22_33_EO_FRA_AU_RE_33_01	DICEMBRE 2023	ANALISI FATTORI AMBIENTALI - BENEFICI E COSTI	Dott. Maria Elisa Marinosci	Arch. Paola Pastore	Ing. Leonardo Filotico
22_33_EO_FRA_AU_RE_33_00	GIUGNO 2023	ANALISI FATTORI AMBIENTALI - BENEFICI E COSTI	Dott. Maria Elisa Marinosci	Arch. Paola Pastore	Ing. Leonardo Filotico
N. ELABORATO	DATA EMISSIONE	DESCRIZIONE	ESEGUITO	CONTROLLATO	APPROVATO
22_33_EO_FRA_AU_RE_33_00	GIUGNO 2023	ANALISI FATTORI AMBIENTALI - BENEFICI E COSTI	Dott. Maria Elisa Marinosci	Arch. Paola Pastore	Ing. Leonardo Filotic

OGGETTO:

Progetto dell'impianto eolico con storage denominato "Capece" della potenza complessiva di 66 MW con storage da 20 MW da realizzare nei Comuni di Francavilla Fontana, San Vito dei Normanni. San Michele Salentino e Latiano (BR).

TITOLO:

R3UEQM4_DocumentazioneSpecialistica_36 Analisi fattori ambientali - benefici e costi

PROJETTO engineering s.r.l.

società d'ingegneria

direttore tecnico
Ph.D. Ing. LEONARDO FILOTICO

Sede Legale: Via dei Mille, 5 74024 Manduria Sede Operativa: Z.I. Lotto 31 74020 San Marzano di S.G. (TA) tel. 099 9574694 Fax 099 2222834 cell. 349.1735914

tel. 099 9574694 Fax 099 2222834 cell. 349.1735914 studio@projetto.eu web site: <u>www.projetto.eu</u> P.

P.IVA: 02658050733

ORDINE DEGLI INGEGNERI della Provincia di TABANTO Dott. Ing.

Dott. Ing. FILOTICO Leonardo N. 1812

NOME FILE
R3UEQM4_DocumentazioneSpecialistica_36

SOSTITUISCE:

74020 San Marzano di S.G. (TA)

COMMITTENTE:

Z.I. Lotto n.31

BROWN ENERGY S.r.I.

SOSTITUITO DA:

CARTA: A4

SCALA:

ELAB. RE.33

Tutti i diritti di autore sono riservati a termine di legge. E' vietata la riproduzione senza autorizzazione.

INDICE

1.1 AN	UBICAZIONE DELL'INTERVENTO	
ANA	ALISI DELLE COMPONENTI AMBIENTALI	7
		· · · · · · · /
2.1	ATMOSFERA E FATTORI CLIMATICI	8
2.1.1		
2.1.3	ANALISI DEGLI SCENARI RCP – IPCC PER IL CAMBIAMENTO CLIMATICO	22
2.1.4	IDENTIFICAZIONE DEGLI HAZARD CLIMATICI	25
2.1.5	IDENTIFICAZIONE DEGLI IMPATTI DOVUTI AGLI HAZARD CLIMATICI	28
2.1.6	CARATTERIZZAZIONE DELLA VULNERABILITÀ AI CAMBIAMENTI CLIMATICI	28
2.2	SUOLO E SOTTOSUOLO	30
2.2.1	CARATTERI GEOLOGICI DEL TERRITORIO	30
2.2.2	IDENTIFICAZIONE DEGLI HAZARD PER IL FATTORE SUOLO	33
2.2.3	IDENTIFICAZIONE DEGLI IMPATTI DOVUTI ALL' HAZARD DESERTIFICAZIONE	34
2.3	AMBIENTE IDRICO SUPERFICIALE E SOTTERRANEO	35
2.3.1	CARATTERI IDROLOGICI DEL TERRITORIO	35
2.3.2	IDENTIFICAZIONE DEGLI HAZARD E DEGLI IMPATTI PER IL FATTORE ACQUE	36
2.3.3	IDENTIFICAZIONE DEGLI IMPATTI DOVUTI AGLI HAZARD IDRICI	36
IDE	NTIFICAZIONE ELEMENTI VULNERABILI RICAVATI DALLA CARATTERIZZAZ	IONE
TUT1	TI I FATTORI AMBIENTALI	38
ANA	ALISI DELLE EMISSIONI	39
4 1	EMISSIONI IN ATMOSEERA E IMPIANTI FOI ICI	39
		_
	,	
4.3	EMISSIONI IN FASE DI ESERCIZIO	47
4.4	EMISSIONI IN FASE DI DISMISSIONE	47
7.7		
4.5	CALCOLO EMISSIONI MATERIALI	48
	CALCOLO EMISSIONI MATERIALI	
	2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.2 2.2.1 2.2.2 2.2.3 2.3 2.3.1 2.3.2 2.3.3 IDE TUTT ANA 4.1 4.2 4.2.1 4.2.2	2.1.3 ANALISI DEGLI SCENARI RCP – IPCC PER IL CAMBIAMENTO CLIMATICO 2.1.4 IDENTIFICAZIONE DEGLI HAZARD CLIMATICI 2.1.5 IDENTIFICAZIONE DEGLI IMPATTI DOVUTI AGLI HAZARD CLIMATICI 2.1.6 CARATTERIZZAZIONE DELLA VULNERABILITÀ AI CAMBIAMENTI CLIMATICI 2.2 SUOLO E SOTTOSUOLO 2.2.1 CARATTERI GEOLOGICI DEL TERRITORIO 2.2.2 IDENTIFICAZIONE DEGLI HAZARD PER IL FATTORE SUOLO 2.2.3 IDENTIFICAZIONE DEGLI IMPATTI DOVUTI ALL' HAZARD DESERTIFICAZIONE 2.3 AMBIENTE IDRICO SUPERFICIALE E SOTTERRANEO 2.3.1 CARATTERI IDROLOGICI DEL TERRITORIO 2.3.2 IDENTIFICAZIONE DEGLI HAZARD E DEGLI IMPATTI PER IL FATTORE ACQUE 2.3.3 IDENTIFICAZIONE DEGLI IMPATTI DOVUTI AGLI HAZARD IDRICI IDENTIFICAZIONE ELEMENTI VULNERABILI RICAVATI DALLA CARATTERIZZAZ ITUTTI I FATTORI AMBIENTALI ANALISI DELLE EMISSIONI

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000,00 \in Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

5	POT	TENZIALI IMPATTI AMBIENTALI: L'IMPIANTO "CAPECE"	53
	5.1	ENERGY PAY – BACK TIME	53
6	SER	RVIZI ECOSISTEMICI	. 54
	6.1	INTRODUZIONE	54
	6.2	LA VALUTAZIONE BIOFISICA ED ECONOMICA DEI SERVIZI ECOSISTEMICI	56
7	LA V	VALUTAZIONE DEI SERVIZI ECOSISTEMICI NELL'AREA DI PROGETTO	. 65
	7.1	CALCOLO VARIAZIONE DEI SERVIZI ECOSISTEMICI ANTE/POST OPERAM	69
	7.2	BILANCIO TRA BENEFICI E COSTI AMBIENTALI	70

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO
Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733
Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

15

ISO 14001:2015 cate No. F145

1 PREMESSA

La presente relazione si pone l'obbiettivo di analizzare gli elementi atti a dimostrare la rispondenza costi – benefici della realizzazione del progetto di un impianto eolico con storage denominato "Capece" da realizzarsi nei Comuni di Francavilla Fontana (BR), San Vito dei normanni (BR), San Michele Salentino (BR)

e Latiano (BR).

Le fonti energetiche rinnovabili sono inesauribili, pulite e consentono un utilizzo molto decentralizzato, dal momento che si possono utilizzare a poca distanza dai siti di produzione; inoltre, presentano il vantaggio di

complementarsi a vicenda.

L'energia eolica, al pari delle altre fonti energetiche rinnovabili, ha trovato legittimità nella legge n.10 del 09/01/91 che all'art. 1 comma 4 così recita: "L'utilizzazione delle fonti di energia di cui al comma 3 (l'energia eolica) è considerata di pubblico interesse e di pubblica utilità e le opere relative sono equiparate alle opere

pubbliche dichiarate indifferibili ed urgenti ai fini dell'applicazione delle leggi sulle opere pubbliche".

Lo Stato Italiano con il Decreto 29/12/2003 N. 387 ha dato attuazione alla Direttiva 2001/77/CE relativa alla

promozione dell'energia elettrica da fonti rinnovabili nel mercato interno dell'energia.

Gli aerogeneratori o turbine eoliche producono energia elettrica utilizzando la forza naturale del vento per

mantenere in rotazione un generatore elettrico.

Gli aerogeneratori sono costituiti da un rotore le cui pale ruotano intorno a un asse orizzontale; questo è unito a un giunto di trasmissione meccanica o moltiplicatore di giri che, a sua volta, è collegato a un

generatore elettrico; entrambi sono ubicati nella navicella collocata in cima alla torre.

L'energia eolica presenta grandi vantaggi sotto il profilo ambientale rispetto alle fonti di energia

convenzionali.

I benefici ambientali dell'eolico possono essere valutati analizzando gli impatti che non si producono e che

vanno invece ascritti ad altre fonti energetiche:

• Non vi sono grandi movimenti di terreno, né di alterazione delle falde acquifere, né di contaminazione da particolato, né di accumulo di residui radioattivi, né di produzione di agenti

chimici aggressivi, di contaminanti acidi o di gas tossici

• Non si brucia alcun combustibile, non si dà luogo ad emissioni di gas climalteranti in atmosfera, non

si causa inquinamento termico e non si producono rifiuti che potrebbero dare origine a incendi

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

SR EN ISO 9001:2015 SR EN I Certificate No. 0204 Certific SR EN ISO 45001:2018 Certificate No. OHS97

 Non sono necessarie grandi quantità di energia e di acqua, non sono richiesti grandi trasporti ricorrenti, non esistono rischi di esplosione, né di inquinamento dell'ambiente marino e dell'atmosfera

• Non si ricorre alla fissione di combustibile, il che equivale ad azzerare il rischio di incidenti nucleari.

Inoltre, grazie alla diffusione dell'energia eolica e al fiorire del relativo indotto, si creano numerosi posti di lavoro.

In definitiva, pur essendo quella eolica un'energia ecologica, non va dimenticato che tutti i processi di trasformazione dell'energia, incluso l'eolico, comportano un impatto ambientale. Pertanto, la realizzazione e l'esercizio di un parco eolico richiedono l'implementazione di un processo continuo di verifiche e di controlli ambientali nonché di specifici programmi di monitoraggio.

1.1 UBICAZIONE DELL'INTERVENTO

L'intervento proposto vede la realizzazione di un impianto eolico destinato alla produzione industriale di energia elettrica da fonte rinnovabile Eolica. Il sito di installazione ricade nel territorio amministrativo dei Comuni di Francavilla Fontana, San Vito dei Normanni, San Michele Salentino e Latiano (BR), a circa 3,5 km a sud - ovest dal centro abitato di San Vito dei Normanni, a circa 8,0 km a sud-est dal centro abitato del Comune di Ceglie Messapica, a circa 5,8 km a est dal centro abitato di Villa Castelli, a circa 5 km a nord dal centro abitato di Francavilla Fontana e a circa 7,6 km a nord-ovest dal centro abitato di Mesagne.

Nel sito è prevista l'installazione di 10 aerogeneratori di tipo SIEMENS GAMESA "SG6.0MW @ 115m HH" per una potenza totale pari a 66 MW e storage di 20 MW.

Gli aerogeneratori in progetto sono così suddivisi e ubicati nel territorio di:

- n.6 aerogeneratori nel Comune di Francavilla Fontana;
- n.2 aerogeneratori nel Comune di San Vito dei Normanni;
- n.2 aerogeneratori nel Comune di Latiano.

È previsto che la connessione alla Rete di Trasmissione Nazionale avvenga in corrispondenza della Stazione Elettrica 380/150/36 kV di nuova realizzazione nel Comune di Latiano, da inserire in entra-esce alla linea RTN a 380 kV "Brindisi - Taranto N2".

L'esatta posizione degli aerogeneratori è diretta conseguenza dello studio del regime eolico effettuato con l'installazione di una torre di misura anemometrica e l'elaborazione dei dati ottenuti tramite un programma di simulazione.

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

N ISO 9001:2015 SR EN ISO 140

SR EN ISO 45001:2018 Certificate No. OHS97

Adottando il sistema cartesiano di riferimento WGS 84 UTM Zona 33 N, le coordinate degli aerogeneratori sono le seguenti:

Tabella 1 – informazioni generali

Denominazione	X (m)	Y (m)
WTG01	715281	4493828
WTG02	717220	4494793
WTG03	717884	4495861
WTG04	718879	4495420
WTG05	718482	4497070
WTG06	719092	4497086
WTG07	727620	4499136
WTG08	727490	4500006
WTG09	727932	4501026
WTG10	731980	4498723

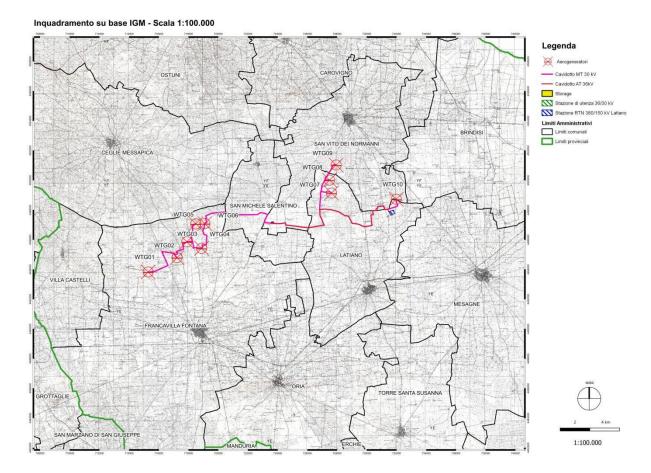


Figura 1 | Inquadramento intervento su IGM

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Gli aerogeneratori sono posizionati lungo strade comunali esistenti che dovranno essere soggette ad interventi di adeguamento delle caratteristiche dimensionali laddove necessario, e saranno utilizzate per accedere ad ognuna delle piattaforme degli aerogeneratori e alla stazione elettrica 36/30kV, sia durante la fase di esecuzione delle opere che nella successiva manutenzione del parco eolico.

I cavidotti d'interconnessione fra gli aerogeneratori e quelli di collegamento alla Sottostazione Elettrica saranno costituiti da cavo sotterraneo dimensionato opportunamente secondo i criteri ingegneristici previsti da legge.

6

Al fine di alterare il meno possibile la zona di impianto degli aerogeneratori sono state progettate le opere minime necessarie per l'installazione dei macchinari.

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

EN ISO 9001:2015 SR EN ISO 1400 tificate No. 0204 Certificate No.

SR E Cert

SR EN ISO 45001:2018 Certificate No. OH597

ANALISI DELLE COMPONENTI AMBIENTALI

La Puglia, pur avendo una superficie molto piccola ed un'alta densità abitativa, presenta un'elevata biodiversità rispetto alle altre aree di riferimento. Nella regione pugliese, infatti, rispetto ai valori nazionali, troviamo il 43% degli habitat, il 65% degli uccelli nidificanti, il 44% dei mammiferi. Dati che evidenziano la ricchezza del patrimonio naturale. La presenza di elevata biodiversità è probabilmente dovuta a vari fattori che possono essere così riassunti:

- la posizione biogeografica della Puglia, ponte nel Mediterraneo tra l'Europa, l'Asia minore e l'Africa. Questa posizione ha probabilmente permesso la colonizzazione della nostra regione da parte di specie appartenenti a varie aree geografiche;
- la variabilità e la complessità delle condizioni climatiche regionali. Sono infatti rappresentati climi molto diversi a distanze ravvicinate: dal clima quasi montano delle alture del Sub Appennino Dauno a quello semidesertico del Tavoliere. Questo determina la coesistenza di vari microclimi in ambiti ristretti con conseguente diversificazione di habitat e quindi di specie;
- la complessa storia geologica della Puglia che ha determinato a più riprese collegamenti terrestri con la penisola balcanica permettendo così numerosi scambi grazie ai quali la Puglia presenta attualmente popolamenti floro-faunistici compositi con specie di origine appenninica, dinarica ed egeica;
 - la superficie regionale e' compresa in fasce altitudinali basse o medie, fasce a maggiore biodiversità. Monte Cornacchia, la vetta più alta della Puglia, raggiunge appena 1151 m;
- la presenza di una notevole diversità di nicchie ambientali:
- l'isolamento di alcune aree, ad esempio il Gargano, che precludendo scambi con altre popolazioni, ha determinato l'evoluzione di popolazioni locali in specie endemiche, presenti cioè unicamente in quel

I dati relativi alla flora e alla fauna riportati nella presente sezione sono stati esaminati criticamente, oltre che dal punto di vista del loro intrinseco valore, anche alla luce della loro eventuale inclusione in direttive internazionali, comunitarie e nazionali, al fine di evidenziarne il valore sotto il profilo conservazionistico.

Le componenti ambientali analizzate nei seguenti paragrafi, in linea con quanto richiesto dalla normativa vigente per la predisposizione delle baseline ambientali, sono le seguenti:

- Atmosfera e Fattori Climatici;
- Suolo e Sottosuolo;
- Ambiente Idrico Superficiale e Sotterraneo;

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000.00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

2.1 ATMOSFERA E FATTORI CLIMATICI

2.1.1 QUALITA' DELL' ARIA

Lo scopo del presente Paragrafo è quello di caratterizzare, in termini di contesto meteo-climatico e di qualità dell'aria, i fattori climatici e la componente atmosferica nella situazione attuale.

I fenomeni di inquinamento dell'ambiente atmosferico sono strettamente correlati alla presenza sul territorio di attività umane, produttive di tipo industriale, agricolo e di infrastrutture di collegamento.

Le sorgenti maggiormente responsabili dello stato di degrado atmosferico sono reperibili negli insediamenti industriali, negli insediamenti abitativi o assimilabili (consumo di combustibili per riscaldamento, etc.), nel settore agricolo (consumo di combustibili per la produzione di forza motrice) e nel settore dei trasporti. È opportuno però ricordare che esistono estese commistioni tra le emissioni di origine industriale e quelle di origine civile e da traffico: molto spesso, infatti, avvengono contemporaneamente e a breve distanza tra loro, mescolandosi in modo che la loro discriminazione sia impossibile.

Le sostanze immesse in atmosfera possono ritrovarsi direttamente nell'aria ambiente (inquinanti primari), oppure possono subire processi di trasformazione dando luogo a nuove sostanze inquinanti (inquinanti secondari). Gli agenti inquinanti tipicamente monitorati sono SO2, CO, NOx, O3, polveri totali sospese e polveri sottili (PM10 e PM2.5).

L'art. 18, comma 3, del D. Lgs. 155/2010 stabilisce che "le Regioni e le Province Autonome elaborano e mettono a disposizione del pubblico relazioni annuali aventi ad oggetto tutti gli inquinanti disciplinati dal presente decreto e contenenti una sintetica illustrazione circa i superamenti dei valori limite, dei valori obiettivo, degli obiettivi a lungo termine, delle soglie di informazione e delle soglie di allarme con riferimento ai periodi di mediazione previsti, con una sintetica valutazione degli effetti di tali superamenti [...]".

Arpa Puglia e Regione Puglia monitorano la qualità dell'aria sull'intero territorio regionale.

Per la seguente analisi si fa riferimento alla "*Relazione annuale sulla Qualità dell'Aria in Puglia – Anno 2019*" disponibile sulla pagina ufficiale del sito Arpa Puglia (http://old.arpa.puglia.it/web/guest/rapporti_annuali_qa) e alle ultime rilevazioni disponibili da monitoraggio Arpa Puglia risalenti al 2021 (http://old.arpa.puglia.it/web/guest/gariainq2).

La Rete Regionale di Monitoraggio della Qualità dell'Aria (RRQA), approvata dalla Regione Puglia con DGR n. 2420/2013, è composta da 53 stazioni fisse (di cui 41 di proprietà pubblica e 12 privata); inoltre la Regione Puglia ha adottato anche la zonizzazione del territorio regionale come previsto dall'art. 3 del D.lgs. 155/2010, dividendo il territorio pugliese in quattro zone: zona collinare, zona di pianura, zona industriale e agglomerato di Bari.

L'area interessata dall'impianto eolico coinvolge i Comuni di Francavilla Fontana (BR), San Vito dei normanni (BR), San Michele Salentino (BR) e Latiano (BR Le stazioni di riferimento sono Francavilla

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

8

Fontana (Br) per i parametri C6H6, NO2 e la stazione di San Pancrazio Salentino per i parametri PM10, NO2, SO2.

Figura 2 | Centraline di rilevamento qualità dell'aria a San Pancrazio Salentino e Francavilla Fontana (*Fonte: http://old.arpa.puglia.it/web/guest/gariaing2*).

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

SR EN ISO 9001:2015 SR EN ISO 140 Certificate No. 0204 Certificate No.

14001:2015 No. E145

SR EN ISO 45001:2018 Certificate No. OH597

PROV	COMUNE	STAZIONE	TIPO STAZIONE	E (UTM33)	N (UTM33)	PM10	PM2,5	NO2	03	C6H6	CO	502
		Bari - Caldarola	traffico	658520	4553079	x	x	x		×	X	
		Bari - Carbonara	Fondo	654377	4598816	х		X	$ldsymbol{ldsymbol{eta}}$	×	X	X
	Bari	Bari - Cavour	traffico	657197	4554020	x	x	X		×	x	
		Bari - CUS	Traffico	654877	4555353	x		x	x			
		Bari - Kennedy	Fondo	656105	4551478	x		×	x			
i i	Altamura	Altamura	Fondo	631558	4520820	x	- A	×	x	×	x	
BA	Casamassima	Casamassima	Fondo	661589	4535223	x	2 3	×	x			0 8
		Modugno - ENO2	Industriale	648305	4555516	x	x	x	X		X	v
		Modugno - EN03	Industriale	649647	4549969			×			x	
		Modugno - EN04	Industriale	650120	4553064	x		×		25 2	x	
	Molfetta	Molfetta Verdi	traffico	634595	4562323	x	8 8	x				3 1
	100000000000000000000000000000000000000	Monopoli - Aldo Moro	Traffico	692701	4535752	x	x	×		×	x	0 0
	Monopoli	Monopoli - Italgreen	Traffico	692229	4537004	x	×			×		
200	Andria	Andria - via Vaccina	Traffico	609209	4565364	x	-		x	- 00	X	
BAT	Barletta	Barletta - Casardi	Fondo	607646	4574709	x	x	×	x	×	9 1	8 3
	0.0000000	Brindisi - Casale	Fondo	748879	4504259	x	x	X				X
		Brindisi - Perrino	Fondo	749892	4502036	x	Š Ž	X			X	X
		Brindisi - SISRI	Industriale	751700	4501449	х		X		×	X	X
		Brindisi - Terminal Passeggeri	Industriale	750422	4503838	X	X	X	X	×	X	X
BAT -		Brindisi - Via dei Mille	traffico	748464	4502808	X	S. 35	7.4	- 4	0. 10/ 3	74	
	Ceglie Messapica	Brindisi - via Taranto Ceglie Messapica	Traffico Fondo	749277 712432	4503418 4502847	x	x		X		X	
	Cisternino	Cisternino	Fondo	703972	4513011	x			x	-	-	x x x
	Francavilla	Francavilla Fontana	Traffico	719236	4489711			X	х	×	x	х
	Mesagne	Mesagne	Fondo	737714	4494370	x	3 8	X				х
	San Pancrazio Salentino	San Pancrazio	Fondo	741444	4478597	x		X				х
	San Pietro V.co	San Pietro V.co	Industriale	754781	4486042	X	ÿ	X		9	x x x x x x x x x x x x x x x x x x x	X
	Torchiarolo	Torchiarolo - Don Minzoni	Industriale	758842	4486404	х	x	X	X	X	X	_
-	KIRONE PALAMENOPO	Torchiarolo - via Fanin	Industriale	758263 545819	4486545	X	X		\vdash		00000	X
	Foggia Manfredonia	Foggia - Rosati Manfredonia - Mandorli	Fondo Traffico	575770	4589475 4609022	X	X			- 5		
	98707.0003.0009.0100.00	90000000000000000000000000000000000000	Fondo	0.0000000000000000000000000000000000000	100000000000000000000000000000000000000	X	25 63	150	940			
FG	Monte S. Angelo	Monte S. Angelo	499730000	578692	4613137	X	92			-		
	San Severo	San Severo - Az. Russo	Fondo	537644	4599559	X	X					
	San Severo	San Severo - Posta Principe	Fondo	532294	4609076	х	x		Х			-
	1977	Lecce - P.zza Libertini	Traffico	769785	4471666	X	X			X		
	Lecce	Lecce - S.M. Cerrate	Fondo	764242	4483446	X	X		X	3 100		
		Lecce - Via Garigliano	Traffico	769536	4473048	X	X		_	X	X	
LE	Arnesano	Arnesano - Riesci	Fondo	762876	4470790	Х		X	\vdash			X
	Campi. S.na	Campi S.na	Fondo	756857	4476277	X	X					
	Galatina	Galatina	Industriale	770356	4451121		X	X	X		X	X
	Guagnano	Guagnano - Villa Baldassarre	Fondo	751513	4478431	X	0 10	X	_			X
	Surbo	Surbo - via Croce	Industriale	764807	4478158	x		x	\vdash		\vdash	X
		Taranto - Archimede	Industriale	689238	4485033	x	X	X	<u> </u>		X	X
		Taranto - Machiavelli	Industriale	688642	4484370	x	x	X		×	X	x x x x x x x x x x x x x x x x x x x
	Taranto	Taranto - Paolo VI	Industriale	690889	4488018	х	x	×		×	x	X
		Taranto - San Vito	Fondo	688778	4477122	x		×			X	X
2012000		Taranto - Talsano	Fondo	693783	4475985	X	6	X	X			
TA		Taranto - Via Alto Adige	Traffico	691924	4481337	x	x	×		×	x	x
	Chatta	Statte - Ponte Wind	Industriale	684114	4488423	x	S 81	×		×	×	X
	Statte	Statte - via delle Sorgenti	Industriale	686530	4492525	x		×	x		×	x
1	Grottaglie	Grottaglie	Fondo	705279	4490271	x	0	X	х		X	X
	Martina França	Martina Franca	Traffico	697012	4508162	x		×	х		x	3 3
				679111	4495815							

Tabella 1 - RRQA

Figura 3 | Stazioni considerate per il monitoraggio della qualità dell'aria

Di seguito, sulla base dei dati del Report annuale 2019 sulla qualità dell'aria (http://old.arpa.puglia.it/web/guest/rapporti_annuali_qa), si riporta lo stato della qualità dell'aria nel territorio

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva : 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

SR EN ISO 9001:2015 SR EN I Certificate No. 0204 Certific SR EN ISO 45001:20 Certificate No. OHS

regionale, ponendo particolare attenzione alle stazioni di monitoraggio di Francavilla Fontana e San Pancrazio Salentino, e agli inquinanti PM10, PM2.5, NO2, O3, benzene, CO, SO2.

PM10: Il PM10 è l'insieme di particelle con diametro aerodinamico inferiore a 10 µm (10-6 m). Il PM10 può penetrare nell'apparato respiratorio, generando impatti sanitari la cui gravità dipende, oltre che dalla quantità, dalla tipologia delle particelle. Il PM10 si distingue in "primario", generato direttamente da una fonte emissiva (antropica o naturale), e "secondario", derivante cioè da altri inquinanti presenti in atmosfera attraverso reazioni chimiche. Il D.Lgs 155/10 fissa due valori limite per il PM10: la media annua di 40 µg/m3 e la media giornaliera di 50 μg/m3 da non superare per più di 35 volte nel corso dell'anno solare. In entrambi i casi, non sono stati registrati superamenti dei valori limite e i valori più alti sono stati registrati nella stazione "Modugno - EN04".

PM2.5: Il PM2.5 è l'insieme di particelle solide e liquide con diametro aerodinamico inferiore a 2,5 µm (10-6 m). Analogamente al PM10, il PM2.5 può avere origine naturale o antropica e può penetrare nell'apparato respiratorio raggiungendone il tratto inferiore (trachea e polmoni). A partire dal 2015 il D.Lgs 155/10 prevede un valore limite di 25 µg/m3. Nel 2019 il limite annuale di 25 µg/m3 non è stato superato in nessun sito. Come già in passato, il valore più elevato (18 µg/m3) è stato registrato nel sito di "Torchiarolo - Don Minzoni".

NO2: Gli ossidi di azoto, indicati con il simbolo NOx si formano soprattutto nei processi di combustione ad alta temperatura e rappresentano un sottoprodotto dei processi industriali e degli scarichi dei motori a combustione interna. I limiti previsti dal D.Lgs 155/10 per l'NO2 sono la media oraria di 200 µg/m3 da non superare più di 18 volte nel corso dell'anno e la media annua di 40 µg/m3. Nel 2019 il limite annuale di concentrazione (pari a 40 µg/m3) non è stato superato in nessuna stazione di monitoraggio. Il valore più elevato è stato registrato nella stazione di "Bari- Caldarola".

O3: L'ozono è un inquinante secondario che si forma in atmosfera attraverso reazioni fotochimiche tra altre sostanze (tra cui gli ossidi di azoto e i composti organici volatili). Poiché il processo di formazione dell'ozono è catalizzato dalla radiazione solare, le concentrazioni più elevate si registrano nelle aree soggette a forte irraggiamento e nei mesi più caldi dell'anno. Il D.Lgs 155/10 fissa un valore bersaglio per la protezione della salute umana pari a 120 µg/m3 sulla media mobile delle 8 ore, da non superare più di 25 volte l'anno e un valore obiettivo a lungo termine, pari a 120 µg/m3. Come già in passato, anche nel 2019 valori elevati di ozono sono stati registrati sull'intero territorio regionale. Il valore obiettivo a lungo termine (pari a 120 µg/m3) è stato superato in tutte le province. Il numero più alto di superamenti (32) è stato registrato ad "Altamura", mentre il valore più elevato a "Taranto -Talsano" (160 μg/m3).

BENZENE: Il benzene è un idrocarburo aromatico che, a temperatura ambiente, si presenta come un liquido incolore, dall'odore dolciastro. È una sostanza dall'accertato potere cancerogeno. Il D.Lgs 155/2010 fissa un

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000.00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

valore limite di concentrazione annuo di 5 μg/m3. Nel 2019, come negli anni precedenti, le concentrazioni di benzene sono risultate basse in tutti i siti di monitoraggio. Il valore più elevato (1,4 μg/m3) è stato registrato a "Bari - Cavour".

CO: Il monossido di carbonio è una sostanza gassosa che si forma per combustione incompleta di materiale organico, ad esempio nei motori degli autoveicoli e nei processi industriali. Il monossido di carbonio può risultare letale per la sua capacità di formare complessi con l'emoglobina più stabili di quelli formati da quest'ultima con l'ossigeno impedendo il trasporto nel sangue. Il D.Lgs 155/2010 fissa un valore limite di 10 mg/m3 calcolato come massimo sulla media mobile delle 8 ore. Nel 2019 il limite di concentrazione di 10 mg/m3 per il CO non è stato superato in nessuno dei siti di monitoraggio. Tuttavia, nel sito "Lecce - P.zza Libertini", caratterizzato da alto volume di traffico autoveicolare, è stata registrata una concentrazione massima di 3,9 mg/m3.

SO2: Il biossido di zolfo deriva dalla combustione di combustibili fossili contenenti zolfo. In passato è stato un importante inquinante atmosferico poiché la sua ossidazione porta alla formazione di acido solforoso e solforico. Il biossido di zolfo è un gas incolore facilmente solubile in acqua. Le fonti naturali, come i vulcani, contribuiscono ai livelli ambientali di anidride solforosa. Le emissioni antropogeniche sono invece legate all'uso di combustibili fossili contenenti zolfo per il riscaldamento domestico, la generazione di energia e nei veicoli a motore. Nel tempo il contenuto di zolfo nei combustibili è sensibilmente diminuito, portando i livelli di SO2 in area ambiente a livelli estremamente bassi. Nelle Province di Bari, BAT e Foggia l'SO2 non viene monitorato nella RRQA. Nelle maggiori aree industriali della Puglia, a Taranto e Brindisi sono invece presenti diversi monitor per il monitoraggio dell'SO2.

Nel 2019 non sono stati registrati superamenti del valore limite giornaliero, pari a 125 μg/m³, né della media oraria pari a 350 µg/m³. Le concentrazioni di biossido di zolfo rilevate sono di molto inferiori a tutti i limiti previsti dall'attuale normativa e testimoniano una riduzione dell'impiego di combustibili fossili contenenti zolfo (gasolio e olio combustibile) sia negli impianti di riscaldamento che nelle caldaie industriali, sostituiti progressivamente da impianti a metano e dal teleriscaldamento. I valori medi annuali sono tutti inferiori a 6 µg/m³, con concentrazioni maggiori nelle stazioni di "Brindisi - Terminal Passeggeri" e "Surbo - Via Croce" e "Taranto - CISI".

In conclusione, nel 2019 la Rete Regionale di Monitoraggio della Qualità dell'Aria non ha registrato superamenti dei limiti di legge per nessun inquinante, ad eccezione dell'ozono. Per quest'ultimo, il valore obiettivo a lungo termine viene superato su tutto il territorio regionale, a conferma del fatto che la Puglia, per la propria collocazione geografica, è soggetta ad elevati valori di questo inquinante.

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000.00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

2.1.2 CARATTERIZZAZIONE METEO – CLIMATICA

Il clima della regione pugliese varia in relazione alla posizione geografica e alle quote sul livello medio marino delle sue zone. Nel complesso si tratta di un clima mediterraneo caratterizzato da estati abbastanza calde e poco piovose ed inverni non eccessivamente freddi e mediamente piovosi, con abbondanza di precipitazioni durante la stagione autunnale (https://www.isprambiente.gov.it/).

Temperatura e precipitazioni

FRANCAVILLA FONTANA

La classificazione del clima della città di Francavilla Fontana appartiene alla classe "Csa", come stabilito da Köppen e Geiger. Con "Cs" si indicano climi temperati con estate secca (Sommertrocken temperierte Klimate) o clima etesio (Etesienklima); questo prevede almeno un mese invernale (dicembre, gennaio e febbraio nell'emisfero boreale; giugno, luglio o agosto nell'emisfero australe) ed ha come minimo il triplo delle precipitazioni del mese estivo (giugno, luglio o agosto nell'emisfero boreale; dicembre, gennaio e febbraio nell'emisfero australe) più secco, che devono essere inferiore a 30 mm. Con "a" si intende che la temperatura media del mese più caldo è superiore a 22 °C.

Francavilla Fontana ricade in classe climatica C. La stagione fredda dura circa 4 mesi e il periodo in cui è possibile accendere il riscaldamento negli edifici (con un massimo di 10 ore giornaliere) va dal 22 novembre al 23 marzo, salvo ampliamenti disposti dal Sindaco.

Il clima della città è caldo e temperato, con estati afose molto asciutte, mentre gli inverni sono freddi e ventosi. Come si evince dalla Figura 4 e 5, i mesi più caldi dell'anno sono luglio e agosto, con una temperatura media di 26.6 °C, mentre il mese più freddo è gennaio, con una temperatura media di 8.7°C. Da maggio ad agosto si riscontrano meno precipitazioni, con 16 mm nel mese di luglio, mentre a novembre si registra il maggior numero di precipitazioni, con una media di 86 mm. L'umidità relativa più alta si misura a dicembre (80%), mentre la più bassa a luglio (54%).

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000.00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

CLIMA FRANCAVILLA FONTANA (ITALIA)

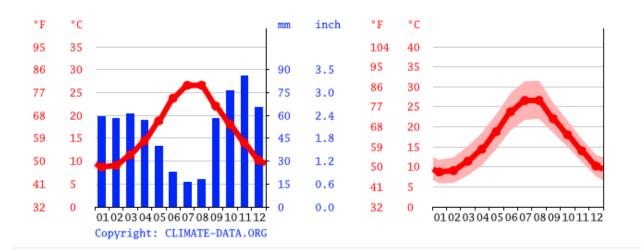


Figure 4 | Grafico della Temperatura e del clima, del Comune di Francavilla Fontana (https://it.climatedata.org/europa/italia/puglia/francavilla-fontana-14042/).

TABELLA CLIMATICA FRANCAVILLA FONTANA

									5.44	S# 1		5 : .
	Gennaio	Febbraio	Marzo	Aprile	Maggio	Giugno	Luglio	Agosto	Settembre	Ottobre	Novembre	Dicembre
Medie Temperatura (°C)	8.7	9.1	11.4	14.4	18.8	23.8	26.6	26.6	22	18	14	10.2
Temperatura minima (°C)	5.9	6	7.8	10.5	14.5	19.1	21.7	22	18.5	15	11.2	7.6
Temperatura massima	11.8	12.3	15.2	18.5	23.1	28.4	31.4	31.5	28	21.5	17	13
(°C)												
Precipitazioni (mm)	59	58	61	57	40	23	16	18	58	76	86	65
Umidità(%)	79%	76%	74%	72%	67%	59%	54%	57%	69%	78%	80%	80%
Giorni di pioggia (g.)	7	6	7	6	5	3	2	3	6	6	6	7
Ore di sole (ore)	6.2	7.0	8.4	9.8	11.6	12.8	12.9	12.0	9.8	7.6	6.4	6.1

Figura 5 | Tabella climatica del Comune di Francavilla Fontana (https://it.climate-data.org/europa/italia/puglia/francavilla-fontana-14042/).

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000.00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

< >

• SAN VITO DEI NORMANNI

La classificazione del clima della città di San Vito dei Normanni appartiene alla classe "Csa", come stabilito da Köppen e Geiger. Con "Cs" si indicano climi temperati con estate secca (Sommertrocken temperierte Klimate) o clima etesio (Etesienklima); questo prevede almeno un mese invernale (dicembre, gennaio e febbraio nell'emisfero boreale; giugno, luglio o agosto nell'emisfero australe) ed ha come minimo il triplo delle precipitazioni del mese estivo (giugno, luglio o agosto nell'emisfero boreale; dicembre, gennaio e febbraio nell'emisfero australe) più secco, che devono essere inferiore a 30 mm. Con "a" si intende che la temperatura media del mese più caldo è superiore a 22 °C.

15

San Vito dei Normanni ricade in classe climatica C. La stagione fredda dura circa 4 mesi e il periodo in cui è possibile accendere il riscaldamento negli edifici (con un massimo di 10 ore giornaliere) va dal 22 novembre al 23 marzo, salvo ampliamenti disposti dal Sindaco.

Il clima della città è caldo e temperato, con estati afose molto asciutte, mentre gli inverni sono freddi e ventosi. Come si evince dalla Figura 6 e 7, i mesi più caldi dell'anno sono luglio e agosto, con una temperatura media di 26.6 °C, mentre il mese più freddo è gennaio, con una temperatura media di 8.7°C. Da maggio ad agosto si riscontrano meno precipitazioni, con 16 mm nel mese di luglio, mentre a novembre si registra il maggior numero di precipitazioni, con una media di 86 mm. L'umidità relativa più alta si misura a dicembre (80%), mentre la più bassa a luglio (54%).

CLIMA SAN VITO DEI NORMANNI (ITALIA)

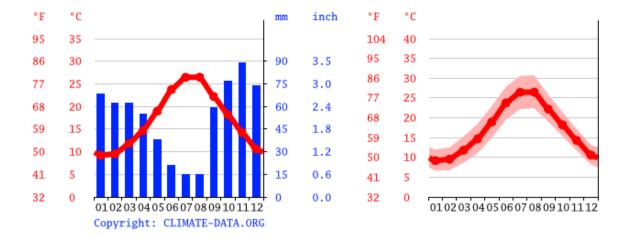


Figura 6 | Grafico della Temperatura e del clima del Comune di San Vito dei Normanni (Fonte: https://it.climate-data.org/europa/italia/puglia/san-vito-dei-normanni-14038/)

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO
Cap. Soc. 119.000.00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

TABELLA CLIMATICA SAN VITO DEI NORMANNI < > Gennaio Febbraio Luglio Agosto Settembre Ottobre Novembre Dicembre Marzo Aprile Maggio Giugno 26.4 26.5 Medie Temperatura (°C) 9.2 9.5 11.8 14.7 19 23.7 22.2 18.2 14.3 14.9 19.5 15.4 6.7 8.6 11.1 22.2 22.4 19 11.7 8.2 Temperatura minima (°C) 6.6 15.3 25.8 Temperatura massima 12.5 18.5 30.6 30.7 21.5 17.1 13.2 (°C) Precipitazioni (mm) 62 55 38 21 15 15 59 77 74 Umidità(%) 76% 74% 73% 7196 67% 60% 57% 60% 69% 77% 78% 77% 7 7 7 6 4 3 2 2 6 7 8 Giorni di pioggia (g.) 6 Ore di sole (ore) 7.2 6.6 6.2

LATIANO

La classificazione del clima della città di Latiano appartiene alla classe "Csa", come stabilito da Köppen e Geiger. Con "Cs" si indicano climi temperati con estate secca (Sommertrocken temperierte Klimate) o clima etesio (Etesienklima); questo prevede almeno un mese invernale (dicembre, gennaio e febbraio nell'emisfero boreale; giugno, luglio o agosto nell'emisfero australe) ed ha come minimo il triplo delle precipitazioni del mese estivo (giugno, luglio o agosto nell'emisfero boreale; dicembre, gennaio e febbraio nell'emisfero australe) più secco, che devono essere inferiore a 30 mm. Con "a" si intende che la temperatura media del mese più caldo è superiore a 22 °C.

Latiano ricade in classe climatica C. La stagione fredda dura circa 4 mesi e il periodo in cui è possibile accendere il riscaldamento negli edifici (con un massimo di 10 ore giornaliere) va dal 22 novembre al 23 marzo, salvo ampliamenti disposti dal Sindaco.

Il clima della città è caldo e temperato, con estati afose molto asciutte, mentre gli inverni sono freddi e ventosi. Come si evince dalla Figura 8 e 9, i mesi più caldi dell'anno sono luglio e agosto, con una temperatura media di 26.6 °C, mentre il mese più freddo è gennaio, con una temperatura media di 8.4°C. Da maggio ad agosto si riscontrano meno precipitazioni, con 17 mm nel mese di luglio, mentre a novembre si registra il maggior numero di precipitazioni, con una media di 86 mm. L'umidità relativa più alta si misura a dicembre (79%), mentre la più bassa a luglio (52%).

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

SR EN ISO 14001:2015 Certificate No. E145

CLIMA LATIANO (ITALIA)

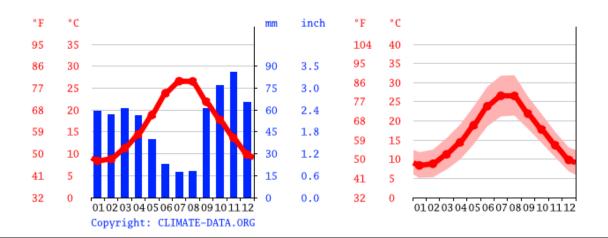


Figura 8 | Grafico della Temperatura e del clima del Comune di Latiano (Fonte: https://it.climate-data.org/europa/italia/puglia/latiano-14035/).

TABELLA CLIMATICA LATIANO < > Gennaio Febbraio Aprile Giugno Luglio Agosto Settembre Ottobre Novembre Dicembre Marzo Maggio 11.3 14.4 18.9 23.8 26.6 26.5 21.9 17.7 13.6 Medie Temperatura (°C) 8.4 8.8 9.8 Temperatura minima (°C) 6.8 Temperatura massima 11.9 12.5 15.5 19 23.7 28.9 31.8 31.9 26.3 17.1 13 (°C) 59 57 61 56 40 23 17 18 61 77 65 Precipitazioni (mm) 78% 75% 73% 70% 64% 56% 52% 55% 67% 76% 79% 79% Umidità(%) Giorni di pioggia (g.) 6 6 6 5 3 2 2 6 11.7 8.5 10.0 12.8 12.9 11.9 Ore di sole (ore) 6.1

Figura 9 | Tabella climatica del Comune di Comune di Latiano (Fonte: https://it.climate-data.org/europa/italia/puglia/latiano-14035/)

Per quanto concerne il vento e la sua direzione, si è fatto riferimento ai dati pubblicati dall'Aeronautica Militare. Sono mappe del vento riferito ai 10 metri e dello stato del mare sui bacini circostanti l'Italia. Il simbolo del vento, tipicamente meteorologico, indica la direzione di provenienza e l'intensità. La colorazione delle aree è associata allo stato del mare. L'aggiornamento quotidiano avviene intorno alle 08 UTC.

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000.00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

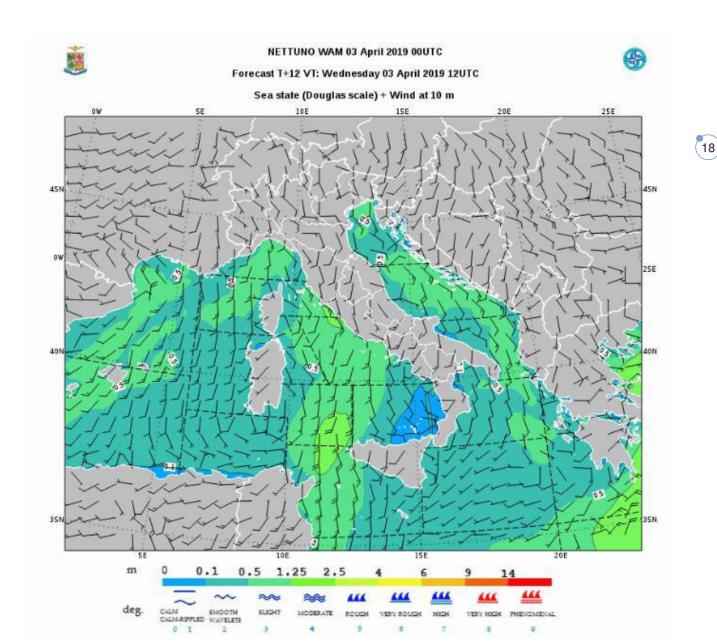


Figura 10 | Stato del mare e del vento a 10 metri

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO
Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

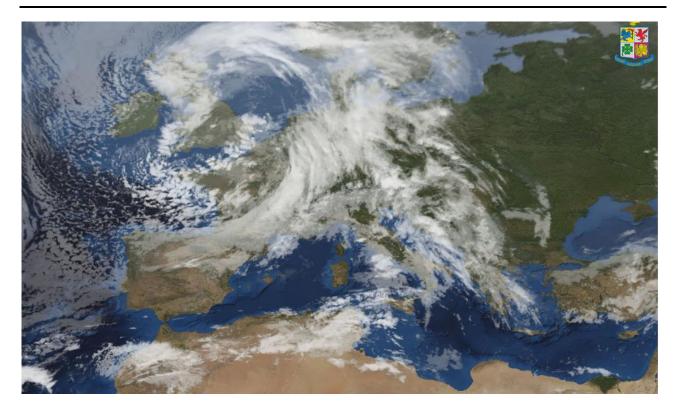


Figura 11 | Meteosat Seconda Generazione (MSG) riferite all'area EURO-ATLANTICA sui canali infrarosso, visibile e vapore acqueo

Il clima della provincia è mediterraneo, con estati calde ed inverni non eccessivamente freddi. Lungo la costa gli sbalzi termici sono meno frequenti che nelle zone interne e l'azione mitigatrice del mare Adriatico fa lievitare leggermente le temperature medie. In collina e nelle zone pianeggianti interne la temperatura è generalmente più bassa rispetto alla costa.

Il clima della zona può essere influenzato da correnti fredde provenienti dai Balcani, che fanno abbassare di parecchi gradi le temperature (provocando in inverno estese gelate e, in alcuni casi, anche abbondanti nevicate) o da correnti calde provenienti dal Nordafrica (che d'estate rendono il clima particolarmente caldo e afoso).

Le precipitazioni non sono molto abbondanti e si aggirano attorno ai 600 mm di pioggia annui.

PROJETTO engineering s.r.l. società d'ingegneria

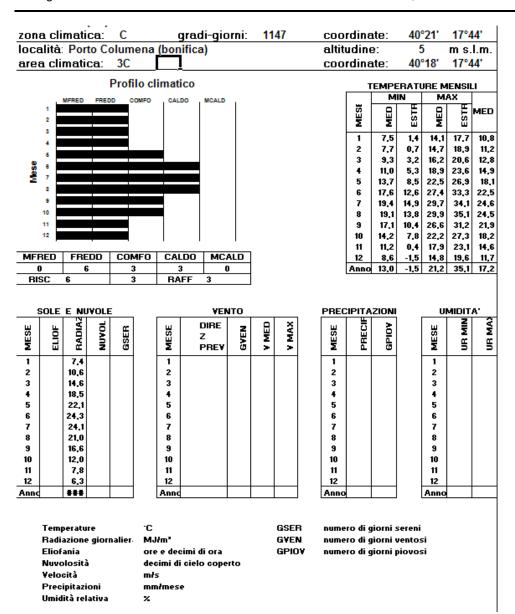
ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO
Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733
Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914



EN ISO 9001:2015 SR EN ISO 1400 tificate No. 0204 Certificate No.

SR EN ISO 45001:2018 Certificate No. OH597

19

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

SR EN ISO 9001:2015 Certificate No. O204

SR EN ISO 14001:2015 Certificate No. E145

SR EN ISO 45001:2018 Certificate No. OH597

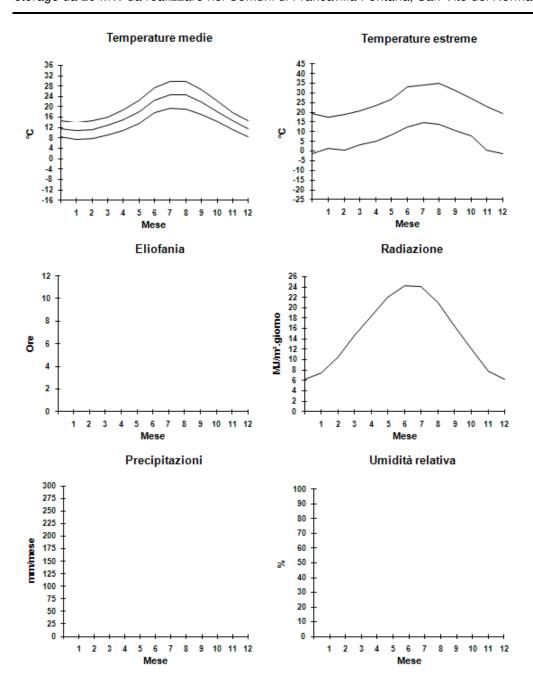


Figura 12 | Situazione meteo dell'area di interesse

Le principali evidenze dei cambiamenti climatici in Puglia si identificano, come per l'Italia e per il resto dell'Europa, nell'aumento generale delle temperature e nella variata distribuzione delle precipitazioni, divenute più concentrate e intense con conseguenze inevitabili per le ricorrenti siccità, per il maggiore inaridimento dei terreni, per il depauperamento delle risorse idriche, per la fragilità dell'ambiente marino

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO
Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733
Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

costiero e per l'accentuarsi dei fenomeni di dissesto idrogeologico. Un ulteriore segnale dei cambiamenti climatici in atto è l'incremento della temperatura delle acque del Basso Adriatico.

In Puglia, l'aumento della temperatura al suolo di questi ultimi anni trova riscontro nelle serie storiche dei dati registrati dall'intera rete delle stazioni meteorologiche del Servizio Idrografico. Un incremento della temperatura minima negli ultimi 50 anni è stato anche registrato in gran parte delle stazioni di misura presenti nella regione, con l'aumento di circa 1°C nel periodo 1982-2005. Per l'area del Tavoliere, come per l'arco ionico tarantino, all'aumento della temperatura è associato un decremento piuttosto consistente delle precipitazioni annue e il frequente ripetersi di anni con clima di tipo "arido".

22

Risulta chiaro inoltre, come l'andamento climatico e le sue variazioni condizionino notevolmente gli incendi boschivi, poiché essi sono connessi alle condizioni meteorologiche sia nel loro avvio sia nella loro propagazione.

Il cambiamento climatico ed i suoi effetti sulla disponibilità di risorse idriche potranno produrre una maggiore vulnerabilità degli acquiferi nelle regioni alle medie e basse latitudini dell'emisfero nord fino alla fascia subequatoriale. Tale vulnerabilità deve essere vista sotto il duplice aspetto dell'esaurimento dell'acquifero e del rischio di un suo progressivo inquinamento causato sia dall'intrusione del cuneo salino nelle zone costiere, sia dal peggioramento del rapporto di diluizione tra acqua ed inquinanti derivanti dalle attività agricole e industriali (Fonte: Autorità di Bacino della Puglia, 2015).

2.1.3 ANALISI DEGLI SCENARI RCP - IPCC PER IL CAMBIAMENTO CLIMATICO

Per il Quinto Rapporto di Valutazione dell'IPCC (AR5), la comunità scientifica ha definito un set di quattro nuovi scenari, denominati Representative Concentration Pathways (RCP): RCP2.6, RCP4.5, RCP6.0, e RCP8.5 (corrispondente a più alte emissioni). Il numero associato a ciascun RCP si riferisce al forzante radiativo, che indica l'entità dei cambiamenti climatici antropogenici entro il 2100 rispetto al periodo preindustriale. Secondo quanto riportato nel Report *Analisi del Rischio. I cambiamenti climatici in Italia* (CMCC, 2019), per il periodo 2021-2050 relativo alla regione del bacino Mediterraneo e della penisola italiana, lo scenario RCP 4.5 produce un riscaldamento tra 1 e 1.5 gradi di temperatura su tutto il territorio nazionale (Figura 10) e una variazione nella distribuzione di precipitazione rispetto al periodo 1981 - 2010 su gran parte del paese. Valori più alti di riscaldamento e estremi di precipitazioni più marcati si ottengono per scenari corrispondenti a più alte emissioni (RCP 8.5), come indicato nel report del CMCC.

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

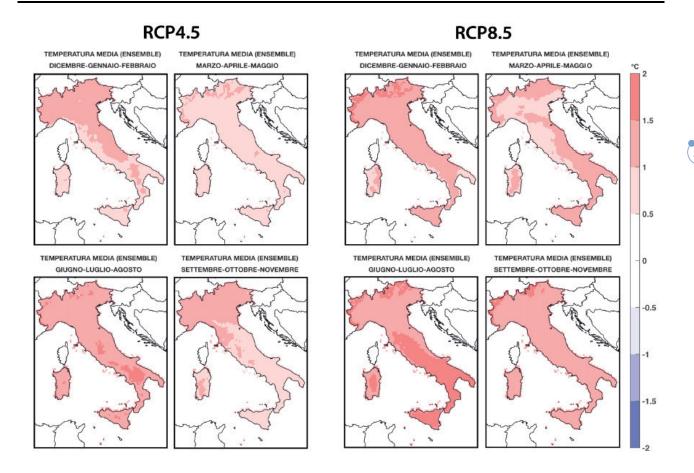


Figure 13 | Mappe di variazione della temperatura a due metri su scala stagionale sull'Italia dall'ensemble EURO-CORDEX secondo gli scenari RCP4.5 e RCP8.5 per il periodo 2021-2050 rispetto al periodo di riferimento 1981-2010 (CMCC, 2019)

Le proiezioni di cambiamento climatico per l'Italia (RCP 8.5) mostrano aumenti della temperatura media stagionale complessivi con valori oltre 1.5°C, con incrementi più marcati durante il periodo estivo, specie nella parte meridionale della Penisola (Figura 13). Osservando la Figura 14, relativamente allo scenario RCP 8.5 si può notare un aumento delle precipitazioni nel Nord Italia durante il primo semestre, mentre è evidente la netta diminuzione dei quantitativi al centro-sud Italia, con un discostamento rilevante nel periodo estivo. Oltre ai cambiamenti nei valori medi, le proiezioni indicano alterazioni generali della variabilità delle temperature e delle precipitazioni sull'Italia.

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

SR EN ISO 9001:2015 Certificate No. Q204

EN ISO 9001:2015 SR EN ISO 14001 crificate No. 0204 Certificate No. 6 SR EN ISO 4500 Certificate No. 0

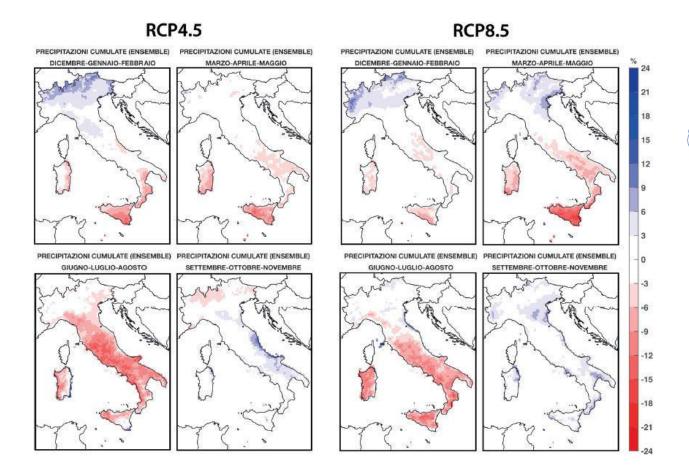


Figure 14 | Mappe stagionali di variazione della precipitazione sull'Italia dall'ensemble EURO-CORDEX secondo gli scenari RCP4.5 e RCP8.5 per il periodo 2021-2050 rispetto al periodo di riferimento 1981- 2010 (CMCC, 2019)

In particolare, l'aumento della variabilità estiva della temperatura, accompagnato dall'aumento dei valori massimi indica un aumento considerevole della probabilità di occorrenza di ondate di calore. I cambiamenti di precipitazione associati a quelli di temperatura ed evaporazione provocano un significativo aumento degli eventi siccitosi su gran parte dell'Italia. Il punto 3.10 del citato Report, pubblicato dal Ministero dell'Ambiente, del Territorio e del Mare, è dedicato al settore energetico, in quanto rappresenta un settore economico particolarmente vulnerabile ai cambiamenti climatici come effetto dell'elevata sensitività della produzione e del consumo di energia rispetto all'andamento delle temperature e dei fenomeni estremi, ma anche della severità dei requisiti ai quali devono rispondere i servizi energetici in termini quantitativi e qualitativi in particolare per la loro continuità. La produzione e l'offerta di energia saranno influenzate dai cambiamenti climatici nel caso in cui:

Gli eventi meteorologici estremi diventino più intensi,

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000.00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

- Si debba far fronte a riduzioni nella disponibilità delle risorse idriche per la produzione idroelettrica o per il raffreddamento delle centrali termoelettriche,
- Vengano influenzate le decisioni sulla localizzazione degli impianti,
- Vengano influenzate positivamente o negativamente la produzione di energia eolica, solare e da biomassa.

I cambiamenti climatici vengono analizzati su una scala temporale di almeno 50 anni.

Tuttavia, per l'impianto eolico, ai fini della vulnerabilità ai cambiamenti climatici, si deve considerare un orizzonte temporale inferiore, corrispondente alla vita utile, stimata in circa 30 anni.

2.1.4 IDENTIFICAZIONE DEGLI HAZARD CLIMATICI

Secondo il Report 96/2021 "Gli indicatori del clima in Italia nel 2020", pubblicazione a cura di Ispra, a livello globale il 2020 è stato l'anno più caldo della serie di temperatura media annuale sulla terraferma e il secondo più caldo della serie di temperatura media su terraferma e oceani insieme. Il 2020 è stato un anno più caldo della media in molte regioni. In Europa l'anomalia media annuale rispetto al 1981-2010 è stata per la prima volta di circa +2°C e gli ultimi sette anni sono stati i più caldi della serie.

La configurazione delle anomalie su larga scala ha posto l'Italia in un'area di circolazione più divergente della media e interessata da anomalie positive di geopotenziale, coerenti con quelle termiche rilevate. Sempre in coerenza con queste anomalie di larga scala, il 2020 è stato caratterizzato da una precipitazione annuale nazionale inferiore al clima 1961-1990, e da piovosità mensili altalenanti: nella prima parte dell'anno, fino a fine maggio sono prevalse su gran parte dell'Italia precipitazioni inferiori alle attese, mentre a partire da giugno sono state osservate condizioni di maggiore variabilità; in particolare a novembre nelle regioni centrosettentrionali le precipitazioni sono state molto inferiori alla norma, mentre sono state molto abbondanti a dicembre, con anomalie areali fino a 2 volte i valori attesi al Nord. I valori più bassi sono stati registrati su gran parte della Sicilia e prevalentemente su ampie aree della Puglia.

Secondo quanto pubblicato sul Report "La vulnerabilità al cambiamento climatico dei territori Obiettivo Convergenza del MATTM" (2012), per quanto riguarda la Puglia l'elaborazione dell'indice e l'analisi dei relativi indicatori per la regione ha messo in evidenza una distribuzione della vulnerabilità agli effetti del cambiamento climatico concentrata nelle zone costiere. In particolare, le zone costiere caratterizzate da un elevato livello di vulnerabilità sono localizzate sotto il promontorio del Gargano, dove si registrano alcuni importanti fenomeni di urbanizzazione, e nel tratto di costa compreso tra le città di Bari e Brindisi.

La distribuzione territoriale della vulnerabilità ai cambiamenti climatici, determinate tra l'altro dalla dipendenza dei sistemi economici locali dell'agricoltura, dalla pesca oltre che dal peso del turismo, sembra interessare meno le aree centrali della regione poste lungo l'asse longitudinale e il Salento, nonostante la

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. Leonardo FILOTICO

Cap. Soc. 119.000.00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

R EN ISO 9001:2015 SR EN ISO Certificate No. 0204 Certificate

15

presenza di fenomeni legati alla desertificazione. L'indice di vulnerabilità ai cambiamenti climatici determinato per la regione Puglia come media dei valori assunti nei singoli comuni è pari a 46,59 rispetto ad un valore pari a 51 stimato su scala regionale nell'ambito del report Regions 2020, collocando la regione nella seconda fascia PAI di vulnerabilità.

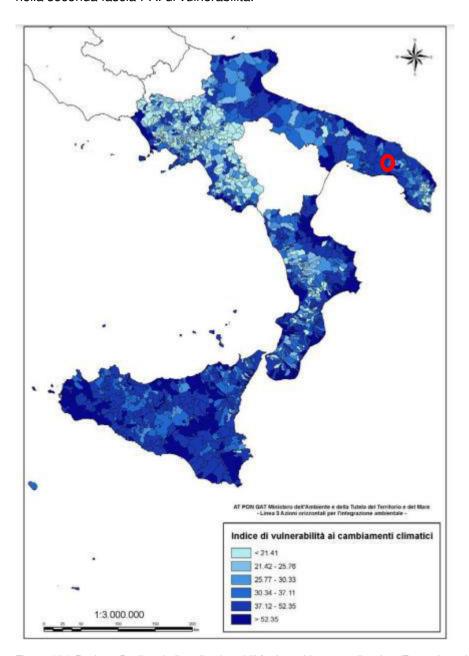


Figure 15 | Regione Puglia - Indice di vulnerabilità al cambiamento climatico (Fonte: La vulnerabilità al cambiamento climatico dei territori Obiettivo Convergenza del MATTM"(2012)) - Indicazione area di studio con poligono rosso

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Come evidenziato dalla analisi della cartografia relativa all'indice di vulnerabilità, in tutte le province sono localizzati comuni che fanno registrare un alto valore dell'indice.

Il territorio della Provincia di Brindisi e Taranto è caratterizzato da un valore di vulnerabilità intorno al 47,83 e 46,98, è secondo in Puglia, tra i territori che risultano maggiormente esposti al cambiamento climatico, dopo la provincia di Barletta-Andria-Trani (54,69); seguono quelli della provincia di Bari (46,98) e Foggia (52,46); meno vulnerabili sembrano essere i territori ricadenti nella provincia di Lecce (41,52) (Figura16)

27

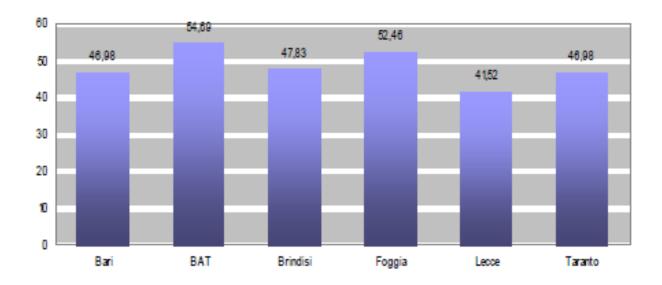


Figure 16 | Regione Puglia - Indice di vulnerabilità climatica per provincia (Fonte: La vulnerabilità al cambiamento climatico dei territori Obiettivo Convergenza del MATTM" (2012))

Il fenomeno che maggiormente sembra incidere sulla vulnerabilità del territorio regionale appare quello legato alla desertificazione seguito dalla dipendenza delle economie locali dall'agricoltura e dalla pesca. La variazione al 2050 della popolazione esposta alle esondazioni risulta essere il fenomeno che meno incide rispetto alla sfida del cambiamento climatico, interessando porzioni limitate di territorio.

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

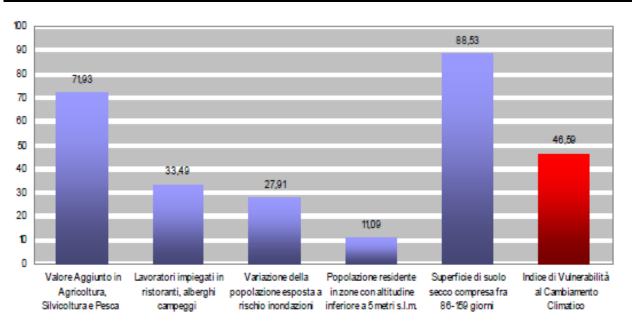


Figure 17 | Regione Puglia - Rilevanza dei fattori nel calcolo della vulnerabilità climatica (Fonte: La vulnerabilità al cambiamento climatico dei territori Obiettivo Convergenza del "MATTM" (2012))

IDENTIFICAZIONE DEGLI IMPATTI DOVUTI AGLI HAZARD CLIMATICI 2.1.5

Al fine di identificare gli impatti, in corso e potenziali, dovuti agli hazard climatici nell'aria di studio interessata dall'opera, si considerano gli hazard individuati, ossia: precipitazioni brevi di forte intensità alternate a ondate di calore. Tali hazard in generale, possono comportare da un lato allagamenti e fenomeni di dissesto idrogeologico e dall'altro depauperamento delle risorse idriche e desertificazione.

2.1.6 CARATTERIZZAZIONE DELLA VULNERABILITÀ AI CAMBIAMENTI CLIMATICI

Il cambiamento climatico è un fenomeno provocato dal riscaldamento globale che interessa la terra a lungo termine, impattando sulla temperatura, sui livelli del mare e sulle precipitazioni.

La principale causa dei cambiamenti climatici è la combustione di combustibili fossili come il petrolio, il carbone e il gas naturale, che emettono gas a effetto serra nell'atmosfera. Anche altre attività umane, come l'agricoltura e la deforestazione, contribuiscono alla loro proliferazione. Questi gas trattengono il calore nell'atmosfera: il cosiddetto effetto serra, che è responsabile dell'innalzamento della temperatura media del pianeta.

L'impatto principale dei cambiamenti climatici, infatti, consiste nell'incremento della temperatura globale del pianeta, che è aumentata di 1,1ºC rispetto all'epoca preindustriale. Quello del 2010-2020 è stato un decennio di caldo eccezionale a livello mondiale, e il 2019 il secondo anno più caldo mai registrato. Se l'attuale tendenza al riscaldamento proseguisse, le temperature potrebbero aumentare di 3-5°C entro la fine

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000.00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

di questo secolo con effetti potenzialmente disastrosi. Per fare un confronto, l'aumento della temperatura osservato negli ultimi 10.000 anni è di 5°C.

L'aumento delle temperature provoca lo scioglimento della massa di ghiaccio dei poli, che a sua volta causa un aumento dei livelli del mare, provocando inondazioni e mettendo a repentaglio gli ambienti costieri. I cambiamenti climatici contribuiscono anche a rendere i fenomeni meteorologici estremi, quali tempeste, siccità, ondate di calore e incendi boschivi, più frequenti e intensi. Tali modelli presentano forti disparità regionali e alcune parti del mondo sono più colpite di altre.

29

In linea con quanto proposto dall'UE, a livello nazionale e a quanto enunciato in occasione della COP 21 di Parigi circa la lotta ai cambiamenti climatici e alla riduzione delle emissioni di gas serra la Regione Puglia si è impegnata nell'avvio di politiche di decarbonizzazione e lotta ai Cambiamenti Climatici a partire da azioni che interessano alcuni contesti industriali fino a promuovere e supportare, in un'ottica di complementarietà, un impegno "dal basso" delle comunità locali attraverso le proprie amministrazioni.

In attuazione del parere reso dalla Commissione Europea n. 773/2018, la Puglia ha redatto un parere denominato "Un pianeta pulito per tutti. Una visione strategica a lungo termine per un'economia prospera, moderna, competitiva e neutra dal punto di vista del clima" approvato ad unanimità in Commissione Ambiente (ENVE) del Comitato delle Regioni in sessione plenaria nelle date del 26 e 27 giugno 2019 a Bruxelles (Belgio). Il parere, in sintesi, contempla quale principale obiettivo la lotta ai cambiamenti climatici, integrando ed armonizzando strategie ambientali, sociali ed economiche al fine di favorire la transizione dell'Unione Europea verso un'economia efficiente e sostenibile, in cui l'ambiente naturale dovrà essere protetto e potenziato, unitamente alla salute ed al benessere dei cittadini.

Con DGR n. 1154 del 13.07.2017, così come modificata con DGR n. 1965/2019, la Giunta regionale ha deliberato, in sintesi, la candidatura presso la Commissione Europea della Regione Puglia a Coordinatore del "Patto dei Sindaci per il clima e l'energia" e l'istituzione della Struttura di coordinamento Regionale con l'obiettivo di rilanciare l'iniziativa in parola e supportare gli Enti Locali nella pianificazione di azioni per affrontare, in modo coordinato e con una strategia comune, gli effetti potenziali dei cambiamenti climatici e le politiche di mitigazione oltre che di adattamento.

Ad Aprile 2018 la Puglia ha sottoscritto la dichiarazione di impegno dei Coordinatori territoriali al fine di sostenere la visione del Patto dei Sindaci per territori decarbonizzati e capaci di adattarsi ai cambiamenti climatici, dove garantire l'accesso a un'energia sicura, sostenibile e alla portata di tutti.

Inoltre, la Regione Puglia - Dipartimento Mobilità, Qualità Urbana, Opere Pubbliche, Ecologia e Paesaggio - è partner del progetto AdriaClim, ad oggi approvato dall'Autorità di Gestione del Programma di Cooperazione Interreg V-A Italia - Croazia 2014/2020. Detto progetto è finalizzato, nel caso specifico della Puglia, alla redazione di un piano di Adattamento ai Cambiamenti Climatici relativo all'area pilota costiera

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. Leonardo FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

che include la Città Metropolitana di Bari e le province BAT, Brindisi e Lecce e riguarda gli impatti indotti dai Cambiamenti Climatici sull'industria dell'acquacoltura, sull'erosione costiera e sui flussi turistici.

Coerentemente a quanto proposto nel citato parere, la Regione Puglia nel 2019 ha avviato i lavori per la definizione della Strategia regionale di Sviluppo Sostenibile integrata con il percorso di elaborazione del documento di vision strategica (Piano Strategico Regionale) che ha prodotto l'aggiornamento del quadro delle conoscenze nel contesto regionale sulle politiche e progetti attuati correlati agli obiettivi di sviluppo dell'Agenda 2030. A tal proposito, l'adattamento ai Cambiamenti Climatici è parte di un processo di sviluppo sostenibile e pertanto interviene in modo diretto sia sull'obiettivo strategico SDGs 13 "Lotta contro il cambiamento climatico" dell'Agenda 2030 che su altri obbiettivi come: SDGs 6 "Acqua pulita"; SDGs 7 "Energia pulita e accessibile"; SDGs 11 "Città e comunità sostenibili"; SDGs 12 "Consumo e produzione responsabili"; SDGs 14 "Vita sott'acqua"; SDGs 15 "Vita sulla terra". Pertanto, con riferimento alle attività relative alla definizione della Strategia regionale di Sviluppo Sostenibile, è stato avviato il Forum regionale di SvS con un primo incontro tenutosi il 23.01.2020 dal titolo "Agire per il Clima" che ha visto la presenza di diverse strutture regionali oltre che degli esponenti della società civile (associazioni, agenzie, enti di ricerca, studenti e docenti) (Fonte: https://pugliacon.regione.puglia.it/web/sit-puglia-dipartimento/news-cambiamenti-climatici).

2.2 SUOLO E SOTTOSUOLO

2.2.1 CARATTERI GEOLOGICI DEL TERRITORIO

Le caratteristiche geologiche generali del sito e del territorio circostante si inquadrano nel panorama della regione pugliese che costituisce una unità ben definita, con ruolo di avampaese, caratterizzato da una potente e piuttosto monotona successione calcareo-mesozoica che si estende verso occidente.

Ad oggi la Carta Geologica d'Italia alla scala 1:100.000 rimane l'unica carta geologica ufficiale del territorio nazionale, in attesa del completamento della nuova Carta Geologica alla scala 1:50.000 (progetto CARG), che come si vede dalla figura seguente manca del completamento di diversi fogli tra cui i fogli Francavilla Fontana (494) e Mesagne (495).

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733 Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

SR EN ISO 9001:2015 Certificate No. O204

SR EN ISO 14001:2015 Certificate No. E145

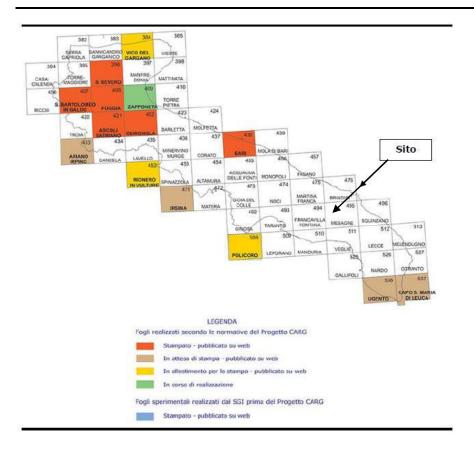


Figura 18 | Stato Completamento Carta Geologica di Italia 1: 50000 (Progetto CARG)

Sulla base delle informazioni contenute nella Carta Geologica d'Italia scala 1:100.000, l'area vasta di Progetto si trova in un contesto caratterizzato dalle seguenti formazioni che, dal basso verso l'alto, sono:

Nel territorio di interesse affiorano due formazioni note in letteratura come Calcare di Altamura e terreni appartenenti alla Formazione di Gallipoli termine col quale in letteratura si intende una sequenza di Calcareniti, Sabbie argillose e sabbie mediamente cementate di eta' Calabriana.

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

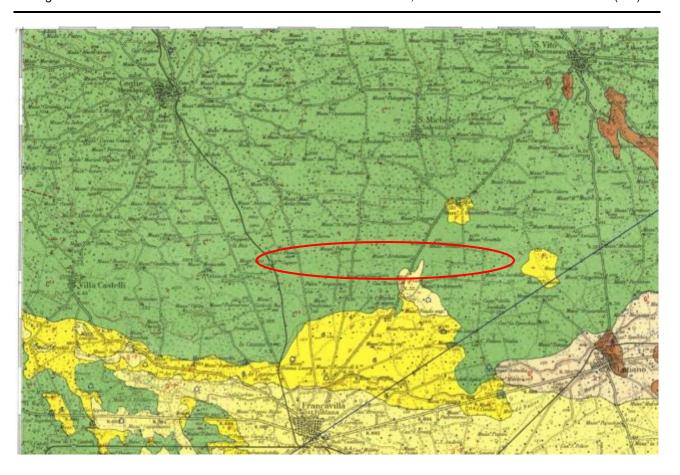


Figura 19 | Inquadramento area di intervento su Carta Geologica

Tale assetto è confermato dalla carta litologica sviluppata dall'Autorità di Bacino dell'Appennino Meridionale e disponibile sul portale cartografico regionale (http://www.sit.puglia.it).

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

EN ISO 9001:2015 SR EN ISO 1400 tificate No. 0204 Certificate No.

SR EN ISO 45001:2018 Certificate No. OHS97

Figura 20 | Carta Tettonica d'Italia

IDENTIFICAZIONE DEGLI HAZARD PER IL FATTORE SUOLO

L'area nell'intorno del progetto e in generale i comuni interessati, sono prevalentemente a vocazione agricola e caratterizzata da Seminativi ed Uliveti.

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

In generale, il suolo come le altre componenti ambientali è sensibile ai vari fattori di natura antropica e naturale, infatti Suolo e territorio non sono solo fonte di materie prime e patrimonio culturale ma anche parte essenziale del paesaggio, base della vita e spazio vitale per esseri umani, animali, piante e microrganismi; essi contribuiscono in maniera sostanziale, inoltre, a ridurre le emissioni di gas serra in atmosfera, favorendo l'accumulo di carbonio nel terreno.

Perdita di suolo per erosione e diminuzione di carbonio organico dei suoli sono strettamente collegati e rappresentano due dei principali fattori che conducono all'innesco di processi di desertificazione.

In Italia, si valuta che circa il 10% del territorio sia molto vulnerabile e circa il 49,2% abbia una media vulnerabilità ai diversi fattori di degrado a causa di erosione e disaggregazione, salinizzazione, contaminazione (locale e diffusa), diminuzione di sostanza organica, perdita di biodiversità, consumo di suolo, fatti aggravati negli ultimi anni dall'aumento quantitativo e qualitativo di fenomeni siccitosi. Le aree più vulnerabili sono in Sicilia, Sardegna, Puglia, Basilicata e Molise e segnali di aumento del degrado sono

Pertanto, è ampiamente riconosciuto che la lotta alla desertificazione è urgente non solo nelle regioni caratterizzate da deserti estesi ma anche nel Mediterraneo.

diffusi in Toscana, Umbria, Marche, Abruzzo, Campania e Calabria.

La complessità del problema, dovuta al suo carattere intersettoriale, implica un'appropriata pianificazione, concrete azioni ed un approccio amministrativo (gestionale) integrato. La lotta alla desertificazione sarà un processo a lungo termine, ma la necessità è quella di un'azione rapida ed urgente.

2.2.3 IDENTIFICAZIONE DEGLI IMPATTI DOVUTI ALL' HAZARD DESERTIFICAZIONE

La desertificazione è la conseguenza di una serie d'importanti processi di degradazione del suolo, specialmente nelle zone dove l'acqua è il fattore limitante principale per il rendimento dell'uso del suolo stesso.

Questo problema economico, sociale ed ambientale è strettamente collegato al suolo, alla copertura vegetale ed all'utilizzo delle riserve d'acqua e la sua espansione è una vera e propria minaccia non solo per la biodiversità, che include gli habitat naturali, ma anche per la sostenibilità della produzione di beni primari per la vita dell'uomo.

Gli impatti dovuti alla desertificazione considerabili sono vari, in quanto il fenomeno avanza, in un certo territorio, quando il suolo non è capace di rifornire le piante con uno spazio di attecchimento e/o acqua e nutrienti. Tale fenomeno è favorito inoltre da diversi fattori:

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000.00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

- irregolare distribuzione delle precipitazioni durante l'anno, occorrenza di eventi estremi e la natura fuori fase delle stagioni vegetative e della pioggia nelle zone semi-aride ed aride del Mediterraneo:

- ampio deficit di acqua e cioè dove l'evapotraspirazione potenziale (ETp) è molto maggiore della Precipitazione (P);

rischio d'incendi ed abilità alla ricopertura vegetale;

- percentuale di copertura vegetale;

- intensità d'uso del suolo per scopi antropici;

Pertanto, è necessario attuare politiche di protezione del territorio corrette per non incrementare il fenomeno.

2.3 AMBIENTE IDRICO SUPERFICIALE E SOTTERRANEO

2.3.1 CARATTERI IDROLOGICI DEL TERRITORIO

I bacini di maggiore importanza a livello regionale risultano essere l'interregionale dei fiumi Fortore, Ofanto e Bradano. La pluviometria media annua sui tre bacini in argomento è dell'ordine dei 620 mm, anche se nell'ultimo quindicennio è risultata inferiore; la piovosità decresce al diminuire della quota e, in generale, spostandosi verso est, partendo da valori anche superiori agli 800 mm sul Subappennino, fino a valori dell'ordine di 450 mm verso la costa adriatica. I rimanenti bacini, con rare eccezioni, interessano prevalentemente terreni di natura calcarea in cui il reticolo idrografico è di tipo fossile e solo in occasione di eventi meteorici particolarmente intensi si instaura un deflusso superficiale.

La rete idrografica, nei tratti del Subappennino, presenta caratteristiche sostanziale omogeneità e naturalità, mentre nelle zone della piana del Tavoliere si evidenzia una talora sensibile modificazione antropica. Nell'area più prossima alla costa, interessata da opere di bonifica, la rete idrografica assume talora carattere di marcata artificialità con molteplici situazioni di scolo meccanico delle acque meteoriche

Le caratteristiche geologiche, strutturali e morfologiche della regione Puglia hanno consentito la formazione di cospicui corpi idrici sotterranei, contenuti fondamentalmente nelle successioni carbonatiche mesozoiche e, solo in subordine, mioceniche e quaternarie. Le successioni mesozoiche costituiscono l'ossatura del sistema idrogeologico pugliese e ne contengono le maggiori riserve idriche.

Le acque meteoriche riescono ad infiltrarsi agevolmente nel sottosuolo, con modalità legate alle locali condizioni morfologiche, geologico-strutturali e di permeabilità dei terreni e delle rocce affioranti. Le piogge costituiscono l'unica fonte di alimentazione delle falde regionali, appartenenti sia ai corpi acquiferi estesi e profondi del mesozoico, sia ad acquiferi minori, presenti in formazioni di età miocenica o quaternaria del Tavoliere, della Piana di Brindisi, delle piane costiere dell'Arco Ionico Tarantino e del Salento

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

I caratteri idrogeologici dipendono dalle caratteristiche di permeabilità dei terreni presenti in profondità. Nell'area in esame si rinvengono litotipi caratterizzati da una permeabilità per fratturazione e carsismo (i calcari). In virtù della situazione di cui sopra non si rinvengono falde superficiali o sospese ma solo una cospicua falda profonda che circola nei calcari.

2.3.2 IDENTIFICAZIONE DEGLI HAZARD E DEGLI IMPATTI PER IL FATTORE ACQUE

Le acque sotterranee costituiscono circa l'85% delle risorse destinate al consumo umano in Italia, e la protezione di queste riserve strategiche al fine di prevenire il loro degrado quantitativo e qualitativo è uno degli obiettivi prioritari delle politiche di settore.

Le maggiori cause di inquinamento delle falde acquifere sono:

- I pesticidi ed i fertilizzanti usati in agricoltura.
- le discariche di rifiuti non correttamente coibentate.
- gli scarichi industriali.
- gli scarichi delle centrali termoelettriche.
- gli scarichi civili, le fogne, i pozzi neri, lo sversamento di idrocarburi da parte della navi, ecc..

Le sostanze presenti sul suolo sono di diversa natura e non tutte arrivano alla falda acquifera. In un certo senso, il suolo soprastante svolge un'azione di filtro e depurazione. Alcune sostanze, però arrivano nelle falde acquifere sottostanti ed inquinano le acque.

L'intensità del fenomeno cambia a seconda dei seguenti fattori:

- la natura della sostanza chimica inquinante;
- la composizione chimica e morfologica del terreno;
- la profondità della falda acquifera;
- la quantità di acqua che cade sul terreno;
- la temperatura,

Pertanto, la vulnerabilità di un corpo idrico sotterraneo è funzione di diversi parametri, tra i quali prevalgono la litologia, la struttura e la geometria del sistema idrogeologico, la natura del suolo e la geometria della copertura, il processo di ricarica-discarica del sistema ed i processi di interazione fisica e idrogeochimica che determinano la qualità naturale dell'acqua sotterranea e la mitigazione di eventuali inquinanti che penetrano il sistema.

2.3.3 IDENTIFICAZIONE DEGLI IMPATTI DOVUTI AGLI HAZARD IDRICI

La crescente consapevolezza dell'inquinamento ambientale prodotto dallo svolgimento di talune attività antropiche ha fatto maturare la necessità di intraprendere adeguate misure di protezione delle risorse idriche

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

R EN ISO 9001:2015 SR EN ISO ertificate No. O204 Certificate

SR EN ISO 45001 Certificate No. O

36

sotterranee. Attività come la coltivazione delle cave, l'esercizio delle discariche, la depurazione delle acque reflue, lo spandimento di pesticidi e fertilizzanti provocano, infatti, il rilascio sul suolo di quantità variabili di inquinanti chimici e batteriologici, che l'azione dilavante delle acque meteoriche veicola poi in falda.

Secondo la definizione di Civita (1987) la vulnerabilità intrinseca di un acquifero all'inquinamento può essere espressa come "la suscettività specifica del sistema acquifero, nelle sue diverse parti componenti e nelle diverse situazioni geometriche e idrodinamiche, a ingerire e diffondere, anche mitigandone gli effetti, un inquinante fluido o idroveicolato tale da produrre impatto sulla qualità dell'acqua sotterranea, nello spazio e nel tempo" (CIVITA, 2005).

37

La vulnerabilità intrinseca si configura dunque come una caratteristica propria del sistema acquifero, la cui valutazione implicherebbe una corretta ripartizione in verticale del sistema nelle sue componenti, che la letteratura variamente definisce.

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

3 IDENTIFICAZIONE ELEMENTI VULNERABILI RICAVATI DALLA CARATTERIZZAZIONE DI TUTTI I FATTORI AMBIENTALI

In considerazione della caratterizzazione ambientale dell'area di studio, si identificano nel seguito gli elementi vulnerabili correlati all'opera in progetto e associati agli impatti in corso e potenziali, in relazione ai cambiamenti climatici. L'impianto in progetto consiste nella realizzazione di un impianto eolico comprensivo di opere accessorie, quali viabilità, cavidotto di connessione, sottostazione utente e aree di cantiere. La realizzazione del cavidotto ha una incidenza molto bassa, quasi trascurabile, a fronte degli impatti dovuti agli hazard climatici, idrici e del suolo, come anche la sottostazione, le aree di cantiere e l'utilizzo della viabilità esistente o la modifica della stessa. Gli elementi del progetto che possono divenire elementi vulnerabili rispetto agli impatti sono le pale eoliche. In considerazione della vita utile dell'impianto, di circa 30 anni, la vulnerabilità è potenzialmente legata al rischio idrogeomorfologico e agli eventi piovosi con relativo rischio di allagamenti/esondazione.

In base all'analisi svolta risulta che l'area non ricade in aree vincolate dal punto di vista idrogeomorfologico. L'unica parte progettuale ad essere interessata dalle perimetrazioni Alta, Media e Bassa Pericolosità Idraulica del PAI è il cavidotto MT interrato, ma l'attraversamento ed il posizionamento non comporteranno alcuna modifica dell'assetto idraulico delle aree. Si ritiene che l'incidenza delle opere a farsi sia trascurabile rispetto agli impatti dovuti agli hazard.

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000.00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

ANALISI DELLE EMISSIONI

EMISSIONI IN ATMOSFERA E IMPIANTI EOLICI

È noto che la produzione di energia elettrica mediante combustibili fossili implica l'emissione di sostanze inquinanti e di gas serra. Tra i cosiddetti "gas serra" il più rilevante è la CO2 (anidride carbonica), il cui progressivo incremento nell'atmosfera contribuisce potenzialmente ai fenomeni legati al riscaldamento

globale.

Tra le altre tipologie di inquinanti, vanno identificate le emissioni di SO2 (anidride solforosa) e di NOx (ossidi di azoto) poiché ritenute estremamente dannose, sia per la salute dell'uomo, sia per il patrimonio storico e

naturale.

I livelli soglia delle emissioni dipendono, naturalmente, dalla tipologia di combustibile, dalla tecnologia di combustione e dal controllo dei fumi della combustione. Si assumono come valori specifici delle principali

emissioni associate alla generazione elettrica i limiti sottoindicati:

CO2 0,4648 kg/kWh

SOx 1,4 g/kWh

NOx 1,9 g/kWh

Gli impianti eolici durante il loro esercizio non producono emissioni in atmosfera. Non sono infatti impianti

che generano energia elettrica sfruttando il principio della combustione.

Proprio il principio di funzionamento che prevede lo sfruttamento della sola "risorsa eolica", rende l'impianto a impatto zero, in ambito emissivo, soprattutto per quanto riguarda le emissioni di CO2, responsabili

dell'effetto serra.

L'energia eolica è una fonte di energia rinnovabile perché è inesauribile e presente ovungue, i benefici

ambientali derivanti dall'operazione dell'impianto quindi, quantificabili in termini di mancate emissioni di inquinanti e di risparmio di combustibile, sono facilmente calcolabili moltiplicando la produzione di energia

dall'impianto per i fattori di emissione specifici ed i fattori di consumo specifici riscontrati nell'attività di

produzione di energia elettrica in Italia. I benefici ambientali attesi dell'impianto in progetto, valutati sulla

base della stima di produzione annua di energia elettrica, pari a circa 186.383,3 MWh/y sono riportati di

seguito:

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000.00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Mancate emissioni di inquinanti						
Produzione (MWh/anno) Inquinante Fattore di emissione specifico (g/kWh) Mancate emissioni (t/anno)						
	CO ₂	464,80	86.630,81			
186.383,3	SO ₂	1,40	260,9			
	NOx	1,90	354,12			

Tabella 2 | Stima delle emissioni di CO2, SOx ed NOx evitate

4.2 EMISSIONI IN FASE DI CANTIERE

Le emissioni in atmosfera associate all'attività di cantiere possono essere ricondotte essenzialmente a due tipologie emissive, ovvero da processi di lavoro e dagli scarichi delle macchine operatrici.

Le prime sono legate principalmente alla formazione ed al risollevamento di polveri a seguito delle movimentazioni meccaniche, mentre le seconde sono determinate da processi di combustione e di abrasione nei motori (diesel, benzina, gas).

Le principali sostanze emesse in questo caso sono: PTS, PM10, NOx, COV, CO e CO2.

In Tabella 3 è riportata, in riferimento alle attività sopra descritte, l'incidenza di tali inquinanti atmosferici per alcune lavorazioni tipiche associate alla costruzione di infrastrutture viarie (Fonte: Direttiva "Protezione dell'aria sui cantieri edili" dell'Ufficio Federale dell'ambiente, delle foreste e del paesaggio di Berna in vigore dal 1/09/02).

Tipologia di lavorazione		sioni on otori	Emissioni da motori
	Polveri	COV, gas	NO ₂
Installazioni generali di cantiere: segnatamente infrastrutture viarie	Α	В	M
Demolizioni, smantellamento e rimozioni	Α	В	М
Scavo generale	Α	В	Α
Opere idrauliche, sistemazione di corsi d'acqua	Α	В	Α
Strati di fondazione ed estrazione di materiale	Α	В	Α
Pavimentazioni	М	Α	Α
Calcestruzzo gettato in opera	В	В	М
Lavori sotterranei: scavi	Α	M	Α
Lavori di finitura per tracciati, segnatamente demarcazioni di superfici del traffico	В	А	В
Opere in calcestruzzo semplice e calcestruzzo armato (cfr. calcestruzzo gettato in opera in costruzioni a (o sotto il) livello del suolo)	В	В	М
Ripristino e protezione di strutture in calcestruzzo, carotaggio e lavori di fresatura	А	В	В

Legenda: A: alta, M: media, B: bassa

Tabella 3 | Tipologia di inquinamento atmosferico associato ad alcune lavorazioni

In generale, le fasi di lavorazione potenzialmente produttrici di polveri, ovvero dell'inquinante ritenuto potenzialmente più critico in riferimento all'attività di cantiere, possono essere riconducibili a: lavorazioni vere

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

ISO 9001:2015 SR EN ISO 1400 cate No. 0204 Certificate No.

s

R EN ISO 45001:2018 ertificate No. OH597

e proprie (attività di scavo, di costruzione, demolizione, pavimentazione ecc.), stoccaggio di inerti, impianti di betonaggio, produzione cls e frantumazione inerti.

Una ulteriore fonte non trascurabile è legata al transito dei veicoli pesanti lungo la viabilità di cantiere non asfaltate; in tale caso la tipologia di polveri ed il loro quantitativo immesso in atmosfera è strettamente legato alla tipologia del manto stradale in quanto, in presenza di strade asfaltate le polveri sono di origine exhaust (scarico) e non exhaust (perdite di carico, usura dei pneumatici, dei freni e del manto stradale), mentre per le strade "bianche" la fonte predominante, oltre alle precedenti, è legata al risollevamento dovuto al passaggio dei mezzi ed al fenomeno di rotolamento dei pneumatici sulla superficie, nonché dal contenuto in limo della stessa.

Pertanto, per la stima dell'emissione in fase di cantiere sono state fatte valutazioni relativamente a:

· Cantiere fisso:

· Cantiere operativo;

Per quanto concerne i cantieri fissi vengono analizzate le principali emissioni associate alle attività presenti, individuando gli accorgimenti operativi e gestionali applicabili al fine di contenere al minimo tecnicamente possibile l'impatto sulla popolazione potenzialmente esposta a tali lavorazioni temporanee.

Per quanto riguarda il cantiere operativo, ovvero le emissioni generate dai mezzi operanti per la realizzazione dell'intervento, vengono riportate alcune considerazioni in merito al quantitativo di emissioni di polveri ed alle procedure operative gestionali per minimizzarle.

Infine, per il traffico indotto dai mezzi pesanti per il trasporto dei materiali, sono state fatte delle simulazioni con il modello gaussiano di dispersione da sorgente lineare CALINE 4 dell'EPA.

Come indicatori dello stato di qualità dell'aria ambiente sono stati considerati il Biossido di Azoto (NO2), le Polveri Inalabili (PM10) ed il Monossido di Carbonio (CO).

CANTIERE FISSO 4.2.1

Nel cantiere logistico ubicato all'interno dell'area di lavoro non sono previste lavorazioni particolari quali impianti di betonaggio, frantumazione inerti, baracche adibite ad uso mensa e dormitorio maestranze, bensì unicamente attività logistiche di controllo e coordinamento.

Pertanto, sulla base di quanto sopra esposto, le emissioni in atmosfera legate al cantiere fisso si ritengono trascurabili

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000.00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

4.2.2 CANTIERE OPERATIVO

Per quanto concerne tale fase, ovvero le fasi operative connesse con la realizzazione dell'intervento di

progetto, si segnala quanto segue.

Le principali attività a cui possono essere associate emissioni in atmosfera sono riconducibili essenzialmente

a: aree di accumulo e deposito materiale, scavi, sbancamenti e movimentazioni dei mezzi operativi

(escavatori, apripista, autogrù, ...); non sono previste demolizioni in quanto non vi sono manufatti presenti

all'interno dell'intera area oggetto di intervento.

Si ritiene che l'inquinante più significativo legato a tali tipologie di operazioni sia rappresentato dalla

dispersione in atmosfera di polveri, ed in particolare della frazione respirabile denominata PM10.

Tuttavia, in relazione alle attività svolte, alla loro durata ed al carattere di temporaneità della fase di cantiere,

si ritiene che le emissioni di polveri in atmosfera siano tali da non portare ad incrementi significativi delle

concentrazioni, e comunque in ogni modo tali da non incidere in modo apprezzabile sulla qualità dell'aria

ambiente esistente nell'area di intervento.

Pertanto, non vengono effettuate specifiche simulazioni in merito, bensì si riportano solo alcune

considerazioni in riferimento ad eventuali accorgimenti procedurali/operativi che possono essere attuati, in

particolar modo in condizioni meteoclimatiche sfavorevoli, al fine di ridurre al minimo le emissioni di polveri.

Di seguito si riportano alcune considerazioni in merito alle principali sorgenti di emissione di polveri; non si

considerano quelle legate allo scarico dei mezzi operativi in quanto ritenute quelle meno significative.

Dispersione legata alla movimentazione ed allo stoccaggio di inerti: per una stima delle emissioni in

riferimento alla dispersione delle polveri legate allo stoccaggio degli inerti su cumuli scoperti e soggetti a

movimentazioni di carico e scarico, si è fatto riferimento al capitolo 13 del Volume I dell'AP-42

"Miscellaneous Sources"; in particolare la sezione 13.2.4 "Aggregate Handling and Storage Piles" e la

sezione 13.2.5 "Industrial Wind Erosion".

La dispersione delle polveri da cumuli è legata sia operazioni di movimentazione del materiale sia all'azione

erosiva del vento in corrispondenza di eventi sufficientemente intensi e clima secco (in particolare velocità

del vento > 5.0 m/sec).

La quantità di polveri aerodisperse per kg di materiale movimentato è funzione dei seguenti parametri:

velocità del vento e contenuto percentuale di umidità del materiale; in relazione al taglio dimensionale delle

particelle sono infine assunti i seguenti coefficienti moltiplicativi k

PROJETTO engineering s.r.l. società d'ingegneria **ANALISI FATTORI AMBIENTALI BENEFICI - COSTI**

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000.00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

	Aerodynamic Particle Size Multiplier (k)					
< 30 μm	< 30 μm < 15 μm < 10 μm (PM10) < 5 μm < 2,5 μm					
74%	48%	35%	20%	11%		

In dettaglio, per il calcolo dei fattori di emissione si considera la formula di seguito riportata (Update Of Fugitive Dust Emission Factors in AP-42 Section 11.2, EPA Contract No. 68-02- 3891, Midwest Research Institute, Kansas City, MO, July 1987), valida per le PTS.

$$E = k(0.0016) \qquad \frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}} \quad \text{(kg/megagram [Mg])} \qquad \qquad \begin{aligned} k &= \text{ particle size multiplier (dimensionless)} \\ U &= \text{ mean wind speed, meters per second (m/s) (miles per hour [mph])} \\ M &= \text{ material moisture content (%)} \end{aligned}$$

Grado di	Velocità del vento [m/s]					
umidità [%]	1	2	3	4	5	6
0,5	0,0014	0,0034	0,0058	0,0085	0,0113	0,0144
1	0,0005	0,0013	0,0022	0,0032	0,0043	0,0054
2	0,0002	0,0005	0,0008	0,0012	0,0016	0,0021
3	0,0001	0,0003	0,0005	0,0007	0,0009	0,0012

Tabella 4 | Fattori di emissione relativi alla movimentazione degli inerti nelle aree di stoccaggio [kg PM10/ tonnellata di materiale movimentato]

Pertanto, si evidenzia come la predisposizione di opportune procedure per la periodica umidificazione dei cumuli rappresenti un efficace strumento di contenimento delle polveri disperdibili.

Per quanto riguarda le emissioni legate all'azione erosiva del vento, ed in particolar modo a raffiche con velocità maggiore di 5,0 m/sec ad un'altezza di 15 cm sopra la superficie e maggiore di 10 m/sec a 7 m sopra la superficie, si segnala come tale contributo sia trascurabile, sia in riferimento alla bassa percentuale di accadimento di tali fenomeni, sia al contributo della frazione del PM10 (pari al 50% in peso). In altre parole, le velocità medie atmosferiche del vento non sono sufficienti a sostenere l'erosione da parte del vento di superfici piane del tipo in esame.

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

SR EN ISO 9001:2015

EN ISO 9001:2015 SR EN ISO 1400 tificate No. 0204 Certificate No.

SR EN ISO 45001:20 Certificate No. OHS

4.2.3 EMISSIONE DI POLVERE LEGATO AL TRANSITO DEI MEZZI SU VIABILITÀ NON **ASFALTATA**

Il transito di un veicolo su una strada non pavimentata provoca una polverizzazione del materiale superficiale, che viene alzato e fatto ricadere dal movimento delle ruote, generando moti turbolenti dell'aria in corrispondenza della superficie, che continua anche dopo il transito del mezzo.

Il quantitativo di emissioni di polveri e di traffico, il contenuto di limo presente sulla superficie, il peso dei mezzi, nonché dalle condizioni meteorologiche al contorno rappresentative dell'area di indagine. Per la stima della polverosità in fase di cantiere, occorre considerare che la viabilità principale interessata dal transito mezzi pesanti durante la fase di cantiere è estremamente limitata per quanto riguarda le strade non asfaltate.

L'area interessata dal presente progetto costeggia le strade provinciali SP N.73, SP N.72, SP N. 70, SP N.71.

Le aree d'impianto sono posizionate lungo strade esistenti asfaltate e saranno utilizzate per accedere all'impianto, sia durante la fase di esecuzione delle opere che nella successiva manutenzione dell'impianto eolico.

In sintesi, utilizzando la formula seguente per strade non asfaltate ubicate in aree non industriali (WRAP Fugitive Dust Handbook):

$$E = \frac{1.8 * \left(\frac{S}{12}\right)^{1.8} * \left(\frac{S}{30}\right)^{0.5}}{\left(\frac{M}{0.5}\right)^{0.2}} - C$$

dove:

- E = fattore di emissione (lb/VMT); 1 lb/VMT = 281.9 g/VKT
- s = percentuale di limo contenuto sulla superficie stradale, per il quale è previsto un range di valori nell'intervallo 1,8 ÷ 25,2: in tale caso è stato ritenuto significativo un valore pari al 14%;
- M = percentuale di umidità, percentuale contenuta sulla superficie stradale, per il quale è previsto un range di valori nell'intervallo 0.03 ÷ 13: in tale caso è stato ritenuto significativo un valore pari al 5%;
- S = velocità in miglia (nel caso in questione 5 km/h = 8.05 Mph)

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000.00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

 C = fattore di emissione per l'usura dei freni e l'usura dei pneumatici = 0.00047 lb/VMT per il PM10 (Countess Environmental 4001 Whitesail Circle – Westlake Village, CA 91361 (WGA Contract No. 30204-111) September 7, 2006)

Particle size	C, Emission factor for exhaust, brake wear, and tire wear (lb/VMT)
PM2.5	0.00036
PM10	0.00047

Tabella 5 | Emission Factors for 1980's Vehicle Exhaust, Brake wear and Tire Wear

Avremo il fattore di emissione pari a 0.773 lb/VMT per il PM10 = 217.9 g/VKT.

Il dato è ulteriormente ridotto in considerazione della limitazione sulla velocità dei veicoli circolanti sull'area interessata, come riportato nella tabella sottostante.

		•
Control measure	PM10 control efficiency	References/Comments
Limit maximum speed on unpaved roads to 25 miles per hour	44%	Assumes linear relationship between PM10 emissions and vehicle speed and an uncontrolled speed of 45 mph.
Pave unpaved roads and unpaved parking areas	99%	Based on comparison of paved road and unpaved road PM10 emission factors.
Implement watering twice a day for industrial unpaved road	55%	MRI, April 2001
Apply dust suppressant annually to unpaved parking areas	84%	CARB April 2002

Tabella 6 | Control Efficiences for Control Measures for Unpaved Roads

Pertanto, il fattore di emissione finale è pari a 217.9 g/VKT *0.44 = 95.8 g/VKT.

Ai fini di una stima sull'emissione, considerando un tratto di strada non asfaltata interessata pari a circa 4154 m, un numero di veicoli circolanti sul tratto interessato per ora pari a 1.5, ne deriva un valore di emissione pari a circa 5400.3kg.

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

ISO 9001:2015 SR EN ISO 1400 cate No. 0204 Certificate No.

SR EN ISO 450 Certificate No.

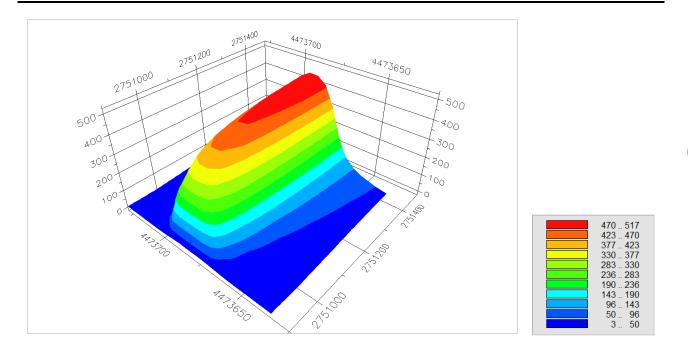


Figure 21 | Andamento del valore di emissione lungo il tratto di strada non asfaltata preso in esame.

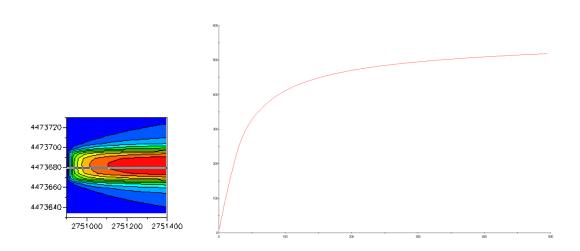


Figure 22 | Profilo longitudinale (Ovest-Est) dell'andamento del valore di emissione.

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

:2015 SR EN ISO 14001: 0204 Certificate No. E1

SR EN ISO 45001 Certificate No. O

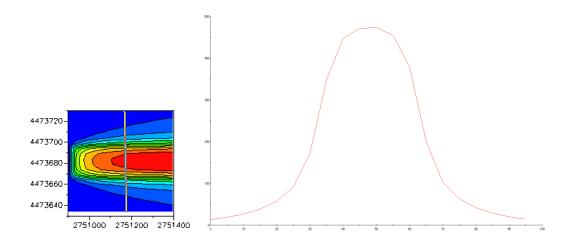


Figure 23 | Profilo trasversale (Nord-Sud) dell'andamento del valore di emissione.

Il valore è da intendersi puramente teorico, ricavato con alcune approssimazioni e conservativo in quanto non sono stati inseriti i periodi di pioggia e rappresenta in pratica la polvere potenzialmente sollevata dai mezzi pesanti circolanti all'interno dell'area di cantiere.

Si sottolinea inoltre che durante l'intera fase di cantierizzazione si provvederà a bagnare, periodicamente, le aree non asfaltate, al fine di garantire la minore volatilità possibile. Pertanto, si ritiene che il valore stimato sia da intendersi come una valutazione teorica dell'applicazione di una linea guida WRAP sulle valutazioni delle emissioni di polveri.

4.3 EMISSIONI IN FASE DI ESERCIZIO

Gli impianti eolici hanno una vita utile di almeno 30 anni, determinata dalla funzionalità delle pale. Tali strutture necessitano di manutenzione poiché il loro funzionamento dipende da organi in movimento.

In generale, si richiede un controllo delle strutture attinenti all'area di impianto con cadenza semestrale al fine di ottemperare alle attività di O&M ordinarie. Per l'intero impianto, dunque, si stimano circa 2 visite annuali.

Le visite semestrali riguarderanno il passaggio di mezzi ordinari su strade di tipo asfaltate, comportando un sollevamento polveri esiguo rispetto al parametro individuato in fase di cantiere.

Pertanto, l'incremento non è significativo rispetto all'analisi effettuata e comunque si garantirà l'ottimizzazione dei percorsi per il raggiungimento delle turbine al fine di ridurre il traffico veicolare.

4.4 EMISSIONI IN FASE DI DISMISSIONE

La fase di dismissione dell'impianto in progetto risulta del tutto similare a quella di cantiere.

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

SR EN ISO 9001:2015 Certificate No. Q204

R EN ISO 9001:2015 SR EN ISO 14 ertificate No. O204 Certificate No.

L'impianto eolico è da considerarsi l'impianto di produzione di energia elettrica che più di ogni altro adotta materiali riciclabili e che durante il suo periodo di funzionamento minimizza l'inquinamento del sito di installazione, sia in termini di inquinamento atmosferico (nullo non generando fumi), di falda (nullo non generando scarichi).

Negli ultimi anni sono nate procedure analitiche per la valutazione del ciclo di vita (LCA) degli impianti eolici. Tali procedure sono riportate nelle ISO 14040-41-42-43.

Per quanto riguarda lo smaltimento delle pale eoliche montate, l'obiettivo è quello di riciclare pressoché

totalmente i materiali impiegati.

Tutte le operazioni di dismissione sono studiate in modo tale da non arrecare danni o disturbi all'ambiente.

Infatti, in fase di dismissione definitiva dell'impianto, si provvederà a smaltire adeguatamente la totalità dei componenti nel rispetto della normativa vigente, senza dispersione nell'ambiente dei materiali e delle

sostanze che li compongono.

4.5 CALCOLO EMISSIONI MATERIALI

Il Sistema europeo di scambio di quote di emissione di gas a effetto serra (**European Union Emissions Trading System - EU ETS**) è il principale strumento adottato dall'Unione europea per raggiungere gli obiettivi di riduzione della CO2 nei principali settori industriali e nel comparto dell'aviazione. Il sistema è stato introdotto e disciplinato nella legislazione europea dalla Direttiva 2003/87/CE (Direttiva ETS).

La carbon footprint, o impronta di carbonio, rappresenta in CO2 equivalenti la quantità di emissioni di gas a effetto serra associate direttamente o indirettamente a un prodotto, un'organizzazione o un servizio. Ciò in virtù del noto legame con il fenomeno del surriscaldamento globale del pianeta (Global Warming Potential) e dei suoi effetti sul cambiamento climatico del pianeta cui stiamo assistendo negli ultimi decenni.

La misurazione della carbon footprint richiede in particolare di individuare e quantificare i consumi di materie prime e di energia nelle fasi selezionate del ciclo di vita dello stesso.

La nuova norma UNI ISO/TS 14067 descrive i principi, i requisiti e le modalità per la quantificazione della carbon footprint dei prodotti (CFP), basandosi su normative già collaudate a livello internazionale in materia di gestione ambientale e di etichette e dichiarazioni ambientali (UNI EN ISO 14040- 14044- 14020- 14024 – 14025).

Di seguito si riporta una tabella di stima delle emissioni di CO₂ per ciascun materiale dell'impianto in esame per il suo ciclo di vita.

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

FICL COSTI

CALCOLO EMISSIONI C02						
	Valore di emissione unitaria Quantità (m³-kg) ECO₂ tot. (t)					
Calcestruzzo	900 kg/t	18221,33	16339,2			
Acciaio	6.8 kg/kg	134730	916164			
Alluminio	Alluminio 35.7 kg per kg 506400 18078480					
	EMISSIONI TOTALI DI CO ₂ 19010983,2					

Tabella 7 | Prospetto delle emissioni di Co2 per ciascun materiale dell'impianto in esame

Tutte le componenti che si intende utilizzare per la realizzazione del progetto saranno prodotte nel rispetto della norma UNI EN ISO 14040, la quale descrive i principi ed il quadro di riferimento per la valutazione del ciclo di vita (LCA), comprendendo:

- a) la definizione dell'obiettivo e del campo di applicazione dell'LCA;
- b) la fase di inventario del ciclo di vita (LCI);

4.6 MIX ENERGETICO ED EMISSIONI DI GAS SERRA

L'impiego di energia eolica comporta una diminuzione delle emissioni inquinanti legate al minor impiego di energia elettrica da fonte fossile. I potenziali impatti di un impianto eolico sono dovuti principalmente alla costruzione dell'impianto e alla realizzazione delle infrastrutture necessarie.

Il mix energetico è l'insieme di fonti energetiche primarie utilizzate per la produzione di energia elettrica fornita dall'impresa di vendita ai clienti finali. Come disciplinato dal *Decreto del Ministero dello Sviluppo Economico del 31 luglio 2009* le imprese di vendita di energia elettrica sono tenute a fornire informazioni ai clienti finali:

- sulla composizione del mix di fonti energetiche primarie utilizzate per la produzione dell'energia elettrica fornita;
- sull'impatto ambientale della produzione di energia elettrica, utili al fine di risparmiare energia.

Le informazioni sulla composizione del mix energetico utilizzato per la fornitura di energia elettrica al cliente finale devono essere rese disponibili dalle imprese di vendita ai clienti finali nelle bollette, nel materiale informativo, sui propri siti internet e in fase precontrattuale.

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

49

Il GSE determina e pubblica annualmente il mix energetico medio nazionale, in Figura 24 si indicano i mix energetici medi per il 2019 (a consuntivo) e il mix energetico medio per l'anno 2020 (preconsuntivo)

Composizione del mix iniziale nazionale utilizzato per la produzione dell'energia elettrica immessa nel sistema elettrico italiano nel 2019*				
Fonti primarie utilizzate %				
- Fonti rinnovabili	41,74%			
- Carbone	7,91%			
- Gas naturale	43,20%			
- Prodotti pretoliferi	0,50%			
- Nucleare 3,55%				
- Altre fonti 3,10%				
*dato consuntivo				

produzione dell'energia elettrica immessa nel sistema elettrico italiano nel 2020**				
Fonti primarie utilizzate %				
- Fonti rinnovabili	45,04%			
- Carbone	6,34%			
- Gas naturale	42,28%			
- Prodotti pretoliferi	0,48%			
- Nucleare	3,22%			
- Altre fonti	2,64%			

Figure 24 | Composizione del mix medio nazionale del 2019 e 2020 (Fonte: GSE).

Come si nota in Figura 24 si è verificato un progressivo aumento della quota parte di energie rinnovabili nel mix medio nazionale, a fronte di una progressiva riduzione del'utilizzo di gas naturale e prodotti petroliferi.

In particolare tra il 2012 il 2021 l'apporto della fonte eolica alla produzione di energia elettrica da fonti rinnovabili è cresciuto di quasi 2.87 GWh, di cui circa 0.12 GWh nel 2021.

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: Ing. LEONARDO FILOTICO
Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

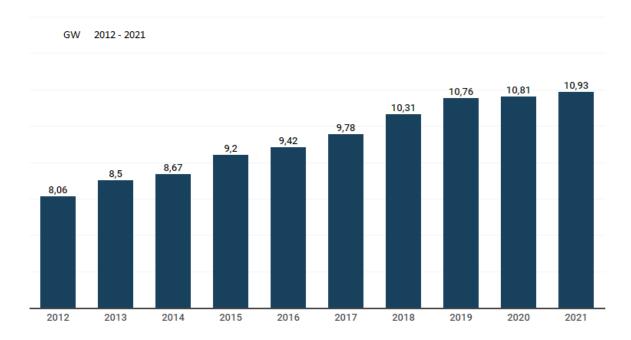
Partita Iva : 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI



i SI

SR EN ISO 45001:2018 Certificate No. OH597

Gigawatts installati di impianti eolici, fonte: Wind Europe

Figure 25 | Crescita della produzione di energia elettrica da fonte eolica (Fonte: Wind Europe)

Il controllo dei consumi energetici e l'utilizzo di risorse rinnovabili sono azioni fondamentali ai fini della riduzione delle emissioni di gas serra e del raggiungimento degli obiettivi del cosiddetto "pacchetto clima-energia 20-20-20" varato dall'Unione Europea (rif. Direttiva 2009/29/CE).

Le principali sostanze climalteranti sono:

- anidride carbonica (CO2),
- metano (CH4),
- protossido di azoto (N2O).

Ognuno di questi gas contribuisce in maniera diversa al fenomeno del riscaldamento globale e tale contributo è dovuto essenzialmente a: la lunghezza d'onda delle radiazioni assorbite, la concentrazione in atmosfera e la capacità di assorbimento di ciascun gas.

Il contributo dei gas serra al potenziale impatto ambientale del riscaldamento globale è misurato in termini di chili (kg) (o grammi) di CO2eq (anidride carbonica equivalente), attraverso un'operazione di standardizzazione basata sui potenziali di riscaldamento globale GWP (Global Warming Potential). In tal caso è stato preso in considerazione un orizzonte temporale pari a 100 anni (GWP 100).

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000.00 € Codice Fiscale: 02658050733 Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tali potenziali, adottati dall'IPCC (Intergovernmental Panel on Climate Change), sono calcolati per ciascun gas serra ed esprimono il rapporto fra il contributo all'assorbimento dato dal rilascio istantaneo di una sostanza GHG (Greenhouse Gase) e quello fornito dall'emissione di CO2. Il potenziale GWP 100 della CO2 è pari ad 1.

4.7 CO2EQ PER MIX ENERGETICO ITALIANO

In base alla composizione del mix energetico italiano del 2021, modellizzato prendendo come riferimento dei dati la banca dati LCI Ecoinvent 2.2 (Tabella 7), si calcola la quantità di CO2eq per 1 kWh di mix. Il calcolo viene effettuato sulla base dei fattori di caratterizzazione di GWP 100 dell'IPCC 2007 (*Intergovermental Panel on Climate Change*).

Electricity, hard coal, at power plant/IT	0,139286 kWh
Electricity, oil, at power plant/IT	0,011448 kWh
Electricity, natural gas, at power plant/IT	0,366432 kWh
Electricity, industrial gas, at power plant/IT	0,015174 kWh
Electricity, hydropower, at power plant/IT	0,268264 kWh
Electricity, hydropower, at pumped storage power plant/IT	0,061694 kWh
Electricity, production mix photovoltaic, at plant/IT	2,42E-05 kWh
Electricity, at wind power plant/RER	0,011163 kWh
Electricity, at cogen ORC 1400kWth, wood, allocation exergy/CH	0,001706 kWh
Electricity, at cogen with biogas engine, allocation exergy/CH	0,007272 kWh
Electricity, production mix AT/AT	0,002512 kWh
Electricity, production mix FR/FR	0,026552 kWh
Electricity, production mix GR/GR	0,002188 kWh
Electricity, production mix SI/SI	0,009493 kWh
Electricity, production mix CH/CH	0,030805 kWh

Tabella 8 | Modellizzazione del mix energetico italiano (fonte GSE) in base al database Ecoinvent 2.2 (dati al netto delle perdite di rete). Dall'elaborazione del mix risulta che per 1 kWh di mix energetico italiano si emettono:

0,4902 kg di CO2eq di cui:

- 0,4654 kg dovuti a CO2 di origine fossile (94,93%),
- 0,02044 kg dovuti a CH4 (4,19%),
- 0,003181 kg dovuti a N2O (0,65%).

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

SR EN ISO 9001:2015 SR EN I Certificate No. 0204 Certific

SR EN ISO 45 Certificate N

5 POTENZIALI IMPATTI AMBIENTALI: L'IMPIANTO "CAPECE"

I potenziali impatti di un impianto eolico sono dovuti principalmente alla costruzione dell'impianto e alla realizzazione delle infrastrutture necessarie. La struttura è costituita essenzialmente dall'insieme delle pale installate su suolo e dall'impianto elettrico necessario al funzionamento delle stesse.

Non essendo disponibile uno studio specifico di LCA (*Life Cycle Assessment*) dell'impianto, il calcolo degli indicatori di impatto potenziale in termini di CO2eq (kg) e consumo di risorse non rinnovabili (MJ) è effettuato mediante l'applicazione della metodologia LCA (ISO 14044:2006).

53

In Tabella 9 si indicano i risultati di impatto ambientale elaborati per la produzione di 1 kWh di energia elettrica da fonte eolica.

La quantità di CO2eq viene calcolata con il metodo IPCC (Intergovernmental Panel on Climate Change) 2007, mentre il consumo di risorse non rinnovabili con il metodo CED (Cumulative Energy Demand) vs. 1.08.

kg CO2/kWh en.solare	0,04648
kwh/kwh en. solare	0,11

Tabella 9 | Risultati elaborati per 1 kWh di energia elettrica da fonte eolica

5.1 ENERGY PAY – BACK TIME

Per la produzione di ogni kWh di energia elettrica dell'impianto "Capece" sono necessari 0,11 kWh di energia da fonti non rinnovabili.

Poiché la vita utile dell'impianto "Capece" è stimata pari a 30 anni, si calcola che, per l'intero ciclo di vita dell'impianto, si consumano mediamente 615.063.900 kWh di risorse non rinnovabili.

Inoltre la produzione di energia elettrica annuale è stimata pari a 186.383 MWh/anno, quindi **i tempi di** *payback* relativi all'energia prodotta risultano di circa 3,3 anni (=615.063.900 kWh/186.383.000 kWh).

Per la produzione di energia elettrica dell'impianto eolico vengono emesse **0,04648 kg di CO2eq per ogni kWh**, i**n un anno**, le emissioni risparmiate dall'impianto di CO2eq sono pari a **8.663.081,8 kg di CO2eq**.

Dal confronto fra queste emissioni con quelle del mix energetico, si calcola che nei successivi anni di vita dell'impianto calcolati pari a 30: **le emissioni di CO2eq evitate** grazie all'introduzione dell'impianto eolico, in sostituzione del mix di energia elettrica standard, siano pari a **259.892.455,2 di CO2eq.**

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

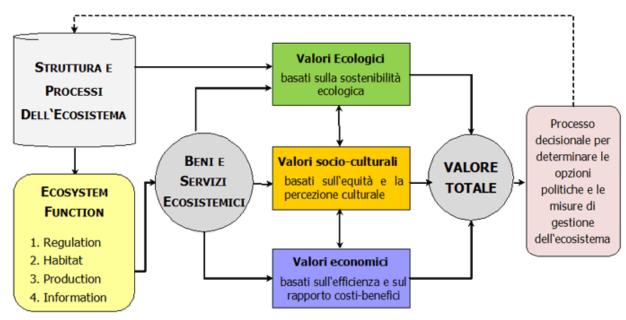
Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

6 SERVIZI ECOSISTEMICI

6.1 INTRODUZIONE


Lo sviluppo di strumenti adeguati per una corretta gestione dell'ambiente passa necessariamente attraverso l'integrazione di elementi ecologici, economici e socio politici all'interno di un quadro interdisciplinare.

La struttura sottostante costituisce una cornice concettuale generale, all'interno della quale è possibile

arrivare all'individuazione e alla quantificazione delle funzioni, dei beni e dei servizi ecosistemici (SE).

54

Si definiscono funzioni ecosistemiche: la capacità dei processi e dei componenti naturali di fornire beni e servizi che soddisfino, direttamente o indirettamente, le necessità dell'uomo e garantiscano la vita di tutte le specie.

modificato da De Groot, 1992

Il Millennium Ecosystem Assessment (2005), la più ampia e approfondita sistematizzazione delle conoscenze sino ad oggi acquisite sullo stato degli ecosistemi del mondo ha fornito una classificazione utile suddividendo le funzioni ecosistemiche in 4 categorie principali:

- Supporto alla vita (Supporting): queste funzioni raccolgono tutti quei servizi necessari per la
 produzione di tutti gli altri servizi ecosistemici e contribuisce alla conservazione (in situ) della
 diversità biologica e genetica e dei processi evolutivi.
- Regolazione (Regulating): oltre al mantenimento della salute e del funzionamento degli ecosistemi, le funzioni regolative raccolgono molti altri servizi che comportano benefici diretti e indiretti per l'uomo (come la stabilizzazione del clima, il riciclo dei rifiuti), solitamente non riconosciuti fino al momento in cui non vengono persi o degradati;

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

SR EN ISO 9001:2015 Certificate No. Q204

SR EN ISO 14001

SR EN ISO 45001:20 Certificate No. OHSS

Approvvigionamento (Provisioning): queste funzioni raccolgono tutti quei servizi di
fornitura di risorse che gli ecosistemi naturali e semi-naturali producono (ossigeno, acqua, cibo,
ecc.).

Culturali (Cultural): gli ecosistemi naturali forniscono una essenziale "funzione di consultazione" e
contribuiscono al mantenimento della salute umana attraverso la fornitura di opportunità di
riflessione, arricchimento spirituale, sviluppo cognitivo, esperienze ricreative ed estetiche.

55

Queste funzioni ecosistemiche racchiudono i beni e i servizi utilizzati dalla società umana per soddisfare il proprio benessere. Sulla base di tali funzioni, il Millennium Ecosystem Assessment ha individuato i (potenziali) aspetti utili degli ecosistemi naturali per il genere umano sotto forma di beni e servizi, definendoli con il termine generale di servizi ecosistemici (ecosystem services): i benefici multipli forniti dagli ecosistemi al genere umano.

I cambiamenti nell'uso del suolo determinati dalla realizzazione delle opere in progetto, influenzano i valori dei SE, sia biofisici che economici, che aumentano o diminuiscono sulla base delle trasformazioni territoriali i cui effetti sono valutabili nel breve e lungo periodo.

La descrizione e quantificazione di tali effetti, qui condotta attraverso l'uso del software SimulSoil, un'applicazione informatica che analizza le variazioni di valore derivate da trasformazioni d'uso del suolo, registrando la sensitività dei servizi ambientali erogati ai cambiamenti del territorio e quantificando il costo complessivo di tali trasformazioni sul Capitale Naturale esistente. Il software costituisce uno dei prodotti "tangibili" del progetto europeo LIFE SAM4CP e consiste in un software di supporto analitico territoriale alla mappatura e valutazione dei Servizi Ecosistemici resi dal suolo.

La sua finalità è di favorire e facilitare processi virtuosi di pianificazione urbanistica, siano essi estesi all'intero territorio comunale o a porzioni di esso: SimulSoil è infatti nato dall'esigenza di rendere il processo di conoscenza dei Servizi Ecosistemici direttamente scalabile alle reali "pratiche" urbanistiche, ovvero quelle necessarie al rilascio dei titoli abilitativi, ma anche tutte le altre procedure che implicano trasformazioni degli usi del suolo, sia attraverso alterazioni che ne determinano il "consumo" o il "degrado", che nei casi in cui ne generano una "valorizzazione" sotto il profilo ambientale ed ecosistemico.

Partendo dal presupposto che il suolo è una risorsa in grado di generare contemporaneamente molteplici Servizi Ecosistemici la cui conoscenza è imprescindibile per i processi del buon governo del territorio, SimulSoil è, in breve, uno strumento di aiuto ai decisori pubblici per effettuare scelte consapevoli e sostenibili nello sfruttamento di una risorsa sostanzialmente limitata e non rinnovabile.

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000.00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

SimulSoil "automatizza" processi informatici complessi che normalmente vengono gestiti separatamente mediante l'utilizzo di differenti modelli del software InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs2) determinandone l'immediata e semplificata utilizzabilità.

Nello specifico sono stati automatizzati gli algoritmi di calcolo riferiti ai seguenti 8 differenti Servizi Ecosistemici offerti dal suolo libero e selezionati tra i molteplici che la natura fornisce:

- qualità degli Habitat,
- · stoccaggio di carbonio,
- · disponibilità idrica,
- trattenimento dei sedimenti,
- · trattenimenti dei nutrienti.
- · produzione agricola,
- · impollinazione,
- · produzione legnosa.

La mappatura dei Servizi Ecosistemici (SE) costituisce ad oggi il riferimento di base per pianificatori e amministratori locali per poter "intervenire" oltre che "valutare" o "misurare" le quantità (stock) e le variazioni (trend) dei valori ecosistemici riferiti al suolo.

6.2 LA VALUTAZIONE BIOFISICA ED ECONOMICA DEI SERVIZI ECOSISTEMICI

Come già evidenziato, SimulSoil è un'applicazione informatica che consente di eseguire bilanci delle funzioni ecosistemiche del territorio, automatizzando processi informatici complessi che dovrebbero essere gestiti separatamente mediante l'utilizzo di differenti modelli, alcuni dei quali proprietari del software InVEST. Esso produce una quantificazione biofisica della mappatura dei SE e, associando "costi" parametrici ai SE forniti dai suoli ne sviluppa la valutazione economica, secondo il seguente approccio: ai SE con valori biofisici assoluti è associato un prezzo unitario (per esempio, 1 tonnellata di carbonio sequestrato equivale a 100 euro del costo sociale evitato per il mancato rilascio in atmosfera), mentre per i SE con valori biofisici espressi da valori indice l'associazione del costo avviene ipotizzandone un mercato e definendone un valore derivato dalla "disponibilità a pagare" per il godimento del bene stesso.

È evidente, tuttavia, come l'associazione di un valore economico ad un indice presenti molti limiti e non sia da assumere come valore paradigmatico.

Si sottolinea, inoltre, che, indipendentemente dal modello di valutazione adottato, l'associazione di un valore economico ad un beneficio ambientale si riferisce sempre ad un valore "marginale" e non "totale" (poiché il valore complessivo del Capitale Naturale non è quantificabile). SimulSoil, pertanto, non determina il "prezzo" del Capitale Naturale, ma costituisce piuttosto la stima parametrica del possibile valore monetario di alcuni servizi ecosistemici.

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

01:2015 SR EN ISO 14001

0 14001:2015 te No. F145

Nello specifico, la valutazione ha ad oggetto i seguenti 8 SE:

- STOCCAGGIO DI CARBONIO (Carbon Sequestration) CS servizio di regolazione secondo la classificazione TEEB CICES;
- 2. PRODUZIONE AGRICOLA (Crop Production) CPR- servizio di approvvigionamento secondo la classificazione TEEB CICES;
- 3. PRODUZIONE LEGNOSA (Timber Production) TP servizio di approvvigionamento secondo la classificazione TEEB CICES;
- 4. QUALITÀ DEGLI HABITAT (Habitat Quality) HQ servizio di supporto secondo la classificazione TEEB CICES;
- 5. TRATTENIMENTO DEI NUTRIENTI (Nutrient Retention) NR servizio di regolazione secondo la classificazione TEEB CICES;
- 6. DISPONIBILITÀ IDRICA (Water Yield) WY servizio di regolazione secondo la classificazione TEEB CICES;
- 7. TRATTENIMENTO DEI SEDIMENTI (Sediment Retention) SDR servizio di regolazione secondo la classificazione TEEB CICES;
- 8. IMPOLLINAZIONE (Crop Pollination) CPO servizio di approvvigionamento secondo la classificazione TEEB CICES.

Di seguito si specificano le modalità di calcolo e di imput di ogni uno degli otto SE utilizzati.

Stoccaggio di Carbonio (CS)

L'incremento di CO2 in atmosfera è causato principalmente dalle attività antropiche: una volta che un terreno naturale viene impermeabilizzato o subisce altre forme di degrado, perde la capacità di trattenere il carbonio che, di conseguenza, viene emesso in atmosfera. Per valutare questo SE il simulatore utilizza il modello InVEST "Carbon Storage and Seguestration".

L'output fornito è costituito da mappe della quantità di carbonio immagazzinato dagli ecosistemi terrestri in termini biofisici (espresso in tonnellate di C per pixel) e da una valutazione dello stesso in termini economici espressa in euro/tonnellata. Il modello stima la quantità di carbonio in funzione della categoria di uso del suolo con riferimento ai quattro principali serbatoi (pools) presenti in natura: biomassa epigea, biomassa ipogea, suolo e sostanza organica morta.

I dati di input, oltre all'uso del suolo, sono i valori di stoccaggio del carbonio associati alle differenti classi d'uso del suolo divisi in suolo, lettiera, fitomassa ipogea e fitomassa epigea. Per le categorie forestali i valori di tutti i pool sono stati ricavati tramite l'utilizzo di apposite

metodologie e coefficienti di conversione, dai volumi di provvigione forniti dall'Inventario

Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio (INFC) per ogni regione; per le altre aree naturali e per le superfici agricole i valori di default del carbonio contenuto nella biomassa epigea, nella

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

biomassa ipogea e nella sostanza organica morta sono quelli proposti da Sallustio et al. (2015), mentre per il carbonio contenuto nel suolo il valore inserito è stato stimato sulla base dei dati del progetto SIAS (Sviluppo Indicatori Ambientali sul Suolo), relativi al carbonio immagazzinato nei primi 30 cm di suolo.

Alle aree artificiali è stato assegnato un valore pari a zero per tutti i pool, assumendo una perdita completa del servizio.

A livello locale vi è stato un adattamento delle soglie di stoccaggio del carbonio del suolo e soprassuolo per considerare anche tutte le classi ad uso antropico, (macroclasse 1 Land Cover Puglia – aree artificiali) a partire dalle quantità segnalate per i prati e pascoli, con una

rimodulazione delle soglie sulla base dell'indice di permeabilità rilevato per ogni classe d'uso del suolo. Nello specifico: per le classi "SOIL" e "DEAD" sono stati rimodulati i valori corrispondenti ai prati rispetto all'indice di permeabilità espresso nella singola classe di copertura (le aree industriali impermeabilizzate al 99%, ed esempio, non hanno valore di stoccaggio), mentre per tutte le altre coperture si utilizzano i valori nazionali dell'Inventario Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio. Per le classi "ABOVE" and "BELOW" soil è stato adottato un procedimento di adeguamento dei valori a partire dalla biomassa legnosa iniziale. In particolare, la quantità di carbonio organico unitario (in ton/ha), corrispondenti alla biomassa iniziale, viene calcolata moltiplicando la biomassa legnosa complessiva per un opportuno coefficiente (0,17 per le conifere e 0,25 per le latifoglie). Successivamente tale quantità viene ripartita tra quella sviluppata soprassuolo (l'84%) e quella sviluppata nel sottosuolo (il 16%).

L'output generato dal simulatore è la spazializzazione dell'indicatore Carbon Sequestration nel territorio con valori biofisici assoluti di carbonio stoccato per pixel (ton/pixel).

Per la valutazione economica della funzione di stoccaggio del carbonio il simulatore si basa sulla quantificazione del costo sociale del carbonio (SCC) ovvero quello che contabilizza il danno marginale associato al rilascio di tonnellate di carbonio in atmosfera. Secondo questo approccio, ad ogni tonnellata di carbonio immagazzinata nel suolo viene associato un costo sociale evitato per il mancato rilascio del carbonio organico in atmosfera, e la conseguente produzione di CO2 pari a 100 euro/ton.

Produzione agricola (CPR)

La produzione agricola è un servizio ecosistemico di approvvigionamento essenziale poiché è alla base della fornitura di materie prime per la sopravvivenza dell'uomo. Descrivere l'agricoltura e più in generale l'utilizzo del territorio agroforestale in termini di servizi ecosistemici forniti dal suolo è una operazione complessa. L'agricoltura, infatti, utilizza i servizi

forniti dal capitale naturale e influisce a sua volta su di essi, ad esempio aumentando l'infiltrazione nel suolo di nutrienti contenuti nei fertilizzanti come azoto e fosforo, ma al contempo fornisce un servizio essenziale come principale fonte di cibo. La stima del valore della produzione agricola coinvolge, ovviamente, non solo i terreni propriamente agricoli, ma anche quelli destinati alla produzione di foraggio (prati) ed al pascolo.

Il consumo di suolo a fini edificatori annulla completamente il servizio di produzione agricola,

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

58

EN ISO 9001:2015 SR EN ISO 1400 tificate No. O204 Certificate No.

SR EN

R EN ISO 45001:2018 ertificate No. OH597

rendendo impossibile qualsiasi possibilità di sfruttamento agricolo del terreno impermeabilizzato, sia nel breve che nel medio-lungo periodo, dato che il suolo è una risorsa

che necessita di lunghi periodi per recuperare le sue funzioni e le sue caratteristiche biologiche originali. Per tutte le aree artificiali il simulatore ha dunque assunto un valore del servizio CPR pari a zero.

Il metodo di valutazione utilizzato nel simulatore si basa sulla spazializzazione dei Valori Agricoli Medi (VAM) proposti dall'Agenzia delle Entrate, suddivisi per regioni agrarie secondo lo

schema di classificazione definito dall'Istat. Per condurre tale analisi a ciascuna classe di uso e copertura del suolo sono state associate la corrispondente regione agraria e il relativo VAM.

L'unità di misura dell'output è Euro per ettaro.

In questo caso l'indicatore considerato è solo biofisico; per la mancata Produzione Agricola, le perdite ecosistemiche sono di tipo reversibile e recuperabili con il ripristino delle attività agricole sui terreni, garantite dopo le attività di dismissione dell'impianto.

Produzione legnosa (TP)

La produzione di legname è un importante servizio di approvvigionamento. Anche in questo caso si tratta di un servizio complesso, poiché la gestione della produzione legnosa, in particolare la gestione dell'intensità e della velocità di raccolta, influenza il mantenimento dell'erogazione di molti altri servizi ecosistemici: la qualità degli habitat, la quantità di carbonio sequestrato, la prevenzione dell'erosione e la purificazione dell'acqua dai nutrienti, ma anche l'impollinazione, in quanto i boschi sono particolarmente adatti ad ospitare i nidi di impollinatori.

Nel simulatore è stata utilizzata la stessa metodologa di calcolo proposta per la valutazione produzione agricola, cioè si è considerato il Valore Agricolo Medio come proxy del potenziale di produzione legnosa su larga scala. Anche in questo caso l'indicatore ottenuto è sia biofisico che economico: esso infatti esprime parametricamente il livello di servizio di produzione ottenuto, con un valore parametrico espresso in €/ha, e la redditività assoluta, costituita dalla moltiplicazione di tale valore per la superficie delle aree destinate a fini produttivi forestali.

Qualità degli habitat (HQ)

Gli habitat e la biodiversità che essi ospitano, forniscono tutto quello di cui le diverse specie animali e vegetali necessitano per la sopravvivenza, garantendo cioè le risorse per la nutrizione, la riproduzione e lo sviluppo. Gli impatti antropici, in particolare i cambiamenti di uso del suolo che determinano processi di artificializzazione, minacciano gravemente la biodiversità e la conservazione delle specie.

Il modello di InVEST per l'Habitat Quality utilizzato nel simulatore, si basa sull'ipotesi che le aree con una qualità degli habitat più alta ospitino una ricchezza maggiore di specie native mentre la diminuzione delle dimensioni di uno specifico habitat e della sua qualità portano al declino della persistenza delle specie.

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000.00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Per funzionare, il modello utilizza come dati di input sia valori (da 0 a 1) di qualità dell'habitat in termini di compatibilità delle specie con ciascuna classe di uso e copertura del suolo, sia valori corrispondenti alle minacce. In particolare, il modello genera una carta raster per ogni minaccia, in cui è rappresentato il livello di minaccia in funzione della distanza dall'impatto, del tipo di decadimento e della pressione sugli habitat.

Le tipologie di habitat considerate dal simulatore sono 12 ed i valori dei relativi parametri a scala nazionale sono stati ricavati attraverso un approccio expert based, cioè sottoponendo un questionario a oltre 100 esperti nazionali con affiliazioni diverse nei settori della conservazione e della gestione della biodiversità. Per quanto riguarda le minacce e relativi valori di interferenza con gli habitat sono stati considerati: il sistema antropizzato, le aree agricole ed il reticolo infrastrutturale con classificazione di strade principali, secondarie e locali.

L'output generato è una spazializzazione dell'indicatore Habitat Quality nel territorio con valori relativi al contesto di analisi che variano da 0 a 1.

Per la valutazione economica della funzione di qualità degli habitat il modello utilizzato da SimulSoil si basa sulla valutazione di contingenza in grado di stimare, attraverso lo strumento dell'intervista, la disponibilità a pagare (DAP) dei singoli soggetti per la gestione di aree verdi naturali e semi-naturali con elevato valore ambientale ed è espresso in euro al mg (i valori spaziano da 1,70 a 3,87 euro/mg per il verde urbano, da 0,30 a 0,39 euro/mg per il verde agricolo e da 1,63 a 24,15 euro/mg per il verde naturale o seminaturale).

Trattenimento dei nutrienti (NR)

Si tratta di un SE di regolazione fornito dagli ecosistemi acquatici e terrestri che concorrono a filtrare e decomporre reflui organici che giungono nelle acque interne e negli ecosistemi costieri e marini, contribuendo così alla fornitura di acqua potabile. Le foreste naturali, in particolare, contribuiscono ad una qualità superiore delle acque, con meno sedimenti e filtrando gli inquinanti rispetto a sorgenti di inquinamento sia diffuse (fertilizzanti agricoli) che localizzate (presenza di impianti con produzione e diffusione di inquinanti nel suolo). Spesso si fa riferimento alla rimozione di nitrati e fosfati poiché sono gli elementi più diffusi nei reflui domestici e agricoli e particolarmente deleteri per la potabilità dell'acqua e l'eutrofizzazione dei laghi. L'impermeabilizzazione genera una perdita irreversibile della capacità di infiltrazione dell'acqua nel suolo e quindi rappresenta la maggiore minaccia a tale tipo di servizio. Il consumo di suolo, inoltre, generando una compromissione delle superfici naturali permeabili e impedendone la filtrazione dell'acqua pu anche portare, in particolari circostanze, a fornire un maggior carico di inquinanti ai corsi d'acqua, per via di un maggior scorrimento superficiale. Il simulatore utilizza il modello InVEST NDR, che restituisce in output mappe di capacità di purificazione dell'acqua da parte dell'attuale, o futura, configurazione d'uso del suolo.

I dati di input utilizzati, oltre alle mappe di uso del suolo, sono:

Digital Elevation Model. Formato raster - Dtm passo 20 m.

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000.00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

60

- Mappa dei bacini idrografici. Formato vettoriale (sit.puglia.it Bacini idrografici Bacini idrografici e morfologici dei principali fiumi pugliesi).
- Root restricting layer depth: la profondità del suolo dove la penetrazione delle radici è fortemente inibita per colpa delle caratteristiche fisiche o chimiche.
- Precipitazioni. Valore annuale medio delle precipitazioni in millimetri.
- Plant Available Water Content (PAWC): la frazione d'acqua che può essere immagazzinata nel suolo e disponibile per le piante.
- Average annual potential evapotranspiration (PET): la perdita potenziale di acqua dal suolo sia per evaporazione che per traspirazione dell'erba medica, nel caso in cui ci sia una quantità d'acqua sufficiente. Formato raster. (utilizzo dei valori nazionali nelle tabelle csv).
- Dati biofisici: tabella che associa, ad ogni classe di uso del suolo:
 - massima profondità delle radici delle piante
 - Kc, il coefficiente di evapotraspirazione delle piante, usato per ottenere l'evapotraspirazione potenziale della classe modificando quella di riferimento già inserita in formato raster
 - load n / load p, carico annuale di azoto e fosforo
 - eff_n / eff_p, valore tra 0 e 1 che indica la capacità di filtraggio della vegetazione
- Water purification threshold: tabella che esprime il carico massimo consentito di azoto e fosforo per ogni bacino idrografico.

Per la stima del carico di inquinanti è stata scelta come proxy una tipologia di coltivazione per ogni categoria agricola della carta di uso del suolo. Questo approccio, seppur semplificato, è stato ritenuto il più adatto, poiché altri approcci sarebbero stati insostenibili in termini di tempidi elaborazione, dimensioni della cartella di lavoro del software e interpretazione dei risultati.

L'output è la spazializzazione dell'indicatore Nutrient Retention nel territorio con valori assoluti di chilogrammi di nitrato annualmente confluito nel sistema delle acque correnti per pixel di riferimento.

Relativamente ai risultati che riguardano i modelli di trattenimento dei nutrienti, sottolineiamo che il loro "valore" biofisico è rappresentato dalla presenza di nutriente per pixel e pertanto all'aumentare del valore si ha una diminuzione del servizio ecosistemico reso.

Per tale motivo il loro valore è stato convertito dal simulatore al negativo nel caso di una valutazione comparativa tra scenari differenti.

Per la stima economica la valutazione associa al valore biofisico dei nitrati che confluiscono nei bacini idrici il costo di sostituzione evitato per un'equivalente depurazione artificiale. Nello specifico è stato scelto di associare il costo per la costruzione di fasce tampone boscate (64 euro/kg), poiché soluzioni in grado di attenuare naturalmente il carico di inquinanti provenienti da sorgenti diffuse, tra le più difficili da individuare e contenere. Si è scelto di non adottare il criterio di valutazione del costo evitato dell'equivalente depurazione ottenuta con mezzi meccanici e/o chimici poiché esso non considera il fenomeno delle sorgenti di inquinamento diffuso, oltre ad essere soggetto ad elevata variabilità dovuta all'elevata oscillazione dei costi

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

EN ISO 9001:2015 SR EN ISO 140

SR EN ISO 14001:2015 Certificate No. E145

dipendenti dal tipo di tecnologia adottata per la depurazione dell'acqua.

Disponibilità idrica (WY)

La disponibilità idrica è riconducibile alla funzione ecologica di filtraggio dell'acqua da parte del suolo a partire dal grado di impermeabilizzazione delle diverse tipologie d'uso.

L'individuazione delle aree maggiormente permeabili e che, per caratteristiche pedogenetiche (profondità, tessitura e capacità di assorbimento), contribuiscono maggiormente a trattenere l'acqua in seguito ad eventi piovosi costituiscono il servizio di "capacità idrica" inteso come il servizio regolativo del suolo di "stoccare" e rendere disponibile alla vegetazione superficiale notevoli quantità di acqua prima che queste scorrano superficialmente o si infiltrino per processi di ricarica degli acquiferi profondi.

Il servizio riduce la possibilità di inondazioni grazie al maggior drenaggio dei suoli. La metodologia di valutazione adottata assegna maggior valore ai suoli che maggiormente trattengono e restituiscono l'acqua in falda anziché permetterne il flusso superficiale. Il valore del servizio equivale dunque al costo del danno evitato a causa di fenomeni di piena, esondazioni e alluvioni ed è stabilito in 64 euro/mg.

I dati di input utilizzati, oltre alle mappe di uso del suolo, sono:

- Profondità media del suolo;
- Profondità media delle radici per tipologia vegetazionale;
- Precipitazioni nell'area di indagine;
- Plant Available Water Content fraction (frazione d'acqua stoccabile dal suolo rispetto alla caratterizzazione pedogenetica – utilizzabile dalle piante);
- Evapotraspirazione di riferimento media nell'area di indagine;
- Bacino idrografico di riferimento;
- Coefficiente di evapotraspirazione potenziale per specie vegetazionali.

Trattenimento dei sedimenti (SDR)

È un SE di regolazione che considera la capacità di un suolo in buone condizioni di mitigare l'asportazione della parte superficiale del terreno (la parte più ricca di sostanza organica) a seguito dell'azione delle acque di ruscellamento superficiale e delle piogge. Per quanto il fenomeno dell'erosione idrica sia un processo naturale, questo pu subire un'accelerazione a causa di alcune attività antropiche (prevalentemente agricole, ma anche dovute ad altri processi di degrado del suolo). Ciò comporta danni alla funzionalità del suolo, alla produzione agricola e, in generale, all'ambiente. La rimozione della parte superficiale del suolo, ricca di sostanza organica, ne riduce, anche in modo rilevante, la produttività e può portare a una perdita irreversibile di terreni coltivabili nel caso di suoli poco profondi.

Il simulatore utilizza il modello di InVEST SDR (Sediment Delivery Ratio Model), che restituisce in output le mappe della capacità dei diversi usi del suolo, attuali e futuri, di evitare l'asportazione di suolo ed il suo accumulo all'interno dei corsi d'acqua. Il modello utilizza informazioni relative alla geomorfologia, clima,

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000.00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

62

vegetazione e pratiche di gestione e stima la perdita annuale di suolo partendo dall'equazione matematica RUSLE (Revised Universal Soil Loss Equation) ovvero la revisione dell'equazione USLE (Universal Soil Loss Equation) adattata ad ambiente topografici complessi:

V = Ri * Ki * LSi * Ci * Pi 25

con:

V = stima del tasso di perdita di suolo medio

Ri = fattore di erosività della pioggia (MJ * mm(ha * hr)),

Ki = fattore di erodibilità del suolo (ton * ha * hr(MJ * ha * mm))

LSi = fattore di pendenza

ci = copertura del suolo

pi = fattore di influenza del controllo artificiale

La perdita di suolo così calcolata, moltiplicata per un coefficiente di trasporto dei sedimenti (SDR) che rappresenta la quota parte di sedimenti che effettivamente raggiunge i corpi idrici, costituisce l'output del modello. Relativamente ai risultati che riguardano i modelli di trattenimento dei sedimenti, sottolineiamo che il loro "valore" biofisico è rappresentato dalla presenza di erosione per pixel e pertanto all'aumentare del valore si ha una diminuzione del servizio ecosistemico reso. Per tale motivo il loro valore è stato convertito dal simulatore al negativo nel caso di una valutazione comparativa tra scenari differenti. La carta esprime i quantitativi in termini di tonnellate di suolo eroso/pixel.

I dati di input utilizzati, oltre alle mappe di uso del suolo, sono:

- Indice di erosività della pioggia (parametro che definisce l'energia erosiva della pioggia);
- Indice di erodibilità associato alla composizione pedogenetica del suolo (parametro che dà conto della facilità con cui il suolo può venire eroso);
- Bacino idrografico di riferimento;
- Modello digitale del terreno;
- Fattore di coltivazione "c" (incidenza del tipo di lavorazione del suolo ai fini produttivi sull'erosione totale) e al fattore di erosività derivato dalla pratica colturale "p" (incidenza del tipo di pratica antierosiva associata alle tipologie colturali).

Dal momento che il modello biofisico adottato produce una mappatura di erosione potenziale dei suoli, espressa in tonnellate per pixel, si è scelto di adottare un modello di valutazione economica che associ alla qualità dei suoli soluzioni di protezione artificiali che abbiano equivalente funzionalità, come ad esempio il "costo di ripristino" della fertilità dei suoli funzionale alla protezione dall'erosione e pari a 150 euro/tonnellata.

Impollinazione (CPO)

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

03

È un SE di regolazione e approvvigionamento fondamentale per la produttività di moltissime colture dipendenti da processi naturali di impollinazione entomofila. La fecondazione delle piante e, consequentemente, la produzione di cibo, dipendono in parte dalle specie impollinatrici selvatiche.

Quasi il 10% delle specie di api europee sono attualmente minacciate dall'estinzione: senza di esse molte specie di piante si estinguerebbero e gli attuali livelli di produttività colturale potrebbero essere mantenuti solamente ad altissimi costi attraverso processi di impollinazione artificiale. Fenomeni antropici quali l'espansione urbana, l'aumento delle infrastrutture e l'applicazione in agricoltura di pratiche non sostenibili come l'utilizzo intensivo di insetticidi e fertilizzanti, incidono fortemente sulla salute delle specie impollinatrici. Il modello Pollinator Abundance - Crop Pollination di InVEST che viene ripreso nel simulatore restituisce come output mappe relative al contributo degli impollinatori selvatici alla produzione agricola in funzione dell'attuale configurazione del paesaggio e degli usi del suolo.

I dati inseriti oltre alle mappe dell'uso del suolo sono:

- Caratteristiche delle specie impollinatrici in relazione alle classi di copertura del suolo e possibile presenza/assenza di particolari essenze vegetali
- Caratteristiche delle classi di copertura del suolo relativamente alla disponibilità di luoghi ospitali ai vari impollinatori.

Sono richieste diverse caratteristiche per ciascuna specie di impollinatori considerata: la tipologia di nidificazione, il periodo di attività di impollinazione e il range di volo poiché influenza il servizio offerto alle colture. Ad ogni categoria di uso del suolo viene inoltre associato un valore che indica l'abbondanza di fiori nei vari periodi dell'anno (con valori compresi fra 0 e 1) e un altro che indica la disponibilità ad ospitare le varie specie in base alla tipologia di nidificazione.

Le elaborazioni partono dalla stima dell'abbondanza delle specie impollinatrici nelle varie celle del raster di uso e copertura del suolo, basata sulla disponibilità di luoghi adatti alla nidificazione e al cibo (fiori) nelle celle adiacenti. Il risultato è una mappa di abbondanza con valori compresi tra 0 e 1 per ciascuna specie, che rappresenta la potenziale disponibilità di impollinatori per un'area agricola da impollinare. Il modello utilizza per le aree ad uso agricolo un calcolo dell'abbondanza delle specie a partire dal dato sul range di volo.

Il servizio è inteso come surplus al valore di produttività agricola garantito dalla presenza di specie impollinatrici. L'output è costituito dalla spazializzazione dell'indicatore crop pollination nel territorio con valori assoluti di presenza di specie impollinatrici nelle aree agricole oggetto del servizio di impollinazione (N.api/ pixel). La valutazione economica (226 euro/ha) è derivata dal grado di dipendenza delle coltivazioni dall'impollinazione: si valuta il fattore percentuale di vulnerabilità del valore complessivo delle colture rispetto ai benefici dovuti dall'impollinazione e lo si moltiplica per la presenza di api per singolo habitat.

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000.00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

7 LA VALUTAZIONE DEI SERVIZI ECOSISTEMICI NELL'AREA DI PROGETTO

Attraverso la simulazione SimulSoil descritta precedentemente, è stato calcolato il valore ecologico ante operam in corrispondenza progetto eolico denominato "Capece" ricadente nel comune di Francavilla Fontana, San Vito dei Normanni e Latiano (BR), usando come repertori di input la carta dell'uso del suolo della Regione Puglia, riferita all'anno 2011 e quindi più conservativa rispetto allo stato attuale dell'utilizzo dei suoli, inoltre le destinazioni d'uso, per disponibilità di scelta del programma sono state assegnate come aree impermeabili, generando quindi un'analisi molto cautelativa.

Ciò premesso, a seguire si determina la perdita economica specifica (espressa in €/mq) per il parco eolico, come differenza tra lo stato ante e quello post operam.

Simulazione del valore Ecologico ante operam del sito di istallazione

SIMULAZIONI	Valori attua	ali [T0]	Valori previsti [T2]		
SIMULAZIONI	Biofisico	Economico	Biofisico	Economico	
CS - Stoccaggio di carbonio [t]	515,85	51.584,78 €	448,75	44.874,52 €	
CPO - Impollinazione [0-1]	0,10	606,28 €	0,08	512,09 €	
HQ - Qualità degli habitat [0-1]	0,00	0,00 €	0,00	0,00€	
NR - Trattenimento dei nutrienti [t]	0,00	0,00 €	0,00	0,00€	
SDR - Trattenimento dei sedimenti [t]	0,00	0,00 €	0,00	0,00€	
WY - Disponibilità idrica [I]	0,00	0,00 €	0,00	0,00€	
CPR - Produzione agricola [€]	63.639,76	63.639,76 €	52.836,68	52.836,68 €	
TP - Produzione legnosa [€]	16.324,16	16.324,16 €	14.400,40	14.400,40 €	

STMULATIONS	Valori attuali [T0]		Valori previsti [T2]	
SIMULAZIONI	Biofisico	Economico	Biofisico	Economico
CS - Stoccaggio di carbonio [t]	2.571,30	257.130,36 €	2.470,10	247.010,30 €
CPO - Impollinazione [0-1]	0,04	1.106,15 €	0,04	1.071,22 €
HQ - Qualità degli habitat [0-1]	0,00	0,00 €	0,00	0,00€
NR - Trattenimento dei nutrienti [t]	0,00	0,00 €	0,00	0,00€
SDR - Trattenimento dei sedimenti [t]	0,00	0,00 €	0,00	0,00€
WY - Disponibilità idrica [I]	0,00	0,00 €	0,00	0,00€
CPR - Produzione agricola [€]	109.689,60	109.689,60 €	106.673,60	106.673,60 €
TP - Produzione legnosa [€]	105.861,60	105.861,60 €	101.546,40	101.546,40 €

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

65

SR EN ISO 9001:2015 SR Certificate No. O204 Ce

N ISO 14001:2015

SR EN ISO 45001:2018 Certificate No. OH597

SIMULAZIONI	Valori attuali [T0]		Valori previsti [T2]	
SIMULAZIONI	Biofisico	Economico	Biofisico	Economico
CS - Stoccaggio di carbonio [t]	4.813,06	481.305,55€	4.768,81	476.880,53 €
CPO - Impollinazione [0-1]	0,15	12.212,38 €	0,14	12.101,27 €
HQ - Qualità degli habitat [0-1]	0,00	0,00€	0,00	0,00 €
NR - Trattenimento dei nutrienti [t]	0,00	0,00 €	0,00	0,00€
SDR - Trattenimento dei sedimenti [t]	0,00	0,00 €	0,00	0,00 €
WY - Disponibilità idrica [I]	0,00	0,00 €	0,00	0,00 €
CPR - Produzione agricola [€]	1.648.007,28	1.648.007,28 €	1.630.355,20	1.630.355,20 €
TP - Produzione legnosa [€]	14.848,96	14.848,96 €	14.848,96	14.848,96 €

SIMULAZIONI	Valori attuali [T0]		Valori previsti [T2]	
SIMULAZIONI	Biofisico	Economico	Biofisico	Economico
CS - Stoccaggio di carbonio [t]	2.857,49	285.749,42 €	2.808,29	280.828,58 €
CPO - Impollinazione [0-1]	0,12	5.071,62 €	0,12	4.941,62 €
HQ - Qualità degli habitat [0-1]	0,00	0,00 €	0,00	0,00 €
NR - Trattenimento dei nutrienti [t]	0,00	0,00 €	0,00	0,00 €
SDR - Trattenimento dei sedimenti [t]	0,00	0,00 €	0,00	0,00 €
WY - Disponibilità idrica [I]	0,00	0,00 €	0,00	0,00 €
CPR - Produzione agricola [€]	660.934,00	660.934,00 €	641.592,00	641.592,00 €
TP - Produzione legnosa [€]	48.222,00	48.222,00 €	48.222,00	48.222,00 €

SIMULAZIONI	Valori attuali [T0]		Valori previsti [T2]	
SIMULAZIONI	Biofisico	Economico	Biofisico	Economico
CS - Stoccaggio di carbonio [t]	2.989,78	298.977,68 €	2.937,72	293.771,60 €
CPO - Impollinazione [0-1]	0,13	7.109,70 €	0,13	6.999,44 €
HQ - Qualità degli habitat [0-1]	0,00	0,00 €	0,00	0,00 €
NR - Trattenimento dei nutrienti [t]	0,00	0,00 €	0,00	0,00 €
SDR - Trattenimento dei sedimenti [t]	0,00	0,00 €	0,00	0,00 €
WY - Disponibilità idrica [I]	0,00	0,00 €	0,00	0,00 €
CPR - Produzione agricola [€]	991.042,56	991.042,56 €	973.772,64	973.772,64 €
TP - Produzione legnosa [€]	0,00	0,00 €	0,00	0,00 €

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000,00 \in Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

SIMULAZIONI	Valori attuali [T0]		Valori previsti [T2]	
SIMULAZIONI	Biofisico	Economico	Biofisico	Economico
CS - Stoccaggio di carbonio [t]	1.673,38	167.338,25 €	1.626,28	162.627,99 €
CPO - Impollinazione [0-1]	0,13	4.019,29 €	0,13	3.914,11 €
HQ - Qualità degli habitat [0-1]	0,00	0,00 €	0,00	0,00 €
NR - Trattenimento dei nutrienti [t]	0,00	0,00 €	0,00	0,00 €
SDR - Trattenimento dei sedimenti [t]	0,00	0,00 €	0,00	0,00 €
WY - Disponibilità idrica [I]	0,00	0,00 €	0,00	0,00 €
CPR - Produzione agricola [€]	554.688,00	554.688,00 €	539.055,00	539.055,00 €
TP - Produzione legnosa [€]	0,00	0,00 €	0,00	0,00 €

SIMULAZIONI	Valori attuali [T0]		Valori previsti [T2]	
SIMULAZIONI	Biofisico	Economico	Biofisico	Economico
CS - Stoccaggio di carbonio [t]	2.594,68	259.468,20 €	2.494,52	249.452,12 €
CPO - Impollinazione [0-1]	0,16	6.855,47 €	0,15	6.608,76 €
HQ - Qualità degli habitat [0-1]	0,00	0,00 €	0,00	0,00 €
NR - Trattenimento dei nutrienti [t]	0,00	0,00 €	0,00	0,00€
SDR - Trattenimento dei sedimenti [t]	0,00	0,00 €	0,00	0,00€
WY - Disponibilità idrica [I]	0,00	0,00 €	0,00	0,00 €
CPR - Produzione agricola [€]	1.227.313,56	1.227.313,56 €	1.172.802,84	1.172.802,84 €
TP - Produzione legnosa [€]	1.918,84	1.918,84 €	1.918,84	1.918,84 €

SIMULAZIONI	Valori attuali [T0]		Valori previsti [T2]	
SIMOLAZIONI	Biofisico	Economico	Biofisico	Economico
CS - Stoccaggio di carbonio [t]	875,35	87.534,76 €	821,21	82.120,66 €
CPO - Impollinazione [0-1]	0,17	2.441,81 €	0,16	2.295,05 €
HQ - Qualità degli habitat [0-1]	0,00	0,00 €	0,00	0,00 €
NR - Trattenimento dei nutrienti [t]	0,00	0,00 €	0,00	0,00 €
SDR - Trattenimento dei sedimenti [t]	0,00	0,00 €	0,00	0,00 €
WY - Disponibilità idrica [I]	0,00	0,00 €	0,00	0,00 €
CPR - Produzione agricola [€]	460.207,68	460.207,68 €	430.737,28	430.737,28 €
TP - Produzione legnosa [€]	234,72	234,72 €	234,72	234,72 €

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

SR EN ISO 9001:2015 SR EN ISO Certificate No. 0204 Certificate

SR EN ISO 45001:201 Certificate No. OHSS <u>.</u>

SIMULAZIONI	Valori attuali [T0]		Valori previsti [T2]	
SIMULAZIONI	Biofisico	Economico	Biofisico	Economico
CS - Stoccaggio di carbonio [t]	1.218,54	121.853,93 €	1.151,98	115.198,22 €
CPO - Impollinazione [0-1]	0,10	1.422,33 €	0,08	1.246,25 €
HQ - Qualità degli habitat [0-1]	0,00	0,00 €	0,00	0,00 €
NR - Trattenimento dei nutrienti [t]	0,00	0,00 €	0,00	0,00 €
SDR - Trattenimento dei sedimenti [t]	0,00	0,00 €	0,00	0,00 €
WY - Disponibilità idrica [I]	0,00	0,00 €	0,00	0,00 €
CPR - Produzione agricola [€]	179.004,80	179.004,80 €	156.412,88	156.412,88 €
TP - Produzione legnosa [€]	36.490,48	36.490,48 €	36.003,76	36.003,76 €

SIMULAZIONI	Valori attuali [T0]		Valori previsti [T2]	
SIMULAZIONI	Biofisico	Economico	Biofisico	Economico
CS - Stoccaggio di carbonio [t]	3.740,40	374.039,66 €	3.644,20	364.419,62 €
CPO - Impollinazione [0-1]	0,11	5.637,79 €	0,11	5.642,46 €
HQ - Qualità degli habitat [0-1]	0,00	0,00 €	0,00	0,00 €
NR - Trattenimento dei nutrienti [t]	0,00	0,00 €	0,00	0,00 €
SDR - Trattenimento dei sedimenti [t]	0,00	0,00 €	0,00	0,00 €
WY - Disponibilità idrica [I]	0,00	0,00 €	0,00	0,00 €
CPR - Produzione agricola [€]	792.012,48	792.012,48 €	790.601,28	790.601,28 €
TP - Produzione legnosa [€]	81.614,40	81.614,40 €	77.286,72	77.286,72 €

Figure 26 | Simulazione WTG da 1 a 10

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

SR EN ISO 9001:2015 SR EN IS Certificate No. 0204 Certific

SR EN ISO 45 Certificate N

N ISO 14001:2015

00

SIMULAZIONI	Valori att	Valori attuali [T0]		Valori previsti [T2]	
SIMOLAZIONI	Biofisico	Economico	Biofisico	Economico	
CS - Stoccaggio di carbonio [t]	1.877,68	187.767,67 €	1.001,47	100.146,88 €	
CPO - Impollinazione [0-1]	0,14	4.822,09 €	0,08	2.606,09 €	
HQ - Qualità degli habitat [0-1]	0,00	0,00 €	0,00	0,00 €	
NR - Trattenimento dei nutrienti [t]	0,00	0,00 €	0,00	0,00 €	
SDR - Trattenimento dei sedimenti [t]	0,00	0,00 €	0,00	0,00 €	
WY - Disponibilità idrica [I]	0,00	0,00 €	0,00	0,00 €	
CPR - Produzione agricola [€]	714.298,80	714.298,80 €	372.648,48	372.648,48 €	
TP - Produzione legnosa [€]	0,00	0,00 €	0,00	0,00 €	

Figure 27 | Simulazione Stazione RTN

STMULATIONT	Valori attuali [T0]		Valori previsti [T2]	
SIMULAZIONI	Biofisico	Economico	Biofisico	Economico
CS - Stoccaggio di carbonio [t]	721,58	72.157,76 €	542,12	54.211,84 €
CPO - Impollinazione [0-1]	0,12	1.458,63 €	0,09	1.073,27 €
HQ - Qualità degli habitat [0-1]	0,00	0,00 €	0,00	0,00€
NR - Trattenimento dei nutrienti [t]	0,00	0,00 €	0,00	0,00€
SDR - Trattenimento dei sedimenti [t]	0,00	0,00 €	0,00	0,00€
WY - Disponibilità idrica [I]	0,00	0,00 €	0,00	0,00€
CPR - Produzione agricola [€]	265.272,88	265.272,88 €	193.572,00	193.572,00 €
TP - Produzione legnosa [€]	2.399,84	2.399,84 €	2.399,84	2.399,84 €

Figure 28 | Simulazione Stazione di utenza e Storage

Data la natura dell'opera e della sua localizzazione non si è considerata la Produzione Agricola, poiché le perdite ecosistemiche sono di tipo reversibile e recuperabili con l'attività agricola sui terreni, garantite dopo le attività di dismissione dell'impianto.

CALCOLO VARIAZIONE DEI SERVIZI ECOSISTEMICI ANTE/POST OPERAM 7.1

Il simulatore SimulSoil attribuisce alla trasformazione del suolo in proposta un valore di perdita del parco eolico pari a **4.40 €/mq y**, con un'incidenza maggiore ricoperta dalla produzione agricola (CPR).

Moltiplicando la perdita specifica (€/mq) per le superfici del parco eolico (7.200 mq/WTG x 10 WTG = 72.000 mq), si calcola che la realizzazione dell'opera comporterà una perdita annua di servizi ecosistemici pari a 316.800,00 €/y.

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

L'impianto eolico produrrà circa 186383 MWh/y di energia e sarà realizzato in un unico lotto.

Sulla base della producibilità annua si stimano le seguenti quantità di emissione evitate suddivise per tipologia di inquinante (Anidride carbonica CO₂, Anidride Solforosa SiO₂ e ossidi di azoto NO_x).

Mancate emissioni di inquinanti						
Produzione (MWh/anno) Inquinante Fattore di emissione specifico (g/kWh) Mancate emissioni (t/an						
	CO ₂	464,80	86.630,81			
186.383,3	SO ₂	1,40	260,9			
	NOx	1,90	354,12			

Tabella 10 | Mancate emissioni di inquinanti

Volendo attribuire un valore economico marginale a tale contributo, si considera il valore medio dei titoli di CO2 scambiati nel sistema europeo delle emissioni EU ETS (European Emissions Trading Scheme) nel corso del 2019, pari a 24,75 €/ton CO2; pertanto, il beneficio ambientale determinato dalle mancate emissioni di CO2 è pertanto stimato pari a 2.144.116,2 €/y.

7.2 BILANCIO TRA BENEFICI E COSTI AMBIENTALI

Il beneficio ambientale determinato dalle mancate emissioni di CO2 di +2.144.116,2 €/anno, compensa le perdite dovute alla contrazione dei sistemi ecosistemici, pari a -316.800,00 €/anno.

La stima economica dei benefici ambientali del resto è ampiamente sottostimata, là dove non considera i costi sanitari, soprattutto, dovuti alle morti premature e all'insorgere di determinate malattie cardiovascolari e respiratorie provocate dall'inquinamento atmosferico delle centrali termoelettriche, oltre ai costi ecologici per contrastare gli effetti più rovinosi dei cambiamenti climatici, attraverso bonifiche ambientali, ripristino di ecosistemi danneggiati, eccetera.

Come dimostrato, il decremento dei costi ecologici delle opere in progetto è attribuibile alla riduzione della capacità di assorbimento del Carbonio (CS) che è compensata ampiamente dalle emissioni evitate e per la restante parte attribuibile alle perdite della produzione agricola (Cpr).

In una lettura ecosistemica del progetto, pertanto, è corretto compensare i costi ambientali con il valore delle emissioni evitate di CO2 dovute alla produzione di energia elettrica rinnovabile.

Se si considera che gli spazi utilizzati per l'istallazione non sono né "consumati" e nemmeno "impermeabilizzati", per ciò che riguarda la mancata Produzione Agricola in fase di simulazione, e posto che le perdite ecosistemiche sono di tipo reversibile e recuperabili con l'utilizzo delle attività agricole sui terreni, garantite dopo le attività di dismissione dell'impianto.

PROJETTO engineering s.r.l. società d'ingegneria

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

9001:2015 SR EN ISO 140

Inoltre, in un territorio altamente sovrasfruttato dal punto di vista dell'utilizzo del suolo, delle acque superficiali e sotterranee, un ipotetico riposo di parte del terreno per circa 25 - 30 anni non può che favorire un recupero delle funzionalità del suolo e generare un minor impatto dovuto all'utilizzo di prodotti fitosanitari in agricoltura.

Premettendo che, l'associazione di un valore economico ad un beneficio ambientale si riferisce sempre ad un valore "marginale" e non "totale", poiché il valore complessivo del Capitale Naturale non è quantificabile e che le voci economiche utilizzate nel bilancio non sono da considerare il "prezzo" del Capitale Naturale, ma piuttosto la stima parametrica del possibile valore monetario di alcuni servizi ecosistemici, l'analisi condotta ha consentito di confrontare scenari e conseguenze dovute alla realizzazione delle opere in progetto, concludendo con un bilancio ecologico certamente positivo. Le perdite ecosistemiche sono ampiamente ripagate dai vantaggi ambientali generati in termini di mancate emissioni di CO2.

71

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: Ing. Leonardo FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

R EN ISO 9001:2015 SR EN ISO 14

ANALISI FATTORI AMBIENTALI BENEFICI - COSTI

SR EN ISO 45001: