IMPIANTO DI PRODUZIONE DI ENERGIA DA FONTE SOLARE "BRINDISI VALLONE" DI POTENZA NOMINALE PARI A 29.925 MVA E POTENZA INSTALLATA PARI A 33.475,68 MW DA REALIZZARSI IN AREA SIN BRINDISI

REGIONE PUGLIA PROVINCIA di BRINDISI COMUNE di BRINDISI Località Masseria Baraccone (Area SIN)

PROGETTO DEFINITIVO Id AU 1JAXB41

Tav.:

Titolo:

R23 agg

Relazione illustrativa dei criteri di inserimento ex§ 2.1 della D.G.R. n.35 del 23.01.2007

Scala: Formato Stampa:		Codice Identificatore Elaborato			
n.a.	A4	1JAXB41_DocumentazioneSpecialistica_23-agg			

Progettazione: Dott. Ing. Fabio CALCARELLA Via Vito Mario Stampacchia, 48 - 73100 Lecce Mob. +39 340 9243575

Stern PV 2 S.r.l.

Committente:

Smert. Julfl

Stern PV 2 S.r.l. Sede Legale: Via Leonardo Da Vinci, 12 - 39100 Bolzano email: sternv2srl@pec.it

Approvato: Redatto: Controllato: Data Motivo della revisione: Luglio 2020 STC FC Stern PV 2 S.r.l. Prima emissione Aggiornamento opere di connessione STC FC Stern PV 2 S.r.I. Novembre 2023 Modifica a seguito richiesta integrazione AdB STC Stern PV 2 S.r.l.

Via Vito Mario Stampacchia, 48 - 73100 Lecce Dott. Ing. Fabio Calcarella

Sommario

1.	Ger	neralità	2
2.		eri di inserimento	
		Criteri generali	
	2.2.		
3.		petto dei criteri generali (A1, A2, A3)	
		nari energetici globali	
		Lo scenario Italiano	
5.		tibilità globale	
		npatibilità con gli strumenti di pianificazione regionale e Locali	
	6.1.	SCENARI ENERGETICI LOCALI	. 12
		1. COERENZA CON GLI STRUMENTI DI PROGRAMMAZIONE LOCALE	
	6.1.2	2. FATTIBILITÀ TERRITORIALE	. 20
7.	RIS	PETTO DEI CRITERI GENERALI (A4, A5, A6, A7, A8)	. 20
	7.1.	A4, A5 GRADO DI INNOVAZIONE TECNOLOGICA	. 20
	7.2.	A6	. 21
	7.3.	A7, A8 ECONOMIE DI SCALA E CONNESSIONE IN RETE	. 21
	7.4.	A9 - A10 RISPETTO DEI CRITERI GENERALI	. 21
8.	CO	ERENZA TERRITORIALE (B1, B2, B3)	. 21
9.	IMP	PATTO OCCUPAZIONALE (C)	. 2

Via Vito Mario Stampacchia, 48 - 73100 Lecce

Dott. Ing. Fabio Calcarella

1. Generalità

La presente relazione è parte della documentazione che la Stern PV 2 S.r.l.ha elaborato

nell'ambito del procedimento autorizzativo per la realizzazione e l'esercizio di un impianto

fotovoltaico avente potenza nominale pari a 29.925 kVA e potenza installata pari a 33.475,68

kWp, da realizzarsi in agro di Brindisi.

Nel presente documento, con riferimento alle indicazioni riportate al p.to 2.1 della D.G.R.

23.01.2007 n.35 sarà esposto quanto necessario a determinare la compatibilità del progetto

proposto con i criteri d'inserimento adottati dalla Regione Puglia.

2. Criteri di inserimento

La relazione illustra i criteri di inserimento del progetto con particolare riferimento ai criteri

enunciati nell'allegato 1 punto 2.1 dell'allegato A alla delibera di G.R. n. 35 del 23/01/07

pubblicata sul B.U.R.P. N. 19 del 6/02/07 e di seguito sintetizzati.

2.1. Criteri generali

A1. Compatibilità con gli strumenti di pianificazione esistenti generali e settoriali d'ambito

regionale e locale, anche ai sensi del rispetto del D.Lgs 351/99;

A2. Coerenza con le esigenze del fabbisogno energetico e di sviluppo produttivo della

regione e della zona interessata risultanti dalla pianificazione energetica regionale;

A3. Coerenza con le esigenze di diversificazione delle fonti primarie e delle tecnologie

produttive;

A4. Grado di innovazione tecnologica, con particolare riferimento al rendimento energetico

ed al livello di emissioni dell'impianto proposto;

A5. Utilizzo delle migliori tecnologie ai fini energetici e ambientali, con riferimento alla

minimizzazione delle emissioni di NO_X e CO₂ tenendo conto della specifica dimensione

di impianto;

A6. Massimo utilizzo possibile dell'energia termica cogenerata;

A7. Minimizzazione dei costi di trasporto dell'energia e dell'impatto ambientale delle nuove

infrastrutture di collegamento dell'impianto proposto alle reti esistenti;

A8. Adozione di scelte rivolte a massimizzare le economie di scala, semplificando anche la

ricerca del punto di connessione alla rete elettrica, rivenienti o dallo sfruttamento in un

STC

Via Vito Mario Stampacchia, 48 - 73100 Lecce

Dott. Ing. Fabio Calcarella

unico sito di potenziali energetici rinnovabili di natura differente oppure

dall'accorpamento in un'unica iniziativa di proposte originariamente separate;

A9. Riutilizzo prioritario di siti industriali già esistenti, anche nell'ambito dei piani di

riconversione di aree industriali;

A10. Concorso alla valorizzazione e riqualificazione delle aree territoriali interessate

compreso il contributo allo sviluppo e all'adequamento della forestazione ovvero tutte le

altre misure di compensazione di criticità ambientali territoriali assunte anche a seguito di

eventuali accordi tra il proponente e l'Ente locale, con particolare riferimento, per gli

impianti di produzione di energia elettrica di cui all'art. 2 c. 1 lett. b) e c) del D.Lgs

387/2003, alle localizzazioni in zone classificate agricole dai vigenti strumenti urbanistici

ai sensi dell'art. 12, c. 7, D.Lgs 387/2003.

2.2. Adeguatezza della collocazione della coerenza territoriale

Oltre ai criteri generali sopra elencati, anche i seguenti aspetti:

B1. L'esistenza di aree individuate come ambientalmente critiche ai sensi della Legge 19

maggio 1997, N. 137, nelle quali è consentito l'insediamento di nuovi impianti, a condizione

che i medesimi utilizzino la migliore tecnologia industriale disponibile per l'abbattimento delle

emissioni e contribuiscano a migliorare la situazione preesistente, coerentemente con il

piano di risanamento previsto per l'area suddetta;

B2. L'esistenza di eventuali aree individuate da altri strumenti di programmazione come

critiche, nelle quali è consentito l'insediamento di nuovi impianti elettrici alimentati con

combustibili rinnovabili, a condizione che i medesimi utilizzino le migliori tecnologie disponibili

per l'abbattimento delle emissioni e contribuiscano migliorare la situazione preesistente,

coerentemente con il piano previsto per l'area suddetta;

B3. L'esistenza di centrali termoelettriche suscettibili di risanamento, ammodernamento e

innovazione tecnologica, anche attraverso il loro potenziamento e rinnovo tecnologico.

3. Rispetto dei criteri generali (A1, A2, A3)

Il progetto proposto contribuisce alla realizzazione degli obiettivi Regionali dettati dal PEAR e

dalle leggi Regionali vigenti:

favorire il perseguimento degli obiettivi nazionali di diffusione della produzione di energia

elettrica da fonti rinnovabili, sostenendo l'impegno assunto da governo italiano, con

STC

Via Vito Mario Stampacchia, 48 - 73100 Lecce

Dott. Ing. Fabio Calcarella

l'adesione al protocollo di Kyoto ed ad altri protocolli di intesa internazionali che si sono

succeduti negli anni, di ridurre l'emissione di gas ad effetto serra;

favorire il corretto inserimento degli impianti alimentati a fonti rinnovabili nel territorio

della regione, quale strumento di promozione dello sviluppo sostenibile.

A1 gli impianti fotovoltaici possono essere insediati in zone agricole, purché sottoposte ad

autorizzazione unica e ambientale non siano incompatibili con gli strumenti di pianificazione

urbana.

A2, A3 Compatibilità con le politiche energetiche Regionali, nazionali ed internazionali.

Coerenza con le esigenze di diversificazione delle fonti primarie.

4. Scenari energetici globali

L'impianto proposto consente la trasformazione dell'energia solare, ovvero di una fonte

rinnovabile.

Gli impianti fotovoltaici in particolare:

contribuiscono alla riduzione della dipendenza energetica;

riducono l'incertezza sui costi futuri dell'energia;

garantiscono una riduzione dell'impatto ambientale e la sostenibilità dello sviluppo nel

lungo periodo;

costituiscono una opportunità di sviluppo a livello locale.

Le ragioni dell'importanza delle fonti rinnovabili nel panorama energetico mondiale risiedono:

nel fabbisogno di energia stimato per i prossimi decenni;

nella necessità di uno sviluppo eco-sostenibile e che garantisca il raggiungimento degli

obiettivi di Kyoto;

risparmio energetico: con una riduzione del 20% rispetto al trend attuale;

energia rinnovabile: il 20% dell'energia prodotta al 2020, deve essere ottenuta da fonte

rinnovabile:

le emissioni di gas serra devono essere ridotte del 20% rispetto al 1990.

Nello scenario Comunitario l'Europa necessita di energia sicura, sostenibile ed

economicamente accessibile. L'energia è di importanza cruciale per i servizi essenziali di

tutti i giorni, senza i quali niente può funzionare. Abbiamo bisogno di energia per

Tel/Fax +39 0832 1563830 - Mob. +39 340 9243575 Via Vito Mario Stampacchia, 48 - 73100 Lecce fabio.calcarella@gmail.com - studiocalcarella@gmail.com - fabio.calcarella@ingpec.eu

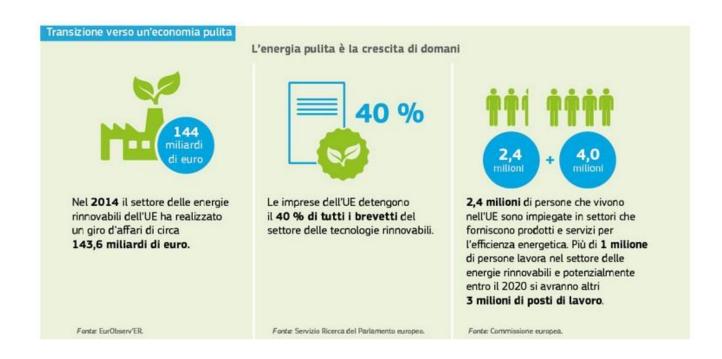
Studio Tecnico Calcarella Via Vito Mario Stampacchia, 48 - 73100 Lecce Dott. Ing. Fabio Calcarella

l'illuminazione, il riscaldamento, i trasporti e la produzione industriale. E una volta soddisfatte le esigenze di base, l'energia ci serve anche per far funzionare elettrodomestici quali lavatrici, computer, televisori e altri, che utilizziamo quasi senza pensarci. Garantire l'approvvigionamento di tutta l'energia che ci occorre, a un prezzo economicamente accessibile, ora e in futuro, non è però così facile.

Tra i problemi che interferiscono al raggiungimento di tale scopo abbiamo la dipendenza dalle importazioni per coprire oltre la metà del nostro fabbisogno di energia. L'Unione europea (UE) consuma un quinto dell'energia prodotta a livello mondiale, pur possedendo una percentuale molto ridotta di riserve energetiche. Ciò incide in misura notevole sulla nostra economia. L'UE è il maggior importatore di energia al mondo: importa infatti il 53 % dell'energia, che consuma a un costo che si aggira sui 400 miliardi di euro all'anno.

La nostra dipendenza energetica da un numero limitato di paesi ci rende vulnerabili a interruzioni dell'approvvigionamento. Lo abbiamo già sperimentato in passato, ad esempio quando alcuni paesi sono stati esclusi dalla fornitura di gas.

Dobbiamo sviluppare nuove fonti di energia, rinnovabili e pulite, come l'elettricità generata dal vento, dall'acqua e dalla luce del sole per mezzo di turbine, dighe e pannelli solari.


Via Vito Mario Stampacchia, 48 - 73100 Lecce Dott. Ing. Fabio Calcarella

L'Europa vuole anche rimanere competitiva mentre i mercati internazionali dell'energia si orientano verso la produzione di energia più pulita. L'UE non intende semplicemente adattarsi alla transizione verso l'energia pulita, bensì guidarla.

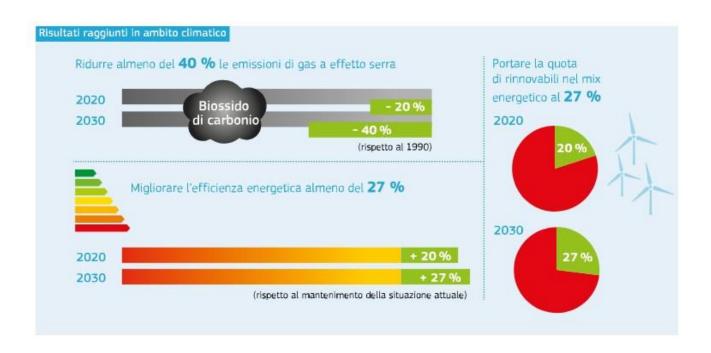
Dal 2010 l'UE si è posta l'obiettivo di ridurre le sue emissioni di gas serra almeno del 20 % entro il 2020, di portare la quota di energia rinnovabile almeno al 20 % del consumo e di conseguire un risparmio energetico del 20 % o maggiore.

Raggiungendo questi obiettivi, l'UE può contribuire a combattere i cambiamenti climatici e l'inquinamento atmosferico, a ridurre la sua dipendenza dai combustibili fossili di provenienza estera e a mantenere abbordabile il costo dell'energia per consumatori e imprese.

Alla luce dei progressi finora conseguiti, l'UE è sulla buona strada per raggiungere il suo obiettivo in materia di energia rinnovabile entro il 2020. Già nel 2014 la quota di energie rinnovabili ammontava al 16 %.

I capi di Stato o di governo dell'UE hanno già concordato <u>l'obiettivo di pervenire a una quota</u> di energie rinnovabili almeno del **27 % entro il 2030**.

Tel/Fax +39 0832 1563830 – Mob. +39 340 9243575 Via Vito Mario Stampacchia, 48 – 73100 Lecce fabio.calcarella@gmail.com - studiocalcarella@gmail.com - fabio.calcarella@ingpec.eu P.I. 04433020759


Via Vito Mario Stampacchia, 48 - 73100 Lecce Dott. Ing. Fabio Calcarella

I paesi dell'UE hanno convenuto un obiettivo di efficienza energetica pari ad almeno il 27 % entro il 2030 e una riduzione delle emissioni di gas serra almeno del 40 %.

Nel febbraio 2015 la Commissione europea ha stabilito la sua <u>strategia energetica</u> per garantire che l'UE sia in grado di rispondere alle sfide future. La strategia è incentrata su cinque settori chiave:

- garanzia dell'approvvigionamento;
- espansione del mercato energetico interno;
- miglioramento dell'efficienza energetica;
- riduzione delle emissioni;
- ricerca e innovazione.

Di grande importanza c'è la <u>riduzione delle emissioni</u>. L'UE si è impegnata a ridurre almeno del 40 % le emissioni di anidride carbonica entro il 2030, modernizzando la sua economia e creando occupazione e crescita per tutti i cittadini europei.

Nel dicembre 2015 l'UE ha rivestito un ruolo fondamentale nel mediare un accordo inteso ad affrontare i cambiamenti climatici. In occasione della conferenza sul clima tenutasi a Parigi, 195 governi hanno concordato di limitare il riscaldamento globale in questo secolo ben al di sotto dei 2 °C. Nell'ottobre 2016 l'UE ha formalmente approvato <u>l'Accordo di Parigi</u> sui cambiamenti

Via Vito Mario Stampacchia, 48 - 73100 Lecce

Dott. Ing. Fabio Calcarella

climatici, che è entrato in vigore nel novembre dello stesso anno. Ciò significa che l'UE (e il

resto del mondo) devono intraprendere le azioni necessarie a ridurre le emissioni.

4.1. Lo scenario Italiano

STC

Nel 2050 lo scenario della generazione di energia elettrica a livello mondiale sarà dominato

dalle fonti rinnovabili che, grazie anche allo sviluppo delle batterie, garantiranno il 50% del

fabbisogno mondiale. In Italia la rivoluzione sarà più veloce: entro il 2030 le fonti di generazione

eolica e solare riusciranno a garantire il 90% del fabbisogno, percentuale che salirà al 100 per

cento entro il 2050. Le previsioni sono contenute nel New Energy Outlook 2018 realizzato da

Bloomberg e presentato ieri presso la sede dell'Enel. La sempre maggiore competitività delle

fonti rinnovabili secondo lo studio dovrebbe portare al phase-out del carbone entro il 2035.

L'Italia e la Spagna si staccano dal resto dell'Europa, che raggiungerà comunque l'87%, non

solo grazie a vento e sole, ma anche per le «significative risorse idroelettriche» disponibili.

Un aspetto molto importante è il punto di equilibrio oltre il quale è più conveniente costruire

impianti eolici e fotovoltaici piuttosto che tenere in funzione impianti esistenti a gas o

termoelettrici: secondo il rapporto di Bloomberg, in paesi come la Germania questo equilibrio

sarà superato a partire dal 2020. Anche in Cina, paese nel quale realizzare nuovi impianti a

combustibili fossili costa molto meno ormai è giù più conveniente realizzare impianti rinnovabili

e questo spiega perché il paese si stia orientando con convinzione verso queste fonti.

Oltre 11 mila miliardi di investimenti

Per quanto riguarda gli investimenti, il rapporto prevede uno stanziamento globale di 11.500

miliardi di dollari negli asset della generazione al 2050, di cui l'86% riservato a tecnologie zero-

emissioni. La parte del leone la farà il solare, cui spetteranno circa 6.500 dei 13mila gigawatt di

capacità aggiuntiva, seguito dall'eolico, con 3.600. La fonte più penalizzata in questo scenario

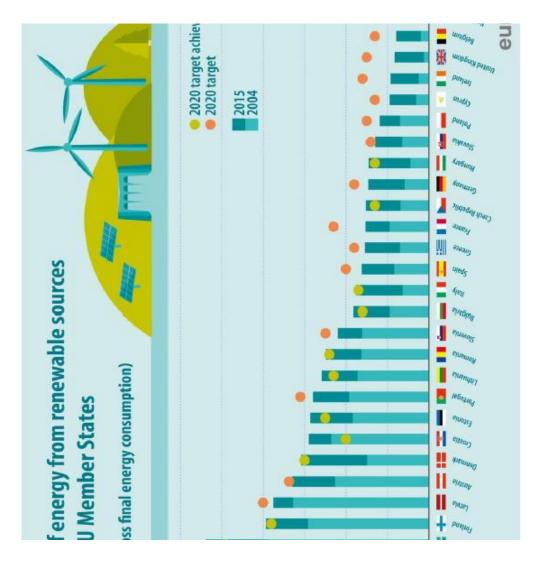
sarà il carbone: attualmente copre circa un terzo di tutta la capacità installata a livello mondiale,

mentre nel 2050 la sua quota crollerà ad appena il 5 per cento. In particolare, nei prossimi 33

anni ci saranno 467 gigawatt a carbone aggiuntivi, di cui il 44% in Cina e per il 90% nei Paesi in

via di sviluppo, mentre in quelli più avanzati si ridurrà sempre di più.

A tale proposito emerge che l'Italia è un leader nell'UE per le energie rinnovabili, ma gli


investimenti devono ancora crescere. Con oltre il 17% del consumo di energia coperto da fonti

Tel/Fax +39 0832 1563830 - Mob. +39 340 9243575 Via Vito Mario Stampacchia, 48 - 73100 Lecce fabio.calcarella@gmail.com - studiocalcarella@gmail.com - fabio.calcarella@ingpec.eu

Studio Tecnico Calcarella Via Vito Mario Stampacchia, 48 - 73100 Lecce Dott. Ing. Fabio Calcarella

rinnovabili, l'Italia è uno dei primi paesi europei che hanno già raggiunto l'obiettivo della Strategia EU 2020 (immagine pagina sequente). Per la transizione energetica il settore delle energie rinnovabili è un fattore decisivo, con 4,8 Mld€ di investimenti, quasi 9 Mld€ di spese operative e di manutenzione nella catena del valore e 130 mila persone impiegate.

Benché già raggiunto il Target 2020 l'Italia con la SEN (Strategia Energetica Nazionale) vuole raggiungere i prossimi target "imposti" dalla UE. Nel 2030 le fonti rinnovabili dovrebbero coprire il 28% del consumo finale di energia.

STC

Via Vito Mario Stampacchia, 48 - 73100 Lecce

Dott. Ing. Fabio Calcarella

Il documento sulla Strategia Energetica Nazionale è approvato con Decreto del

Ministero dello Sviluppo Economico e del Ministero dell'Ambiente in data 10 novembre

2017.

Le priorità di azione tracciate nella Strategia Energetica Nazionale sono:

1) Migliorare la competitività del Paese, continuando a ridurre il gap di prezzo e

costo dell'energia rispetto alla UE e assicurando che la transizione energetica di più lungo

periodo (2030-2050) non comprometta il sistema industriale italiano ed europeo a favore

di quello extra-UE;

2) Traguardare in modo sostenibile gli obiettivi ambientali e di de-

carbonizzazione al 2030-2050 definiti a livello Europeo, una diminuzione delle

emissioni del 39% al 2030 e del 63% al 2050, con un'ottica ai futuri traguardi stabiliti

nella COP21 e in piena sinergia con la Strategia Nazionale per lo Sviluppo Sostenibile;

3) Continuare a migliorare la sicurezza di approvvigionamento e la flessibilità

e sicurezza dei sistemi e delle infrastrutture:

4) Riduzione della dipendenza energetica dall'estero dal 76% del 2015 al 64%

del 2030 (rapporto tra il saldo import/export dell'energia primaria necessaria a coprire il

fabbisogno e il consumo interno lordo), grazie alla forte crescita delle rinnovabili e

dell'efficienza energetica.

Nella SEN ci si propone in definitiva di raggiungere questi obiettivi attraverso le

seguenti priorità di azione:

1. Lo sviluppo delle rinnovabili;

2. L'efficienza energetica;

3. Sicurezza Energetica;

4. Competitività dei Mercati Energetici;

5. L'accelerazione nella decarbonizzazione del sistema phase-out dal carbone;

Tecnologia, Ricerca e Innovazione.

In tutti gli scenari previsti nella SEN sia di base che di policy, intesi in ogni caso

come supporto alle decisioni, si prevede un aumento di consumi di energia da fonte

rinnovabile al 2030 mai inferiore al 24% (rispetto al 17,5% registrato del 2016).

Tel/Fax +39 0832 1563830 - Mob. +39 340 9243575

Via Vito Mario Stampacchia, 48 - 73100 Lecce Dott. Ing. Fabio Calcarella

5. Fattibilità globale

Lo studio programmatico condotto a livello di strategie globali consente di trarre le seguenti

indicazioni:

1) OBIETTIVI DI PRODUZIONE DI ENERGIA DA FONTE RINNOVABILE

Il progetto proposto contribuisce al raggiungimento degli obiettivi Italiani di produzione di

energia da fonte rinnovabile. Il mancato raggiungimento degli obiettivi ha conseguenze

rilevanti sul piano economico (costi sopportati dai cittadini per il pagamento delle penalità

previste dal protocollo di Kyoto), sul piano ambientale (mancata riduzione della CO2 ed

effetto serra).

La taglia impianto condizioni stata scelta fine di garantire le di al

ECO-TECNO-SOSTENIBILITA' dell'iniziativa:

✓ SOSTENIBILITA': rispetto dei vincoli ambientali;

✓ TECNO: utilizzo delle migliori tecnologie esistenti;

✓ ECO: sostenibilità economico-finanziaria del progetto proposto.

2) OBIETTIVI DI PRODUZIONE DI ENERGIA RINNOVABILE DA FOTOVOLTAICO

La produzione di energia rinnovabile da fotovoltaico rappresenta una opzione indispensabile

nell'ambito del sistema integrato delle fonti rinnovabili ed il suo utilizzo è indispensabile al

raggiungimento degli obiettivi del mix energetico da fonti rinnovabili.

Via Vito Mario Stampacchia, 48 - 73100 Lecce

Dott. Ing. Fabio Calcarella

6. Compatibilità con gli strumenti di pianificazione regionale e Locali

6.1. SCENARI ENERGETICI LOCALI

L'evoluzione del quadro normativo in materia energetica (D.Lgs 112/98, Legge 3/2001,

L.239/04) ha demandato agli Enti locali molte competenze in materia energetica.

Nell'attuale quadro normativo, gli Enti locali possono incidere notevolmente sul sistema della

domanda ed offerta di energia quidando le scelte di investimento al fine del raggiungimento

degli obiettivi nazionali e comunitari.

Le fonti rinnovabili, come precedentemente analizzato, sono una occasione per coniugare

sviluppo economico, territoriale ed innovazione.

L'attuale ruolo degli Enti locali è il risultato di progressivi processi di decentramento

cominciati negli anni 70, con la prima crisi petrolifera, proseguiti negli anni 90 con la legge

10/91 (obbligo di predisposizione del piano energetico regionale) e concretizzatesi nella

riforma del Titolo V con il quale l'energia rientra tra le materie a potestà legislativa

concorrente tra Stato e Regioni.

A partire da una grandissima disponibilità teorica di energia per quasi ogni fonte rinnovabile,

di entità comparabile o talvolta molto superiore alla totalità dei fabbisogni del Paese, il

potenziale effettivamente sfruttabile risulta limitato per effetto dei numerosi vincoli di

carattere tecnico, economico ed ambientale, che dipendono, prevalentemente:

dalle caratteristiche morfologiche e territoriali delle singole Regioni;

dai costi delle tecnologie e dalle condizioni socio-economiche che ne possono

determinare lo sviluppo (ad es. incentivi);

dal grado di pressione ambientale esercitato sul territorio e dal consequente livello di

accettabilità sociale.

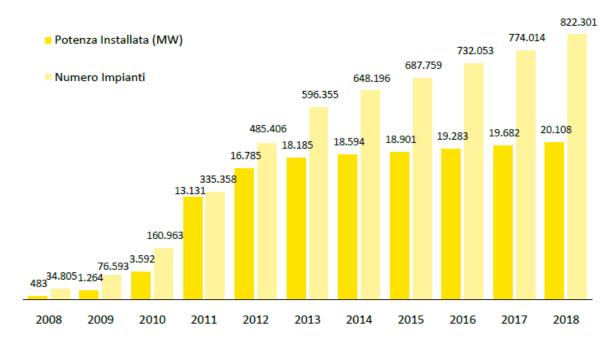
Incrociando dunque la disponibilità teorica delle fonti rinnovabili con i suddetti vincoli, nonché

prendendo in considerazione dati e studi di diverse fonti, è stato possibile stimare, per ogni

regione, la produzione elettrica da tali fonti Rinnovabili al 2020 (Tabella 10° Studio ENEA -

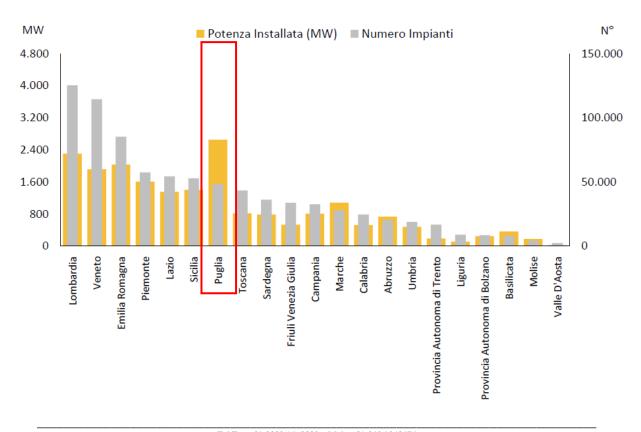
ERSE).

Tel/Fax +39 0832 1563830 - Mob. +39 340 9243575


Regioni	Idroelettr.	Eolico	Fatavolt.	Sciare	Geoterm	FORSU	Biomass	Biogas	Produzion	
nagionii		- Barriero	- Control of the Cont	termed.			•		e totale	
ABR	1558	712	249	0	0	77	137	68	2799	
BAS	363	2272	162	228	0	33	179	30	3267	
CAL	1255	1466	490	455	0	88	827	92	4675	
CAM	824	3049	865	228	0	311	300	298	5865	
EMR	1198	201	608	0	0	310	733	239	3288	
FVZ	1944	20	184	0	0	69	153	61	2432	
LAZ	1244	259	796	210	300	363	365	237	3775	
LIG	342	239	261	0	0	111	35	89	1077	
LOM	8241	20	1113	0	0	1041	688	670	11778	
FIAM	617	230	213	0	0	97	202	81	1531	
MOL	251	693	84	0	0	15	235	15	1292	
PIE	7031	25	636	0	0	247	506	221	8666	
PUG	20	5890	937	455	0	219	522	202	8245	
SAR	575	5176	459	910	0	57	256	70	7504	
SIC	470	4624	1084	910	0	289	239	257	7873	
TAA	7825	39	153	0	0	53	325	49	8443	
TOS	958	309	562	0	7200	280	626	212	10146	
UMB	1189	293	139	0	0	55	375	46	2097	
VDA	2403	7	34	0	0	8	35	7	2494	
YEN	3692	20	602	0	0	252	693	234	5493	
ITA	42.000	25.545	9.637	3.395	7.540	3.973	7.521	3.169	102.739	

Potenziale di produzione elettrica da fonti Rinnovabili al 2020 (fotte Tabella 10° Studio ENEA – ERSE)

Secondo un Rapporto Statistico del GSE sulle risorse rinnovabili (*Gestore Servizi Elettrici*) ed in particolare sul Solare Fotovoltaico, risulta che il *Mezzogiorno*, ed in particolare la Puglia, risultano al primo posto nella produzione di energia da fonte rinnovabile. La regione Puglia da diversi anni segue l'obiettivo di proporsi come baluardo della cultura ecosostenibile, abbracciando non solo gli aspetti tecnici della questione, ma anche la vita sociale, con il rispetto e la valorizzazione delle piccole realtà.


Tel/Fax +39 0832 1563830 – Mob. +39 340 9243575

Via Vito Mario Stampacchia, 48 - 73100 Lecce Dott. Ing. Fabio Calcarella

Evoluzione della potenza e della numerosità degli impianti fotovoltaici (Italia – fonte Rapporto GSE 2018)

Dal grafico di seguito riportato, emerge il dato della Puglia

Via Vito Mario Stampacchia, 48 - 73100 Lecce

Dott. Ing. Fabio Calcarella

Distribuzione Regionale della numerosità e della potenza a fine 2018 (Italia – fonte Rapporto GSE 2018)

Si riportano di seguito alcuni dati di riferimento relativi all'evoluzione di produzione di energia

rinnovabile in Italia.

Nel 2017 la produzione da fonti rinnovabili si è attestata sul valore di 103.898 GWh, in calo

rispetto alla produzione dell'anno precedente (-3,8%).

Mentre fino al 2008 l'andamento dell'elettricità generata da FER era legato principalmente

alla fonte idraulica, negli ultimi anni è cresciuta progressivamente l'importanza delle "nuove

rinnovabili" (fonte solare, fonte eolica, bioenergie).

La fonte idraulica, in particolare, ha raggiunto al 2017 un valore di produzione pari a 36.199

GWh, ossia un valore di produzione molto più basso rispetto ai massimi osservati del 2014

ed in calo rispetto al valore del 2016.

La fonte solare ha contribuito con un valore di produzione di 24.378 GWh, record assoluto

storico mai osservato (+10,3% rispetto al 2016); tale crescita è attribuibile principalmente a

condizioni di irraggiamento sul territorio nazionale decisamente migliori rispetto all'anno

precedente.

Pressoché invariata la performance della produzione eolica, pari ai 17.742 GWh. La

produzione da bioenergie nel 2017 si è attestata invece sui 19.378 GWh, -0,7% in meno

rispetto al 2016.

Studio Tecnico Calcarella Via Vito Mario Stampacchia, 48 - 73100 Lecce Dott. Ing. Fabio Calcarella

2003

2004

2005

2006

2007

2008

2009

120.679 112.008 08.904 108.022 Dati in GWh 103.898 82.961 76.964 69.255 58.164 58.545 54.150 52.773 51.117 50.635 49.137 47.080 45.823 45.537 42.338 42.432 41.623 41.875 36.670 36.994 36.067 36.199 21.589 22.306 22.942 22.104 24.378 18.862 19.378 17.742 10.832 6.201

Evoluzione della produzione da fonti rinnovabili (Italia – fonte Rapporto GSE 2017 sulle FER)

2010

2011

2012

2013

2014

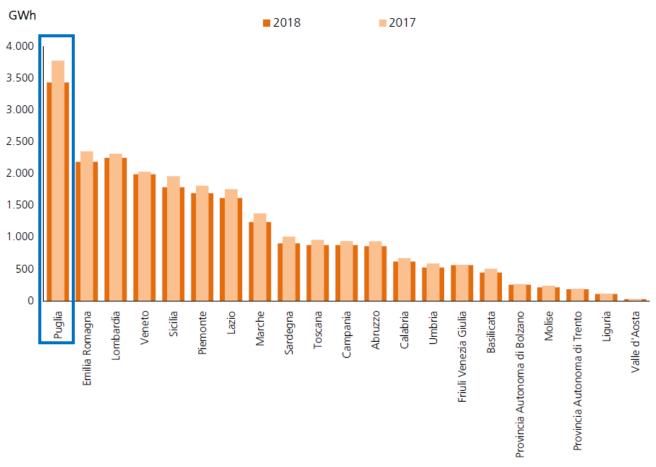
2015

2016

2017

Nella tabella sottostante si evidenzia il dato della Puglia per quanto riguarda il settore del Fotovoltaico con 3.781 GWh e l'eolico con 4.979 GWh.

Via Vito Mario Stampacchia, 48 - 73100 Lecce Dott. Ing. Fabio Calcarella


GWh	Idrica	Eolica	Solare
Piemonte	6.021,7	27,4	1.811,7
Valle d'Aosta	2.784,3	4,3	26,0
Lombardia	8.621,7	-	2.316,8
Provincia Autonoma di Trento	2.307,2	0,0	190,5
Provincia Autonoma di Bolzano	5.006,3	0,1	263,2
Veneto	2.948,7	18,2	2.032,2
Friuli Venezia Giulia	1.227,6	-	562,2
Liguria	172,5	122,4	111,5
Emilia Romagna	730,0	36,1	2.351,4
Toscana	532,5	226,4	956,5
Umbria	1.229,0	3,0	585,1
Marche	466,2	31,9	1.376,2
Lazio	694,4	107,3	1.755,4
Abruzzo	1.474,7	360,8	937,9
Molise	164,2	730,1	236,8
Campania	338,6	2.619,8	939,6
Puglia	4,4	4.979,7	3.781,0
Basilicata	180,7	1.966,3	505,0
Calabria	925,6	2.048,7	671,2
Sicilia	118,6	2.803,1	1.958,8
Sardegna	250,0	1.656,4	1.008,7
ITALIA	36.198,7	17.741,9	24.377,7

Produzione da fonti rinnovabili (Italia – fonte Rapporto GSE 2017 sulle FER)

<u>■</u>STC

Studio Tecnico Calcarella

Via Vito Mario Stampacchia, 48 - 73100 Lecce Dott. Ing. Fabio Calcarella

Produzione da fonti rinnovabili (Italia – fonte Rapporto GSE 2017 sulle FER)

Studio Tecnico Calcarella
Via Vito Mario Stampacchia, 48 - 73100 Lecce
Dott. Ing. Fabio Calcarella

6.1.1. COERENZA CON GLI STRUMENTI DI PROGRAMMAZIONE LOCALE

Il piano energetico regionale assegna la priorità strategica alla produzione di energia da

fonte rinnovabile con l'obiettivo di garantire la sostenibilità ambientale

dell'approvvigionamento energetico. La politica regionale delineata dal PEAR si concentra

sui seguenti obiettivi generali:

mantenimento e rafforzamento di una capacità idonea a soddisfare il fabbisogno

della regione e di altre aree del Paese, nello spirito di solidarietà;

riduzione dell'impatto sull'ambiente, sia a livello locale che globale;

Stabilizzazione delle emissioni di CO2 nel medio periodo;

Diversificazione delle risorse primarie utilizzate nello spirito di sicurezza degli

approvvigionamenti;

Sviluppo di un apparato produttivo diffuso e ad alta efficienza energetica.

Il costo di trasporto dell'energia

Al momento una quota importante dell'energia utilizzata in Puglia viaggia sulla rete elettrica

Nazionale che è caratterizzata da elevate inefficienze. La situazione attuale non genera

maggiori costi per le imprese pugliesi in quanto il prezzo dell'energia elettrica è unico su

tutto il territorio nazionale.

In un modello di generazione elettrica distribuita, la rete di trasmissione nazionale evolve

verso un modello di "rete delle reti" ovvero di una struttura di interconnessione delle reti

locali.

Con il progressivo affermarsi di un modello di generazione elettrica distribuita il costo di

acquisto dell'energia potrebbe risentire pesantemente dei costi di trasporto a tutto

svantaggio delle imprese meridionali, condizionandone pesantemente la competitività. In

un mercato energetico che evolve verso la autosufficienza territoriale, il potenziamento

dell'offerta appare strategico anche rispetto alla variabile costituita dai costi di trasporto.

L'introduzione al piano energetico Regionale conferma, tra gli altri, gli obiettivi di seguito

riportati:

1) Interdipendenza di qualsiasi forma di sviluppo dalla disponibilità di energia;

2) Necessità di puntare ad una produzione energetica distribuita che garantisca

l'autosufficienza territoriale superando la sindrome nimby.

Via Vito Mario Stampacchia, 48 - 73100 Lecce

Dott. Ing. Fabio Calcarella

Il piano richiama l'importanza della rapida transizione ad un modello di generazione

elettrica distribuita ottenuta ricorrendo all'utilizzo delle fonti rinnovabili, anche nell'obiettivo

di ridurre la vulnerabilità del sistema energetico.

Gli obiettivi energetici che il piano si pone sono:

Produrre l'energia il più vicino ai siti di consumo, per minimizzare le infrastrutture

e le perdite di trasporto;

Produrre solo energia che serve sulla base di analisi e previsioni dei consumi;

produrre la quantità di energia appropriata in relazione all'uso finale cui è

destinata.

6.1.2. FATTIBILITÀ TERRITORIALE

Si può pertanto concludere, in merito alla compatibilità dell'intervento proposto con gli

strumenti di pianificazione esistenti, che:

l'intervento contribuisce al fabbisogno energetico regionale e locale

l'intervento è coerente con le esigenze di diversificazione delle fonti primarie e delle

tecnologie produttive.

7. RISPETTO DEI CRITERI GENERALI (A4, A5, A6, A7, A8)

7.1. A4, A5 GRADO DI INNOVAZIONE TECNOLOGICA

La decisione di investimento da parte di Stern PV 2 S.r.l.nel settore delle energie rinnovabili

nasce dalla valutazione di una sempre maggiore domanda di energia necessaria per

soddisfare le esigenze della popolazione attuale e delle generazioni future, garantendo

contemporaneamente il rispetto dell'ambiente.

La produzione di energia da fotovoltaico, come definita dalla Comunità Europea, è una

"fonte rinnovabile", ovvero è una forma di energia che garantisce la sostenibilità dello

sviluppo.

Le tecnologie di impianto proposte con il presente progetto sono state verificate rispetto

alle B.A.T. (Best available technology).

Tel/Fax +39 0832 1563830 - Mob. +39 340 9243575

Via Vito Mario Stampacchia, 48 – 73100 Lecce fabio. calcarella@gmail.com-fabio. calcarella@gmail.com-fabio. calcarella@ingpec.eu and a substantial and a substantia

Via Vito Mario Stampacchia, 48 - 73100 Lecce

Dott. Ing. Fabio Calcarella

7.2. A6

Non applicabile.

7.3. A7, A8 ECONOMIE DI SCALA E CONNESSIONE IN RETE

La localizzazione proposta consente un'ottimizzazione ambientale ed economica

dell'impianto rispetto all'allacciamento alla rete di trasmissione, minimizzando i percorsi e

l'impatto delle opere di connessione alla rete elettrica.

7.4. A9 - A10 RISPETTO DEI CRITERI GENERALI

La proposta progettuale si inserisce in un'area territoriale caratterizzata dalla

contemporanea presenza di utenze termiche di tipo sia industriale che civile che possono

utilizzare l'energia elettrica prodotta. Le scelte progettuali adottate dal Committente

consentono di contribuire all'obiettivo della produzione energetica da fonte rinnovabile,

senza incidere sulle altre vocazioni territoriali della Provincia di Lecce.

8. COERENZA TERRITORIALE (B1, B2, B3)

L'impianto, pur non rientrando in aree critiche ai sensi della L. 19 maggio 1997, N. 137, è

stato progettato nel rispetto delle B.A.T. e verrà esercito nel rispetto di standard ambientali

in grado di garantire la minimizzazione degli aspetti ambientali (certificazione ISO14001

dell'impianto, certificazione di filiera delle materie prime secondo gli standard vigenti e in

fase di sviluppo a livello internazionale).

Gli altri aspetti di coerenza territoriali sono già stati analizzati nei paragrafi precedenti.

9. IMPATTO OCCUPAZIONALE (C)

Lo studio condotto ha evidenziato la compatibilità dell'intervento proposto con i documenti

programmatici e le strategie di sviluppo regionali e Provinciali. L'intervento si inserisce

nell'area vasta della Provincia di Lecce, ovvero in un "sistema socio-tecnologico" ben

definito e stabilizzato.

Il sistema socio-tecnologico si caratterizza per la quasi totale assenza di impianti per la

produzione energetica, con conseguenti ritardi culturali e barriere a qualsiasi scelta

tecnologica, comprese quelle in grado di garantire la sostenibilità ambientale ed energetica.

Tel/Fax +39 0832 1563830 - Mob. +39 340 9243575 Via Vito Mario Stampacchia, 48 - 73100 Lecce fabio.calcarella@gmail.com - studiocalcarella@gmail.com - fabio.calcarella@ingpec.eu

Via Vito Mario Stampacchia, 48 - 73100 Lecce

Dott. Ing. Fabio Calcarella

I principali passaggi culturali a favore delle scelte sono la visione del territorio di tipo

sistemico introdotta dal Piano strategico Provinciale.

Il principale elemento a sfavore è costituito da una cultura della sostenibilità che non

incorpora la variabile tecnologica quale elemento essenziale delle scelte necessarie per

garantire la sostenibilità. La maggior parte delle attività di comunicazione, eventi,

dichiarazioni stampa, iniziative culturali si basano su logiche semplici del tipo ON-OFF e su

variabili decisionali settoriali e limitate.

Le conclusioni raggiunte nel corso di tali iniziative sono, nel migliore dei casi, sub-

ottimizzanti, non in grado di garantire gli obiettivi sistemici a livello territoriale.

Il territorio non ha ancora realizzato il passaggio culturale fondamentale che sposta dal

binomio eco- sostenibile al trinomio eco-tecno-sostenibile le motivazioni delle scelte.

Sul territorio, sono viceversa presenti, poli universitari di eccellenza in grado di contribuire

alla riduzione delle barriere all'innovazione mediante adeguata diffusione della cultura

energetica.

Il rischio localizzativo e di involuzione autorizzativa correlato alla variabile sociale può

essere supportato mediante la creazione, da parte del proponente, dei decisori e della

Comunità scientifica locale, di un ambiente favorevole all'introduzione dell'innovazione che

garantisca adequata protezione alle "nicchie di sperimentazione" in modo tale che queste

ultime possano agire da incubatore culturale per tutti i portatori di interesse con

conseguente riduzione della sindrome nimby.

Si ritiene pertanto che il progetto possa costituire una "nicchia tecnologica" in grado di

contribuire positivamente alla creazione di un indotto a livello locale, consentendo

l'introduzione e il successivo consolidamento del Know-how tecnologico e gestionale sui

sistemi di produzione di energia rinnovabile.

Tel/Fax +39 0832 1563830 - Mob. +39 340 9243575

Via Vito Mario Stampacchia, 48 – 73100 Lecce fabio.calcarella@gmail.com-fabio.calcarella@gmail.com-fabio.calcarella@ingpec.eu