

GRE.EEC.R.99.IT.W.09317.00.027.01

PAGE

1 di/of 21

TITLE: AVAILABLE LANGUAGE: IT

INTEGRALE RICOSTRUZIONE DELL' IMPIANTO EOLICO "GANGI", UBICATO NEL COMUNE DI GANGI (PA)

PROGETTO DEFINITIVO

Piano di dismissione dell'impianto esistente

File: GRE.EEC.R.99.IT.W.09317.00.027.01 - Piano di dismissione dell'impianto esistente.docx

CLASSIFICATION PUBLIC									V V	ט ן פ	J	ı	1	U	U	U	_	1	U	
		GRE	EEC	R	9	9		т	w	0 9	3	1	7	0	0	0	2	7	0	1
	Gangi	GROUP	FUNCION	TYPE ISSUER COUNTRY TEC				ı	PLANT			SYS	TEM	PRO	GRESS	SIVE	REVISION			
PROJECT	/PLANT							GF	RE C	ODE										
	COLLABO	RATORS				VE	RIFIE	D BY						VA	LIDA	TED I	3Y			
						S	.Bell	izzi			L. laciofano									
			T		GI	RE V	ALII	DATIO	ON		1									
REV.	DATE			DES	DESCRIPTION PREPARED)	VE	RIFIE	D	,	OVE	D		
00	04/03/2022			Prima	Emiss	sione					M. Car	nevale)	N.	Novat	i	L. Lavazza			
01	29/11/2023	pag. 17 10.1.5, 10 a pag. Aggiunto	7 e 18 (richi).1.6, 10.1.7, 19 (richiest paragrafo i).1.3, 10.1.4	este di 10.1.8, e di inte 1.3 a pa). Integr	nenti MASE. Integrato paragrafo n.7 a ste di integrazione nr. 10.1.1, 10.1.2, 10.1.8, 10.1.10). Integrato paragrafo n.8 di integrazione nr. 10.1.9 e 10.1.11). 3 a pag. 5,6,7 (richieste di integrazione Integrato paragrafo n.10 a pag. 21 di integrazione nr. 10.1.12)								A. Ottoboni M. Iaquinta						linelli	

This document is property of Enel Green Power S.r.l. It is strictly forbidden to reproduce this document, in whole or in part, and to provide to others any related information without the previous written consent by Enel Green Power S.r.l.

GRE CODE

GRE.EEC.R.99.IT.W.09317.00.027.01

PAGE

2 di/of 21

INDEX

1.	NTRODUZIONE	3
	1.1. DESCRIZIONE DEL PROPONENTE	3
	1.2. CONTENUTI DELLA RELAZIONE	3
2.	NQUADRAMENTO TERRITORIALE DEL SITO	3
<mark>3.</mark>	RICOGNIZIONE SITI CONTAMINATI O POTENZIALMENTE CONTAMINATI	5
	3.1. SITI CONTAMINATI DI INTERESSE NAZIONALE E REGIONALE	5
	3.2. SITI POTENZIALMENTE CONTAMINATI	5
4.	DISMISSIONE DELL'IMPIANTO	7
	1.1. FASI DELLA DISMISSIONE	7
	1.2. CONFIGURAZIONE DELL'IMPIANTO ESISTENTE	3
	4.2.1. DISMISSIONE DEGLI AEROGENERATORI	Э
	4.2.2. DISMISSIONE DELLE OPERE CIVILI	2
	4.2.3. DISMISSIONE DELLE OPERE ELETTRO-MECCANICHE	4
5.	DPERE DI RIPRISTINO DELLE AREE NATURALI	5
6.	MEZZI UTILIZZATI	5
7.	MATERIALI DI RISULTA1	7
	RICICLO COMPONENTI ED ECONOMIA CIRCOLARE1	
9.	STIMA DEI COSTI DELLA DISMISSIONE1	Э
10	CRONOPROGRAMMA20)

GRE CODE

GRE.EEC.R.99.IT.W.09317.00.027.01

PAGE

3 di/of 21

1. INTRODUZIONE

Stantec S.p.A., in qualità di Consulente Tecnico, è stata incaricata da Enel Green Power Italia Srl ("EGP Italia") di redigere il progetto definitivo per il potenziamento dell'esistente impianto eolico ubicato nel Comune di Gangi (PA), costituito da 32 turbine eoliche (WTG), di potenza 0,85 MW ciascuna, per un totale di 27,2 MW installati.

L'energia prodotta dagli aerogeneratori dell'impianto viene convogliata tramite cavidotto interrato MT, alla Sottostazione di trasformazione MT/AT ubicata in adiacenza della Stazione E-distribuzione "Monte Zimmara", collegata alla linea 150 kV "Petralia – Nicosia".

La soluzione di connessione che verrà adottata per il nuovo impianto in progetto ricalcherà l'esistente, prevedendo dunque una connessione in AT alla Stazione elettrica di AT Monte Zimmara, riadeguando l'infrastruttura esistente alla nuova taglia dell'impianto.

L'intervento in progetto prevede l'integrale ricostruzione dell'impianto, tramite l'installazione di nuove turbine eoliche, in linea con gli standard più alti presenti sul mercato, che consente di ridurre il numero di macchine da 32 a 7, diminuendo in questo modo l'impatto visivo, in particolare il cosiddetto "effetto selva". Inoltre, la maggior efficienza dei nuovi aerogeneratori comporta un aumento considerevole dell'energia specifica prodotta, riducendo in maniera proporzionale la quantità di CO2 equivalente.

1.1. DESCRIZIONE DEL PROPONENTE

Enel Green Power Italia Srl., in qualità di soggetto proponente del progetto, è una società del Gruppo Enel che si occupa dello sviluppo e della gestione delle attività di generazione di energia da fonti rinnovabili facente capo a Enel Green Power Spa.

Il Gruppo Enel, tramite la controllata Enel Green Power Italia Srl, è presente in 28 Paesi nei 5 continenti con una capacità gestita di oltre 46 GW e più di 1200 impianti.

In Italia, il parco di generazione di Enel Green Power è rappresentato dalle seguenti tecnologie rinnovabili: idroelettrico, eolico, fotovoltaico, geotermia. Attualmente nel Paese conta una capacità gestita complessiva di oltre 14 GW.

1.2. CONTENUTI DELLA RELAZIONE

La presente relazione costituisce il piano di dismissione dell'attuale impianto in esercizio.

Il capitolo 2 fornisce l'inquadramento territoriale dell'impianto attualmente in esercizio.

Il capitolo 3 fornisce una ricognizione dei siti contaminati o potenzialmente contaminati nei pressi dell'area di cantiere per la dismissione dell'impianto esistente.

Il capitolo 4 descrive nel dettaglio l'attività di dismissione, i componenti dell'impianto esistente e le modalità di smantellamento.

Nel capitolo 5 viene descritta l'attività di ripristino agli usi naturali delle aree liberate.

Il capitolo 6 fornisce un quadro sintetico dei mezzi utilizzati; il capitolo 7 riassume e cataloga i materiali di risulta.

Nel capitolo 8 si forniscono alcune indicazioni riguardo al riciclo dei materiali e l'impegno del proponente verso buone pratiche di economia circolare.

Nel capitolo 9 si fornisce una stima dei costi della dismissione.

infine, nel capitolo 10 viene fornita l'indicazione delle tempistiche dell'attività.

2. INQUADRAMENTO TERRITORIALE DEL SITO

Il sito si trova nella provincia di Palermo ed interessa il territorio del comune di Gangi.

L'area è identificata dalle seguenti coordinate geografiche:

Latitudine: 37°45'45.92"N

GRE.EEC.R.99.IT.W.09317.00.027.01

PAGE

4 di/of 21

Longitudine: 14°14'22.77"E

L'impianto in progetto ricade all'interno dei seguenti fogli catastali:

• Comune di Gangi: n° 51, n° 55, n° 63, n° 64

L'area di progetto ricade all'interno del foglio I.G.M. in scala 1:25.000 codificato 260-II-NO, denominato "Gangi".

Di seguito è riportato l'inquadramento territoriale dell'area di progetto e la posizione degli aerogeneratori su ortofoto.

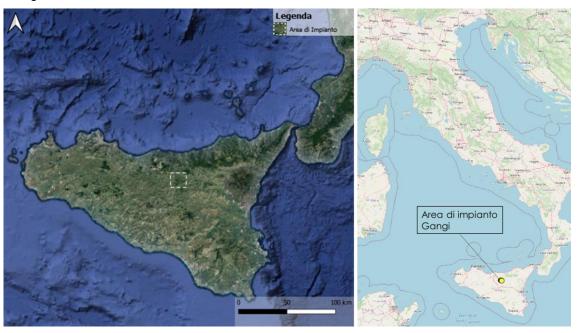


Figura 2-1: Inquadramento generale dell'area di progetto

GRE.EEC.R.99.IT.W.09317.00.027.01

PAGE

5 di/of 21

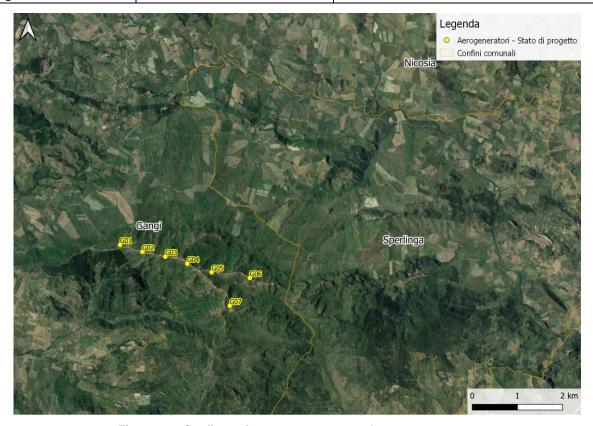


Figura 2-2: Configurazione proposta su ortofoto

Si riporta invece in formato tabellare un dettaglio sulla localizzazione delle WTG di nuova costruzione, in coordinate WGS84 UTM fuso 33 N:

Altitudine [m s.l.m.] Est [m] Nord [m] G01 433594,19 4179907,20 1199 Gangi **G02** Gangi 434087,27 4179750,12 1236 1278 **G03** Gangi 434596,63 4179644,42 G04 435079,97 4179488,03 1298 Gangi **G05** Gangi 435621,29 4179298,27 1300 436466,97 4179171,98 1248 **G06** Gangi **G07** 4178557,52 1302 Gangi 436021,03

Tabella 1: Coordinate aerogeneratori

3. RICOGNIZIONE SITI CONTAMINATI O POTENZIALMENTE CONTAMINATI

3.1. SITI CONTAMINATI DI INTERESSE NAZIONALE E REGIONALE

I siti contaminati, in base a quanto previsto dal D.Lgs. 152/2006 possono essere di "interesse nazionale" (cosiddetti SIN) o di "interesse regionale" (cosiddetti SIR). I primi sono di competenza del Ministero dell'Ambiente e della Sicurezza Energetica, mentre i secondi sono di competenza delle regioni.

Per quanto riguarda i SIN, nella regione Sicilia sono presenti i seguenti:

GRE CODE

GRE.EEC.R.99.IT.W.09317.00.027.01

PAGE

6 di/of 21

• "Biancavilla": coincide con i limiti amministrativi del comune di Biancavilla, in provincia di Catania, ad una distanza di circa 50km in direzione Sud-Est rispetto all'area di cantiere dell'impianto esistente;

- "Gela"²: ricade totalmente nel territorio del Comune di Gela in Provincia di Caltanissetta, in provincia di Caltanissetta, ad una distanza di circa 75km in direzione Sud rispetto all'area di cantiere dell'impianto esistente;
- "Area Industriale di Milazzo"³: coincide con l'area di sviluppo industriale di Gianmoro ed interessa i comuni di Milazzo, San Filippo del Mela, Pace del Mela, San Pier Niceto e Monforte San Giorgio, in Provincia di Messina, ad una distanza di circa 95km in direzione Nord-Est rispetto all'area di cantiere dell'impianto esistente;
- "Priolo"⁴: ubicata all'interno dei territori dei Comuni di Augusta, Priolo, Melilli e Siracusa, ad una distanza di circa 90km in direzione Nord-Est rispetto all'area di cantiere dell'impianto esistente.

Sulla base di quanto riportato, non si rilevano siti di interesse nazionale nel raggio di 10 km dall'area di cantiere dell'impianto esistente.

Per quanto riguarda i SIR, è stata condotta una valutazione sulla base dell'anagrafe dei siti contaminati della regione Sicilia⁵, aggiornata al 18/09/2023. I siti contaminati iscritti in anagrafe comprendono:

- I siti ricadenti nella disciplina del D.lgs. 152/2006 ss.mm.ii e per i quali, a seguito degli esiti dell'AdR, è stato riconosciuto lo stato di contaminazione per una concentrazione degli inquinanti superiore alle CSR (siti in procedura ordinaria e siti ricadenti in procedura semplificata caso 2b e caso 3);
- I siti ricadenti in procedura semplificata caso 2a

Dall'analisi anagrafica, i siti contaminati più vicini all'area di cantiere dell'impianto esistente oggetto di dismissione sono:

- Discarica contrada Nunziatella S. Silvestro, nel comune di Tronia (EN), ad una distanza di circa 26 km in direzione Nord-Est dall'area di cantiere dell'impianto esistente:
- Impianto distribuzione carburanti Kuwait PV 9863 in Largo degli Zingari, nel comune di Polizzi Generosa (PA), a circa 22km in direzione Nord-Ovest dall'area di cantiere dell'impianto esistente

Sulla base di quanto sopra, non si rileva la presenza di siti contaminati nel raggio di 10km dall'area di cantiere dell'impianto esistente.

3.2. SITI POTENZIALMENTE CONTAMINATI

Per quanto concerne l'identificazione dei siti potenzialmente contaminati, è stata condotta un'analisi sulla base della tabella riportante il censimento dei siti potenzialmente contaminati

¹ https://bonifichesiticontaminati.mite.gov.it/sin-35/

² https://bonifichesiticontaminati.mite.gov.it/sin-3/

³ https://bonifichesiticontaminati.mite.gov.it/sin-53/

⁴ https://bonifichesiticontaminati.mite.gov.it/sin-4/

⁵ https://www.regione.sicilia.it/istituzioni/regione/strutture-regionali/assessorato-energia-servizi-pubblica-utilita/dipartimento-acqua-rifiuti/censimento-ed-anagrafe-siti-bonificare

GRE.EEC.R.99.IT.W.09317.00.027.01

PAGE

7 di/of 21

al 02/10/2023⁶, presente sul sito della Regione Sicilia.

Dall'analisi, sono stati individuati i seguenti siti potenzialmente contaminati nel raggio di 10km dall'area di cantiere dell'impianto esistente:

- Discarica rifiuti urbani, identificata con codice procedura n. 629, in C/da Magione nel comune di Gangi (PA), ad una distanza di circa 5 km in direzione Nord-Ovest dall'area di cantiere dell'impianto esistente;
- Discarica rifiuti urbani, identificata con codice procedura n. 630, in C/da Magione nel comune di Gangi (PA), ad una distanza di circa 5 km in direzione Nord-Ovest dall'area di cantiere dell'impianto esistente.

4. DISMISSIONE DELL'IMPIANTO

La dismissione comporterà in primo luogo l'adeguamento delle piazzole e della viabilità; successivamente si procederà con lo smontaggio dei componenti dell'impianto e infine l'invio dei materiali residui a impianti autorizzati ad effettuare operazioni di recupero o smaltimento.

Non saranno oggetto di dismissione tutte le infrastrutture utili alla realizzazione del nuovo parco potenziato, come la viabilità esistente e le opere idrauliche ad essa connesse e le piazzole esistenti limitrofe alle nuove piazzole di montaggio.

4.1. FASI DELLA DISMISSIONE

La fase di dismissione prevede un adeguamento preliminare delle piazzole e della viabilità interna esistente per consentire le corrette manovre della gru e per inviare i prodotti dismessi dopo lo smontaggio verso gli impianti di riciclo o dismissione.

Si adegueranno tutte le piazzole, laddove necessario, predisponendo una superficie di 25x15 m sulla quale stazionerà la gru di carico per lo smontaggio del rotore ed una superficie di 6 m x 6 m sulla quale verrà adagiato il rotore.

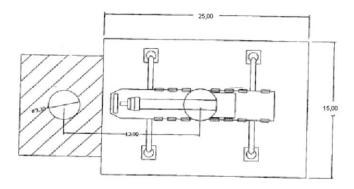


Figura 4-1: Spazio di manovra per gru

GRE CODE

GRE.EEC.R.99.IT.W.093<u>17.00.027.01</u>

PAGE

8 di/of 21

Figura 4-2: Ingombro del rotore a terra

In secondo luogo, le operazioni di smantellamento saranno eseguite secondo le seguenti procedure, in conformità con la comune prassi da intraprendere per il completo smantellamento di un parco eolico:

- 1. Smontaggio del rotore, che verrà collocato a terra per poi essere smontato nei componenti, pale e mozzo di rotazione;
- 2. Smontaggio della navicella;
- 3. Smontaggio di porzioni della torre in acciaio pre-assemblate (la torre è composta da 3 sezioni);
- 4. Demolizione del primo metro (in profondità) delle fondazioni in conglomerato cementizio armato;
- 5. Rimozione dei cavidotti e dei relativi cavi di potenza quali:
 - a. Cavidotti di collegamento tra gli aerogeneratori;
 - b. Cavidotti di collegamento alla stazione elettrica di connessione e raccolta MT.

La parziale rimozione delle fondazioni, per massimizzare la quantità di materiale recuperabile, seguirà procedure (taglio ferri sporgenti, riduzione dei rifiuti a piccoli cubi) tali da rendere il rifiuto utilizzabile nel centro di recupero.

Al termine delle operazioni di smontaggio, demolizione e rimozione sopra descritte, verranno eseguite le attività volte al ripristino delle aree che non saranno più interessate dall'installazione del nuovo impianto eolico, tramite l'apporto e la stesura di uno strato di terreno vegetale che permetta di ricreare una condizione geomorfologica il più simile possibile a quella precedente alla realizzazione dell'impianto.

4.2. CONFIGURAZIONE DELL'IMPIANTO ESISTENTE

La configurazione dell'impianto eolico attualmente in esercizio è caratterizzata da:

- 32 aerogeneratori Gamesa G52;
- 32 piazzole con relative piste di accesso;
- Sistema di cavidotti interrati MT per il collettamento dell'energia prodotta. Il tracciato del cavidotto comprende sia tratti interrati che un tratto aereo e termina ai quadri MT presenti nella Sottostazione elettrica presente in sito;

GRE.EEC.R.99.IT.W.09317.00.027.01

PAGE

9 di/of 21

4.2.1. DISMISSIONE DEGLI AEROGENERATORI

Gli aerogeneratori Gamesa G52, di potenza nominale pari a 0,85 MW, sono del tipo con torre tronco-conica. Le tre parti principali da cui è costituito questo tipo di turbina eolica sono la torre di supporto, la navicella e il rotore. A sua volta il rotore è formato da un mozzo al quale sono montate le tre pale.

La navicella è montata alla sommità della torre tronco-conica, ad un'altezza di circa 55 metri. Al suo interno è presente l'albero "lento", calettato al mozzo, e l'albero "veloce", calettato al generatore elettrico. I due alberi sono in connessione tramite un moltiplicatore di giri o gearbox. All'interno della navicella è altresì presente il trasformatore MT/BT.

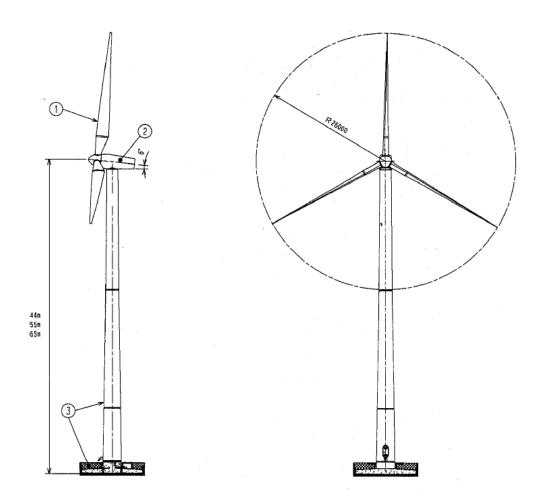


Figura 4-3: Dimensioni principali di una Gamesa G52

4.2.1.1. Le pale

Nel modello Gamesa G52, il rotore della turbina ha un diametro di 52 metri ed è composto da tre pale. L'area spazzata complessiva ammonta, per ciascun rotore, a 2.124 m².

Le pale sono realizzate in materiale composito, con resina epoxy e fibra di vetro.

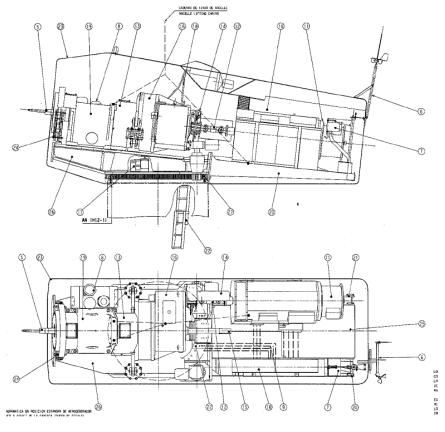
La struttura delle pale dell'aerogeneratore è formata da un longherone interno, intorno al quale è attaccato il rivestimento, formato da due strati fabbricati separatamente. Lo scopo del longherone è apportare resistenza strutturale all'insieme, sopportare i carichi propri della pala e trasmettere sforzi al mozzo. Il longherone è una trave di sezione tubolare chiusa con una geometria adattata alla forma aerodinamica dei profili della pala.

Il rivestimento non ha uno scopo strutturale, ma ha la forma aerodinamica adatta a convertire

GRE.EEC.R.99.IT.W.09317.00.027.01

PAGE

10 di/of 21


Engineering & Construction

l'energia cinetica del vento in forza motore per la produzione di elettricità. Tale rivestimento ha una struttura a "sandwich" con nucleo di PVC e laminato di fibra di vetro in resina epoxy.

In generale, le pale vengono avviate a discarica autorizzata per rifiuti, data la non pericolosità degli stessi.

4.2.1.2. La navicella

La navicella è l'elemento montato in cima alla torre che ha la doppia funzione di sostegno del rotore e di alloggiamento di tutti i componenti per trasferire l'energia meccanica del rotore al generatore elettrico.

5.	Sistema di cambio di passo	13.	Protezione asse basso	21.	Telaio posteriore destro
6.	Banderuola e anemometro	14.	Protezione asse rapido	22.	Scala nacelle
7.	Polipasto	15.	Protezione sensore di posizione	23.	Carcassa
8.	Gruppo Idraulico	16.	Moltiplicatore	24.	Sistema di arresto del rotore
9.	Cablaggio Elettrico.	17.	Refrigerazione e filtro d'olio	25.	Base di nacelle
10.	Pannello di controllo	18.	Connessione tra moltipl. e raffreddatore	26.	Telaio anteriore
11.	Generatore	19.	Treno di bassa	27.	Sistema di giro
12.	Accoppiamento asse rapido.	20.	Telaio posteriore sinistro		

Figura 4-4: Navicella di una Gamesa G52

In generale, i principali componenti che sono alloggiati nella navicella sono:

- Mozzo;
- Albero lento e albero veloce;
- Moltiplicatore di giri (Gearbox);

GRE CODE

GRE.EEC.R.99.IT.W.09317.00.027.01

PAGE

11 di/of 21

- ______
 - Quadro elettrico e sistema di controllo;
 - Trasformatore BT/MT;

Generatore elettrico;

- Gruppo idraulico;
- · Oli e grassi;
- Telaio e carena della navicella.

<u>Mozzo</u>

Il mozzo ha la funzionalità di accoppiare le tre pale del rotore all'albero lento. Il mozzo è fabbricato in ghisa e come tale può essere riciclato come rottame.

Albero lento e albero veloce

L'albero lento (basso numero di giri) e l'albero veloce (alto numero di giri, proporzionale alla frequenza di rete) trasmettono l'energia meccanica dal rotore al generatore elettrico. Entrambi gli alberi sono fabbricati in acciaio lavorato e anch'essi possono essere riciclati come rottame in acciaio.

Moltiplicatore di giri (Gearbox)

Il moltiplicatore di giri trasmette l'energia meccanica dall'albero lento all'albero veloce, moltiplicando il numero dei giri per consentire all'albero calettato al generatore di ruotare ad una velocità proporzionale alla frequenza di rete. Questo componente è fabbricato in acciaio ed è integrato da un sistema idraulico (condotti per il trasporto dell'olio, filtri, raccordi, valvole).

Il funzionamento del moltiplicatore di giri prevede il continuo attrito tra componenti meccanici e per questo è richiesta una certa quantità di olio lubrificante, che viene periodicamente sostituita durante il funzionamento dell'aerogeneratore.

Prima che vengano avviate le attività di smantellamento, si procederà a rimuovere l'olio idraulico e lubrificante all'interno del moltiplicatore, così come i condotti e i filtri idraulici e verranno indirizzati al riciclo presso un gestore autorizzato.

Generatore elettrico

Il generatore ha la funzione di convertire l'energia meccanica in energia elettrica. Il generatore elettrico presente nelle turbine è composto principalmente da un involucro e di un supporto interno di acciaio. All'interno di questa struttura si trovano degli avvolgimenti di cavi di rame (bobine). I generatori elettrici verranno inviati ad appositi centri di recupero, dove verranno recuperati sia l'acciaio che, soprattutto, il rame, visto l'alto valore residuo di quest'ultimo.

Trasformatore BT/MT

Il trasformatore BT/MT è costituito principalmente tra tre avvolgimenti di filo di rame, alloggiato in una struttura ferrosa. Analogamente ai generatori elettrici, si provvederà a inviarli ad appositi centri di recupero per il recupero e riciclo del materiale ferroso e del rame.

Gruppo idraulico

Il gruppo idraulico è l'insieme di condotti idraulici in pressione, valvole e filtri che distribuiscono l'olio idraulico tra il rotore e la navicella. Il fluido idraulico che consente il corretto funzionamento dei sistemi di rotazione delle varie componenti (rotore, alberi, cuscinetti, moltiplicatori di giri).

Oli e grassi

GRE.EEC.R.99.IT.W.09317.00.027.01

PAGE

12 di/of 21

Engineering & Construction

Nella navicella sono presenti diversi gruppi idraulici, sia per l'azionamento di alcuni meccanismi sia per la lubrificazione dei componenti in rotazione.

Prima dell'avvio delle fasi di disassemblaggio della navicella, verranno scrupolosamente raccolti tutti gli oli e grassi presenti nei vari circuiti e inviati ad appositi centri di raccolta e smaltimento.

Telaio e carena della navicella

Il telaio si divide in due parti:

- La parte anteriore è formata da un assemblaggio di lamiere saldate che configura una trave rigida, dove vengono fissati la scatola dei cuscinetti ed il sistema di orientamento;
- La parte posteriore è formata da due travi che funzionano separatamente dal punto di vista strutturale. La base della navicella permette inoltre l'accesso per la realizzazione di compiti di riparazione e mantenimento.

La carena è il rivestimento che protegge i componenti dell'aerogeneratore che si trovano nella navicella. È fabbricata in resina poliestere con rinforzi in fibra di vetro che garantiscono un isolamento acustico adeguato.

4.2.1.3. La torre

La torre dell'aerogeneratore ha un'altezza di 55 m ed è di forma troncoconica tubolare di ferro, formata da tre sezioni giuntate.

Le diverse sezioni sono assemblate in opera tramite dei collegamenti flangiati, con un diametro alla base di 3,32 m.

In fase di dismissione, le sezioni vengono separate e ognuna di esse viene trasportata presso impianti autorizzati per il recupero dei rottami di acciaio.

4.2.2. DISMISSIONE DELLE OPERE CIVILI

Le opere civili dell'impianto esistente che non saranno propedeutiche alla realizzazione e all'esercizio del nuovo impianto verranno rimosse e conferite a centri di smaltimento in prossimità dell'impianto.

4.2.2.1. Le fondazioni

La tipologia delle fondazioni adottata è quella "di tipo diretto o superficiale" costituita da plinti a platea larga in c.a. gettato in opera.

Le fondazioni degli aerogeneratori, tenuto conto delle caratteristiche geotecniche del terreno e dei carichi permanenti, accidentali e di quelli trasmessi durante il loro funzionamento, sono costituite da:

- da un getto di calcestruzzo magro di sottofondazione, di forma quadrata con lato in pianta di circa 10,50 m e spessore di 15 cm, posto in opera, oltre che per facilitare le usuali modalità operative di armatura e getto del plinto, principalmente per motivi di protezione della superficie di fondo scavo;
- da una piastra a pianta quadrata con un ingombro massimo di 10,30 m ed una altezza costante di 1,10 m; la piastra è impostata ad una quota di -2,5/-3 m dal piano campagna e ulteriori 15 cm di calcestruzzo di sottofondazione; nella piastra è adeguatamente immorsato l'anello d'acciaio di ancoraggio della torre;
- da un dado di fondazione superiore di lato di 4,50 m ed altezza esterna di 1 m che

GRE.EEC.R.99.IT.W.09317.00.027.01

PAGE

13 di/of 21

Engineering & Construction

ingloba, con funzione di semplice protezione, la camicia in acciaio di ancoraggio della torre;

- Da un'ossatura di sottofondo e finitura superficiale di spessore 25 cm;
- da un anello in acciaio circolare, avente diametro esterno pari a 3,32 m; in sommità dell'anello, a quota esterna rispetto al piano campagna, è presente la flangia circolare che, mediante bulloni, permette l'accoppiamento con la torre.

Si prevede di procedere alla demolizione delle fondazioni secondo le fasi seguenti:

- Scavo perimetrale effettuato con escavatore per liberare la fondazione al di sotto del piano campagna dal ricoprimento in terra;
- demolizione di parte del plinto utilizzando un escavatore dotato di martello demolitore idraulico. Tale operazione verrà eseguita fino ad una profondità di circa 1 m dal piano campagna;
- carico del materiale di risulta (calcestruzzo e ferro) per invio centro autorizzato di recupero;
- riempimento dei volumi con terreno vegetale e ripristino morfologico del sito quanto più rispondente allo stato naturale.

4.2.2.2. Le piazzole

In fase di costruzione dell'impianto esistente, per consentire il montaggio degli aerogeneratori sono state realizzate delle piazzole temporanee che hanno previsto lo scotico superficiale, la spianatura, il riporto di materiale vagliato e la compattazione di una superficie di circa 350 m² (28 m x 12,5 m), comprendente l'area della piazzola definitiva. Lo spessore adottato per l'ossatura di sottofondo in materiale arido costipato è stato fissato pari a 40 cm; quale elemento separatore terreno/cassonetto di sottofondo, con lo scopo di limitare al massimo le deformazioni e i cedimenti localizzati, è stata utilizzata una geomembrana in tessuto non tessuto.

A montaggio ultimato è stata mantenuta in essere solamente l'area attorno alle macchine di dimensioni approssimativamente di $10\ m\ x\ 10\ m$, mantenuta piana e sgombra da piantumazioni, ed è stata realizzata una finitura con uno strato in ghiaietto stabilizzato dello spessore di $10\ cm$, al fine di consentire l'effettuazione delle operazioni di controllo e/o manutenzione.

A smantellamento ultimato delle turbine e delle fondazioni, si procederà a rimuovere le piazzole e all'inerbimento delle aree rimaste sgombre e non interessate dal nuovo impianto eolico.

I luoghi saranno ripristinati con apporto e stesura di uno strato di terreno vegetale tale da riportare la condizione geomorfologica post dismissione all'incirca a quella precedente alla realizzazione dell'impianto.

4.2.2.3. La viabilità

La sezione stradale, con larghezza di 4,00 m più due banchine laterali di 0,5 m, è realizzata in massicciata (tipo "Mac Adam") con materiale arido, al fine di un corretto inserimento ambientale delle strade nella realtà paesaggistica del luogo. La massicciata è composta da uno strato di fondazione in stabilizzato di 15/40 cm; superiormente è previsto uno strato di finitura/usura in ghiaietto stabilizzato, dello spessore di 10 cm; sono previste inoltre opportune sistemazioni idrauliche per la regimazione delle acque superficiali.

Le strade interne sono corredate dalle opere per la regimazione idraulica superficiale per il convogliamento ed allontanamento delle acque piovane al fine di non alterare l'idrologia del sito: le acque meteoriche vengono accompagnate ai punti di naturale compluvio più vicini.

GRE.EEC.R.99.IT.W.09317.00.027.01

PAGE

14 di/of 21

Engineering & Construction

Analogamente alla dismissione delle piazzole, qualora non siano di interesse per la realizzazione ed esercizio del nuovo impianto, le strade verranno rimosse, riutilizzando gli inerti laddove necessario e le aree verranno restituite agli usi naturali precedenti la realizzazione dell'impianto esistente.

4.2.2.4. Cabina di raccolta MT

Come punto di connessione alla rete sarà utilizzata la cabina di raccolta MT situata all'interno della Sottostazione di trasformazione MT/AT presente in sito, ubicata in adiacenza della Stazione elettrica di AT "Monte Zimmara". La cabina sarà mantenuta in essere, riadeguando l'infrastruttura esistente alla nuova taglia dell'impianto, e non sarà quindi parte dell'intervento di demolizione e dismissione.

4.2.3. DISMISSIONE DELLE OPERE ELETTRO-MECCANICHE

L'impianto eolico è composto da più aerogeneratori indipendenti, opportunamente disposti in funzione delle caratteristiche del sito, elettricamente collegati tra loro.

L'impianto in oggetto è costituito da n° 32 aerogeneratori funzionalmente raggruppati in 3 gruppi o sottocampi, per rendere maggiormente flessibile il funzionamento dell'impianto in quanto, in caso di guasto sulle apparecchiature di un sottocampo, i restanti aerogeneratori possono continuare a funzionare.

L'energia prodotta dagli aerogeneratori in bassa tensione (690 V) viene elevata a livello di MT (20 kV) tramite trasformatore elevatore posto all'interno della torre di ogni macchina e quindi convogliata, tramite elettrodotti interrati in MT, alla Sottostazione elettrica ubicata in sito.

Ogni aerogeneratore, oltre che strutturalmente è anche elettricamente indipendente dagli altri (ausiliari, funzioni di controllo, protezione, ecc.).

Le opere elettromeccaniche relative all' impianto eolico si riassumono nelle seguenti realizzazioni:

- Sistema di elettrodotti interrati ed aerei per le connessioni di potenza degli aerogeneratori con il punto di raccolta dell'energia sulla rete e delle fibre ottiche per trasmissione dei dati di supervisione;
- Impianto di terra;
- Cabine di raccolta MT.

4.2.3.1. Sistema di collettamento in MT

I cavidotti sono stati realizzati tramite uno scavo a sezione obbligata con profondità di circa 1,1 m e larghezza variabile in funzione del numero di cavi di energia presenti per ogni tratta (da 0,5 m a 0,8 m); in un angolo, sul fondo dello scavo, all'interno di uno strato di terreno vegetale, è posto il conduttore di terra.

Sempre sul fondo della trincea, all'interno di uno strato di sabbia vagliata, sono alloggiati i cavi di energia ed i cavi (in fibra ottica) per la comunicazione. Superiormente allo strato di sabbia, che ricopre integralmente tutti cavi, sono poste opportune lastre aventi lo scopo di proteggere meccanicamente i cavi. Il volume restante dello scavo è stato riempito di materiale arido compatto all'interno del quale è stato posato un nastro di segnalazione.

In superficie sono presenti cippi di segnalazione, realizzati con pilastrini in cemento, per segnalare il tracciato o indicare particolari situazioni quali: presenza di giunti sui cavi, diramazioni, attraversamenti, ecc.

Le operazioni programmate sono l'apertura di uno scavo a trincea per consentire l'estrazione ed il recupero dei cavi elettrici e delle fibre ottiche. Una volta che i materiali recuperati dallo scavo saranno caricati sui mezzi di trasporto avverrà la chiusura della trincea ed il ripristino dello stato dei luoghi nel caso in cui il tracciato del cavidotto non coincide con il nuovo tracciato a servizio dell'impianto in progetto. Nel caso di tracciati coincidenti con quelli di

GRE.EEC.R.99.IT.W.09317.00.027.01

PAGE

15 di/of 21

Engineering & Construction

servizio per l'impianto di nuova realizzazione, la chiusura delle trincee potrà avvenire successivamente alla posa dei nuovi cavi.

I cavi saranno avviati a centro di recupero per materiali ferrosi. I cavi saranno lavorati per separare la parte metallica dalla guaina esterna. La parte metallica si recupererà quasi completamente. Le guaine saranno smaltite in discarica o a centro di recupero.

4.2.3.2. Impianto di terra

L'impianto di terra è costituito essenzialmente da un dispersore intenzionale di terra che collega tutti gli anelli di terra realizzati attorno ad ogni aerogeneratore e torre anemometrica.

Su ogni piazzola attorno alla fondazione degli aerogeneratori e della torre anemometrica sono presenti anelli di terra di opportune dimensioni geometriche a cui sono connessi i dispersori di fatto costituiti dalle armature metalliche delle opere civili nonché tutte le masse e masse estranee relative ad ogni macchina (torre, aerogeneratore, apparecchiature elettriche MT, BT e ausiliarie) o alla torre anemometrica (traliccio e strumentazione).

I singoli anelli sono interconnessi tra loro mediante un conduttore di terra interrato insieme ai cavi di potenza. Gli anelli di terra ed i conduttori di interconnessione interrati sono in corda di rame nudo.

Durante lo scavo per la rimozione delle fondazioni si provvederà a rimuovere tutti gli anelli di terra presenti per ciascun aerogeneratore, mentre i conduttori in corda di rame verranno estratti contestualmente ai cavidotti in media tensione.

Tutto il rame recuperato verrà inviato ad appositi centri di recupero per il riciclo e valorizzazione dello stesso.

4.2.3.3. Cabine di raccolta MT

La cabina è costituita da due moduli affiancati aventi dimensioni complessive planimetriche di circa $15 \times 2,46$ ed altezza fuori terra di 2,58 m, quindi con superficie coperta di 36,9 mq e con volumetria di 95,20 mc.

La struttura della cabina è realizzata in c.a. prefabbricato poggiante su fondazione costituita da un basamento/vasca di fondazione prefabbricato, per alloggio e risalita cavi provenienti dalle varie macchine, e da una sottostante platea, gettata in opera.

5. OPERE DI RIPRISTINO DELLE AREE NATURALI

Concluse le attività di smantellamento e rimozione dei componenti dell'impianto, si procederà con le opere di ripristino ambientale dei luoghi <u>in tutti i casi in cui l'area di progetto non verrà più interessato da opere di realizzazione del nuovo impianto</u>. Le operazioni di ripristino sono volte a consentire la conservazione e il rinvigorimento degli habitat naturali presenti.

Tutte le piazzole, i braccetti di accesso e i tratti di viabilità che non saranno più interessati dalle nuove installazioni verranno rimodellati per ricreare la morfologia naturale, saranno ricoperte con terreno vegetale di nuovo apporto e gli usi saranno restituiti a quelli ante-operam.

Gli interventi tipo saranno:

- Trasporto di inerti, terreno e terreno vegetale necessari per i riporti;
- Modellamento del terreno per ripristinare la morfologia originaria del sito;
- Ricostruzione dello strato superficiale di terreno vegetale idoneo per gli impianti vegetali;
- Creazione di un idoneo reticolo idrografico per il controllo delle acque meteoriche per evitare fenomeni di ruscellamento delle acque superficiali ed erosione;

GRE CODE

GRE.EEC.R.99.IT.W.09317.00.027.01

PAGE

16 di/of 21

• Realizzazione degli interventi di stabilizzazione e di consolidamento con tecniche di ingegneria naturalistica ove richiesto dalla morfologia e dallo stato dei luoghi;

• Inerbimento mediante semina di specie erbacee delle fitocenosi locali;

L'obiettivo fondamentale di queste operazioni è quello di impiegare il più possibile tecnologie e materiali naturali, ricorrendo a soluzioni artificiali solo nei casi di assoluta necessità, dettata da ragioni strutturale. Sarà comunque adottata la tecnologia meno impattante e a minor consumo di energia e risorse a pari risultato funzionale e biologico.

6. MEZZI UTILIZZATI

Le attività descritte nei paragrafi precedenti saranno svolte da squadre specializzate. Si prevede che tali squadre adopereranno i mezzi riportati nella tabella seguente:

Tipo	Numero
Furgoni e auto da cantiere	6
Escavatore cingolato	3
Pala cingolata	3
Bobcat	3
Martello demolitore	3
Autocarro mezzo d'opera	6
Rullo ferro-gomma	1
Autogrù / piattaforma mobile autocarrata	3
Camion con gru	1
Camion con rimorchio	2
Carrelli elevatore da cantiere	2
Muletto	1
Autobotte	1
Fresa Stradale	1

GRE CODE

GRE.EEC.R.99.IT.W.093<u>17.00.027.01</u>

PAGE

17 di/of 21

7. MATERIALI DI RISULTA

La seguente tabella fornisce un riepilogo sintetico di tutti i materiali di risulta generati dalle attività di smantellamento descritte nei paragrafi precedenti:

Tipo	Codice CER
Altri oli per motori, ingranaggi e lubrificazione	130208*
Batterie alcaline	160604
Miscugli o scorie di cemento, mattoni, mattonelle e ceramiche	170107
Scarti legno	170201
Vetroresina (rotore, copertura navicelle)	170203
Catrame sfridi	170301*
Rame, bronzo, ottone	170401
Alluminio	170402
Ferro e acciaio	170405
Metalli misti	170407
Cavi	170411
Carta, cartone	200101
Vetro	200102
Pile	200134
Plastica	200139
Lattine	200140
Indifferenziato	200301

Per la dismissione dell'impianto esistente sono state stimate le seguenti quantità di rifiuti da conferire in appositi centri di smaltimento/recupero:

- Circa 1.056.000 kg di materiali compositi derivanti da rotori e navicelle. La stima della quantità è stata effettuata considerando i pesi del rotore e della navicella riportati nel datasheet del modello di aerogeneratore del parco eolico esistente;
- Circa 1.824.000 kg di materiale ferroso derivante dalle torri. La quantità è stata stimata sulla base del peso della torre riportato nel datasheet del modello di aerogeneratore attualmente installato;
- Circa 650 mc di calcestruzzo armato derivante dalla demolizione delle fondazioni delle WTG; la quantità è stata calcolata considerando il volume derivante dalla demolizione dei plinti di fondazione fino a 1m di profondità dal piano campagna;
- Circa 28.000 kg di cavi elettrici. La quantità è stata stimata sulla base della lunghezza, del materiale e della sezione dei cavi elettrici riportati nel Piano Cavi dell'impianto eolico esistente;
- Circa 3.900 litri di olio per ingranaggi e lubrificazione; la quantità di olio è stata stimata sulla base dei volumi di olio di gearbox e hydraulic unit, riportati nel datasheet del modello di aerogeneratore dell'impianto eolico esistente;
- Circa 32.000 kg di rame (circa 1000 kg per ogni WTG) derivanti dalla dismissione delle bobine dei generatori elettrici, stimati sulla base di precedenti piani di dismissione

Sarà prevista una sola area di cantiere per la dismissione dell'impianto esistente, destinata allo stoccaggio temporaneo dei materiali di risulta, coincidente con il site camp che verrà utilizzato in fase di costruzione del nuovo impianto. Inoltre, non è prevista l'identificazione di aree aggiuntive per stoccaggio temporaneo di terreno da scavo in quanto sarà possibile

GRE CODE

GRE.EEC.R.99.IT.W.09317.00.027.01

PAGE

18 di/of 21

destinare a tale scopo le singole aree progressivamente dismesse a mano a mano che si renderanno disponibili.

Si ribadisce dunque che le terre e rocce da scavo prodotte dalle attività di dismissione dell'impianto esistente saranno riutilizzate completamente in sito per le operazioni di rinterro previste dalle attività di dismissione; pertanto, non saranno presenti esuberi di terre e rocce da scavo da conferire a centri di recupero o smaltimento. Le terre e rocce da scavo derivanti dalle operazioni di dismissione, completamente riutilizzate in sito come rinterri, saranno gestite secondo l'art.24 del DPR 120/2017.

Per quanto riguarda la gestione delle terre e rocce da scavo in esubero dalle attività di costruzione, si faccia riferimento al doc. GRE.EEC.K.25.IT.W.09317.00.019.02 - Piano preliminare di utilizzo delle terre e rocce da scavo.



Figura 7-1: Area di cantiere (site camp) rappresentata in giallo su ortofoto

Per quanto riguarda, invece, i materiali di risulta dalla dismissione dell'impianto esistente, riportati in tabella, in questa fase preliminare sono stati individuati 4 possibili siti a cui destinarli per operazioni di recupero/smaltimento, ubicati al di fuori dell'area di cantiere, ed elencati di seguito:

- GENERAL MONTAGGI SOC. COOP., nel comune di Catenanuova (EN), per la gestione dei rifiuti codice CER 130208, a una distanza di circa 45 km in linea d'aria in direzione Sud-Est rispetto all'area di cantiere;
- 6 C M s.r.l. nel comune di Nicosia (PA), per la gestione dei rifiuti codice CER 170107,170201, 170203, 170301, a una distanza di circa 13.5 km in linea d'aria in direzione Sud-Est rispetto all'area di cantiere;
- MORGAN'S S.R.L., nel comune di Enna (EN), per la gestione dei rifiuti codice CER 170401, 170402, 170405, 170407, 170411 200101, 200102, 200134, 200139, 200140 a una distanza di circa 30 km in linea d'aria in direzione Sud-Est rispetto all'area di cantiere;
- ECORICICLO S.R.L.S., nel comune di Piazza Armerina (EN), per la gestione dei rifiuti codice CER 200301, a una distanza di circa 46 km in linea d'aria in direzione Sud-Est rispetto all'area di cantiere;

Il proponente si riserva di comunicare nelle successive fasi di progettazione, all'autorità

GRE CODE

GRE.EEC.R.99.IT.W.09317.00.027.01

PAGE

19 di/of 21

competente, l'ubicazione esatta dei siti di conferimento del materiale di risulta.

8. RICICLO COMPONENTI ED ECONOMIA CIRCOLARE

Tra i più importanti obiettivi del Proponente vi è senza dubbio quello di intraprendere azioni che promuovano e garantiscano il più possibile l'economia circolare. Nello specifico, la fase di dismissione produrrà ingenti quantità di materiale residuo, come evidenziato nel capitolo precedente.

Si sottolinea che ogni materiale da risulta prodotto sarà attentamente analizzato e catalogato per poter essere inviato ad appositi centri di recupero.

Per quanto riguarda le fondazioni, l'acciaio delle armature verrà recuperato e portato in fonderia mentre il calcestruzzo frantumato potrà essere utilizzato come inerte per la realizzazione di sottofondi, massetti, e per altre varie applicazioni edili.

Il riciclaggio dei cavi elettrici avverrà tramite il riciclo della plastica e del metallo di cui sono composti. Da un punto di vista pratico, la separazione tra i diversi materiali avviene attraverso il loro passaggio in alcuni macchinari separatori.

I materiali prodotti in maggior quantità saranno prevalentemente prodotti dallo smantellamento delle torri eoliche (acciaio) e dai rotori delle turbine (materiali compositi).

A tal proposito, si segnala che è stata recentemente costituita una nuova piattaforma intersettoriale composta da WindEurope (che rappresenta l'industria europea dell'energia eolica), Cefic (rappresentante dell'industria chimica europea) ed EuCIA (rappresentante dell'industria europea dei compositi).

Attualmente, una turbina eolica può essere riciclata per circa l'85-90% della massa complessiva. La maggior parte dei componenti, infatti, quali le fondamenta, la torre e le parti della navicella, sono già sottoposte a pratiche di recupero e riciclaggio. Diverso, invece, il discorso per quanto riguarda le pale delle turbine: essendo realizzate con materiali compositi, risultano difficili da riciclare.

Il riciclaggio dei materiali compositi non è soltanto una sfida dell'industria eolica: nei prossimi 5 anni, le pale dismesse rappresenteranno solo il 10% del totale stimato dei rifiuti compositi termoindurenti. Questi volumi, relativamente bassi, complicano la creazione di un sistema di riciclaggio conveniente, che sia basato solo su questo flusso di rifiuti. Per questo, è indispensabile un approccio intersettoriale che, partendo dal settore eolico, possa dare una spinta tecnologica a tutta la filiera dei materiali compositi.

Oggi la tecnologia più comune per il riciclaggio dei rifiuti compositi è quella che vede il riutilizzo e l'inserimento dei componenti minerali nella lavorazione del cemento. Tra gli obiettivi della piattaforma creata da WindEurope, Cefic ed EuCIA, vi è anche quello di sviluppare tecnologie alternative di riciclaggio, per produrre nuovi compositi e materiale riciclato di valore più elevato rispetto al cemento. L'industrializzazione di tali sistemi alternativi potrebbe portare a interessanti soluzioni per quei settori che normalmente utilizzano materiali compositi, come l'edilizia, i trasporti marittimi e la stessa industria eolica.

9. STIMA DEI COSTI DELLA DISMISSIONE

La stima dei costi è stata effettuata mediante indagini di mercato e preventivi richiesti a società specializzate nelle demolizioni, avendo effettuato anche un confronto con il prezziario regionale.

I criteri generali che sono stati seguiti per pervenire alla stima degli oneri sono di seguito riportati:

- I costi di smontaggio degli aerogeneratori ed il trasporto dei vari materiali e componenti di risulta agli appositi centri di recupero e/o smaltimento autorizzati sono ricavati da preventivi ricevuti da ditte specializzate nel decommissioning di impianti industriali;
- la quantità di calcestruzzo armato da demolire è stata computata valutando le dimensioni della fondazione e considerando la demolizione della parte superiore del

GRE CODE

GRE.EEC.R.99.IT.W.09317.00.027.01

PAGE

20 di/of 21

plinto fino ad una profondità di 1 metri dal piano campagna;

• il costo degli inerti derivante dallo smantellamento delle piazzole dei tratti stradali è stato assunto essere pari al costo del conferimento presso centro autorizzato di trattamento e recupero. Nel caso di riutilizzo in sito il costo sarà inferiore;

È effettuata una stima dei ricavi dalla valorizzazione dei materiali ferrosi recuperati, desunta da analisi di mercato. La tabella seguente mostra le voci che compongono la stima completa del costo totale per le attività di smantellamento e rispristino ambientale dei luoghi:

Descrizione attività	Unità	Quantità	Costo unitario	Costo totale
Allestimento cantiere e impiego mezzi speciali	cad	3	20.000 €	60.000€
Adeguamento piazzola per lo smontaggio aerogeneratori (25 mx15 m)	cad	32	500 €	16.000 €
Smontaggio rotore	cad	32	5.000 €	160.000€
Smontaggio navicella	cad	32	3.000 €	96.000 €
Smontaggio torre	cad	32	2.000 €	64.000 €
Demolizione calcestruzzi armati sino ad 1 m di quota da piano campagna, con mezzo meccanico	mc	648	100 €	64.800 €
Reinterro scavo fondazione	mc	648	10 €	6.480 €
Ripristino morfologico piazzole e braccetti di accesso	mc	4.480	8€	35.840 €
Rimozione e smaltimento cavi e cavidotti		-	-	80.000 €
Trasporto e invio a centro smaltimento		-	-	150.000 €
Totale				733.120 €
Ricavi da recupero materiali ferrosi torri (55000 kg / WTG)	kg	1.760.000	0,10 €	176.000 €
Ricavi da recupero rame bobine generatori elettrici (1,000 kg / WTG)	kg	32.000	0,50€	16.000 €
Totale Netto				541.120 €

10. CRONOPROGRAMMA

Le operazioni di smantellamento verranno avviate con l'approntamento dei mezzi e l'allestimento delle aree di cantiere. Si prevede che nelle attività di dismissione lavorino tre squadre in parallelo. In tal modo è possibile ottimizzare i tempi e si stima che le fasi di dismissione si protraggano per un periodo di durata di circa 23 settimane.

			N	И1		M2		M3			M4				M5				M6						
	Tot	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15	S16	S17	S18	S19	S20	S21	S22	S23	S24
Allestimento cantiere e impiego mezzi speciali	1																								
Adeguamento piazzole	4																								
Smontaggio aerogeneratori	15																								
Demolizione fondazioni	11																								
Rimozione cavidotti	15																								
Rinterri	3																								
Ripristino morfologico	13																								
Trasporto	20																								

Figura 10-1: Cronoprogramma dismissione

Si riporta di seguito una stima relativa all'allocazione delle risorse prevista per le attività di dismissione dell'impianto esistente. Si sottolinea che il numero di risorse necessarie per le operazioni di dismissione potrebbe essere soggetto a variazioni in fase successiva di

GRE.EEC.R.99.IT.W.09317.00.027.01

PAGE

21 di/of 21

pianificazione.

Attività dismissione impianto esistente	Durata in settimane	<mark>Mezzi per</mark> squadra	Uomini per squadra	N uomini tot
Allestimento cantiere	1		•	21
Adeguamento piazzole per lo smontaggio	4	1 Pala meccanica cingolata, 1 Autocarro	2 operai qualificati +capo squadra	7
Smontaggio aerogeneratori	15	1 Autogru, 1 Camion con Gru, 1 Camion con Rimorchio, 1 autobotte	4 operai qualificati + 2 manovali +capo squadra	22
Demolizioni fondazioni	11	1 autocarri, 3 Martello demolitore	4 operai qualificati + 3 manovali +capo squadra	<mark>17</mark>
Rimozione cavidotti	15	Escavatore cingolato, 1 autocarro	2 operai qualificati + 2 manovali + capo squadra	11
Rinterri	3	Escavatore cingolato, 1 autocarro	2 operai qualificati + 2 manovali + capo squadra	6
ripristino morfologico	13	1 Pala meccanica cingolata, 1 autocarro, 1 rullo	3 operai qualificati +2 manovali +capo squadra	13