamente impossibile definire una legge costitutiva di validità generale, in quanto i terreni presentano un comportamento non-lineare già a piccole deformazioni, sono anisotropi ed inoltre il loro comportamento dipende non solo dallo sforzo deviatorico ma anche da quello normale. A causa delle suddette difficoltà vengono introdotte delle ipotesi semplificative:

1. Si usano leggi costitutive semplificate: modello rigido perfettamente plastico. Si assume che la resistenza del materiale sia espressa unicamente dai parametri coesione (c) e angolo di resistenza al taglio (j), costanti per il terreno e caratteristici dello stato plastico; quindi si suppone valido il criterio di rottura di Mohr-Coulomb.

2. In alcuni casi vengono soddisfatte solo in parte le equazioni di equilibrio.

11.3 Metodo equilibrio limite (LEM)

Il metodo dell'equilibrio limite consiste nello studiare l'equilibrio di un corpo rigido, costituito dal pendio e da una superficie di scorrimento di forma qualsiasi (linea retta, arco di cerchio, spirale logaritmica); da tale equilibrio vengono calcolate le tensioni da taglio (t) e confrontate con la resistenza disponibile (t_f), valutata secondo il criterio di rottura di Coulomb, da tale confronto ne scaturisce la prima indicazione sulla stabilità attraverso il coefficiente di sicurezza:

 $F=\tau_{f}\,/\tau$

Tra i metodi dell'equilibrio limite alcuni considerano l'equilibrio globale del corpo rigido (Culman), altri a causa della non omogeneità dividono il corpo in conci considerando l'equilibrio di ciascuno (Fellenius, Bishop, Janbu ecc.).

Di seguito vengono discussi i metodi dell'equilibrio limite dei conci.

11.4 Metodo dei conci

La massa interessata dallo scivolamento viene suddivisa in un numero conveniente di conci. Se il numero dei conci è pari a *n*, il problema presenta le seguenti incognite:

- n valori delle forze normali N_i agenti sulla base di ciascun concio;
- n valori delle forze di taglio alla base del concio T_i;
- (n-1) forze normali E_i agenti sull'interfaccia dei conci;
- (n-1) forze tangenziali X_i agenti sull'interfaccia dei conci;
- n valori della coordinata a che individua il punto di applicazione delle E_i;
- (n-1) valori della coordinata che individua il punto di applicazione delle X_i;
- una incognita costituita dal fattore di sicurezza F.

Complessivamente le incognite sono (6n-2). Mentre le equazioni a disposizione sono:

- equazioni di equilibrio dei momenti n;
- equazioni di equilibrio alla traslazione verticale n;
- equazioni di equilibrio alla traslazione orizzontale n;
- equazioni relative al criterio di rottura n.

Totale numero di equazioni 4n.

Il problema è staticamente indeterminato ed il grado di indeterminazione è pari a :

Il grado di indeterminazione si riduce ulteriormente a (n-2) in quanto si fa l'assunzione che N_i sia applicato nel punto medio della striscia. Ciò equivale ad ipotizzare che le tensioni normali totali siano uniformemente distribuite.

I diversi metodi che si basano sulla teoria dell'equilibrio limite si differenziano per il modo in cui vengono eliminate le (n-2) indeterminazioni.

11.5 Metodo di Fellenius (1927)

Con questo metodo (valido solo per superfici di scorrimento di forma circolare) vengono trascurate le forze di interstriscia pertanto le incognite si riducono a:

- n valori delle forze normali N_i;
- n valori delle forze da taglio T_i;
- 1 fattore di sicurezza.

Incognite (2n+1). Le equazioni a disposizione sono:

- n equazioni di equilibrio alla traslazione verticale;
- n equazioni relative al criterio di rottura;
- equazione di equilibrio dei momenti globale.

$$F = \frac{\Sigma \{ c_i \times l_i + (W_i \times \cos\alpha_i - u_i \times l_i) \times \tan\varphi_i \}}{\Sigma W_i \times \sin\alpha_i}$$

Questa equazione è semplice da risolvere ma si è trovato che fornisce risultati conservativi (fattori di sicurezza bassi) soprattutto per superfici profonde.

11.6 Metodo di Bishop (1955)

Con tale metodo non viene trascurato nessun contributo di forze agenti sui blocchi e fu il primo a descrivere i problemi legati ai metodi convenzionali. Le equazioni usate per risolvere il problema sono:

$$\sum F_y = 0$$
, $\sum M_0 = 0$ Criterio di rottura

$$F = \frac{\Sigma \{c_i \times b_i + (W_i - u_i \times b_i + \Delta X_i) \times \tan \varphi_i\} \times \frac{\sec \alpha_i}{1 + \tan \alpha_i \times \tan \varphi_i / F}}{\Sigma W_i \times \sin \alpha_i}$$

I valori di F e di DX per ogni elemento che soddisfano questa equazione danno una soluzione rigorosa al problema. Come prima approssimazione conviene porre DX = 0 ed iterare per il calcolo del fattore di sicurezza, tale procedimento è noto come metodo di **Bishop ordinario**, gli errori commessi rispetto al metodo completo sono di circa 1 %.

11.7 Metodo di Janbu (1967)

Janbu estese il metodo di Bishop a superfici di scorrimento di forma qualsiasi. Quando vengono trattate superfici di scorrimento di forma qualsiasi il braccio delle forze cambia (nel caso delle superfici circolari resta costante e pari al raggio). A tal motivo risulta più conveniente valutare l'equazione del momento rispetto allo spigolo di ogni blocco.

Azioni sul concio i-esimo secondo le ipotesi di Janbu e rappresentazione d'insieme dell'ammasso

Assumendo $DX_i = 0$ si ottiene il metodo ordinario. Janbu propose inoltre un metodo per la correzione del fattore di sicurezza ottenuto con il metodo ordinario secondo la seguente:

$$F_{\text{corretto}} = f_0 \cdot F$$

dove f_0 è riportato in grafici funzione di geometria e parametri geotecnici. Tale correzione è molto attendibile per pendii poco inclinati.

11.8 Metodo di Bell (1968)

Le forze agenti sul corpo che scivola includono il peso effettivo del terreno, W, le forze sismiche pseudostatiche orizzontali e verticali K_XW e K_ZW , le forze orizzontali e verticali X e Z applicate esternamente al profilo del pendio, infine, la risultante degli sforzi totali normali e di taglio s e t agenti sulla superficie potenziale di scivolamento.

Lo sforzo totale normale può includere un eccesso di pressione dei pori u che deve essere specificata con l'introduzione dei parametri di forza efficace.

In pratica questo metodo può essere considerato come un'estensione del metodo del cerchio di attrito per sezioni omogenee precedentemente descritto da Taylor.

In accordo con la legge della resistenza di Mohr-Coulomb in termini di tensione efficace, la forza di taglio agente sulla base dell'i-esimo concio è data da:

$$T_{i} = \frac{c_{i}L_{i} + (N_{i} - u_{ci}L_{i})\tan\Phi_{i}}{F}$$

in cui:

F = il fattore di sicurezza;

ci = la coesione efficace (o totale) alla base dell'i-esimo concio;

f_i = l'angolo di attrito efficace (= 0 con la coesione totale) alla base dell'i-esimo concio;

L_i = la lunghezza della base dell'i-esimo concio;

uci = la pressione dei pori al centro della base dell'i-esimo concio.

L'equilibrio risulta uguagliando a zero la somma delle forze orizzontali, la somma delle forze verticali e la somma dei momenti rispetto all'origine.

Viene adottata la seguente assunzione sulla variazione della tensione normale agente sulla potenziale superficie di scorrimento:

$$\sigma_{ci} = \left[C_1 (1 - K_z) \frac{W_i \cos \alpha_i}{L_i}\right] + C_2 f(x_{ci}, y_{ci}, z_{ci})$$

in cui il primo termine dell'equazione include l'espressione:

 $W_i \cos \alpha_i / L_i =$ valore dello sforzo normale totale associato con il metodo ordinario dei conci Il secondo termine dell'equazione include la funzione:

$$f = \sin 2\pi \left(\frac{x_n - x_{ci}}{x_n - x_0}\right)$$

dove x_0 ed x_n sono rispettivamente le ascisse del primo e dell'ultimo punto della superficie di scorrimento, mentre x_{ci} rappresenta l'ascissa del punto medio della base del concio i-esimo. Una parte sensibile di riduzione del peso associata con una accelerazione verticale del terreno K_z g può essere trasmessa direttamente alla base e ciò è incluso nel fattore (1 - K_z). Lo sforzo normale totale alla base di un concio è dato da:

$$N_i = \sigma_{ci} L_i$$

La soluzione delle equazioni di equilibrio si ricava risolvendo un sistema lineare di tre equazioni ottenute moltiplicando le equazioni di equilibrio per il fattore di sicurezza F, sostituendo l'espressione di N_i e moltiplicando ciascun termine della coesione per un coefficiente arbitrario C₃. Qualsiasi coppia di valori del fattore di sicurezza nell'intorno di una stima fisicamente ragionevole può essere usata per iniziare una soluzione iterativa.

Il numero necessario di iterazioni dipende sia dalla stima iniziale sia dalla desiderata precisione della soluzione; normalmente, il processo converge rapidamente.

11.9 Metodo di Sarma (1973)

Il metodo di Sarma è un semplice, ma accurato metodo per l'analisi di stabilità dei pendii, che permette di determinare l'accelerazione sismica orizzontale richiesta affinché l'ammasso di terreno, delimitato dalla superficie di scivolamento e dal profilo topografico, raggiunga lo stato di equilibrio limite (accelerazione critica K_C) e, nello stesso tempo, consente di ricavare l'usuale fattore di sicurezza ottenuto come per gli altri metodi più comuni della geotecnica. Si tratta di un metodo basato sul principio dell'equilibrio limite e delle strisce, pertanto viene considerato l'equilibrio di una potenziale massa di terreno in scivolamento suddivisa in n strisce verticali di spessore sufficientemente piccolo da ritenere ammissibile l'assunzione che lo sforzo normale N_i agisce nel punto medio della base della striscia. Le equazioni da prendere in considerazione sono:

- L'equazione di equilibrio alla traslazione orizzontale del singolo concio;
- L'equazione di equilibrio alla traslazione verticale del singolo concio;
- L'equazione di equilibrio dei momenti.

Condizioni di equilibrio alla traslazione orizzontale e verticale:

$$\begin{split} N_i \cos \alpha_i + T_i \sin \alpha_i &= W_i - \Delta X_i \\ T_i \cos \alpha_i - N_i \sin \alpha_i &= K W_i + \Delta E_i \end{split}$$

Viene, inoltre, assunto che in assenza di forze esterne sulla superficie libera dell'ammasso si ha:

 $SDE_i = 0$ $SDX_i = 0$

dove E_i e X_i rappresentano, rispettivamente, le forze orizzontale e verticale sulla faccia i-esima del concio generico i.

L'equazione di equilibrio dei momenti viene scritta scegliendo come punto di riferimento il baricentro dell'intero ammasso; sicché, dopo aver eseguito una serie di posizioni e trasformazioni trigonometriche ed algebriche, nel **metodo di Sarma** la soluzione del problema passa attraverso la risoluzione di due equazioni:

Azioni sull' iesimo concio, metodo di Sarma

$$\sum \Delta X_{i} \cdot tg(\psi_{i}^{'} - \alpha_{i}) + \sum \Delta E_{i} = \sum \Delta_{i} - K \cdot \sum W_{i}$$
$$\sum \Delta X_{i} \cdot \left[(y_{mi} - y_{G}) \cdot tg(\psi_{i}^{'} - \alpha^{'}) + (x_{i}^{'} - x_{G}) \right] = \sum W_{i} \cdot (x_{mi} - x_{G}) + \sum \Delta_{i} \cdot (y_{mi} - y_{G})$$

Ma l'approccio risolutivo, in questo caso, è completamente capovolto: il problema infatti impone di trovare un valore di K (accelerazione sismica) corrispondente ad un determinato fattore di sicurezza; ed in particolare, trovare il valore dell'accelerazione K corrispondente al fattore di sicurezza F = 1, ossia l'accelerazione critica. Si ha pertanto:

K=KcAccelerazione critica se F=1F=FsFattore di sicurezza in condizioni statiche se
K=0

La seconda parte del problema del Metodo di Sarma è quella di trovare una distribuzione di forze interne X_i ed E_i tale da verificare l'equilibrio del concio e quello globale dell'intero ammasso, senza violazione del criterio di rottura.

E' stato trovato che una soluzione accettabile del problema si può ottenere assumendo la seguente distribuzione per le forze X_i:

$$\Delta X_{i} = \lambda \cdot \Delta Q_{i} = \lambda \cdot (Q_{i+1} - Q_{i})$$

dove Q_i è una funzione nota, in cui vengono presi in considerazione i parametri geotecnici medi sulla i-esima faccia del concio i, e l rappresenta un'incognita.

La soluzione completa del problema si ottiene pertanto, dopo alcune iterazioni, con i valori di K_C, l e F, che permettono di ottenere anche la distribuzione delle forze di interstriscia.

11.10 Metodo di Spencer (1967)

Il metodo è basato sull'assunzione:

1. le forze d'interfaccia lungo le superfici di divisione dei singoli conci sono orientate parallelamente fra loro ed inclinate rispetto all'orizzontale di un angolo q;

2. tutti i momenti sono nulli M_i =0 con i=1....n.

Sostanzialmente il metodo soddisfa tutte le equazioni della statica ed equivale ametodo di Morgenstern e Price quando la funzione f(x) = 1. Imponendo l'equilibrio dei momenti rispetto al centro dell'arco descritto dalla superficie di scivolamento si ha:

1)
$$\sum Q_i R \cos(\alpha - \theta) = 0$$

dove:

$$Q_{i} = \frac{\frac{c}{F_{s}} (W \cos \alpha - \gamma_{w} hl \sec \alpha) \frac{tg\alpha}{F_{s}} - W sen \alpha}{\cos(\alpha - \theta) \left[\frac{F_{s} + tg\phi tg(\alpha - \theta)}{F_{s}} \right]}$$

forza d'interazione fra i conci;

R = raggio dell'arco di cerchio;

 $\boldsymbol{\theta}$ = angolo d'inclinazione della forza Q_i rispetto

all'orizzontale.

Imponendo l'equilibrio delle forze orizzontali e verticali si ha rispettivamente:

$$R$$

$$E_{i+1}$$

$$d_{i+1}$$

$$d_{i+1}$$

$$d_{i+1}$$

$$d_{i+1}$$

$$d_{i+1}$$

$$d_{i+1}$$

$$d_{i+1}$$

$$d_{i+1}$$

$$d_{i+1}$$

$$\sum (Q_i \cos \theta) = 0$$
$$\sum (Q_i \sin \theta) = 0$$

Con l'assunzione delle forze Q_i parallele fra loro, si può anche scrivere:

$$\sum Q_i = 0$$

Il metodo propone di calcolare due coefficienti di sicurezza: il primo (F_{sm}) ottenibile dalla 1), legato all'equilibrio dei momenti; il secondo (F_{sf}) dalla 2) legato all'equilibrio delle forze. In pratica si procede risolvendo la 1) e la 2) per un dato intervallo di valori dell'angolo θ , considerando come valore unico del coefficiente di sicurezza quello per cui si abbia:

$$F_{sm} = F_{sf}$$

11.11 Metodo di Morgenstern e Price (1965)

Si stabilisce una relazione tra le componenti delle forze di interfaccia del tipo X = λ f(x)E, dove λ è un fattore di scala e f(x), funzione della posizione di E e di X, definisce una relazione tra la variazione della forza X e della forza E all'interno della massa scivolante. La funzione f(x) è scelta arbitrariamente (costante, sinusoide, semisinusoide, trapezia, spezzata...) e influenza poco il risultato, ma va verificato che i valori ricavati per le incognite siano fisicamente accettabili.

La particolarità del metodo è che la massa viene suddivisa in strisce infinitesime alle quali vengono imposte le equazioni di equilibrio alla traslazione orizzontale e verticale e di rottura sulla base delle strisce stesse. Si perviene ad una prima equazione differenziale che lega le forze d'interfaccia incognite E, X, il coefficiente di sicurezza F_S, il peso della striscia infinitesima dW e la risultante delle pressioni neutra alla base dU.

Si ottiene la cosiddetta "equazione delle forze":

Azioni sul concio i-esimo secondo le ipotesi di Morgenster e Price e rappresentazione d'insieme dell'ammasso

Una seconda equazione, detta "**equazione dei momenti**", viene scritta imponendo la condizione di equilibrio alla rotazione rispetto alla mezzeria della base:

$$X = \frac{d(E_{\gamma})}{dx} - \gamma \frac{dE}{dx}$$

queste due equazioni vengono estese per integrazione a tutta la massa interessata dallo scivolamento.

Il metodo di calcolo soddisfa tutte le equazioni di equilibrio ed è applicabile a superfici di qualsiasi forma, ma implica necessariamente l'uso di un calcolatore.

11.12 Metodo di Zeng e Liang (2002)

Zeng e Liang hanno effettuato una serie di analisi parametriche su un modello bidimensionale sviluppato con codice agli elementi finiti, che riproduce il caso di pali immersi in un terreno in movimento (drilled shafts). Il modello bidimensionale riproduce una striscia di terreno di spessore unitario e ipotizza che il fenomeno avvenga in condizioni di deformazione piana nella direzione parallela all'asse dei pali. Il modello è stato utilizzato per indagare l'influenza sulla formazione dell'effetto arco di alcuni parametri come l'interasse fra i pali, il diametro e la forma dei pali, e le proprietà meccaniche del terreno. Gli autori individuano nel rapporto tra l'interasse e il diametro dei i pali (s/d) il parametro adimensionale determinante per la formazione dell'effetto arco. Il problema risulta essere staticamente

indeterminato, con grado di indeterminatezza pari a (8n-4), ma nonostante ciò è possibile ottenere una soluzione riducendo il numero delle incognite e assumendo quindi delle ipotesi semplificative, in modo da rendere determinato il problema. Le assunzioni che rendono il problema determinato sono:

-Ky sono assunte orizzontali per ridurre il numero totale delle incognite da (n-1) a (7n-3); -Le forze normali alla base della striscia agiscono nel punto medio, riducendo le incognite da n a (6n-3);

-La posizione delle spinte laterali è ad un terzo dell'altezza media dell'inter-striscia e riduce le incognite da (n-1) a (5n-2);

-Le forze (Pi-1) e Pi si assumono parallele all'inclinazione della base della striscia

(αi), riducendo il numero di incognite da (n-1) a (4n-1);

-Si assume un'unica costante di snervamento per tutte le strisce, riducendo le incognite da (n) a (3n-1);

Il numero totale di incognite quindi è ridotto a (3n), da calcolare utilizzando il fattore di trasferimento di carico. Inoltre si deve tener presente che la forza di stabilizzazione trasmessa sul terreno a valle dei pali risulta ridotta di una quantità R, chiamato fattore di riduzione, calcolabile come:

$$\mathbf{R} = \frac{1}{s/d} + \left(1 - \frac{1}{s/d}\right) \cdot \mathbf{R}_p$$

Il fattore R dipende quindi dal rapporto fra l'interasse presente fra i pali e il diametro dei pali stessi e dal fattore R_p che tiene conto dell'effetto arco.

11.13 Valutazione dell'azione sismica

La stabilità dei pendii nei confronti dell'azione sismica viene verificata con il metodo pseudostatico. Per i terreni che sotto l'azione di un carico ciclico possono sviluppare pressioni interstiziali elevate viene considerato un aumento in percento delle pressioni neutre che tiene conto di questo fattore di perdita di resistenza.

Ai fini della valutazione dell'azione sismica vengono considerate le seguenti forze:

$$F_{H} = K_{x}W$$
$$F_{V} = K_{y}W$$

Essendo:

• $F_H \in F_V$ rispettivamente la componente orizzontale e verticale della forza d'inerzia applicata al baricentro del concio;

- W peso concio;
- K_X coefficiente sismico orizzontale;
- K_y coefficiente sismico verticale.

11.14 Ricerca della superficie di scorrimento critica

In presenza di mezzi omogenei non si hanno a disposizione metodi per individuare la superficie di scorrimento critica ed occorre esaminarne un numero elevato di potenziali superfici. Nel caso vengano ipotizzate superfici di forma circolare, la ricerca diventa più semplice, in quanto dopo aver posizionato una maglia dei centri costituita da m righe e n colonne saranno esaminate tutte le superfici aventi per centro il generico nodo della maglia m'n e raggio variabile in un determinato range di valori tale da esaminare superfici cinematicamente ammissibili.

11.15 Stabilizzazione di pendii con l'utilizzo di pali

La realizzazione di una cortina di pali, su pendio, serve a fare aumentare la resistenza al taglio su determinate superfici di scorrimento. L'intervento può essere conseguente ad una stabilità già accertata, per la quale si conosce la superficie di scorrimento oppure, agendo preventivamente, viene progettato in relazione alle ipotetiche superfici di rottura che responsabilmente possono essere assunte come quelle più probabili. In ogni caso si opera considerando una massa di terreno in movimento su un ammasso stabile sul quale attestare, per una certa lunghezza, l'allineamento di pali.

Il terreno, nelle due zone, ha una influenza diversa sull'elemento monoassiale (palo): di tipo sollecitativi nella parte superiore (palo passivo – terreno attivo) e di tipo resistivo nella zona sottostante (palo attivo – terreno passivo). Da questa interferenza, fra "sbarramento" e massa in movimento, scaturiscono le azioni stabilizzanti che devono perseguire le seguenti finalità:

 conferire al pendio un coefficiente di sicurezza maggiore di quello posseduto;
 essere assorbite dal manufatto garantendone l'integrità (le tensioni interne, derivanti dalle sollecitazioni massime trasmesse sulle varie sezioni del singolo palo, devono risultare inferiori a quelle ammissibili del materiale) e risultare inferiori al carico limite sopportabile dal terreno, calcolato, lateralmente considerando l'interazione (palo– terreno).

11.16 Carico limite relativo all'interazione fra i pali ed il terreno laterale

Nei vari tipi di terreno che non hanno un comportamento omogeneo, le deformazioni in corrispondenza della zona di contatto non sono legate fra di loro. Quindi, non potendo associare al materiale un modello di comportamento perfettamente elastico (ipotesi che potrebbe essere assunta per i materiali lapidei poco fratturati), generalmente si procede imponendo che il movimento di massa sia nello stato iniziale e che il terreno in adiacenza ai pali sia nella fase massima consentita di plasticizzazione, oltre la quale si potrebbe verificare l'effetto indesiderato che il materiale possa defluire, attraverso la cortina di pali, nello spazio intercorrente fra un elemento e l'altro.

Imponendo inoltre che il carico assorbito dal terreno sia uguale a quello associato alla condizione limite ipotizzata e che fra due pali consecutivi, a seguito della spinta attiva, si instauri una sorta di effetto arco, gli autori T. Ito e T. Matsui (1975) hanno ricavato la relazione che permette di determinare il carico limite. A questa si è pervenuto facendo riferimento allo schema statico, disegnato nella figura precedente e alle ipotesi anzidette, che schematicamente si ribadiscono.

- Sotto l'azione delle spinte attiva del terreno si formano due superfici di scorrimento localizzate in corrispondenza delle linee AEB ed A'E'B;
- Le direzioni EB ed E'B' formano con l'asse x rispettivamente angoli +(45 + ϕ /2) e -(45 + ϕ /2);
- Il volume di terreno, compreso nella zona delimitata dai vertici AEBB'E'A' ha un comportamento plastico, e quindi è consentita l'applicazione del criterio di rottura di Mohr-coulomb;
- La pressione attiva del terreno agisce sul piano A-A';
- I pali sono dotati di elevata rigidezza a flessione e taglio.

Detta espressione, riferita alla generica profondità Z, relativamente ad un spessore di terreno unitario, è la seguente:

$$P(Z) = C \cdot D_{1}(D_{1}/D_{2})^{k1} \left[\frac{1}{(N_{\phi}tag\phi)} e^{k2} - 2(N_{\phi})^{k/2}tag\phi - 1 + K3 \right] - C \left[D_{1} \cdot K_{3} - D_{2}/(N_{\phi})^{k/2} \right] + \gamma Z/N_{\phi} \left[D_{1}(D_{1}/D_{2})^{k1} \cdot e^{k2} - D_{2} \right] + C \left[D_{1} \cdot K_{3} - D_{2}/(N_{\phi})^{k/2} \right] + \gamma Z/N_{\phi} \left[D_{1}(D_{1}/D_{2})^{k1} \cdot e^{k2} - D_{2} \right] + C \left[D_{1} \cdot K_{3} - D_{2}/(N_{\phi})^{k/2} \right] + \gamma Z/N_{\phi} \left[D_{1}(D_{1}/D_{2})^{k1} \cdot e^{k2} - D_{2} \right] + C \left[D_{1} \cdot K_{3} - D_{2}/(N_{\phi})^{k/2} \right] + \gamma Z/N_{\phi} \left[D_{1}(D_{1}/D_{2})^{k1} \cdot e^{k2} - D_{2} \right]$$

dove i simboli utilizzati assumono il significato che segue:

C = coesione terreno;

φ = angolo di attrito terreno;

- γ = peso specifico terreno;
- D₁ = interasse tra i pali;

D₂ = spazio libero fra due pali consecutivi; **N**_{Φ} = tag²($\pi/4 + \Phi/2$)

$$\begin{split} \mathbf{K}_1 &= \left(\mathbf{N}_{\phi}\right)^{1/2} tag\phi + \mathbf{N}_{\phi} - 1\\ \mathbf{K}_2 &= \left(\mathbf{D}_1 - \mathbf{D}_2\right) / \mathbf{D}_2 \cdot \mathbf{N}_{\phi} tag(\pi/8 + \phi/4)\\ \mathbf{K}_3 &= \left[2 tag\phi + 2 \left(\mathbf{N}_{\phi}\right)^{1/2} + 1 / \left(\mathbf{N}_{\phi}\right)^{1/2}\right] / \left[\left(\mathbf{N}_{\phi}\right)^{1/2} tag\phi + \mathbf{N}_{\phi} - 1\right] \end{split}$$

La forza totale, relativamente ad uno strato di terreno in movimento di spessore H, è stata ottenuta integrando l'espressione precedente.

In presenza di terreni granulari (condizione drenata), nei quali si può assumere c = 0, l'espressione diventa:

$$\boldsymbol{P} = \frac{1}{2\gamma} \cdot \boldsymbol{H}^2 / N_{\varphi} \Big[\boldsymbol{D}_1 (\boldsymbol{D}_1 / \boldsymbol{D}_2)^{k_1} \cdot \boldsymbol{e}^{k_2} - \boldsymbol{D}_2 \Big]$$

Per terreni coesivi (condizioni non drenate), con ϕ = 0 e C \neq 0, si ha:

$$P(z) = C[D_1(3\ln(D_1/D_2) + (D_1 - D_2)/D_2 \tan \pi/8) - 2(D_1 - D_2)] + \gamma \cdot Z(D_1 - D_2)$$
$$P = \int_0^H P(Z) dZ$$
$$P = C \cdot H[D_1(3\ln(D_1/D_2) + (D_1 - D_2)/D_2 \tan \pi/8) - 2(D_1 - D_2)] + 1/2 \gamma H^2(D_1 - D_2)$$

Il dimensionamento della cortina di pali, che come già detto deve conferire al pendio un incremento del coefficiente di sicurezza e garantire l'integrità del meccanismo palo-terreno, è abbastanza problematica. Infatti tenuto conto della complessità dell'espressione del carico P, influenzata da diversi fattori legati sia alle caratteristiche meccaniche del terreno sia alla geometria del manufatto, non è facile con una sola elaborazione pervenire alla soluzione ottimale. Per raggiungere lo scopo è necessario pertanto eseguire diversi tentativi finalizzati:

• A trovare, sul profilo topografico del pendio, la posizione che garantisca, a parità di altre condizioni, una distribuzione dei coefficienti di sicurezza più confortante;

• A determinare la disposizione planimetrica dei pali, caratterizzata dal rapporto fra interasse e distanza fra i pali (D2/D1), che consenta di sfruttare al meglio la resistenza del complesso palo-terreno; sperimentalmente è stato riscontrato che, escludendo i casi limiti (D₂ = 0 P $\rightarrow \infty$ e D₂ = D₁ P \rightarrow valore minimo), i valori più idonei allo scopo sono quelli per i quali tale rapporto risulta compreso fra 0,60 e 0,80;

• A valutare la possibilità di inserire più file di pali ed eventualmente, in caso affermativo, valutare, per le file successive, la posizione che dia più garanzie in termini di sicurezza e di spreco di materiali;

• Ad adottare il tipo di vincolo più idoneo che consente di ottenere una distribuzione più regolare delle sollecitazioni; sperimentalmente è stato constatato che quello che assolve, in maniera più soddisfacente, allo scopo è il vincolo che impedisce le rotazioni alla testa del palo.

11.17 Metodo del carico limite di Broms

Nel caso in cui il palo sia caricato ortogonalmente all'asse, configurazione di carico presente se un palo inibisce il movimento di una massa in frana, la resistenza può essere affidata al suo carico limite orizzontale.

Il problema di calcolo del carico limite orizzontale è stato affrontato da Broms sia per il mezzo puramente coesivo che per il mezzo incoerente, il metodo di calcolo seguito è basato su alcune ipotesi semplificative per quanto attiene alla reazione esercitata dal terreno per unità di lunghezza di palo in condizioni limite e porta in conto anche la resistenza a rottura del palo (*Momento di plasticizzazione*).

11.18 Elemento Rinforzo

I Rinforzi sono degli elementi orizzontali, la loro messa in opera conferisce al terreno un incremento della resistenza allo scorrimento.

Se l'elemento di rinforzo interseca la superficie di scorrimento, la forza resistente sviluppata dall'elemento entra nell'equazione di equilibrio del singolo concio, in caso contrario l'elemento di rinforzo non ne influenza la stabilità.

Le verifiche di natura interna hanno lo scopo di valutare il livello di stabilità dell'ammasso rinforzato, quelle calcolate sono la verifica a rottura dell'elemento di rinforzo per trazione e la verifica a sfilamento (*Pullout*). Il parametro che fornisce la resistenza a trazione del rinforzo, T_{Allow}, si calcola dalla resistenza nominale del materiale con cui è realizzato il rinforzo ridotto da opportuni coefficienti che tengono conto dell'aggressività del terreno, danneggiamento per effetto creep e danneggiamento per installazione.

L' altro parametro è la resistenza a sfilamento (*Pullout*) che viene calcolata attraverso la seguente relazione:

$$T_{\text{Pullout}} = 2 \cdot \text{Le} \cdot \sigma' v \cdot f_{\text{b}} \cdot \tan(\delta)$$

Per geosintetico a maglie chiuse:

$$f_b = \frac{tan(\delta)}{tan(\phi)}$$

dove:

d Rappresenta l'angolo di attrito tra terreno e rinforzo;

T_{Pullout} Resistenza mobilitata da un rinforzo ancorato per una lunghezza L_e all'interno della parte stabile del terreno;

Le Lunghezza di ancoraggio del rinforzo all'interno della parte stabile;

fb Coefficiente di *Pullout*;

 σ'_V Tensione verticale, calcolata alla profondità media del tratto di rinforzo ancorato al terreno.

Ai fini della verifica si sceglie il valore minimo tra TAllow e T_{Pullout}, la verifica interna verrà soddisfatta se la forza trasmessa dal rinforzo generata a tergo del tratto rinforzato non supera il valore della T'.

Ancoraggi

Gli ancoraggi, tiranti o chiodi, sono degli elementi strutturali in grado di sostenere forze di trazione in virtù di un'adeguata connessione al terreno.

Gli elementi caratterizzanti un tirante sono:

• **testata:** indica l'insieme degli elementi che hanno la funzione di trasmettere alla struttura ancorata la forza di trazione del tirante;

• **fondazione**: indica la parte del tirante che realizza la connessione con il terreno, trasmettendo al terreno stesso la forza di trazione del tirante.

Il tratto compreso tra la testata e la fondazione prende il nome di parte libera, mentre la fondazione (o bulbo) viene

realizzata iniettando nel terreno, per un tratto terminale, tramite valvole a perdere, la malta, in genere cementizia. L'anima dell'ancoraggio è costituita da un'armatura, realizzata con barre, fili o trefoli.

Il tirante interviene nella stabilità in misura maggiore o minore efficacia a seconda se sarà totalmente o parzialmente (caso in cui è intercettato dalla superficie di scorrimento) ancorato alla parte stabile del terreno.

Bulbo completamente ancorato

Bulbo parzialmente ancorato

Le relazioni che esprimono la misura di sicurezza lungo una ipotetica superficie di scorrimento si modificheranno in presenza di ancoraggi (tirante attivo, passivo e chiodi) nel modo seguente: – per i tiranti di *tipo attivo*, la loro resistenza si detrae dalle azioni (denominatore);

$$Fs = \frac{R_d}{E_d - \sum_{i,j} R_{i,j} \cdot \frac{1}{\cos \alpha_i}}$$

– per tiranti di *tipo passivo e per i chiodi,* il loro contributo si somma alle resistenze (numeratore)

$$Fs = \frac{R_d + \sum_{i,j} R_{i,j} \cdot \frac{1}{\cos \alpha_i}}{E_d}$$

Con R_i si indica la resistenza dell'ancoraggio e viene calcolata dalla seguente espressione:

$$\mathbf{R}_{j} = \mathbf{T}_{d} \cdot \cos \Psi_{i} \cdot \left(\frac{1}{i}\right) \cdot \left(\frac{\mathbf{L}_{e}}{\mathbf{L}_{a}}\right)$$

dove:

- T_d tiro esercizio;
- Y_i inclinazione del tirante rispetto all'orizzontale;

i interasse;

- Le lunghezza efficace;
- La lunghezza d'ancoraggio.

I due indici (i, j) riportati in sommatoria rappresentano rispettivamente l'i-esimo concio e il jesimo ancoraggio intercettato dalla superficie di scorrimento dell'i-esimo concio. Di seguito si riportano i risultati per ciascun profilo dell'analisi eseguita tramite software Geoslope.

Traccia del profilo su cui è stata eseguita l'analisi di stabilità

11.19 Risultati del calcolo Profilo A

Analisi di stabilità dei pendii con : BISHOP (1955)

Zona	SPINAZZOLA	
Lat./Long.	40.96300122/15.97913028 °	
Calcolo eseguito secondo	NTC 2018	
Numero di strati	2.0	
Numero dei conci	10.0	
Grado di sicurezza ritenuto accettabile	1.3	
Coefficiente parziale resistenza	1.0	
Analisi	Condizione drenata	
Superficie di forma circolare		

Maglia dei Centri

Ascissa vertice sinistro inferiore xi	273 0 m
Ordinata vertice sinistro inferiore vi	423.0 m
Ascissa vertice destro superiore xs	381.0 m
Ordinata vertice destro superiore ys	489.0 m
Passo di ricerca	10.0
Numero di celle lungo x	10.0
Numero di celle lungo y	5.0

Coefficienti sismici [N.T.C.]

Dati generali

Tipo opera:	2 - Opere ordinarie
Classe d'uso:	Classe I
Vita nominale:	50.0 [anni]
Vita di riferimento:	35.0 [anni]

Parametri sismici su sito di riferimento

Categoria	sottosuolo:
Cuicgona	5011050010.

Categoria topografica:

TC* S.L. TR F0 ag Stato limite Tempo ritorno [m/s²] [-] [sec] [anni] S.L.O. 30.0 0.042 2.518 0.28 S.L.D. 35.0 0.045 2.518 0.285 332.0 S.L.V. 0.134 2.478 0.415 S.L.C. 682.0 0.186 2.535 0.422

В

T2

Coefficienti sismici orizzontali e verticali

Opera: Stabilità dei pendii e Fondazioni
S.L.	amax	beta	kh	kv
Stato limite	[m/s ²]	[-]	[-]	[sec]
S.L.O.	0.0605	0.2	0.0012	0.0006
S.L.D.	0.0648	0.2	0.0013	0.0007
S.L.V.	0.193	0.2	0.0039	0.002
S.L.C.	0.2678	0.2	0.0055	0.0027

Coefficiente	azione	sismica	orizzontale	
Coefficiente	azione	sismica	verticale	

0.0012 0.0006

Vertici profilo

Nr	X (m)	y (m)
1	0.0	386.99
2	10.15	386.96
3	24.21	387.69
4	36.98	388.49
5	56.6	389.59
6	80.89	391.61
7	97.09	393.11
8	113.29	395.34
9	127.92	397.0
10	137.58	397.94
11	153.78	400.45
12	161.88	401.08
13	169.97	402.24
14	178.07	402.86
15	194.27	405.04
16	201.51	405.51
17	209.29	406.43
18	218.56	407.03
19	226.66	407.94
20	238.78	408.73
21	252.84	409.27
22	281.42	410.03
23	299.55	410.91
24	315.74	412.48
25	323.84	412.84
26	331.94	414.02
27	340.04	414.67
28	364.33	418.56
29	372.43	419.76
30	384.86	420.94
31	399.32	422.01
32	414.77	422.42
33	427.73	422.52
34	445.31	422.47
35	456.95	422.33
36	482.79	421.84
37	503.54	421.39
38	524.18	420.83
39	550.59	420.24
40	558.69	420.05

N	X	y (m)
1	(III)	(III) 281.40
1	0.0	301.47
2	24.21	381.40
3	24.21	382.17
5	56.6	382.99
5	90.00	384.07
7	97.09	387.61
8	113.20	380.84
8	113.27	309.04
10	127.92	391.5
10	157.58	39/2.44
11	153.78	305 58
12	169.97	396.74
13	178.07	397.36
15	194.27	399.54
15	201 51	400.01
10	201.31	/00.01
17	209.29	401.53
19	210.50	402.44
20	220.00	403.23
20	252.84	403.77
22	281.42	404 53
23	299.55	405.41
24	315.74	406.98
25	323.84	407.34
26	331.94	408.52
27	340.04	409.17
28	364.33	413.06
29	372.43	414.26
30	384.86	415.44
31	399.32	416.51
32	414.77	416.92
33	427.73	417.02
34	445.31	416.97
35	456.95	416.83
36	482.79	416.34
37	503.54	415.89
38	524.18	415.33
39	550.59	414.74
40	558.69	414.55

Vertici strato1

Coefficienti parziali azioni

		=
Sfavorevoli: Permanenti, variabili	1.0 1.0	
Favorevoli: Permanenti, variabili	1.0 1.0	
		=

=====		
Tangente angolo di resistenza al taglio	1.25	
Coesione efficace	1.25	
Coesione non drenata	1.4	
Riduzione parametri geotecnici terreno	No	

Coefficienti parziali per i parametri geotecnici del terreno

Stratigrafia

Strato	Coesione	Angolo	Peso unità	Peso unità di	Litologia	Legenda
	(kg/cm²)	resistenza al	di volume	volume		
		taglio	(Kg/m³)	saturo		
		(°)		(Kg/m³)		
1	0.5	24	1800.00	1850	Limi argillosi e	
					sabbiosi	
2	0.1	26	1800	2000	Limi ghiaiosi	

Risultati analisi pendio [SPINAZZOLA PROFILO A]

=====	
Fs minimo individuato	<mark>4.11</mark>
Ascissa centro superficie	283.8 m
Ordinata centro superficie	489.0 m
Raggio superficie	125.0 m

Analisi di stabilità - Profilo A

11.20 Risultati del calcolo Profilo B

S.L.V. S.L.C.

332.0

682.0

Analisi di stabilità dei pendii con : BISHOP (1955)

Zona Lat./Long. Calcolo eseguito seco Numero di strati	ondo		======================================	nazzola 32599 ° C 2018 2.0	
Numero dei conci Grado di sicurezza ri	tenuto accettabi	ile	10.0 1.3		
Coefficiente parziale Analisi Superficie di forma c	resistenza vircolare	1.0 Condizione drenata			
Maglia dei Centri					
Ascissa vertice sinist Ordinata vertice sinist Ascissa vertice destr	ro inferiore xi stro inferiore yi o superiore xs			148.85 m 434.09 m 255.04 m	
Ordinata vertice destro superiore ys Passo di ricerca Numero di celle lungo x Numero di celle lungo y			10.0 10.0 10.0		
Coefficienti sismici	[N.T.C.]				
Dati generali Tipo opera: Classe d'uso: Vita nominale: Vita di riferime	ento:	2 - Opere ordir Cla	======================================		
Parametri sismici su Categoria sotto Categoria topo	u sito di riferin osuolo: grafica:	nento	B T2		
S.L. Stato limite	TR Tempo ritorno [anni]	ag [m/s²]	F0 [-]	TC* [sec]	
S.L.O. S.L.D.	30.0 35.0	0.042	2.51 2.51	8 0.28 8 0.285	

0.134

0.186

2.478

2.535

0.415

0.422

Coefficienti sismici orizzontali e verticali

S.L.	amax	beta	kh	kv
Stato limite	[m/s ²]	[-]	[-]	[sec]
S.L.O.	0.0605	0.2	0.0012	0.0006
S.L.D.	0.0648	0.2	0.0013	0.0007
S.L.V.	0.193	0.2	0.0039	0.002
S.L.C.	0.2678	0.2	0.0055	0.0027

Opera: Stabilità dei pendii e Fondazioni

Coefficiente azione sismica orizzontale Coefficiente azione sismica verticale 0.0012 0.0006

Vertici profilo

Nr	Х	у
	(m)	(m)
1	0.0	395.03
2	2.74	395.03
3	10.84	394.86
4	35.16	394.23
5	51.37	394.04
6	67.58	394.98
7	91.89	396.27
8	108.1	397.95
9	124.31	399.6
10	132.42	400.19
11	148.63	402.58
12	156.73	404.71
13	164.84	405.53
14	172.94	406.98
15	189.15	408.9
16	205.36	410.27
17	221.57	411.1
18	245.89	409.63
19	262.1	409.63
20	270.2	410.02
21	294.52	409.89
22	310.73	410.47
23	335.04	411.65
24	359.36	412.45
25	383.67	412.81
26	416.09	413.22
27	448.51	413.86
28	472.83	415.51
29	480.93	416.27
30	497.14	415.89
31	521.46	416.03
32	537.67	418.51
33	545.77	416.1

Falda		
Nr.	X	у
	(m)	(m)
1	0.75	390.83
2	87.85	392.17
3	186.96	403.72
4	232.73	406.39
5	288.73	405.05
6	457.6	409.5
7	545.77	411.81
Vertici strato1		
N	Х	V
	(m)	(m)
1	0.0	387.03
2	2.74	387.03
3	10.84	386.86
	35.16	386.23
5	51.37	386.04
6	67.58	386.08
7	91.89	388.27
/ 	108.1	380.27
0	103.1	307.75
10	124.51	202.10
10	132.42	392.19
11	146.05	394.30
12	150.75	390.71
13	104.84	397.53
14	1/2.94	398.98
15	189.15	400.9
10	205.30	402.27
17	221.57	403.1
18	245.89	401.63
19	262.1	401.63
20	270.2	402.02
21	294.52	401.89
22	310.73	402.47
23	335.04	403.65
24	359.36	404.45
25	383.67	404.81
26	416.09	405.22
27	448.51	405.86
28	472.83	407.51
29	480.93	408.27
30	497.14	407.89
31	521.46	408.03
32	537.67	410.51
33	545.77	408.1

Coefficienti parziali azioni

Sfavorevoli: Permanenti, variabili	1.0 1.0	
Favorevoli: Permanenti, variabili	1.0 1.0	

Coefficienti parziali per i parametri geotecnici del terreno

Tangente angolo di resistenza al taglio	1.0	
Coesione efficace	1.0	
Coesione non drenata	1.0	
Riduzione parametri geotecnici terreno	No	

Stratigrafia

Strato	Coesione	Angolo resistenza	Peso unità di	Peso unità di	Legenda
	(kg/cm²)	al taglio	volume	volume saturo	
	_	(°)	(Kg/m³)	(Kg/m³)	
1	0.5	24	1800.00	1850	
2	0.1	26	1800	2000	

Risultati analisi pendio [SPINAZZOLA]

Fs minimo individuato	<mark>4.35</mark>	
Ascissa centro superficie	154.15 m	
Ordinata centro superficie	477.64 m	
Raggio superficie	107.51 m	
	107.51 m	

Analisi di stabilità - Profilo B

12 DEFINIZIONE DELLE UNITA' LITOTECNICHE

12.1 Classificazione geotecnica dei terreni

Per qualsiasi eventuale calcolazione geotecnica da effettuarsi in rapporto ai terreni costituenti il sottosuolo si consiglia di adottare, per i parametri fisico-meccanici, i valori indicati nella tabella seguente dove si riporta una sintesi dei valori medi dei parametri geotecnici desunti dalle prove DPSH eseguite in campo.

I valori indicati sono da intendersi per "ammassi terrosi" integri.

I terreni costituenti il sottosuolo in esame inteso come suolo di fondazione è costituito da:

- Primo strato (da 0.00m a 8.00/10.00m) –<u>limi argillosi e sabbiosi</u> da poco a mediamente addensati e/o consistenti, con inclusioni di piccoli ciottoli; tale strato non è continuo su tutta l'area e si rinviene prevalentemente sul settore sud- occidentale delle aree di interesse, alle quote più basse;
- Secondo strato (da partire da 8.00/10.00m) <u>Conglomerati poligenici di base in matrice</u> <u>sabbioso limosa</u> addensata e/o consistente, con lenti argillo-limose, di deposizione fluviale.

Di seguito si riportano alcuni parametri geotecnici di riferimento per i terreni presenti:

Depositi "Limi argillosi e sabbiosi"

•	Peso di volume naturale (γ)	1800 Kg/m ³
•	Peso di volume saturo (γ _s)	1850 Kg/m ³
•	Angolo di attrito (φ)	22-26°
•	Coesione (c')	50 KPa

Depositi "Conglomerati poligenici in matrice sabbioso limosa"

•	Peso di volume naturale (γ)	1800 Kg/m ³
•	Peso di volume saturo (γ _s)	2000 Kg/m ³
•	Angolo di attrito (φ)	24-28°
•	Coesione (c')	10 KPa

13 COMPATIBILITÀ IDROGEOLOGICA RISPETTO AL PAI

L'area in esame, per quanto riguarda il Piano Stralcio per la difesa dal Rischio Idrogeologico (PAI), si evidenzia che l'area di progetto interessa il bacino del Bradano (UOM 012 Bradano) nonché il bacino Regionale Puglia e Interregionale Ofanto (UOM ITR 1611020); ne discende che i PAI di riferimento sono quelli redatti dall'ex Autorità di Bacino della Basilicata e dalla ex Autorità di Bacino della Puglia.

Dalla consultazione della cartografia PAI dell'Autorità di Bacino Distrettuale dell'Appennino Meridionale sede della Basilicata è stato verificato che parte dei campi fotovoltaici sono perimetrati dal rischio idraulico R1. Al fine di ottemperare alle indicazioni contenute ali ' art. ali ' art. I 7 punto 3 .2 delle Norme di Attuazione del PAI delle ex AdB della Basilicata è stato condotto uno studio geologico e geotecnico dii dettaglio supportato da opportune indagini geognostiche.

Per quanto riguarda la componente <u>suolo e sottosuolo</u>, al fine della valutazione della stabilità dei varsanti, in corrispondenza della aree R1, sono state eseguite indagini sismiche e penetrometriche oltre che delle verifiche di stabilità del pendio.

Dall'analisi di stabilità del pendio è emerso che è rispettato il fattore di sicurezza, risultato superiore a 4, e pertanto le aree oggetto di intervento risultano idonee ad ospitare tali strutture.

Per quanto riguarda la componente **acque sotterranee**, è stata riscontrata la presenza di una falda superficiale nella zona NE, in corrispondenza delle prove penetrometriche DPSH 05 e DPSH 06; tale falda è stata intercettata tra 5 e 8 metri. Considerato il tipo di materiale presente, che per le sue caratteristiche intrinseche di deposizione risulta molto eterogeneo sia verticalmente che orizzontalmente, si tratta di falde isolate e sospese che si manifestano in periodi di piovosità abbondante. Al fine di monitorare le caratteristiche qualitative e quantitative degli acquiferi superficiali si propone di installare una rete di piezometri disposti su tutta l'area prima dell'installazione del campo fotovoltaico al fine di monitorare le variazioni della falda ante e post operam. Nello specifico si prevede l'installazione di n. 8 piezometri a tubo aperto di profondità pari a 10 m ciascuno. Di seguito si mostra uno stralcio planimetrico con l'indicazione indicativa delle ubicazioni dei piezometri da installare.

14 MODELLO GEOLOGICO E CONSIDERAZIONI CONCLUSIVE

Le indagini geognostiche eseguite in sito hanno permesso di definire il modello geologico del sito ai sensi delle NTC 2018. Considerata la stratigrafia rilevata durante l'esecuzione del rilevamento di dettaglio e dalle informazioni ottenute dalle indagini svolte sul sito in esame si riportano di seguito alcune considerazioni utili al fine della scelta di fondazioni idonee a sopportare i carichi trasmessi dalle strutture in elevazione:

- il terreno di fondazione è caratterizzato prevalentemente da depositi limosi e conglomeratici in matrice sabbiosa, e, in maniera minore, da limi argillosi e sabbiosi, localmente ghiaioso, nel settore sud-ovest dell'area interessata dagli interventi;
- l'area è caratterizzata dalla presenza di solchi erosivi evidenti soprattutto nella porzione nord dell'area di interesse;
- il terreno risulta essere permeabile, ma, trattandosi di depositi fluviali, potrebbero essere interessato da variazioni litologiche laterali e verticali,
- localmente e a varie profondità è presente una esgua circolazione idrica tra i 5 e gli 8 m di profonsdità dal p.c.;
- dal rilevamento di dettaglio non sono stati individuati fenomeni di instabilità dell'area in esame (piccoli smottamenti o vegetazione piegata).
- la caratterizzazione sismica ha evidenziato che il sottosuolo in esame è classificato come suolo di fondazione "B", definito secondo le NTC 2018 come "Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.";
- dal punto di vista della pericolosità idraulica e idrogeomorfologica, l'area in esame, per interessa il bacino del Bradano (UOM 012 Bradano) nonché il bacino Regionale Puglia e Interregionale Ofanto (UOM ITR 1611020); ne discende che i PAI di riferimento sono quelli redatti dall'ex Autorità di Bacino della Basilicata e dalla ex Autorità di Bacino della Puglia. Nello specifico è stato verificato che parte dei campi fotovoltaici sono perimetrati dal rischio idraulico R1, entro il quale sono consentiti, come riportato nelle NTA del PAI all'art.19, c3.1 "gli interventi di cui all'art.17, c.3, punto 3.1 (cambiamenti di destinazione d'uso che non comportino aumento delle condizioni di rischio), nonché interventi di nuova costruzione, di ampliamento e completamento di opere esistenti, così come definiti dalla legislazione vigente, realizzati con modalità che non determinino situazioni di pericolosità idrogeologica.
- dall'analisi di stabilità del pendio è emerso che è rispettato il fattore di sicurezza, risultato superiore a 4
- nell'area oggetto di intervento sussiste il vincolo idrogeologico per il quale sarà richiesto parere alla Regione Puglia ai sensi del Regolamento Regionale 11 marzo 2015, n. 9.

Infine, nel caso di opere interrate, per quanto riguarda la stabilità dei fronti di scavo, considerando la successione stratigrafica del sito e le caratteristiche fisico-meccaniche dei

terreni coinvolti si consiglia di prevedere adeguate opere di contenimento in modo da compiere i lavori in sicurezza.

Le aree oggetto di intervento risultano idonee ad ospitare le strutture in oggetto, pertanto, si **esprime un parere geologico favorevole**.

ALLEGATO 01 – CARTA GEOLOGICA E SEZIONE GEOLOGICA

440 — 돈 420-<u>.</u> 400 – - 088 gt **SLB**_a **5** 360 -

Carta geologica - scala 1:5000 - (Fg. 452 "Rionero in Vulture" 1:50000) (per concessione ed uso da parte di ISPRA - Dipartimento per il Servizio Geologico d'Italia)

ALLEGATO 02 – CARTA GEOMORFOLOGICA

CARTA GEOMORFOLOGICA SU BASE DEM (SCALA 1:5.000)

ALLEGATO 03 – CARTA IDROGEOLOGICA

CARTA IDROGEOLOGICA SU BASE CTR (SCALA 1:5.000)

ALLEGATO 04 – CARTA DEL RISCHIO (PAI BASILICATA)

PAI BASILICATA SU BASE ORTOFOTO (SCALA 1:5.000)

ALLEGATO 05 – PLANIMETRIA UBICAZIONE INDAGINI

INDAGINI ESEGUITE (SCALA 1:5.000)

ALLEGATO 06 – PROVE DPSH

- NUMERO DI COLPI
- RESISTENZA DINAMICA
- INTERPRETAZIONE STRATIGRAFICA

PARAMETRI GEOTECNICI	Correlazione	Strato 1	Strato 2	Strato 3
Intervallo profondità (m da p.c)		0.00-1.00	1.00-5.10	5.10-10.00
Coesione non drenata Cu (Kg/cm ²)	Terzaghi-Peck	0.35	0.32	0.15
Densità relativa Dr(%)	Skempton 1986	22.52	21.13	34.99
Angolo di resistenza al taglio φ°	Shioi-Fukuni 1982	24.2	23.75	25.8
Modulo di Young Ey (Kg/cm²)	Schultze	44.46	38.37	105.18
Modulo Edometrico Eed (Kg/cm ²)	Trofimenkov (1974), Mitchell e Gardner	59.32	53.91	113.17
Classificazione AGI	GI Classificazione AGI		MODER. CONSISTENTE	CONSISTENTE
Peso unità di volume γ (t/m³)	Peso unità di volume γ (t/m ³) Meyerhof		1.77	1.99
Peso unità di volume saturo γ _s (t/m³)	volume saturo γ _s Meyerhof		1.88	2.19
Modulo di Poisson σ	(A.G.I.)	0.34	0.34	0.33
Modulo di deformazione a taglio dinamico (<i>Kg/cm²</i>)	Modulo di deformazione a taglio Robertson e dinamico (Kg/cm²) Imai & Tonouchi (1982)		338.65	538.60
Modulo di reazione K ₀	Navfac 1971-1982	1.14	1.01	2.30
Resistenza punta Penetrometro Statico Qc (Kg/cm²)	Robertson 1983	11.28	10.22	21.84

1 Stima dei parametri geotecnici DPSH01

SIGNATURE 1

SIGNATURE 2

PARAMETRI GEOTECNICI	Correlazione	Strato 1	Strato 2	Strato 3
Intervallo profondità (m da p.c)		0.00-0.80	0.80-7.00	7.00-8.20
Coesione non drenata Cu (Kg/cm ²)	Terzaghi-Peck	0.92	0.63	0.70
Densità relativa Dr(%)	Skempton 1986	40.52	31.36	48.94
Angolo di resistenza al taglio φ°	Shioi-Fukuni 1982	22.31	23.79	27.66
Modulo di Young Ey (Kg/cm²)	Schultze	143.30	-	167.50
Modulo Edometrico Eed (Kg/cm²)	Trofimenkov (1974), Mitchell e Gardner	98.92	79.34	120.51
Classificazione AGI	Classificazione AGI	MODERATAMENTE ADDENSATO	POCO ADDENSATO	MODERATAMENTE ADDENSATO
Peso unità di volume γ (t/m³)	Meyerhof	1.84	1.70	1.96
Peso unità di volume saturo γ _s (t/m ³)	Meyerhof	1.94	1.91	1.97
Modulo di Poisson σ	(A.G.I.)	0.38	0.39	0.39
Modulo di deformazione a taglio dinamico (<i>Kg/cm²</i>)	Robertson e Campanella (1983) e Imai & Tonouchi (1982)	617.55	487.30	743.28
Modulo di reazione K ₀	Navfac 1971-1982	2.86	1.95	3.78
Resistenza punta Penetrometro Statico Qc (Kg/cm²)	Robertson 1983	27.32	18.54	37.00

2 Stima dei parametri geotecnici DPSH02

SIGNATURE 1

SIGNATURE 2

PARAMETRI GEOTECNICI	Correlazione	Strato 1	Strato 2	Strato 3	Strato 4	Strato 5 (rifiuto)
Intervallo profondità (m da p.c)		0.00-0.80	0.80-2.00	2.00-5.40	5.40-6.80	6.80-7.00
Coesione non drenata Cu (Kg/cm ²)	Terzaghi-Peck	0.83	0.71	0.46		-
Densità relativa Dr <i>(%)</i>	Skempton 1986	37.91	34.23	26.88	41.35	-
Angolo di resistenza al taglio φ°	Shioi-Fukuni 1982	28.6	27.59	25.51	29.54	-
Modulo di Young Ey (Kg/cm²)	Schultze	136.65	127.85	-	145.50	-
Modulo Edometrico Eed (Kg/cm²)	Trofimenkov (1974), Mitchell e Gardner	92.99	85.14	70.87	100.89	-
Classificazione AGI	Classificazione AGI	MODERATAMENTE ADDENSATO	MODERATAMENT E ADDENSATO	POCO ADDENSATO	MODERATAMENTE ADDENSATO	-
Peso unità di volume γ (t/m³)	Meyerhof	1.80	1.75	1.63	1.86	-
Peso unità di volume saturo γ _s (t/m³)	Meyerhof	1.93	1.92	1.90	1.94	-
Modulo di Poisson σ	(A.G.I.)	0.38	0.37	0.38	0.39	-
Modulo di deformazione a taglio dinamico (Kg/cm²)	Robertson e Campanella (1983) e Imai & Tonouchi (1982)	580.08	527.98	423.58	629.63	-
Modulo di reazione K ₀	Navfac 1971-1982	2.59	2.22	1.53	2.95	-
ResistenzapuntaPenetrometroStaticoQc (Kg/cm²)	Robertson 1983	24.66	21.14	14.74	28.20	-

3 Stima dei parametri geotecnici DPSH03

SIGNATURE 1

SIGNATURE 2

PARAMETRI GEOTECNICI	Correlazione	Strato 1	Strato 2	Strato 3 (Rifiuto)
Intervallo profondità (m da p.c)		0.0-0.6	0.60-1.40	1.40-1.60
Coesione non drenata Cu (Kg/cm ²)	Terzaghi-Peck	0.30	0.32	-
Densità relativa Dr(%)	Skempton 1986	45.55	87.08	-
Angolo di resistenza al taglio φ°	Shioi-Fukuni 1982	22.2	25.05	-
Modulo di Young Ey (Kg/cm²)	Schultze	157.20	361.30	-
Modulo Edometrico Eed (Kg/cm²)	Trofimenkov (1974), Mitchell e Gardner	111.32	293.38	-
Classificazione AGI	Classificazione AGI	MODERATAMENTE ADDENSATO	MOLTO ADDENSATO	-
Peso unità di volume γ (t/m³)	Meyerhof	1.92	2.16	-
Peso unità di volume saturo γ _s (t/m³)	Meyerhof	1.96	2.27	-
Modulo di Poisson σ	(A.G.I.)	0.38	0.35	-
Modulo di deformazione a taglio dinamico (<i>Kg/cm²</i>)	Robertson e Campanella (1983) e Imai & Tonouchi (1982)	691.55	1482.37	-
Modulo di reazione K ₀	Navfac 1971-1982	3.40	9.36	-
Resistenza punta Penetrometro Statico Qc (Kg/cm²)	Robertson 1983	32.88	114.52	-

4 Stima dei parametri geotecnici DPSH04

SIGNATURE 1

SIGNATURE 2

	0				
PARAMETRI GEOTECNICI	Correlazione	Strato 1	Strato 2	Strato 3	Strato 3
Intervallo profondità (m da p.c)		0.00-0.80	0.80-5.80	5.80-7.20	7.20-10.00
Coesione non drenata Cu (Kg/cm ²)	Terzaghi-Peck	0.98	0.50	2.14	2.28
Densità relativa Dr(%)	Skempton 1986	42.17	28.31	65.2	67.07
Angolo di resistenza al taglio φ°	Shioi-Fukuni 1982	23.77	22.93	26.81	27.49
Modulo di Young Ey (Kg/cm²)	Schultze	147.70	-	233.60	243.60
Modulo Edometrico Eed (Kg/cm ²)	Trofimenkov (1974), Mitchell e Gardner	102.85	73.50	179.47	188.39
Classificazione AGI	Classificazione AGI	MODERATAMENTE ADDENSATO	POCO ADDENSATO	ADDENSATO	ADDENSATO
Peso unità di volume γ (t/m³)	Meyerhof	1.87	1.66	2.05	2.06
Peso unità di volume saturo γ _s (t/m³)	Meyerhof	1.95	1.91	2.15	2.17
Modulo di Poisson σ	(A.G.I.)	0.38	0.39	37	36
Modulo di deformazione a taglio dinamico (Kg/cm²)	Robertson e Campanella (1983) e Imai & Tonouchi (1982)	641.56	443.98	1033.30	1072.63
Modulo di reazione K ₀	Navfac 1971-1982	3.03	1.66	5.84	6.11
Resistenza punta Penetrometro Statico Qc (Kg/cm ²)	Robertson 1983	29.08	15.92	63.44	67.44

5 Stima dei parametri geotecnici DPSH05

SIGNATURE 1

SIGNATURE 2
6	Stima d	ei parametri geotecni	ci DPSH06
---	---------	-----------------------	-----------

PARAMETRI GEOTECNICI	Correlazione	Strato 1	Strato 2	Strato 3	Strato 3
Intervallo profondità (m da p.c)		0.00-2.60	2.60-4.40	4.40-5.40	5.40-10.00
Coesione non drenata Cu (Kg/cm ²)	Terzaghi-Peck	0.64	1.41	0.44	1.28
Densità relativa Dr(%)	Skempton 1986	31.83	52.62	26.1	49.6
Angolo di resistenza al taglio φ°	Shioi-Fukuni 1982	22.92	28.73	22.28	28.85
Modulo di Young Ey (Kg/cm²)	Schultze	-	179.75	-	169.60
Modulo Edometrico Eed (Kg/cm ²)	Trofimenkov (1974), Mitchell e Gardner	80.28	131.44	69.44	122.38
Classificazione AGI	Classificazione AGI	POCO ADDENSATO	MODERATAMENTE ADDENSATO	POCO ADDENSATO	MOD. ADDENSATO
Peso unità di volume γ (t/m³)	Meyerhof	1.71	1.91	1.62	1.97
Peso unità di volume saturo γ _s (t/m ³)	Meyerhof	1.91	2.01	1.90	1.97
Modulo di Poisson σ	(A.G.I.)	0.39	0.37	36	36
Modulo di deformazione a taglio dinamico (Kg/cm²)	Robertson e Campanella (1983) e Imai & Tonouchi (1982)	494.01	801.96	412.24	753.54
Modulo di reazione K ₀	odulo di reazione K ₀ Navfac 1971-1982		4.21	1.46	3.86
Resistenza punta Penetrometro Statico Qc (Kg/cm²)	Robertson 1983	18.96	41.90	14.10	37.84

PROVA PENETROMETRICA DINAMICA DPSH6 Strumento utilizzato... DPSH 73 DEEP DRILL

SIGNATURE 1

10-

10

SIGNATURE 2

ALLEGATO 07A - PROSPEZIONE SISMICA

- SISMOGRAMMI ONDE P
- DROMOCRONE ONDE P
- SEZIONE TOMOGRAFICA E MODELLO SISMOSTRATIGRAFICO

ALLEGATO 07B: PROSPEZIONI SISMICHE PER LA STIMA DEL VS, EQ

- ELABORATI INDAGINI RE.MI.
 - SISMOGRAMMA MEDIO
 - SPETTRO DELLE FREQUENZE
 - CURVA DI DISPERSIONE
 - PROFILO VS

Elaborati indagine MASW

<u>MASW01</u>

N. SISMO	STRATI – SPESSO	RI - PROFONI	DITA' - VELOCITA	' ONDE S – N
		Thickness	Depth	Vs
	Layer 1	3.31	0.00	177
	Layer 2	7.25	3.31 🕅	321
	Layer 3	8.83	10.56	528
	Layer 4	10.29	19.39 🕅	596
	Layer 5	INF	29.68 🕅	622

MASW02

N. SISMO	STRATI – SPESSC)RI - PROFONE	DITA' - VELOCIT	A' ONDE S – M	IASW02
		Thickness	Depth	Vs	
	Layer 1	1.50	0.00	114	
	Layer 2	6.16	1.50 🕅	398	
	Layer 3	6.50	7.66 🕅	502	
	Layer 4	9.20	14.16 🕅	595	
	Layer 5	INF	23.36 🕅	637	

ALLEGATO 8 – DOCUMENTAZIONE FOTOGRAFICA

- PROVE PENETROMETRICHE
- PROSPEZIONE SISMICA

