COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

CONSORZIO:

SOCI:

HIRPINIA - ORSARA AV

PROGETTAZIONE: MANDATARIA:

MANDANTI:

PROGETTO ESECUTIVO

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

IN - INTERFERENZE ED OPERE IDRAULICHE

IN02 - TOMBINO STRADALE Ø1000 pk 0+185.00 (NV01 ovest)

Tombino circolare IN02 - Relazione di calcolo

APPALTATORE	DIRETTORE DELLA PROGETTAZIONE	PROGETTISTA
Consorzio HIRPINIA - ORSARA AV II Direttore Tecnico Ing. P. M. Gianvecchio 08/06/2022	Il Responsabile integrazione fra le varie prestazioni specialistiche Ing. G. Cassani	NETENGINEERING Ing. R. Zanon

COMMESSA

LOTTO FASE ENTE TIPO DOC.

OPERA/DISCIPLINA

PROGR.

REV.

SCALA:

3 A

N 0 2 0

0 0

В

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
А	C 08.00 – Emissione 180gg	P. Salvò	08/02/2022	A. Totaro	08/02/2022	T. Finocchietti	08/02/2022	Ing. R. Zanon
В	C 08.01 - A valle del contraddittorio	P. Salvò	08/06/2022	A. Totaro	08/06/2022	A. Callerio	08/06/2022	
								08/06/2022

File: IF3A02EZZCLIN0200001B	n. Elab.: -
-----------------------------	-------------

APPALTATORE:

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI GCF ELETTRI-FER

M-INGEGNERIA

PROGETTO ESECUTIVO

Tombino circolare IN02 - Relazione di calcolo

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF3A
 02
 E ZZ CL
 IN0200 001
 B
 2 di 261

Indice

1 F	PREMESSA	5
2 [DOCUMENTAZIONE DI RIFERIMENTO	7
2.1	DOCUMENTI REFERENZIATI	7
2.2	DOCUMENTI CORRELATI	7
3 (CARATTERISTICHE DEI MATERIALI	8
3.1	CALCESTRUZZO	8
3.2	ACCIAIO DA ARMATURA ORDINARIA	10
4 (CARATTERIZZAZIONE GEOTECNICA	11
5 <i>A</i>	AZIONE SISMICA DI RIFERIMENTO	14
6 <i>A</i>	ANALISI DEI CARICHI - SCATOLARE	17
6.1	CARICHI PERMANENTI STRUTTURALI	18
6.2	CARICHI PERMANENTI NON STRUTTURALI	18
6.3	CARICHI ACCIDENTALI DA TRAFFICO	21
6	6.3.1 SOVRACCARICO ACCIDENTALE MOBILE	21
6	6.3.2 SPINTA SUI PIEDRITTI	
6	6.3.3 ACCELERAZIONE O FRENATA	
6.4	VARIAZIONE TERMICA	25
6.5	RITIRO E VISCOSITÀ DEL CALCESTRUZZO	26
6.6	S AZIONE SISMICA	27
6.7	RIEPILOGO CARICHI ELEMENTARI	30
7 4	ANALISI DEI CARICHI – MURI AD U	31
7.1	CARICHI PERMANENTI STRUTTURALI	32
7.2	CARICHI PERMANENTI NON STRUTTURALI	32
7.3	CARICHI ACCIDENTALI SU RILEVATO	34
7	7.3.1 SPINTA SUI PIEDRITTI	34
7.4	AZIONE SISMICA	35
7.5	RIEPILOGO CARICHI ELEMENTARI	37
Ω /	ANALISI DELCAPICHI - POZZO	38

APPALTATORE:

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI GCF ELETTRI-FER

M-INGEGNERIA

PROGETTO ESECUTIVO

Tombino circolare IN02 - Relazione di calcolo

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF3A
 02
 E ZZ CL
 IN0200 001
 B
 3 di 261

8.1	CARICHI PERMANENTI STRUTTURALI	39
8.2	CARICHI PERMANENTI NON STRUTTURALI	39
8.3	CARICO ACCIDENTALE	40
8.4	AZIONE SISMICA	41
8.5	RIEPILOGO CARICHI ELEMENTARI	43
9 C	OMBINAZIONI DI CALCOLO	
9.1	SCATOLARE	48
9.2	MURI AD U	50
9.3	POZZO	51
10 M	ODELLAZIONE STRUTTURALE	52
10.1	ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO	
-		
10.2	TIPO DI ANALISI SVOLTA	
10.3	AFFIDABILITÀ DEI CODICI UTILIZZATI	
10.4	MODELLO DI CALCOLO	
	.4.1 SCATOLARE	
	.4.3 Pozzo	
	.5.1 SCATOLARE	
	.5.2 Muri ad U	
	.5.3 Pozzo	
44 04	A DIOLU EL EMENTA DI MODELLI DI CAL COLO	60
	ARICHI ELEMENTARI MODELLI DI CALCOLO	
11.1	SCATOLARE	
11.2	MURI AD U	
11.3	POZZO	79
12 RI	SULTATI DELLE ANALISI	
12.1	INVILUPPO DELLE SOLLECITAZIONI - SCATOLARE	
12.2	INVILUPPO DELLE SOLLECITAZIONI – MURI AD U	
12.3	INVILUPPO DELLE SOLLECITAZIONI – POZZO	_
_	.3.1 Inviluppo delle sollecitazioni – Setto X1	
	.3.2 INVILUPPO DELLE SOLLECITAZIONI – SETTO X2	
	.3.3 Inviluppo delle sollecitazioni – Setto Y1	
12.	.3.4 INVILUPPO DELLE SOLLECITAZIONI – SETTO Y2	119
12.	.3.5 INVILUPPO DELLE SOLLECITAZIONI – FONDAZIONE	126

APPALTATORE:

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF **ELETTRI-FER**

M-INGEGNERIA

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. Tombino circolare IN02 - Relazione di calcolo E ZZ CL 4 di 261

13 VI	ERIFICHE DI SICUREZZA ULTIMA E DI ESERCIZIO	131
13.1	CRITERI DI VERIFICA	131
13.2	SOLLECITAZIONI DI VERIFICA - SCATOLARE	133
13.3	SOLLECITAZIONI DI VERIFICA – MURI AD U	136
13.4	SOLLECITAZIONI DI VERIFICA – POZZO	137
13.5	VERIFICHE - SCATOLARE	143
	3.5.1 SOLETTA SUPERIORE – SEZIONE CENTRALE	
	3.5.1 SOLETTA SUPERIORE – SEZIONE LATERALE	
13	3.5.1 FONDAZIONE- SEZIONE CENTRALE	155
	3.5.1 FONDAZIONE- SEZIONE LATERALE	
	3.5.1 PIEDRITTI – SEZIONE DI TESTA	
	3.5.1 PIEDRITTI – SEZIONE DI PIEDE	
	VERIFICHE - MURI AD U	
	3.6.1 FONDAZIONE - SEZIONE CENTRALE	
	3.6.1 FONDAZIONE – SEZIONE LATERALE	
	3.6.1 PIEDRITTO - SEZIONE AL PIEDE	
-	VERIFICHE - POZZO	_
	3.7.1 SETTO X1	
	3.7.2 SETTO X2	
	3.7.3 SETTO Y1	
	3.7.4 SETTO Y2	
13	5.7.5 FONDAZIONE	232
14 VI	ERIFICHE GEO	242
14.1	SCATOLARE	242
14.2	MURI AD U	245
14.3		_
14.5	1 0220	271
15 IN	ICIDENZA ARMATURE	249
46 \/	EDIFICA DI OTADII ITAI DEGLI COAM	
_	ERIFICA DI STABILITA' DEGLI SCAVI	
16.1		
16.2	ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO	250
16.3	NORMATIVE DI RIFERIMENTO	251
16.4	DESCRIZIONE METODO DI CALCOLO	251
16.5	SEZIONE S1	252
16	5.5.1 DATI	252
16.6	RISULTATI ANALISI	257

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** Mandataria Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Tombino circolare IN02 - Relazione di calcolo E ZZ CL

1 PREMESSA

Nell'ambito dell'Itinerario Napoli-Bari si inserisce il Raddoppio della Tratta Orsara – Hirpinia oggetto della Progettazione Esecutiva in esame.

Nel presente elaborato sono riportati i criteri progettuali e le verifiche strutturali seguiti per il dimensionamento e le verifiche di resistenza del tombino circolare stradale IN02 di diametro DN1000 e spessore 0.10 m . Il manufatto è situato al km 0+189.81 del tratto stradale NV01-1.

Il tombino ha una lunghezza totale di 20.60 m ed un approfondimento di 0,49 m, misurato all'estradosso della copertura. Nei calcoli il manufatto viene assimilato ad un tombino scatolare di larghezza e altezza nette pari a 1,0 m e formato da soletta di fondazione, soletta di copertura e piedritti, tutti di spessore 0,40 m, corrispondente alla minima sezione resistente del manufatto, ovvero la sezione al netto della tubazione interna.

I manufatti di raccordo ad U hanno le pareti verticali di spessore pari a 0.30 m e la soletta di fondazione di spessore pari a 0.40 m. In particolare, nel presente documento si espongono i calcoli strutturali relativi al manufatto con le pareti di altezza netta massima pari a 1.65 m.

Nel presente documento sono inoltre riportati i calcoli relativi al manufatto scatolare di dimensioni interne 3.00x3.00 m e di altezza interna 4.30 m. Le pareti verticali hanno spessore pari a 0.40 m e la soletta di fondazione di spessore pari a 0.50 m.

Tutte le opere sono realizzate in cemento armato gettato in opera.

L'analisi strutturale del tombino e dei muri di raccordo ad U sono effettuata su un modello piano che descrive una striscia larga 1.00 m secondo, mentre la struttura a pozzo è modellata in 3d con riferimento allle dimensioni reali dell'opera. I criteri di calcolo sono descritti nei paragrafi seguenti.

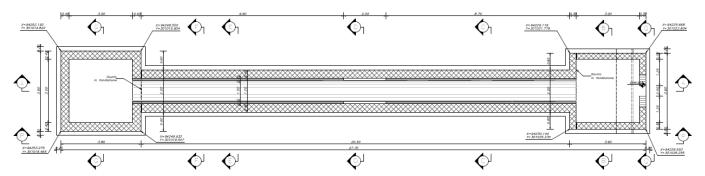


Figura 1.1: pianta

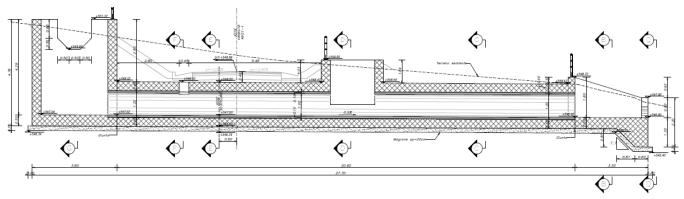


Figura 1.2: sezione longitudinale

APPALTATORE:								
Consorzio	Soci							
HIRPINIA - ORSARA A	/ WEBUILD ITALIA PIZZAROTT	1		ITIN	ERARIO	NAPOLI – B	ARI	
PROGETTAZIONE:						TA APICE -	ODSAE) A
<u>Mandataria</u>	Mandanti					LE HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERING PINI		-01	10 F0	NZIONAI	LE HIKPINIA	- UKS	AKA
M-INGEGNERIA	GCF ELETTRI-FE	ĸ						
PROGETTO ESECU	TIVO	COMME	SSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02	Relazione di calcolo	IF3	١.	02	E ZZ CL	IN0200 001	В	6 di 261

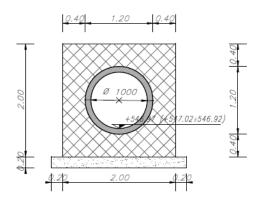


Figura 1.3: sezione trasversale

APPALTATORE: Consorzio HIRPINIA - ORSARA AV PROGETTAZIONE: Mandataria ROCKSOIL S.P.A M-INGEGNERIA	Soci WEBUILD ITALIA PIZZAROTTI Mandanti NET ENGINEERING PINI GCF ELETTRI-FER		DDOPF	PIO TRAT	NAPOLI – BA TA APICE - L LE HIRPINIA	ORSAF	
PROGETTO ESECUT		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -		IF3A	02	E ZZ CL	IN0200 001	B	7 di 261

2 DOCUMENTAZIONE DI RIFERIMENTO

2.1 DOCUMENTI REFERENZIATI

La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

- Rif.[1] Legge 5 novembre 1971 n. 1086: Norme per la disciplina delle opere di conglomerato cementizio armato normale e precompresso ed a struttura metallica.
- Rif.[2] D.M. del 17.01.2018 "Aggiornamento delle norme tecniche per le costruzioni" (NTC 2018)
- Rif.[3] Circolare del 21.01.2019 contenente le istruzioni per le l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. del 17.01.2018
- Rif.[4] EN 1991-2 "Eurocodice 1 Azioni sulle strutture Parte 2: carichi da traffico sui ponti".
- Rif.[5] EN 1992-1 "Eurocodice 2 Progettazione delle strutture in calcestruzzo Parte 1-1: Regole generali e regole per edifici".
- Rif.[6] EN 1992-1 "Eurocodice 2 Progettazione delle strutture in calcestruzzo Parte 2: ponti di calcestruzzo Progettazione e dettagli costruttivi".
- Rif.[7] EN 1997-1 "Eurocodice 7 Progettazione geotecnica- Parte 1: Regole generali".
- Rif.[8] Regolamento (UE) n.1299/2014 del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.
- Rif.[9] RFI DTC SI PS MA IFS 001 E Manuale di progettazione delle opere civili parte II Sezione 2 Ponti e Strutture
- Rif.[10] RFI DTC SI PS SP IFS 001 E Manuale di progettazione delle opere civili parte II Sezione 6 Opere in conglomerato cementizio e in acciaio

La progettazione è conforme alle normative vigenti nonché alle istruzioni dell'Ente FF.SS.

2.2 DOCUMENTI CORRELATI

Rif.[11]	IF3A02EZZBBIN0200001B – Tombino circolare IN02 - Carpenterie
Rif.[12]	IF3A02EZZPBIN0200001B – Tombino circolare IN02 - Pianta fondazioni e pianta scavi
Rif.[13]	IF3A.0.2.E.ZZ.F6.GE.01.0.6.003 - Profilo Geotecnico - Viabilità SSE
Rif.[14]	IF3A.0.2.E.ZZ.RB.GE.01.0.6.001.B - Relazione Geotecnica Generale
Rif.[15]	IF3A.0.2.E.ZZ.RB.GE.03.0.6.001.B - Relazione sismica Generale
Rif.[16]	IF3A.0.2.E.ZZ.RB.GE.03.0.6.001.B - Relazione sismica Generale

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Tombino circolare IN02 - Relazione di calcolo E ZZ CL 8 di 261

3 CARATTERISTICHE DEI MATERIALI

3.1 CALCESTRUZZO

Classi di resistenza:

CLS magro e getto di livellamento
 CLS per soletta di fondazione
 CLS per piedritti
 CLS per soletta superiore
 CLS per soletta superiore

Caratteristiche di resistenza:

 $E = 22000x(f_{cm}/10)^{0,3}$ Modulo elastico

 $\begin{array}{ll} R_{ck} & \text{Resistenza cubica caratteristica a compressione} \\ f_{ck} = 0.83x \; R_{ck} & \text{Resistenza cilindrica caratteristica a compressione} \\ f_{cm} = f_{ck} + 8 & \text{Resistenza cilindrica media a compressione} \end{array}$

 $f_{cd} = 0.85 x f_{ck}/\gamma_c$ Resistenza di calcolo a compressione

 $f_{ctm} = 0.3x(f_{ck})^{2/3}$ Resistenza media a trazione assiale (semplice) (<=C50/60)

f_{ctK} = 0,7xf_{ctm} Resistenza caratteristica a trazione assiale (semplice) corrispondente al frattile 5%

 $f_{cfm} = 1,2xf_{ctm}$ Resistenza media a trazione per flessione $f_{cfK} = 0,7xf_{cfm}$ Resistenza caratteristica trazione per flessione

 $\gamma_c = 1,5$ coefficiente di sicurezza cls

classi di	Rck	Е	fck	fcd	fcm	fctm	fctk	fctd	fcfm	fcfk
resistenza	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa
C30/37	37	32837	30.00	17.00	38.00	2.90	2.03	1.35	3.48	2.43

Classi di esposizione:

•	CLS magro e getto di livellamento	X0
•	CLS per soletta di fondazione	XA1
•	CLS per piedritti	XA1
•	CLS per soletta superiore	XA1

Condizioni ambientali:

In ottemperanza alla Tabella 4.1.III delle NTC2018 le condizioni ambientali aggressive per l'opera in esame.

Tab. 4.1.III – Descrizione delle condizioni ambientali

Condizioni ambientali	Classe di esposizione
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 9 di 261

Copriferro su barre B450C (mm):

Per copriferro delle armature si intende la distanza tra la superficie esterna dell'armatura, inclusi collegamenti e staffe, e la superficie di calcestruzzo più vicina.

Il valore minimo del copriferro è stabilito in conformità e a quanto indicato nel *Manuale di progettazione delle opere civili parte II - sezione 2 - ponti e strutture* Cod. RFI DTC SI PS MA IFS 001 E.

In paricolare, in ottemperanza alla Tabella del Manuale succitato e di seguito riportata, il valore minimo del copriferro risulta pari a 40 mm ed essendo le condizioni ambientali aggressive il valore indicato in tabella va aumentato di 10 mm.

Il copriferro minimo risulta, inoltre, conforme alle NTC2018 ed alla tabella C4.1.IV della Circolare 21.01.2019.

Elemento strutturale	Copriferro minimo
Pali (di paratie o opere di sostegno), diaframmi e relativi cordoli di collegamento gettati in opera	60mm
Pali/diaframmi di fondazione gettati in opera	60mm
Pali di fondazione prefabbricati	60mm
Solettoni di fondazione, fondazioni armate	40mm
Fondazioni non armate (pozzi, sottoplinti, ecc.)	40mm
Cunette canalette e cordoli	40mm
Opere in elevazione in viste (pile, spalle, pulvini, baggioli)	40mm
Opere in elevazione con superfici interrate o non ispezionabili	40mm
Solette estradosso	35mm
Solette intradosso (getto in opera)	35mm
Impalcati armatura ordinaria	40mm
Impalcati in C.A.P cavi pre-tesi	Max (3Ø _{TR} ; 50mm)
Impalcati in C.A.P. cavi post-tesi	Max (Ø _G ; 60mm)
Predalles prefabbricate con funzioni strutturali	25mm
Predalles senza funzioni strutturali	Max (Ø _{inf} ; 20mm)

Tabella 2.5.2.2.3.2.-1

Si assume:

CLS per soletta di fondazione
 CLS per piedritti
 CLS per soletta superiore
 50 mm
 50 mm

Verifica a fessurazione:

Le verifiche tensionali e fessurative vanno eseguite secondo quanto riportato nel Manuale RFI cod. DTCSICSMAIFS001A capitolo 3.10.3.2.2 ("Le verifiche strutturali agli Stati Limite di Esercizio dovranno essere condotte secondo quanto riportato nel Manuale di Progettazione delle Opere Civili - Parte II - Sezione 2 - Ponti e Strutture, con particolare riferimento al paragrafo 2.5.1.8.3.2.1, per i valori limite delle tensioni, ed al paragrafo 2.5.1.8.3.2.4, per le verifiche a fessurazione") secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, così come identificate nel par. 4.1.2.2.4.3 delle NTC2018, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

 $w_k \le w_1 = 0.2 \text{ mm}$ (combinazione rara)

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Tombino circolare IN02 - Relazione di calcolo E ZZ CL 10 di 261

Verifica delle Tensioni di esercizio:

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori limite di riferimento, trattandosi nel caso in specie di opere Ferroviarie, sono quelli indicati nel Manuale di RFI cod. DTCSICSMAIFS001A, ovvero la tensione massima del calcestruzzo deve rispettare la limitazione seguente:

 $\sigma_c \le 0.55 \; f_{ck} = 16.5 \; \text{Mpa}$ (combinazione rara) $\sigma_c \le 0.40 \; f_{ck} = 12.0 \; \text{Mpa}$ (ombinazione quasi permanente)

In via cautelativa le sollecitazioni impiegate nelle verifiche agli SLE sono calcolate in combinazione RARA (più gravose delle sollecitazioni Q.P.). Tuttavia, nelle verifiche tensionali è stato considerato il valore più cautelativo tra i limiti tensionali previsti nel Manuale di RFI per le combinazioni allo SLE Rara e Q.P, pari a:

 $\sigma_c \le 0.40 \text{ f}_{ck} = 12.0 \text{ Mpa}$ (ombinazione quasi permanente)

3.2 ACCIAIO DA ARMATURA ORDINARIA

Acciaio ordinario per calcestruzzo armato tipo B450C

Caratteristiche di resistenza:

f_{yk} = 450 MPa Tensione caratteristica di snervamento

 $\gamma_s = 1.15$ coefficiente di sicurezza $f_{yd} = 391.3 \text{ MPa}$ Resistenza di calcolo

Verifica delle Tensioni di esercizio:

li valore limite di riferimento, trattandosi nel caso in specie di opere Ferroviarie, è quelli indicati nel Manuale di RFI, ovvero la tensione massima nell'acciaio deve rispettare la limitazione seguente:

 $\sigma_a \le 0.75 \text{ f}_{yk} = 338.0 \text{ MPa}$ (combinazione rara).

APPALTATORE:								
Consorzio	<u>Soci</u>			ITINI	EDADIO I	NADOLI D	A D I	
HIRPINIA - ORSARA A	V WEBUILD ITA	LIA PIZZAROTTI		ITINERARIO NAPOLI – BARI				
PROGETTAZIONE:			Β ΛΙ			TA APICE -	ODSVE	ο Λ
<u>Mandataria</u>	<u>Mandanti</u>					E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINE		II LO	1010	INZIONAL			
M-INGEGNERIA	GCF	ELETTRI-FER						
PROGETTO ESECU	ITIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02	- Relazione di cale	colo	IF3A	02	E ZZ CL	IN0200 001	В	11 di 261

4 CARATTERIZZAZIONE GEOTECNICA

Di seguito si riporta la caratterizzazione geotecnica del tombino oggetto della presente relazione di calcolo, situato al km 0+189.81 del tratto stradale NV01-1. Il sondaggio di riferimento è il IF16R24 di cui ai **Errore. L'origine riferimento non è stata trovata.** Si riporta di seguito uno stralcio di quest'ultimo elaborato.

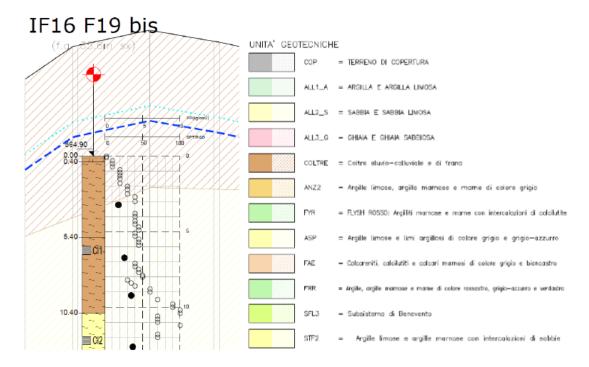


Figura 4.1 – Stralcio profilo geotecnico tratta di riferimento

Dal sondaggio di riferimento e dalle misure piezometriche (§ 4.1 Errore. L'origine riferimento non è stata trovata.), si ricava la seguente stratigrafia di riferimento.

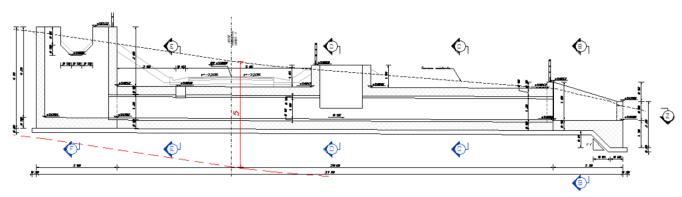

Strato	Profondità Da (m da p.c.)	Profondità a (m da p.c.)	Descrizione	
1	0.0	10.40 / 8.70	Coltre	
2 10.40 / 8.70 >30 Peliti di Difesa Grande (STF2				
Profondità della falda: 5 00 m da n c				

Tabella 4-1 Stratigrafia e falda di riferimento

APPALTATORE: Consorzio HIRPINIA - ORSARA AV PROGETTAZIONE: Mandataria ROCKSOIL S.P.A M-INGEGNERIA	Soci WEBUILD ITALIA PIZZAROTTI Mandanti NET ENGINEERING PINI GCF ELETTRI-FER		DDOPF	PIO TRAT	NAPOLI – BA TA APICE - L LE HIRPINIA	ORSAF	
PROGETTO ESECUT		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -		IF3A	02	E ZZ CL	IN0200 001	B	12 di 261

Si riportano nella tabella successiva le quote riferite alla sezione di calcolo più gravosa lungo lo sviluppo dell'opera

IN02_TOMBINO			•		
Quota progetto	548.98	mslm	IN02_POZZO		
Quota estradosso struttura media	548.50	mslm	Quota estradosso struttura media	551.32	mslm
Ricoprimento totale	0.49	m	Altezza totale opera	4.80	m m
Altezza totale opera	2.00	_m	Quota fondazione opera	546.52	mslm
Quota fondazione opera	546.50	mslm	•	550.82	mslm
Quota piano campagna	549.70	mslm	Quota piano campagna		
Profondità fondazione opera da p.c.	3.21	m	Profondità fondazione opera da p.c.	4.30	_m
Profondità falda da p.c.	5.00	m	Profondità falda da p.c.	5.00	_m
Quota falda	544.70	mslm	Quota falda	545.82	mslm

Con riferimento alla Tabella 4-1, si conclude che l'imposta fondazione per le opere in progetto è situata sullo strato più superficiale di terreno (coltre), al disopra della quota di falda, individuata a 5,00 m dal piano campagna.. Si riportano di seguito i parametri geotecnici caratteristici per la stratigrafia di riferimento.

Tabella 4-2 Parametri geotecnici caratteristici dei terreni della tratta Bovino (valore medio indicato tra parentesi quadre [])

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL 13 di 261 Tombino circolare IN02 - Relazione di calcolo

	Col	ST	TF2	
γ [kN/m³]	20÷: [20		19.5÷22.5 [21]	
IP [%]	10-	÷11	5÷	-21 -3]
- D-D-1	z≤5m	50÷450 [90]	z≤15m	60
Cu [kPa]	z >5 m	100÷450 [140]	z >15m	250
φ' [°]	2	7	z≤20m z>20m	27 28
			z<20m	20
c' [kPa]		8	z>20m	40
Eu/Cu	45	85	4	03
	z≤5m 50÷395 [85]		z≤20m	113÷1019 [201]
Eo [MPa]	z >5m	72÷395 [128]	z>20m	201÷1019 [409]
F (*) 0.00 l	z≤5m 10÷78 [17]		z≤20m	22÷203 [40]
E _{op,1} (*) [MPa]	z>5m	14÷78 [25]	z>20m	40÷203 [81]
F. (hi) n.m.	z≤5m	5÷39 [8.5]	z≤20m	11÷101 [20]
Eop,2 (**) [MPa]	z >5m	7÷39 [12.5]	z>20m	20÷101 [40.5]
c c [-]	6.4*		6.6*10-2	
Cr [-]	1.2*10-2		1.0*10-2	
Cas	2.7*10 ³			
Cv [m ² /s]	4.0*10 ⁻⁸ ÷4.0*10 ⁻⁷ [1.0*10 ⁻⁷]			÷1.0*10 ⁻⁶ *10 ⁻⁷]
e ₀ [-]	0.4÷0.6 [0.5]		0.36	÷0.49 45]
OCR [-]	1-	1÷8 [4]		
υ' [-]	0.		.3	
k [m/s]	1.2*10 ⁻⁸ - [4.0*		1.0*10*±2.0*10 ⁻⁷ [1.0*10 ⁻⁷]	

I parametri verranno utilizzati per la caratterizzazione dell'interazione terreno-struttura, ricavando la costante di sottofondo alla Winkler da utilizzare nella modellazione del suolo sotto la fondazione del manufatto (vedi § 9.5).

 $\gamma = 20.5 \text{ kN/m}^3$

φ' = 27°

c' = 8 kPa

 $c_u = 90 \text{ kPa}$

 $E_0 = 85 \text{ MPa}$

Per quanto concerne il terreno di ricoprimento ed ai lati dello scatolare, si fa riferimento ai parametri caratteristici dei rilevati stradali, qui di seguito riportati, che verranno utilizzati per il calcolo dei carichi di progetto:

 $\gamma = 19,0 \text{ kN/m}^3$

 $\phi' = 35^{\circ}$

c' = 0 kPa

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Tombino circolare IN02 - Relazione di calcolo E ZZ CL 14 di 261

5 AZIONE SISMICA DI RIFERIMENTO

L'azione sismica è descritta mediante spettri di risposta elastici e di progetto in termini di accelerazioni orizzontali e verticali in accordo alle NTC2018.

Nei seguenti paragrafi si riporta il calcolo dei parametri per la valutazione degli spettri in accelerazione orizzontale e verticale.

La sicurezza e le prestazioni di un'opera o di una parte di essa devono essere valutate in relazione alla vita nominale (V_N) ad essa associata. La vita nominale di progetto V_N di un'opera è convenzionalmente definita come il numero di anni nel quale è previsto che l'opera, purché soggetta alla necessaria manutenzione, mantenga specifici livelli prestazionali.

I valori minimi di V_N da adottare per i diversi tipi di costruzione sono riportati nella Tab. 2.4.I. delle NTC2018 di seguito riportata.

Tab. 2.4.I - Valori minimi della Vita nominale V_N di progetto per i diversi tipi di costruzioni

	TIPI DI COSTRUZIONI			
1	Costruzioni temporanee e provvisorie	10		
2	Costruzioni con livelli di prestazioni ordinari	50		
3	Costruzioni con livelli di prestazioni elevati	100		

Per le opere previste in progetto si ha $V_N = 75$ anni.

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso così definite:

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza

funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi

conseguenze rilevanti.

Classe IV:

Classe III:

Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente.

Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione

provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso. Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della

protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe

connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Le opere in progetto ricadono nella Classe D'uso III.

Le azioni sismiche su ciascuna costruzione sono valutate in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_U :

$$V_R = V_N \times C_U$$

Il valore del coefficiente d'uso C_U è definito, al variare della classe d'uso, come mostrato in Tabella, per l'opera in esame risulta pari a **1.5.**

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Tombino circolare IN02 - Relazione di calcolo E ZZ CL 15 di 261

Tab. 2.4.II - Valori del coefficiente d'uso C_U

CLASSE D'USO	I	П	III	IV
COEFFICIENTE C _U	0,7	1,0	1,5	2,0

Il periodo di riferimento V_R risulta pertanto pari a 112.5 anni.

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, V_S (in m/s).

Tab. 3.2.II - Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.

Categoria	Descrizione
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
Е	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

Nel caso specifico, sulla base dei risultati delle indagini i terreni di progetto appartengono alla **categoria "C"**. Per la definizione della categoria topografica del sito si adotta la classificazione ai sensi delle NTC2018 (Tab. 3.2.IV).

Catego	Caratteristiche della superficie topografica			
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°			
T2	Pendii con inclinazione media i > 15°			
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°			
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°			

Essendo l'area pianeggiante, ai terreni in esame è associata una **Categoria topografica T1**. Ne consegue un valore massimo del coefficiente di amplificazione topografica S_T pari a: $S_T = 1.0$.

Per la valutazione delle azioni sismiche nella zona in cui ricade l'opera i parametri di riferimento per la progettazione sono:

❖ Longitudine = 15.089128 Latitudine = 41.086200

- vita nominale = 75 anni
- ❖ classe d'uso = III (coefficiente d'uso C_U = 1.5)
- periodo di riferimento = 112.5 anni
- ❖ terreno tipo = C
- ❖ Categoria topografica = T1 (coefficiente di amplificazione topografica S_T=1.0)

APPALTATORE: Consorzio HIRPINIA - ORSARA AV PROGETTAZIONE:	Soci WEBUILD ITALIA PIZZAROTTI	RAI			NAPOLI – BA		ΡΔ
<u>Mandataria</u>	Mandanti				E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERING PINI GCF ELETTRI-FER	11 201	1010	INZIONAL		- 01(3)	
M-INGEGNERIA							
PROGETTO ESECUT	IVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	Relazione di calcolo	IF3A	02	E ZZ CL	IN0 2 00 001	В	16 di 261

L'azione sismica di progetto è definita per lo Stato Limite di Salvaguardia della Vita (SLV). Il periodo di ritorno di quest'ultima - in funzione della vita utile, della classe d'uso, del tipo di costruzione e dello stato limite di riferimento (prima definiti) - è di 1068 anni.

La forma spettrale prevista dalla normativa è definita, su sito di riferimento rigido orizzontale, in funzione di tre parametri:

- aq, accelerazione orizzontale massima del terreno
- F₀, valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale
- T_C*, periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale

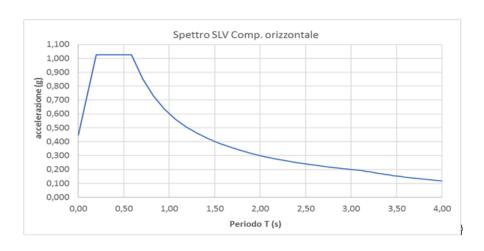
Parametri indipendenti

STATO LIMITE	SLV
ag	0,381 g
F _o	2,290
T _C *	0,419 s
Ss	1,177
Cc	1,400
S _T	1,000
q	1,000

Parametri dipendenti

S	1,177
η	1,000
T _B	0,195 s
Tc	0,586 s
T _D	3,123 s

Per lo stato limite di salvaguardia della vita (SLV) risulta quanto segue.

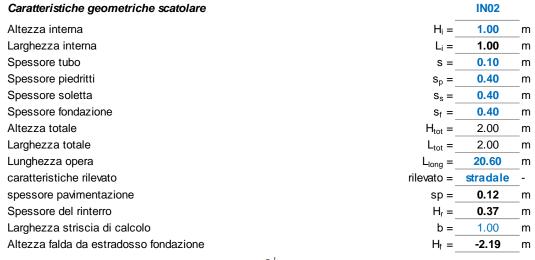

Tabella 5-1 Azione sismica di riferimento

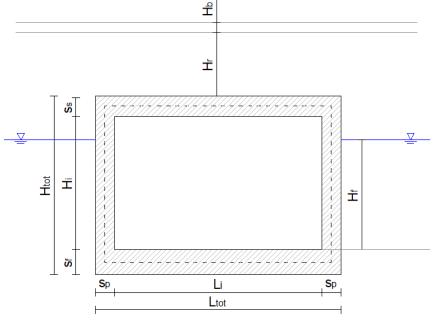
Accele di riferin ag/	SOLIOSUOIO	Categoria topografica	Vita nominale	Classe d'uso	Accelerazione massima attesa in sito ag _{max} /g
0.38	1 C	T1	75	III	0.448

I suddetti parametri sono calcolati come media pesata dei valori assunti nei quattro vertici della maglia elementare del reticolo di riferimento che contiene il punto caratterizzante la posizione dell'opera utilizzando come pesi gli inversi delle distanze tra il punto in questione ed i quattro vertici. Si assume un fattore di struttura **q=1**.

I dati così ottenuti sono stati richiamati nel programma di calcolo per effettuare un'analisi pseudo-statica lineare.

Si riporta di seguito il grafico dello spettro SLV in componente orizzontale.




APPALTATORE: Consorzio HIRPINIA - ORSARA A	Soci / WEBUILD ITALIA	PIZZAROTTI		ITINI	ERARIO I	NAPOLI – B	ARI	
PROGETTAZIONE: <u>Mandataria</u>	<u>Mandanti</u>					TA APICE - (LE HIRPINIA		
ROCKSOIL S.P.A M-INGEGNERIA	NET ENGINEERING GCF	G PINI ELETTRI-FER	II LOI	10 F0	INZIONAL	E HIRPINIA	- UKS	ARA
PROGETTO ESECUTOMBINO CIRCOlare IN02			COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ CL	DOCUMENTO IN0 2 00 001	REV. B	FOGLIO 17 di 261

6 ANALISI DEI CARICHI - SCATOLARE

Nel seguente paragrafo si descrivono i carichi elementari che agiscono sulla struttura in oggetto. In particolare, Il tombino ha una lunghezza totale di 20.60m ed un approfondimento di 0,49 m, misurato all'estradosso della copertura. Nei calcoli il manufatto viene assimilato ad un tombino scatolare di larghezza e altezza nette pari a 1,0 m e formato da soletta di fondazione, soletta di copertura e piedritti, tutti di spessore 0,40 m, corrispondente alla minima sezione resistente del manufatto, ovvero la sezione al netto della tubazione interna.

Le azioni sono definite secondo la normativa di riferimento e sono utilizzate per la generazione delle combinazioni di carico nell'ambito delle verifiche di resistenza, in esercizio e in presenza dell'evento sismico. Tutti i carichi elementari si riferiscono a un concio longitudinale di lunghezza unitaria, pertanto sono tutti definiti rispetto all'unità di lunghezza. Si sintetizzano di seguito i dati geometrici relativi all'opera.

Caratteristiche geometriche

APPALTATORE: <u>Consorzio</u> HIRPINIA - ORSARA A	<u>Soci</u> / Webuild Italia Pizz.	AROTTI		ITINI	ERARIO I	NAPOLI – B	ARI	
PROGETTAZIONE: Mandataria	<u>Mandanti</u>					TA APICE - (E HIRPINIA		
ROCKSOIL S.P.A M-INGEGNERIA	NET ENGINEERING GCF ELET	PINI TRI-FER	II LOI	10 FU	NZIONAL	E MIRPINIA	- UKS	AKA
PROGETTO ESECUTOMBINO CIRCOlare IN02			COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ CL	DOCUMENTO IN0 2 00 001	REV. B	FOGLIO 18 di 261

6.1 CARICHI PERMANENTI STRUTTURALI

Il peso proprio dello scatolare viene calcolato in automatico dal programma di calcolo utilizzato una volta definite le caratteristiche geometriche e le proprietà dei materiali. Sono di seguito riportate le caratteristiche geometriche del manufatto e le azioni permanenti strutturali.

Caratteristiche geometriche scatolare

altezza interna	$H_i = $	1.00	m
larghezza interna	 L _i =	1.00	m
spessore piedritti	$s_p =$	0.40	m
spessore soletta	S _S =	0.40	m
spessore fondazione	S _f =	0.40	m

AZIONI PERMENENTI G1 sigla F.E.M.

Peso proprio della struttura

peso soletta superiore	$P_s = s_s \cdot \gamma =$	10.00	kN/m ²	G1
peso fondazione	$P_f = s_s \cdot \gamma =$	10.00	kN/m ²	G1
peso piedritti	$P_p = s_p \cdot \gamma =$	10.00	kN/m ²	G1

6.2 CARICHI PERMANENTI NON STRUTTURALI

Sono di seguito esplicitati i carichi permanenti non strutturali verticali dovuti alla pavimentazione stradale ed al ricoprimento di terreno gravanti sulla soletta superiore, nonché le spinte da essi generate sui piedritti dell'opera.

Approccio di calcolo per le verifiche agli sta	ati limite		-	Approccio 2	-
Caratteristiche terreno di ricoprimento			rilevato =	stradale	-
peso specifico			$\gamma_r = $	19	kN/m³
angolo di attrito			φ=	35	0
coesione			c =	0	kN/m²
coefficiente di spinta a riposo ф)(M1) =	35	$k_{0 (M1)} =$	0.426	- -
Caratteristiche pavimentazione					
peso specifico pavimentazione			$\gamma_b = $	22	kN/m ³
altezza media P.F. ed estradosso sub-ballast			$H_b = $	0.12	m
Falda			-	NO	-
Caratteristiche geometriche scatolare					
altezza interna			H _i =	1.00	m
larghezza interna			L _i =	1.00	m
spessore piedritti			s _p =	0.40	m
spessore soletta			$s_s = $	0.40	m
spessore fondazione			s _f =	0.40	m

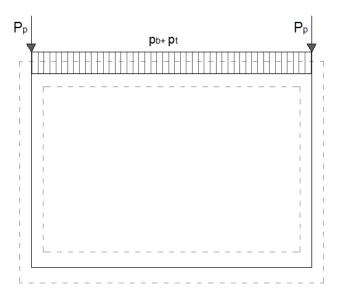
APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Tombino circolare IN02 - Relazione di calcolo E ZZ CL 19 di 261

AZIONI PERMENENTI G2 (carichi verticali)

sigla F.E.M.

G2 G2

Peso permanenti portati soletta superiore


pressione terreno di ricoprimento pressione pavimentazione

$p_t = z_1 \cdot \gamma_r = $	7.03	kN/m²	
. – H –	2 64	kNI/m²	

In più, viene aggiunto, un carico concentrato nei nodi tra la soletta sup e i piedritti dovuto al peso della zona sovrastante la metà dello spessore del piedritto:

Pressione totale su semi spessore

$$P_p = (p_b + p_t) \cdot s_p/2 =$$
 1.93 kN/m G2

Carichi permenenti sulla soletta di copertura (G2)

La spinta in condizioni di esercizio viene calcolata con il coefficiente di spinta a riposo k₀.

$$\sigma = z_i \cdot \gamma_r \cdot K_0 + p_b \cdot K_0$$

Le spinte del terreno di rinfianco vengono portate in conto assumendo uno scenario di spinta non equilibrata sui due piedritti con spinta a riposo sul piedritto sinistro e spinta a riposo ridotta a 0.60 sul piedritto destro. In aggiunta, si considera anche la condizione di carico con spinte equilibrate su entrambi i piedritti.

Quote di riferimento

ricoprimento terreno da estradosso soletta	$H_r = z_1 =$	0.37	m
mezzeria soletta superiore	z ₂ =	0.57	m
estradosso soletta di fondazione	z ₃ =	1.97	m
mezzeria soletta di fondazione	$z_4 = $	2.17	m
intradosso soletta di fondazione	z ₅ =	2.37	m

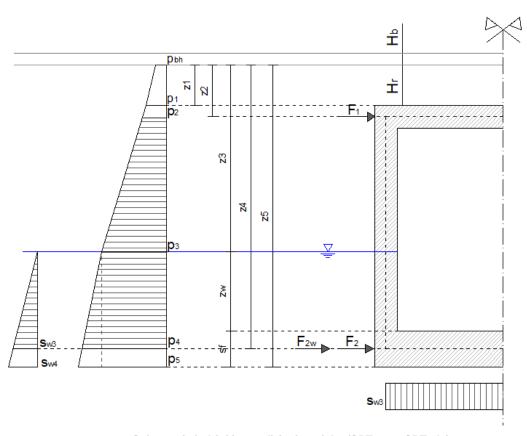
APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL IN0200 001 20 di 261 Tombino circolare IN02 - Relazione di calcolo

AZIONI PERMENENTI G2 (spinte)

sigla F.E.M.

Calcolo delle Spinte sui piedritti		k _{0 (M1)}	_	
spinta pavimentazione	$p_{b,h} = p_b \cdot k_0 =$	1.13	kN/m ²	
spinta alla quota di estradosso sol. sup.	$p_1 = z_1 \cdot \gamma_r \cdot k_0 + p_{b,h} =$	4.12	kN/m ²	
spinta in asse sol. sup.	$p_2 = p_1 + (z_2 - z_1) \cdot \gamma_r \cdot k_0 =$	5.74	kN/m ²	
spinta estradosso soletta di fondazione	$p_3 = p_2 + (z_3 - z_2) \cdot \gamma_r \cdot k_0 =$	17.09	kN/m ²	SPT_sx/dx
spinta in asse sol. inf. p ₄	$a_1 = p_3 + (z_4 - z_3) \cdot (\gamma_r - \gamma_w) \cdot k_0 =$	18.71	kN/m ²	
spinta intradosso sol. inf. p ₅	$_{5} = p_{4} + (z_{5} - z_{4}) \cdot (\gamma_{r} - \gamma_{w}) \cdot k_{0} =$	20.33	kN/m ²	

Spinta falda sui piedritti


quota falda	s _{2,w} =	0.00	kN/m²	CDT ov/dv
mezzeria soletta di fondazione	$s_{3,w} = (z_w + s_f/2) \cdot \gamma_w =$	0.00	kN/m ²	SPT_sx/dx
intradosso soletta di fondazione	$s_{4,w} = (z_w + s_f) \cdot \gamma_w =$	0.00	kN/m ²	

In più, viene aggiunto, un carico concentrato orizzontale nei nodi sup e inf dei piedritti e dovuto alla spinta del terreno e dell'acqua esercitata su 1/2 della soletta sup. e su 1/2 della soletta inf.:

spinta semispessore sol. sup.	$F_1 = (p_1 + p_2) / 2 \cdot s_s / 2 =$	0.99	kN/m	
spinta semispessore sol. inf.	$F_2 = (p_3 + p_4)/2 \cdot s_f/2 =$	3.90	kN/m	SPT_sx/dx
spinta falda semispessore sol. inf.	$F_{2,w} = (s_{w3} + s_{w4}) / 2 \cdot s_f / 2 =$	0.00	kN/m	

Sottospinta sulla fondazione

$s_w = (z_w + s_f/2) \cdot \gamma_w =$	0.00	kN/m ²	SW
--	------	-------------------	----

Spinte sui piedritti in condizioni statiche (SPT_sx e SPT_dx)

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Tombino circolare IN02 - Relazione di calcolo E ZZ CL 21 di 261

6.3 CARICHI ACCIDENTALI DA TRAFFICO

6.3.1 Sovraccarico accidentale mobile

Le azioni variabili da traffico, comprensive degli effetti dinamici, sono definite dallo schema di carico di seguito riportato, in conformità alla normativa di riferimento NTC2018:

Schema di carico 1:

Questo schema è da assumere a riferimento sia per le verifiche globali, sia per le verifiche locali, considerando un solo carico tandem per corsia, disposto in asse alla corsia stessa. È costituito da carichi concentrati su due assi in tandem, applicati su impronte di pneumatico di forma quadrata e lato 0,40 m, e da carichi uniformemente distribuiti, come mostrato in Figura 5-1.

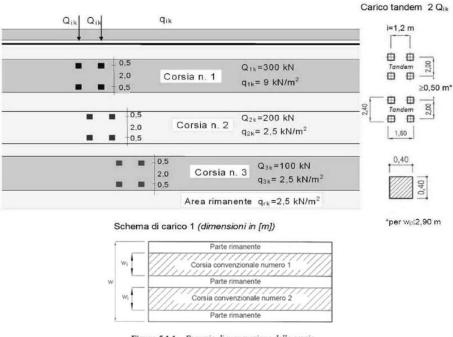


Figura 5.1.1 – Esempio di numerazione delle corsie

Tabella 5.1.I - Numero e Larghezza delle corsie

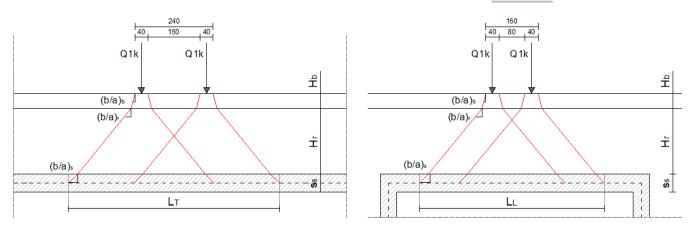
Larghezza di carreggiata "w"	Numero di corsie convenzionali	Larghezza di una corsia convenzionale [m]	Larghezza della zona rimanente [m]
w < 5,40 m	$n_i = 1$	3,00	(w-3,00)
5,4 ≤ w < 6,0 m	$n_l = 2$	w/2	0
6,0 m ≤ w	$n_t = Int(w/3)$	3,00	w - (3,00 x n _l)

Figura 6.1: Schema di carico 1

I carichi vengono applicati su corsie di carico di larghezza 3m, secondo le seguenti colonne di carico:

- prima colonna di carico costituita da due carichi assiali $Q_{1k} = 300$ kN e un carico uniformemente distribuito $q_{1k} = 9$ kN/m²;
- seconda colonna di carico analoga alla prima, ma con carichi rispettivamente pari a Q_{2k} = 200 kN e q_{2k} = 2,5 kN/m²;
- terza colonna di carico analoga alla prima, ma con carichi rispettivamente pari a Q_{3k} = 100 kN e q_{3k} = 2,5 kN/m²;
- quarta colonna di carico e/o area rimanente costituita da un carico uniformemente distribuito pari a q_{rk} = 2,5 kN/m².

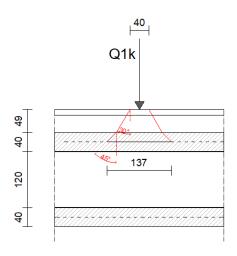
APPALTATORE: Consorzio HIRPINIA - ORSARA AV PROGETTAZIONE:	<u>Soci</u> / WEBUILD ITALIA	PIZZAROTTI	_			NAPOLI – B		
Mandataria	Mandanti					TA APICE - LE HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERII	IG PINI ELETTRI-FER	II LOI	10 FU	NZIONAL	-E MIKPINIA	- UKS	AKA
M-INGEGNERIA	G 01	LLLI IIII-I LIX						
PROGETTO ESECUTIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Tombino circolare IN02 - Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	22 di 261	


Diffusione dei carichi

La diffusione fino al piano medio della struttura della soletta si assume che awenga con un angolo di 30° attraverso la pavimentazione e lo spessore del rilevato, con un angolo di 45° nella soletta in c.a..

Materiale	α_{i}	b _i ∖a _i
pavimentazione	30.00	0.58
ricoprimento	30.00	0.58
soletta	45.00	1.00

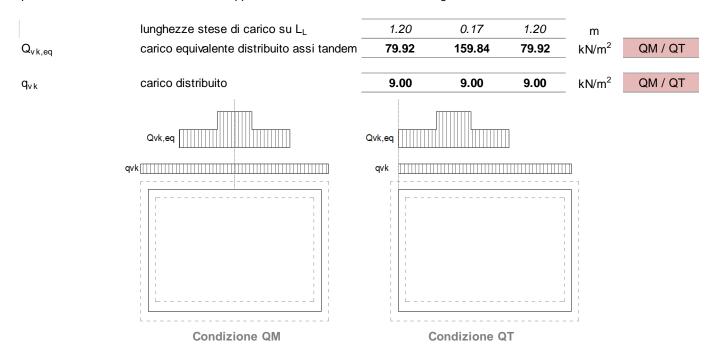
$$L_i = 0.40 + 2 \cdot [(H_b) \cdot (b/a)_b + H_r \cdot (b/a)_r + s_s/2 \cdot (b/a)_s)]$$


ruota	impronta singolo asse	0.40	m		
H _b	Spessore pavimentazione		0.12	m	
H _r	altezza ricoprimento		0.37	m	
Ss	spessore soletta		0.40	m	
Li	lunghezza di diffusione singolo asse	1.37	m		
а	interasse trasversale assi	2.00	m		
b	interasse longitudinale assi		1.20	m	
L _T	lunghezza trasversale di diffusione	3.37	m		
	zona di sovrapposiz	ione trasversale =	0.00	m	
L_L	lunghezza longitudinale di diffusione	2.57	m		
	zona di sovrapposizione longitudinale =				

Schema di diffusione dei carichi

Si riporta di seguito lo schema di diffusione per l'opera in esame.

APPALTATORE: Consorzio	<u>Soci</u>			ITIN	ERARIO I	NAPOLI – B	ΔRI	
HIRPINIA - ORSARA A		11114	LIVAIVIO	INAI OLI – BI	~!\!			
PROGETTAZIONE:			PΔ		DIO TRAT	TA APICE -	ORSAE	Δ
<u>Mandataria</u>	<u>Mandanti</u>					LE HIRPINIA		
ROCKSOIL S.P.A	NET ENGINE		II LO	1010	INZIONAI			
M-INGEGNERIA	GCF	ELETTRI-FER						
PROGETTO ESECU	JTIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 - Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	23 di 261	


La struttura è stata calcolata secondo due disposizioni dei carichi mobili:

- Condizione Q_M: disposizione dei carichi per massimizzare le sollecitazioni flettenti sul traverso
- Condizione Q_T: disposizione dei carichi che massimizza il taglio sul traverso

SOVRACCARICO ACCIDENTALE MOBILE

Sigla F.E.M.

I carichi tandem sono considerati uniformemente distribuiti sulle lunghezze di diffusione trasversale e longitudinale portando in conto eventuali zone di sovrapposizione dei coni di diffusione dei singoli assi tandem.

APPALTATORE: Consorzio HIRPINIA - ORSARA A	Soci / WEBUILD ITALIA	PIZZAROTTI		ITIN	ERARIO I	NAPOLI – B	ARI	
PROGETTAZIONE: Mandataria	<u>Mandanti</u>					TA APICE - LE HIRPINIA		
ROCKSOIL S.P.A			II LOI	10 F0	NZIONAL	LE MIKPINIA	- UKS	AKA
	FIN (O							
		COMMESSA IF3A					FOGLIO 24 di 261	
M-INGEGNERIA PROGETTO ESECU	GCF ELETTRI-FER			LOTTO 02	CODIFICA E ZZ CL	DOCUMENTO IN0200 001	REV. B	

6.3.2 Spinta sui piedritti

Carico su rilevato a ridosso dei piedritti (Calcolo Spinta sui piedritti)

Sigla F.E.M.

Si assume che sui piedritti, ai lati dello scatolare, agisca la spinta del terreno generata dai sovraccarichi in condizioni di riposo. In via conservativa tali incrementi di azioni orizzontali sono stati considerati come una distribuzione di carico uniforme agente su tutto lo sviluppo verticale delle suddette pareti.

		k _{0 (M1)}	_	
k_0	coefficiente di spinta a riposo	0.426	-	
Q _{vk,eq med}	carico equivalente distribuito assi tandem valore medio	85.21	kN/m ²	
$k_0 \cdot Q_{vk,eq}$	spinta carico equivalente distribuito	36.33	kN/m²	
$k_0 \cdot q_{vk}$	spinta carico distribuito	3.84	kN/m ²	
	$S_Q =$	40.17	kN/m² SP	ACC_sx/dx

In più, vengono aggiunte, come carichi concentrati le forze agenti nel semispessore della soletta sup e inf:

spinta semispessore soletta superiore $S_1 = \frac{k_0 \text{ (M1)}}{8.03} \text{ kN/m} \frac{\text{SPACC_sx/dx}}{\text{SPACC_sx/dx}}$ spinta semispessore soletta inferiore $S_2 = \frac{8.03}{8.03} \text{ kN/m} \frac{\text{SPACC_sx/dx}}{\text{SPACC_sx/dx}}$

Spinte sui piedritti (SPACC_sx e SPACC_dx)

APPALTATORE:								
Consorzio	<u>Soci</u>			ITINI		NADOLI D	4 D.I	
HIRPINIA - ORSARA A	V WEBUILD ITALI	A PIZZAROTTI	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:			D A			TA APICE -	ODSAE	ο Λ
<u>Mandataria</u>	<u>Mandanti</u>					LE HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEER		II LO	1010	INZIONAI	_L IIINFINIA	- OKS	ANA
M-INGEGNERIA	GCF	ELETTRI-FER						
PROGETTO ESECU	TIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02	Tombino circolare IN02 - Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	25 di 261

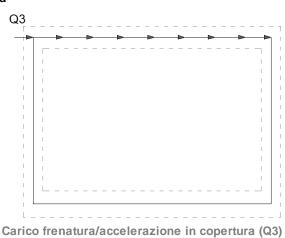
6.3.3 Accelerazione o Frenata

Sigla F.E.M. Accelerazione o frenata La forza di frenamento o di accelerazione si assume agente in direzione longitudinale a livello della 180 kN ≤ q_3 = 0.6·(2Q_{1k})+0.10·q_{1k}.w₁.L ≤ 900 kN 364.32 kΝ Dove w_1 è la larghezza della corsia e L è la lunghezza della zona caricata.

 $W_1 =$

Lc = $Q_{1k} =$ $q_{1k} =$

3.00 m 1.60 m 300.00 kΝ 9.00 kN/m


75.90

kN/m

Q3

La forza applicata a livello della pavimentazione ed agente lungo l'asse della corsia, è assunta uniformemente distribuita sulla soletta superiore trascurando, conservativamente, la larghezza di diffusione del carico dovuta all'approfondimento dello scatolare.

azione distribuita sulla soletta

6.4 VARIAZIONE TERMICA

La variazione termica uniforme applicata al traverso è pari a: ΔT= ±15°C. Per il coefficiente di dilatazione termica si assume $\alpha = 10$ E-6.

VARIAZIONI TERMICHE Sigla F.E.M.

Alla soletta superiore si applica una variazione termica uniforme pari a ∆t=±15°C

variazione termica uniforme

coefficiente di dilatazione dilatazione termica uniforme

 $\alpha = 0.000010$ $\Delta t =$

15.00

 ΔT

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

6.5 RITIRO E VISCOSITÀ DEL CALCESTRUZZO

RITIRO (§ 11.2.10.6) Sigla F.E.M.

Quando non si ricorra ad additivi speciali, il ritiro del calcestruzzo può essere valutato sulla base delle indicazioni

- resistenza caratteristica cilindrica cls

Tombino circolare IN02 - Relazione di calcolo

- umidità relativa
- area sezione conglomerato
- perimetro della sezione di cls esposta all'aria
- parametro
- coefficiente Tab. 11.2.Vb
- deformazione per essiccamento

30	Мра
75	%
0.40	m^2
1.00	m
800	mm
0.700	-
-0.311	per mille
	75 0.40 1.00 800 0.700

26 di 261

Tab. 11.2.Va		Deformazione da ritiro per essiccamento (in %0)					
145. 11.2.Va		umidità relativa (in %)					
f _{ck}	20	40	60	80	90	100	
20	-0.62	-0.58	-0.49	-0.30	-0.17	0.00	
40	-0.48	-0.46	-0.38	-0.24	-0.13	0.00	
60	-0.38	-0.36	-0.30	-0.19	-0.10	0.00	
80	-0.30	-0.28	-0.24	-0.15	-0.07	0.00	

Tab. 11.2.Vb				
h ₀ (mm)	k _h			
100	1			
200	0.85			
300	0.75			
≥500	0.7			

DEFORMAZIONE PER RITIRO DA ESSICCAMENTO

DEFORMAZIONE PER RITIRO AUTOGENO

DEFORMAZIONE TOTALE PER RITIRO

$$\varepsilon_{cd}$$
 (∞) = $k_h \cdot \varepsilon_{c0}$ = $\frac{-0.000218}{-0.000050}$
 ε_{ca} (∞) = $-2.5 \cdot (f_{ck}-10) \cdot 10^{-6}$ = $\frac{-0.000050}{-0.000050}$

E ZZ CL

$$\varepsilon_{\rm cs} = \varepsilon_{\rm cd} + \varepsilon_{\rm ca} = -0.000268$$

COEFFICIENTE DI VISCOSITA' A TEMPO INFINITO parametro

Tab. 11.2.VI	u	umidità relativa di circa il 75%							
t ₀ (gg)	h ₀ ≤ 75 mm	$h_0 = 150 \text{ mm}$	$h_0 = 300 \text{ mm}$	h ₀ ≥ 600 mm					
3	3.5	3.2	3.0	2.8					
7	2.9	2.7	2.5	2.3					
15	2.6	2.4	2.2	2.1					
30	2.3	2.1	1.9	1.8					
≥60	2.0	1.8	1.7	1.6					

I fenomeni di ritiro vengono considerati agenti solo sulla soletta di copertura ed applicati nel modello come una variazione termica uniforme equivalente agli effetti del ritiro

variazione termica equivalente

coefficiente di dilatazione variazione termica uniforme variazione termica uniforme A TEMPO INFINITO

$$\alpha = 0.000010$$

$$\Delta t_{eq} = -26.79$$

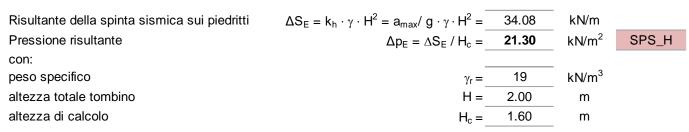
 $\Delta t_{eq,\infty} = _{-9.57}$

RITIRO

APPALTATORE: Consorzio HIRPINIA - ORSARA A	Soci	A PIZZAROTTI		ITINERARIO NAPOLI – BARI						
PROGETTAZIONE: Mandataria	Mandanti	A PIZZAROTTI	RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA							
ROCKSOIL S.P.A M-INGEGNERIA	NET ENGINEER GCF	ING PINI ELETTRI-FER		10 F0	INZIONAI	LE HIRPINIA	- UKS	ANA		
PROGETTO ESECU Tombino circolare IN02	-	lo	COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ CL	DOCUMENTO IN0200 001	REV.	FOGLIO 27 di 261		

6.6 AZIONE SISMICA

Parametri sismici di riferimento


Stato limite indagato	_	SLV	-
Vita nominale	V _N =	75	anni
Classe d'uso		Ш	-
Coefficiente d'uso	c _u =	1.50	-
Periodo di riferimento	V _R =	112.5	anni
Accelerazione orizzontale di riferimento	$a_g/g = $	0.381	-
Categoria sottosuolo		С	-
Categoria topografica	_	T1	-
Coefficiente di amplificazione stratigrafica	S _s =	1.177	-
Coefficiente di amplificazione topografica	$S_t =$	1.000	-
Coefficiente	S =_	1.177	-
Accelerazione orizzontale massima	$a_{max}/g =$	0.448	-
Coefficiente sismico orizzontale	$k_h = a_{max}/g =$	0.448	-
Coefficiente sismico vertocale	$k_v = \pm 0.5 k_h =$	0.224	-

AZIONI SISMICHE

Sovraspinta del terreno in fase sismica

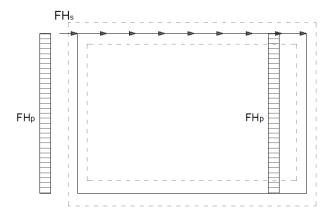
Sigla F.E.M.

In condizione sismica si considera un incremento della spinta del terreno rispetto alla condizione statica in esercizio. La sovraspinta sismica è calcolata con la teoria di **Wood**, risultando in un valore di spinta al metro, distribuito uniformemente sull'intera altezza del piedritto, da applicare ad una quota pari ad H/2.

Sovraspinta terreno in fase sismica - Wood (SPS_H)

APPALTATORE:								
Consorzio	<u>Soci</u>			ITINED ADIO MADOLL. DADI				
HIRPINIA - ORSARA A	V WEBUILD ITALIA	PIZZAROTTI	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:			PΛI		IO TRAT	TA APICE -	OPSAE	۸ ا
<u>Mandataria</u>	<u>Mandanti</u>					E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERI		II LOI	1010	NZIONAL	LINTINIA	- OKS	ANA
M-INGEGNERIA	GCF	ELETTRI-FER						
PROGETTO ESECU	TIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02	- Relazione di calcol)	IF3A	02	E ZZ CL	IN0200 001	В	28 di 261

Forza orizzontale sulla soletta di copertura


Sigla F.E.M.

Nelle analisi sismiche si assume per i carichi da traffico un coefficiente di partecipazione pari a 0.20.

	_		_	
carico equivalente distribuito	$Q^*_{vk} = $	94.21	kN/m²	
luce totale della soletta	L=	2.00	m	
massa associata al carico distribuito equivalente	$Q_v = Q^*_{vk} \cdot L =$	188.41	kN/m	
luce di calcolo soletta	L _c =	1.60	m	
- Forza orizzontale dovuta ai carichi da traffico F	$Hs-1 = (k_h \cdot 0.2 \cdot Q_v) / L_c =$	10.56	kN/m²	
	_			
massa associata al carico perm G2	$g_2 = p_t + p_b =$	9.67	kN/m²	
- Forza orizzontale dovuta ai carichi del rilevato e del ba	allast FHs-2 = $k_h \cdot g_2 =$	4.34	kN/m²	
massa associata al carico permenente G1 (peso propri	o) $g_1 =$	10.00	kN/m²	
- Forza orizzontale dovuta alla massa della copertura	$FHs-3 = k_h \cdot g_1 =$	4.48	kN/m ²	
Forza orizzontale totale sulla copertura in fase sismica	FHs =	19.38	kN/m²	SS_H

Forza orizzontale sui piedritti in fase sismica

massa associata al carico permenente G1 (peso proprio) g = 10.00 kN/m² - Forza orizzontale dovuta alla massa dei piedritti $FHp = k_h \cdot g_1 = 4.48$ kN/m² SS_H

Forze orizzontali in fase sismica agenti sui piedritti e sulla copertura(SS_H)

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL 29 di 261 Tombino circolare IN02 - Relazione di calcolo

Forza verticale sulla soletta di copertura

- Forza verticale dovuta ai carichi da traffico

FVs-1 =
$$(k_v \cdot 0.2 \cdot Q_v) / I = 5.28$$
 kN/m²

- Forza verticale dovuta ai carichi del rilevato e del ballast

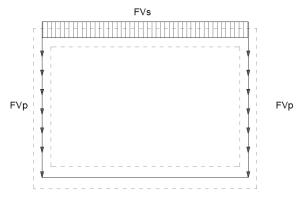
$$FVs-2 = k_v \cdot g_2 = 2.17 \quad kN/m^2$$

- Forza verticale dovuta alla massa della copertura

$$FVs-3 = k_v \cdot g_1 = 2.24 \quad kN/m^2$$

Forza verticale totale sulla copertura in fase sismica

Forza verticale sui piedritti in fase sismica


carico permenente G1 (peso proprio)

$$g = 10.00 \text{ kN/m}^2$$

- Forza verticale dovuta alla massa dei piedritti

FVp =
$$k_v \cdot g_1 = 2.24$$
 kN/m²

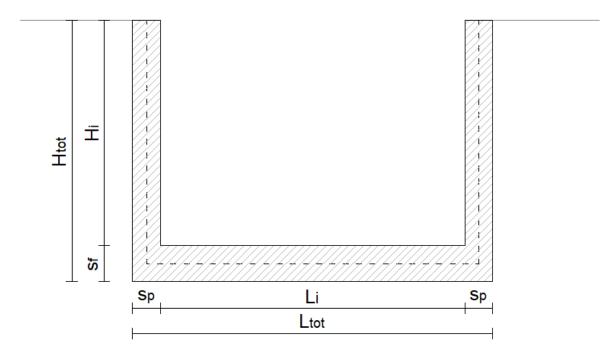
SS_V

Forze verticali in fase sismica agenti sulla copertura e sui piedritti (SS_V)

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA PROGETTO ESECUTIVO ${\sf COMMESSA}$ LOTTO CODIFICA DOCUMENTO REV. FOGLIO Tombino circolare IN02 - Relazione di calcolo E ZZ CL 30 di 261

6.7 RIEPILOGO CARICHI ELEMENTARI

SIGLA F.E.M.	DESCRIZIONE	ELEMENTO INTERESSATO		carico	U.M.	DIR.
	peso soletta superiore	soletta superiore	+	10.00	kN/m ²	Z
G1	peso fondazione	soletta inferiore	+	10.00	kN/m ²	Z
	peso piedritti	piedritti	+	10.00	kN/m ²	Z
	pressione terreno di ricoprimento	soletta superiore	+	7.03	kN/m ²	Z
G2	pressione pavimentazione	soletta superiore	+	2.64	kN/m ²	Z
	Pressione totale su semi spessore	nodi di estremità soletta superiore	+	1.93	kN/m	Z
	spinta in asse sol. sup.	piedritto sx e piedritto dx	±	5.74	kN/m ²	Х
CDT ov/dv	spinta in asse sol. inf.	piedritto sx e piedritto dx	±	18.71	kN/m ²	Х
SPT_sx/dx	spinta semispessore sol. sup.	nodo superiore piedritto	±	0.99	kN/m	Х
	spinta semispessore sol. inf.	nodo inferiore piedritto	±	3.90	kN/m	Х
sw	Sottospinta sulla fondazione	soletta inferiore	-	0.00	kN/m ²	Z
QM / QT	carico equivalente distribuito assi tandem valore medio	soletta superiore	+	85.21	kN/m ²	Z
QM / QT	carico distribuito	soletta superiore	+	9.00	kN/m ²	Z
	spinta carico equivalente distribuito	piedritto sx e piedritto dx	±	40.17	kN/m ²	Х
SPACC_sx/dx	spinta semispessore soletta superiore	nodo superiore piedritto	±	8.03	kN/m	Х
	spinta semispessore soletta inferiore	nodo inferiore piedritto	±	8.03	kN/m	Х
Q3	Accelerazione o frenata	soletta superiore	+	75.90	kN/m ²	Х
SPS_H	Sovraspinta del terreno in fase sismica	piedritto sx	+	21.30	kN/m ²	Х
SS H	Forza orizzontale totale sulla copertura in fase sismica	soletta superiore	+	19.38	kN/m ²	Х
აა_п	Forza orizzontale sui piedritti in fase sismica	piedritto sx	+	4.48	kN/m ²	Х
ee v	Forza verticale totale sulla copertura in fase sismica	soletta superiore	±	9.69	kN/m ²	Z
SS_V	Forza verticale sui piedritti in fase sismica	piedritto sx e piedritto dx	±	2.24	kN/m ²	Z
RITIRO	variazione termica equivalente	soletta superiore	-	9.57	0	
DT	variazione termica uniforme	soletta superiore	±	15.00	0	


APPALTATORE: Consorzio HIRPINIA - ORSARA AV PROGETTAZIONE: Mandataria ROCKSOIL S.P.A M-INGEGNERIA	Soci WEBUILD ITALIA PIZZAROTTI Mandanti NET ENGINEERING PINI GCF ELETTRI-FER		DDOPF	PIO TRAT	NAPOLI – BA TA APICE - E LE HIRPINIA	ORSAF	
PROGETTO ESECUT		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -		IF3A	02	E ZZ CL	IN0200 001	B	31 di 261

7 ANALISI DEI CARICHI – MURI AD U

Nel seguente paragrafo si descrivono i carichi elementari che agiscono sul manufatto ad U di larghezza netta 3.00 m, altezza netta massima di calcolo 1.65 m e lunghezza di 3.30 m; le pareti verticali hanno spessore pari a 0.30 m e la soletta di fondazione pari a 0.50 m.

Le azioni sono definite secondo la normativa di riferimento e sono utilizzate per la generazione delle combinazioni di carico nell'ambito delle verifiche di resistenza, in esercizio e in presenza dell'evento sismico. Tutti i carichi elementari si riferiscono a un concio longitudinale di lunghezza unitaria, pertanto sono tutti definiti rispetto all'unità di lunghezza. Si sintetizzano di seguito i dati geometrici relativi all'opera.

Caratteristiche geometriche		IN02	
Altezza interna	H _i = _	1.65	m
Larghezza interna	$L_i = $	3.00	m
Spessore piedritti	$s_p = $	0.30	m
Spessore fondazione	$s_f = $	0.50	m
Altezza totale	$H_{tot} = $	2.15	m
Larghezza totale	$L_{tot} = $	3.60	m
Lunghezza opera	$L_{long} = $	3.30	m
Caratteristiche rilevato	rilavato =	stradale	
Larghezza striscia di calcolo	b =	1.00	m

APPALTATORE: Consorzio HIRPINIA - ORSARA AV PROGETTAZIONE: Mandataria ROCKSOIL S.P.A M-INGEGNERIA	Soci WEBUILD ITALIA PIZZARO Mandanti NET ENGINEERING PIN GCF ELETTRI-	II		DOPP	IO TRAT	NAPOLI – BA TA APICE - (LE HIRPINIA	ORSAF	
PROGETTO ESECUTI' Tombino circolare IN02 - R	-		COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ CL	DOCUMENTO IN0200 001	REV. B	FOGLIO 32 di 261

7.1 CARICHI PERMANENTI STRUTTURALI

Il peso proprio dello scatolare viene calcolato in automatico dal programma di calcolo utilizzato una volta definite le caratteristiche geometriche e le proprietà dei materiali. Sono di seguito riportate le caratteristiche geometriche del manufatto e le azioni permanenti strutturali.

Caratteristiche geometriche

altezza interna	$H_i =$	1.65	m
larghezza interna	$L_i =$	3.00	m
spessore piedritti	s _p =	0.30	m
spessore fondazione	s _f =	0.50	m

AZIONI PERMENENTI G1 sigla F.E.M.

Peso proprio della struttura

peso fondazione	$P_f = s_s \cdot \gamma = $	12.50	kN/m²	G1
peso piedritti	$P_p = s_p \cdot \gamma =$	7.50	kN/m ²	G1

7.2 CARICHI PERMANENTI NON STRUTTURALI

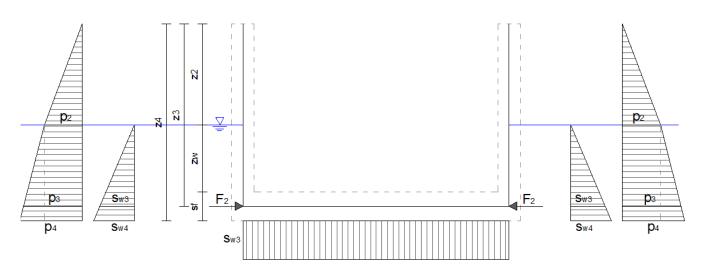
Si riportano di seguito i carichi permanenti non strutturali agenti sulla struttura.

	Approccio 2	
rilevato =	stradale	
$\gamma_r =$	19	kN/m ³
φ=	35	0
c =	0	kN/m ²
$k_{0 (M1)} =$	0.426	-
	no	
$z_w =$	0	m
$H_i =$	1.65	m
$L_i =$	3.00	m
s _p =	0.30	m
s _f =	0.50	m
z ₁ =	0.00	m
z ₂ =	1.65	m
z ₃ =	1.90	m
z ₄ =	2.15	m
	$\gamma_{r} = \phi = \phi = C = K_{0 (M1)} = K_{0 (M1)$	rilevato = $\begin{array}{c} stradale \\ \gamma_r = \\ \phi = \\ 35 \\ c = \\ 0 \\ k_0 (\text{M1}) = \\ \end{array}$ $\begin{array}{c} c = \\ 0 \\ 0.426 \\ \end{array}$ $\begin{array}{c} c = \\ 0 \\ 0.426 \\ \end{array}$ $\begin{array}{c} c = \\ 0 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} c = \\ 0 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} c = \\ 0 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} c = \\ 0 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} c = \\ 0 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} c = \\ 0 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} c = \\ 0 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} c = \\ 0 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} c = \\ 0 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} c = \\ 0 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} c = \\ 0 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} c = \\ 0 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} c = \\ 0 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} c = \\ 0 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} c = \\ 0 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} c = \\ 0 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} c = \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} c = \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} c = \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} c = \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} c = \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} c = \\ 0 \\ 0 \\ \end{array}$

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Tombino circolare IN02 - Relazione di calcolo IF3A 02 E ZZ CL IN0200 001 33 di 261

La spinta in condizioni di esercizio viene calcolata con il coefficiente di spinta a riposo ko.

$$\sigma = z_i \cdot \gamma_r \cdot K_0$$


AZIONI PERMENENTI G2 (spinte)				sigla F.E.M.
Calcolo delle Spinte sui piedritti		k _{0 (M1)}		
testa muro	$p_1 = z_1 \cdot \gamma_r \cdot k_0 =$	0.00	kN/m ²	SPT_sx/dx
spinta in asse sol. inf.	$y_2 + (z_3 - z_2) \cdot (\gamma_r - \gamma_w) \cdot k_0 =$	15.39	 kN/m²	SPI_SX/ux
spinta intradosso sol. inf.	$v_2 + (z_4 - z_2) \cdot (\gamma_r - \gamma_w) \cdot k_0 =$	17.42	kN/m²	
Spinta falda sui piedritti				
quota falda	s _{2,w} =	0.00	 kN/m²	CDT av/dv
mezzeria soletta di fondazione	$s_{3,w} = (z_w + s_f/2) \cdot \gamma_w =$	0.00	kN/m ²	SPT_sx/dx
intradosso soletta di fondazione	$S_{4,W} = (Z_W + S_f) \cdot \gamma_W =$	0.00	kN/m²	

In più, viene aggiunto, un carico concentrato orizzontale nel nodo inf dei piedritti e dovuto alla spinta del terreno e dell'acqua esercitata su 1/2 della soletta inf.:

spinta semispessore sol. inf.	$F_2 = (p_3 + p_4) / 2 \cdot s_f / 2 =$	4.10	kN/m	SPT_sx/dx
spinta falda semispessore sol. inf.	$_2 = (s_{w3} + s_{w4})/2 \cdot s_f/2 =$	0.00	kN/m	3F 1_5x/ux

Sottospinta sulla fondazione

$$s_w = (z_w + s_f/2) \cdot \gamma_w =$$
 0.00 kN/m² SW

Spinte sui piedritti in condizioni statiche (SPT_sx e SPT_dx)

Le spinte del terreno di rinfianco vengono portate in conto assumendo uno scenario di spinta non equilibrata sui due piedritti con spinta a riposo sul piedritto sinistro e spinta a riposo ridotta a 0.60 sul piedritto destro. In aggiunta, si considera anche la condizione di carico con spinte equilibrate su entrambi i piedritti.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL 34 di 261 Tombino circolare IN02 - Relazione di calcolo

7.3 CARICHI ACCIDENTALI SU RILEVATO

SOVRACCARICO ACCIDENTALE MOBILE q_k carico distribuito 20.00 kN/m²

7.3.1 Spinta sui piedritti

Carico su rilevato a ridosso dei piedritti (Calcolo Spinta sui piedritti)

Sigla F.E.M.

Si assume che sui piedritti, ai lati dello scatolare, agisca la spinta del terreno generata dai sovraccarichi in condizioni di riposo. In via conservativa tali incrementi di azioni orizzontali sono stati considerati come una distribuzione di carico uniforme agente su tutto lo sviluppo verticale delle suddette pareti.

 k_0 coefficiente di spinta a riposo $\frac{\mathbf{k_0}_{\text{(M1)}}}{0.426}$ - $k_0 \cdot q_k$ spinta carico distribuito $\frac{\mathbf{k_0}_{\text{(M1)}}}{\mathbf{k_0}}$ SPACC_sx/dx

In più si considera il carico concentrato agente nel semispessore della soletta inf:

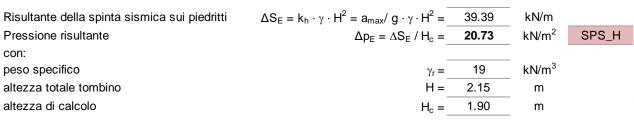
spinta semispessore soletta inferiore $S_2 = \frac{k_0 \text{ (M1)}}{2.13} \text{ kN/m} \frac{\text{SPACC_sx/dx}}{\text{SPACC_sx/dx}}$

Spinte sui piedritti (SPACC_sx e SPACC_dx)

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINED ADIO NADOLI, DADI					
HIRPINIA - ORSARA A	V WEBUILD IT	ALIA PIZZAROTTI		ITINERARIO NAPOLI – BARI				
PROGETTAZIONE:			D A I			TA APICE -	ODSVE	ο Λ
<u>Mandataria</u>	<u>Mandanti</u>			_	_	LE HIRPINIA		
ROCKSOIL S.P.A	NET ENGINE		II LO	1010	INZIONAI	LL IIINFIINIA	- OKS	ANA
M-INGEGNERIA	GCF	ELETTRI-FER						
PROGETTO ESECU	ITIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02	Tombino circolare IN02 - Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	35 di 261

7.4 AZIONE SISMICA

Parametri sismici di riferimento


Stato limite indagato	_	SLV	
Vita nominale	V _N =	75	anni
Classe d'uso	_	III	-
Coefficiente d'uso	c _u =	1.50	-
Periodo di riferimento	V _R =	112.5	anni
Accelerazione orizzontale di riferimento	$a_g/g =$	0.381	-
Categoria sottosuolo		С	-
Categoria topografica		T1	-
Coefficiente di amplificazione stratigrafica	S _s =	1.177	-
Coefficiente di amplificazione topografica	S _t =	1.000	-
Coefficiente	S =	1.177	-
Accelerazione orizzontale massima	$a_{max}/g =$	0.448	-
Coefficiente sismico orizzontale	$k_h = a_{max}/g =$	0.448	-
Coefficiente sismico vertocale	$k_v = \pm 0.5 k_h =$	0.224	-

AZIONI SISMICHE

Sovraspinta del terreno in fase sismica

Sigla F.E.M.

In condizione sismica si considera un incremento della spinta del terreno rispetto alla condizione statica in esercizio. La sovraspinta sismica è calcolata con la teoria di **Wood**, risultando in un valore di spinta al metro, distribuito uniformemente sull'intera altezza del piedritto, da applicare ad una quota pari ad H/2.

Sovraspinta terreno in fase sismica - Wood (SPS_H)

APPALTATORE: Consorzio HIRPINIA - ORSARA A PROGETTAZIONE: Mandataria ROCKSOIL S.P.A	Soci V WEBUILD ITALIA Mandanti NET ENGINEER GCF			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA						
M-INGEGNERIA										
PROGETTO ESECU	ITIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Tombino circolare IN02 - Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	36 di 261			

Forza orizzontale sui piedritti in fase sismica

massa associata al carico permenente G1 (peso proprio)

- Forza orizzontale dovuta alla massa dei piedritti

$$g = 7.50 kN/m^2$$
FHp = $k_h \cdot g_1 = 3.36 kN/m^2$

N/m² SS_H

Forze orizzontali in tase sismica agenti sui piedritti e sulla copertura(SS_H)

Forza verticale sui piedritti in fase sismica

carico permenente G1 (peso proprio)

- Forza verticale dovuta alla massa dei piedritti

$$g = 7.50 kN/m2$$

 $FVp = k_v \cdot g_1 = 1.68$ kN/m²

SS_V

Forze verticali in fase sismica agenti sui piedritti (SS_V)

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA PROGETTO ESECUTIVO FOGLIO ${\sf COMMESSA}$ LOTTO CODIFICA DOCUMENTO REV. Tombino circolare IN02 - Relazione di calcolo E ZZ CL 37 di 261

7.5 RIEPILOGO CARICHI ELEMENTARI

SIGLA F.E.M.	DESCRIZIONE	ELEMENTO INTERESSATO		carico	U.M.	DIR.
C1	peso fondazione	soletta inferiore	+	12.50	kN/m ²	Ζ
G1	peso piedritti	piedritti	+	7.50	kN/m ²	Z
CDT ov/dv	spinta in asse sol. inf.	piedritto sx e piedritto dx	±	15.39	kN/m ²	Х
SPT_sx/dx	spinta semispessore sol. inf.	nodo inferiore piedritto	±	4.10	kN/m	Х
sw	Sottospinta sulla fondazione	soletta inferiore	-	0.00	kN/m ²	Z
SDACC av/dv	spinta carico distribuito	piedritto sx e piedritto dx	±	8.53	kN/m ²	Х
SPACC_sx/dx	spinta semispessore soletta inferiore	nodo inferiore piedritto	±	2.13	kN/m	Х
SPS_H	Sovraspinta del terreno in fase sismica	piedritto sx	+	20.73	kN/m ²	Х
SS_H	Forza orizzontale sui piedritti in fase sismica	piedritto sx e dx	+	3.36	kN/m ²	Х
SS_V	Forza verticale sui piedritti in fase sismica	piedritto sx e piedritto dx	±	1.68	kN/m ²	Z

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA - ORSARA AV	WEBUILD ITALIA P	PIZZAROTTI						
PROGETTAZIONE:			РΔГ	NUUDE	IO TRAT	TA APICE - (ORSAR	Δ
<u>Mandataria</u>	<u>Mandanti</u>		RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA					
ROCKSOIL S.P.A	NET ENGINEERING	PINI ETTRI-FER	II LOT	1010	INZIONAL		- 01(3)	,,,,,
M-INGEGNERIA	GCF EL	EIIRI-FER						
PROGETTO ESECUT	IVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	Relazione di calcolo		IF3A	02	E ZZ CL	IN0 2 00 001	В	38 di 261

8 ANALISI DEI CARICHI - POZZO

Nel seguente paragrafo si descrivono i carichi elementari che agiscono sulla struttura in oggetto. In particolare, il pozzo ha larghezza ed altezza netta rispettivamente pari a 3.00 m e 4.30 m. Le pareti hanno spessore pari a 0.40 m e la soletta di fondazione pari a 0.50m.

Data l'analogia delle geometrie e del comportamento strutturale delle opere, il calcolo strutturale è stato svolto cautelativamente con riferimento alla struttura a pozzo di maggiore altezza (pozzo centrale); sono state modellate tutte le forometrie presenti con riferimento alla loro reale geometria, come evidenziato al capitolo §10.4.3.

Le azioni sono definite secondo la normativa di riferimento e sono utilizzate per la generazione delle combinazioni di carico nell'ambito delle verifiche di resistenza, in esercizio e in presenza dell'evento sismico.

Si sintetizzano di seguito i dati geometrici relativi all'opera.

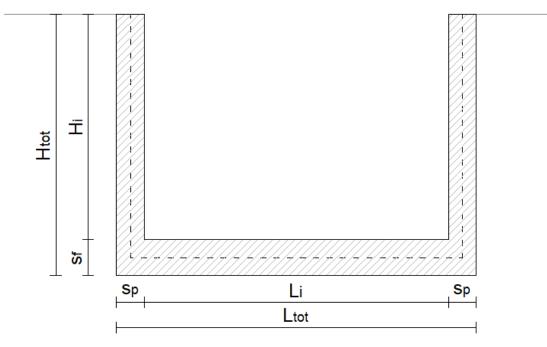
Caratteristiche geometriche

Altezza interna Larghezza interna (X e Y)

Spessore pareti Spessore fondazione

Altezza totale Larghezza totale Lunghezza opera

Caratteristiche rilevato


IN02_POZZO

 $s_p =$ 0.40 n $s_f =$ 0.50 n

 $H_{tot} = 4.80$ m

 $L_{tot} = \underline{\qquad 3.80 \qquad m}$ $L_{long} = \underline{\qquad 3.80 \qquad m}$

rilavato = **stradale**

Caratteristiche geometriche

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINED A DIO NA DOLL BADI					
HIRPINIA - ORSARA A	V WEBUILD ITALIA	PIZZAROTTI	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:			DΛI			TA ADICE -		۸ .
<u>Mandataria</u>	<u>Mandanti</u>		RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA					
ROCKSOIL S.P.A	NET ENGINEERII	IG PINI ELETTRI-FER	" " "	1010	INZIONAL		- OKO	711/7
M-INGEGNERIA	GCF	ELETTRI-FER						
PROGETTO ESECU	TIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02	Relazione di calcolo)	IF3A	02	E ZZ CL	IN0200 001	В	39 di 261

8.1 CARICHI PERMANENTI STRUTTURALI

Il peso proprio dello scatolare viene calcolato in automatico dal programma di calcolo utilizzato una volta definite le caratteristiche geometriche e le proprietà dei materiali. Sono di seguito riportate le caratteristiche geometriche del manufatto e le azioni permanenti strutturali.

Caratteristiche geometriche altezza interna 4.30 m larghezza interna 3.00 $L_i =$ m spessore pareti 0.40 $s_p =$ m spessore fondazione 0.50 S_f = m

AZIONI PERMENENTI G1 sigla F.E.M.

Peso proprio della struttura

8.2 CARICHI PERMANENTI NON STRUTTURALI

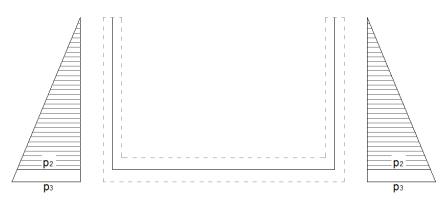
Sono di seguito esplicitati le spinte generate dal ricoprimento di terreno gravanti sulle pareti dell'opera.

Approccio di calcolo per le verifiche agli st	pproccio di calcolo per le verifiche agli stati limite					
Caratteristiche terreno di ricoprimento			rilevato =	stradale	-	
peso specifico			$\gamma_r =$	19	kN/m ³	
angolo di attrito			φ=	35	0	
coesione			c =	0	kN/m²	
coefficiente di spinta a riposo	φ(M1) =	35	$k_{0 (M1)} =$	0.426	-	
Falda				no	_	
altezza falda da estradosso fondazione			$z_w =$	0	m	
Caratteristiche geometriche						
altezza interna			$H_i =$	4.30	m	
larghezza interna			$L_i =$	3.00	m	
spessore pareti			s _p =	0.40	m	
spessore fondazione			s _f =	0.50	m	
Quote di riferimento da testa pareti						
testa pareti			z ₁ =	0.00	m	
falda			z ₂ =	4.30	m	
mezzeria soletta di fondazione			z ₃ =	4.55	m	
intradosso soletta di fondazione			$z_4 =$	4.80	m	

La spinta in condizioni di esercizio viene calcolata con il coefficiente di spinta a riposo k₀.

APPALTATORE:							
<u>Consorzio</u>	Soci		ITINEDADIO NADOLI, BADI				
HIRPINIA - ORSARA AV	WEBUILD ITALIA PIZZAROTTI		ITINERARIO NAPOLI – BARI				
PROGETTAZIONE:		RΔI	DOPE	ΝΟ ΤΡΔΤ	TA APICE -	ORSAE	. Δ
<u>Mandataria</u>	<u>Mandanti</u>		RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA				
ROCKSOIL S.P.A	NET ENGINEERING PINI GCF ELETTRI-FER	" " " " " "	1010	NZIONAL	-L IIIXI IIVIA	- 013	
M-INGEGNERIA	COI ELETTRIA ER						
PROGETTO ESECUT	IVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	Relazione di calcolo	IF3A	02	E ZZ CL	IN0200 001	В	40 di 261

Le spinte del terreno di rinfianco vengono portate in conto assumendo uno scenario di spinta non equilibrata sui due piedritti con spinta a riposo sul piedritto sinistro e spinta a riposo ridotta a 0.60 sul piedritto destro. In aggiunta, si considera anche la condizione di carico con spinte equilibrate su entrambi i piedritti.


AZIONI PERMENENTI G2 (spinte)

sigla F.E.M.

Calcolo delle Spinte sui muri

testa muro spinta in asse sol. inf. spinta intradosso sol. inf.

SPT_X1/X2/Y1/Y2

Spinte sui piedritti in condizioni statiche (SPT_X1/X2/Y1/Y2)

8.3 CARICO ACCIDENTALE

Carico su rilevato a ridosso delle pareti (Calcolo Spinta)

Sigla F.E.M.

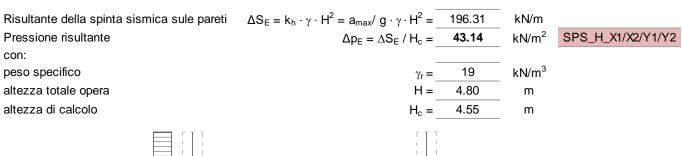
Si assume che sulle pareti agisca la spinta del terreno generata dai sovraccarichi in condizioni di riposo. In via conservativa tali incrementi di azioni orizzontali sono stati considerati come una distribuzione di carico uniforme agente su tutto lo sviluppo verticale delle suddette pareti.

Spinte sui piedritti (SPACC_X1/X2/Y1/Y2)

APPALTATORE:	Cool							
Consorzio	<u>Soci</u>			ITINERARIO NAPOLI – BARI				
HIRPINIA - ORSARA A	V WEBUILD ITALI	A PIZZAROTTI						
PROGETTAZIONE:			РΛ	RADDOPPIO TRATTA APICE - ORSARA				
<u>Mandataria</u>	<u>Mandanti</u>					-E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEER GCF	ING PINI ELETTRI-FER	ii LO	10 10	INZIONAL	-L UUXFUNIA	- OK3	ANA
M-INGEGNERIA	00.	EEET INI-I EN						
PROGETTO ESECU	TIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02	Tombino circolare IN02 - Relazione di calcolo			02	E ZZ CL	IN0200 001	В	41 di 261

8.4 AZIONE SISMICA

Parametri sismici di riferimento


Stato limite indagato	_	SLV	
Vita nominale	V _N =	75	anni
Classe d'uso		III	-
Coefficiente d'uso	c _u =	1.50	-
Periodo di riferimento	V _R =	112.5	anni
Accelerazione orizzontale di riferimento	$a_g/g =$	0.381	-
Categoria sottosuolo		С	-
Categoria topografica		T1	-
Coefficiente di amplificazione stratigrafica	S _s =	1.177	-
Coefficiente di amplificazione topografica	$S_t =$	1.000	-
Coefficiente	S =	1.177	-
Accelerazione orizzontale massima	$a_{max}/g =$	0.448	-
Coefficiente sismico orizzontale	$k_h = a_{max}/g =$	0.448	-
Coefficiente sismico vertocale	$k_v = \pm 0.5 k_h =$	0.224	-

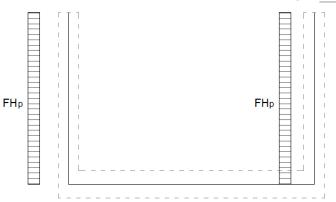
AZIONI SISMICHE

Sovraspinta del terreno in fase sismica

Sigla F.E.M.

In condizione sismica si considera un incremento della spinta del terreno rispetto alla condizione statica in esercizio. La sovraspinta sismica è calcolata con la teoria di **Wood**, risultando in un valore di spinta al metro, distribuito uniformemente sull'intera altezza delle pareti

Sovraspinta terreno in fase sismica - Wood (SPS_H)


APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL IN0200 001 42 di 261 Tombino circolare IN02 - Relazione di calcolo

Forza orizzontale sulle pareti in fase sismica

massa associata al carico permenente G1 (peso proprio)

- Forza orizzontale dovuta alla massa delle pareti

kN/m² SS_H_X/Y

Forze orizzontali in fase sismica agenti sulle pareti (SS_H)

Forza verticale sulle pareti in fase sismica

carico permenente G1 (peso proprio)

- Forza verticale dovuta alla massa delle pareti

g = 10.00 kN/m² FVp = k_v · g₁ = 2.24 kN/m²

kN/m² SS_V

Forze verticali in fase sismica agenti sulle pareti (SS_V)

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA PROGETTO ESECUTIVO ${\sf COMMESSA}$ LOTTO CODIFICA DOCUMENTO REV. FOGLIO Tombino circolare IN02 - Relazione di calcolo E ZZ CL 43 di 261

8.5 RIEPILOGO CARICHI ELEMENTARI

SIGLA F.E.M.	DESCRIZIONE	ELEMENTO INTERESSATO		carico	U.M.	DIR.
C4	peso fondazione	soletta inferiore	+	12.50	kN/m ²	Z
G1	peso pareti	pareti	+	10.00	kN/m ²	Z
SPT_X1/X2/Y1/Y2	spinta in asse sol. inf.	pareti	±	36.86	kN/m ²	X/Υ
SPACC_X1/X2/Y1/Y2	spinta carico distribuito	pareti	±	8.53	kN/m ²	X/Υ
SPS_H_X1/X2/Y1/Y2	Sovraspinta del terreno in fase sismica	pareti	+	43.14	kN/m ²	X/Υ
SS_H_X/Y	Forza orizzontale sulle pareti in fase sismica	pareti	+	4.48	kN/m ²	X/Υ
SS_V	Forza verticale sulle pareti in fase sismica	pareti	±	2.24	kN/m ²	Z

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Tombino circolare IN02 - Relazione di calcolo E ZZ CL 44 di 261

9 COMBINAZIONI DI CALCOLO

Si riportano di seguito le combinazioni delle azioni elementari come prescritte nelle Norme Tecniche vigenti.

Combinazione fondamentale SLU

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara) SLE

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente SLE

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente SLE

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

Combinazione eccezionale, impiegata per gli stati limite connessi alle azioni eccezionali

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

G₁ valore caratteristico delle azioni da peso proprio;

G₂ valore caratt. delle azioni da carichi permanenti portati;

Qk1 valore caratt. dell'azione variabile di base di ogni combinazione;

Qki valore caratt. delle azioni variabili tra loro indipendenti;

P valore caratt. delle deformazioni impresse;

γ_G, γ_Q, γ_P coefficienti parziali per le azioni;

 ψ_{0i} coefficienti di comb. per le verifiche allo stato limite ultimo.

E = azione sismica.

Si considerano 3 direzioni principali secondo cui si effettuano le combinazioni sismiche:

$$A_{Ex}$$
"+"0,30 A_{Ev} "+"0,30 A_{Ez}

Ai fini della determinazione dei valori caratteristici delle azioni dovute al traffico, sono state considerate le combinazioni riportate in Tab. 5.1.IV. A causa della natura dell'opera, i gruppi di azioni da prendere in esame risultano esclusivamente i gruppi 1, 2a e 2b.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 45 di 261 Tombino circolare IN02 - Relazione di calcolo E ZZ CL

Tab. 5.1.IV - Valori caratteristici delle azioni dovute al traffico

		Carich	i sulla superfic	ie carrabile		Carichi su marciapiedi e piste ciclabili non sormontabili
		Carichi vertical	i	Carichi	orizzontali	Carichi verticali
Gruppo di azioni	Modello principale (schemi di carico 1, 2, 3, 4 e 6)	Veicoli spe- ciali	Folla (Sche- ma di carico 5)	Frenatura	Forza centrifuga	Carico uniformemente distribuito
1	Valore carat- teristico					Schema di carico 5 con valore di combinazione 2,5KN/m²
2a	Valore fre- quente			Valore carat- teristico		
2b	Valore fre- quente				Valore caratteri- stico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0KN/m²
4 (**)			Schema di carico 5 con valore carat- teristico 5,0KN/m ²			Schema di carico 5 con valore caratteristico 5,0KN/m²
5 (***)	Da definirsi per il singo- lo progetto	Valore carat- teristico o nominale				
(*) Ponti ped	lonali					

^(**) Da considerare solo se richiesto dal particolare progetto (ad es. ponti in zona urbana)

La Tab. 5.1.V fornisce i valori dei coefficienti parziali delle azioni da assumere nell'analisi per la determinazione degli effetti delle azioni nelle verifiche agli stati limite ultimi, il significato dei simboli è il seguente:

 γ_{G1} coefficiente parziale del peso proprio della struttura, del terreno e dell'acqua, quando pertinente;

 γ_{G2} coefficiente parziale dei pesi propri degli elementi non strutturali;

γQ coefficiente parziale delle azioni variabili da traffico;

 γ_{Qi} coefficiente parziale delle azioni variabili.

 $^{(\}sp{***})$ Da considerare solo se si considerano veicoli speciali

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL IN0200 001 46 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A

Tab. 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

,, , ,							
		Coefficiente	EQU ^(t)	A1	A2		
Azioni permanenti g ₁ e g ₃	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00		
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	YG2	0,00 1,50	0,00 1,50	0,00 1,30		
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35	0,00 1,15		
Azioni variabili	favorevoli sfavorevoli	ΥQi	0,00 1,50	0,00 1,50	0,00 1,30		
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Υε 1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00		
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	YE2, YE3, YE4	0,00 1,20	0,00 1,20	0,00 1,00		

⁽i) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

I valori dei coefficienti ψοj, ψ1j e ψ2j per le diverse categorie di azioni sono riportati nella Tab. 5.1.VI.

Tab. 5.1.VI - Coefficienti ψ per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni	Coefficiente	Coefficiente	Coefficiente ψ ₂
	(Tab. 5.1.IV)	ψ ₀ di combi-	Ψ ₁ (valori	(valori quasi
		nazione	frequenti)	permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLU e SLE	0,0	0,0	0,0
rveve	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

Sono prese in considerazione le seguenti verifiche agli stati limite ultimi:

 SLU di tipo Geotecnico (GEO), relative a condizioni di collasso per carico limite dell'insieme fondazione – terreno;

⁽a) Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA - ORSARA AV	WEBUILD ITALIA	PIZZAROTTI	ITINEIXANIO NAI OEI – BANI					
PROGETTAZIONE:			RΔΓ	DOPP	IO TRAT	TA APICE - (ORSAF	Δ
<u>Mandataria</u>	<u>Mandanti</u>		RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA					
ROCKSOIL S.P.A	NET ENGINEERIN	G PINI ELETTRI-FER		.0.0	IIZIOIIAL		- OILO	711/7
M-INGEGNERIA	G 01	LLLI IIII-I LIX						
PROGETTO ESECUT	IVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	Relazione di calcolo		IF3A	02	E ZZ CL	IN0 2 00 001	В	47 di 261

• SLU di tipo strutturale (STR), relative a condizioni di raggiungimento della resistenza negli elementi strutturali.

Le verifiche sono svolte considerando il seguente approccio:

Approccio 2: A1 + M1 + R3

Tale approccio prevede un'unica combinazione di gruppi di coefficienti, da adottare sia nelle verifiche strutturali che nelle verifiche geotecniche.

PARAMETRO	Coefficiente parziale	(M1)	(M2)
Tangente dell'angolo di resistenza al taglio	761	1,00	1,25
Coesione efficace	6.	1,00	1,25
Resistenza non dremata	Su Su	1,00	1,40
Peso dell'unità di volume	Υr	1,00	1,00

VERIFICA	Coefficiente parziale	(R1)	(R2)	(R3)
Capacità portante	да	1,00	1,80	2,30

In via cautelativa le sollecitazioni impiegate nelle verifiche agli SLE sono calcolate in combinazione RARA (più gravose delle sollecitazioni Q.P.). Tuttavia, nelle verifiche tensionali è stato considerato il valore più cautelativo tra i limiti tensionali previsti nel Manuale di RFI cod. DTCSICSMAIFS001A per le combinazioni allo SLE Rara e Q.P (cfr. Capitolo 3.1). Nello specifico, il limite tensionale considerato è pari a 0.40fck (relativo alla combinazione Q.P.), anzichè 0.55fck (relativo alla combinazione Rara).

Le verifiche, a vantaggio di sicurezza, sono pertanto condotte considerando le sollecitazioni derivanti dalle combinazioni SLE rara utilizzando, tuttavia, il limite tensionale più restrittivo relativo alle combinazioni SLE Q.P.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA PROGETTO ESECUTIVO FOGLIO ${\sf COMMESSA}$ LOTTO CODIFICA DOCUMENTO REV. Tombino circolare IN02 - Relazione di calcolo E ZZ CL 48 di 261

9.1 SCATOLARE

							GR	-1	GR - 2a					
	Pesi propri c.a.	Peso ballast e riempimento	Spinta terre sul piedritto sx	Spinta terre sul piedritto dx	azione di ritiro del cls	Variazione termica	schema 1 (massimizzazione mezzeria)	schema 1 (massimizzazione appoggio)	Azione orizzontale di accelerazione/frenatur a	Spinta del treno a tergo piedritti in sx	Spinta del treno a tergo piedritti in dx	Forze sismiche agenti in dir. orizzontale	Sovraspinta sismica orizzontale	Forze sismiche agenti in dir. veticale
COMB.	G1	G2	SPT_sx	SPT_dx	RITIRO	ΔΤ	QM	QT	Q3	SPA_sx	SPA_dx	SS_H	SPS_H	SS_V
SLU_1	1.35	1.35	1.00	1.00	0	0.90	1.35	0	0	0	0	0	0	0
SLU_2	1.35	1.35	1.35	1.35	0	0.90	1.35	0	0	1.35	1.35	0	0	0
SLU_3	1.35	1.35	1.35	1.00	0	0.90	1.35	0	0	1.35	0	0	0	0
SLU_4	1.35	1.35	1.00	1.00	1.20	-0.90	1.35	0	0	0	0	0	0	0
SLU_5	1.35	1.35	1.35	1.35	1.20	-0.90	1.35	0	0	1.35	1.35	0	0	0
SLU_6	1.35	1.35	1.35	1.00	1.20	-0.90	1.35	0	0	1.35	0	0	0	0
SLU_7	1.35	1.35	1.00	1.00	0	0.90	0	1.35	0	0	0	0	0	0
SLU_8	1.35	1.35	1.35	1.35	0	0.90	0	1.35	0	1.35	1.35	0	0	0
SLU_9	1.35	1.35	1.35	1.00	0	0.90	0	1.35	0	1.35	0	0	0	0
SLU_10	1.35	1.35	1.00	1.00	1.20	-0.90	0	1.35	0	0	0	0	0	0
SLU_11	1.35	1.35	1.35	1.35	1.20	-0.90	0	1.35	0	1.35	1.35	0	0	0
SLU_12	1.35	1.35	1.35	1.00	1.20	-0.90	0	1.35	0	1.35	0	0	0	0
SLU_13	1.35	1.35	1.35	1.35	0	0.90	0	0	0	1.35	1.35	0	0	0
SLU_14	1.35	1.35	1.35	1.00	0	0.90	0	0	0	1.35	0	0	0	0
SLU_15	1.35	1.35	1.35	1.35	1.20	-0.90	0	0	0	1.35	1.35	0	0	0
SLU_16	1.35	1.35	1.35	1.00	1.20	-0.90	0	0	0	1.35	0	0	0	0
SLU_17 SLU_18	1.35	1.35		1.00	0	0.90	1.01	0	1.35	1.01	1.01	0	0	0
SLU_18	1.35	1.35	1.35 1.35	1.00	0	0.90	1.01	0	1.35	1.01	0	0	0	0
SLU_20	1.35	1.35	1.00	1.00	1.20	-0.90	1.01	0	1.35	0	0	0	0	0
SLU_21	1.35	1.35	1.35	1.35	1.20	-0.90	1.01	0	1.35	1.01	1.01	0	0	0
SLU_22	1.35	1.35	1.35	1.00	1.20	-0.90	1.01	0	1.35	1.01	0	0	0	0
SLU_23	1.35	1.35	1.00	1.00	0	0.90	0	1.01	1.35	0	0	0	0	0
SLU_24	1.35	1.35	1.35	1.35	0	0.90	0	1.01	1.35	1.01	1.01	0	0	0
SLU_25	1.35	1.35	1.35	1.00	0	0.90	0	1.01	1.35	1.01	0	0	0	0
SLU_26	1.35	1.35	1.00	1.00	1.20	-0.90	0	1.01	1.35	0	0	0	0	0
SLU_27	1.35	1.35	1.35	1.35	1.20	-0.90	0	1.01	1.35	1.01	1.01	0	0	0
SLU_28	1.35	1.35	1.35	1.00	1.20	-0.90	0	1.01	1.35	1.01	0	0	0	0
SLU 29	1.35	1.35	1.00	1.00	0	1.50	1.01	0	0	0	0	0	0	0
SLU_30	1.35	1.35	1.35	1.35	0	1.50	1.01	0	0	1.01	1.01	0	0	0
SLU_31	1.35	1.35	1.35	1.00	0	1.50	1.01	0	0	1.01	0	0	0	0
SLU_32	1.35	1.35	1.00	1.00	1.20	-1.50	1.01	0	0	0	0	0	0	0
SLU_33	1.35	1.35	1.35	1.35	1.20	-1.50	1.01	0	0	1.01	1.01	0	0	0
SLU_34	1.35	1.35	1.35	1.00	1.20	-1.50	1.01	0	0	1.01	0	0	0	0
SLU_35	1.35	1.35	1.00	1.00	0	1.50	0	1.01	0	0	0	0	0	0
SLU_36	1.35	1.35	1.35	1.35	0	1.50	0	1.01	0	1.01	1.01	0	0	0
SLU_37	1.35	1.35	1.35	1.00	0	1.50	0	1.01	0	1.01	0	0	0	0
SLU_38	1.35	1.35	1.00	1.00	1.20	-1.50	0	1.01	0	0	0	0	0	0
SLU_39	1.35	1.35	1.35	1.35	1.20	-1.50	0	1.01	0	1.01	1.01	0	0	0
SLU_40	1.35	1.35	1.35	1.00	1.20	-1.50	0	1.01	0	1.01	0	0	0	0
SLU_41	1.35	1.35	1.35	1.35	0	1.50	0	0	0	1.01	1.01	0	0	0
SLU_42	1.35	1.35	1.35	1.00	0	1.50	0	0	0	1.01	0	0	0	0
SLU_43	1.35	1.35	1.35	1.35	1.20	-1.50	0	0	0	1.01	1.01	0	0	0
SLU_44	1.35	1.35	1.35	1.00	1.20	-1.50	0	0	0	1.01	0	0	0	0

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **Mandataria** Mandanti ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER**

M-INGEGNERIA

PROGETTO ESECUTIVO

SLE_34

SLE 35

SLE_36

SLE 37

SLE 38

SLE_39

SLE_40

SLE 41

SLE_42

SLE 43

SLE 44

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.60

1.00

1.00

0.60

1.00

1.00

1.00

1.00

1.00

1.00

Tombino circolare IN02 - Relazione di calcolo

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

DOCUMENTO

REV.

FOGLIO

49 di 261

CODIFICA

E ZZ CL

agenti ਰ accelerazione/frenatur cls sismiche agenti sismica /ariazione termica Azione orizzontale Spinta del treno a tergo piedritti in sx Spinta del treno a tergo piedritti in dx azione di ritiro del (massimizzazione (massimizzazione dir. orizzontale sismiche Peso ballast e riempimento Spinta terre sul Spinta terre sul Pesi propri c.a. veticale Sovraspinta siedritto dx siedritto sx (oiggoddi mezzeria) schema 1 Forze s Peso ₽. COMB G1 G2 SPT_sx SPT_dx RITIRO ΔΤ OM ΩТ Q3 SPA sx SPA dx SS H SPS H SS V SLE 1 1.00 1.00 0.60 0.60 0.60 1 00 SLE 2 1.00 1.00 1.00 1.00 0.60 1.00 1.00 1.00 1.00 1.00 0.60 1.00 SLE 3 1.00 0.60 1 00 1.00 0.60 0.60 1.00 -0.60 SLE 4 1.00 1.00 SLE_5 1.00 1.00 1.00 1.00 1.00 -0.60 1.00 0 0 1.00 1.00 0 SLE_6 1.00 1.00 1.00 0.60 1.00 -0.60 1.00 1.00 1.00 SLE_7 1.00 1.00 0.60 0.60 0 0.60 0 0 0 0 0 SLE_8 1.00 1.00 1.00 1.00 0 0.60 1.00 1.00 1.00 SLE_9 1.00 1.00 0.60 0.60 0 1.00 0 0 1.00 1.00 SLE_10 1.00 1.00 0.60 0.60 1.00 -0.60 0 1.00 0 0 0 SLE_11 1.00 1.00 1.00 1.00 1.00 -0.60 0 1.00 0 1.00 1.00 0 0 0 **SLE 12** 1.00 1.00 1.00 0.60 1.00 -0.60 1.00 1.00 1 00 **SLE 13** 1 00 1.00 1.00 1.00 0.60 1.00 0 **SLE 14** 0.60 1.00 1.00 1.00 0.60 1.00 **SLE 15** 1.00 -0.60 1.00 1.00 1.00 1.00 1.00 1.00 SLE_16 -0.60 1.00 1.00 1.00 1.00 0.60 1.00 SLE_17 1.00 1.00 0.60 0.60 0.60 0.75 1.00 SLE_18 1.00 1.00 1.00 1.00 0 0.60 0.75 1.00 0.75 0.75 SLE_19 1.00 1.00 1.00 0.60 0.60 0.75 1.00 0.75 **SLE 20** 1.00 0.60 1.00 -0.60 0.75 1.00 1.00 SLE_21 1.00 1.00 1.00 1.00 -0.60 0.75 1.00 0.75 0.75 **SLE 22** 1.00 1.00 1.00 0.60 1.00 -0.60 0.75 1.00 0.75 **SLE 23** 1.00 1.00 0.60 0.60 0.60 0.75 1.00 1.00 **SLE 24** 1.00 1.00 1.00 0.60 0.75 1.00 0.75 0.75 0 0.60 **SLE 25** 1.00 1.00 1.00 0.60 0.75 1.00 0.75 -0.60 0 **SLE 26** 1.00 1.00 0.60 0.60 1.00 0.75 1.00 SLE_27 1.00 1.00 1.00 1.00 1.00 -0.60 0.75 1.00 0.75 0.75 0 SLE_28 1.00 1.00 1.00 0.60 1.00 -0.60 0.75 1.00 0.75 0 0 0 SLE_29 1.00 0.60 0.60 0 1.00 0.75 0 0 0 0.75 0 0 0.75 0.75 0 **SLE 30** 1.00 1.00 1.00 1.00 SLE_31 1.00 1.00 0.60 1.00 0.75 0 0 0.75 0 0 0 1.00 SLE_32 1.00 1.00 0.60 0.60 1.00 -1.00 0.75 0 0 0 0 0 0 SLE_33 1.00 1.00 1.00 1.00 1.00 -1.00 0.75 0 0 0.75 0.75 0 0

1.00

1.00

1.00

1.00

1.00

1.00

-1.00

1.00

1.00

1.00

-1.00

-1.00

-1.00

1.00

1.00

-1.00

-1.00

0.75

0

0.75

0.75

0.75

0.75

0.75

0.75

0

0

0

0.75

0.75

0.75

0

0.75

0.75

0.75

0.75

0.75

0.75

0

0.75

0.75

0.75

0

0.75

0

0

0.60

0.60

1.00

0.60

0.60

1.00

1.00

0.60

1.00

0.60

COMMESSA

GR - 1

LOTTO

GR - 2a

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF **ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO FOGLIO ${\sf COMMESSA}$ LOTTO CODIFICA DOCUMENTO REV. Tombino circolare IN02 - Relazione di calcolo E ZZ CL 50 di 261

							GR	-1	GR - 2a					
	Pesi propri c.a.	Peso ballast e riempimento	Spinta terre sul piedritto sx	Spinta terre sul piedritto dx	azione di ritiro del cls	Variazione termica	schema 1 (massimizzazione mezzeria)	schema 1 (massimizzazione appoggio)	Azione orizzontale di accelerazione/frenatur a	Spinta del treno a tergo piedritti in sx	Spinta del treno a tergo piedritti in dx	Forze sismiche agenti in dir. orizzontale	Sovraspinta sismica orizzontale	Forze sismiche agenti in dir. veticale
COMB.	G1	G2	SPT_sx	SPT_dx	RITIRO	ΔΤ	QM	QT	Q3	SPA_sx	SPA_dx	SS_H	SPS_H	SS_V
SLV_1	1.00	1.00	1.00	0.60	0	0.50	0.20	0	0	0.20	0	1.00	1.00	0.30
SLV_2	1.00	1.00	1.00	0.60	0	0.50	0.20	0	0	0.20	0	1.00	1.00	-0.30
SLV_3	1.00	1.00	1.00	0.60	1.00	-0.50	0.20	0	0	0.20	0	1.00	1.00	0.30
SLV_4	1.00	1.00	1.00	0.60	1.00	-0.50	0.20	0	0	0.20	0	1.00	1.00	-0.30
SLV_5	1.00	1.00	1.00	0.60	0	0.50	0.20	0	0	0.20	0	0.30	0.30	1.00
SLV_6	1.00	1.00	1.00	0.60	0	0.50	0.20	0	0	0.20	0	0.30	0.30	-1.00
SLV_7	1.00	1.00	1.00	0.60	1.00	-0.50	0.20	0	0	0.20	0	0.30	0.30	1.00
SLV_8	1.00	1.00	1.00	0.60	1.00	-0.50	0.20	0	0	0.20	0	0.30	0.30	-1.00
SLV_9	1.00	1.00	1.00	0.60	0	0.50	0	0.20	0	0.20	0	1.00	1.00	0.30
SLV_10	1.00	1.00	1.00	0.60	0	0.50	0	0.20	0	0.20	0	1.00	1.00	-0.30
SLV_11	1.00	1.00	1.00	0.60	1.00	-0.50	0	0.20	0	0.20	0	1.00	1.00	0.30
SLV_12	1.00	1.00	1.00	0.60	1.00	-0.50	0	0.20	0	0.20	0	1.00	1.00	-0.30
SLV_13	1.00	1.00	1.00	0.60	0	0.50	0	0.20	0	0.20	0	0.30	0.30	1.00
SLV_14	1.00	1.00	1.00	0.60	0	0.50	0	0.20	0	0.20	0	0.30	0.30	-1.00
SLV_15	1.00	1.00	1.00	0.60	1.00	-0.50	0	0.20	0	0.20	0	0.30	0.30	1.00
SLV_16	1.00	1.00	1.00	0.60	1.00	-0.50	0	0.20	0	0.20	0	0.30	0.30	-1.00

9.2 MURI AD U

	Pesi propri c.a.	Spinta terre sul piedritto sx	Spinta terre sul piedritto dx	Spinta accidentali a tergo piedritti in sx	Spinta accidental a tergo piedritti in dx	Forze sismiche agenti in dir. orizzontale	Sovraspinta sismica orizzontale	Forze sismiche agenti in dir. veticale
COMB.	G1	SPT_sx	SPT_dx	SPA_sx	SPA_dx	SS_H	SPS_H	SS_V
SLU_1	1.35	1.00	1.00	0	0	0	0	0
SLU_2	1.35	1.35	1.35	1.50	1.50	0	0	0
SLU_3	1.35	1.35	1.00	1.50	0	0	0	0
SLU_4	1.00	1.35	1.00	1.50	0	0	0	0
SLV_1	1.00	1.00	0.60	0	0	1.00	1.00	0.30
SLV_2	1.00	1.00	0.60	0	0	1.00	1.00	-0.30
SLV_3	1.00	1.00	0.60	0	0	0.30	0.30	1.00
SLV_4	1.00	1.00	0.60	0	0	0.30	0.30	-1.00
SLE_1	1.00	0.60	0.60	0	0	0	0	0
SLE_2	1.00	1.00	1.00	1.00	1.00	0	0	0
SLE_3	1.00	1.00	0.60	1.00	0	0	0	0

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF **ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO FOGLIO ${\sf COMMESSA}$ LOTTO CODIFICA DOCUMENTO REV. Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 51 di 261

9.3 POZZO

	Pesi propri c.a.	Spinta terre sul muro X1	Spinta terre sul muro X2	Spinta terre sul muro Y1	Spinta terre sul muro Y2	Spinta accidentali a tergo muro X1	Spinta accidental a tergo muro X2	Spinta accidentali a tergo muro Y1	Spinta accidental a tergo muro Y2	Forze sismiche agenti in dir. Orizzontale X	Forze sismiche agenti in dir. Orizzontale X	Forze sismiche agenti in dir. Orizzontale Y	Forze sismiche agenti in dir. Orizzontale Y	Sovraspinta sismica orizzontale X	Sovraspinta sismica orizzontale Y	Forze sismiche agenti in dir. veticale
COMB.	G1	SPT_X1	SPT_X2	SPT_Y1	SPT_Y2	SPACC_X1	SPACC_X2	SPACC_Y1	SPACC_Y2	SPS_X1	SPS_X2	SPS_Y1	SPS_Y2	SS_H_X	SS_H_Y	SS_V
SLU_1	1.35	1.00	1.00	1.00	1.00	0	0	0	0	0	0	0	0	0	0	0
SLU_2	1.35	1.35	1.00	1.00	1.00	1.50	0	0	0	0	0	0	0	0	0	0
SLU_3	1.35	1.00	1.35	1.00	1.00	0	1.50	0	0	0	0	0	0	0	0	0
SLU_4	1.35	1.00	1.00	1.35	1.00	0	0	1.50	0	0	0	0	0	0	0	0
SLU_5	1.35	1.00	1.00	1.00	1.35	0	0	0	1.50	0	0	0	0	0	0	0
SLU_6	1.35	1.35	1.35	1.35	1.35	1.50	1.50	1.50	1.50	0	0	0	0	0	0	0
SLV_1	1.00	1.00	1.00	1.00	1.00	0	0	0	0	1.00	0	0.30	0	1.00	0.30	0.30
SLV_2	1.00	1.00	1.00	1.00	1.00	0	0	0	0	0	1.00	0	0.30	-1.00	-0.30	0.30
SLV_3	1.00	1.00	1.00	1.00	1.00	0	0	0	0	1.00	0	0.30	0	1.00	0.30	-0.30
SLV_4	1.00	1.00	1.00	1.00	1.00	0	0	0	0	0	1.00	0	0.30	-1.00	-0.30	-0.30
SLV_5	1.00	1.00	1.00	1.00	1.00	0	0	0	0	0.30	0	1.00	0	0.30	1.00	0.30
SLV_6	1.00	1.00	1.00	1.00	1.00	0	0	0	0	0	0.30	0	1.00	-0.30	-1.00	0.30
SLV_7	1.00	1.00	1.00	1.00	1.00	0	0	0	0	0.30	0	1.00	0	0.30	1.00	-0.30
SLV_8	1.00	1.00	1.00	1.00	1.00	0	0	0	0	0	0.30	0	1.00	-0.30	-1.00	-0.30
SLV_9	1.00	1.00	1.00	1.00	1.00	0	0	0	0	0.30	0	0.30	0	0.30	0.30	1.00
SLV_10	1.00	1.00	1.00	1.00	1.00	0	0	0	0	0	0.30	0	0.30	-0.30	-0.30	1.00
SLV_11	1.00	1.00	1.00	1.00	1.00	0	0	0	0	0.30	0	0.30	0	0.30	0.30	-1.00
SLV_12	1.00	1.00	1.00	1.00	1.00	0	0	0	0	0	0.30	0	0.30	-0.30	-0.30	-1.00
SLV_13	1.00	1.00	1.00	1.00	1.00	0	0	0	0	0.30	0	0.30	0	0.30	0.30	1.00
SLV_14	1.00	1.00	1.00	1.00	1.00	0	0	0	0	0	0.30	0	0.30	-0.30	-0.30	1.00
SLV_15	1.00	1.00	1.00	1.00	1.00	0	0	0	0	0.30	0	0.30	0	0.30	0.30	-1.00
SLV_16	1.00	1.00	1.00	1.00	1.00	0	0	0	0	0	0.30	0	0.30	-0.30	-0.30	-1.00
SLE_1	1.00	0.60	0.60	0.60	0.60	0	0	0	0	0	0	0	0	0	0	0
SLE_2	1.00	1.00	0.60	0.60	0.60	1.00	0	0	0	0	0	0	0	0	0	0
SLE_3	1.00	0.60	1.00	0.60	0.60	0	1.00	0	0	0	0	0	0	0	0	0
SLE_4	1.00	0.60	0.60	1.00	0.60	0	0	1.00	0	0	0	0	0	0	0	0
SLE_5	1.00	0.60	0.60	0.60	1.00	0	0	0	1.00	0	0	0	0	0	0	0
SLE_6	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0	0	0	0	0	0	0

APPALTATORE: Consorzio HIRPINIA - ORSARA AV PROGETTAZIONE: Mandataria ROCKSOIL S.P.A M-INGEGNERIA	Soci WEBUILD ITALIA Mandanti NET ENGINEERING GCF	PIZZAROTTI B PINI ELETTRI-FER		DOPP	IO TRAT	NAPOLI – BA TA APICE - (LE HIRPINIA	ORSAF	
PROGETTO ESECUT Tombino circolare IN02 -			COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ CL	DOCUMENTO IN0 2 00 001	REV. B	FOGLIO 52 di 261

10 MODELLAZIONE STRUTTURALE

10.1 ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO

Per le analisi delle strutture è stato utilizzato il software Sap 2000 prodotto, distribuito ed assistito da Computers and Structures, Inc. e distribuito dalla CSI Italia srl.

10.2 TIPO DI ANALISI SVOLTA

Trattandosi di opera interrata di tipo rigido la determinazione delle sollecitazioni sia in campo statico che in campo sismico è stata svolta mediante analisi statica lineare secondo le teorie classiche della Scienza delle Costruzioni, trascurando le eventuali capacità dissipative della struttura (q=1) e sfruttando il principio di sovrapposizione degli effetti.

Nella modellazione vengono impiegati elementi finiti di tipo trave a 6 GL, che ovviamente nell'analisi 2D condotta (telaio piano) si riducono a 3. Ai suddetti elementi sono assegnate le caratteristiche inerziali della struttura reale derivanti dalle proprietà dei materiali e dalla geometria della sezione.

Dal modello sono state dedotte, per le combinazioni di calcolo statiche e sismiche descritte in precedenza, le sollecitazioni complessive agenti sugli elementi strutturali al fine di procedere con le verifiche di sicurezza previste dalle Normative di riferimento. Dallo stesso modello sono state poi ricavate le sollecitazioni agenti all'intradosso della soletta di fondazione necessarie ai fini delle verifiche geotecniche del sistema terreno-fondazione e delle verifiche strutturali.

Le combinazioni di carico considerate per ciascuno stato limite sono riportate in forma tabellare nei capitoli specifici.

10.3 AFFIDABILITÀ DEI CODICI UTILIZZATI

Riguardo il codice FEM impiegato, la casa produttrice ha provveduto alla produzione di tutti i documenti di validazione del software che non sono allegati alla presente relazione di calcolo per ragioni di sintesi, ma che possono essere forniti in qualsiasi momento o richiesti direttamente alla casa produttrice.

10.4 MODELLO DI CALCOLO

10.4.1 Scatolare

Il modello di calcolo attraverso il quale viene discretizzata la struttura è quello di telaio chiuso. I componenti del manufatto sono stati modellati con elementi 1D "frame" di sezione rettangolare 100x40cm. Di seguito uno schema del modello di calcolo.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF **ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0**2**00 001 53 di 261

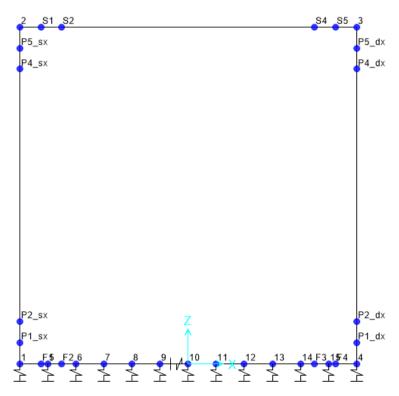


Figura 10.1: Modello di calcolo – numerazione nodi

Figura 10.2: Modello di calcolo – numerazione aste

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA - ORSARA A	WEBUILD ITA	LIA PIZZAROTTI						
PROGETTAZIONE:			PΔ		DIO TRAT	TA APICE -	ORSAF	2 Δ
<u>Mandataria</u>	<u>Mandanti</u>					LE HIRPINIA		
ROCKSOIL S.P.A	NET ENGINER	ERING PINI ELETTRI-FER	II LO	1010	INZIONAI			
M-INGEGNERIA	GOI	ELETTRIFER						
PROGETTO ESECU	JTIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02	Tombino circolare IN02 - Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	54 di 261

Convenzione assi:

x = asse trasversale dello scatolare

y = asse longitudinale dello scatolare

z = asse verticale dello scatolare

Nomenclatura elementi frame:

ID 1, 3 Piedritto sx e dx
ID 2 Soletta di copertura
ID 6÷15 Soletta di Fondazione

L'applicazione dei carichi di progetto è stata eseguita inserendo forze distribuite o concentrate sugli elementi frame del modello di calcolo.

10.4.2 Muri ad U

Il modello di calcolo attraverso il quale viene discretizzata la struttura è quello di struttura ad U con pareti e fondazione mutuamente incastrati. I componenti del manufatto sono stati modellati con elementi 1D "frame" di sezione rettangolare 100x50cm per la fondazione e 100x30 per le pareti. Di seguito uno schema del modello di calcolo.

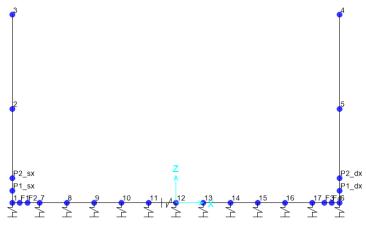


Figura 10.3: Modello di calcolo – numerazione nodi

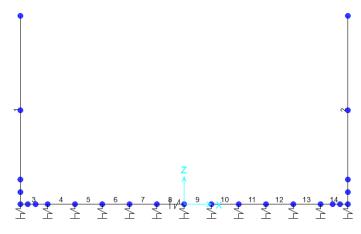


Figura 10.4: Modello di calcolo – numerazione aste

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Tombino circolare IN02 - Relazione di calcolo E ZZ CL 55 di 261

Convenzione assi:

x = asse trasversale dello scatolare

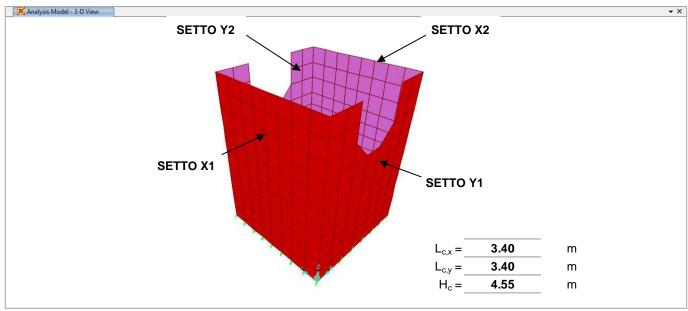
y = asse longitudinale dello scatolare

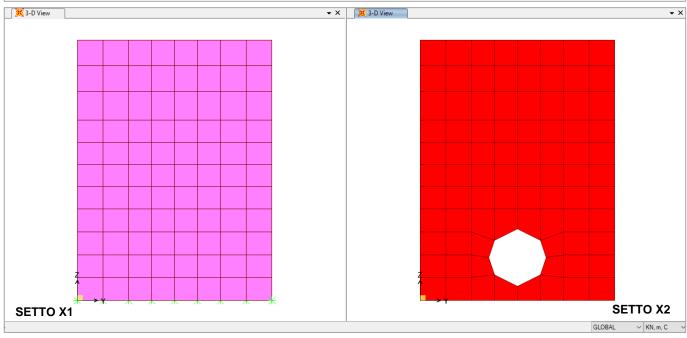
z = asse verticale dello scatolare

Nomenclatura elementi frame:

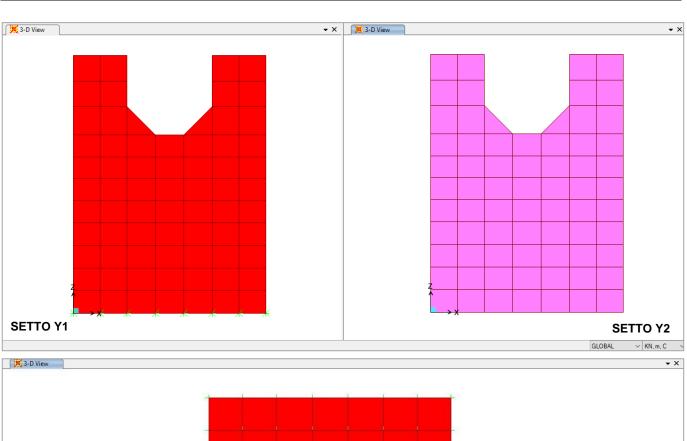
ID 1 e 2 Parete sx e dx

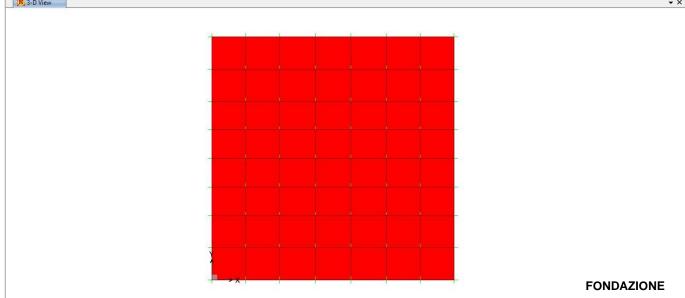
ID 3÷14 Soletta di Fondazione


L'applicazione dei carichi di progetto è stata eseguita inserendo forze distribuite o concentrate sugli elementi frame del modello di calcolo.


APPALTATORE: Consorzio HIRPINIA - ORSARA AN PROGETTAZIONE: Mandataria ROCKSOIL S.P.A M-INGEGNERIA	Soci WEBUILD IT Mandanti NET ENGINE GCF			DDOPF	PIO TRAT	NAPOLI – BA TA APICE - LE HIRPINIA	ORSAF	
PROGETTO ESECU	TIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	ombino circolare IN02 - Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	56 di 261

10.4.3 Pozzo


La struttura viene schematizzata attraverso un modello analitico agli elementi finiti. In particolare, l'analisi strutturale è svolta mediante la modellazione con elementi di tipo "shell" a 4 nodi con 6 g.d.l. con riferimento piano medio delle pareti di spessore pari a 40 cm e della soletta di fondazione di spessore patri a 50 cm.


Le seguenti immagini mostrano il modello di calcolo utilizzato con l'indicazione delle diverse parti d'opera oggetto di verifica definite in base al sistema di riferimento globale adottato.

APPALTATORE:								
Consorzio	<u>Soci</u>			ITINII		IADOLI D	A DI	
HIRPINIA - ORSARA AV	WEBUILD ITALIA	PIZZAROTTI	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:			RΔΓ		IO TRAT	TA APICE -	ORSAE	Δ
<u>Mandataria</u>	<u>Mandanti</u>					E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERIN	G PINI ELETTRI-FER	11 201	1010	INZIONAL		- 01107	אווא
M-INGEGNERIA	GCF	ELETTRI-TER						
PROGETTO ESECUT	IVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	Relazione di calcolo		IF3A	02	E ZZ CL	IN0 2 00 001	В	57 di 261

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL 58 di 261 Tombino circolare IN02 - Relazione di calcolo

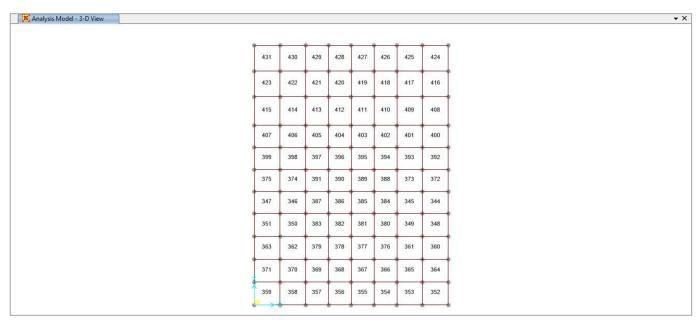


Figura 10.5: Numerazione shell - Setto X1

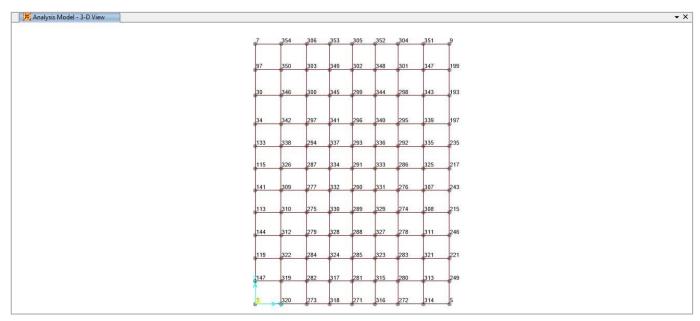


Figura 10.6: Numerazione nodi – Setto X1

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER GCF** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Tombino circolare IN02 - Relazione di calcolo E ZZ CL 59 di 261

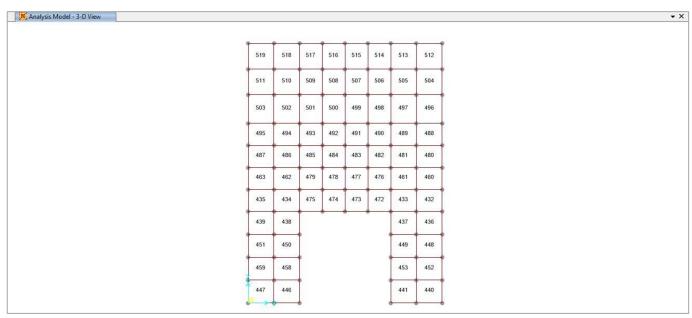


Figura 10.7: Numerazione shell - Setto X2

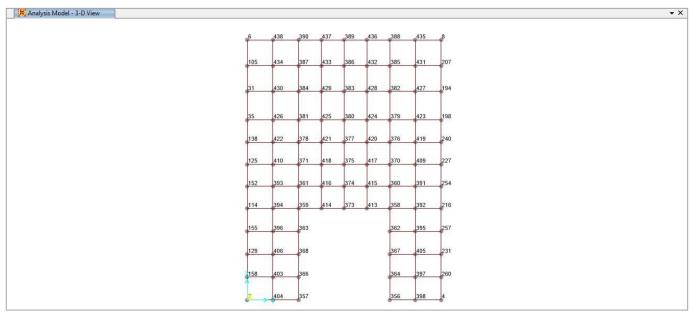


Figura 10.8: Numerazione nodi – Setto X2

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER GCF** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Tombino circolare IN02 - Relazione di calcolo E ZZ CL 60 di 261

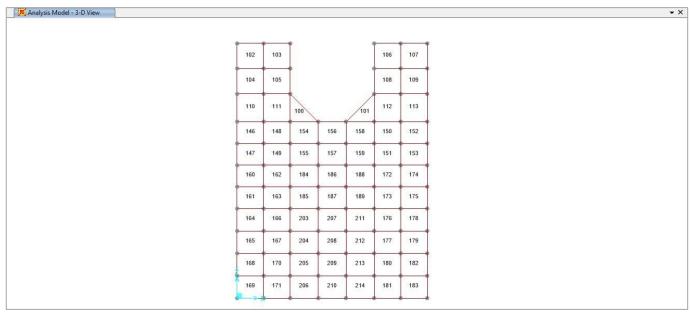


Figura 10.9: Numerazione shell - Setto Y1

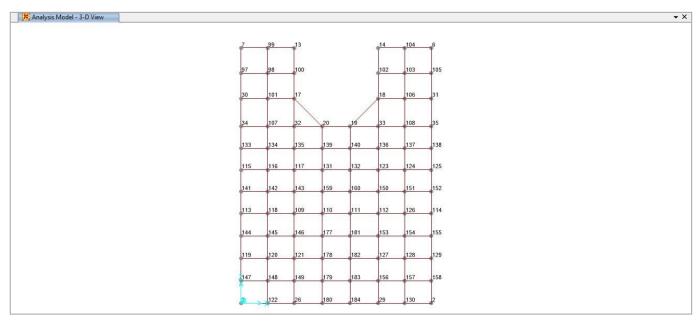


Figura 10.10: Numerazione nodi - Setto Y1

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER GCF** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Tombino circolare IN02 - Relazione di calcolo E ZZ CL 61 di 261

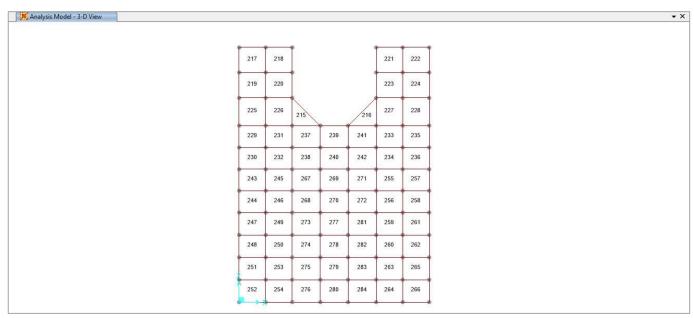


Figura 10.11: Numerazione shell - Setto Y2

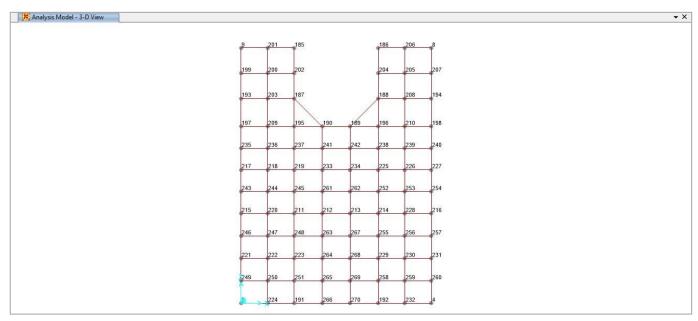


Figura 10.12: Numerazione nodi – Setto Y2

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER GCF** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL 62 di 261 Tombino circolare IN02 - Relazione di calcolo

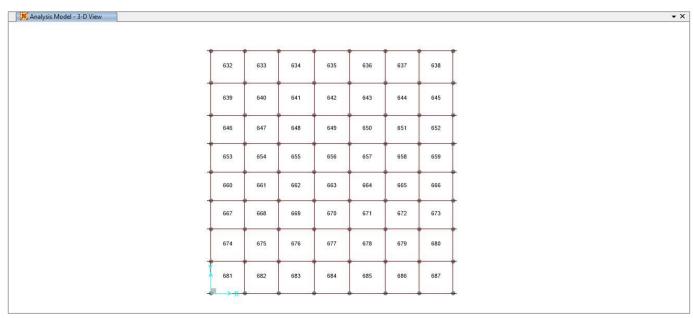


Figura 10.13: Numerazione shell - Fondazione

Figura 10.14: Numerazione nodi – Fondazione

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Tombino circolare IN02 - Relazione di calcolo E ZZ CL 63 di 261

10.5 MODELLAZIONE DELL'INTERAZIONE SUOLO - STRUTTURA

10.5.1 Scatolare

Interazione terreno-struttura

Il modello di calcolo attraverso il quale viene schematizzata la struttura è quello di telaio chiuso su letto di molle alla Winkler. Il programma di calcolo utilizzato è un programma ad elementi finiti, il Sap 2000.

Per la determinazione della costante di sottofondo si può fare riferimento alle seguenti formulazioni, assimilando il comportamento del terreno a quello di un mezzo elastico omogeneo:

$$s = B \cdot c_t \cdot (q - \sigma_{v0}) \cdot (1 - v^2) / E$$

dove:

s cedimento elastico totale
B lato minore della fondazione

 $c_t \\ \\ \text{coefficiente adimensionale di forma ottenuto dalla interpolazione dei valori dei coefficienti proposti da Bowlws,} \\$

1960 (L=lato maggiore della fondazione)

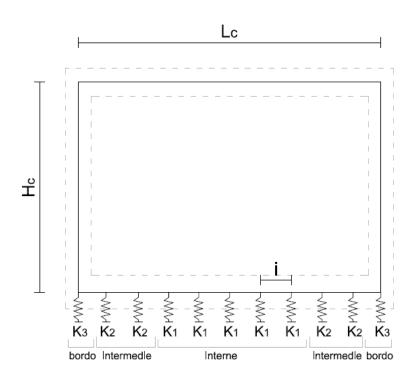
 $\begin{aligned} c_t &= 0.853 + 0.534 \text{ ln(L/B)} & \text{rettangolare con L/B} \leq 10 \\ c_t &= 2 + 0.0089 \text{ (L/B)} & \text{rettangolare con L/B} > 10 \end{aligned}$

q pressione media agente sul terreno

 σ_{v0} tensione verticale litostatica alla quota di posa della fondazione

v coefficiente di Poisson del terreno

E modulo elastico medio del tereno sottostante


Il valore della costante di sottofondo kw è valutato attraverso il rapporto tra il carico applicato ed il corrispondente cedimento pertanto, si ottiene:

	$k_w = E/[B \cdot c_t \cdot (1 - v^2)] = $	4469.2	kN/m ³
Nel caso in esame:			
lunghezza scatolare	L =	20.60	_ m
larghezza scatolare	B =	2.00	m
rapporto	L/B =	10.3	m
coefficiente di forma	$c_t =$	2.09	-
coefficiente di Poisson	v =	0.30	-
Modulo elastico a piccole deformazioni	$E_0 =$	85.00	MPa
Modulo elastico fondazioni	$E = E_0/5 =$	17.00	MPa

Con questo valore si ricavano le costanti elastiche delle singole molle, differenziandole tra interne, intermedie e esterne

numero di divisioni elemento fondazione modello FEM	n =	12.00	-
interasse trasversale di competenza generica molla	i (trasv) =	0.133	m
interasse longitudinale di competenza generica molla	i (long) =	1.00	m
- costante di Winkler molle interne	$k_{w,1} = k_w \cdot i =$	596	kN/m
- costante di Winkler molle intermedie	$k_{w,2} = 1.5 \cdot k_w \cdot i =$	894	kN/m
- costante di Winkler molle d'angolo	$k_{w,3} = 2 \cdot k_w \cdot (i/2 + s_p/2) = $	2384	kN/m
costante di Winkler orizzontale	$k_{w,h} = 0.5 \cdot k_w = $	2235	kN/m ³

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER GCF** M-INGEGNERIA PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. Tombino circolare IN02 - Relazione di calcolo E ZZ CL 64 di 261

Schematizzazione modello di calcolo F.E.M.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 65 di 261

10.5.2 Muri ad U

Interazione terreno-struttura

Il modello di calcolo attraverso il quale viene schematizzata la struttura è quello di telaio chiuso su letto di molle alla Winkler. Il programma di calcolo utilizzato è un programma ad elementi finiti, il Sap 2000.

Per la determinazione della costante di sottofondo si può fare riferimento alle seguenti formulazioni, assimilando il comportamento del terreno a quello di un mezzo elastico omogeneo:

$$s = B \cdot c_t \cdot (q - \sigma_{v0}) \cdot (1 - v^2) / E$$

dove:

s cedimento elastico totale
B lato minore della fondazione

ct coefficiente adimensionale di forma ottenuto dalla interpolazione dei valori dei coefficienti proposti da Bowlws,

1960 (L=lato maggiore della fondazione)

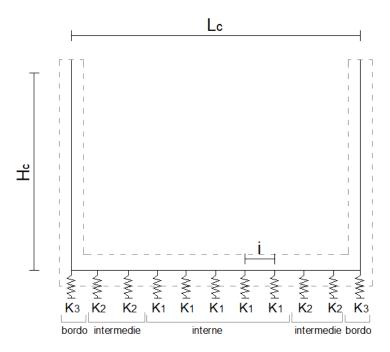
 $\begin{aligned} c_t &= 0.853 + 0.534 \text{ ln(L/B)} & \text{rettangolare con L/B} \leq 10 \\ c_t &= 2 + 0.0089 \text{ (L/B)} & \text{rettangolare con L/B} > 10 \end{aligned}$

q pressione media agente sul terreno

 $\sigma_{\!\scriptscriptstyle N\!\! 0}$ tensione verticale litostatica alla quota di posa della fondazione

v coefficiente di Poisson del terreno

E modulo elastico medio del tereno sottostante


Il valore della costante di sottofondo kw è valutato attraverso il rapporto tra il carico applicato ed il corrispondente cedimento pertanto, si ottiene:

	$k_w = E/[B \cdot c_t \cdot (1 - v^2)] = $	5769.3	kN/m ³
Nel caso in esame:			
lunghezza scatolare	_	3.60	m
larghezza scatolare		3.30	m
rapporto	L/B =	1.09	m
coefficiente di forma	$c_t =$	0.90	-
coefficiente di Poisson	v =	0.30	-
Modulo elastico a piccole deformazioni	$E_0 =$	85.00	MPa
Modulo elastico fondazioni	$E = E_0/5 =$	17.00	MPa

Con questo valore si ricavano le costanti elastiche delle singole molle, differenziandole tra interne, intermedie e esterne

numero di divisioni elemento fondazione modello FEM	n =	12.00	
interasse trasversale di competenza generica molla	i (trasv) =	0.275	_ m
interasse longitudinale di competenza generica molla	i (long) =	1.00	m
- costante di Winkler molle interne	$k_{w,1} = k_w \cdot i =$	1587	kN/m
- costante di Winkler molle intermedie	$k_{w,2} = 1.5 \cdot k_w \cdot i =$	2380	kN/m
- costante di Winkler molle d'angolo	$k_{w,3} = 2 \cdot k_w \cdot (i/2 + s_p/2) =$	3317	kN/m
costante di Winkler orizzontale	$k_{w,h} = 0.5 \cdot k_w =$	2885	kN/m ³

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF **ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. Tombino circolare IN02 - Relazione di calcolo E ZZ CL 66 di 261

H_c = _____ m

3.30

m

Schematizzazione modello di calcolo F.E.M.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Tombino circolare IN02 - Relazione di calcolo E ZZ CL

10.5.3 Pozzo

I vincoli sono costituiti da molle non lineari disposte sugli elementi "shell" a contatto con il terreno verticale in fondazione.

Interazione terreno-struttura

Il modello di calcolo attraverso il quale viene schematizzata la struttura è quello di telaio chiuso su letto di molle alla Winkler. Il programma di calcolo utilizzato è un programma ad elementi finiti, il Sap 2000.

Per la determinazione della costante di sottofondo si può fare riferimento alle seguenti formulazioni, assimilando il comportamento del terreno a quello di un mezzo elastico omogeneo:

$$s = B \cdot c_t \cdot (q - \sigma_{v0}) \cdot (1 - v^2) / E$$

dove:

s cedimento elastico totale
B lato minore della fondazione

ct coefficiente adimensionale di forma ottenuto dalla interpolazione dei valori dei coefficienti proposti da Bowlws,

1960 (L=lato maggiore della fondazione)

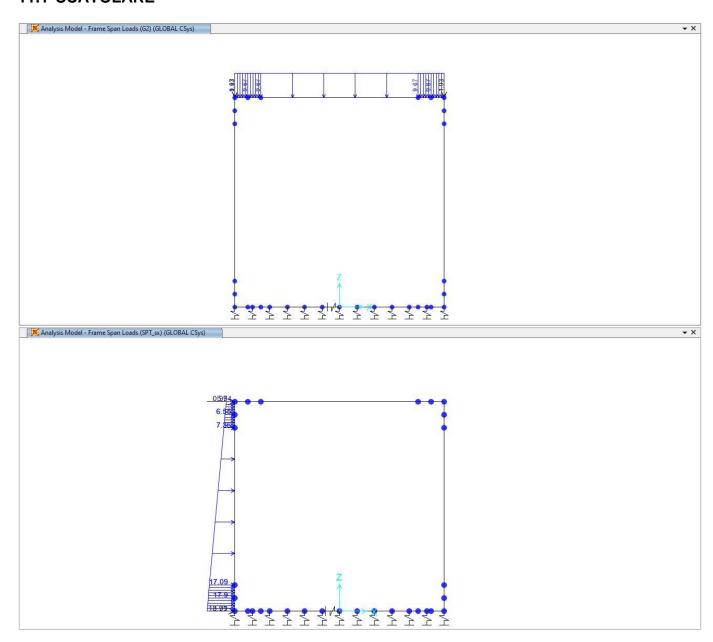
 $\begin{aligned} c_t &= 0.853 + 0.534 \text{ ln(L/B)} & \text{rettangolare con L/B} \leq 10 \\ c_t &= 2 + 0.0089 \text{ (L/B)} & \text{rettangolare con L/B} > 10 \end{aligned}$

q pressione media agente sul terreno

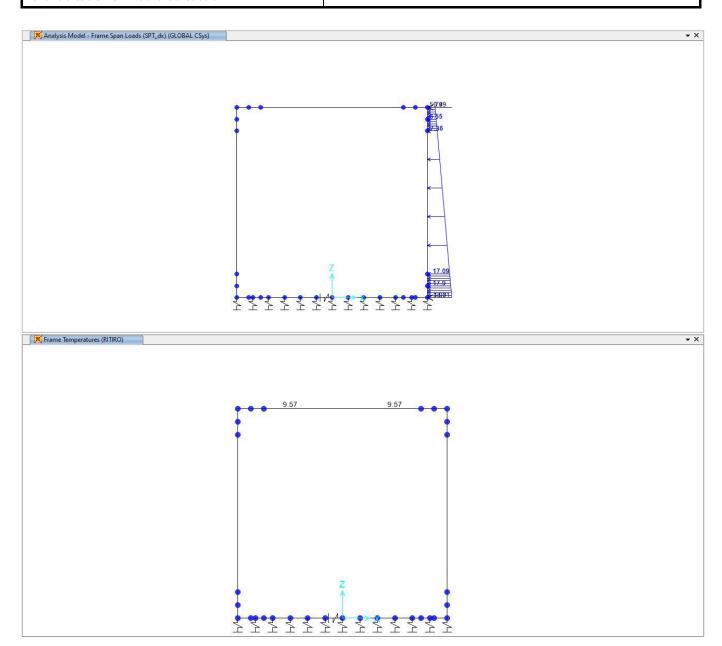
 $\sigma_{\!\scriptscriptstyle N\!\! 0}$ tensione verticale litostatica alla quota di posa della fondazione

v coefficiente di Poisson del terreno

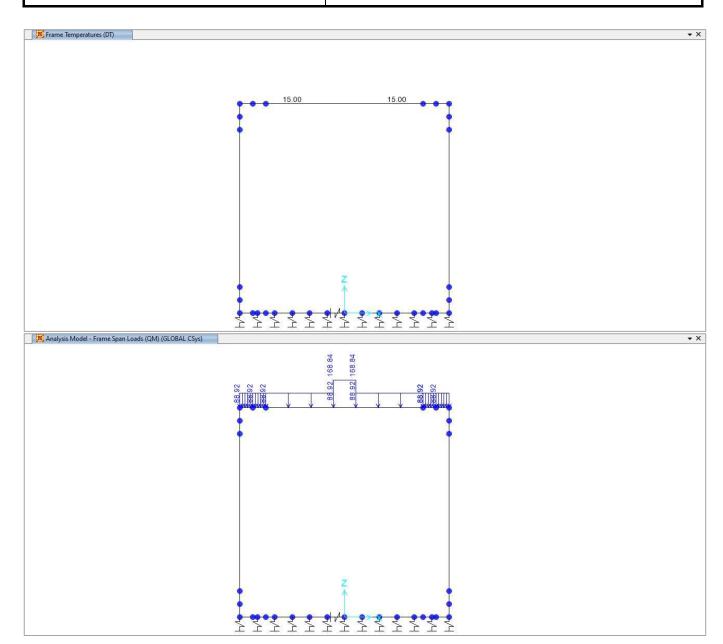
E modulo elastico medio del tereno sottostante

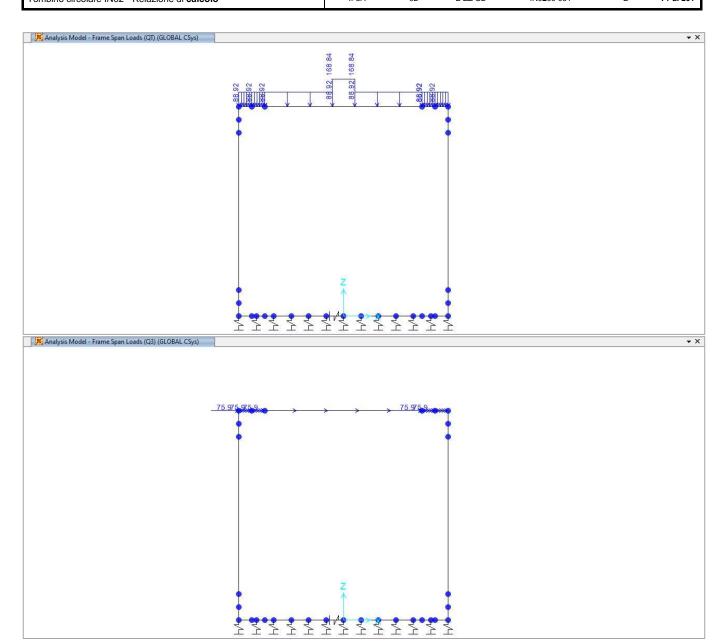

Il valore della costante di sottofondo kw è valutato attraverso il rapporto tra il carico applicato ed il corrispondente cedimento pertanto, si ottiene:

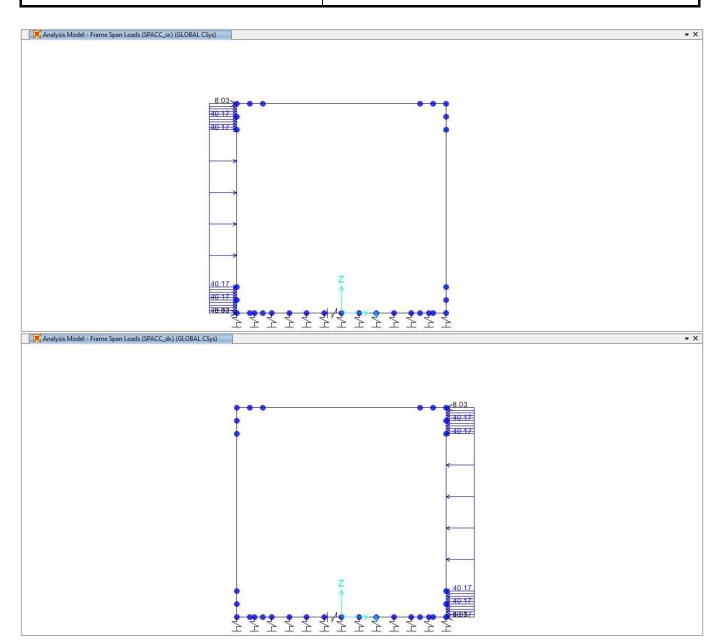
$$k_w = E/[B \cdot c_t \cdot (1 - v^2)] = \frac{}{}$$
 5763.3 kN/m^3

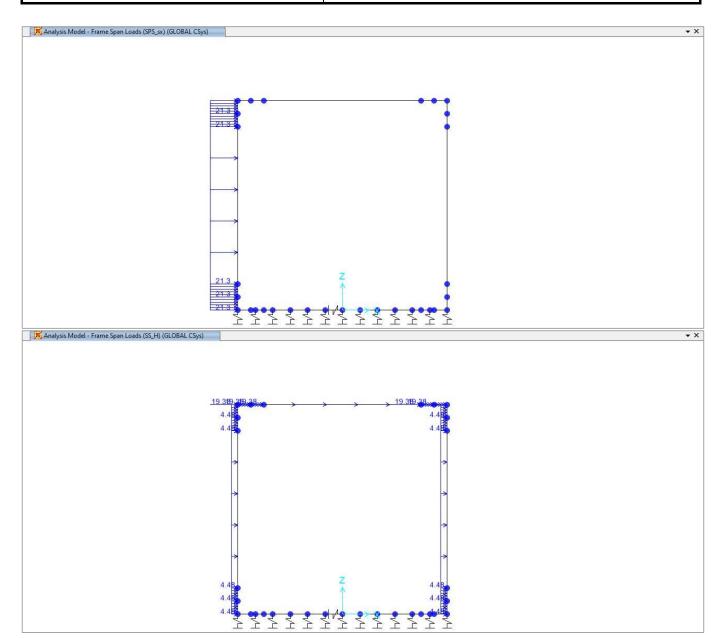

APPALTATORE:								
Consorzio	<u>Soci</u>			ITINI	ED A DIO I	MADOLL D	۸DI	ļ
HIRPINIA - ORSARA A	V WEBUILD ITA	ALIA PIZZAROTTI	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:			RΔI	DOPE	DIO TRAT	TA APICE -	ORSAF	2 Δ
<u>Mandataria</u>	<u>Mandanti</u>					E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINE	ERING PINI ELETTRI-FER		1010	INZIONAL	- -		
M-INGEGNERIA								
PROGETTO ESECU	TIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 - Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	68 di 261	

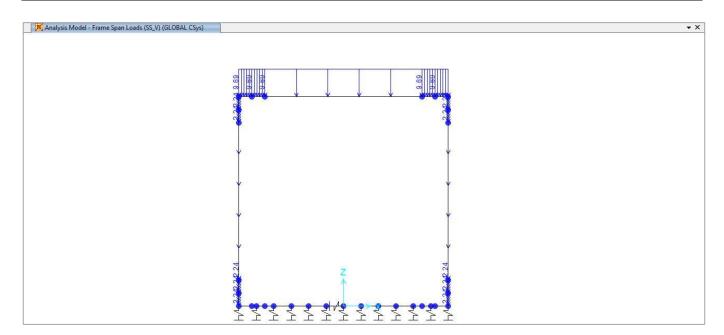
11 CARICHI ELEMENTARI MODELLI DI CALCOLO


11.1 SCATOLARE

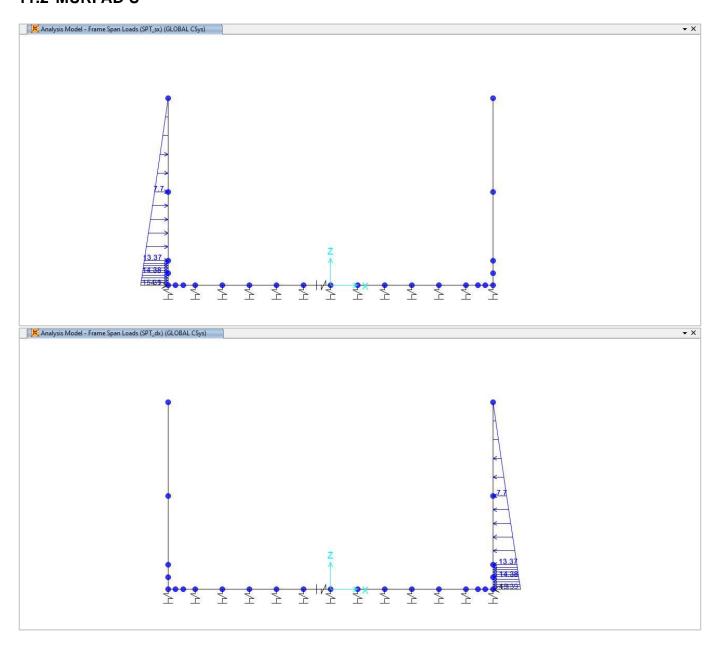

APPALTATORE:								
Consorzio	<u>Soci</u>							
HIRPINIA - ORSARA AV	WEBUILD ITALIA	PIZZAROTTI	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:			БЛІ		OIO TDAT	TA ADICE -	ODGAE	ο Λ
<u>Mandataria</u>	<u>Mandanti</u>		RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA					
ROCKSOIL S.P.A	NET ENGINEERI	NG PINI ELETTRI-FER	II LOTTO FUNZIONALE HIRPINIA - ORSARA					ANA
M-INGEGNERIA								
PROGETTO ESECUT	TVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 - Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	69 di 261	


APPALTATORE: Consorzio	Soci							
HIRPINIA - ORSARA AV	<u> </u>	PIZZAROTTI	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:			RΔI	DOPE	IO TRAT	TA APICE -	ORSAF	Δ
<u>Mandataria</u>	<u>Mandanti</u>			_	_	_		
ROCKSOIL S.P.A	NET ENGINEERINGER	IG PINI ELETTRI-FER	II LOTTO FUNZIONALE HIRPINIA - ORSARA					
M-INGEGNERIA								
PROGETTO ESECU	ΓΙVΟ		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	70 di 261


ADDALTATODE:								
APPALTATORE:								
Consorzio	<u>Soci</u>							
HIRPINIA - ORSARA A	V WEBUILD ITALIA	PIZZAROTTI	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:			RΔI	DOPE	IO TRAT	TA APICE -	ORSAF	2 Δ
<u>Mandataria</u>	<u>Mandanti</u>		RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA					
ROCKSOIL S.P.A	NET ENGINEERIN	IG PINI ELETTRI-FER	" " " "	1010	IIZIOIIAI	- -		AIVA
M-INGEGNERIA								
PROGETTO ESECU	TIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02	- Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	71 di 261

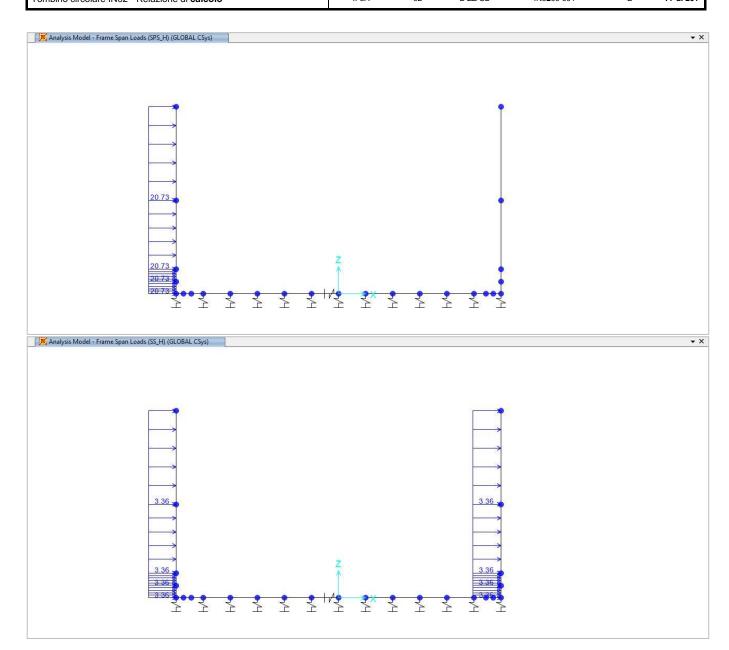

APPALTATORE:	0							
Consorzio HIRPINIA - ORSARA A	Soci / WEBUILD ITALIA	PIZZAROTTI	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:			DΛΓ		OIO TDAT	TA APICE -	ODGAE	ο Λ
<u>Mandataria</u>	<u>Mandanti</u>			_	_	_		
ROCKSOIL S.P.A	NET ENGINEERIN	G PINI ELETTRI-FER	II LOTTO FUNZIONALE HIRPINIA - ORSARA					
M-INGEGNERIA								
PROGETTO ESECU	TIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	72 di 261

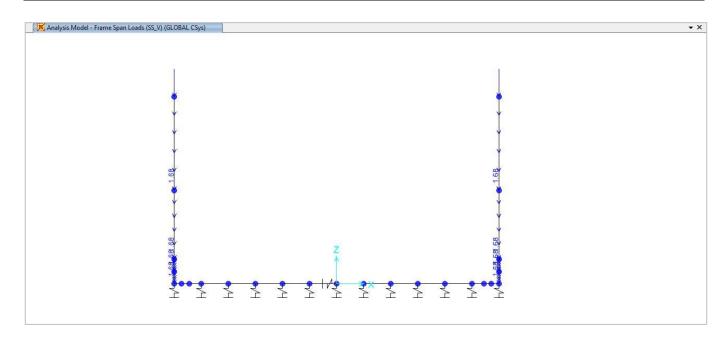
APPALTATORE: Consorzio HIRPINIA - ORSARA AV PROGETTAZIONE: Mandataria ROCKSOIL S.P.A M-INGEGNERIA	Soci WEBUILD ITALIA Mandanti NET ENGINEERIN GCF		DOPP	IO TRAT	NAPOLI – BA TA APICE - (LE HIRPINIA	ORSAF	
PROGETTO ESECUT Tombino circolare IN02 -	-	COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ CL	DOCUMENTO IN0200 001	REV. B	FOGLIO 73 di 261



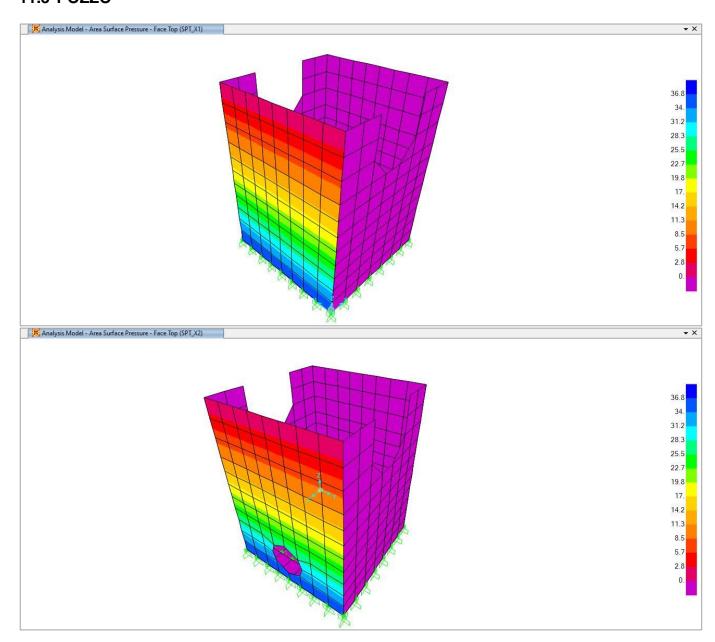
APPALTATORE: Consorzio HIRPINIA - ORSARA AV PROGETTAZIONE: Mandataria ROCKSOIL S.P.A M-INGEGNERIA	Soci WEBUILD ITALIA Mandanti NET ENGINEERII GCF		DOPP	IO TRAT	NAPOLI – BA TA APICE - (LE HIRPINIA	ORSAF	
PROGETTO ESECUT Tombino circolare IN02 -	-	COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ CL	DOCUMENTO INO200 001	REV. B	FOGLIO 74 di 261

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Tombino circolare IN02 - Relazione di calcolo E ZZ CL 75 di 261

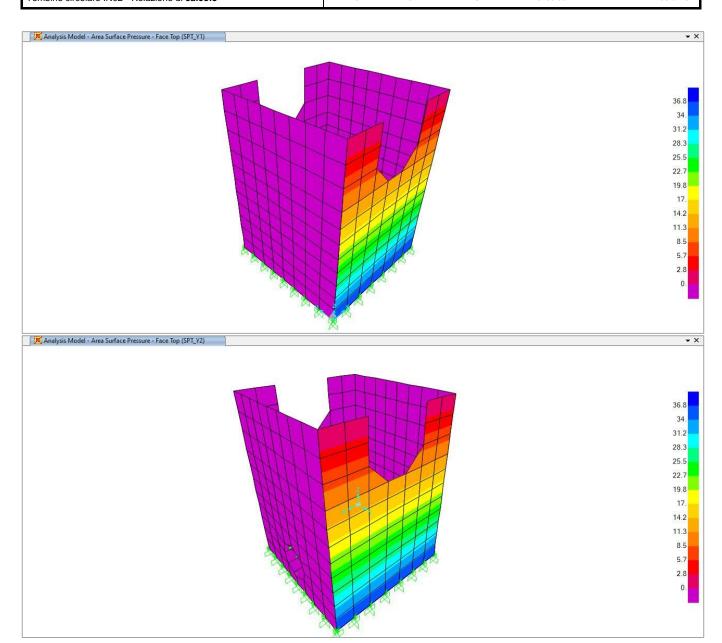

11.2 MURI AD U


APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA - ORSARA A	V WEBUILD ITALIA PIZ	ZZAROTTI		HIIN	ERARIO	NAPOLI – BA	AKI	
PROGETTAZIONE:			DΛΓ		IO TDAT	TA APICE -	ODGAE	λ .
<u>Mandataria</u>	<u>Mandanti</u>					E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERING GCF ELE	PINI ETTRI-FER	II LOI	1010	NZIONAL	L I IIINFIINIA	- OK3/	ANA
M-INGEGNERIA								
PROGETTO ESECU	TIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02	ombino circolare IN02 - Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	76 di 261

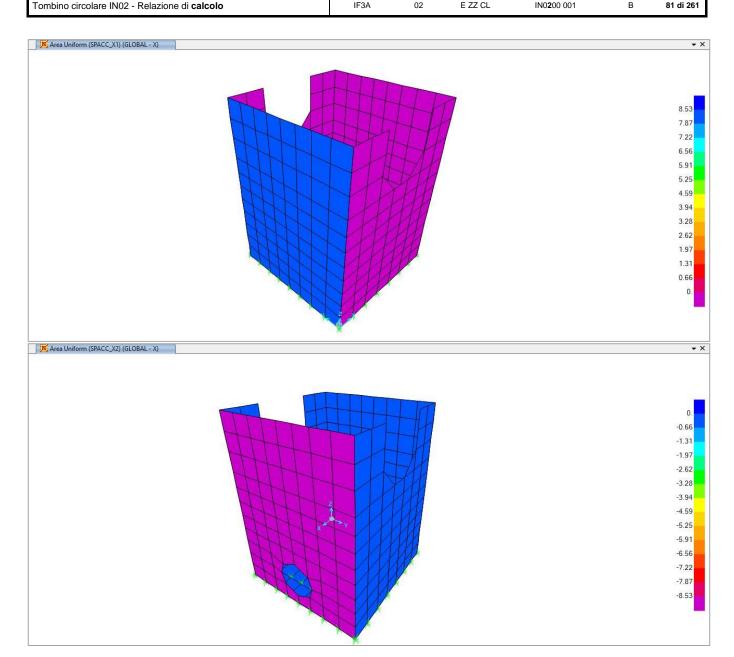
			_					
APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA - ORSARA A	V WEBUILD ITALIA	PIZZAROTTI						
PROGETTAZIONE:	PΔI		IO TRAT	TA APICE -	ORSAF	ΡΔ		
<u>Mandataria</u>	<u>Mandanti</u>			_	_	E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERING GCF E	PINI ELETTRI-FER	11 201	1010	NZIONAL		- ONO	חואת
M-INGEGNERIA								
PROGETTO ESECU	TIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02	Combino circolare IN02 - Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	77 di 261

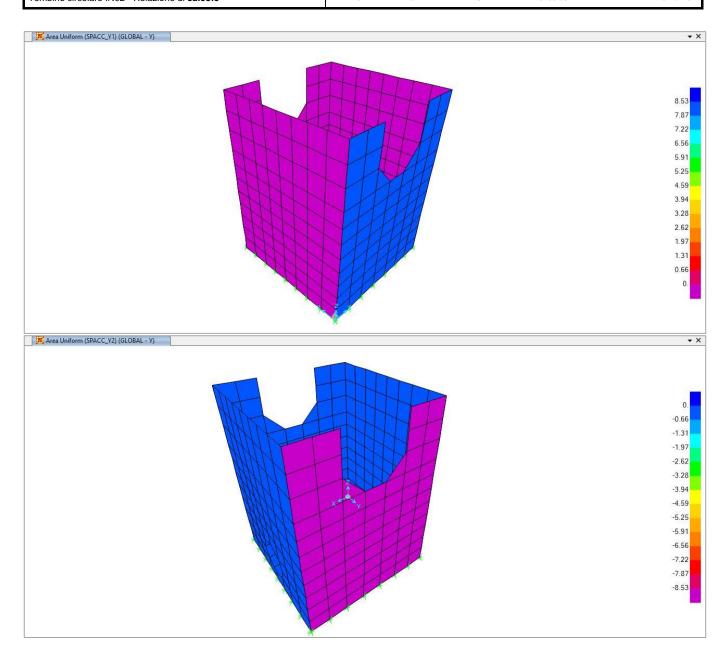


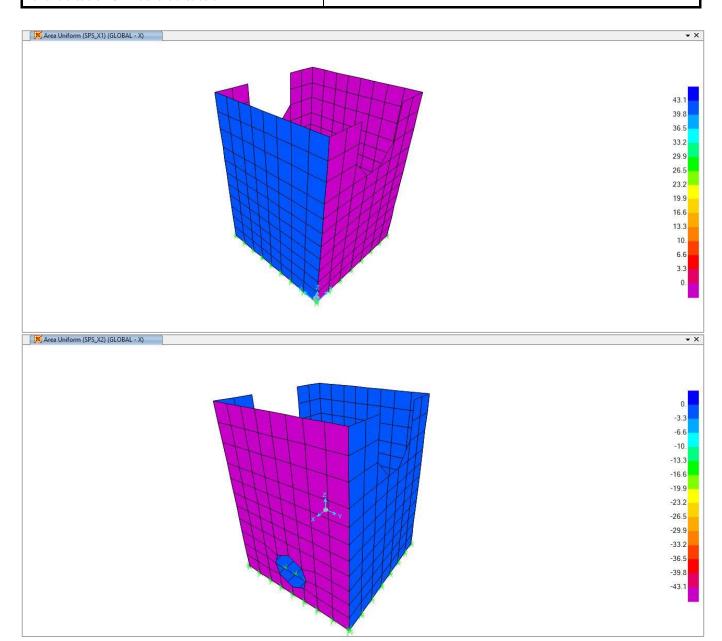
APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA - ORSARA AV	WEBUILD ITALIA	PIZZAROTTI					ļ	
PROGETTAZIONE:			РΛΓ		IO TRAT	TA APICE -		λ .
<u>Mandataria</u>	<u>Mandanti</u>					E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERIN	G PINI ELETTRI-FER	11 LO1	1010	INZIONAL			אואא
M-INGEGNERIA	GCF	ELETTRI-PER						
PROGETTO ESECUT	IVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 - Relazione di calcolo			IF3A	02	E ZZ CL	IN0 2 00 001	В	78 di 261

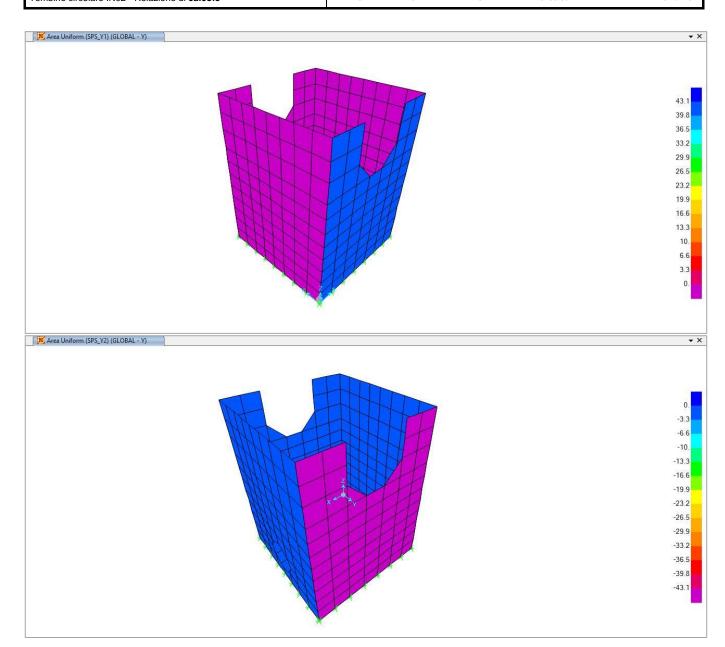


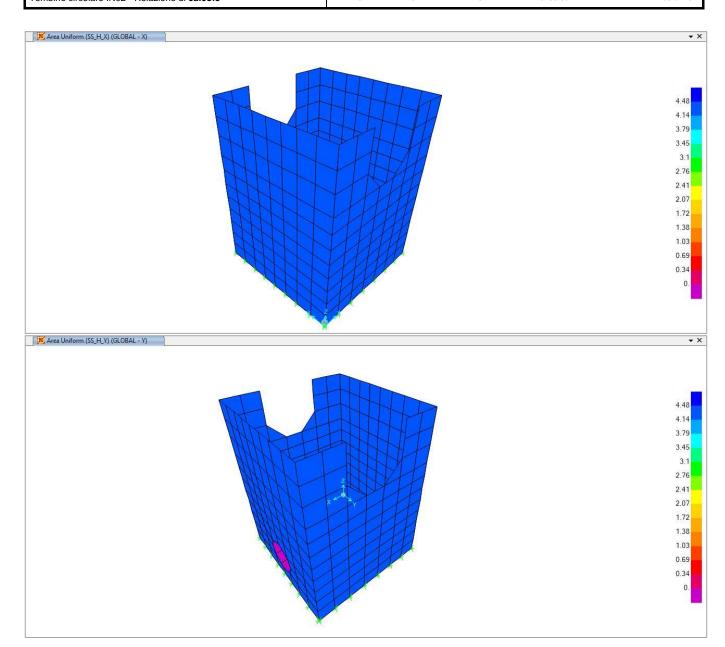
APPALTATORE: Consorzio HIRPINIA - ORSARA A PROGETTAZIONE: Mandataria ROCKSOIL S.P.A M-INGEGNERIA	Soci V WEBUILD ITA Mandanti NET ENGINE GCF			DDOPF	PIO TRAT	NAPOLI – BA TA APICE - LE HIRPINIA	ORSAF	
PROGETTO ESECU	TIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	Relazione di ca	colo	IF3A	02	E ZZ CL	IN0200 001	В	79 di 261

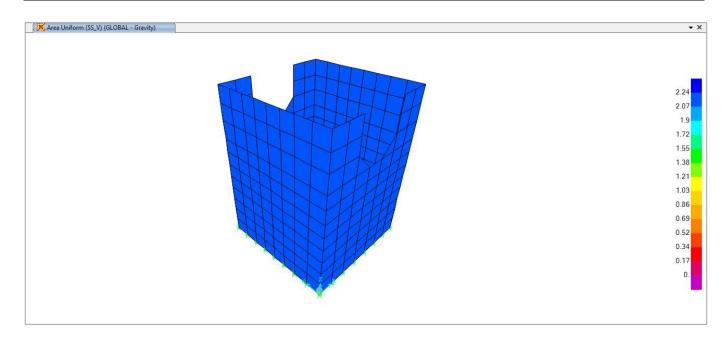

11.3 POZZO


APPALTATORE:								
Consorzio	<u>Soci</u>		ITINED A DIO MARQUI. DA DI					
HIRPINIA - ORSARA AV	WEBUILD ITALIA	PIZZAROTTI	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:			ВΛΙ		OIO TDAT	TA APICE -	ODGAE	ο Λ
<u>Mandataria</u>	<u>Mandanti</u>			_	_	-E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERIN	IG PINI ELETTRI-FER	II LOI	1010	INZIONAL	-L IIIKFINIA	- OK3/	ANA
M-INGEGNERIA	001	LLLI INIA LIX						
PROGETTO ESECUT	TVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	80 di 261


APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA - ORSARA AV	WEBUILD ITALIA	PIZZAROTTI						
PROGETTAZIONE:			DΛΓ		IO TRAT	TA APICE -	OPSAE	λ .
<u>Mandataria</u>	<u>Mandanti</u>					E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERIN	G PINI ELETTRI-FER	II LOI	1010	INZIONAL		- 013	711/7
M-INGEGNERIA	001	LLLI IIXI-I LIX						
PROGETTO ESECUT	IVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	81 di 261


APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA - ORSARA AV	/ WEBUILD ITALIA	PIZZAROTTI						
PROGETTAZIONE:			RΔI	ODO PE	OIO TRAT	TA APICE -	ORSAE	Δ
<u>Mandataria</u>	<u>Mandanti</u>			_	_	-E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERI	NG PINI ELETTRI-FER	11 201	1010	INZIONAL	-L I IIIXI IIXIA		AIVA
M-INGEGNERIA	001	LLLIIMII LIX						
PROGETTO ESECUTIVO			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	Tombino circolare IN02 - Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	82 di 261


APPALTATORE:								
Consorzio	<u>Soci</u>		ITINED A DIO MADOLI. DADI					
HIRPINIA - ORSARA AV	/ WEBUILD ITALIA	A PIZZAROTTI	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:			В Д			TA APICE -	ODGAE	ο Λ
<u>Mandataria</u>	<u>Mandanti</u>			_	_	LE HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERI	NG PINI ELETTRI-FER	" [0]	1010	INZIONAL	L IIINFINIA	- OKS	ANA
M-INGEGNERIA								
PROGETTO ESECUT	ΓΙVΟ		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	Tombino circolare IN02 - Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	83 di 261


APPALTATORE:								
Consorzio	<u>Soci</u>		ITINED A DIO MAROLI. DA DI					
HIRPINIA - ORSARA AV	WEBUILD ITALIA	PIZZAROTTI	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:			ВΛΙ		OIO TDAT	TA APICE -	ODGAE	ο Λ
<u>Mandataria</u>	<u>Mandanti</u>			_	_	-E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERIN	IG PINI ELETTRI-FER	II LOI	1010	INZIONAL	-L IIIKFINIA	- OK3/	ANA
M-INGEGNERIA	001	LLLI INIA LIX						
PROGETTO ESECUT	TVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	84 di 261

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINED A DIO MARQUI. DA DI					
HIRPINIA - ORSARA AV	WEBUILD ITALIA	PIZZAROTTI	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:			ВΛΙ		IO TDAT	TA APICE -	ODGAE	ο Λ
<u>Mandataria</u>	<u>Mandanti</u>			_	_	-E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERIN	IG PINI ELETTRI-FER	II LOI	1010	INZIONAL	-L IIIKFINIA	- OK3/	ANA
M-INGEGNERIA	301	LLLI IMII LIX						
PROGETTO ESECUT	TVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	85 di 261

APPALTATORE: Consorzio HIRPINIA - ORSARA AV PROGETTAZIONE: Mandataria ROCKSOIL S.P.A	Soci WEBUILD ITALI Mandanti NET ENGINEER GCF			DOPP	PIO TRAT	NAPOLI – BA TA APICE - G LE HIRPINIA	ORSAF	
M-INGEGNERIA								
PROGETTO ESECUT	TVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	Tombino circolare IN02 - Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	86 di 261

APPALTATORE: Consorzio HIRPINIA - ORSARA AN PROGETTAZIONE: Mandataria ROCKSOIL S.P.A M-INGEGNERIA	Soci / WEBUILD IT/ Mandanti NET ENGINE GCF			DDOPF	PIO TRAT	NAPOLI – BA TA APICE - LE HIRPINIA	ORSAF	
PROGETTO ESECUTIVO Tombino circolare IN02 - Relazione di calcolo			COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ CL	DOCUMENTO INO200 001	REV.	FOGLIO 87 di 261

12 RISULTATI DELLE ANALISI

12.1 INVILUPPO DELLE SOLLECITAZIONI - SCATOLARE

Si riportano di seguito i risultati in forma grafica e tabellare per le combinazioni SLU_env, SLV_env e SLE_env, rispettivamente inviluppi delle combinazioni statiche, sismiche e di esercizio.

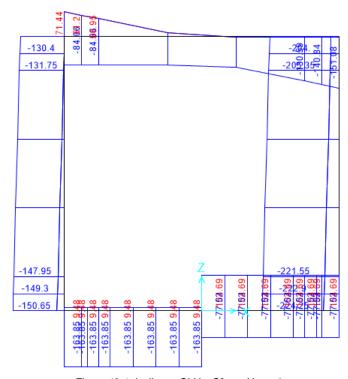


Figura 12.1: inviluppo SLU – Sforzo Normale

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA - ORSARA AV	/ WEBUILD ITALIA	PIZZAROTTI						
PROGETTAZIONE:			DΛΓ		IO TDAT	TA APICE -		
<u>Mandataria</u>	<u>Mandanti</u>					E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERI		II LOI	1010	INZIONAL		- 013	7174
M-INGEGNERIA	GCF	ELETTRI-FER						
PROGETTO ESECUT	ΓΙVΟ		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	ombino circolare IN02 - Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	88 di 261

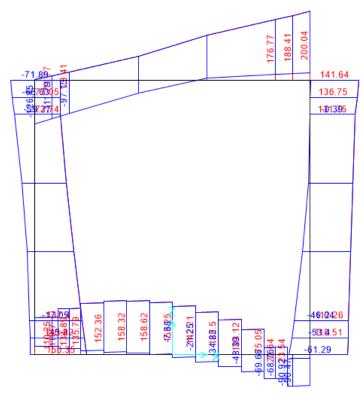


Figura 12.2: inviluppo SLU – Taglio

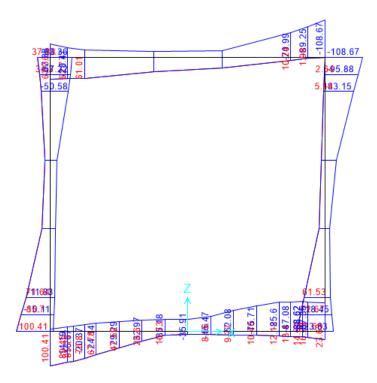


Figura 12.3: inviluppo SLU – Momento flettente

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA - ORSARA AV	WEBUILD ITALIA	PIZZAROTTI						
PROGETTAZIONE:			РΔГ		IO TRAT	TA APICE - (ORSAR	Δ
<u>Mandataria</u>	<u>Mandanti</u>					E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERING	G PINI ELETTRI-FER	11 201	1010	NZIONAL		- OILOP	NIVA
M-INGEGNERIA								
PROGETTO ESECUT	IVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
ombino circolare IN02 - Relazione di calcolo		IF3A	02	E ZZ CL	IN0 2 00 001	В	89 di 261	

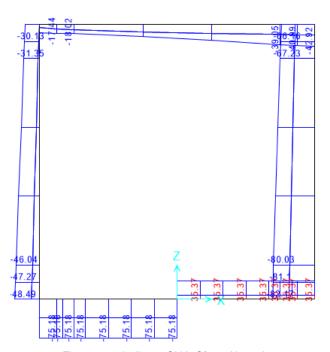


Figura 12.4: inviluppo SLV- Sforzo Normale

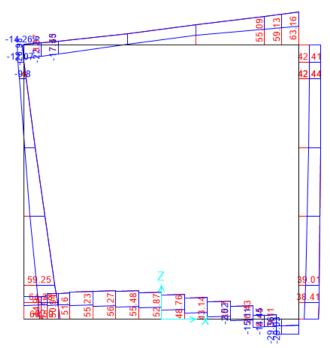


Figura 12.5: inviluppo SLV – Taglio

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA - ORSARA AV	WEBUILD ITALIA	PIZZAROTTI						
PROGETTAZIONE:			DΛΓ		IO TDAT	TA APICE -		ο Λ
<u>Mandataria</u>	<u>Mandanti</u>			_	_	E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERIN	G PINI ELETTRI-FER	II LOI	1010	INZIONAL	L I IIINFIINIA	- OKS	ANA
M-INGEGNERIA	001	ELLTTRI-I ER						
PROGETTO ESECUT	ΓΙVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	ombino circolare IN02 - Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	90 di 261

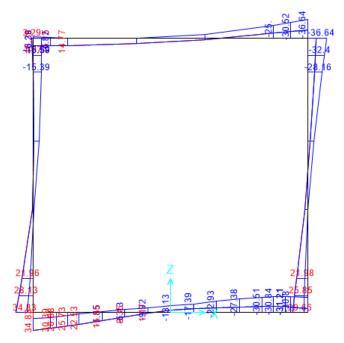


Figura 12.6: inviluppo SLV – Momento flettente

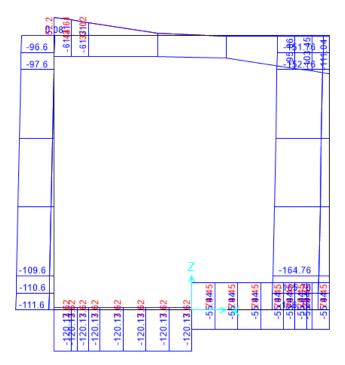


Figura 12.7: inviluppo SLE- Sforzo Normale

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA - ORSARA AV	/ WEBUILD ITALIA	PIZZAROTTI						
PROGETTAZIONE:			DΛΓ		IO TRAT	TA APICE -	ODGVE	Λ .
<u>Mandataria</u>	<u>Mandanti</u>					E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERIN		II LOT	1010	INZIONAL		- 013	7174
M-INGEGNERIA	GCF	ELETTRI-FER						
PROGETTO ESECUT	ΓΙVΟ		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	91 di 261

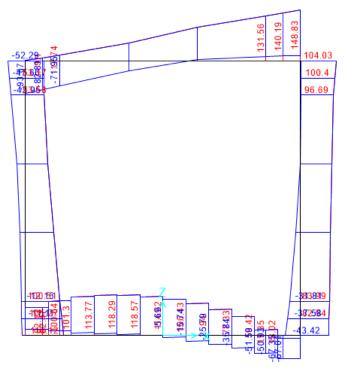


Figura 12.8: inviluppo SLE – Taglio

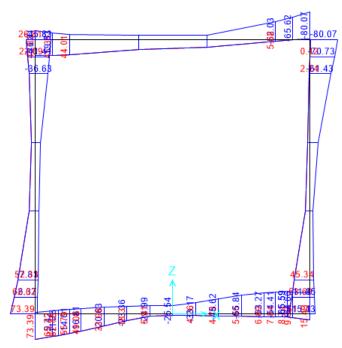


Figura 12.9: inviluppo SLE – Momento flettente

APPALTATORE:								
Consorzio	<u>Soci</u>			ITINERARIO NAPOLI – BARI				
HIRPINIA - ORSARA A	V WEBUILD ITA	LIA PIZZAROTTI	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:			PΛ		DIO TRAT	TA APICE -	OPSAE	ο Λ
<u>Mandataria</u>	<u>Mandanti</u>					LE HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEE		II LO	1010	INZIONAL	L IIIKFINIA	- OKS	ANA
M-INGEGNERIA	GCF	ELETTRI-FER						
PROGETTO ESECU	ITIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02	- Relazione di calc	olo	IF3A	02	E ZZ CL	IN0200 001	В	92 di 261

12.2 INVILUPPO DELLE SOLLECITAZIONI – MURI AD U

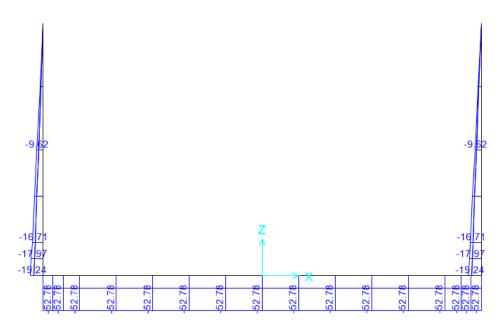


Figura 12.10: inviluppo SLU – Sforzo Normale

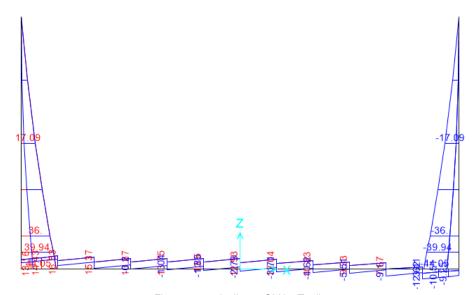


Figura 12.11: inviluppo SLU – Taglio

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA - ORSARA A	V WEBUILD ITA	LIA PIZZAROTTI						
PROGETTAZIONE:	PROGETTAZIONE:					TA APICE -		ο Λ
<u>Mandataria</u>	<u>Mandanti</u>					LE HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEE	RING PINI ELETTRI-FER	li LOI	1010	INZIONAI		- ONS	ANA
M-INGEGNERIA								
PROGETTO ESECUTIVO			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02	- Relazione di calo	colo	IF3A	02	E ZZ CL	IN0200 001	В	93 di 261

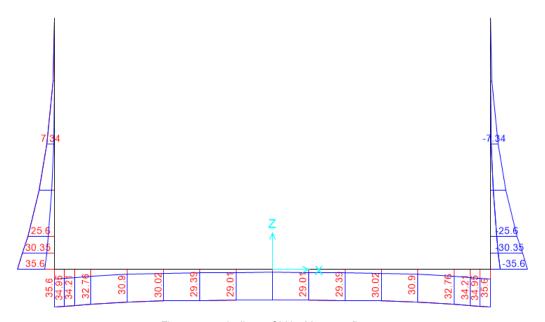


Figura 12.12: inviluppo SLU – Momento flettente

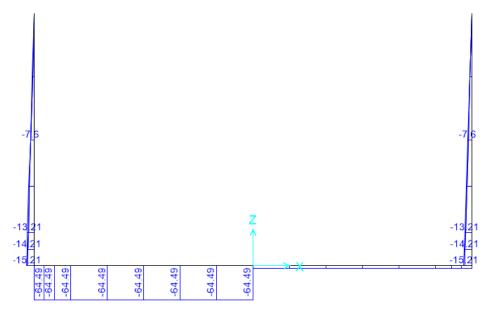


Figura 12.13: inviluppo SLV – Sforzo Normale

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA - ORSARA A	V WEBUILD ITAL	IA PIZZAROTTI						
PROGETTAZIONE:	ВΛΙ		OIO TDAT	TA APICE -	ODGAE	ο Λ		
<u>Mandataria</u>	<u>Mandanti</u>			_	_	E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEE	RING PINI ELETTRI-FER	li LOI	1010	INZIONAL	-L IIINFINIA	- OK3/	ANA
M-INGEGNERIA	001	LLLI IIXI-I LIX						
PROGETTO ESECU	TIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	- Relazione di calc	olo	IF3A	02	E ZZ CL	IN0200 001	В	94 di 261

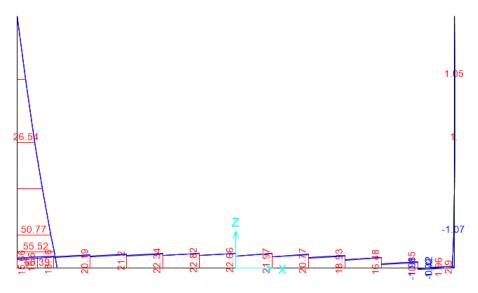


Figura 12.14: inviluppo SLV – Taglio

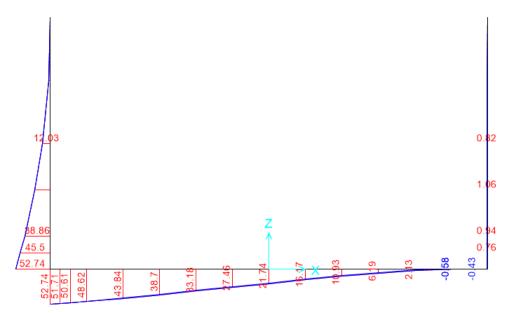


Figura 12.15: inviluppo SLV – Momento flettente

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA - ORSARA A	V WEBUILD ITA	LIA PIZZAROTTI						
PROGETTAZIONE:	PROGETTAZIONE:					TA APICE -	ODGAE	ο Λ
<u>Mandataria</u>	<u>Mandanti</u>					LE HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEE	RING PINI ELETTRI-FER	II LO	1010	INZIONAI		- ONS	ANA
M-INGEGNERIA								
PROGETTO ESECUTIVO			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02	ombino circolare IN02 - Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	95 di 261

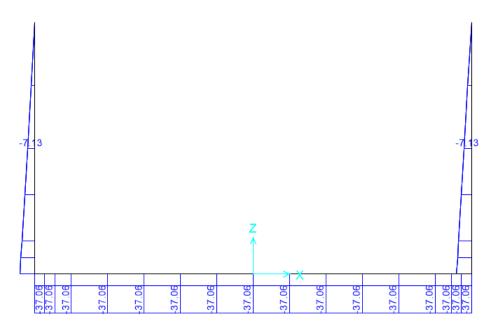


Figura 12.16: inviluppo SLE – Sforzo Normale

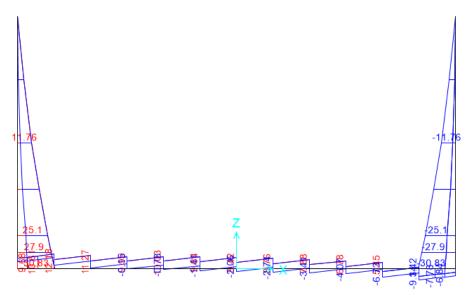


Figura 12.17: inviluppo SLE – Taglio

APPALTATORE: Consorzio HIRPINIA - ORSARA AV PROGETTAZIONE: Mandataria ROCKSOIL S.P.A	Soci WEBUILD ITALIA Mandanti NET ENGINEERII GCF			DOPP	IO TRAT	NAPOLI – BA TA APICE - (LE HIRPINIA	ORSAF	
M-INGEGNERIA								
PROGETTO ESECUT	IVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	ombino circolare IN02 - Relazione di calcolo		IF3A	02	E ZZ CL	IN0 2 00 001	В	96 di 261

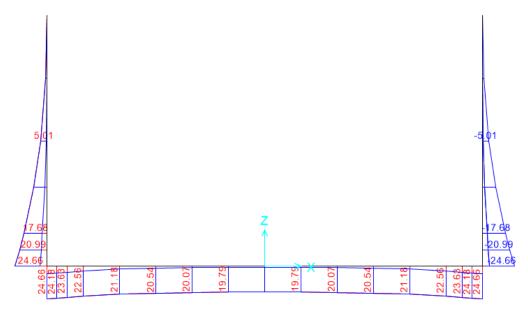
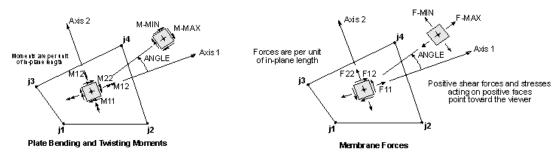
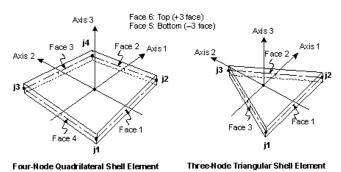
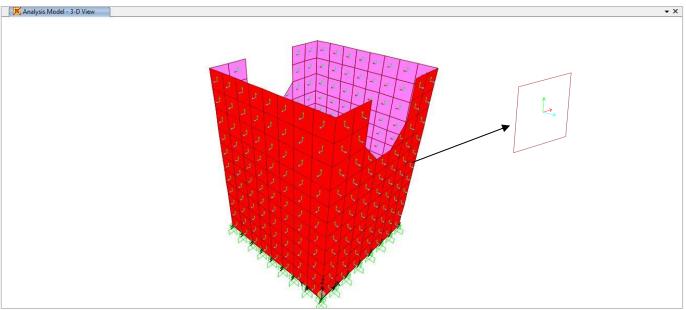



Figura 12.18: inviluppo SLE – Momento flettente


APPALTATORE: Consorzio HIRPINIA - ORSARA AV PROGETTAZIONE: Mandataria ROCKSOIL S.P.A	Soci WEBUILD ITALIA PIZZAROTT Mandanti NET ENGINEERING PINI GCF ELETTRI-FEI		DOPP	IO TRAT	NAPOLI – BA TA APICE - (LE HIRPINIA	ORSAF	
M-INGEGNERIA							
PROGETTO ESECUTIVO Tombino circolare IN02 - Relazione di calcolo		COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ CL	DOCUMENTO IN0200 001	REV. B	FOGLIO 97 di 261


12.3 INVILUPPO DELLE SOLLECITAZIONI - POZZO

Si riportano di seguito le massime sollecitazioni allo stato limite ultimo e di esercizio per ciascun elemento costituente il manufatto (setti X1, X2, Y1, Y2, Fondazione). Le sollecitazioni sugli elementi *shell* sono da intendersi per per unità di lunghezza. Le azioni flettenti M11, M22 e M12 sono rispettivamente il momento per unità di lunghezza attorno agli assi locali 1 e 2 e torcente.

Si riporta di seguito la convenzione per gli assi locali di riferimento, in particolare, gli assi 1 (rosso) e 2 (verde) sono nel piano dell'elemento e ruotano intorno all'asse 3 (ciano) ortogonale.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL Tombino circolare IN02 - Relazione di calcolo

Per la parete X2 le sollecitazioni sono riportate trascurando gli elementi shell in adiacenza al foro circolare al fine di escludere picchi di sollecitazione in prossimità degli spigoli derivanti dalla modellazione numerica effettuata e non significativi ai fini del reale comportamento dell'opera. La zona non evidenziata nei diagrammi di sollecitazione coincide con la superficie definita dalla linea media in asse tombino scatolare (160x160 cm). In ogni caso è prevista la disposizione di ferri aggiuntivi diagonali di bordo foro.

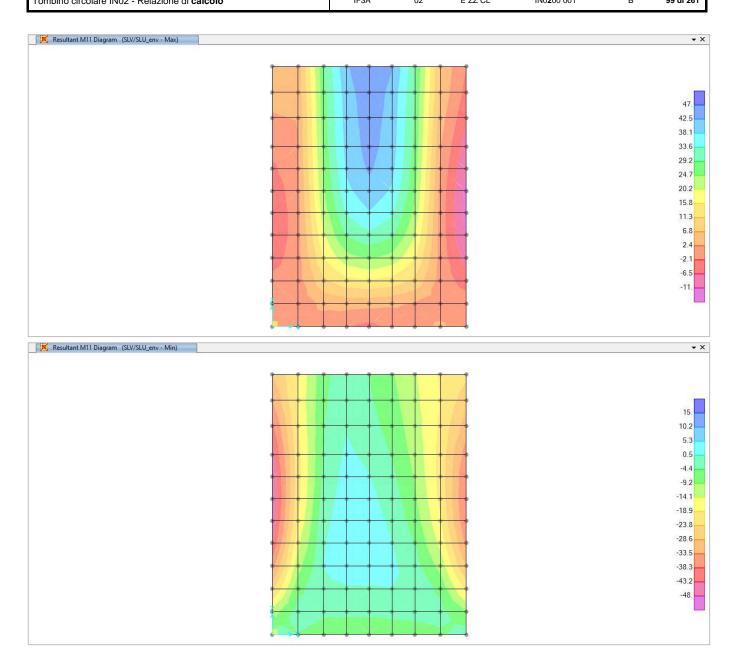

12.3.1 Inviluppo delle sollecitazioni – Setto X1

	TABLE: Element Forces - Area Shells								
	Area	Joint	OutputCase	F11	F22	F12	M11	M22	M12
	Text	Text	Text	KN/m	KN/m	KN/m	KN-m/m	KN-m/m	KN-m/m
M11 max SLU/SLV	428	305	SLV_01	-83	-4	-1	47	0	1
M11 min SLU/SLV	399	115	SLV_03	-64	49	21	-48	-12	5
N11 max SLU/SLV	359	147	SLV_02	37	6	-62	1	-8	2
N11 min SLU/SLV	347	141	SLV_07	-111	9	-29	-47	-11	-3
M22 max SLU/SLV	382	289	SLV_01	-50	67	-9	33	17	1
M22 min SLU/SLV	355	271	SLV_01	18	88	-14	-9	-47	-1
N22 max SLU/SLV	357	273	SLV_03	27	133	-14	-5	-26	6
N22 min SLU/SLV	356	318	SLV_02	-50	-252	10	-6	-30	0

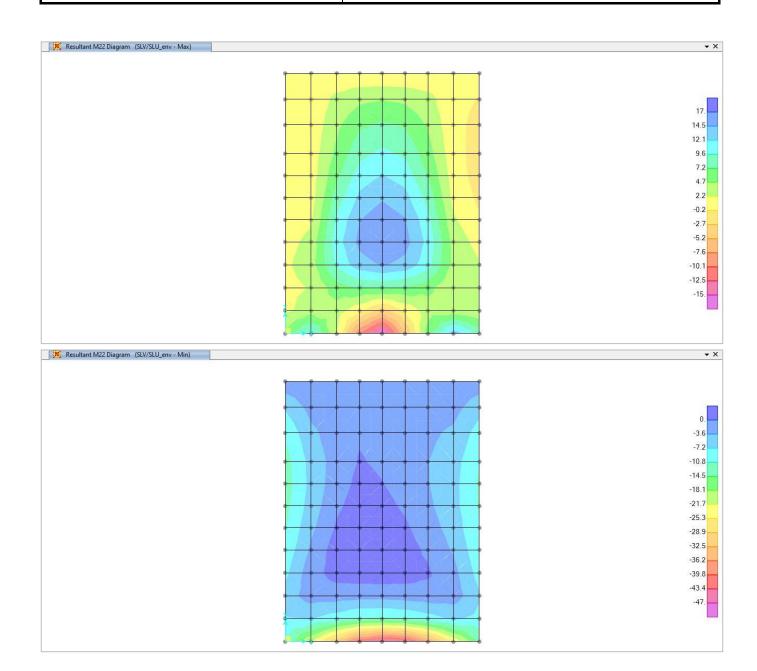
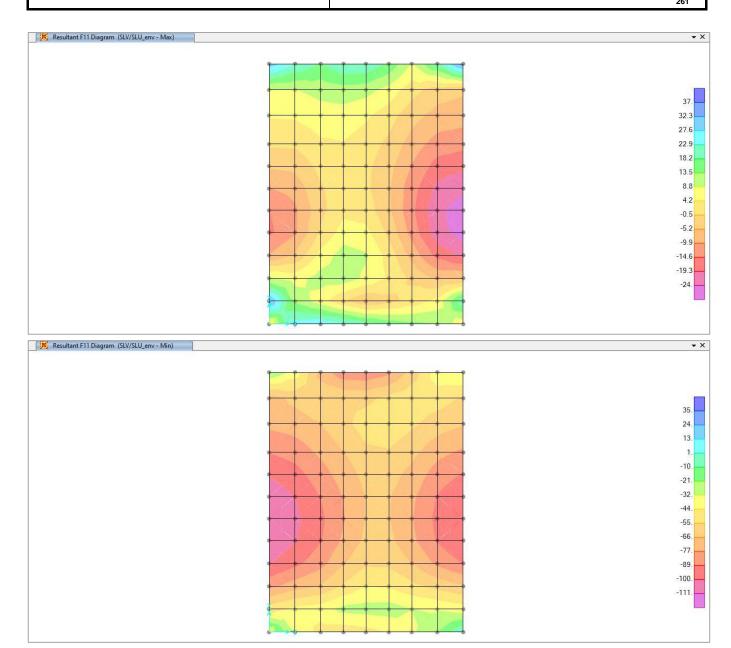
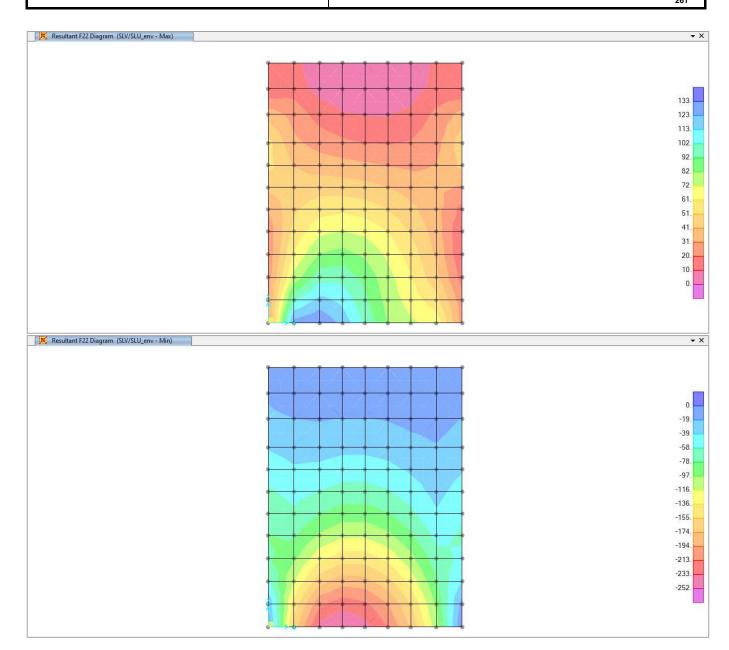
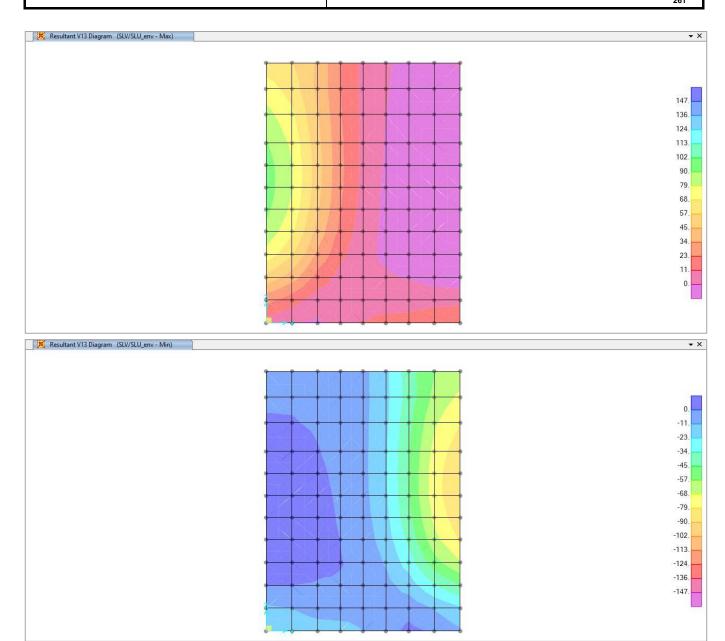
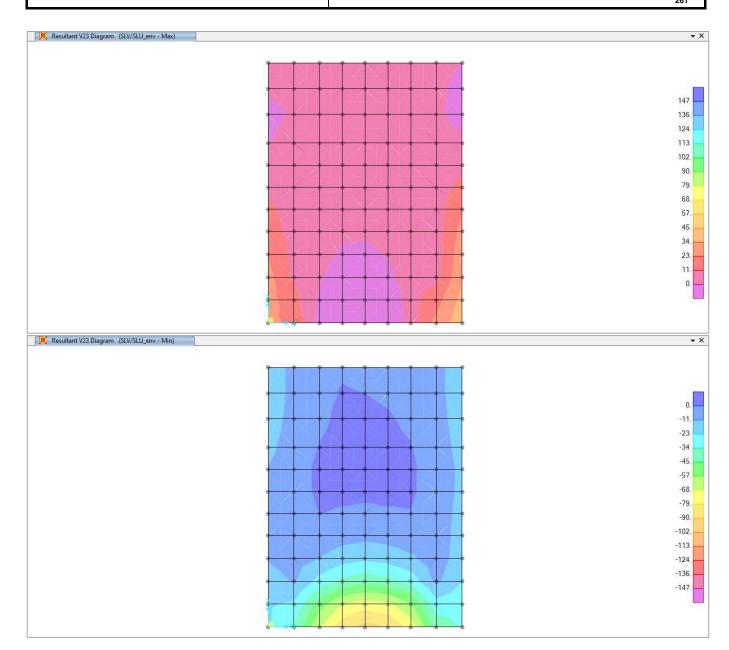

	TABLE: Element Forces - Area Shells							
	Area Joint OutputCase							
	Text	Text	Text	KN/m				
V max/min SLU/SLV	407	338	SLV_03	97				

	TABLE: Element Forces - Area Shells								
	Area	Joint	OutputCase	F11	F22	F12	M11	M22	M12
	Text	Text	Text	KN/m	KN/m	KN/m	KN-m/m	KN-m/m	KN-m/m
M11 max SLE	395	293	SLE_02	-16	-6	-1	15	5	0
M11 min SLE	344	243	SLE_06	-47	-25	1	-22	-5	-1
N11 max SLE	352	249	SLE_03	16	22	23	1	-3	-1
N11 min SLE	344	243	SLE_06	-47	-25	1	-22	-5	-1
M22 max SLE	381	289	SLE_02	-15	-15	0	12	8	0
M22 min SLE	355	271	SLE_02	-7	-35	0	-6	-29	0
N22 max SLE	352	249	SLE_01	10	24	6	1	-2	0
N22 min SLE	355	271	SLE_03	-22	-108	0	-4	-22	0


APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Tombino circolare IN02 - Relazione di calcolo E ZZ CL 99 di 261


APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO COMMESSA CODIFICA DOCUMENTO REV. 100 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В


APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO REV. COMMESSA CODIFICA DOCUMENTO 101 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В


APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO REV. COMMESSA CODIFICA DOCUMENTO 102 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO REV. COMMESSA CODIFICA DOCUMENTO 103 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO REV. COMMESSA CODIFICA DOCUMENTO 104 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

APPALTATORE: Consorzio Soci HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

ITINERARIO NAPOLI - BARI

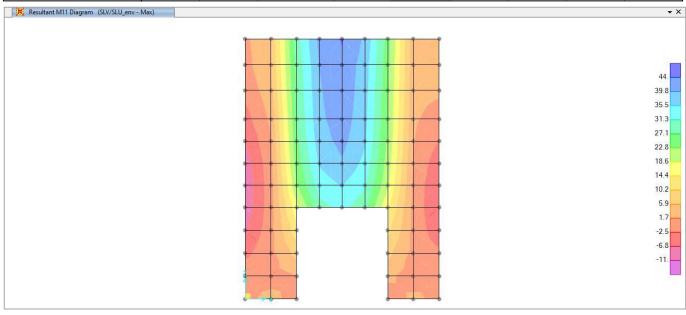
RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

PROGETTAZIONE: <u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF

M-INGEGNERIA

PROGETTO ESECUTIVO Tombino circolare IN02 - Relazione di calcolo


LOTTO CODIFICA COMMESSA DOCUMENTO REV. 105 di 261 IF3A E ZZ CL IN0200 001 02 В

12.3.2 Inviluppo delle sollecitazioni – Setto X2

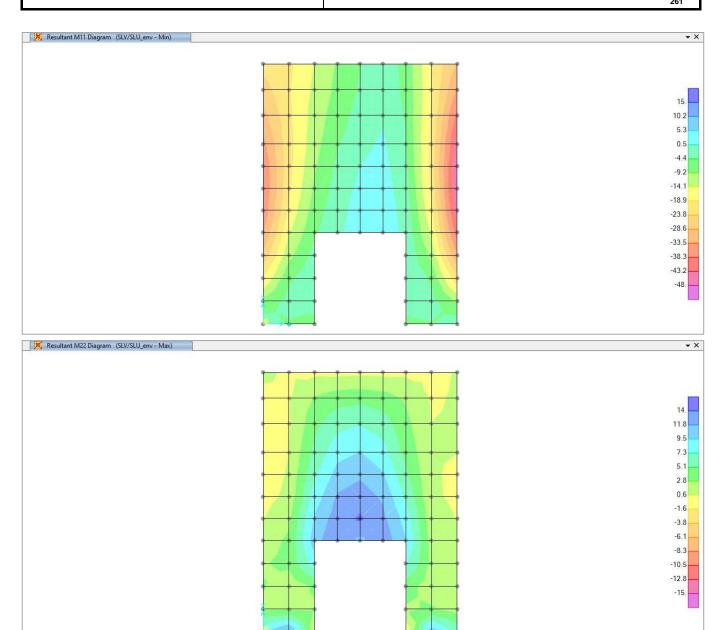
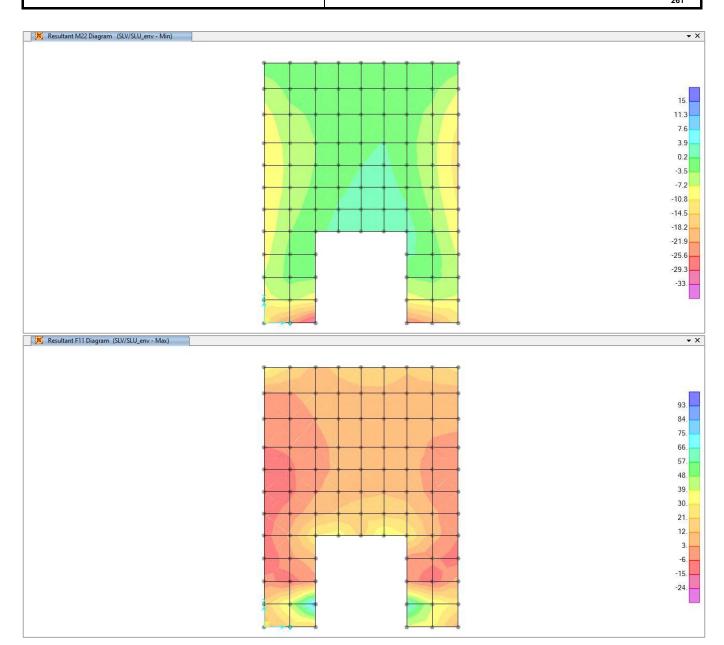
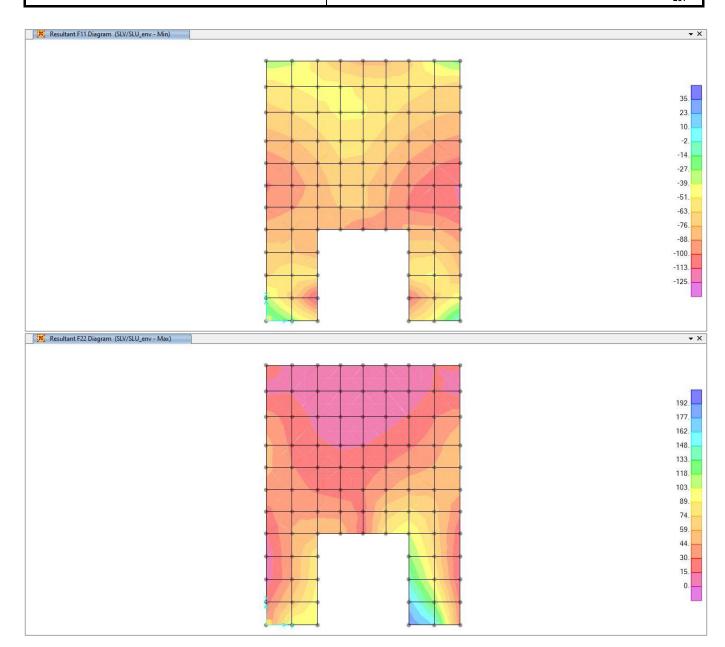
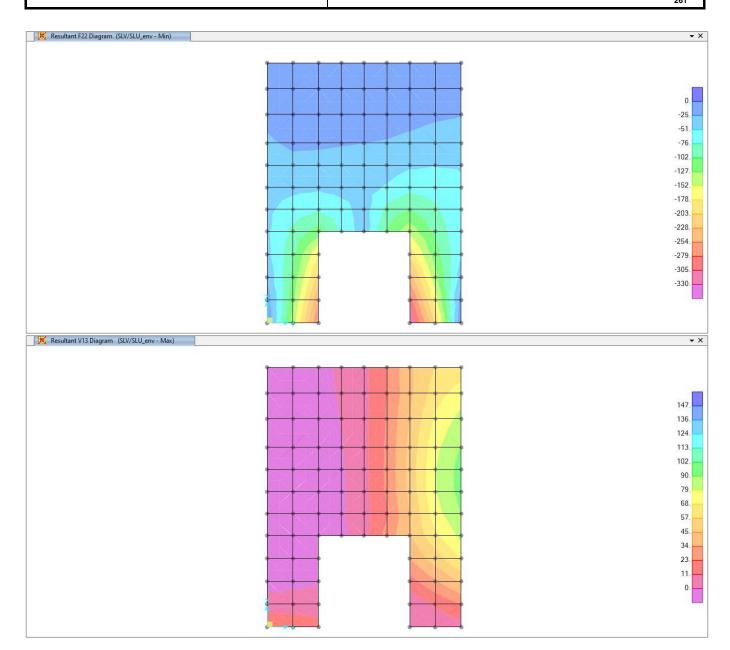
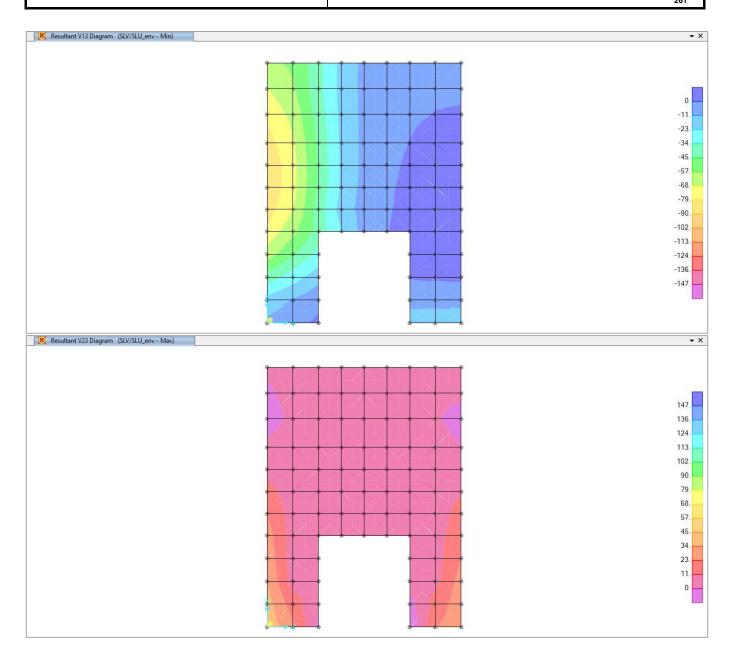

	TABLE: Element Forces - Area Shells								
	Area	Joint	OutputCase	F11	F22	F12	M11	M22	M12
	Text	Text	Text	KN/m	KN/m	KN/m	KN-m/m	KN-m/m	KN-m/m
M11 max SLU/SLV	515	389	SLV_02	-83	-4	-2	44	0	1
M11 min SLU/SLV	480	227	SLV_04	-69	56	23	-48	-12	5
N11 max SLU/SLV	458	403	SLV_06	93	-69	-123	-2	-5	-4
N11 min SLU/SLV	446	366	SLV_05	-125	-5	154	1	2	0
M22 max SLU/SLV	474	374	SLV_02	-59	19	-37	36	14	-1
M22 min SLU/SLV	446	357	SLV_02	19	93	-22	-7	-33	-6
N22 max SLU/SLV	441	356	SLV_04	38	192	-4	-5	-25	6
N22 min SLU/SLV	441	356	SLV_03	-66	-330	-36	-4	-23	-2

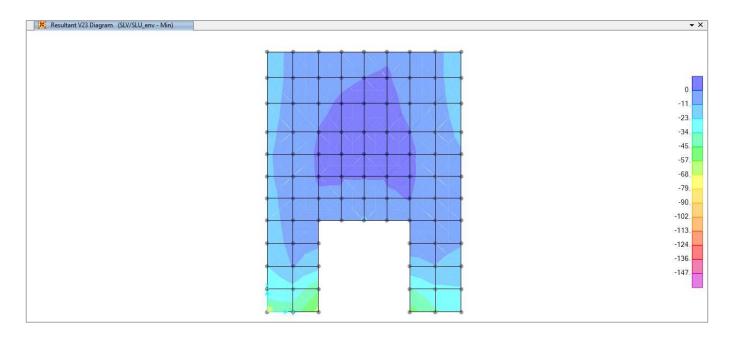
	TABLE: Element Forces - Area Shells								
	Area Joint OutputCase V13								
	Text	Text	Text	KN/m					
V max/min SLU/SLV	488	419	SLV_04	96					


	TABLE: Element Forces - Area Shells								
	Area	Joint	OutputCase	F11	F22	F12	M11	M22	M12
	Text	Text	Text	KN/m	KN/m	KN/m	KN-m/m	KN-m/m	KN-m/m
M11 max SLE	483	377	SLE_03	-16	-5	1	15	5	0
M11 min SLE	463	125	SLE_06	-43	-21	-2	-22	-5	-1
N11 max SLE	472	413	SLE_02	23	-26	5	4	3	1
N11 min SLE	432	254	SLE_06	-45	-28	-2	-22	-4	1
M22 max SLE	473	374	SLE_03	-17	-5	1	13	7	0
M22 min SLE	441	356	SLE_03	-7	-34	-5	-4	-21	1
N22 max SLE	440	260	SLE_01	6	28	-4	1	-2	0
N22 min SLE	441	356	SLE_02	-26	-129	-18	-3	-16	-2


APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO REV. COMMESSA CODIFICA DOCUMENTO 106 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В


APPALTATORE:									
Consorzio	<u>Soci</u>		ITINED A DIO MADOLI. DA DI						
HIRPINIA - ORSARA AV	WEBUILD ITALIA	PIZZAROTTI	ITINERARIO NAPOLI – BARI						
PROGETTAZIONE:			РΛΓ		IO TRAT	TA ADICE -		۸	
<u>Mandataria</u>	<u>Mandanti</u>	RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA							
ROCKSOIL S.P.A	NET ENGINEERIN	G PINI ELETTRI-FER	II LOTTO FUNZIONALE HIRPINIA - ORSARA						
M-INGEGNERIA	GCF	ELETTRI-PER							
PROGETTO ESECUT	IVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Tombino circolare IN02 - Relazione di calcolo			IF3A	02	E ZZ CL	IN0200 001	В	107 di 261	


APPALTATORE:									
Consorzio	Soci		ITINERARIO NAPOLI – BARI						
HIRPINIA - ORSARA AV	WEBUILD ITALIA PIZZAROTTI								
PROGETTAZIONE:		RΔ	DDOPE	NO TRAT	TA APICE -	ORSAF	ΣΔ		
<u>Mandataria</u>	<u>Mandanti</u>								
ROCKSOIL S.P.A	NET ENGINEERING PINI GCF ELETTRI-FER	20	II LOTTO FUNZIONALE HIRPINIA - ORSARA						
M-INGEGNERIA	GCF ELETTRI-FER								
PROGETTO ESECUT	ΓΙVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Tombino circolare IN02 -	IF3A	02	E ZZ CL	IN0200 001	В	108 di 261			


APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA - ORSARA AV	WEBUILD ITALIA	PIZZAROTTI						
PROGETTAZIONE:			DΛΓ		IO TDAT	TA ADICE -		۸
<u>Mandataria</u>	<u>Mandanti</u>		RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA					
ROCKSOIL S.P.A	NET ENGINEERIN	G PINI ELETTRI-FER	II LOI	1010	NZIONAL	LINFINIA	- OK3/	ANA
M-INGEGNERIA	GCF	ELETTRIFIER						
PROGETTO ESECUT	TVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	ombino circolare IN02 - Relazione di calcolo			02	E ZZ CL	IN0200 001	В	109 di 261

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA - ORSARA AV	/ WEBUILD ITALIA	PIZZAROTTI						
PROGETTAZIONE:			ВΛΙ		IO TDAT	TA APICE -		Λ .
<u>Mandataria</u>	<u>Mandanti</u>					E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERI		II LOI	1010	INZIONAL		- 013	711/7
M-INGEGNERIA	GCF	ELETTRI-FER						
PROGETTO ESECU	ΓΙVΟ		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	Tombino circolare IN02 - Relazione di calcolo			02	E ZZ CL	IN0200 001	В	110 di 261

APPALTATORE: Consorzio HIRPINIA - ORSARA AN PROGETTAZIONE: Mandataria	Soci / WEBUILD ITALIA PIZZARO Mandanti	тті		DOPF	PIO TRAT	NAPOLI – BA	ORSAF	
ROCKSOIL S.P.A M-INGEGNERIA	NET ENGINEERING PIN GCF ELETTRI-I	=	II LOT	TO FU	NZIONAL	E HIRPINIA	- ORS	ARA
PROGETTO ESECUTOMBINO circolare IN02 -			COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ CL	DOCUMENTO IN0200 001	REV. B	FOGLIO 111 di 261

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI ELETTRI-FER GCF M-INGEGNERIA PROGETTO ESECUTIVO LOTTO COMMESSA CODIFICA DOCUMENTO REV.

IF3A

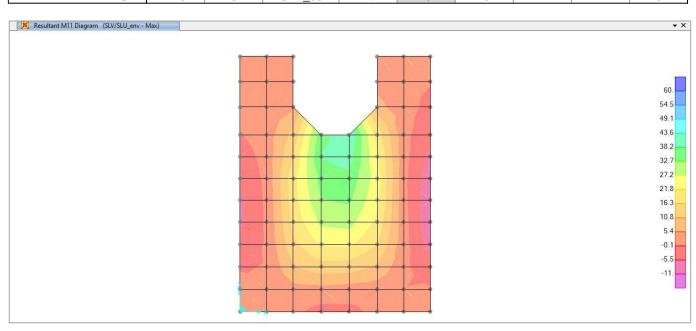
02

E ZZ CL

IN0200 001

112 di 261

В


12.3.3 Inviluppo delle sollecitazioni - Setto Y1

Tombino circolare IN02 - Relazione di calcolo

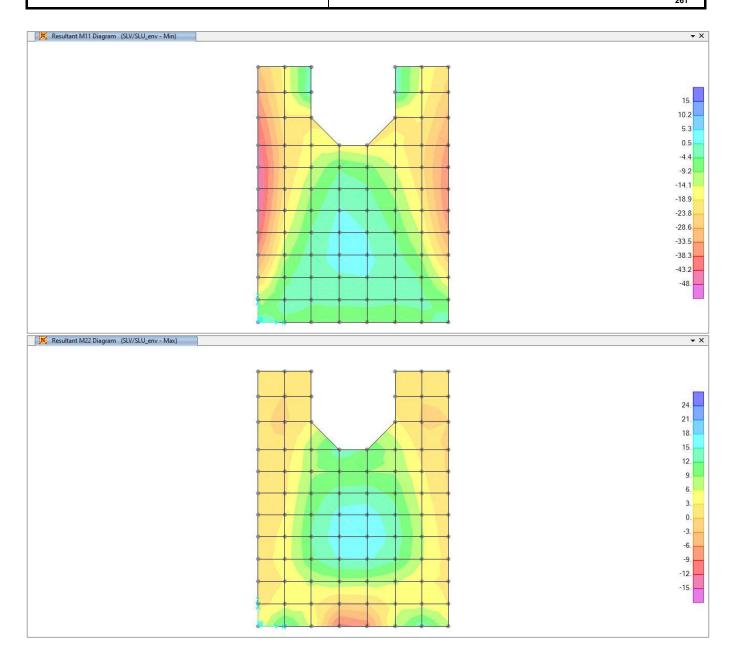
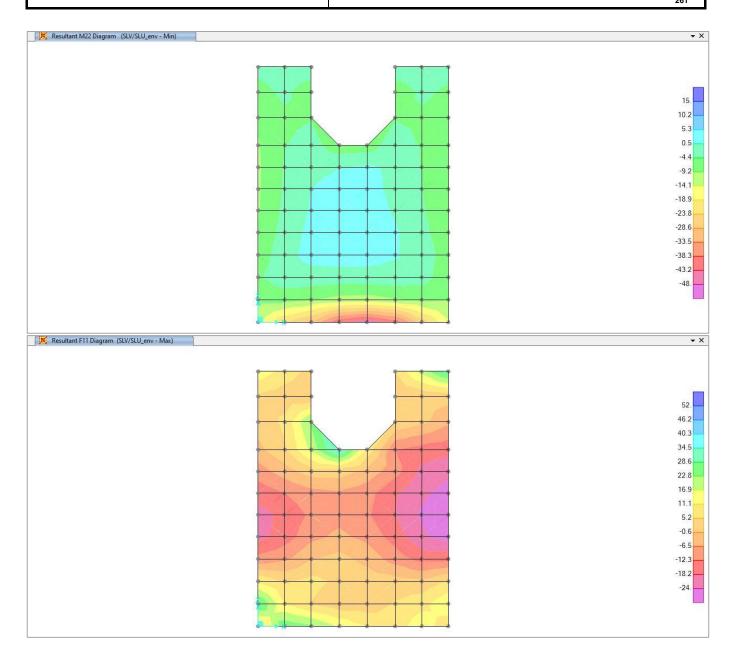
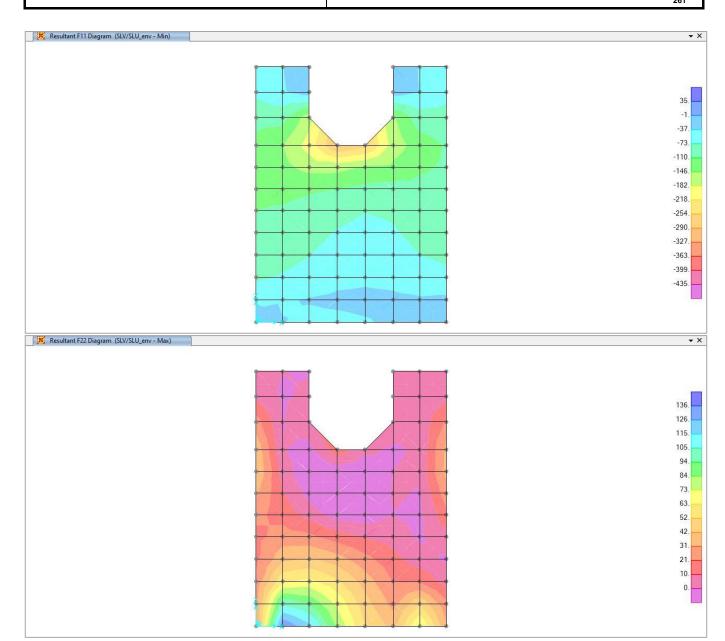
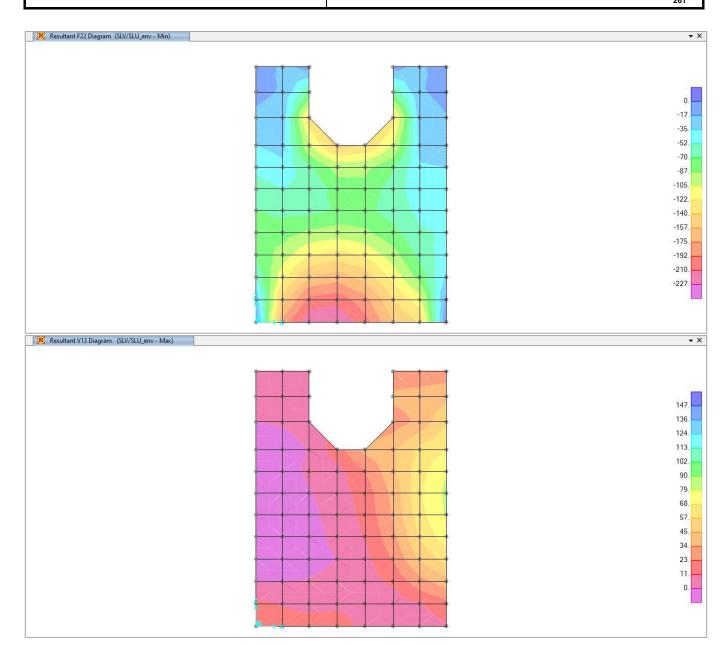
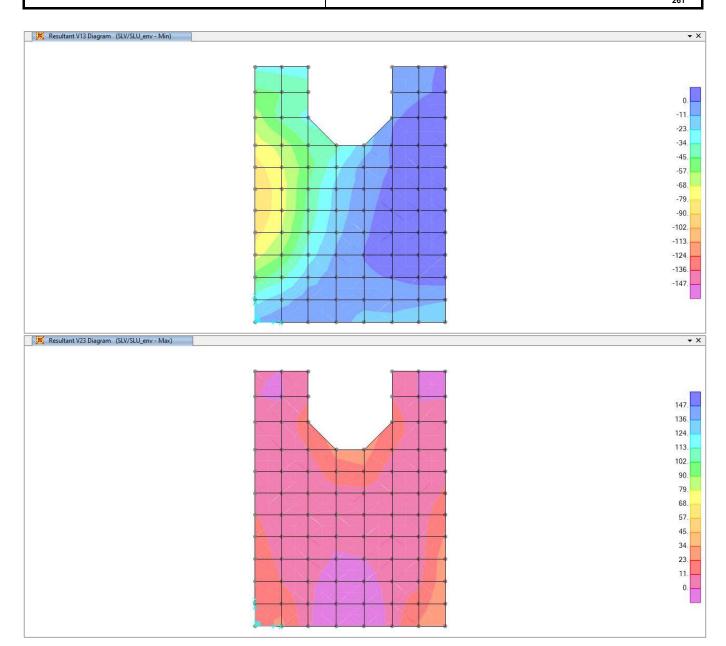

	TABLE: E	Element F	orces - Area S	Shells					
	Area	Joint	OutputCase	F11	F22	F12	M11	M22	M12
	Text	Text	Text	KN/m	KN/m	KN/m	KN-m/m	KN-m/m	KN-m/m
M11 max SLU/SLV	156	19	SLV_07	-343	-54	18	60	2	3
M11 min SLU/SLV	160	115	SLV_03	-115	27	14	-48	-10	5
N11 max SLU/SLV	156	20	SLV_06	52	13	-24	8	-1	2
N11 min SLU/SLV	156	20	SLV_03	-435	-147	102	-5	9	-9
M22 max SLU/SLV	100	20	SLV_05	-142	-78	80	30	24	-10
M22 min SLU/SLV	214	184	SLV_05	9	43	41	-10	-48	3
N22 max SLU/SLV	169	122	SLV_03	27	136	30	2	12	-2
N22 min SLU/SLV	206	180	SLV_06	-45	-227	-20	-6	-28	1

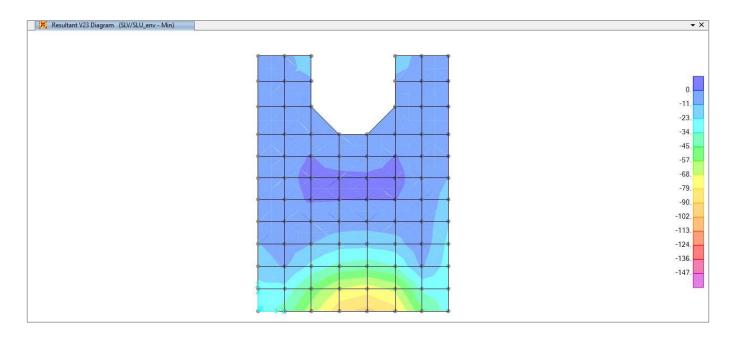
	TABLE: E	Element F	orces - Area	Shells
	Area	Joint	OutputCase	V13/V23
	Text	Text	Text	KN/m
V max/min SLU/SLV	210	184	SLV_05	95


	TABLE: E	Element F	orces - Area S	Shells					
	Area	Joint	OutputCase	F11	F22	F12	M11	M22	M12
	Text	Text	Text	KN/m	KN/m	KN/m	KN-m/m	KN-m/m	KN-m/m
M11 max SLE	156	19	SLE_04	-76	-16	-2	22	2	2
M11 min SLE	160	141	SLE_06	-48	-18	-3	-22	-4	0
N11 max SLE	183	158	SLE_05	16	25	-23	1	-3	1
N11 min SLE	156	20	SLE_06	-187	-45	8	13	1	-1
M22 max SLE	101	19	SLE_04	-28	-12	-11	13	9	4
M22 min SLE	214	184	SLE_04	-8	-42	-1	-6	-29	0
N22 max SLE	183	158	SLE_01	11	29	-6	1	-2	1
N22 min SLE	210	184	SLE_05	-20	-101	-3	-4	-21	0


APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO REV. COMMESSA CODIFICA DOCUMENTO 113 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В


APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA - ORSARA AV	/ WEBUILD ITALIA	PIZZAROTTI						
PROGETTAZIONE:			DΛΙ		IO TDAT	TA APICE -		ο Λ
<u>Mandataria</u>	<u>Mandanti</u>					E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERI		11 LO1	1010	NZIONAL	-L IIIKFINIA	- OKS	ANA
M-INGEGNERIA	GCF	ELETTRI-FER						
PROGETTO ESECU	ΓΙVΟ		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	Tombino circolare IN02 - Relazione di calcolo			02	E ZZ CL	IN0200 001	В	114 di 261


APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO REV. COMMESSA CODIFICA DOCUMENTO 115 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В


APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO REV. COMMESSA CODIFICA DOCUMENTO 116 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO REV. COMMESSA CODIFICA DOCUMENTO 117 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

APPALTATORE: Consorzio HIRPINIA - ORSARA AV PROGETTAZIONE: Mandataria ROCKSOIL S.P.A	Mandanti NET ENGINEERING PINI		DDOPF	PIO TRAT	NAPOLI – BA TA APICE - LE HIRPINIA	ORSAF	
M-INGEGNERIA	GCF ELETTRI-FER						
PROGETTO ESECUT Tombino circolare IN02 -		COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ CL	DOCUMENTO IN0 2 00 001	REV. B	FOGLIO 118 di 261

APPALTATORE: Consorzio Soci HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE:

<u>Mandanti</u>

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

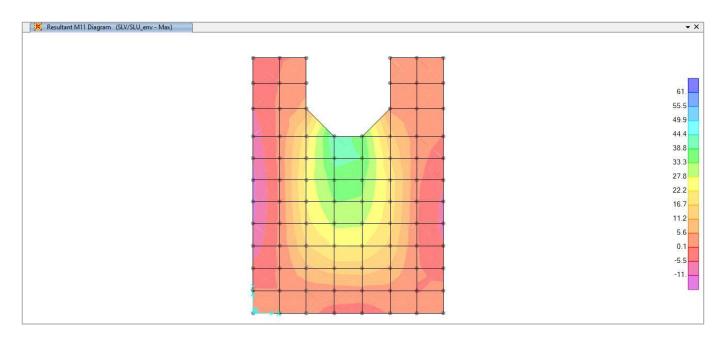
ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF

M-INGEGNERIA

<u>Mandataria</u>

Tombino circolare IN02 - Relazione di calcolo

PROGETTO ESECUTIVO


LOTTO CODIFICA REV. COMMESSA DOCUMENTO 119 di 261 IF3A E ZZ CL IN0200 001 02 В

12.3.4 Inviluppo delle sollecitazioni – Setto Y2

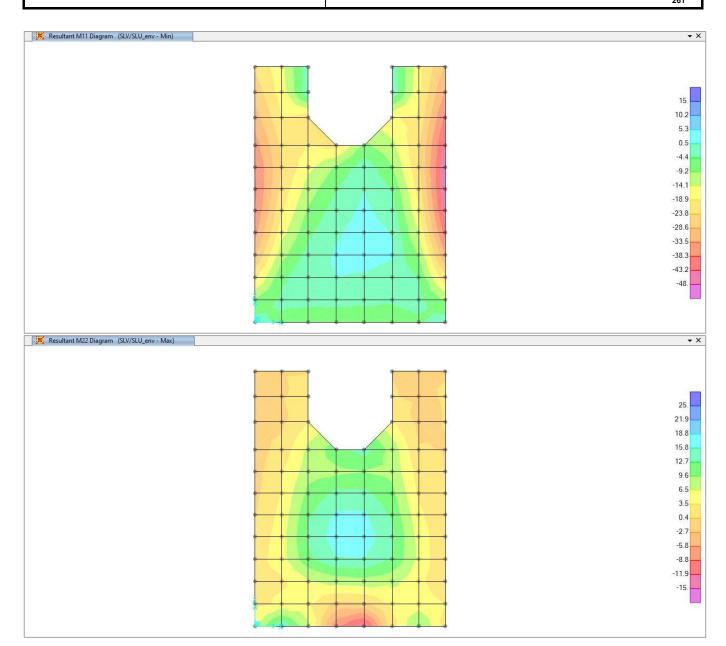
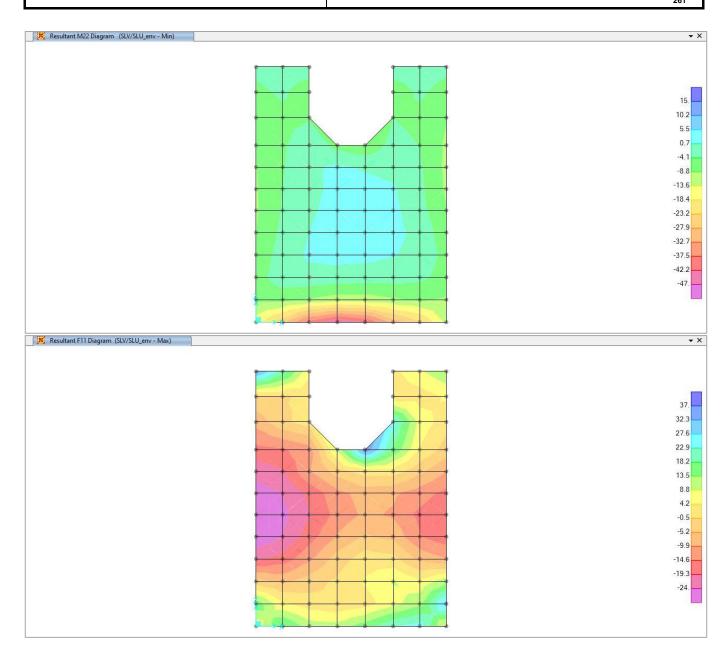
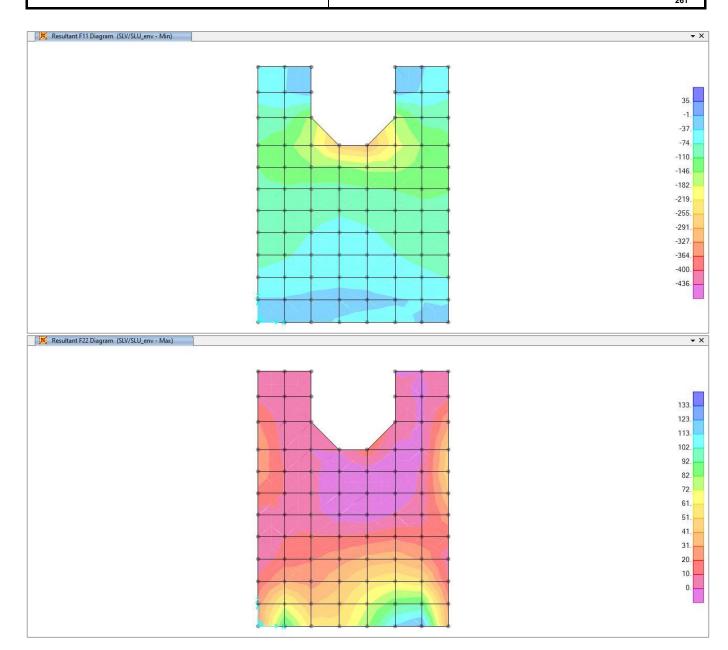
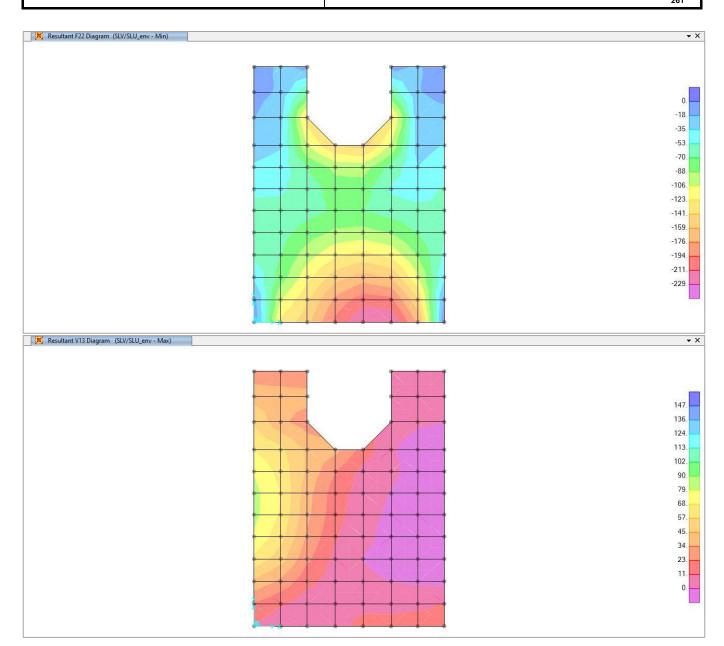
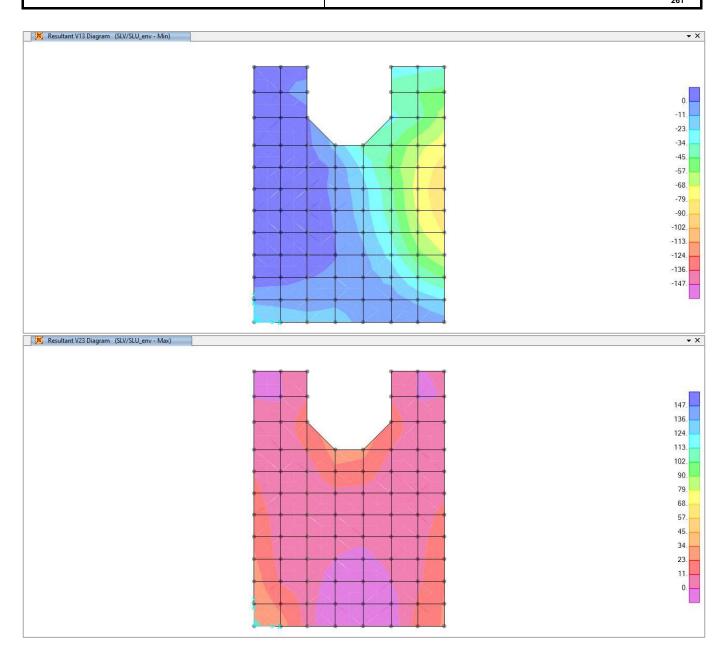

	TABLE: E	lement F	orces - Area S	Shells					
	Area	Joint	OutputCase	F11	F22	F12	M11	M22	M12
	Text	Text	Text	KN/m	KN/m	KN/m	KN-m/m	KN-m/m	KN-m/m
M11 max SLU/SLV	239	190	SLV_08	-344	-55	15	61	1	3
M11 min SLU/SLV	257	227	SLV_04	-112	33	16	-48	-11	5
N11 max SLU/SLV	239	189	SLV_05	52	14	-22	9	-2	3
N11 min SLU/SLV	239	189	SLV_04	-436	-148	101	-4	9	-9
M22 max SLU/SLV	216	189	SLV_06	-141	-79	79	30	25	-10
M22 min SLU/SLV	276	266	SLV_06	9	45	40	-9	-47	4
N22 max SLU/SLV	264	232	SLV_04	25	126	46	2	11	-1
N22 min SLU/SLV	264	192	SLV_05	-46	-229	8	-5	-26	1

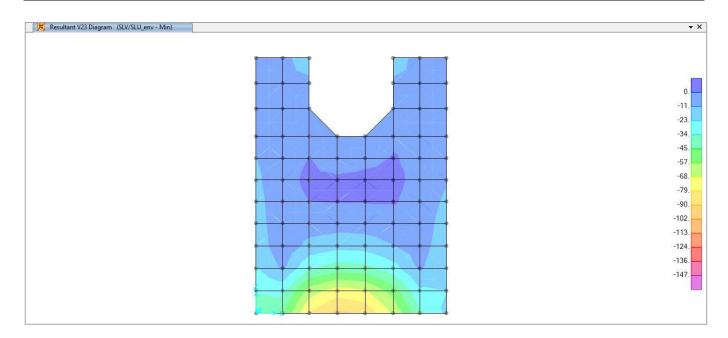
	TABLE: E	lement F	orces - Area	Shells
	Area	Joint	OutputCase	V13/V23
	Text	Text	Text	KN/m
V max/min SLU/SLV	280	265	SLV_06	94


	TABLE: E	Element F	orces - Area S	Shells					
	Area	Joint	OutputCase	F11	F22	F12	M11	M22	M12
	Text	Text	Text	KN/m	KN/m	KN/m	KN-m/m	KN-m/m	KN-m/m
M11 max SLE	239	189	SLE_05	-76	-16	2	22	2	-2
M11 min SLE	243	243	SLE_06	-48	-18	3	-22	-4	0
N11 max SLE	266	260	SLE_04	16	25	23	1	-3	-1
N11 min SLE	239	190	SLE_06	-187	-45	-8	13	1	1
M22 max SLE	216	189	SLE_05	-28	-12	11	13	9	-4
M22 min SLE	284	270	SLE_05	-8	-42	1	-6	-29	0
N22 max SLE	266	260	SLE_01	11	29	6	1	-2	-1
N22 min SLE	280	270	SLE_04	-20	-101	3	-4	-21	0


APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO REV. COMMESSA CODIFICA DOCUMENTO 120 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В


APPALTATORE:	<u>Soci</u>			ITINI	ERARIO I	NAPOLI – B	ARI		
HIRPINIA - ORSARA A	/ WEBUILD ITALI	A PIZZAROTTI							
PROGETTAZIONE:			RΔI	DOPE	IO TRAT	TA APICE -	ORSAF	Δ	
<u>Mandataria</u>	<u>Mandanti</u>					LE HIRPINIA			
ROCKSOIL S.P.A	NET ENGINEER	ING PINI ELETTRI-FER		.0.0	III III III III III III III III III II			~II \/ ~	
M-INGEGNERIA	GCF	ELETTRI-FER							
PROGETTO ESECU	TIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Tombino circolare IN02 -	ombino circolare IN02 - Relazione di calcolo			02	E ZZ CL	IN0 2 00 001	В	121 di 261	


APPALTATORE: Consorzio	<u>Soci</u>							
HIRPINIA - ORSARA A	/ WEBUILD ITALI	A PIZZAROTTI		HIIN	ERARIO I	NAPOLI – B	ARI	
PROGETTAZIONE:			RΔI		ON TRAT	TA APICE -	ORSAE	Δ
<u>Mandataria</u>	<u>Mandanti</u>					E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEER GCF	ING PINI ELETTRI-FER		1010	INZIONAL			711/7
M-INGEGNERIA								
PROGETTO ESECU	TIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	Relazione di calco	lo	IF3A	02	E ZZ CL	IN0200 001	В	122 di 261


APPALTATORE:								
Consorzio	<u>Soci</u>			ITINII		MAROLL B	A D.I	
HIRPINIA - ORSARA AV	WEBUILD ITALIA	PIZZAROTTI		HIN	ERARIO	NAPOLI – B	AKI	
PROGETTAZIONE:			DΛΓ		IO TDAT	TA APICE -		۸
<u>Mandataria</u>	<u>Mandanti</u>					E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERIN	G PINI ELETTRI-FER	II LOI	1010	INZIONAL	L IIINFINIA	- 013/	ANA
M-INGEGNERIA	GCF	ELETTRI-FER						
PROGETTO ESECUT	TVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	123 di 261

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO REV. COMMESSA CODIFICA DOCUMENTO 124 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

APPALTATORE: Consorzio HIRPINIA - ORSARA AV	<u>Soci</u> WEBUILD ITALIA PIZZAROTT	ı		ITINI	ERARIO I	NAPOLI – BA	ARI	
PROGETTAZIONE:			RAD	DOPP	IO TRAT	TA APICE -	ORSAF	RA
<u>Mandataria</u>	<u>Mandanti</u>		ILLOT	TO FU	ΝΖΙΟΝΔΙ	E HIRPINIA	- ORS	ΔRΔ
ROCKSOIL S.P.A	NET ENGINEERING PINI GCF ELETTRI-FE	₹	201		1421014742			
M-INGEGNERIA								
PROGETTO ESECUT Tombino circolare IN02 -			COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ CL	DOCUMENTO IN0 2 00 001	REV. B	FOGLIO 125 di 261

APPALTATORE:

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

V max/min SLU/

<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A **NET ENGINEERING** PINI ELETTRI-FER GCF

M-INGEGNERIA

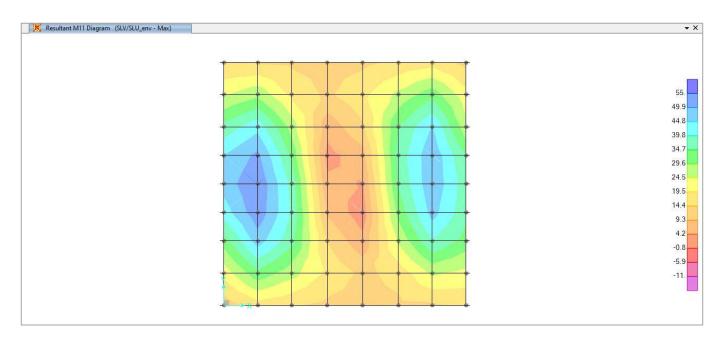
PROGETTO ESECUTIVO

Tombino circolare IN02 - Relazione di calcolo

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

126 di 261


LOTTO COMMESSA CODIFICA DOCUMENTO REV. E ZZ CL IN0200 001 IF3A 02 В

12.3.5 Inviluppo delle sollecitazioni – Fondazione

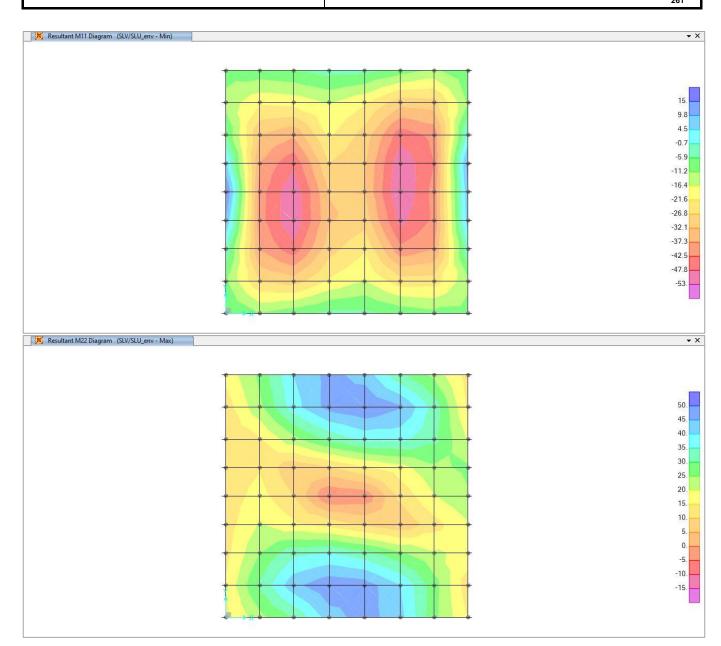
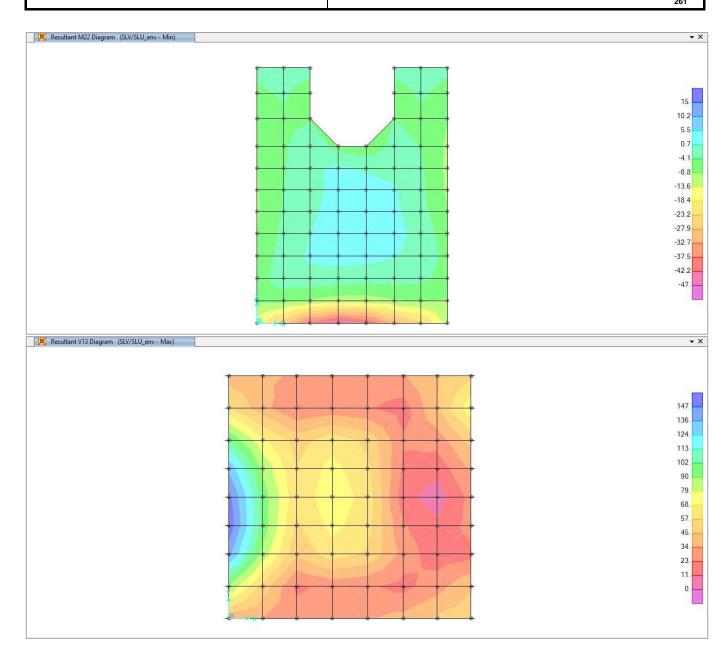
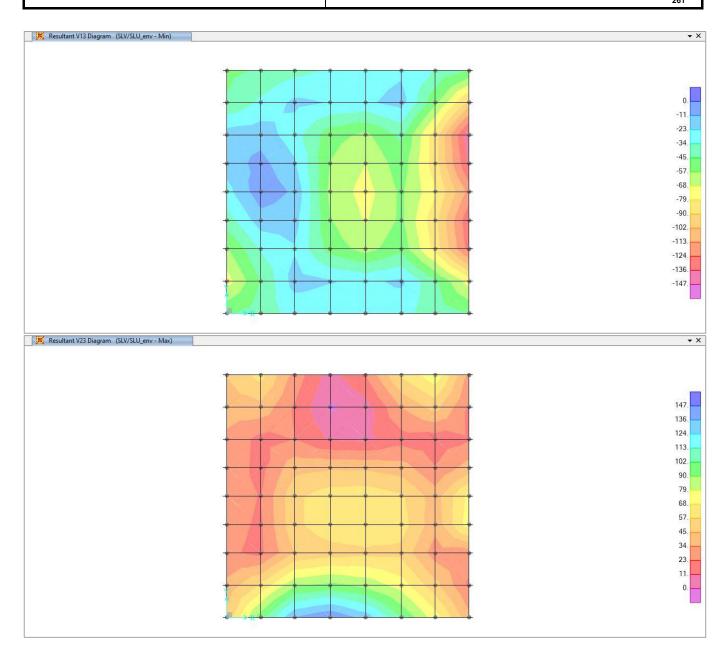
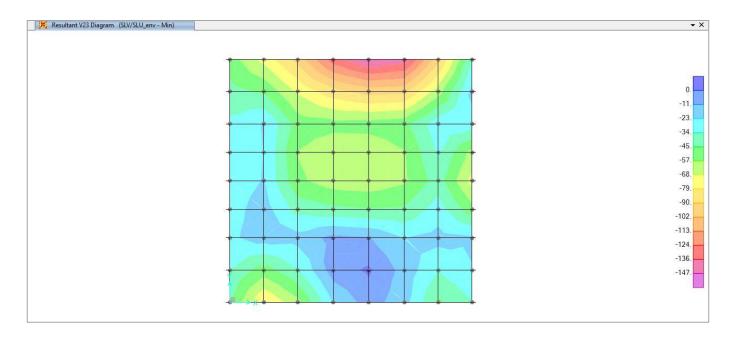

	TABLE: E	lement F							
	Area	Joint	OutputCase	F11	F22	F12	M11	M22	M12
	Text	Text	Text	KN/m	KN/m	KN/m	KN-m/m	KN-m/m	KN-m/m
M11 max SLU/SLV	661	593	SLV_03	0	0	0	55	17	4
M11 min SLU/SLV	665	597	SLV_01	0	0	0	-53	-34	-1
N11 max SLU/SLV	681	613	SLV_07	0	0	2	20	32	-4
N11 min SLU/SLV	681	3	SLV_04	0	0	1	-3	13	9
M22 max SLU/SLV	636	577	SLV_08	0	0	0	19	50	4
M22 min SLU/SLV	642	583	SLV_05	0	0	0	-29	-51	-3
N22 max SLU/SLV	687	404	SLV_03	0	0	-3	3	-2	-10
N22 min SLU/SLV	687	404	SLV_06	0	0	3	24	1	-4

	TABLE: Element Forces - Area Shells											
	Area	Joint	OutputCase	V13/V23								
	Text	Text	Text	KN/m								
SLV	667	318	SLV 02	157								

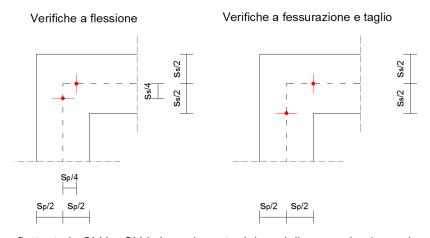

	TABLE: E	Element F	orces - Area S	Shells					
	Area	Joint	OutputCase	F11	F22	F12	M11	M22	M12
	Text	Text	Text	KN/m	KN/m	KN/m	KN-m/m	KN-m/m	KN-m/m
M11 max SLE	653	271	SLE_02	0	0	0	29	5	0
M11 min SLE	658	597	SLE_02	0	0	0	-22	-19	0
N11 max SLE	681	320	SLE_03	0	0	1	8	-2	7
N11 min SLE	666	605	SLE_03	0	0	-2	9	-2	-1
M22 max SLE	635	270	SLE_05	0	0	0	5	29	0
M22 min SLE	657	589	SLE_04	0	0	0	-17	-21	0
N22 max SLE	652	356	SLE_03	0	0	-2	21	5	2
N22 min SLE	652	591	SLE_03	0	0	2	9	-2	3


APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO REV. COMMESSA CODIFICA DOCUMENTO 127 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

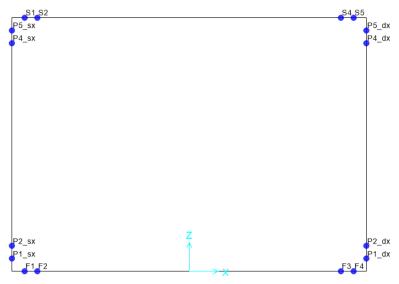

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO REV. COMMESSA CODIFICA DOCUMENTO 128 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO REV. COMMESSA CODIFICA DOCUMENTO 129 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

APPALTATORE: Consorzio HIRPINIA - ORSARA AV PROGETTAZIONE: Mandataria	Soci WEBUILD ITALIA PIZZAROTTI Mandanti		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA						
ROCKSOIL S.P.A M-INGEGNERIA	NET ENGINEERING PINI GCF ELETTRI-FER	201		1121011711		O.C.			
PROGETTO ESECUT Tombino circolare IN02 -		COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ CL	DOCUMENTO IN0 2 00 001	REV. B	FOGLIO 130 di 261		



APPALTATORE:							
Consorzio	Soci		ITINI		NAPOLI – B	۸DI	
HIRPINIA - ORSARA A	V WEBUILD ITALIA PIZZAROTTI		11111	EKAKIO	NAPOLI - D	ANI	
PROGETTAZIONE:		PAI		DIO TRAT	TA APICE -	ORSAE	ΣΔ
<u>Mandataria</u>	<u>Mandanti</u>				E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERING PINI GCF ELETTRI-FER	" " " " " " " " " " " " " " " " " " " "	1010	INZIONAL	-E 1111X1 11X1/A		
M-INGEGNERIA							
PROGETTO ESECU	TIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02	IF3A	02	E ZZ CL	IN0 2 00 001	В	131 di 261	


13 VERIFICHE DI SICUREZZA ULTIMA E DI ESERCIZIO

13.1 CRITERI DI VERIFICA

Nel presente capitolo si conducono le verifiche strutturali in corrispondenza delle sezioni più sollecitate. Con riferimento alle sezioni di incastro, i valori di sollecitazione flettente e tagliante, utilizzati per le verifiche, sono stati valutati come illustrato nel seguente schema:

Nello specifico l'azione flettente in SLU e SLV viene ricavata dal modello numerico in corrispondenza della sezione posta a un quarto dello spessore dall'asse dell'elemento finito, l'azione tagliante e l'azione flettente in SLE vengono invece valutate in corrispondenza della sezione posta a un mezzo dello spessore dall'asse dell'elemento finito. In via conservativa si trascura l'azione assiale nelle verifiche a taglio..

Soletta	M_{max} (S_1 , S_5)	Soletta	$T^{+}_{max}(S_{2},S_{4})$
Piedritti	$M_{max}(P_1,P_5)$	Soletta	$T^+_{max} \left(P_2, P_4\right)$
Fondazione	$M_{max}(F_1,F_4)$	Fondazione	$T^{+}_{max}(F_{2},F_{3})$

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO **FOGLIO** COMMESSA LOTTO CODIFICA DOCUMENTO REV. 132 di Tombino circolare IN02 - Relazione di calcolo IF3A 02 E ZZ CL IN0200 001 В 261

Le verifiche a fessurazione vengono condotte secondo quanto indicato al Capitolo 3. Si riportano di seguito le condizioni di verifica.

Combinazione di verifica: SLE rara
 Condizioni ambientali: aggressive
 Limite apertura fessure: w₁ = 0.2 mm

In via cautelativa le sollecitazioni impiegate nelle verifiche agli SLE sono calcolate in combinazione RARA (più gravose delle sollecitazioni Q.P.). Tuttavia, nelle verifiche tensionali è stato considerato il valore più cautelativo tra i limiti tensionali previsti nel Manuale di RFI cod. DTCSICSMAIFS001A per le combinazioni allo SLE Rara e Q.P (cfr. Capitolo 3.1). Nello specifico, il limite tensionale considerato è pari a 0.40f_{ck} (relativo alla combinazione Q.P.), anzichè 0.55f_{ck} (relativo alla combinazione Rara).

Le verifiche, a vantaggio di sicurezza, sono pertanto condotte considerando le sollecitazioni derivanti dalle combinazioni SLE rara utilizzando, tuttavia, il limite tensionale più restrittivo relativo alle combinazioni SLE Q.P.

La modellazione strutturale FEM, come di consuetudine per la tipologia di opera in esame, prevede una unica molla orizzontale posta in corrispondenza del baricentro della fondazione; gli sforzi di trazione risultano, pertanto, non rappresentativi del reale comportamento dell'opera e per tale ragione non sono stati portati in conto nelle verifiche di sicurezza strutturale.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO **FOGLIO** COMMESSA LOTTO CODIFICA DOCUMENTO REV. 133 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IF3A 02 IN0200 001 В 261

13.2 SOLLECITAZIONI DI VERIFICA - SCATOLARE

Si riportano di seguito le tabelle con l'indicazione delle sollecitazioni più gravose per ciascun elemento (soletta superiore, piedritti e soletta inferiore) considerate per le verifiche di sicurezza, analizzando una sezione che rappresenti la parte centrale e una che rappresenti la parte esterna (due nel caso dei piedritti, in cui si studiano l'estemità di testa e quella di piede). Le tabelle sono ottenute massimizzando, rispettivamente, momenti flettenti e azioni assiali nelle diverse sezioni studiate. Anche per le verifiche a taglio sono stati considerati i tagli massimi in corrispondenza delle diverse sezioni.

Negli elementi orizzontali (solette superiori e fondazioni), a favore di sicurezza, si trascurano le azioni assiali nella verifica delle sezioni.

Le convenzioni di segno adottate sono le seguenti: l'azione flettente è negativa se tende le fibre esterne del tombino, l'azione tagliante è riportata in valore assoluto, l'azione assiale è negativa se di compressione.

Soletta superiore

Sezione centrale

Centrale	TABLE:	Element	Forces - Frame	s -		
	Frame	Station	OutputCase	CaseType	V2	М3
	Text	m	Text	Text	KN	KN-m
M max SLU/SLV	2	0.60	SLU_22	Combination	70	42
Mmin SLU/SLV	2	1.00	SLU_42	Combination	23	-19
V max SLU/SLV	2	1.00	SLU_19	Combination	130	-10
MmaxSLE	2	0.60	SLE_22	Combination	52	30
M min SLE	2	1.00	SLE_42	Combination	18	-13

Sezione laterale

Laterale	TABLE:	Element	Forces - Frame	·s -		
	Frame	Station	OutputCase	CaseType	V2	М3
	Text	m	Text	Text	KN	KN-m
Mmax SLU/SLV	2	0.10	SLU_22	Combination	12	63
Mmin SLU/SLV	2	1.50	SLU_19	Combination	188	-89
V max SLU/SLV	2	1.40	SLU_19	Combination	177	-71
M max SLE	2	0.20	SLE_22	Combination	18	44
M min SLE	2	1.40	SLE_19	Combination	132	-52

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO COMMESSA CODIFICA DOCUMENTO REV. 134 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

• Piedritti

Sezione di testa

Testa	TABLE:	Element	Forces - Fran	nes -			
	Frame	Station	OutputCase	CaseType	Р	V2	М3
	Text	m	Text	Text	KN	KN	KN-m
Mmax SLU/SLV	3	1.50	SLU_19	Combination	-204	128	96
Mmin SLU/SLV	1	1.50	SLU_22	Combination	-4	64	-57
N max SLU/SLV	1	1.50	SLU_14	Combination	-2	-32	-5
N min SLU/SLV	3	1.50	SLU_19	Combination	-204	128	96
V max SLU/SLV	3	1.4	SLU_18	Combination	-188	132	70
M max SLE	3	1.40	SLE_19	Combination	-153	93	61
M min SLE	1	1.40	SLE_22	Combination	-3	50	-37
N max SLE	1	1.40	SLE_14	Combination	-2	-17	-6
N min SLE	3	1.40	SLE_19	Combination	-153	93	61

Sezione di piede

Piede	TABLE:	Element	Forces - Fran	nes -			
	Frame	Station	OutputCase	CaseType	Р	V2	М3
	Text	m	Text	Text	KN	KN	KN-m
Mmax SLU/SLV	1	0.10	SLU_22	Combination	-23	144	86
Mmin SLU/SLV	3	0.10	SLU_19	Combination	-223	111	-73
N max SLU/SLV	1	0.10	SLV_02	Combination	-15	59	24
N min SLU/SLV	3	0.10	SLU_19	Combination	-223	111	-73
V max SLU/SLV	1	0.2	SLU_22	Combination	-21	137	72
MmaxSLE	1	0.20	SLE_22	Combination	-15	101	52
M min SLE	3	0.20	SLE_19	Combination	-165	84	-45
N max SLE	1	0.20	SLE_14	Combination	-14	46	9
N min SLE	3	0.20	SLE_19	Combination	-165	84	-45

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA PROGETTO ESECUTIVO FOGLIO LOTTO COMMESSA CODIFICA DOCUMENTO REV. 135 di 261 Tombino circolare IN02 - Relazione di calcolo

IF3A

02

E ZZ CL

IN0200 001

В

Soletta di fondazione

Sezione centrale

Centrale	TABLE:	TABLE: Element Forces - Frames -											
	Frame	Station	OutputCase	CaseType	Р	V2	М3						
	Text	m	Text	Text	KN	KN	KN-m						
Mmax SLU/SLV	6	0.13333	SLU_22	Combination	-164	152	48						
Mmin SLU/SLV	12	0.13333	SLU_19	Combination	105	103	-76						
V max SLU/SLV	8	0.13333	SLU_22	Combination	-164	159	6						
M max SLE	6	0.13333	SLE_22	Combination	-120	114	34						
M min SLE	12	0.13333	SLE_19	Combination	79	77	-56						

Sezione laterale

Laterale	TABLE:	Element F	orces - Frames	-			
	Frame	Station	OutputCase	CaseType	Р	V2	М3
	Text	m	Text	Text	KN	KN	KN-m
Mmax SLU/SLV	4	0.1	SLU_22	Combination	-164	110	89
Mmin SLU/SLV	15	0.03333	SLU_19	Combination	105	-38	-87
V max SLU/SLV	5	0.06667	SLU_22	Combination	-164	135	77
MmaxSLE	5	0.06667	SLE_22	Combination	-120	101	56
M min SLE	14	0.06667	SLE_19	Combination	79	17	-64

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER GCF** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 136 di 261 Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В

13.3 SOLLECITAZIONI DI VERIFICA – MURI AD U

Soletta di Fondazione

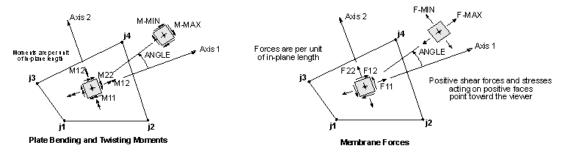
Sezione centrale

Centrale	TABLE:	TABLE: Element Forces - Frames -										
	Frame	Station	OutputCase	CaseType	Р	V2	М3					
	Text	m	Text	Text	KN	KN	KN-m					
Mmax SLU/SLV	4	0.275	SLV_02	Combination	-64.49	19	44					
Mmin SLU/SLV	12	0.275	SLV_01	Combination	-4.85	16	1					
V max SLU/SLV	7	0.275	SLV_01	Combination	-64.49	23	26					
M max SLE	4	0.275	SLE_02	Combination	-37.06	7	21					
M min SLE	8	0.275	SLE_01	Combination	-11.23	2	1					

Sezione laterale

Laterale	TABLE:	Element	Forces - Fran	nes -			
	Frame	Station	OutputCase	CaseType	Р	P V2	
	Text	m	Text	Text	KN	KN	KN-m
Mmax SLU/SLV	3	0.075	SLV_02	Combination	-64.49	14	52
Mmin SLU/SLV	14	0.2	SLV_01	Combination	-4.85	1	0
V max SLU/SLV	3	0.15	SLV_01	Combination	-64.49	17	50
M max SLE	3	0.15	SLE_02	Combination	-37.06	8	24
M min SLE	3	0.15	SLE_01	Combination	-11.23	8	5

Piedritto


Sezione al piede

Piede	TABLE:	Element	Forces - Fran	nes -			
	Frame	Station	OutputCase	CaseType	Р	V2	М3
	Text	m	Text	Text	KN	KN	KN-m
Mmax SLU/SLV	1	0.13	SLV_01	Combination	-14	56	45
Mmin SLU/SLV	2	0.13	SLV_01	Combination	-14	-2	-1
N max SLU/SLV	1	0.13	SLV_02	Combination	-12	56	45
N min SLU/SLV	1	0.13	SLU_01	Combination	-18	13	8
V max SLU/SLV	1	0.25	SLV_01	Combination	-13	51	39
M max SLE	1	0.25	SLE_02	Combination	-12	25	18
M min SLE	1	0.25	SLE_01	Combination	-12	7	4
N max SLE	1	0.25	SLE_01	Combination	-12	7	4
N min SLE	1	0.25	SLE_01	Combination	-12	7	4

APPALTATORE: Consorzio HIRPINIA - ORSARA AN PROGETTAZIONE: Mandataria ROCKSOIL S.P.A	Soci / WEBUILD ITALIA PIZZAROTTI Mandanti NET ENGINEERING PINI GCF ELETTRI-FER		DDOPF	PIO TRAT	NAPOLI – BA TA APICE - LE HIRPINIA	ORSAF	
M-INGEGNERIA PROGETTO ESECU	TIVO						FOGLIO
Tombino circolare IN02 -		COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ CL	DOCUMENTO IN0 2 00 001	REV. B	137 di 261

13.4 SOLLECITAZIONI DI VERIFICA - POZZO

I momenti per unità di lunghezza per gli elementi *shell* M11, M22 e M12 sono rispettivamente il momento per unità di lunghezza attorno agli assi local1 e 2 e torcente.

Per tenere in considerazione il contributo del momento torcente che agisce sui lati dell'elemento si utilizza il metodo *Wood-Armer* che prevede il ricalcolo delle sollecitazioni equivalenti nel modo seguente:

- per l'armatura compressa si considera un momento negativo maggiorato:

$$M_{1,d} = M_{11} - |M_{12}|$$

 $M_{2,d} = M_{22} - |M_{12}|$

- per l'armatura tesa si considera un momento positivo maggiorato:

$$M_{1,d} = M_{11} + |M_{12}|$$

 $M_{2,d} = M_{22} + |M_{12}|$

Il metodo prevede anche di considerare i casi in cui uno dei due momenti equivalenti calcolati sia nullo o positivo per l'armatura superiore, o negativo per quella inferiore. In tal caso, le compressioni saranno riprese dal cls, e quindi avremo:

$$\begin{split} \mathbf{M}_{1,d} &= \mathbf{M}_{11} - \left| \frac{\mathbf{M}_{12}^2}{\mathbf{M}_{22}} \right| & \text{se } \mathbf{M}_{2,d} {\geq} 0 \\ \\ \mathbf{M}_{2,d} &= \mathbf{M}_{22} - \left| \frac{\mathbf{M}_{12}^2}{\mathbf{M}_{11}} \right| & \text{se } \mathbf{M}_{1,d} {\geq} 0 \\ \\ \mathbf{M}_{1,d} &= \mathbf{M}_{11} - \left| \frac{\mathbf{M}_{12}^2}{\mathbf{M}_{22}} \right| & \text{se } \mathbf{M}_{2,d} {\geq} 0 \\ \\ \mathbf{M}_{2,d} &= \mathbf{M}_{22} - \left| \frac{\mathbf{M}_{12}^2}{\mathbf{M}_{11}} \right| & \text{se } \mathbf{M}_{1,d} {\geq} 0 \end{split}$$

Lo stesso approccio è utilizzato per il calcolo delle azioni assiali N_{1,d} ed N_{2,d}.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF **ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 138 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

Setto X1

	TABLE: E	Element F	orces - Area	Shells				1	2	1	2
	Area	Joint	OutputCase	F11	F12	M11	M12	N1d+	N1d-	M1d+	M1d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M11 max SLU/SLV	428	305	SLV_01	-83	-1	47	1	-83	-84	47	0
M11 min SLU/SLV	399	115	SLV_03	-64	21	-48	5	0	-85	-46	-54
M1d max SLU/SLV	427	305	SLV_01	-82	-1	47	-1	-81	-82	47	0
M1d min SLU/SLV	399	115	SLV_03	-64	21	-48	5	0	-85	-46	-54
N11 max SLU/SLV	359	147	SLV_02	37	-62	1	2	99	-25	3	-1
N11 min SLU/SLV	347	141	SLV_07	-111	-29	-47	-3	0	-140	-46	-50
N1d max SLU/SLV	355	315	SLV_06	-14	183	1	0	168	-197	1	0
N1d min SLU/SLV	354	315	SLV_08	-37	183	1	0	146	-220	1	1
	TABLE: E	Element F	orces - Area S	Shells							2
	TABLE: E Area	Element F Joint	orces - Area S OutputCase	Shells F11	F12	M11	M12	1 N1d+	2 N1d-	1 M1d+	2 M1d-
					F12 KN/m	M11 KN-m/m	M12 KN-m/m	N1d+ KN/m	N1d- KN/m	M1d+ KN-m/m	2 M1d- KN-m/m
M11 max SLE	Area	Joint	OutputCase	F11							-
M11 max SLE M11 min SLE	Area Text	Joint Text	OutputCase Text	F11 KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
	Area Text 395	Joint Text 293	OutputCase Text SLE_02	F11 KN/m -16	KN/m -1	KN-m/m 15	KN-m/m 0	KN/m -16	KN/m -17	KN-m/m 15	KN-m/m 15
M11 min SLE	Area Text 395 344	Joint Text 293 243	OutputCase Text SLE_02 SLE_06	F11 KN/m -16 -47	KN/m -1 1	KN-m/m 15 -22	KN-m/m 0 -1	KN/m -16 -47	KN/m -17 -48	KN-m/m 15 -22	KN-m/m 15 -23
M11 min SLE M1d max SLE	Area Text 395 344 389	Joint Text 293 243 291	OutputCase Text SLE_02 SLE_06 SLE_02	F11 KN/m -16 -47 -17	KN/m -1 1 -1	KN-m/m 15 -22 15	KN-m/m 0 -1 0	-16 -47 -17	KN/m -17 -48 -18	KN-m/m 15 -22 15	KN-m/m 15 -23 15
M11 min SLE M1d max SLE M1d min SLE	Area Text 395 344 389 344	Joint Text 293 243 291 243	Text SLE_02 SLE_06 SLE_02 SLE_06	F11 KN/m -16 -47 -17 -47	KN/m -1 1 -1 1	KN-m/m 15 -22 15 -22	KN-m/m 0 -1 0 -1	KN/m -16 -47 -17 -47	KN/m -17 -48 -18 -48	KN-m/m 15 -22 15 -22	KN-m/m 15 -23 15 -23
M11 min SLE M1d max SLE M1d min SLE N11 max SLE	Area Text 395 344 389 344 352	Joint Text 293 243 291 243 249	OutputCase Text SLE_02 SLE_06 SLE_02 SLE_06 SLE_02 SLE_06 SLE_03	F11 KN/m -16 -47 -17 -47 16	KN/m -1 1 -1 1 23	KN-m/m 15 -22 15 -22 1	KN-m/m 0 -1 0 -1 -1	-16 -47 -17 -47 40	KN/m -17 -48 -18 -48 -7	KN-m/m 15 -22 15 -22 2	KN-m/m 15 -23 15 -23 0

	TABLE: E	Element F	orces - Area S	Shells				3	4	3	4
	Area	Joint	OutputCase	F22	F12	M22	M12	N2d+	N2d-	M2d+	M2d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M22 max SLU/SLV	382	289	SLV_01	67	-9	17	1	68	58	18	0
M22 min SLU/SLV	355	271	SLV_01	88	-14	-47	-1	102	0	0	-48
M2d max SLU/SLV	361	278	SLV_01	59	-41	11	-12	98	19	23	1
M2d min SLU/SLV	354	316	SLV_01	80	-17	-45	-5	97	63	0	-50
N22 max SLU/SLV	357	273	SLV_03	133	-14	-26	6	146	0	-20	-32
N22 min SLU/SLV	356	318	SLV_02	-252	10	-30	0	0	-261	0	-30
N2d max SLU/SLV	357	282	SLV_07	110	-148	3	3	258	-38	7	0
N2d min SLU/SLV	356	317	SLV_06	-167	155	-8	0	-12	-321	0	-9
	TABLE: E	lement F	orces - Area S	Shells				3	4	3	4
	Area	Joint	OutputCase	F22	F12	M22	M12	N2d+	N2d-	M2d+	M2d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M22 max SLE	381	289	SLE_02	-15	0	8	0	0	-16	9	0
M22 min SLE	355	271	SLE_02	-35	0	-29	0	0	-36	0	-29
M2d max SLE	380	329	SLE_02	-15	0	7	-2	0	-15	10	0
M2d min SLE	355	271	SLE_02	-35	0	-29	0	0	-36	0	-29
N22 max SLE	352	249	SLE_01	24	6	-2	0	30	0	-1	-2
N22 min SLE	255	271	SLE 03	-108	0	-22	0	0	-108	0	-22
NZZ IIIII SLE	355	211	SLL_U3	-100						0	
N2d max SLE	352	249	SLE_03	22	23	-3	-1	45	-2	-2	-4

	TABLE: Element Forces - Area Shells									
	Area Joint OutputCase V									
	Text	Text	Text	KN/m						
V max/min SLU/SLV	407	338	SLV 03	97						

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF **ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 139 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 В 02

Setto X2

	TABLE: E	Element F	orces - Area S	Shells				1	2	1	2
	Area	Joint	OutputCase	F11	F12	M11	M12	N1d+	N1d-	M1d+	M1d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M11 max SLU/SLV	515	389	SLV_02	-83	-2	44	1	-82	-85	45	0
M11 min SLU/SLV	480	227	SLV_04	-69	23	-48	5	0	-91	-46	-53
M1d max SLU/SLV	516	389	SLV_02	-79	-1	44	-1	-79	-81	45	0
M1d min SLU/SLV	480	227	SLV_04	-69	23	-48	5	0	-91	-46	-53
N11 max SLU/SLV	458	403	SLV_06	93	-123	-2	-4	215	-30	1	-6
N11 min SLU/SLV	446	366	SLV_05	-125	154	1	0	29	-280	1	1
N1d max SLU/SLV	458	366	SLV_08	82	-144	-1	-3	226	-61	2	-4
N1d min SLU/SLV	458	366	SLV_05	-120	188	1	-1	68	-307	2	0

	TABLE: E	lement F	orces - Area S	Shells				1	2	1	2
	Area	Joint	OutputCase	F11	F12	M11	M12	N1d+	N1d-	M1d+	M1d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M11 max SLE	483	377	SLE_03	-16	1	15	0	-16	-17	15	15
M11 min SLE	463	125	SLE_06	-43	-2	-22	-1	-43	-45	-22	-22
M1d max SLE	477	375	SLE_03	-17	1	14	0	-17	-18	15	14
M1d min SLE	432	254	SLE_06	-45	-2	-22	1	-45	-47	-21	-22
N11 max SLE	472	413	SLE_02	23	5	4	1	28	0	5	3
N11 min SLE	432	254	SLE_06	-45	-2	-22	1	-45	-47	-21	-22
N1d max SLE	449	395	SLE_02	6	-41	0	2	47	-35	2	-2
N1d min SLE	453	364	SLE_05	-35	-50	0	0	15	-84	0	-1

	TABLE: E	Element F	orces - Area S	Shells					4		
	Area	Joint	OutputCase	F22	F12	M22	M12	N2d+	N2d-	M2d+	M2d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M22 max SLU/SLV	474	374	SLV_02	19	-37	14	-1	42	-17	15	0
M22 min SLU/SLV	446	357	SLV_02	93	-22	-33	-6	116	71	0	-40
M2d max SLU/SLV	438	359	SLV_02	74	-53	11	-10	117	21	21	0
M2d min SLU/SLV	446	357	SLV_02	93	-22	-33	-6	116	71	0	-40
N22 max SLU/SLV	441	356	SLV_04	192	-4	-25	6	196	0	-18	-31
N22 min SLU/SLV	441	356	SLV_03	-330	-36	-23	-2	0	-366	0	-25
N2d max SLU/SLV	453	367	SLV_08	156	-158	2	4	314	-2	7	-2
N2d min SLU/SLV	441	364	SLV_01	-316	-69	-10	0	-248	-385	0	-10

	TABLE: E	Element F	orces - Area S	Shells		3	4	3	4		
	Area	Joint	OutputCase	F22	F12	M22	M12	N2d+	N2d-	M2d+	M2d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M22 max SLE	473	374	SLE_03	-5	1	7	0	0	-6	8	0
M22 min SLE	441	356	SLE_03	-34	-5	-21	1	0	-39	0	-21
M2d max SLE	437	358	SLE_03	-18	1	5	4	0	-20	9	0
M2d min SLE	441	356	SLE_03	-34	-5	-21	1	0	-39	0	-21
N22 max SLE	440	260	SLE_01	28	-4	-2	0	32	0	-1	-2
N22 min SLE	441	356	SLE_02	-129	-18	-16	-2	0	-146	0	-18
N2d max SLE	440	260	SLE_02	28	-20	-3	1	48	8	-2	-4
N2d min SLE	441	364	SLE_02	-127	-30	-7	0	-98	-157	0	-7

	TABLE: I	Element F	orces - Area	Shells							
	Area Joint OutputCase V13/V23										
	Text	Text	Text	KN/m							
V max/min SLU/SLV	488	419	SLV_04	96							

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF **ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 140 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 В 02

Setto Y1

	TABLE: I	BLE: Element Forces - Area Shells						1	2	1	2
	Area	Joint	OutputCase	F11	F12	M11	M12	N1d+	N1d-	M1d+	M1d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M11 max SLU/SLV	156	19	SLV_07	-343	18	60	3	-338	-361	64	0
M11 min SLU/SLV	160	115	SLV_03	-115	14	-48	5	0	-130	-46	-54
M1d max SLU/SLV	156	19	SLV_07	-343	18	60	3	-338	-361	64	0
M1d min SLU/SLV	160	115	SLV_03	-115	14	-48	5	0	-130	-46	-54
N11 max SLU/SLV	156	20	SLV_06	52	-24	8	2	76	0	10	0
N11 min SLU/SLV	156	20	SLV_03	-435	102	-5	-9	-363	-537	4	-14
N1d max SLU/SLV	214	183	SLV_03	5	198	-1	2	203	-193	2	-3
N1d min SLU/SLV	156	20	SLV_03	-435	102	-5	-9	-363	-537	4	-14

	TABLE: E	LE: Element Forces - Area Shells						1	2	1	2
	Area	Joint	OutputCase	F11	F12	M11	M12	N1d+	N1d-	M1d+	M1d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M11 max SLE	156	19	SLE_04	-76	-2	22	2	-75	-78	24	0
M11 min SLE	160	141	SLE_06	-48	-3	-22	0	-48	-51	-22	-23
M1d max SLE	156	19	SLE_04	-76	-2	22	2	-75	-78	24	0
M1d min SLE	147	115	SLE_06	-47	-2	-22	1	-47	-50	-22	-23
N11 max SLE	183	158	SLE_05	16	-23	1	1	39	-7	2	0
N11 min SLE	156	20	SLE_06	-187	8	13	-1	-186	-195	14	12
N1d max SLE	210	179	SLE_02	-4	50	-1	0	46	-54	-1	-2
N1d min SLE	156	20	SLE_06	-187	8	13	-1	-186	-195	14	12

	TABLE: E	Element F	orces - Area S	Shells					4		
	Area	Joint	OutputCase	F22	F12	M22	M12	N2d+	N2d-	M2d+	M2d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M22 max SLU/SLV	100	20	SLV_05	-78	80	24	-10	-33	-157	34	0
M22 min SLU/SLV	214	184	SLV_05	43	41	-48	3	84	2	0	-51
M2d max SLU/SLV	100	20	SLV_05	-78	80	24	-10	-33	-157	34	0
M2d min SLU/SLV	214	184	SLV_05	43	41	-48	3	84	2	0	-51
N22 max SLU/SLV	169	122	SLV_03	136	30	12	-2	166	106	14	0
N22 min SLU/SLV	206	180	SLV_06	-227	-20	-28	1	0	-247	0	-29
N2d max SLU/SLV	206	149	SLV_03	110	162	4	-2	272	-52	6	0
N2d min SLU/SLV	100	20	SLV_03	-192	182	19	-1	0	-374	19	17

	TABLE: I	Element F	orces - Area S	Shells		3	4	3	4		
	Area	Joint	OutputCase	F22	F12	M22	M12	N2d+	N2d-	M2d+	M2d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M22 max SLE	101	19	SLE_04	-12	-11	9	4	0	-23	12	0
M22 min SLE	214	184	SLE_04	-42	-1	-29	0	0	-43	0	-30
M2d max SLE	101	19	SLE_04	-12	-11	9	4	0	-23	12	0
M2d min SLE	214	184	SLE_04	-42	-1	-29	0	0	-43	0	-30
N22 max SLE	183	158	SLE_01	29	-6	-2	1	35	0	-2	-3
N22 min SLE	210	184	SLE_05	-101	-3	-21	0	0	-104	0	-21
N2d max SLE	183	158	SLE_05	25	-23	-3	1	48	2	-2	-5
N2d min SLE	210	183	SLE_02	-75	47	-7	0	-28	-122	0	-7

	TABLE: E	Element F	orces - Area	Shells							
	Area Joint OutputCase V13/V23										
	Text	Text	Text	KN/m							
V max/min SLU/SLV	210	184	SLV_05	95							

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF **ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 141 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

Setto Y2

	TABLE: E	Element F	orces - Area S	Shells			1	2	1	2	
	Area	Joint	OutputCase	F11	F12	M11	M12	N1d+	N1d-	M1d+	M1d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M11 max SLU/SLV	239	190	SLV_08	-344	15	61	3	-340	-359	63	0
M11 min SLU/SLV	257	227	SLV_04	-112	16	-48	5	0	-129	-46	-53
M1d max SLU/SLV	239	190	SLV_08	-344	15	61	3	-340	-359	63	0
M1d min SLU/SLV	257	227	SLV_04	-112	16	-48	5	0	-129	-46	-53
N11 max SLU/SLV	239	189	SLV_05	52	-22	9	3	74	0	11	0
N11 min SLU/SLV	239	189	SLV_04	-436	101	-4	-9	-367	-537	5	-13
N1d max SLU/SLV	280	265	SLV_03	-5	-204	1	-1	199	-209	2	0
N1d min SLU/SLV	239	189	SLV_04	-436	101	-4	-9	-367	-537	5	-13

	TABLE: E	lement F	orces - Area S			1	2	1	2		
	Area	Joint	OutputCase	F11	F12	M11	M12	N1d+	N1d-	M1d+	M1d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M11 max SLE	239	189	SLE_05	-76	2	22	-2	-75	-78	24	0
M11 min SLE	243	243	SLE_06	-48	3	-22	0	-48	-51	-22	-23
M1d max SLE	239	189	SLE_05	-76	2	22	-2	-75	-78	24	0
M1d min SLE	230	217	SLE_06	-47	2	-22	-1	-47	-50	-22	-23
N11 max SLE	266	260	SLE_04	16	23	1	-1	39	-7	2	0
N11 min SLE	239	190	SLE_06	-187	-8	13	1	-186	-195	14	12
N1d max SLE	280	265	SLE_02	-4	-50	-1	0	46	-54	-1	-2
N1d min SLE	239	190	SLE_06	-187	-8	13	1	-186	-195	14	12

	TABLE: I	Element F	orces - Area S	Shells					4		
	Area	Joint	OutputCase	F22	F12	M22	M12	N2d+	N2d-	M2d+	M2d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M22 max SLU/SLV	216	189	SLV_06	-79	79	25	-10	-34	-158	35	0
M22 min SLU/SLV	276	266	SLV_06	45	40	-47	4	85	5	0	-51
M2d max SLU/SLV	216	189	SLV_06	-79	79	25	-10	-34	-158	35	0
M2d min SLU/SLV	276	266	SLV_06	45	40	-47	4	85	5	0	-51
N22 max SLU/SLV	264	232	SLV_04	126	46	11	-1	171	80	11	0
N22 min SLU/SLV	264	192	SLV_05	-229	8	-26	1	0	-236	0	-27
N2d max SLU/SLV	284	258	SLV_04	105	157	4	-2	262	-51	6	0
N2d min SLU/SLV	216	189	SLV_02	-195	183	19	-2	0	-378	19	17

	TABLE: E	Element F	orces - Area S	Shells					4		
	Area	Joint	OutputCase	F22	F12	M22	M12	N2d+	N2d-	M2d+	M2d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M22 max SLE	216	189	SLE_05	-12	11	9	-4	0	-23	12	0
M22 min SLE	284	270	SLE_05	-42	1	-29	0	0	-43	0	-30
M2d max SLE	216	189	SLE_05	-12	11	9	-4	0	-23	12	0
M2d min SLE	284	270	SLE_05	-42	1	-29	0	0	-43	0	-30
N22 max SLE	266	260	SLE_01	29	6	-2	-1	35	0	-2	-3
N22 min SLE	280	270	SLE_04	-101	3	-21	0	0	-104	0	-21
N2d max SLE	266	260	SLE_04	25	23	-3	-1	48	2	-2	-5
N2d min SLE	280	269	SLE_02	-75	-47	-7	0	-28	-122	0	-7

	TABLE: Element Forces - Area Shells									
	Area	Joint	OutputCase	V13/V23						
	Text	Text	Text	KN/m						
V max/min SLU/SLV	280	265	SLV_06	94						

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF **ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 142 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 В 02

Fondazione

	TABLE: E	ABLE: Element Forces - Area Shells									2
	Area	Joint	OutputCase	F11	F12	M11	M12	N1d+	N1d-	M1d+	M1d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M11 max SLU/SLV	661	593	SLV_03	0	0	55	4	0	0	59	54
M11 min SLU/SLV	665	597	SLV_01	0	0	-53	-1	0	0	-53	-54
M1d max SLU/SLV	660	593	SLV_03	0	0	55	4	0	0	59	54
M1d min SLU/SLV	654	594	SLV_02	0	0	-52	-4	0	0	-52	-56
N11 max SLU/SLV	681	613	SLV_07	0	2	20	-4	2	-2	24	20
N11 min SLU/SLV	681	3	SLV_04	0	1	-3	9	1	-1	5	-12
N1d max SLU/SLV	666	599	SLV_02	0	3	37	1	3	-3	38	37
N1d min SLU/SLV	666	605	SLV_02	0	-3	46	1	3	-3	47	46

	TABLE: E	lement F	orces - Area S	Shells		1	2	1	2		
	Area	Joint	OutputCase	F11	F12	M11	M12	N1d+	N1d-	M1d+	M1d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M11 max SLE	653	271	SLE_02	0	0	29	0	0	0	29	29
M11 min SLE	658	597	SLE_02	0	0	-22	0	0	0	-22	-23
M1d max SLE	653	271	SLE_02	0	0	29	0	0	0	29	29
M1d min SLE	647	587	SLE_03	0	0	-20	-3	0	0	-20	-24
N11 max SLE	681	320	SLE_03	0	1	8	7	1	-1	15	0
N11 min SLE	666	605	SLE_03	0	-2	9	-1	2	-2	11	0
N1d max SLE	666	599	SLE_03	0	2	21	0	2	-2	21	20
N1d min SLE	666	605	SLE_03	0	-2	9	-1	2	-2	11	0

	TABLE: E	Element F	orces - Area S	Shells					4		
	Area	Joint	OutputCase	F22	F12	M22	M12	N2d+	N2d-	M2d+	M2d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M22 max SLU/SLV	636	577	SLV_08	0	0	50	4	0	0	54	0
M22 min SLU/SLV	642	583	SLV_05	0	0	-51	-3	0	0	0	-54
M2d max SLU/SLV	643	577	SLV_08	0	0	50	5	0	0	55	0
M2d min SLU/SLV	642	583	SLV_05	0	0	-51	-3	0	0	0	-54
N22 max SLU/SLV	687	404	SLV_03	0	-3	-2	-10	3	-3	8	-12
N22 min SLU/SLV	687	404	SLV_06	0	3	1	-4	3	-3	5	0
N2d max SLU/SLV	666	605	SLV_02	0	-3	12	1	3	-3	13	0
N2d min SLU/SLV	666	599	SLV_02	0	3	25	1	3	-3	26	0

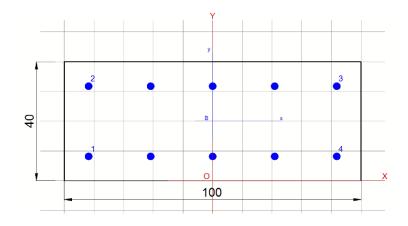
	TABLE: E	lement F	orces - Area S	Shells				3	4	3	4
	Area	Joint	Joint OutputCase		F12	M22	M12	N2d+	N2d-	M2d+	M2d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M22 max SLE	635	270	SLE_05	0	0	29	0	0	0	30	0
M22 min SLE	657	589	SLE_04	0	0	-21	0	0	0	0	-22
M2d max SLE	636	270	SLE_05	0	0	29	1	0	0	30	0
M2d min SLE	641	582	SLE_04	0	0	-20	-3	0	0	0	-23
N22 max SLE	652	356	SLE_03	0	-2	5	2	2	-2	7	0
N22 min SLE	652	591	SLE_03	0	2	-2	3	2	-2	1	-2
N2d max SLE	659	591	SLE_03	0	2	-2	1	2	-2	-1	-2
N2d min SLE	659	599	SLE_03	0	-2	1	0	2	-2	1	0

	TABLE: Element Forces - Area Shells								
	Area	Joint	OutputCase	V13/V23					
	Text	Text	Text	KN/m					
V max/min SLU/SLV	667	318	SLV_02	157					

APPALTATORE: <u>Consorzio</u> HIRPINIA - ORSARA A	<u>Soci</u> V webuild Italia pizzarotti		ITINERARIO NAPOLI – BARI					
PROGETTAZIONE: Mandataria ROCKSOIL S.P.A M-INGEGNERIA	Mandanti NET ENGINEERING PINI GCF ELETTRI-FER		_	_	TA APICE - LE HIRPINIA			
PROGETTO ESECU Tombino circolare IN02		COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ CL	DOCUMENTO IN0200 001	REV. B	FOGLIO 143 di 261	

13.5 VERIFICHE - SCATOLARE

Si rportano di seguito le verifiche di sicurezza dei componenti strutturali. Il quantitativo di armatura minima di progetto in zona tesa rispetta i requisiti imposti dalle NTC2018.


Caratteristiche geometriche IN02 - scato	lare				Soletta	Fondazione	Piedritti		
Base della sezione				b =	100.00	100.00	100.00	cm	
Altezza della sezione				h =	40.00	40.00	40.00	cm	
Copriferro min in asse barre longitudinali				c _{min} =	8.20	8.20	8.20	cm	
Altezza utile della sezione				d =	31.80	31.80	31.80	cm	
Armatura minima NTC2018 § 4.1.6.1.1									
Area minima in zona tesa $A_{s, min} = (0.0013 \text{ b d}) =$						4.13	4.13	cm ²	
Area minima in zona tesa		A _{s, r}	$_{min} = 0.26 x$	$(f_{ctm}/f_{yk}) \times b d =$	5.33	5.33	5.33	cm ²	
				A _{s, min} =	5.33	5.33	5.33	cm ²	
Armatura minima di progetto	n°/ml	ф							
Soletta superiore	5	20	mm	A _{sd} =		15.71		cm ²	ok
Fondazione	5	20	mm	A _{sd} =		15.71		cm ²	ok
Piedritti	5	20	mm	A _{sd} =		15.71		cm ²	ok

13.5.1 SOLETTA SUPERIORE – sezione centrale

Centrale	TABLE:	Element	Forces - Frame	s -		
	Frame	Station	OutputCase	CaseType	V2	М3
	Text	m	Text	Text	KN	KN-m
Mmax SLU/SLV	2	0.60	SLU_22	Combination	70	42
Mmin SLU/SLV	2	1.00	SLU_42	Combination	23	-19
V max SLU/SLV	2	1.00	SLU_19	Combination	130	-10
M max SLE	2	0.60	SLE_22	Combination	52	30
M min SLE	2	1.00	SLE_42	Combination	18	-13

Verifica di resistenza a pressoflessione (SLU, SLV, SLE)

Armatura sup 5Φ20 Armatura inf 5Φ20 Armatura a taglio non necessaria APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 144 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В 261

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A. NOME SEZIONE: IN02 SOLETTA S3

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione:

Condizioni Ambientali:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

A Sforzo Norm. costante

Moderat. aggressive

Assi x,y principali d'inerzia

Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C30/37 Resis. compr. di progetto fcd: 17.0

MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 32836.0 MPa Resis. media a trazione fctm: 2.90 MPa Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: 12.0 MPa

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:450.0MPaResist. caratt. rottura ftk:450.0MPaResist. snerv. di progetto fyd:391.3MPaResist. ultima di progetto ftd:391.3MPaDeform. ultima di progetto Epu:0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

1.00

0.50

MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Dominio: Poligonale Classe Calcestruzzo: C30/37

N°vertice: X [cm] Y [cm]

APPALTATORE: Consorzio Soci HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI TINERARIO NAPOLI – BARI							
PROGETTAZIONE: Mandataria	<u>Mandanti</u>	RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA					
ROCKSOIL S.P.A M-INGEGNERIA	NET ENGINEERING PINI GCF ELETTRI-FER	"""	10 10	INZIONAL	LE HINFINIA	- OKS	ANA
PROGETTO ESECUT Tombino circolare IN02 -	•••	COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ CL	DOCUMENTO IN0200 001	REV. B	FOGLIO 145 di 261

1	-50.0	0.0
2	-50.0	40.0
3	50.0	40.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.8	8.2	20
2	-41.8	31.8	20
3	41.8	31.8	20
4	41.8	8.2	20

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin. Numero della barra finale cui si riferisce la generazione N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	20
2	2	3	3	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

IN Storzo normale [kin] applicato nei Baric. (+ se di compressione)										
Mx		Momento flettent	e [kNm] intorno all'a	asse x princ. d'inerzi	a					
		con verso positiv	o se tale da compri	mere il lembo sup. d	lella sez.					
Му				asse y princ. d'inerzi						
				mere il lembo destro						
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y									
Vx	Vx Componente del Taglio [kN] parallela all'asse princ.d'inerzia									
N°Comb.	N	Mx	Му	Vy	Vx					
1	0.00	42.34	0.00	0.00	0.00					
ı					0.00					
2	0.00	-19.23	0.00	0.00	0.00					

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione Mx

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	0.00	30.00	0.00
2	0.00	-12.98	0.00

RISULTATI DEL CALCOLO

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** Mandataria Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO **FOGLIO**

COMMESSA

IF3A

LOTTO

02

CODIFICA

E ZZ CL

DOCUMENTO

IN0200 001

REV.

В

146 di

261

Sezione verificata per tutte le combinazioni assegnate

Tombino circolare IN02 - Relazione di calcolo

7.2 cm Copriferro netto minimo barre longitudinali: Interferro netto minimo barre longitudinali: 18.9 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

S = combinazione verificata / N = combin. non verificata Ver

Ν Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Му N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Mx Res

Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia My Res Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >= 1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	42.34	0.00	0.00	173.40	0.00	4.10	15.7(5.3)
2	S	0.00	-19.23	0.00	0.00	-173.40	0.00	9.02	15.7(5.3)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della harra corrispi a es max (sistema rif, X Y O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00083	0.299	-50.0	40.0	0.00011	-41.8	31.8	-0.00196	-41.8	8.2
2	0.00083	0.299	-50.0	0.0	0.00011	-41.8	8.2	-0.00196	41.8	31.8

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb b C.Rid. С x/d 0.000000000 0.000087709 0.299 -0.002675717 0.813 1 2 0.000000000 -0.000087709 0.000832659 0.299 0.813

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Ver

Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Sc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Xc max, Yc max Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ss min

Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Xs min, Ys min

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA REV. DOCUMENTO 147 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

Ac eff.			Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessu						
N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.01	-50.0	40.0	-67.8	-41.8	8.2	1000	15.7
2	S	0.87	50.0	0.0	-29.3	-41.8	31.8	1000	15.7

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

						13						
		La sezion	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm									
Ver.		Esito della	Esito della verifica									
e1		Massima	deformazione i	unitaria di t	razione n	el calcestruz	zo (trazione -) valutata in sezione	e fessurat	a			
e2		Minima de	eformazione un	itaria di tra	zione nel	calcestruzzo	(trazione -) valutata in sezione f	essurata				
k1		= 0.8 per	barre ad adere	enza miglio	rata [eq.(7.11)EC2]						
kt		= 0.4 pe	r comb. quasi p	ermanenti	/ = 0.6 pc	er comb.frequ	uenti [cfr. eq.(7.9)EC2]					
k2		= 0.5 per	flessione; =(e1	+ e2)/(2*e	1) per tra	zione eccent	rica [eq.(7.13)EC2]					
k3		= 3.400 C	oeff. in eq.(7.1	1) come da	annessi	nazionali	, -					
k4		= 0.425 C	oeff. in eq.(7.1	1) come da	annessi	nazionali						
Ø		Diametro	[mm] equivaler	nte delle ba	rre tese	comprese ne	ll'area efficace Ac eff [eq.(7.11)E	C2]				
Cf			[mm] netto ca					-				
e sm	ı - e cm	Differenza	a tra le deforma	zioni medi	e di accia	io e calcestri	uzzo [(7.8)EC2 e (C4.1.7)NTC]					
		Tra paren	tesi: valore mir	nimo = 0.6	Smax / E	s [(7.9)EC2	? e (C4.1.8)NTC]					
sr ma	ax	Massima	distanza tra le	fessure [mi	n]		, ,					
wk		Apertura t	fessure in mm	calcolata =	sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valo	re limite	ra parentesi			
Mx fe	ess.	Compone	ente momento d	li prima fes	surazion	e intorno all'a	sse X [kNm]		•			
My fe	ess.	Compone	ente momento d	li prima fes	surazion	e intorno all'a	sse Y [kNm]					
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess	
1	S	-0.00047	0.00000	0.500	20.0	72	0.00020 (0.00020)	461	0.094 (0.20)	86.85	0.00	
2	S	-0.00020										

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF **ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO COMMESSA CODIFICA DOCUMENTO REV. 148 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

Verifica di resistenza a taglio (SLU, SLV)

Elementi senza armature trasversali resistent					
		***			700
Resistenza a taglio (4.1.23 NTC 2018)	$V_{Rd,1} = (0.18 \cdot k \cdot (100 \cdot \mu))$	$b_1 \cdot f_{ck}$) ^{1/3} / γ_c +0.15 σ_{cp})· $b_w \cdot d = $	169	(kN)	>VRd,min
	V_{F}	$R_{d,2} = (v_{min} + 0.15\sigma_{cp}) \cdot b_w \cdot d = $	148	(kN)	
		$V_{Rd} = max (V_{Rd,1}, V_{Rd,2}) = $	169	(kN)	100
Resistenza a taglio precompresso (4.1.24 NTC	2018)	_			_
	$V_{Rd} = 0.7$	$7 \cdot b_{w} \cdot d \cdot (f_{ctd}^{2} + \sigma_{cp} + f_{ctd})^{1/2} = $	437	(kN)	
Taglio sollecitante		V _{Ed} =	130	(kN)	Verifica soddisfatta!
larghezza minima della sezione		b _w =	1000.00	(mm)	900
altezza totale della sezione		b =	400.00	(mm)	MAG
copriferro		C =	82.00	(mm)	vo
altezza utile della sezione		d =	318.00	(mm)	
resistenza caratteristica a compressione		$f_{ck} = $	30.71	(N/mmg)	900
resistenza di progetto a trazione cls		f _{ctd} =	2	(N/mmq)	rwa .
armatura longitudinale della sezione		A _{sI} =	1570.80	(mmq)	860
area di calcestruzzo		$A_c = b_w \cdot d =$	318000	(mmq)	no.
rapporto geometrico di armatura longitudinale		$\rho_1 = A_{sl}/A_c = $	0	< 0.02	200
sforzo normale agente		N _{ed} =	0.00	(N)	
tensione media di compressione nella sezione		$\sigma_{cp} = N_{Ed}/A_c =$	0		<=0,2fcd
tensione media di compressione nella sezione in	serita nel calcolo	$\sigma_{cp} = N_{Ed}/A_c = $	0		004
k calcolato		k =	2	< 2	900
k inserito nella formula		k =	2	***************************************	ON .
Tensione resistente tang. Max offerta dal solo cls		$V_{min} = 0.035 \cdot k^{3/2} f_{ck}^{1/2} = $	0	(N/mmq)	aco

APPALTATORE:

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI GCF ELETTRI-FER

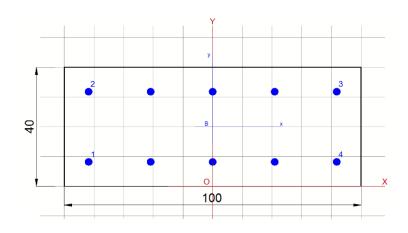
M-INGEGNERIA
PROGETTO ESECUTIVO

Tombino circolare IN02 - Relazione di calcolo

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO


 IF3A
 02
 E ZZ CL
 IN0200 001
 B
 149 di 261

13.5.1 SOLETTA SUPERIORE - sezione laterale

Laterale	TABLE: Element Forces - Frames -							
	Frame	rame Station OutputCase Ca		CaseType	V2	М3		
	Text	m	Text	Text	KN	KN-m		
M max SLU/SLV	2	0.10	SLU_22	Combination	12	63		
Mmin SLU/SLV	2	1.50	SLU_19	Combination	188	-89		
V max SLU/SLV	2	1.40	SLU_19	Combination	177	-71		
M max SLE	2	0.20	SLE_22	Combination	18	44		
M min SLE	2	1.40	SLE_19	Combination	132	-52		

Verifica di resistenza a pressoflessione (SLU, SLV, SLE)

Armatura sup 5Φ20 Armatura inf 5Φ20 Armatura a taglio Φ10/40x20

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A. NOME SEZIONE: IN02 SOLETTA S5

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione:

Condizioni Ambientali:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

A Sforzo Norm. costante

Moderat. aggressive

Assi x,y principali d'inerzia

Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C30/37

Resis. compr. di progetto fcd: 17.0 MPa Def.unit. max resistenza ec2: 0.0020

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER GCF** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO CODIFICA COMMESSA DOCUMENTO REV. 150 di Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В 261

Def.unit. ultima ecu:	0.0035	
Diagramma tensione-deformaz.:	Parabola-Rettangolo	
Modulo Elastico Normale Ec:	32836.0	MPa
Resis. media a trazione fctm:	2.90	MPa
Coeff. Omogen. S.L.E.:	15.00	
Sc limite S.L.E. comb. Rare:	12.0	MPa
Tipo:	B450C	
Resist. caratt. snervam. fyk:	450.0	MPa
Resist. caratt. rottura ftk:	450.0	MPa
Resist. snerv. di progetto fyd:	391.3	MPa
Resist. ultima di progetto ftd:	391.3	MPa
Deform. ultima di progetto Epu:	0.068	
Modulo Elastico Ef	2000000	daN/cm ²
Diagramma tensione-deformaz.:	Bilineare finito	
Coeff. Aderenza istantaneo ß1*ß2:	1.00	
Coeff. Aderenza differito ß1*ß2:	0.50	
Sf limite S.L.E. Comb. Rare:	337.50	MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del D Classe Calces	Poligonale C30/37	
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2 3	-50.0 50.0	40.0 40.0
4	50.0	0.0

DATI BARRE ISOLATE

ACCIAIO -

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.8	8.2	20
2	-41.8	31.8	20
3	41.8	31.8	20
4	41.8	8.2	20

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
N°Barre	Numero di barre generate equidistanti cui si riferisce la generazione

zione

Diametro in mm delle barre della generazione Ø

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	20
2	2	3	3	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO **FOGLIO** COMMESSA LOTTO CODIFICA DOCUMENTO REV. 151 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IF3A 02 IN0200 001 В 261

Mx		Momento flettente [kNm] intorno all'asse x princ. d'inerzia					
Му		con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.					
Vy Vx		Componente del Taglio [kN] parallela all'asse princ.d'inerzia y Componente del Taglio [kN] parallela all'asse princ.d'inerzia x					
N°Comb.	N	Mx	My	Vy	Vx		
1 2	0.00 0.00	62.77 -89.25	0.00 0.00	0.00 0.00	0.00 0.00		

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	0.00	44.01	0.00
2	0.00	-52.03	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.2 cm Interferro netto minimo barre longitudinali: 18.9 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	62.77	0.00	0.00	173.40	0.00	2.76	15.7(5.3)
2	S	0.00	-89.25	0.00	0.00	-173.40	0.00	1.94	15.7(5.3)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 152 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В 261

Ys ma	x	Ordinata in o	m della barra d	corrisp. a es m	ax (sistema rif.)	X,Y,O sez.)				
N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00083	0.299	-50.0	40.0	0.00011	-41.8	31.8	-0.00196	-41.8	8.2
2	0.00083	0.299	-50.0	0.0	0.00011	-41.8	8.2	-0.00196	41.8	31.8

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Coeff. di riduz. momenti per sola flessione in travi continue						
N°Comb	а	b	С	x/d	C.Rid.		
1	0.000000000	0.000087709	-0.002675717	0.299	0.813		
2	0.000000000	-0.000087709	0.000832659	0.299	0.813		

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

 Ver
 S = comb. verificata/ N = comb. non verificata

 Sc max
 Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]

 Xc max, Yc max
 Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

 Ss min
 Minima tensione (negativa se di trazione) nell'acciaio [MPa]

 Xs min, Ys min
 Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)

 Ac eff.
 Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

 As eff.
 Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff. S 2.95 50.0 40.0 -99.4 -41.8 8.2 1000 15.7 1

-117.6

-41.8

31.8

1000

15.7

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

50.0

S

3.49

Ver. e1 e2 k1 kt k2 k3 k4 Ø Cf e sm sr ma wk Mx fe My fe	ess.	Esito della Massima de = 0.8 per = 0.4 per = 0.5 per f = 3.400 C = 0.425 C Diametro Copriferro Differenza Tra paren Massima Apertura f Compone	a verifica deformazione u eformazione u barre ad adere r comb. quasi p flessione; =(e1 oeff. in eq.(7.1 [mm] equivaler [mm] netto cal a tra le deforma tesi: valore mir distanza tra le	unitaria di tra: enza migliori ermanenti + e2)/(2*e' 1) come da 1) come da 1) come da colato con zioni medici imo = 0.6 s fessure [mr calcolata = i prima fesi	razione nel rata [eq.(/ = 0.6 pe 1) per tra. annessi annessi rre tese criferimen e di accia Smax / E n] sr max*(surazione surazione surazione surazione surazione nel ratione nel max (surazione surazione nel ratione nel	el calcestruz calcestruz calcestruz calcestruz calcestruz canting calcestruz canting comp. Calcestrus comprese ne to alla barra compess calcestrus [(7.9)EC2 e_sm - e_cm e intorno all'a	uzzo [(7.8)EC2 e (C4.1.7)NTC] ? e (C4.1.8)NTC]) [(7.8)EC2 e (C4.1.7)NTC]. Valor sse X [kNm]	e fessurat essurata	a	ctm	
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1 2	S S	-0.00068 -0.00081	0.00000 0.00000	0.500 0.500	20.0 20.0	72 72	0.00030 (0.00030) 0.00035 (0.00035)	461 461	0.138 (0.20) 0.163 (0.20)	86.85 -86.85	0.00 0.00

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO COMMESSA CODIFICA DOCUMENTO REV. 153 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

Verifica di resistenza a taglio (SLU, SLV)

Elementi senza armature trasversali resistenti a					
		_			_
Resistenza a taglio (4.1.23 NTC 2018)	$V_{Rd,1} = (0.18 \cdot k \cdot (100 \cdot$	$\rho_1 \cdot f_{ck}$) ^{1/3} / γ_c +0.15 σ_{cp})·b _w ·d =	169	(kN)	>VRd,min
	V	$_{Rd,2} = (v_{min} + 0.15\sigma_{cp}) \cdot b_w \cdot d = $	148	(kN)	_
		$V_{Rd} = max (V_{Rd,1}, V_{Rd,2}) = $	169	(kN)	_
Resistenza a taglio precompresso (4.1.24 NTC 2	2018)				-
	$V_{Rd} = 0.$	$7 \cdot b_w \cdot d \cdot (\cdot f_{ctd}^2 + \sigma_{cp} + \cdot f_{ctd})^{1/2} = $	437	(kN)	
Taglio sollecitante		V _{Ed} =	177	(kN)	Verifica NON soddisfatta!
					м.
larghezza minima della sezione		$b_w =$	1000.00	(mm)	-
altezza totale della sezione		h =	400.00	(mm)	.a.
copriferro		c =	82.00	(mm)	~
altezza utile della sezione		d =	318.00	(mm)	
resistenza caratteristica a compressione		$f_{ck} = $	30.71	(N/mmq)	_
resistenza di progetto a trazione cls		$f_{ctd} = $	2	(N/mmq)	-
armatura longitudinale della sezione		A _{sl} =	1570.80	(mmq)	
area di calcestruzzo		$A_c = b_w \cdot d =$	318000	(mmq)	
rapporto geometrico di armatura longitudinale		$\rho_1 = A_{sl}/A_c =$	0	< 0.02	~
sforzo normale agente		N _{ed} =	0.00	(N)	m
tensione media di compressione nella sezione		$\sigma_{cp} = N_{Ed}/A_c =$	0	(N/mmq)	_<=0,2fcd
tensione media di compressione nella sezione inse	rita nel calcolo	$\sigma_{cp} = N_{Ed}/A_c = $	0		_
k calcolato		k =	2	< 2	
k inserito nella formula		k =	2		
Tensione resistente tang. Max offerta dal solo cls		$v_{min} = 0.035 \cdot k^{3/2} f_{ck}^{1/2} = $	0	(N/mmq)	w.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A NET ENGINEERING PINI GCF **ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 154 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 В 02

Elementi con armature trasversali resistenti a taglio § 4.1.2	2.1.3.2 NTC2018			
- Resistenza di calcolo a "taglio trazione" armatura	$V_{Rsd} = 0.9 \cdot d \cdot (A_{sw}/s) \cdot f_{yd} (ctg\alpha + ctg\theta) \cdot sen\alpha = 0.00 \cdot d \cdot (A_{sw}/s) \cdot f_{yd} (ctg\alpha + ctg\theta) \cdot sen\alpha$	274,654	(N)	
- Resistenza di calcolo a "taglio compressione"	$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c f_{cd}(ctg\alpha + ctg\theta) / (1 + ctg^2\theta) = 0.00 \cdot d \cdot b_w \cdot \alpha_c f_{cd}(ctg\alpha + ctg\theta) / (1 + ctg^2\theta) = 0.00 \cdot d \cdot b_w \cdot \alpha_c f_{cd}(ctg\alpha + ctg\theta) / (1 + ctg^2\theta) = 0.00 \cdot d \cdot b_w \cdot \alpha_c f_{cd}(ctg\alpha + ctg\theta) / (1 + ctg^2\theta) = 0.00 \cdot d \cdot b_w \cdot \alpha_c f_{cd}(ctg\alpha + ctg\theta) / (1 + ctg^2\theta) = 0.00 \cdot d \cdot b_w \cdot \alpha_c f_{cd}(ctg\alpha + ctg\theta) / (1 + ctg^2\theta) = 0.00 \cdot d \cdot b_w \cdot \alpha_c f_{cd}(ctg\alpha + ctg\theta) / (1 + ctg^2\theta) = 0.00 \cdot d \cdot b_w \cdot \alpha_c f_{cd}(ctg\alpha + ctg\theta) / (1 + ctg^2\theta) = 0.00 \cdot d \cdot b_w \cdot \alpha_c f_{cd}(ctg\alpha + ctg\theta) / (1 + ctg^2\theta) $	858,715	(N)	
Resistenza a taglio	$V_{Rd} = min(V_{Rsd}, V_{Rcd}) = \frac{1}{2}$	274,654	(N)	Verifica soddisfatta!
Taglio sollecitante	V _{Ed} =	177,000	(N)	
larghezza minima della sezione	b _w =	1,000	(mm)	
altezza totale della sezione	h =	400	(mm)	
copriferro	c =	82	(mm)	
altezza utile della sezione	d =	318	(mm)	
resistenza caratteristica calcestruzzo	$f_{ck} =$	30.71	(N/mmq)	
resistenza caratteristica calcestruzzo	$f_{cd} =$	17.40	(N/mmq)	
resistenza a compressione ridotta del cls d'anima	$f_{cd} = 0.5 \cdot f_{cd} =$	8.70	(N/mmq)	
coefficiente maggiorativo	α_{c} =	1	-	(Nassente)
angolo di inclinazione del puntone di cls rispetto all'asse del	la trave $\vartheta =$	21.8	(°)	(compreso tra 21.8° e 45°)
	ctag ϑ =	2.50	ok!	(compreso tra 1 e 2.5)
	$sen^2 \vartheta = A_{sw} \cdot f_{yd} / (b_w \cdot s \cdot \alpha_c \cdot f_{cd}) =$	0.044	_	
	ctag ϑ =	4.655	No!!!	
angolo di inclinazione del puntone di cls di calcolo	ϑ =	12.12	(°)	
	·		~	
diametro della staffa	$\phi_{w} =$	10	(mm)	
numero braccia	n =	5	-	
Area dell'armatura trasversale	$A_{sw} =$	393	(mmq)	
interasse tra due armature trasversali consecutive (passo)	s =	400	(mm)	
Area dell'armatura trasversale di progetto	$A_{sw,tot} =$	9.82	(cmq/m)	
tensione di progetto acciaio	$f_{yd} =$	391.0	(N/mmq)	
angolo di inclinazione dell'armatura trasversale rispetto all'as	sse della tı $\alpha =$	90	(°)	

APPALTATORE:

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI GCF ELETTRI-FER

M-INGEGNERIA

PROGETTO ESECUTIVO

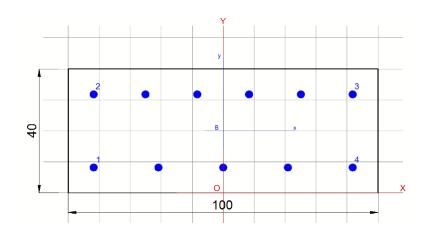
Tombino circolare IN02 - Relazione di calcolo

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF3A
 02
 E ZZ CL
 IN0200 001
 B
 155 di 261


13.5.1 FONDAZIONE- sezione centrale

Centrale	TABLE: Element Forces - Frames -						
	Frame Station		OutputCase	CaseType	Р	V2	М3
	Text	m	Text	Text	KN	KN	KN-m
Mmax SLU/SLV	6	0.13333	SLU_22	Combination	-164	152	48
Mmin SLU/SLV	12	0.13333	SLU_19	Combination	105	103	-76
V max SLU/SLV	8	0.13333	SLU_22	Combination	-164	159	6
M max SLE	6	0.13333	SLE_22	Combination	-120	114	34
M min SLE	12	0.13333	SLE_19	Combination	79	77	-56

Verifica di resistenza a pressoflessione (SLU, SLV, SLE)

Armatura sup 6Φ20 Armatura inf 5Φ20

Armatura a taglio non necessaria

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A. NOME SEZIONE: IN02_FONDAZIONE S3

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione:
Condizioni Ambientali:
Riferimento Sforzi assegnati:
Riferimento alla sismicità:
A Sforzo Norm. costante
Moderat. aggressive
Assi x,y principali d'inerzia
Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C30/37

Resis. compr. di progetto fcd: 17.0 MPa
Def.unit. max resistenza ec2: 0.0020
Def.unit. ultima ecu: 0.0035
Diagramma tensione-deformaz.: Parabola-Rettangolo

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 156 di Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В 261

	Modulo Elastico Normale Ec: Resis. media a trazione fctm: Coeff. Omogen. S.L.E.: Sc limite S.L.E. comb. Rare:	32836.0 2.90 15.00 12.0	MPa MPa MPa
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	337.50	MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del D Classe Calces		Poligonale C30/37
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	40.0
3	50.0	40.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.8	8.2	20
2	-41.8	31.8	20
3	41.8	31.8	20
4	41.8	8.2	20

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	20
2	2	3	4	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO **FOGLIO** COMMESSA LOTTO CODIFICA DOCUMENTO REV. 157 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IF3A 02 IN0200 001 В 261

Vy Vx	con verso positivo se tale da comprimere il lembo destro della sez. Componente del Taglio [kN] parallela all'asse princ.d'inerzia y Componente del Taglio [kN] parallela all'asse princ.d'inerzia x					
N°Comb.	N	Mx	My	Vy	Vx	
1 2	0.00	47.59 -75.71	0.00 0.00	0.00 0.00	0.00	

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	0.00	33.98	0.00
2	0.00	-55.84	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.2 cm Interferro netto minimo barre longitudinali: 14.7 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

S = combinazione verificata / N = combin. non verificata Ver

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Ν

Mx Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Му N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Mx Res My Res

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC] As Tesa

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	47.59	0.00	0.00	173.26	0.00	3.64	15.7(5.3)
2	S	0.00	-75.71	0.00	0.00	-205.61	0.00	2.72	18.8(5.3)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform, unit, massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb ec max x/d Xc max Yc max es min Xs min Ys min es max Xs max Ys max APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 158 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IF3A 02 IN0200 001 В 261

1	0.00083	0.297	-50.0	40.0	0.00011	-41.8	31.8	-0.00196	-41.8	8.2
2	0.00093	0.321	-50.0	0.0	0.00018	-41.8	8.2	-0.00196	41.8	31.8

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000087550	-0.002674409	0.297	0.812
2	0.000000000	-0.000090656	0.000926355	0.321	0.842

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Ss min Minima tensione (negativa se di trazione) nell'acciaio [MPa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)
Ac eff.
As eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max \	∕c max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.27	-50.0	40.0	-76.9	-41.8	8.2	1000	15.7
2	S	3.48	50.0	0.0	-106.2	8.4	31.8	1000	18.8

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

0.00000

0.00000

S

S

1

-0.00053

-0.00074

0.500 20.0

20.0

0.500

		La sezione vi	iene assunta	sempre fes	surata a	inche nel casc	o in cui la trazione minima del calcestruzzo sia inf	eriore a f	ctm	
Ver.		Esito della ve	erifica							
e1		Massima def	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata							
e2		Minima defor	mazione unita	aria di trazi	one nel	calcestruzzo (trazione -) valutata in sezione fessurata			
k1		= 0.8 per ba	rre ad aderen	za migliora	ıta [eq.(7	'.11)EC2] `	,			
kt							nti [cfr. eq.(7.9)EC2]			
k2							a [eq.(7.13)EC2]			
k3			ff. in eq.(7.11)	, , ,			[-4.()]			
k4			,							
Ø			= 0.425 Coeff. in eq.(7.11) come da annessi nazionali Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]							
Cf						o alla barra pi	, .			
	n - e cm						zo [(7.8)EC2 e (C4.1.7)NTC]			
							e (C4.1.8)NTC]			
sr m	nax		tanza tra le fe			[(,202	, (0)			
wk	iu.					sm - e cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parent	łesi		
Mx f	- -					intorno all'ass		,001		
My f						intorno all'ass				
iviy	C33.	Componente	inomento un	Jilila 1655i	ıl azıorı c	ilitorilo ali ass	oc i [kiviii]			
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess	

72

72

0.00023 (0.00023)

0.00032 (0.00032)

My fess

87.25

-88.33

0.00

0.00

0.106 (0.20)

0.135 (0.20)

461

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF **ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO COMMESSA CODIFICA DOCUMENTO REV. 159 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

Verifica di resistenza a taglio (SLU, SLV)

Elementi senza armature trasversali resistenti	a taglio § 4.1.2.3.5.1 N	ГС2018			
				4.50	
Resistenza a taglio (4.1.23 NTC 2018)	$V_{Rd,1} = (0.18 \cdot k \cdot (100 \cdot \rho_1))$	$_{1}\cdot f_{ck})^{1/3}/\gamma_{c}+0.15\sigma_{cp})\cdot b_{w}\cdot d=$	169	(kN)	>VRd,min
	V_{Rd}	$I_{1,2} = (v_{min} + 0.15\sigma_{cp}) \cdot b_w \cdot d = $	148	(kN)	<u>.</u>
	V	$V_{Rd} = max (V_{Rd,1}, V_{Rd,2}) = $	169	(kN)	oo
Resistenza a taglio precompresso (4.1.24 NTC	2018)				
	$V_{Rd} = 0.7$	$b_{w}\cdot d \cdot (f_{ctd}^{2} + \sigma_{cp} + f_{ctd})^{1/2} = $	437	(kN)	
Taglio sollecitante		$V_{Ed} = $	159	(kN)	Verifica soddisfatta!
larghezza minima della sezione		b _w =	1000.00	(mm)	
altezza totale della sezione		h =	400.00	(mm)	<u>.</u>
copriferro		c =	82.00	(mm)	
altezza utile della sezione		d =	318.00	(mm)	m.
resistenza caratteristica a compressione		f _{ck} =	30.71	(N/mmq)	_
resistenza di progetto a trazione cls		f _{ctd} =	2	(N/mmq)	00
armatura longitudinale della sezione		A _{sI} =	1570.80	(mmq)	
area di calcestruzzo		$A_c = b_w \cdot d =$	318000	(mmq)	
rapporto geometrico di armatura longitudinale		$\rho_1 = A_{sl}/A_c =$	0.00	< 0.02	_
sforzo normale agente		N _{ed} =	0.00	(N)	_
tensione media di compressione nella sezione		$\sigma_{cp} = N_{Ed}/A_c =$	0	(N/mmq)	<=0,2fcd
tensione media di compressione nella sezione ins	erita nel calcolo	$\sigma_{cp} = N_{Ed}/A_c =$	0		_
k calcolato		k =	2	< 2	-
k inserito nella formula		k =	2		-
Tensione resistente tang. Max offerta dal solo cls		$V_{min} = 0.035 \cdot k^{3/2} f_{ck}^{1/2} = $	0	(N/mmq)	.

APPALTATORE:

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI GCF ELETTRI-FER

M-INGEGNERIA

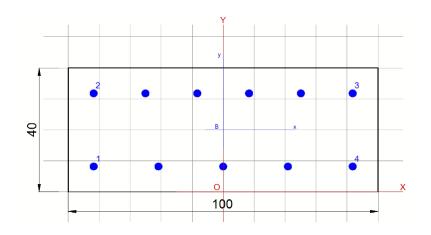
PROGETTO ESECUTIVO

Tombino circolare IN02 - Relazione di calcolo

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
1F3A 02 E ZZ CL IN0200 001 B 160 di
261


13.5.1 FONDAZIONE- sezione laterale

Laterale	TABLE:	TABLE: Element Forces - Frames -						
	Frame	Frame Station OutputCase CaseType P V2 M3						
	Text	m	Text	Text	KN	KN	KN-m	
Mmax SLU/SLV	4	0.1	SLU_22	Combination	-164	110	89	
Mmin SLU/SLV	15	0.03333	SLU_19	Combination	105	-38	-87	
V max SLU/SLV	5	0.06667	SLU_22	Combination	-164	135	77	
M max SLE	5	0.06667	SLE_22	Combination	-120	101	56	
M min SLE	14	0.06667	SLE_19	Combination	79	17	-64	

Verifica di resistenza a pressoflessione (SLU, SLV, SLE)

Armatura sup $6\Phi20$ Armatura inf $5\Phi20$

Armatura a taglio non necessaria

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A. NOME SEZIONE: IN02_FONDAZIONE S5

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione:
Condizioni Ambientali:
Riferimento Sforzi assegnati:
Riferimento alla sismicità:
A Sforzo Norm. costante
Moderat. aggressive
Assi x,y principali d'inerzia
Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C30/37

Resis. compr. di progetto fcd: 17.0 MPa
Def.unit. max resistenza ec2: 0.0020
Def.unit. ultima ecu: 0.0035
Diagramma tensione-deformaz.: Parabola-Rettangolo

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 161 di Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В 261

337.50 MPa

Modulo Elastico Normale Ec: Resis. media a trazione fctm: Coeff. Omogen. S.L.E.: Sc limite S.L.E. comb. Rare:	32836.0 2.90 15.00 12.0	MPa MPa MPa
Tipo:	B450C	
Tipo:		
Resist. caratt. snervam. fyk:	450.0	MPa
Resist. caratt. rottura ftk:	450.0	MPa
Resist. snerv. di progetto fyd:	391.3	MPa
Resist. ultima di progetto ftd:	391.3	MPa
Deform. ultima di progetto Epu:	0.068	
Modulo Elastico Ef	2000000	daN/cm ²
Diagramma tensione-deformaz.:	Bilineare finito	
Coeff. Aderenza istantaneo ß1*ß2:	1.00	
Coeff. Aderenza differito ß1*ß2:	0.50	

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del De Classe Calces		Poligonale C30/37
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	40.0
3	50.0	40.0
4	50.0	0.0

DATI BARRE ISOLATE

ACCIAIO -

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.8	8.2	20
2	-41.8	31.8	20
3	41.8	31.8	20
4	41.8	8.2	20

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

Sf limite S.L.E. Comb. Rare:

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	20
2	2	3	4	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO **FOGLIO** COMMESSA LOTTO CODIFICA DOCUMENTO REV. 162 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IF3A 02 IN0200 001 В 261

Vy Vx		con verso positivo se tale da comprimere il lembo destro della sez. Componente del Taglio [kN] parallela all'asse princ.d'inerzia y Componente del Taglio [kN] parallela all'asse princ.d'inerzia x					
N°Comb.	N	Mx	My	Vy	Vx		
1	0.00	89.45	0.00	0.00	0.00		
2	0.00	-87.35	0.00	0.00	0.00		

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Му Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	0.00	55.79	0.00
2	0.00	-64.41	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.2 cm Interferro netto minimo barre longitudinali: 14.7 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

S = combinazione verificata / N = combin. non verificata Ver

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Ν

Mx Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Му N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Mx Res

My Res Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >= 1.000

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC] As Tesa

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	89.45	0.00	0.00	173.26	0.00	1.94	15.7(5.3)
2	S	0.00	-87.35	0.00	0.00	-205.61	0.00	2.35	18.8(5.3)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform, unit, massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb ec max x/d Xc max Yc max es min Xs min Ys min es max Xs max Ys max

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 163 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В 261

1	0.00083	0.297	-50.0	40.0	0.00011	-41.8	31.8	-0.00196	-41.8	8.2
2	0.00093	0.321	-50.0	0.0	0.00018	-41.8	8.2	-0.00196	41.8	31.8

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000087550	-0.002674409	0.297	0.812
2	0.000000000	-0.000090656	0.000926355	0.321	0.842

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Ss min Minima tensione (negativa se di trazione) nell'acciaio [MPa]

Xs min, Ys min

Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)

Ac eff.

As eff.

Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max \	∕c max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	3.72	-50.0	40.0	-126.3	-41.8	8.2	1000	15.7
2	S	4.02	50.0	0.0	-122.5	-41.8	31.8	1000	18.8

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

e1	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata							
e2	Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata							
k1	= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]							
kt	= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]							
k2	= 0.5 per flessione; = $(e1 + e2)/(2*e1)$ per trazione eccentrica [eq.(7.13)EC2]							
k3	= 3.400 Coeff. in eq.(7.11) come da annessi nazionali							
k4	= 0.425 Coeff. in eq.(7.11) come da annessi nazionali							
Ø	Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]							
Cf	Copriferro [mm] netto calcolato con riferimento alla barra più tesa							
e sm - e cm	Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]							
	Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]							
sr max	Massima distanza tra le fessure [mm]							
wk	Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi							
Mx fess.	Componente momento di prima fessurazione intorno all'asse X [kNm]							
My fess.	Componente momento di prima fessurazione intorno all'asse Y [kNm]							
\ /	ad an							

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S	-0.00087	0.00000	0.500	20.0	72	0.00038 (0.00038)	461	0.175 (0.20)	87.25	0.00
2	S	-0.00085	0.00000	0.500	20.0	72	0.00037 (0.00037)	425	0.156 (0.20)	-88.33	0.00

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF **ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO COMMESSA CODIFICA DOCUMENTO REV. 164 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

Verifica di resistenza a taglio (SLU, SLV)

Elementi senza armature trasversali resistenti a					
					_
Resistenza a taglio (4.1.23 NTC 2018)	$V_{Rd,1} = (0.18 \cdot k \cdot (100 \cdot \mu))$	$o_1 \cdot f_{ck}$) ^{1/3} / γ_c +0.15 σ_{cp})·b _w ·d =	169	(kN)	00
	V _F	$R_{d,2} = (v_{min} + 0.15\sigma_{cp}) \cdot b_w \cdot d = $	148	(kN)	_
		$V_{Rd} = max (V_{Rd,1}, V_{Rd,2}) = $	169	(kN)	02
Resistenza a taglio precompresso (4.1.24 NTC 2	018)				
	$V_{Rd} = 0.7$	$7 \cdot b_{w} \cdot d \cdot (f_{ctd}^{2} + \sigma_{cp} + f_{ctd})^{1/2} = $	437	(kN)	w
					··
Taglio sollecitante		$V_{Ed} =$	135	(kN)	Verifica soddisfatta!
					xx
larghezza minima della sezione		$b_w = $	1000.00	(mm)	w
altezza totale della sezione		h =	400.00	(mm)	w
copriferro		c =	82.00	(mm)	w.
altezza utile della sezione		d =	318.00	(mm)	on.
resistenza caratteristica a compressione		$f_{ck} = $	30.71	(N/mmq)	•
resistenza di progetto a trazione cls		$f_{ctd} =$	2	(N/mmq)	00
armatura longitudinale della sezione		$A_{sl} = $	1570.80	(mmq)	∞
area di calcestruzzo		$A_c = b_w \cdot d = $	318000	(mmq)	m
rapporto geometrico di armatura longitudinale		$\rho_1 = A_{sl}/A_c =$	0	< 0.02	··
sforzo normale agente		$N_{ed} = $	0.00	(N)	oo
tensione media di compressione nella sezione		$\sigma_{cp} = N_{Ed}/A_c =$	0	(N/mmq)	_<=0,2fcd
tensione media di compressione nella sezione inse	rita nel calcolo	$\sigma_{cp} = N_{Ed}/A_c = $	0		00
k calcolato		k =	2	< 2	-
k inserito nella formula		k =	2		w
Tensione resistente tang. Max offerta dal solo cls		$V_{min} = 0.035 \cdot k^{3/2} f_{ck}^{1/2} = $	0	(N/mmq)	***

APPALTATORE:

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI GCF ELETTRI-FER

M-INGEGNERIA

PROGETTO ESECUTIVO

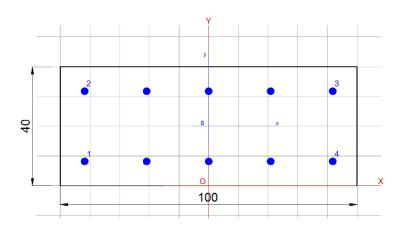
Tombino circolare IN02 - Relazione di calcolo

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

COMMESSA IF3A LOTTO 02

CODIFICA E ZZ CL DOCUMENTO IN0200 001 REV. B FOGLIO 165 di 261


13.5.1 PIEDRITTI - sezione di testa

Testa	TABLE:	Element	Forces - Fran	nes -			
	Frame	Station	OutputCase	CaseType	Р	V2	М3
	Text	m	Text	Text	KN	KN	KN-m
M max SLU/SLV	3	1.50	SLU_19	Combination	-204	128	96
Mmin SLU/SLV	1	1.50	SLU_22	Combination	-4	64	-57
N max SLU/SLV	1	1.50	SLU_14	Combination	-2	-32	-5
N min SLU/SLV	3	1.50	SLU_19	Combination	-204	128	96
V max SLU/SLV	3	1.4	SLU_18	Combination	-188	132	70
M max SLE	3	1.40	SLE_19	Combination	-153	93	61
M min SLE	1	1.40	SLE_22	Combination	-3	50	-37
N max SLE	1	1.40	SLE_14	Combination	-2	-17	-6
N min SLE	3	1.40	SLE_19	Combination	-153	93	61

Verifica di resistenza a pressoflessione (SLU, SLV, SLE)

Armatura int (sup) $5\Phi20$ Armatura est (inf) $5\Phi20$

Armatura a taglio non necessaria

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A. NOME SEZIONE: IN02_PIEDRITTO S5-TESTA

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione:

Condizioni Ambientali:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

A Sforzo Norm. costante

Moderat. aggressive

Assi x,y principali d'inerzia

Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER GCF** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 166 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IF3A IN0200 001 02 В 261

041.0507511770	01	000/07	
CALCESTRUZZO -	Classe:	C30/37	
	Resis. compr. di progetto fcd:	17.0	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	32836.0	MPa
	Resis. media a trazione fctm:	2.90	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	12.0	MPa
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	337.50	MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Dominio: Classe Calcestruzzo:					
X [cm]	Y [cm]				
-50.0 -50.0 50.0	0.0 40.0 40.0 0.0				
	truzzo: X [cm] -50.0 -50.0				

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.8	8.2	20
2	-41.8	31.8	20
3	41.8	31.8	20
4	41.8	8.2	20

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	20
2	2	3	3	20

APPALTATORE:

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A NET ENGINEERING PINI GCF ELETTRI-FER

M-INGEGNERIA

PROGETTO ESECUTIVO

Tombino circolare IN02 - Relazione di calcolo

COMMESSA LOTTO CODIFICA
IF3A 02 E ZZ CL

DOCUMENTO IN0**2**00 001 REV. FOGLIO B 167 di 261

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	Му	Vy	Vx
1	204.00	95.88	0.00	0.00	0.00
2	3.82	-57.22	0.00	0.00	0.00
3	1.89	-4.66	0.00	0.00	0.00
4	204.00	95.88	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	152.76	61.43	0.00
2	3.47	-36.63	0.00
3	1.92	-6.50	0.00
4	152.76	61.43	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.2 cm Interferro netto minimo barre longitudinali: 18.9 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	204.00	95.88	0.00	203.90	202.51	0.00	2.11	15.7(6.7)
2	S	3.82	-57.22	0.00	4.12	-174.04	0.00	3.04	15.7(6.7)
3	S	1.89	-4.66	0.00	1.60	-173.68	0.00	37.27	15.7(6.7)
4	S	204.00	95.88	0.00	203.90	202.51	0.00	2.11	15.7(6.7)

APPALTATORE: Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER**

M-INGEGNERIA

PROGETTO ESECUTIVO Tombino circolare IN02 - Relazione di calcolo

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

DOCUMENTO

IN0200 001

CODIFICA

E ZZ CL

FOGLIO

168 di

261

REV.

В

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

COMMESSA

IF3A

LOTTO

02

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00099	0.335	-50.0	40.0	0.00023	-41.8	31.8	-0.00196	-41.8	8.2
2	0.00084	0.299	-50.0	0.0	0.00012	-41.8	8.2	-0.00196	41.8	31.8
3	0.00083	0.299	-50.0	0.0	0.00011	-41.8	8.2	-0.00196	41.8	31.8
4	0.00099	0.335	-50.0	40.0	0.00023	-41.8	31.8	-0.00196	-41.8	8.2

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
O D:4	Coeff all sides assessment assessed floreigns in track assettance

C.RIa.	Соеп. с	ii riauz.	momenti	per	sola	tiessione	ın travı	continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000000000	0.000092554	-0.002715445	0.335	0.859
2	0.000000000	-0.000087816	0.000836039	0.299	0.814
3	0.000000000	-0.000087755	0.000834108	0.299	0.814
4	0.000000000	0.000092554	-0.002715445	0.335	0.859

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Ss min Minima tensione (negativa se di trazione) nell'acciaio [MPa]

Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S		-50.0	40.0		-41.8		900	15.7
2	S	2.46	50.0	0.0	-81.6	20.9	31.8	1000	15.7
3	S	0.44	50.0	0.0	-14.0	20.9	31.8	1000	15.7
4	S	4.04	-50.0	40.0	-89.6	-41.8	8.2	900	15.7

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Esito della verifica Ver.

Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2

= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] k1

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

= 3.400 Coeff. in eq.(7.11) come da annessi nazionali

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 169 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В 261

k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm]
My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00064	0.00000	0.500	20.0	72	0.00027 (0.00027)	440	0.118 (0.20)	104.20	0.00
2	Š	-0.00056	0.00000	0.500		72	0.00024 (0.00024)	461	0.113 (0.20)	-87.40	0.00
3	S	-0.00010	0.00000	0.500	20.0	72	0.00004 (0.00004)	461	0.019 (0.20)	-88.60	0.00
4	S	-0.00064	0.00000	0.500	20.0	72	0.00027 (0.00027)	440	0.118 (0.20)	104.20	0.00

Verifica di resistenza a taglio (SLU, SLV)

Tensione resistente tang. Max offerta dal solo cls

Elementi senza armature trasversali resistenti a	taglio § 4.1.2.3.5.1 NTC2	018			
Resistenza a taglio (4.1.23 NTC 2018)	$V_{Rd,1} = (0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck}))$	$^{1/3}/\gamma_c$ +0.15 σ_{cp})·b _w ·d =	169	(kN)	>VRd,min
	$V_{Rd,2} =$	$(v_{min}+0.15\sigma_{cp})\cdot b_w\cdot d =$	148	(kN)	
	V _{Rd} =	= max (V _{Rd,1} ,V _{Rd,2}) =	169	(kN)	394
Resistenza a taglio precompresso (4.1.24 NTC 2	018)				_
	$V_{Rd} = 0.7 \cdot b_w \cdot c$	$1 \cdot (\cdot f_{ctd}^2 + \sigma_{cp} + \cdot f_{ctd})^{1/2} = $	437	(kN)	~~
		1935			504
Taglio sollecitante		V _{Ed} =	132	(kN)	Verifica soddisfatta!
		1000			38
larghezza minima della sezione		$b_w = $	1000.00	(mm)	
altezza totale della sezione		h =	400.00	(mm)	
copriferro		c =	82.00	(mm)	100
altezza utile della sezione		d =	318.00	(mm)	
resistenza caratteristica a compressione		f _{ck} =	30.71	(N/mmq)	
resistenza di progetto a trazione cls		f _{ctd} =	2	(N/mmq)	-
armatura longitudinale della sezione		A _{sI} =	1570.80	(mmq)	•
area di calcestruzzo		$A_c = b_w \cdot d =$	318000	(mmq)	60
rapporto geometrico di armatura longitudinale		$\rho_1 = A_{sl}/A_c =$	0.005	< 0.02	
sforzo normale agente		N _{ed} =	0.00	(N)	••
tensione media di compressione nella sezione		$\sigma_{cp} = N_{Ed}/A_c =$	0	(N/mmq)	<=0,2fcd
tensione media di compressione nella sezione inser	ita nel calcolo	$\sigma_{cp} = N_{Ed}/A_c =$	0	***************************************	904
k calcolato		k =	2	< 2	
k inserito nella formula		k =	2		200

 $v_{min} = 0.035 \cdot k^{3/2} f_{ck}^{1/2} =$

(N/mmq)

APPALTATORE:

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI GCF ELETTRI-FER

M-INGEGNERIA

PROGETTO ESECUTIVO

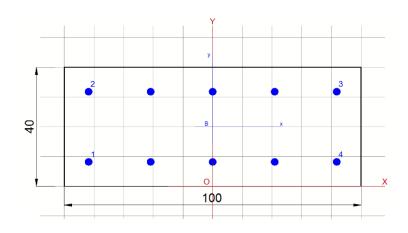
Tombino circolare IN02 - Relazione di calcolo

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

COMMESSA LOTTO
IF3A 02

CODIFICA E ZZ CL DOCUMENTO IN0200 001 REV. B FOGLIO 170 di 261


13.5.1 PIEDRITTI - sezione di piede

Piede	TABLE: Element Forces - Frames -							
	Frame	Station	OutputCase	CaseType	Р	V2	М3	
	Text	m	Text	Text	KN	KN	KN-m	
Mmax SLU/SLV	1	0.10	SLU_22	Combination	-23	144	86	
Mmin SLU/SLV	3	0.10	SLU_19	Combination	-223	111	-73	
N max SLU/SLV	1	0.10	SLV_02	Combination	-15	59	24	
N min SLU/SLV	3	0.10	SLU_19	Combination	-223	111	-73	
V max SLU/SLV	1	0.2	SLU_22	Combination	-21	137	72	
M max SLE	1	0.20	SLE_22	Combination	-15	101	52	
M min SLE	3	0.20	SLE_19	Combination	-165	84	-45	
N max SLE	1	0.20	SLE_14	Combination	-14	46	9	
N min SLE	3	0.20	SLE_19	Combination	-165	84	-45	

Verifica di resistenza a pressoflessione (SLU, SLV, SLE)

Armatura int (sup) $5\Phi20$ Armatura est (inf) $5\Phi20$

Armatura a taglio non necessaria

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A. NOME SEZIONE: IN02_PIEDRITTO S5-PIEDE

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione:
Condizioni Ambientali:
Riferimento Sforzi assegnati:
Riferimento alla sismicità:
A Sforzo Norm. costante
Moderat. aggressive
Assi x,y principali d'inerzia
Comb. non sismiche

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 171 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В 261

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

C30/37 CALCESTRUZZO -Classe: Resis. compr. di progetto fcd: 17.0 MPa 0.0020 Def.unit. max resistenza ec2: Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 32836.0 MPa Resis. media a trazione fctm: 2.90 MPa Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: 12.0 MPa ACCIAIO -B450C Tipo: Resist. caratt. snervam. fyk: 450.0 MPa Resist. caratt. rottura ftk: 450.0 MPa Resist. snerv. di progetto fyd: 391.3 MPa Resist. ultima di progetto ftd: 391.3 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef 2000000 daN/cm² Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces		Poligonale C30/37
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	40.0
3	50.0	40.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.8	8.2	20
2	-41.8	31.8	20
3	41.8	31.8	20
4	41.8	8.2	20

DATI GENERAZIONI LINEARI DI BARRE

 N°Gen.
 Numero assegnato alla singola generazione lineare di barre

 N°Barra Ini.
 Numero della barra iniziale cui si riferisce la generazione

 N°Barra Fin.
 Numero della barra finale cui si riferisce la generazione

 N°Barra Fin.
 Numero di barra generata aguidistanti qui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	20
2	2	3	3	20

APPALTATORE: Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

Mandataria Mandanti

ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER**

M-INGEGNERIA

PROGETTO ESECUTIVO Tombino circolare IN02 - Relazione di calcolo

PROGETTAZIONE:

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV.

IN0200 001

E ZZ CL

IF3A

02

172 di

261

В

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia Mχ con verso positivo se tale da comprimere il lembo sup. della sez. Му Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez. Componente del Taglio [kN] parallela all'asse princ.d'inerzia y ۷y Componente del Taglio [kN] parallela all'asse princ.d'inerzia x ٧x

N°Comb.	N	Mx	Му	Vy	Vx
1	22.72	85.70	0.00	0.00	0.00
2	222.90	-72.67	0.00	0.00	0.00
3	15.40	23.93	0.00	0.00	0.00
4	222.90	-72.67	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Му Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	15.47	52.33	0.00
2	164.76	-45.34	0.00
3	13.92	9.35	0.00
4	164.76	-45.34	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.2 cm Interferro netto minimo barre longitudinali: 18.9 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

Ν Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Μv N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) Mx Res

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia My Res Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic. Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	22.72	85.70	0.00	22.93	176.77	0.00	2.06	15.7(6.7)
2	S	222.90	-72.67	0.00	223.16	-205.21	0.00	2.82	15.7(6.7)
3	S	15.40	23.93	0.00	15.42	175.68	0.00	7.34	15.7(6.7)
4	S	222.90	-72.67	0.00	223.16	-205.21	0.00	2.82	15.7(6.7)

APPALTATORE: Consorzio Soci HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE:

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA

<u>Mandanti</u>

<u>Mandataria</u>

PROGETTO ESECUTIVO

Tombino circolare IN02 - Relazione di calcolo

FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 173 di IF3A 02 E ZZ CL IN0200 001 В 261

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00085	0.303	-50.0	40.0	0.00013	-41.8	31.8	-0.00196	-41.8	8.2
2	0.00100	0.339	-50.0	0.0	0.00024	-41.8	8.2	-0.00196	41.8	31.8
3	0.00084	0.302	-50.0	40.0	0.00012	-41.8	31.8	-0.00196	-41.8	8.2
4	0.00100	0.339	-50.0	0.0	0.00024	-41.8	8.2	-0.00196	41.8	31.8

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C D:4	Coeff di ridua momenti non colo floccione in trovi continuo

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000000000	0.000088271	-0.002680325	0.303	0.819
2	0.000000000	-0.000093010	0.001001216	0.339	0.863
3	0.000000000	0.000088089	-0.002678830	0.302	0.817
4	0.000000000	-0.000093010	0.001001216	0.339	0.863

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Ver

Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ss min

Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Xs min, Ys min Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	3.51	-50.0	40.0	-113.1	-41.8	8.2	1000	15.7
2	S	2.91	50.0	0.0	-50.8	-20.9	31.8	850	15.7
3	S	0.62	-50.0	40.0	-16.6	-41.8	8.2	950	15.7
4	S	2 91	50.0	0.0	-50.8	-20.9	31.8	850	15.7

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima de	el calcestruzzo sia inferiore a fctm
---	--------------------------------------

Ver. Esito della verifica

Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e1 e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] k1

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] k2

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 174 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IF3A 02 IN0200 001 В 261

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00078	0.00000	0.500	20.0	72	0.00034 (0.00034)	461	0.157 (0.20)	88.60	0.00
2	S	-0.00038	0.00000	0.500	20.0	72	0.00015 (0.00015)	429	0.065 (0.20)	-114.79	0.00
3	S	-0.00012	0.00000	0.500	20.0	72	0.00005 (0.00005)	450	0.022 (0.20)	96.47	0.00
4	S	-0.00038	0.00000	0.500	20.0	72	0.00015 (0.00015)	429	0.065 (0.20)	-114.79	0.00

Verifica di resistenza a taglio (SLU, SLV)

k inserito nella formula

Tensione resistente tang. Max offerta dal solo cls

Elementi senza armature trasversali resistenti a taglio § 4.1	.2.3.5.1 NTC2018			
Resistenza a taglio (4.1.23 NTC 2018) V _{Rd.1} = (0.1	$18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \sigma_{cp}) \cdot b_w \cdot d =$	169	(kN)	~ >VRd,min
ind, i	$V_{Rd,2} = (v_{min} + 0.15\sigma_{cp}) \cdot b_w \cdot d = $	148	(kN)	980
	$V_{Rd} = max (V_{Rd,1}, V_{Rd,2}) =$	169	(kN)	
Resistenza a taglio precompresso (4.1.24 NTC 2018)	(900
,	$V_{Rd} = 0.7 \cdot b_{w} \cdot d \cdot (f_{ctd}^2 + \sigma_{cp} + f_{ctd})^{1/2} = 0.00$	437	(kN)	
Taglio sollecitante	$V_{Ed} = $	137	(kN)	 Verifica soddisfatta!
larghezza minima della sezione	$b_w = [$	1000.00	(mm)	ua.
altezza totale della sezione	h =	400.00	(mm)	
copriferro	c =	82.00	(mm)	
altezza utile della sezione	d =	318.00	(mm)	_
resistenza caratteristica a compressione	f _{ck} =	30.71	(N/mmq)	•
resistenza di progetto a trazione cls	f _{ctd} =	2	(N/mmq)	_
armatura longitudinale della sezione	A _{sI} =	1570.80	(mmq)	-
area di calcestruzzo	$A_c = b_w \cdot d = 0$	318000	(mmq)	
rapporto geometrico di armatura longitudinale	$\rho_1 = A_{sl}/A_c =$	0.005	< 0.02	•
sforzo normale agente	N _{ed} =	0.00	(N)	
tensione media di compressione nella sezione	$\sigma_{cp} = N_{Ed}/A_c = $	0	(N/mmq)	<=0,2fcd
tensione media di compressione nella sezione inserita nel calcol	$\sigma_{cp} = N_{Ed}/A_c = 0$	0		
k calcolato	k = **	2	< 2	ма

 $v_{min} = 0.035 \cdot k^{3/2} f_{ck}^{1/2} =$

0

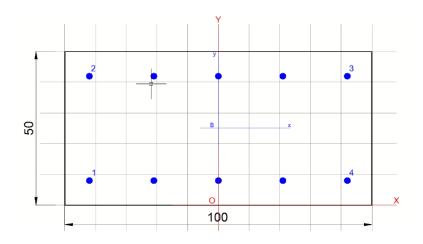
(N/mmq)

APPALTATORE: Consorzio HIRPINIA - ORSARA A	<u>Soci</u> V webuild Italia pizzarotti		ITIN	ERARIO I	NAPOLI – B	ARI	
PROGETTAZIONE: Mandataria ROCKSOIL S.P.A M-INGEGNERIA	Mandanti NET ENGINEERING PINI GCF ELETTRI-FER		_	_	TA APICE - LE HIRPINIA		
PROGETTO ESECU Tombino circolare IN02		COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ CL	DOCUMENTO IN0200 001	REV. B	FOGLIO 175 di 261

13.6 VERIFICHE - MURI AD U

Si rportano di seguito le verifiche di sicurezza dei componenti strutturali. Il quantitativo di armatura minima di progetto in zona tesa rispetta i requisiti imposti dalle NTC2018.

Caratteristiche geometriche IN02 - muri	ad U			ı	Fondazione	Piedritti	
Base della sezione				b =	100.00	100.00	cm
Altezza della sezione				h =	50.00	30.00	cm
Copriferro min in asse barre longitudinali				c _{min} =	8.00	8.00	cm
Altezza utile della sezione				d =	42.00	22.00	cm
Armatura minima NTC2018 § 4.1.6.1.1							
Area minima in zona tesa			A _{s, min} =	(0.0013 b d) =	5.46	2.86	cm ²
Area minima in zona tesa		$A_{s,i}$	min = 0.26 x (f_{ctm}/f_{yk}) x b d =	7.04	3.69	cm ²
				A _{s, min} =	7.04	3.69	cm ²
Armatura minima di progetto	n°/ml	ф					
Fondazione	5	16	mm	A _{sd} =	10.	05	cm ²
Piedritti	5	16	mm	A _{sd} =	10.	05	cm ²


13.6.1 FONDAZIONE - sezione centrale

Centrale	TABLE: Element Forces - Frames -								
	Frame	Frame Station OutputCase CaseType P V2 M3							
	Text	m	Text	Text	KN	KN	KN-m		
M max SLU/SLV	4	0.275	SLV_02	Combination	-64.49	19	44		
Mmin SLU/SLV	12	0.275	SLV_01	Combination	-4.85	16	1		
V max SLU/SLV	7	0.275	SLV_01	Combination	-64.49	23	26		
M max SLE	4	0.275	SLE_02	Combination	-37.06	7	21		
M min SLE	8	0.275	SLE_01	Combination	-11.23	2	1		

Verifica di resistenza a pressoflessione (SLU, SLV, SLE)

Armatura int (sup) $5\Phi16$ Armatura est (inf) $5\Phi16$ Armatura a taglio non necessaria

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** Mandataria Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 176 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В 261

MPa

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A. NOME SEZIONE: IIN02_FONDAZIONE S3

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione:
Condizioni Ambientali:
Riferimento Sforzi assegnati:
Riferimento alla sismicità:

A Sforzo Norm. costante
Moderat. aggressive
Assi x,y principali d'inerzia
Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C30/37

Resis. compr. di progetto fcd: 17.0

Def.unit. max resistenza ec2: 0.0020

Def.unit. ultima ecu: 0.0035

Diagramma tensione-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec:32836.0MPaResis. media a trazione fctm:2.90MPaCoeff. Omogen. S.L.E.:15.00Sc limite S.L.E. comb. Rare:12.0MPa

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

Resist. snerv. di progetto fyd:

Resist. ultima di progetto ftd:

Deform. ultima di progetto Epu:

450.0

MPa
391.3

MPa
391.3

MPa
0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

1.00

0.50

MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Dominio: Poligonale Classe Calcestruzzo: C30/37

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI ELETTRI-FER GCF M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO COMMESSA CODIFICA DOCUMENTO REV. 177 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	50.0
3	50.0	50.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.0	8.0	16
2	-42.0	42.0	16
3	42.0	42.0	16
4	42.0	8.0	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
N°Barre	Numero di barre generate equidistanti cui si riferisce la generazion

N'Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	2	3	3	16
2	1	4	3	16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia						
Му		con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez						
Vy		Componente del Taglio [kN] parallela all'asse princ.d'inerzia y						
Vx		Componente del	Taglio [kN] parallela	a all'asse princ.d'ine	erzia x			
N°Comb.	N	Mx	My	Vy	Vx			
1	0.00	43.84	0.00	0.00	0.00			
2	0.00	1.43	0.00	0.00	0.00			

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fess con verso positivo se tale da comprimere il lembo superiore della sezione My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fess con verso positivo se tale da comprimere il lembo destro della sezione							
N°Comb.	N	Mx	My				
1	0.00	21.18	0.00				
2	0.00	0.79	0.00				

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO **FOGLIO** COMMESSA LOTTO CODIFICA DOCUMENTO REV. 178 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IF3A 02 IN0200 001 В

261

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

7.2 cm Copriferro netto minimo barre longitudinali: Interferro netto minimo barre longitudinali: 19.4 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Μv Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.) N Res

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Mx Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia My Res

Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic. Verifica positiva se tale rapporto risulta >=1.000

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC] As Tesa

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	43.84	0.00	0.00	152.40	0.00	3.48	10.1(7.0)
2	S	0.00	1.43	0.00	0.00	152.40	0.00	106.58	10.1(7.0)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max x/d	Deform. unit. massima del calcestruzzo a compressione Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00054	0.217	-50.0	50.0	0.00007	42.0	42.0	-0.00196	-42.0	8.0
2	0.00054	0.217	-50.0	50.0	0.00007	42.0	42.0	-0.00196	-42.0	8.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a. b. c x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb x/d C Rid а b С 1 0.000000000 0.000059463 -0.002432204 0.217 0.711 2 0.000000000 0.000059463 -0.002432204 0.217 0.711

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ss min

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER GCF** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 179 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

Xs mir Ac eff. As eff.		ı	Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sister Area di calcestruzzo [cm²] in zona tesa considerata aderer Area barre [cm²] in zona tesa considerate efficaci per l'ape						parre
N°Comb	Ver	Sc max	Xc max Y	'c max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1 2	S S	1.08 0.04	-50.0 -50.0	50.0 50.0	-54.7 -2.0	-42.0 0.0	8.0 8.0	1310 1310	10.1 10.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

2

S

-0.00001

0.00000

0.500 16.0

72

							•						
		La sezion	e viene assunt	a sempre fe	essurata a	anche nel cas	so in cui la trazione minima del c	alcestruz	zo sia inferiore a f	ctm			
Ver.		Esito della	Esito della verifica										
e1		Massima	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata										
e2			Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata										
k1		= 0.8 per	barre ad adere	enza miglio	rata [eq.(7.11)EC2]	,						
kt		= 0.4 pe	r comb. quasi p	ermanenti	l = 0.6 pe	er comb.frequ	enti [cfr. eq.(7.9)EC2]						
k2		= 0.5 per	flessione; =(e1	+ e2)/(2*e	1) per traz	zione eccentr	ica [eq.(7.13)EC2]						
k3		= 3.400 C	oeff. in eq.(7.1	1) come da	annessi	nazionali	, -						
k4		= 0.425 C	oeff. in eq.(7.1	1) come da	annessi	nazionali							
Ø		Diametro	Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]										
Cf		Copriferro	[mm] netto ca	Icolato con	riferimen	to alla barra p	oiù tesa						
e sm	ı - e cm	Differenza	a tra le deforma	zioni medi	e di accia	io e calcestru	zzo [(7.8)EC2 e (C4.1.7)NTC]						
		Tra paren	tesi: valore mir	nimo = 0.6 S	Smax / Es	s [(7.9)EC2	e (C4.1.8)NTC]						
sr ma	max Massima distanza tra le fessure [mm]												
wk		Apertura t	fessure in mm	calcolata =	sr max*(e	e_sm - e_cm)	[(7.8)EC2 e (C4.1.7)NTC]. Valo	re limite t	ra parentesi				
Mx fe	ess.	Compone	nte momento d	li prima fes	surazione	intorno all'as	sse X [kNm]						
My fe	ess.	Compone	nte momento d	li prima fes	surazione	intorno all'as	sse Y [kNm]						
Comb.	Ver	e1	e2	k2	Ø	Cf	0.00 0.00 0	er may	wk	Mx fess	My fess		
COIID.	vei	eı	62	KZ	Ø	G	e sm - e cm s	oi iiiax	WK	IVIX 1622	iviy iess		
1	S	-0.00034	0.00000	0.500	16.0	72	0.00016 (0.00016)	599	0.098 (0.20)	130.94	0.00		
	-										0.00		

0.00001 (0.00001)

599

0.004 (0.20)

130.94

0.00

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF **ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO FOGLIO LOTTO COMMESSA CODIFICA DOCUMENTO REV. 180 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

Verifica di resistenza a taglio (SLU, SLV)

Elementi senza armature trasversali resistenti				
				-
Resistenza a taglio (4.1.23 NTC 2018)	$V_{Rd,1} = (0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \sigma_{cp}) \cdot b_w \cdot d =$	166	(kN)	>VRd,min
	$V_{Rd,2} = (v_{min} + 0.15\sigma_{cp}) \cdot b_w \cdot d = 0.00$	179	(kN)	60
	$V_{Rd} = max (V_{Rd,1}, V_{Rd,2}) =$	179	(kN)	_
Resistenza a taglio precompresso (4.1.24 NTC	2018)			•
	$V_{Rd} = 0.7 \cdot b_w \cdot d \cdot (f_{ctd}^2 + \sigma_{cp} + f_{ctd})^{1/2} =$	577	(kN)	
Taglio sollecitante	$V_{Ed} =$	23	(kN)	Verifica soddisfatta!
				.aa
larghezza minima della sezione	$b_w =$	1000.00	(mm)	w
altezza totale della sezione	h =	500.00	(mm)	en
copriferro	C =	80.00	(mm)	564
altezza utile della sezione	d =	420.00	(mm)	en
resistenza caratteristica a compressione	$f_{ck} =$	30.71	(N/mmq)	w.
resistenza di progetto a trazione cls	$f_{ctd} =$	2	(N/mmq)	eo
armatura longitudinale della sezione	$A_{sl} =$	1005.31	(mmq)	∞
area di calcestruzzo	$A_c = b_w d =$	420000	(mmq)	m
rapporto geometrico di armatura longitudinale	$\rho_1 = A_s / A_c =$	0.00	< 0.02	30
sforzo normale agente	$N_{ed} =$	0.00	(N)	eo
tensione media di compressione nella sezione	$\sigma_{cp} = N_{Ed}/A_c =$	0	(N/mmq)	<=0,2fcd
tensione media di compressione nella sezione inse	erita nel calcolo $\sigma_{cp} = N_{Ed}/A_c = 0$	0	***************************************	so.
k calcolato	k =	2	< 2	•
k inserito nella formula	k =	2	*******************************	w
Tensione resistente tang. Max offerta dal solo cls	$v_{min} = 0.035 \cdot k^{3/2} f_{ck}^{1/2} =$	0	(N/mmq)	5 00

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI GCF ELETTRI-FER

M-INGEGNERIA

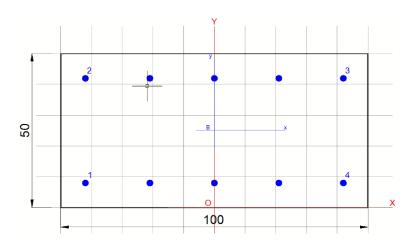
PROGETTO ESECUTIVO

Tombino circolare IN02 - Relazione di calcolo

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

COMMESSA IF3A LOTTO 02 CODIFICA E ZZ CL DOCUMENTO IN0200 001 REV. B FOGLIO 181 di 261


13.6.1 FONDAZIONE – sezione laterale

Laterale	TABLE:	TABLE: Element Forces - Frames -										
	Frame	Station	OutputCase	CaseType	Р	V2	М3					
	Text	m	Text	Text	KN	KN	KN-m					
Mmax SLU/SLV	3	0.075	SLV_02	Combination	-64.49	14	52					
Mmin SLU/SLV	14	0.2	SLV_01	Combination	-4.85	1	0					
V max SLU/SLV	3	0.15	SLV_01	Combination	-64.49	17	50					
M max SLE	3	0.15	SLE_02	Combination	-37.06	8	24					
M min SLE	3	0.15	SLE_01	Combination	-11.23	8	5					

Verifica di resistenza a pressoflessione (SLU, SLV, SLE)

Armatura int (sup) $5\Phi16$ Armatura est (inf) $5\Phi16$

Armatura a taglio non necessaria

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A. NOME SEZIONE: IIN02_FONDAZIONE S5

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione:

Condizioni Ambientali:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

A Sforzo Norm. costante

Moderat. aggressive

Assi x,y principali d'inerzia

Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C30/37

Resis. compr. di progetto fcd: 17.0 MPa
Def.unit. max resistenza ec2: 0.0020

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 182 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В 261

> Def.unit. ultima ecu: 0.0035 Parabola-Rettangolo Diagramma tensione-deformaz.: Modulo Elastico Normale Ec: 32836.0 MPa Resis. media a trazione fctm: 2.90 MPa Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: 12.0 MPa Tipo: B450C Resist. caratt. snervam. fyk: 450.0 MPa Resist. caratt. rottura ftk: 450.0 MPa Resist. snerv. di progetto fyd: 391.3 MPa Resist. ultima di progetto ftd: 391.3 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef 2000000 daN/cm² Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces	Poligonale C30/37	
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	50.0
3	50.0	50.0
4	50.0	0.0

DATI BARRE ISOLATE

ACCIAIO -

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.0	8.0	16
2	-42.0	42.0	16
3	42.0	42.0	16
4	42.0	8.0	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin. Numero della barra finale cui si riferisce la generazione N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	16
2	2	3	3	16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO **FOGLIO** COMMESSA LOTTO CODIFICA DOCUMENTO REV. 183 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IF3A 02 IN0200 001 В 261

Mx				isse x princ. d'inerzi			
Му		con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.					
Vy Vx	a all'asse princ.d'ine a all'asse princ.d'ine	rzia y					
N°Comb.	N	Mx	My	Vy	Vx		
1	0.00	51.71	0.00	0.00	0.00		
2	0.00	-0.43	0.00	0.00	0.00		

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	0.00	23.63	0.00
2	0.00	4.55	0.00

RISULTATI DEL CALCOLO

١

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.2 cm Interferro netto minimo barre longitudinali: 19.4 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	51.71	0.00	0.00	152.40	0.00	2.95	10.1(7.0)
2	S	0.00	-0.43	0.00	0.00	-152.40	0.00	354.43	10.1(7.0)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max x/d	Deform. unit. massima del calcestruzzo a compressione Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO REV. COMMESSA CODIFICA DOCUMENTO 184 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

Ys ma	х	Ordinata in o	cm della barra d	corrisp. a es ma	ax (sistema rif.	X,Y,O sez.)				
N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00054	0.217	-50.0	50.0	0.00007	42.0	42.0	-0.00196	-42.0	8.0
2	0.00054	0.217	-50.0	0.0	0.00007	-42.0	8.0	-0.00196	42.0	42.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Coeff. di riduz. momenti per sola flessione in travi continue							
N°Comb	а	b	С	x/d	C.Rid.			
1	0.000000000	0.000059463	-0.002432204	0.217	0.711			
2	0.000000000	-0.000059463	0.000540944	0.217	0.711			

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. no Sc max Massima tensione (positiva se di c Xc max, Yc max Ascissa, Ordinata [cm] del punto co Ss min Minima tensione (negativa se di tra Xs min, Ys min Ascissa, Ordinata [cm] della barra Ac eff. Area di calcestruzzo [cm²] in zona As eff. Area barre [cm²] in zona tesa cons						i compres corrisp. a trazione) ra corrisp. na tesa co	sione) nel ca a Sc max (si nell'acciaio a Ss min (s nsiderata a	istema rif. X, [MPa] sistema rif. X, derente alle b	Y,O) Y,O) parre
N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S S	1.21 0.23	-50.0 -50.0	50.0 50.0	-61.0 -11.7	-21.0 0.0	8.0 8.0	1310 1310	10.1 10.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

				a sempre fe	essurata a	anche nel ca	so in cui la trazione minima del c	alcestruz	zo sia inferiore a fo	ctm		
Ver.		Esito della	Esito della verifica									
e1		Massima	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata									
e2		Minima de	eformazione un	itaria di tra:	zione nel	calcestruzzo	(trazione -) valutata in sezione f	essurata				
k1		= 0.8 per	barre ad adere	nza miglio	rata [eq.(7.11)EC2]						
kt		= 0.4 per	r comb. quasi p	ermanenti	/ = 0.6 pe	er comb.frequ	uenti [cfr. eq.(7.9)EC2]					
k2		= 0.5 per	flessione; =(e1	+ e2)/(2*e ²	1) per traz	zione eccent	rica [eq.(7.13)EC2]					
k3		= 3.400 C	oeff. in eq.(7.1	1) come da	annessi	nazionali	, ,					
k4		= 0.425 C	oeff. in eq.(7.1	1) come da	annessi	nazionali						
Ø				,			ll'area efficace Ac eff [eq.(7.11)E0	C21				
Cf		Copriferro [mm] netto calcolato con riferimento alla barra più tesa										
	- e cm											
0 0	0 0						e (C4.1.8)NTC]					
sr ma	ax		distanza tra le f			[()	()					
wk	<i>an</i>					sm-e cm) [(7.8)EC2 e (C4.1.7)NTC]. Valo	re limite t	tra narentesi			
Mx fe	200		nte momento d						ara paromoor			
My fe			nte momento d									
iviy ic		Compone	into momento d	i pilitia ico	Surazioni	, intorno an a	33C I [KIVIII]					
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess	
•••••		٠.			~	٥.	0 0 0 0 0				,	
1	S	-0.00038	0.00000	0.500	16.0	72	0.00018 (0.00018)	599	0.110 (0.20)	130.94	0.00	
2	Š	-0.00007	0.00000	0.500	16.0	72	0.00004 (0.00004)	599	0.021 (0.20)	130.94	0.00	
_	9	0.00007	0.00000	0.000	10.0	12	0.0000+ (0.0000+)	000	0.021 (0.20)	100.54	0.00	

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF **ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO COMMESSA CODIFICA DOCUMENTO REV. 185 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

Verifica di resistenza a taglio (SLU, SLV)

Elementi senza armature trasversali resistenti a ta	nglio § 4.1.2.3.5.1 NTC2018			
Resistenza a taglio (4.1.23 NTC 2018)	$f_{Rd,1} = (0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \sigma_{cp}) \cdot b_w d = 0.00$	166	(kN)	000
	$V_{Rd,2} = (V_{min} + 0.15\sigma_{cp}) \cdot b_w \cdot d =$	179	(kN)	and the state of t
	$V_{Rd} = max (V_{Rd,1}, V_{Rd,2}) =$	179	(kN)	994
Resistenza a taglio precompresso (4.1.24 NTC 201	(,,,			MAX.
5	$V_{Rd} = 0.7 \cdot b_w \cdot d \cdot (i \cdot f_{ctd}^2 + \sigma_{cp} + i \cdot f_{ctd})^{1/2} = 0$	577	(kN)	oo.
Taglio sollecitante	$V_{Ed} = $	17	(kN)	Verifica soddisfatta!
larghezza minima della sezione	b _w = [1000.00	(mm)	
altezza totale della sezione	h =	500.00	(mm)	
copriferro	c =	80.00	(mm)	
altezza utile della sezione	d =	420.00	(mm)	
resistenza caratteristica a compressione	$f_{ck} =$	30.71	(N/mmq)	
resistenza di progetto a trazione cls	f _{ctd} =	2	(N/mmq)	
armatura longitudinale della sezione	A _{sı} =	1005.31	(mmq)	
area di calcestruzzo	$A_c = b_w \cdot d = $	420000	(mmq)	
rapporto geometrico di armatura longitudinale	$\rho_1 = A_{si}/A_c = $	0	< 0.02	
sforzo normale agente	N _{ed} =	0.00	(N)	
tensione media di compressione nella sezione	$\sigma_{cp} = N_{Ed}/A_c = $	0	(N/mmq)	<=0,2fcd
tensione media di compressione nella sezione inserita	nel calcolo $\sigma_{cp} = N_{Ed}/A_c = 1$	0		
k calcolato	k =	2	< 2	
k inserito nella formula	k =	2		
Tensione resistente tang. Max offerta dal solo cls	$v_{min} = 0.035 \cdot k^{3/2} f_{ck}^{1/2} =$	0	(N/mmq)	

APPALTATORE: Consorzio

Soci HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

<u>Mandataria</u> Mandanti

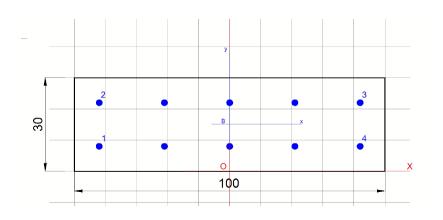
ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER GCF**

M-INGEGNERIA

PROGETTO ESECUTIVO Tombino circolare IN02 - Relazione di calcolo

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA


FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 186 di E ZZ CL IN0200 001 IF3A 02 В 261

13.6.1 PIEDRITTO - sezione al piede

Piede	TABLE:	TABLE: Element Forces - Frames -							
	Frame	Station	OutputCase	CaseType	Р	V2	М3		
	Text	m	Text	Text	KN	KN	KN-m		
M max SLU/SLV	1	0.13	SLV_01	Combination	-14	56	45		
Mmin SLU/SLV	2	0.13	SLV_01	Combination	-14	-2	-1		
N max SLU/SLV	1	0.13	SLV_02	Combination	-12	56	45		
N min SLU/SLV	1	0.13	SLU_01	Combination	-18	13	8		
V max SLU/SLV	1	0.25	SLV_01	Combination	-13	51	39		
M max SLE	1	0.25	SLE_02	Combination	-12	25	18		
M min SLE	1	0.25	SLE_01	Combination	-12	7	4		
N max SLE	1	0.25	SLE_01	Combination	-12	7	4		
N min SLE	1	0.25	SLE_01	Combination	-12	7	4		

Verifica di resistenza a pressoflessione (SLU, SLV, SLE)

Armatura int (sup) 5Φ16 Armatura est (inf)5Φ16 Armatura a taglio non necessaria

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A. NOME SEZIONE: IIN02_PIEDRITTO S5-PIEDE

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Sezione generica di Trave (solette, nervature solai) senza staffe Tipologia sezione:

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 187 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В 261

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C30/37 Resis. compr. di progetto fcd: 17.0

MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Parabola-Rettangolo Diagramma tensione-deformaz.: Modulo Elastico Normale Ec: 32836.0 MPa Resis. media a trazione fctm: 2.90 MPa Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: MPa 12.0

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

Resist. snerv. di progetto fyd:

Resist. ultima di progetto ftd:

Deform. ultima di progetto Epu:

450.0 MPa
391.3 MPa
391.3 MPa
0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

1.00

0.50

MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Dominio: Poligonale Classe Calcestruzzo: C30/37 N°vertice: Y [cm] X [cm] -50.0 0.0 1 30.0 2 -50.0 3 50.0 30.0 4 50.0 0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.0	8.0	16
2	-42.0	22.0	16
3	42.0	22.0	16
4	42.0	8.0	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

 N° Gen. N° Barra Ini. N° Barra Fin. N° Barre \emptyset

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO **FOGLIO** COMMESSA LOTTO CODIFICA DOCUMENTO REV. 188 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В 261

1 2 3 3 16 2 1 4 3 16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My Vy Vx		Momento flettent con verso positiv Momento flettent con verso positiv Componente del	e [kNm] intorno all'a o se tale da comprii e [kNm] intorno all'a o se tale da comprii Taglio [kN] parallela	ric. (+ se di compre sse x princ. d'inerzia mere il lembo sup. d sse y princ. d'inerzia mere il lembo destro a all'asse princ.d'ine a all'asse princ.d'ine	a lella sez. a o della sez. rzia y
°Comb.	N	Mx	My	Vy	Vx
1	14.21	45.50	0.00	0.00	0.00

N°Comb.	N	Mx	Му	Vy	Vx
1	14.21	45.50	0.00	0.00	0.00
2	14.21	-0.76	0.00	0.00	0.00
3	12.42	45.50	0.00	0.00	0.00
4	17.97	7.55	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	12.38	17.68	0.00
2	12.38	3.64	0.00
3	12.38	3.64	0.00
4	12.38	3.64	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.2 cm Interferro netto minimo barre longitudinali: 12.4 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	14.21	45.50	0.00	14.19	80.65	0.00	1.77	10.1(5.0)

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER**

M-INGEGNERIA

PROGETTO ESECUTIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 - Relazione di calcolo	IF3A	02	E ZZ CL	IN0 2 00 001	В	189 di 261

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

II LOTTO FUNZIONALE HIRPINIA - ORSARA

2	S	14.21	-0.76	0.00	14.19	-80.65	0.00	106.12	10.1(5.0)
3	S	12.42	45.50	0.00	12.45	80.47	0.00	1.77	10.1(5.0)
4	S	17.97	7.55	0.00	18.09	81.07	0.00	10.74	10.1(5.0)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della harra corrisp, a es max (sistema rif, X, Y, O, sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
	0.00000	0.044	50.0	00.0	0.00045	40.0	00.0	0.00400	40.0	0.0
1	0.00088	0.311	-50.0	30.0	-0.00015	-42.0	22.0	-0.00196	-42.0	8.0
2	0.00088	0.311	-50.0	0.0	-0.00015	-42.0	8.0	-0.00196	42.0	22.0
3	0.00088	0.310	-50.0	30.0	-0.00015	-42.0	22.0	-0.00196	-42.0	8.0
4	0.00089	0.312	-50.0	30.0	-0.00015	-42.0	22.0	-0.00196	-42.0	8.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000129063	-0.002989005	0.311	0.829
2	0.000000000	-0.000129063	0.000882888	0.311	0.829
3	0.000000000	0.000128975	-0.002988302	0.310	0.828
4	0.000000000	0.000129261	-0.002990585	0.312	0.830

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Ss min

Minima tensione (negativa se di trazione) nell'acciaio [MPa]

Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff

N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.67	-50.0	30.0	-80.9	-42.0	8.0	814	10.1
2	S	0.52	-50.0	30.0	-11.4	-42.0	8.0	864	10.1
3	S	0.52	-50.0	30.0	-11.4	-42.0	8.0	864	10.1
4	S	0.52	-50.0	30.0	-11.4	-42.0	8.0	864	10.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e1 e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE - ORSARA					
HIRPINIA - ORSARA AV	/ WEBUILD ITALIA	PIZZAROTTI						
PROGETTAZIONE:								
<u>Mandataria</u>	<u>Mandanti</u>					E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERIN	IG PINI ELETTRI-FER		.0.0	INZIONAL		- OILO	711/7
M-INGEGNERIA	001	ELETTRI-I EK						
PROGETTO ESECUT	ΓΙVΟ		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 -	Relazione di calcolo		IF3A	02	E ZZ CL	IN0200 001	В	190 di 261

							67. 62 2			•	
k1 kt k2 k3 k4 Ø Cf e sm sr ma wk Mx fe My fe	ess.	= 0.4 pe = 0.5 per = 3.400 C = 0.425 C Diametro Copriferro Differenza Tra paren Massima Apertura Compone	flessione; =(e1 coeff. in eq.(7.1 coeff. in eq.(7.1 [mm] equivaler o [mm] netto ca a tra le deforma ttesi: valore mir distanza tra le	permanenti + e2)/(2*e ⁻ 1) come da 1) come da nte delle ba Icolato con azioni medio nimo = 0.6 s fessure [mr calcolata = di prima fes	/ = 0.6 per 1) per traz 1 annessi 1 annessi 1 rre tese conferiment 1 e di accia 1 Smax / Es 1 m] 1 sr max*(6 1 surazione	er comb.frequivione eccentri nazionali nazionali nazionali comprese nell to alla barra p io e calcestru: s [(7.9)EC2 e_sm - e_cm) e intorno all'as	zzo [(7.8)EC2 e (C4.1.7)NTC] e (C4.1.8)NTC] [(7.8)EC2 e (C4.1.7)NTC]. Valo se X [kNm]		ra parentesi		
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S	-0.00062	0.00000	0.500	16.0	72	0.00024 (0.00024)	465	0.113 (0.20)	47.98	0.00
2	S	-0.00009	0.00000	0.500	16.0	72	0.00003 (0.00003)	479	0.016 (0.20)	55.50	0.00
3	S	-0.00009	0.00000	0.500	16.0	72	0.00003 (0.00003)	479	0.016 (0.20)	55.50	0.00
4	S	-0.00009	0.00000	0.500	16.0	72	0.00003 (0.00003)	479	0.016 (0.20)	55.50	0.00

Verifica di resistenza a taglio (SLU, SLV)

Elementi senza armature trasversali resistenti a t	aglio § 4.1.2.3.5.1 NTC2018						
Resistenza a taglio (4.1.23 NTC 2018)	$V_{Rd,1} = (0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \sigma_{cp}) \cdot b_w \cdot d =$	124	(kN)	>VRd,min			
	$V_{Rd,2} = (v_{min} + 0.15\sigma_{cp}) \cdot b_w \cdot d =$	117	(kN)	MAG			
	$V_{Rd} = max (V_{Rd,1}, V_{Rd,2}) =$	124	(kN)				
Resistenza a taglio precompresso (4.1.24 NTC 201	(8)			-			
	$V_{Rd} = 0.7 \cdot b_w \cdot d \cdot (f_{ctd}^2 + \sigma_{cp} + f_{ctd})^{1/2} = $	302	(kN)	no.			
Taglio sollecitante	$V_{Ed} = $	56	(kN)	Verifica soddisfatta!			
larghezza minima della sezione	$b_w = $	1000.00	(mm)				
altezza totale della sezione	h =	300.00	(mm)	-			
copriferro	c =	80.00	(mm)				
altezza utile della sezione	d =	220.00	(mm)	-			
resistenza caratteristica a compressione	$f_{ck} =$	30.71	(N/mmq)				
resistenza di progetto a trazione cls	$f_{ctd} = $	2	(N/mmq)				
armatura longitudinale della sezione	A _{sl} =	1005.31	(mmq)	5 0			
area di calcestruzzo	$A_c = b_w \cdot d = $	220000	(mmq)	.a.			
rapporto geometrico di armatura longitudinale	$\rho_1 = A_{sl}/A_c =$	0.005	< 0.02	w			
sforzo normale agente	N _{ed} =	0.00	(N)				
tensione media di compressione nella sezione	$\sigma_{cp} = N_{Ed}/A_c = $	0	(N/mmq)	<=0,2fcd			
tensione media di compressione nella sezione inserita	a nel calcolo $\sigma_{cp} = N_{Ed}/A_c = 1$	0					
k calcolato	k =	2	< 2	28			
k inserito nella formula	k =	2	***************************************	so			
Tensione resistente tang. Max offerta dal solo cls	$v_{min} = 0.035 \cdot k^{3/2} f_{ck}^{1/2} =$	1	(N/mmq)				

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 191 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IF3A 02 IN0200 001 В 261

13.7 VERIFICHE - POZZO

Tutte le sezioni sono armate simmetricamente, in direzione orizzontale e verticale, con maglia Φ16/20 cm. In particolare, per ciascun elemento (setto di spessore 40 cm e fondazione di spessore 50 cm) sono state condotte le verifiche con riferimento alle sollecitazioni massime agenti nelle due direzioni orzzontali:

direzione 1: N_{1d} , M_{1d} armatura orizzontale (copriferro netto c = 5.0 cm + 1.0 cm = 6.0 cm) direzione 2: N_{2d} , M_{2d} armatura verticale (copriferro netto c = 5.0 cm + 1.0 cm + 1.6 cm = 7.6 cm)

Il quantitativo di armatura minima di progetto in zona tesa rispetta i requisiti imposti dalle NTC2018.

Caratteristiche geometriche IN02 - pozze	o			İ	Fondazione	Setti	
Base della sezione				b =	100.00	100.00	cm
Altezza della sezione				h =	50.00	40.00	cm
Copriferro min in asse barre longitudinali				$c_{min} =$	8.40	8.40	cm
Altezza utile della sezione				d =	41.60	31.60	cm
Armatura minima NTC2018 § 4.1.6.1.1							
Area minima in zona tesa			A _{s, min} =	(0.0013 b d) = 0.0013 d	5.41	4.11	cm ²
Area minima in zona tesa		$A_{s,}$	min = 0.26 x (1)	$_{ctm}/f_{yk}) \times b d =$	6.97	5.29	cm ²
				A _{s, min} =	6.97	5.29	cm ²
Armatura minima di progetto	n°/ml	ф					
Fondazione	5	16	mm	A _{sd} =	10.0)5	cm ²
Piedritti	5	16	mm	A _{sd} =	10.0)5	cm ²

13.7.1 SETTO X1

Verifica di resistenza a pressoflessione (SLU, SLV, SLE)

Armatura int (sup) 5Φ16 Armatura est (inf) 5Φ16 Armatura a taglio non necessaria

• Direzione 1 (armatura orizzontale)

	TABLE:	Element F	orces - Area S	Shells				1	2	1	2
	Area	Joint	OutputCase	F11	F12	M11	M12	N1d+	N1d-	M1d+	M1d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M11 max SLU/SLV	428	305	SLV_01	-83	-1	47	1	-83	-84	47	0
M11 min SLU/SLV	399	115	SLV_03	-64	21	-48	5	0	-85	-46	-54
M1d max SLU/SLV	427	305	SLV_01	-82	-1	47	-1	-81	-82	47	0
M1d min SLU/SLV	399	115	SLV_03	-64	21	-48	5	0	-85	-46	-54
N11 max SLU/SLV	359	147	SLV_02	37	-62	1	2	99	-25	3	-1
N11 min SLU/SLV	347	141	SLV_07	-111	-29	-47	-3	0	-140	-46	-50
N1d max SLU/SLV	355	315	SLV_06	-14	183	1	0	168	-197	1	0
N1d min SLU/SLV	354	315	SLV_08	-37	183	1	0	146	-220	1	1

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI GCF ELETTRI-FER

M-INGEGNERIA

PROGETTO ESECUTIVO
Tombino circolare IN02 - Relazione di **calcolo**

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF3A
 02
 E ZZ CL
 IN0200 001
 B
 192 di 261

	TABLE: E	Element F	orces - Area S	Shells				1	2	1	2
	Area	Joint	OutputCase	F11	F12	M11	M12	N1d+	N1d-	M1d+	M1d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M11 max SLE	395	293	SLE_02	-16	-1	15	0	-16	-17	15	15
M11 min SLE	344	243	SLE_06	-47	1	-22	-1	-47	-48	-22	-23
M1d max SLE	389	291	SLE_02	-17	-1	15	0	-17	-18	15	15
M1d min SLE	344	243	SLE_06	-47	1	-22	-1	-47	-48	-22	-23
N11 max SLE	352	249	SLE_03	16	23	1	-1	40	-7	2	0
N11 min SLE	344	243	SLE_06	-47	1	-22	-1	-47	-48	-22	-23
N1d max SLE	353	313	SLE_03	7	35	0	0	41	-28	0	-1
N1d min SLE	360	311	SLE_05	-36	27	-4	0	0	-62	-4	-4

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A. NOME SEZIONE: IN02_SETTO_X1_DIR1

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione:

Condizioni Ambientali:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

A Sforzo Norm. costante

Moderat. aggressive

Assi x,y principali d'inerzia

Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C30/37

17.0 MPa Resis. compr. di progetto fcd: Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Parabola-Rettangolo Diagramma tensione-deformaz.: Modulo Elastico Normale Ec: MPa 32836.0 Resis. media a trazione fctm: 2.90 MPa Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: 12.0 MPa

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:450.0MPaResist. caratt. rottura ftk:450.0MPaResist. snerv. di progetto fyd:391.3MPaResist. ultima di progetto ftd:391.3MPaDeform. ultima di progetto Epu:0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

1.00

0.50

MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces		Poligonale C30/37
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	40.0
3	50.0	40.0

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 193 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В 261

4 50.0 0.0

DATI BARRE ISOLATE

N

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.8	6.8	16
2	-41.8	33.2	16
3	41.8	33.2	16
4	41.8	6.8	16

DATI GENERAZIONI LINEARI DI BARRE

 N°Gen.
 Numero assegnato alla singola generazione lineare di barre

 N°Barra Ini.
 Numero della barra iniziale cui si riferisce la generazione

 N°Barra Fin.
 Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	16
2	2	3	3	16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

	Momento flettent	e [kNm] intorno all'a	isse x princ. d'inerzi	a [′]
	Momento flettent	e [kNm] intorno all'a	isse y princ. d'inerzi	a
	Componente del	Taglio [kN] parallela	a all'asse princ.d'ine	rzia y
	Componente del	Taglio [kN] parallela	a all'asse princ.d'ine	rzia x
N	Mx	My	Vy	Vx
83.00	47.00	0.00	0.00	0.00
0.00	-54.00	0.00	0.00	0.00
81.00	47.00	0.00	0.00	0.00
0.00	-54.00	0.00	0.00	0.00
-99.00	3.00	0.00	0.00	0.00
140.00	-50.00	0.00	0.00	0.00
-168.00	1.00	0.00	0.00	0.00
220.00	1.00	0.00	0.00	0.00
	83.00 0.00 81.00 0.00 -99.00 140.00 -168.00	Momento flettent con verso positive Momento flettent con verso positive Momento flettent con verso positive Componente del Com	Momento flettente [kNm] intorno all'a con verso positivo se tale da compris Momento flettente [kNm] intorno all'a con verso positivo se tale da compris Componente del Taglio [kN] parallela Componente del Taglio [kN] parallela N Mx My 83.00 47.00 0.00 0.00 -54.00 0.00 81.00 47.00 0.00 -54.00 0.00 -99.00 3.00 0.00 -99.00 3.00 0.00 140.00 -50.00 0.00 -168.00 1.00 0.00	83.00 47.00 0.00 0.00 0.00 -54.00 0.00 0.00 81.00 47.00 0.00 0.00 0.00 -54.00 0.00 0.00 -99.00 3.00 0.00 0.00 140.00 -50.00 0.00 0.00 -168.00 1.00 0.00 0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

Sforzo normale [kN] applicato nel Baric (+ se di compressione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

Му	Mx	N	N°Comb.
0.00	15.00	16.00	1
0.00	-23.00	47.00	2

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A NET ENGINEERING PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 194 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IF3A 02 IN0200 001 В 261

3	17.00	15.00	0.00
4	47.00	-23.00	0.00
5	-40.00	2.00	0.00
6	48.00	-23.00	0.00
7	-41.00	-1.00	0.00
8	62.00	-4.00	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.0 cm Interferro netto minimo barre longitudinali: 19.3 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)
Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	83.00	47.00	0.00	82.89	131.89	0.00	2.81	10.1(6.7)
2	S	0.00	-54.00	0.00	0.00	-119.11	0.00	2.21	10.1(6.7)
3	S	81.00	47.00	0.00	81.16	131.62	0.00	2.80	10.1(6.7)
4	S	0.00	-54.00	0.00	0.00	-119.11	0.00	2.21	10.1(6.7)
5	S	-99.00	3.00	0.00	-98.75	103.54	0.00	34.51	10.1(6.7)
6	S	140.00	-50.00	0.00	140.15	-140.58	0.00	2.81	10.1(6.7)
7	S	-168.00	1.00	0.00	-168.09	92.39	0.00	92.39	10.1(6.7)
8	S	220.00	1.00	0.00	220.30	152.56	0.00	152.56	10.1(6.7)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
	0.00000	0.000	50.0	40.0	0.00045	44.0	00.0	0.00400	44.0	0.0
1	0.00069	0.260	-50.0	40.0	0.00015	-41.8	33.2	-0.00196	-41.8	6.8
2	0.00062	0.240	-50.0	0.0	0.00009	-41.8	6.8	-0.00196	41.8	33.2
3	0.00069	0.260	-50.0	40.0	0.00015	-41.8	33.2	-0.00196	-41.8	6.8
4	0.00062	0.240	-50.0	0.0	0.00009	-41.8	6.8	-0.00196	41.8	33.2
5	0.00053	0.213	-50.0	40.0	0.00002	-41.8	33.2	-0.00196	-41.8	6.8
6	0.00073	0.273	-50.0	0.0	0.00018	-41.8	6.8	-0.00196	41.8	33.2
7	0.00046	0.192	-50.0	40.0	-0.00003	-41.8	33.2	-0.00196	-41.8	6.8
8	0.00080	0.290	-50.0	40.0	0.00023	-41.8	33.2	-0.00196	-41.8	6.8

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 195 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IF3A 02 IN0200 001 В 261

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000079647	-0.002498097	0.260	0.765
2	0.000000000	-0.000077537	0.000617736	0.240	0.740
3	0.000000000	0.000079603	-0.002497800	0.260	0.765
4	0.000000000	-0.000077537	0.000617736	0.240	0.740
5	0.000000000	0.000074890	-0.002465749	0.213	0.706
6	0.000000000	-0.000081058	0.000734615	0.273	0.781
7	0.000000000	0.000072911	-0.002452296	0.192	0.700
8	0.000000000	0.000082992	-0.002520849	0.290	0.802

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Ss min Minima tensione (negativa se di trazione) nell'acciaio [MPa]

Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

${\sf N}^{\circ}{\sf Comb}$	Ver	Sc max	Xc max `	rc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.11	-50.0	40.0	-41.3	20.9	6.8	985	10.1
2	S	1.68	-50.0	0.0	-52.4	20.9	33.2	935	10.1
3	S	1.11	-50.0	40.0	-40.8	20.9	6.8	985	10.1
4	S	1.68	-50.0	0.0	-52.4	20.9	33.2	935	10.1
5	S	0.00	-50.0	40.0	-27.4	20.9	6.8	3207	20.1
6	S	1.68	-50.0	0.0	-51.9	20.9	33.2	935	10.1
7	S	0.00	-50.0	0.0	-24.2	20.9	33.2	3207	20.1
8	S	0.28	-50.0	0.0	0.8	20.9	33.2		

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Ver.	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Esito della verifica
e1	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2	Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
k1	= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]
kt	= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]
k2	= 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]
k3	= 3.400 Coeff. in eq.(7.11) come da annessi nazionali
k4	= 0.425 Coeff. in eq.(7.11) come da annessi nazionali
Ø	Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]
Cf	Copriferro [mm] netto calcolato con riferimento alla barra più tesa
e sm - e cm	Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]
	Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]
sr max	Massima distanza tra le fessure [mm]
wk	Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi
Mx fess.	Componente momento di prima fessurazione intorno all'asse X [kNm]
14 6	The state of the s

My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. Ver e1 Cf e sm - e cm sr max Mx fess My fess

APPALTATORE: Consorzio HIRPINIA - ORSARA A PROGETTAZIONE: Mandataria ROCKSOIL S.P.A M-INGEGNERIA	Soci V WEBUILD ITALIA PIZZAROTTI Mandanti NET ENGINEERING PINI GCF ELETTRI-FER		DDOPF	PIO TRAT	NAPOLI – BA TA APICE - LE HIRPINIA	ORSAF	
PROGETTO ESECU Tombino circolare IN02		COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ CL	DOCUMENTO IN0200 001	REV. B	FOGLIO 196 di 261

1	S	-0.00027	0.00000	0.500	16.0	60	0.00012 (0.00012)	470	0.058 (0.20)	91.61	0.00
2	S	-0.00034	0.00000	0.500	16.0	60	0.00016 (0.00016)	457	0.072 (0.20)	-98.69	0.00
3	S	-0.00026	0.00000	0.500	16.0	60	0.00012 (0.00012)	470	0.058 (0.20)	92.06	0.00
4	S	-0.00034	0.00000	0.500	16.0	60	0.00016 (0.00016)	457	0.072 (0.20)	-98.69	0.00
5	S	-0.00016	-0.00004	0.635	16.0	60	0.00008 (0.00008)	755	0.062 (0.20)	35.97	0.00
6	S	-0.00034	0.00000	0.500	16.0	60	0.00016 (0.00016)	457	0.071 (0.20)	-99.03	0.00
7	S	-0.00013	-0.00007	0.781	16.0	60	0.00007 (0.00007)	882	0.064 (0.20)	-22.40	0.00
8	S	0.00000	0.00000						0.000 (0.20)	-2544.12	0.00

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

<u>Mandataria</u> Mandanti

GCF ELETTRI-FER

M-INGEGNERIA

PROGETTO ESECUTIVO Tombino circolare IN02 - Relazione di calcolo

ROCKSOIL S.P.A **NET ENGINEERING** PINI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

ITINERARIO NAPOLI – BARI

FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 197 di E ZZ CL IN0200 001 IF3A 02 В 261

Direzione 2 (armatura verticale)

	TABLE: E	Element F	orces - Area S	Shells				3	4	3	4
	Area	Joint	OutputCase	F22	F12	M22	M12	N2d+	N2d-	M2d+	M2d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M22 max SLU/SLV	382	289	SLV_01	67	-9	17	1	68	58	18	0
M22 min SLU/SLV	355	271	SLV_01	88	-14	-47	-1	102	0	0	-48
M2d max SLU/SLV	361	278	SLV_01	59	-41	11	-12	98	19	23	1
M2d min SLU/SLV	354	316	SLV_01	80	-17	-45	-5	97	63	0	-50
N22 max SLU/SLV	357	273	SLV_03	133	-14	-26	6	146	0	-20	-32
N22 min SLU/SLV	356	318	SLV_02	-252	10	-30	0	0	-261	0	-30
N2d max SLU/SLV	357	282	SLV_07	110	-148	3	3	258	-38	7	0
N2d min SLU/SLV	356	317	SLV_06	-167	155	-8	0	-12	-321	0	-9
	TABLE: E	Element F	orces - Area S	Shells				3	4	3	4
	Area	Joint	OutputCase	F22	F12	M22	M12	N2d+	N2d-	M2d+	M2d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M22 max SLE	381	289	SLE_02	-15	0	8	0	0	-16	9	0
M22 min SLE	355	271	SLE_02	-35	0	-29	0	0	-36	0	-29
M2d max SLE	380	329	SLE_02	-15	0	7	-2	0	-15	10	0

	Area	Joint	OutputCase	F22	F12	M22	M12	N2d+	N2d-	M2d+	M2d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M22 max SLE	381	289	SLE_02	-15	0	8	0	0	-16	9	0
M22 min SLE	355	271	SLE_02	-35	0	-29	0	0	-36	0	-29
M2d max SLE	380	329	SLE_02	-15	0	7	-2	0	-15	10	0
M2d min SLE	355	271	SLE_02	-35	0	-29	0	0	-36	0	-29
N22 max SLE	352	249	SLE_01	24	6	-2	0	30	0	-1	-2
N22 min SLE	355	271	SLE_03	-108	0	-22	0	0	-108	0	-22
N2d max SLE	352	249	SLE_03	22	23	-3	-1	45	-2	-2	-4
N2d min SLE	354	315	SLE_03	-100	17	-8	0	-83	-116	0	-8

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A. NOME SEZIONE: IN02_SETTO_X1_DIR2

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -Classe: C30/37

> Resis. compr. di progetto fcd: MPa 17.0 0.0020 Def.unit. max resistenza ec2: Def.unit. ultima ecu: 0.0035 Parabola-Rettangolo Diagramma tensione-deformaz.: Modulo Elastico Normale Ec: 32836.0 MPa Resis. media a trazione fctm: 2.90 MPa Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: 12.0 MPa

ACCIAIO -B450C Tipo:

Resist. caratt. snervam. fyk: 450.0 MPa Resist. caratt. rottura ftk: 450.0 MPa Resist. snerv. di progetto fyd: 391.3 MPa Resist. ultima di progetto ftd: 391.3 MPa Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER GCF** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO CODIFICA REV. COMMESSA DOCUMENTO 198 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

> Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces	Poligonale C30/37	
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	40.0
3	50.0	40.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.6	8.4	16
2	-41.6	31.6	16
3	41.6	31.6	16
4	41.6	8.4	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
N°Barre	Numero di barre generate equidistanti cui si riferisce la generazior

one

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	16
2	2	3	3	16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My Vy Vx		ompressione) l'inerzia sup. della sez. l'inerzia destro della sez. c.d'inerzia y c.d'inerzia x			
N°Comb.	N	Mx	Му	Vy	Vx
1	-68.00	18.00	0.00	0.00	0.00
2	-102.00	-48.00	0.00	0.00	0.00
3	-98.00	23.00	0.00	0.00	0.00
4	-97.00	-50.00	0.00	0.00	0.00
5	-146.00	-32.00	0.00	0.00	0.00
6	261.00	-30.00	0.00	0.00	0.00
7	-258.00	7.00	0.00	0.00	0.00
8	321.00	-9.00	0.00	0.00	0.00

APPALTATORE:

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI GCF ELETTRI-FER

M-INGEGNERIA

PROGETTO ESECUTIVO

Tombino circolare IN02 - Relazione di calcolo

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF3A
 02
 E ZZ CL
 IN0200 001
 B
 199 di 261

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	0.00	9.00	0.00
2	0.00	-29.00	0.00
3	0.00	10.00	0.00
4	0.00	-29.00	0.00
5	-30.00	-2.00	0.00
6	108.00	-22.00	0.00
7	-45.00	-4.00	0.00
8	116.00	-8.00	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.6 cm Interferro netto minimo barre longitudinali: 19.2 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kNm] nel baricentro B sezione cls. (positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	-68.00	18.00	0.00	-68.06	103.33	0.00	5.74	10.1(5.3)
2	Š	-102.00	-48.00	0.00	-101.87	-98.04	0.00	2.04	10.1(5.3)
3	S	-98.00	23.00	0.00	-97.83	98.68	0.00	4.29	10.1(5.3)
4	S	-97.00	-50.00	0.00	-96.82	-98.84	0.00	1.98	10.1(5.3)
5	S	-146.00	-32.00	0.00	-145.99	-91.07	0.00	2.85	10.1(5.3)
6	S	261.00	-30.00	0.00	261.10	-152.87	0.00	5.10	10.1(6.7)
7	S	-258.00	7.00	0.00	-257.83	73.06	0.00	10.44	10.1(5.3)
8	S	321.00	-9.00	0.00	321.26	-161.56	0.00	17.95	10.1(6.7)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 200 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В

261

Xs ma: Ys ma:	= =		scissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) rdinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)										
N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max			
1	0.00060	0.235	50.0	40.0	-0.00008	41.6	31.6	-0.00196	-41.6	8.4			
2	0.00057	0.225	-50.0	0.0	-0.00010	-41.6	8.4	-0.00196	41.6	31.6			
3	0.00057	0.227	50.0	40.0	-0.00010	41.6	31.6	-0.00196	-41.6	8.4			
4	0.00057	0.227	-50.0	0.0	-0.00010	-41.6	8.4	-0.00196	41.6	31.6			
5	0.00053	0.212	-50.0	0.0	-0.00013	-41.6	8.4	-0.00196	41.6	31.6			
6	0.00088	0.311	-50.0	0.0	0.00013	-41.6	8.4	-0.00196	41.6	31.6			
7	0.00041	0.174	50.0	40.0	-0.00022	41.6	31.6	-0.00196	-41.6	8.4			
8	0.00093	0.323	-50.0	0.0	0.00016	-41.6	8.4	-0.00196	41.6	31.6			

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000000000	0.000080928	-0.002636297	0.235	0.734
2	0.000000000	-0.000079935	0.000569439	0.225	0.722
3	0.000000000	0.000080057	-0.002628979	0.227	0.723
4	0.000000000	-0.000080088	0.000574269	0.227	0.724
5	0.000000000	-0.000078605	0.000527421	0.212	0.705
6	0.000000000	-0.000089854	0.000882888	0.311	0.829
7	0.000000000	0.000074952	-0.002586099	0.174	0.700
8	0.000000000	-0.000091398	0.000931668	0.323	0.843

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata Sc max

Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Xc max, Yc max

Ss min Minima tensione (negativa se di trazione) nell'acciaio [MPa]

Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	0.75	-50.0	40.0	-31.1	-41.6	8.4	1007	10.1
!	-								
2	S	2.41	50.0	0.0	-100.1	20.8	31.6	1007	10.1
3	S	0.83	-50.0	40.0	-34.5	-41.6	8.4	1007	10.1
4	S	2.41	50.0	0.0	-100.1	20.8	31.6	1007	10.1
5	S	0.00	50.0	0.0	-23.5	-41.6	31.6	3473	20.1
6	S	1.56	50.0	0.0	-24.0	20.8	31.6	857	10.1
7	S	0.20	50.0	0.0	-38.8	-20.8	31.6	1207	10.1
8	S	0.55	-50.0	0.0	1.6	20.8	31.6	0	0.0

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver.

Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e1 e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF **ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 201 di 261 Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

k2			= 0.5 per flessione; = $(e1 + e2)/(2*e1)$ per trazione eccentrica [eq.(7.13)EC2]										
k3		= 3.400 C	= 3.400 Coeff. in eq.(7.11) come da annessi nazionali										
k4		= 0.425 C	= 0.425 Coeff. in eq.(7.11) come da annessi nazionali										
Ø		Diametro	Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]										
Cf		Copriferro	Copriferro [mm] netto calcolato con riferimento alla barra più tesa										
e sm	- e cm	Differenza	tra le deforma	zioni medi	e di accia	io e calcestru	zzo [(7.8)EC2 e (C4.1.7)NTC]						
		Tra paren	tesi: valore mir	nimo = 0.6 \$	Smax / E	s [(7.9)EC2	e (C4.1.8)NTC]						
sr ma	ax	Massima	distanza tra le	fessure [mr	m]								
wk		Apertura f	essure in mm	calcolata =	sr max*(e_sm - e_cm)	[(7.8)EC2 e (C4.1.7)NTC]. Valor	re limite t	ra parentesi				
Mx fe	ess.	Compone	nte momento d	li prima fes	surazion	e intorno all'as	sse X [kNm]						
My fe	ess.	Compone	nte momento d	li prima fes	surazion	e intorno all'as	sse Y [kNm]						
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess		
4	0	0.00004	0.00000	0.500	40.0	70	0.00000 (0.00000)	E04	0.040 (0.00)	00.00	0.00		
1	S	-0.00021	0.00000	0.500	16.0	76	0.00009 (0.00009)	531	0.049 (0.20)	83.22	0.00		
2	S	-0.00068	0.00000	0.500	16.0	76	0.00030 (0.00030)	531	0.159 (0.20)	-83.22	0.00		
3	S	-0.00024	0.00000	0.500	16.0	76	0.00010 (0.00010)	531	0.055 (0.20)	83.22	0.00		
4	S	-0.00068	0.00000	0.500	16.0	76	0.00030 (0.00030)	531	0.159 (0.20)	-83.22	0.00		
5	S	-0.00015	0.00000	0.502	16.0	76	0.00007 (0.00007)	730	0.051 (0.20)	-41.60	0.00		
6	S	-0.00018	0.00000	0.500	16.0	76	0.00007 (0.00007)	490	0.035 (0.20)	-123.74	0.00		
7	S	-0.00025	0.00000	0.500	16.0	76	0.00012 (0.00012)	585	0.068 (0.20)	-47.54	0.00		
8	S	0.00000	0.00000	0.500	16.0	76	0.00012 (0.00012)	0	0.000 (0.20)	-2544.12	0.00		

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]

Verifica di resistenza a taglio (SLU, SLV)

kt

	TABLE: Element Forces - Area Shells							
	Area	Joint	OutputCase	V13/V23				
	Text	Text	Text	KN/m				
V max/min SLU/SLV	407	338	SLV 03	97				

Elementi senza armature trasversali resistenti	a taglio § 4.1.2.3.5.1 l	NTC2018			
Resistenza a taglio (4.1.23 NTC 2018)	V _{Rd,1} = (0.18·k·(100·	$\rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \sigma_{cp}) \cdot b_w \cdot d = $	146	(kN)	-
	V	$R_{d,2} = (V_{min} + 0.15\sigma_{cp}) \cdot b_w \cdot d =$	147	(kN)	<u>.</u>
		$V_{Rd} = max (V_{Rd,1}; V_{Rd,2}) = $	147	(kN)	
Resistenza a taglio precompresso (4.1.24 NTC	2018)	that			M.
	$V_{Rd} = 0$.	$7 \cdot b_w \cdot d \cdot (f_{ctd}^2 + \sigma_{cp} + f_{ctd})^{1/2} = $	434	(kN)	-
Taglio sollecitante		V _{Ed} =	97	(kN)	Verifica soddisfatta!
		905			m.
larghezza minima della sezione		b _w =	1000.00	(mm)	10
altezza totale della sezione		h =	400.00	(mm)	w.
copriferro		c =	84.00	(mm)	w
altezza utile della sezione		d =	316.00	(mm)	
resistenza caratteristica a compressione		f _{ck} =	30.71	(N/mmq)	~
resistenza di progetto a trazione cls		$f_{ctd} = $	2	(N/mmq)	
armatura longitudinale della sezione		$A_{sl} =$	1005.31	(mmq)	79.
area di calcestruzzo		$A_c = b_w \cdot d = $	316000	(mmq)	_
rapporto geometrico di armatura longitudinale		$\rho_1 = A_{sl}/A_c =$	0	< 0.02	
sforzo normale agente		N _{ed} =	0.00	(N)	_
tensione media di compressione nella sezione		$\sigma_{cp} = N_{Ed}/A_c =$	0	(N/mmq)	<=0,2fcd
tensione media di compressione nella sezione inse	erita nel calcolo	$\sigma_{cp} = N_{Ed}/A_c =$	0		
k calcolato		k =	2	< 2	
k inserito nella formula		k =	2		
Tensione resistente tang. Max offerta dal solo cls		$v_{min} = 0.035 \cdot k^{3/2} f_{ck}^{1/2} =$	0	(N/mmq)	

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

<u>Mandataria</u> Mandanti

ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER**

M-INGEGNERIA

PROGETTO ESECUTIVO

Tombino circolare IN02 - Relazione di calcolo

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 202 di E ZZ CL IN0200 001 IF3A 02 В 261

13.7.2 SETTO X2

Verifica di resistenza a pressoflessione (SLU, SLV, SLE)

Armatura int (sup) 5Φ16 Armatura est (inf) 5Φ16

Armatura a taglio non necessaria

Direzione 1 (armatura orizzontale)

	TABLE:	Element F	orces - Area	Shells				1	2	1	2
	Area	Joint	OutputCase	F11	F12	M11	M12	N1d+	N1d-	M1d+	M1d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M11 max SLU/SLV	515	389	SLV_02	-83	-2	44	1	-82	-85	45	0
M11 min SLU/SLV	480	227	SLV_04	-69	23	-48	5	0	-91	-46	-53
M1d max SLU/SLV	516	389	SLV_02	-79	-1	44	-1	-79	-81	45	0
M1d min SLU/SLV	480	227	SLV_04	-69	23	-48	5	0	-91	-46	-53
N11 max SLU/SLV	458	403	SLV_06	93	-123	-2	-4	215	-30	1	-6
N11 min SLU/SLV	446	366	SLV_05	-125	154	1	0	29	-280	1	1
N1d max SLU/SLV	458	366	SLV_08	82	-144	-1	-3	226	-61	2	-4
N1d min SLU/SLV	458	366	SLV_05	-120	188	1	-1	68	-307	2	0

	TABLE: Element Forces - Area Shells									2	
	Area	Joint	OutputCase	F11	F12	M11	M12	N1d+	N1d-	M1d+	M1d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M11 max SLE	483	377	SLE_03	-16	1	15	0	-16	-17	15	15
M11 min SLE	463	125	SLE_06	-43	-2	-22	-1	-43	-45	-22	-22
M1d max SLE	477	375	SLE_03	-17	1	14	0	-17	-18	15	14
M1d min SLE	432	254	SLE_06	-45	-2	-22	1	-45	-47	-21	-22
N11 max SLE	472	413	SLE_02	23	5	4	1	28	0	5	3
N11 min SLE	432	254	SLE_06	-45	-2	-22	1	-45	-47	-21	-22
N1d max SLE	449	395	SLE_02	6	-41	0	2	47	-35	2	-2
N1d min SLE	453	364	SLE_05	-35	-50	0	0	15	-84	0	-1

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A. NOME SEZIONE: IN02_SETTO_X2_DIR1

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Moderat. aggressive Condizioni Ambientali: Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -Classe: C30/37

Resis. compr. di progetto fcd: MPa 17.0 Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Parabola-Rettangolo Diagramma tensione-deformaz.: Modulo Elastico Normale Ec: 32836.0 MPa Resis. media a trazione fctm: 2.90 MPa Coeff. Omogen. S.L.E.: 15.00

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 203 di Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В

Sc limite S.L.E. comb. Rare: 12.0 MPa

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

450.0 MPa
Resist. snerv. di progetto fyd:

Resist. ultima di progetto ftd:

Deform. ultima di progetto Epu:

450.0 MPa
391.3 MPa
391.3 MPa
0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

1.00

0.50

MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces		Poligonale C30/37
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	40.0
3	50.0	40.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.8	6.8	16
2	-41.8	33.2	16
3	41.8	33.2	16
4	41.8	6.8	16

DATI GENERAZIONI LINEARI DI BARRE

 N°Gen.
 Numero assegnato alla singola generazione lineare di barre

 N°Barra Ini.
 Numero della barra iniziale cui si riferisce la generazione

 N°Barra Fin.
 Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	16
2	2	3	3	16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO **FOGLIO** COMMESSA LOTTO CODIFICA DOCUMENTO REV. 204 di Tombino circolare IN02 - Relazione di calcolo

IF3A

02

E ZZ CL

IN0200 001

В

261

N°Comb.	N	Mx	Му	Vy	Vx
1	82.00	45.00	0.00	0.00	0.00
2	0.00	-53.00	0.00	0.00	0.00
3	79.00	45.00	0.00	0.00	0.00
4	0.00	-53.00	0.00	0.00	0.00
5	-215.00	-6.00	0.00	0.00	0.00
6	280.00	1.00	0.00	0.00	0.00
7	-226.00	-4.00	0.00	0.00	0.00
8	307.00	2.00	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Ν Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Му Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	16.00	15.00	0.00
2	43.00	-22.00	0.00
3	17.00	15.00	0.00
4	45.00	-22.00	0.00
5	-28.00	5.00	0.00
6	47.00	-22.00	0.00
7	-47.00	2.00	0.00
8	84 00	-1 00	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.0 cm Interferro netto minimo barre longitudinali: 19.3

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

Ν Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Μv N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) Mx Res

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	82.00	45.00	0.00	81.74	131.71	0.00	2.93	10.1(6.7)
2	S	0.00	-53.00	0.00	0.00	-119.11	0.00	2.25	10.1(6.7)
3	S	79.00	45.00	0.00	78.86	131.27	0.00	2.92	10.1(6.7)
4	S	0.00	-53.00	0.00	0.00	-119.11	0.00	2.25	10.1(6.7)
5	S	-215.00	-6.00	0.00	-215.22	-84.69	0.00	14.12	10.1(6.7)
6	S	280.00	1.00	0.00	280.06	161.36	0.00	161.36	10.1(6.7)

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER**

M-INGEGNERIA PROGETTO ESECUTIVO

Tombino circolare IN02 - Relazione di calcolo

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

II LOTTO FUNZIONALE HIRPINIA - ORSARA	

DOCUMENTO

IN0200 001

CODIFICA

E ZZ CL

FOGLIO

205 di

261

REV.

В

7	S	-226.00	-4.00	0.00	-225.96	-82.93	0.00	20.73	10.1(6.7)
8	S	307.00	2.00	0.00	307.12	165.32	0.00	82.66	10.1(6.7)

COMMESSA

IF3A

LOTTO

02

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00069	0.260	-50.0	40.0	0.00015	-41.8	33.2	-0.00196	-41.8	6.8
2	0.00062	0.240	-50.0	0.0	0.00009	-41.8	6.8	-0.00196	41.8	33.2
3	0.00068	0.259	-50.0	40.0	0.00014	-41.8	33.2	-0.00196	-41.8	6.8
4	0.00062	0.240	-50.0	0.0	0.00009	-41.8	6.8	-0.00196	41.8	33.2
5	0.00042	0.176	-50.0	0.0	-0.00007	-41.8	6.8	-0.00196	41.8	33.2
6	0.00085	0.302	-50.0	40.0	0.00027	-41.8	33.2	-0.00196	-41.8	6.8
7	0.00041	0.172	-50.0	0.0	-0.00008	-41.8	6.8	-0.00196	41.8	33.2
8	0.00087	0.307	-50.0	40.0	0.00029	-41.8	33.2	-0.00196	-41.8	6.8

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000079618	-0.002497899	0.260	0.765
2	0.000000000	-0.000077537	0.000617736	0.240	0.740
3	0.000000000	0.000079545	-0.002497404	0.259	0.764
4	0.000000000	-0.000077537	0.000617736	0.240	0.740
5	0.000000000	-0.000071486	0.000416820	0.176	0.700
6	0.000000000	0.000084404	-0.002530444	0.302	0.817
7	0.000000000	-0.000071151	0.000405712	0.172	0.700
8	0.000000000	0.000085044	-0.002534797	0.307	0.824

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Ver

Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ss min

 ${\rm Xs\;min,\;Ys\;min}$ Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
2	S	1.61	-50.0	0.0	-41.3 -51.0 -40.8	20.9	33.2	985	

APPALTATORE: Consorzio HIRPINIA - ORSARA AV	Soci WEBUILD ITALIA PIZZAROTTI		ITIN	ERARIO I	NAPOLI – B	ARI	
PROGETTAZIONE:		RAI	DOPE	NO TRAT	TA APICE -	ORSAR	ΣΔ
<u>Mandataria</u>	<u>Mandanti</u>		_		E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERING PINI GCF ELETTRI-FER	" " " " " " " " " " " " " " " " " " " "	1010	NZIONAL		- 01(3)	AIVA
M-INGEGNERIA							===::=
PROGETTO ESECUT Tombino circolare IN02 -		COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ CL	DOCUMENTO IN0200 001	REV. B	FOGLIO 206 di 261

4	S	1.60	-50.0	0.0	-50.1	20.9	33.2	935	10.1
5	S	0.31	-50.0	40.0	-31.5	41.8	6.8	1182	10.1
6	S	1.60	-50.0	0.0	-49.1	20.9	33.2	935	10.1
7	S	0.00	-50.0	40.0	-30.9	20.9	6.8	3207	20.1
8	S	0.23	-50.0	0.0	2.6	20.9	33.2		

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm
Ver.	Esito della verifica
e1	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2	Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
k1	= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]
kt	= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]
k2	= 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]
k3	= 3.400 Coeff. in eq.(7.11) come da annessi nazionali
k4	= 0.425 Coeff. in eq.(7.11) come da annessi nazionali
Ø	Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]
Cf	Copriferro [mm] netto calcolato con riferimento alla barra più tesa
e sm - e cm	Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]
	Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]
sr max	Massima distanza tra le fessure [mm]
wk	Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi
Mx fess.	Componente momento di prima fessurazione intorno all'asse X [kNm]
My fess.	Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00027	0.00000	0.500	16.0	60	0.00012 (0.00012)	470	0.058 (0.20)	91.61	0.00
2	S	-0.00027	0.00000	0.500	16.0	60	0.00012 (0.00012)	470	0.072 (0.20)	-98.00	0.00
3	S	-0.00026	0.00000	0.500	16.0	60	0.00012 (0.00012)	470	0.058 (0.20)	92.06	0.00
4	S	-0.00033	0.00000	0.500	16.0	60	0.00015 (0.00015)	457	0.069 (0.20)	-98.70	0.00
5	S	-0.00019	0.00000	0.500	16.0	60	0.00009 (0.00009)	524	0.049 (0.20)	61.50	0.00
6	S	-0.00032	0.00000	0.500	16.0	60	0.00015 (0.00015)	457	0.067 (0.20)	-99.42	0.00
7	S	-0.00017	-0.00006	0.672	16.0	60	0.00009 (0.00009)	787	0.073 (0.20)	32.67	0.00
8	S	0.00000	0.00000				`		0.000 (0.20)	-2544.12	0.00

APPALTATORE: Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

N2d max SLU/SLV

N2d min SLU/SLV

Mandataria Mandanti

ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER**

M-INGEGNERIA

PROGETTO ESECUTIVO Tombino circolare IN02 - Relazione di calcolo

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

II LOTTO FUNZIONALE HIRPINIA - ORSARA

DOCUMENTO

IN0200 001

CODIFICA

E ZZ CL

FOGLIO

207 di

261

-2

-10

REV.

В

0

Direzione 2 (armatura verticale)

453

441

367

364

SLV_08

SLV 01

	TABLE: E	Element F	orces - Area S	Shells							4
	Area	Joint	OutputCase	F22	F12	M22	M12	N2d+	N2d-	M2d+	M2d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M22 max SLU/SLV	474	374	SLV_02	19	-37	14	-1	42	-17	15	0
M22 min SLU/SLV	446	357	SLV_02	93	-22	-33	-6	116	71	0	-40
M2d max SLU/SLV	438	359	SLV_02	74	-53	11	-10	117	21	21	0
M2d min SLU/SLV	446	357	SLV_02	93	-22	-33	-6	116	71	0	-40
N22 max SLU/SLV	441	356	SLV_04	192	-4	-25	6	196	0	-18	-31
N22 min SLU/SLV	441	356	SLV_03	-330	-36	-23	-2	0	-366	0	-25

2

-10

4

0

314

-385

LOTTO

02

	TABLE: Element Forces - Area Shells									3	4
	Area	Joint	OutputCase	F22	F12	M22	M12	N2d+	N2d-	M2d+	M2d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M22 max SLE	473	374	SLE_03	-5	1	7	0	0	-6	8	0
M22 min SLE	441	356	SLE_03	-34	-5	-21	1	0	-39	0	-21
M2d max SLE	437	358	SLE_03	-18	1	5	4	0	-20	9	0
M2d min SLE	441	356	SLE_03	-34	-5	-21	1	0	-39	0	-21
N22 max SLE	440	260	SLE_01	28	-4	-2	0	32	0	-1	-2
N22 min SLE	441	356	SLE_02	-129	-18	-16	-2	0	-146	0	-18
N2d max SLE	440	260	SLE_02	28	-20	-3	1	48	8	-2	-4
N2d min SLE	441	364	SLE_02	-127	-30	-7	0	-98	-157	0	-7

-158

-69

156

-316

COMMESSA

IF3A

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A. NOME SEZIONE: IN02_SETTO_X2_DIR2

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

C30/37 CALCESTRUZZO -Classe:

> Resis. compr. di progetto fcd: 17.0 MPa 0.0020 Def.unit. max resistenza ec2: Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo MPa Modulo Elastico Normale Ec: 32836.0 Resis. media a trazione fctm: 2.90 MPa Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: 12.0 MPa

ACCIAIO -B450C Tipo:

Resist. caratt. snervam. fyk: 450.0 MPa Resist. caratt. rottura ftk: 450.0 MPa Resist. snerv. di progetto fyd: 391.3 MPa Resist. ultima di progetto ftd: 391.3 MPa Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER GCF** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 208 di Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В 261

> Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 337.50 MPa Sf limite S.L.E. Comb. Rare:

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces	Poligonale C30/37	
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	40.0
3	50.0	40.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.6	8.4	16
2	-41.6	31.6	16
3	41.6	31.6	16
4	41.6	8.4	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione N°Barra Fin. N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	16
2	2	3	3	16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My Vy Vx		Momento flettent con verso positiv Momento flettent con verso positiv Componente del	e [kNm] intorno all'a o se tale da comprii e [kNm] intorno all'a o se tale da comprii Taglio [kN] parallela	ric. (+ se di compre asse x princ. d'inerzi mere il lembo sup. d asse y princ. d'inerzi mere il lembo destro a all'asse princ.d'ine a all'asse princ.d'ine	a / lella sez. a o della sez. erzia y
N°Comb.	N	Mx	My	Vy	Vx
1	-42.00	15.00	0.00	0.00	0.00
2	-116.00	-40.00	0.00	0.00	0.00
3	-117.00	21.00	0.00	0.00	0.00
4	-116.00	-40.00	0.00	0.00	0.00
5	-196.00	-31.00	0.00	0.00	0.00
6	366.00	-25.00	0.00	0.00	0.00

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A **NET ENGINEERING** PINI

M-INGEGNERIA

GCF ELETTRI-FER

PROGETTO ESECUTIVO **FOGLIO** COMMESSA LOTTO CODIFICA DOCUMENTO REV. 209 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IF3A 02 IN0200 001 В

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

II LOTTO FUNZIONALE HIRPINIA - ORSARA

7 0.00 0.00 -314.00 7.00 0.00 8 385.00 -10.000.00 0.00 0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) N

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	0.00	8.00	0.00
2	0.00	-21.00	0.00
3	0.00	9.00	0.00
4	0.00	-21.00	0.00
5	-32.00	-2.00	0.00
6	146.00	-18.00	0.00
7	-48.00	-4.00	0.00
8	157.00	-7.00	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.6 cm Interferro netto minimo barre longitudinali: 19.2 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

Ν Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Му Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) N Res

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Mv Res Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

1 S -42.00	15.00	0.00	-42.24	107.35	0.00	7.16	10.1(5.3)
2 S -116.00	-40.00	0.00	-116.06	-95.80	0.00	2.40	10.1(5.3)
3 S -117.00	21.00	0.00	-117.08	95.64	0.00	4.55	10.1(5.3)
4 S -116.00	-40.00	0.00	-116.06	-95.80	0.00	2.40	10.1(5.3)
5 S -196.00	-31.00	0.00	-195.93	-83.09	0.00	2.68	10.1(5.3)
6 S 366.00	-25.00	0.00	366.03	-167.93	0.00	6.72	10.1(6.7)
7 S -314.00	7.00	0.00	-313.70	63.88	0.00	9.13	10.1(5.3)
8 S 385.00	-10.00	0.00	384.73	-170.59	0.00	17.06	10.1(6.7)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max Deform. unit. massima del calcestruzzo a compressione Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45 x/d Xc max Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Deform. unit. minima nell'acciaio (negativa se di trazione) es min

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 210 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В

261

Xs min Ys min es max Xs max Ys max) (X	Ordinata in c Deform. unit. Ascissa in c	m della barra c . massima nell'a m della barra c	orrisp. a es m acciaio (positi orrisp. a es m	in (sistema rif.) in (sistema rif.) va se di compre ax (sistema rif.) ax (sistema rif.)	(,Y,O sez.) ss.) X,Y,O sez.)				
N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00062	0.242	50.0	40.0	-0.00006	41.6	31.6	-0.00196	-41.6	8.4
2	0.00056	0.221	-50.0	0.0	-0.00011	-41.6	8.4	-0.00196	41.6	31.6
3	0.00055	0.221	50.0	40.0	-0.00011	41.6	31.6	-0.00196	-41.6	8.4
4	0.00056	0.221	-50.0	0.0	-0.00011	-41.6	8.4	-0.00196	41.6	31.6
5	0.00048	0.196	50.0	0.0	-0.00017	41.6	8.4	-0.00196	-41.6	31.6
6	0.00097	0.331	-50.0	0.0	0.00019	-41.6	8.4	-0.00196	41.6	31.6
7	0.00035	0.151	50.0	40.0	-0.00026	41.6	31.6	-0.00196	-41.6	8.4
8	0.00098	0.334	-50.0	0.0	0.00020	-41.6	8.4	-0.00196	41.6	31.6

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

a	b	С	x/d	C.Rid.
			2 2 4 2	
0.000000000	0.000081677	-0.002642588	0.242	0.742
0.000000000	-0.000079507	0.000555916	0.221	0.717
0.000000000	0.000079476	-0.002624101	0.221	0.716
0.000000000	-0.000079507	0.000555916	0.221	0.717
0.000000000	-0.000077031	0.000477675	0.196	0.700
0.000000000	-0.000092529	0.000967408	0.331	0.854
0.000000000	0.000072935	-0.002569152	0.151	0.700
0.000000000	-0.000093003	0.000982380	0.334	0.858
	0.00000000 0.00000000 0.00000000 0.000000	0.000000000 0.000081677 0.000000000 -0.000079507 0.000000000 0.000079476 0.000000000 -0.000079507 0.000000000 -0.000077031 0.000000000 -0.000092529 0.000000000 0.000072935	0.000000000 0.000081677 -0.002642588 0.000000000 -0.000079507 0.000555916 0.000000000 0.000079476 -0.002624101 0.000000000 -0.000079507 0.000555916 0.000000000 -0.000077031 0.000477675 0.000000000 -0.000092529 0.000967408 0.000000000 0.000072935 -0.002569152	0.000000000 0.000081677 -0.002642588 0.242 0.000000000 -0.00079507 0.000555916 0.221 0.000000000 0.000079476 -0.002624101 0.221 0.000000000 -0.000079507 0.000555916 0.221 0.000000000 -0.000077031 0.000477675 0.196 0.000000000 -0.00092529 0.000967408 0.331 0.000000000 0.00072935 -0.002569152 0.151

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ss min Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff

N°Comb	Ver	Sc max	Xc max \	rc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	0.66	-50.0	40.0	-27.6	-41.6	8.4	1007	10.1
2	S	1.74	50.0	0.0	-72.5	20.8	31.6	1007	10.1
3	S	0.75	-50.0	40.0	-31.1	-41.6	8.4	1007	10.1
4	S	1.74	50.0	0.0	-72.5	20.8	31.6	1007	10.1
5	S	0.00	50.0	0.0	-24.5	-20.8	31.6	3473	20.1
6	S	1.11	-50.0	0.0	-4.3	41.6	31.6	857	10.1
7	S	0.17	50.0	0.0	-40.5	0.0	31.6	1207	10.1
8	S	0.61	-50.0	0.0	3.4	41.6	31.6		

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO COMMESSA CODIFICA DOCUMENTO REV. 211 di Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В 261

e1 e2 k1 kt k2 k3 k4 Ø Cf e sm sr ma wk Mx fe	ess.	Minima di = 0.8 per = 0.4 per = 0.5 per = 3.400 C = 0.425 C Diametro Copriferro Differenza Tra parer Massima Apertura Compone	eformazione un barre ad adere r comb. quasi p flessione; =(e1 coeff. in eq.(7.1 [mm] equivaler b [mm] netto cal a tra le deforma tesi: valore min distanza tra le	itaria di tra: enza migliori permanenti + e2)/(2*e* 1) come da 1) come da nte delle ba cicolato con uzioni medie nimo = 0.6 s fessure [mr calcolata = li prima fesi	zione nel rata [eq.(7 / = 0.6 pe 1) per traz annessi i annessi i rre tese c riferiment e di acciai Smax / Es m] sr max*(e surazione	calcestruzzi 7.11)EC2] r comb.freq cione eccent nazionali nazionali nazionali o en alla barra o e calcestr c [(7.9)EC; e_sm - e_cm intorno all'a	uzzo [(7.8)EC2 e (C4.1.7)NTC] 2 e (C4.1.8)NTC] a) [(7.8)EC2 e (C4.1.7)NTC]. Valor asse X [kNm]	essurata C2]			
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00019	0.00000	0.500	16.0	76	0.00008 (0.00008)	531	0.044 (0.20)	83.22	0.00
2	S	-0.00049	0.00000	0.500	16.0	76	0.00022 (0.00022)	531	0.115 (0.20)	-83.22	0.00
3	S	-0.00021	0.00000	0.500	16.0	76	0.00009 (0.00009)	531	0.049 (0.20)	83.22	0.00
4	S	-0.00049	0.00000	0.500	16.0	76	0.00022 (0.00022)	531	0.115 (0.20)	-83.22	0.00
5	S	-0.00015	-0.00001	0.518	16.0	76	0.00007 (0.00007)	746	0.055 (0.20)	-40.25	0.00
	-						(11111)		()	= •	

Verifica di resistenza a taglio (SLU, SLV)

0.00000

0.00000

0.00000

0.500

0.500

16.0

16.0

76

76

-0.00005

-0.00026

0.00000

S

S

S

6

7

8

	TABLE: E	Element F	orces - Area	Shells		
	Area Joint OutputCase V13/V2					
	Text	Text	Text	KN/m		
V max/min SLU/SLV	488	419	SLV_04	96		

0.00001 (0.00001)

0.00012 (0.00012)

490

585

0.006 (0.20)

0.071 (0.20)

0.000 (0.20)

-181.34

-46.22

-2544.12

0.00

0.00

Elementi senza armature trasversali resiste	nti a taglio § 4.1.2.3.5.1	NTC2018			
Resistenza a taglio (4.1.23 NTC 2018)	V _{Rd,1} = (0.18·k·(100·	$\rho_1 \cdot f_{ck}$) ^{1/3} / $\gamma_c + 0.15\sigma_{cp}$)· $b_w \cdot d =$	146	(kN)	-
	V	$R_{d,2} = (V_{min} + 0.15\sigma_{cp}) \cdot b_w \cdot d = 0.00$	147	(kN)	-
		$V_{Rd} = max (V_{Rd,1}; V_{Rd,2}) =$	147	(kN)	-
Resistenza a taglio precompresso (4.1.24 N	C 2018)	· · · · · · · · · · · · · · ·	***************************************		•
	$V_{Rd} = 0$.	$7 \cdot b_w \cdot d \cdot (f_{ctd}^2 + \sigma_{cp} + f_{ctd})^{1/2} = $	434	(kN)	•
		-			•
Taglio sollecitante		V _{Ed} =	96	(kN)	Verifica soddisfatta
larghezza minima della sezione		b _w =	1000.00	(mm)	•
altezza totale della sezione		>w − _ h =	400.00	(mm)	•
copriferro		r =	84.00	(mm)	-
altezza utile della sezione		d =	316.00	(mm)	•
resistenza caratteristica a compressione		f _{ck} =	30.71	(N/mmg)	-
resistenza di progetto a trazione cls		f _{ctd} =	2	(N/mmg)	
armatura longitudinale della sezione		A _{sl} =	1005.31	(mma)	-
area di calcestruzzo		$A_c = b_w d =$	316000	(mmg)	•
rapporto geometrico di armatura longitudinale		$\rho_1 = A_{sl}/A_c =$	0	< 0.02	
sforzo normale agente		N _{ed} =	0.00	(N)	
tensione media di compressione nella sezione		$\sigma_{cp} = N_{Ed}/A_c =$	0		- <=0,2fcd
tensione media di compressione nella sezione i	nserita nel calcolo	$\sigma_{cp} = N_{Ed}/A_c =$	0		
k calcolato		k =	2	< 2	
k inserito nella formula		k = "	2		•
Tensione resistente tang. Max offerta dal solo c	S	$v_{min} = 0.035 \cdot k^{3/2} f_{ck}^{1/2} =$	0	(N/mmq)	•

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI GCF ELETTRI-FER

M-INGEGNERIA

PROGETTO ESECUTIVO

Tombino circolare IN02 - Relazione di calcolo

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF3A
 02
 E ZZ CL
 IN0200 001
 B
 261

13.7.3 SETTO Y1

Verifica di resistenza a pressoflessione (SLU, SLV, SLE)

Armatura int (sup) 5Φ16 Armatura est (inf) 5Φ16

Armatura a taglio non necessaria

• Direzione 1 (armatura orizzontale)

	TABLE: I	Element F	orces - Area	Shells				1	2	1	2
	Area	Joint	OutputCase	F11	F12	M11	M12	N1d+	N1d-	M1d+	M1d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M11 max SLU/SLV	156	19	SLV_07	-343	18	60	3	-338	-361	64	0
M11 min SLU/SLV	160	115	SLV_03	-115	14	-48	5	0	-130	-46	-54
M1d max SLU/SLV	156	19	SLV_07	-343	18	60	3	-338	-361	64	0
M1d min SLU/SLV	160	115	SLV_03	-115	14	-48	5	0	-130	-46	-54
N11 max SLU/SLV	156	20	SLV_06	52	-24	8	2	76	0	10	0
N11 min SLU/SLV	156	20	SLV_03	-435	102	-5	-9	-363	-537	4	-14
N1d max SLU/SLV	214	183	SLV_03	5	198	-1	2	203	-193	2	-3
N1d min SLU/SLV	156	20	SLV_03	-435	102	-5	-9	-363	-537	4	-14

	TABLE: E	ΓABLE: Element Forces - Area Shells							2		
	Area	Joint	OutputCase	F11	F12	M11	M12	N1d+	N1d-	M1d+	M1d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M11 max SLE	156	19	SLE_04	-76	-2	22	2	-75	-78	24	0
M11 min SLE	160	141	SLE_06	-48	-3	-22	0	-48	-51	-22	-23
M1d max SLE	156	19	SLE_04	-76	-2	22	2	-75	-78	24	0
M1d min SLE	147	115	SLE_06	-47	-2	-22	1	-47	-50	-22	-23
N11 max SLE	183	158	SLE_05	16	-23	1	1	39	-7	2	0
N11 min SLE	156	20	SLE_06	-187	8	13	-1	-186	-195	14	12
N1d max SLE	210	179	SLE_02	-4	50	-1	0	46	-54	-1	-2
N1d min SLE	156	20	SLE_06	-187	8	13	-1	-186	-195	14	12

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A. NOME SEZIONE: IN02_SETTO_Y1_DIR1

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione:

Condizioni Ambientali:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

A Sforzo Norm. costante

Moderat. aggressive

Assi x,y principali d'inerzia

Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C30/37

Resis. compr. di progetto fcd: 17.0 MPa
Def.unit. max resistenza ec2: 0.0020
Def.unit. ultima ecu: 0.0035
Diagramma tensione-deformaz.: Parabola-Rettangolo
Modulo Elastico Normale Ec: 32836.0 MPa
Resis. media a trazione fctm: 2.90 MPa

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A NET ENGINEERING PINI **ELETTRI-FER GCF** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO REV. COMMESSA CODIFICA DOCUMENTO 213 di Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В 261

	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	12.0	MPa
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	337.50	MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

	Forma del Dominio: Classe Calcestruzzo:		
X [cm]	N°vertice:		
-50.0	1		
	2		
	3 1		
	struzzo: X [cm]		

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.8	6.8	16
2	-41.8	33.2	16
3	41.8	33.2	16
4	41.8	6.8	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
N°Barre	Numero di barre generate equidistanti cui si riferisce la generazione
Ø	Diametro in mm delle barre della generazione

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	16
2	2	3	3	16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 214 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IF3A 02 IN0200 001 В 261

Vx		Componente del Taglio [kN] parallela all'asse princ.d'inerzia x					
N°Comb.	N	Mx	Му	Vy	Vx		
1	338.00	64.00	0.00	0.00	0.00		
2	0.00	-54.00	0.00	0.00	0.00		
3	338.00	64.00	0.00	0.00	0.00		
4	0.00	-54.00	0.00	0.00	0.00		
5	-76.00	10.00	0.00	0.00	0.00		
6	537.00	-14.00	0.00	0.00	0.00		
7	-203.00	-3.00	0.00	0.00	0.00		
8	537.00	-14.00	0.00	0.00	0.00		

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
	con verso positivo se tale da comprimere il lembo superiore della sezione
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
	con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	75.00	24.00	0.00
2	48.00	-23.00	0.00
3	75.00	24.00	0.00
4	47.00	-23.00	0.00
5	-39.00	2.00	0.00
6	195.00	14.00	0.00
7	-46.00	-2.00	0.00
8	195.00	14.00	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.0 cm Interferro netto minimo barre longitudinali: 19.3 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

ver	S = combinazione verificata / N = combin. non verificata
N1	Cforma normala accompate [[Al] not beginners Discription of Apositive and di

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)
Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1 2 3 4 5	S S S S	338.00 0.00 338.00 0.00 -76.00	64.00 -54.00 64.00 -54.00 10.00	0.00 0.00 0.00 0.00 0.00	337.91 0.00 337.91 0.00 -76.23	169.78 -119.11 169.78 -119.11 107.13	0.00 0.00 0.00 0.00 0.00	2.65 2.21 2.65 2.21 10.71	10.1(6.7) 10.1(6.7) 10.1(6.7) 10.1(6.7) 10.1(6.7)

APPALTATORE: Consorzio

Soci HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A NET ENGINEERING PINI **GCF ELETTRI-FER**

M-INGEGNERIA

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

ITINERARIO NAPOLI - BARI

PROGETTO ESECUTIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tombino circolare IN02 - Relazione di calcolo	IF3A	02	E ZZ CL	IN0 2 00 001	В	215 di 261

6	S	537.00	-14.00	0.00	536.83	-197.92	0.00	14.14	10.1(6.7)
7	S	-203.00	-3.00	0.00	-202.82	-86.72	0.00	28.91	10.1(6.7)
8	S	537.00	-14.00	0.00	536.83	-197.92	0.00	14.14	10.1(6.7)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

$N^{\circ}Comb$	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00089	0.313	-50.0	40.0	0.00031	-41.8	33.2	-0.00196	-41.8	6.8
2	0.00062	0.240	-50.0	0.0	0.00009	-41.8	6.8	-0.00196	41.8	33.2
3	0.00089	0.313	-50.0	40.0	0.00031	-41.8	33.2	-0.00196	-41.8	6.8
4	0.00062	0.240	-50.0	0.0	0.00009	-41.8	6.8	-0.00196	41.8	33.2
5	0.00055	0.220	-50.0	40.0	0.00004	-41.8	33.2	-0.00196	-41.8	6.8
6	0.00104	0.347	-50.0	0.0	0.00043	-41.8	6.8	-0.00196	41.8	33.2
7	0.00043	0.180	-50.0	0.0	-0.00006	-41.8	6.8	-0.00196	41.8	33.2
8	0.00104	0.347	-50.0	0.0	0.00043	-41.8	6.8	-0.00196	41.8	33.2

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000000000	0.000085756	-0.002539644	0.313	0.831
2	0.000000000	-0.000077537	0.000617736	0.240	0.740
3	0.000000000	0.000085756	-0.002539644	0.313	0.831
4	0.00000000	-0.000077537	0.000617736	0.240	0.740
5	0.000000000	0.000075515	-0.002470003	0.220	0.715
6	0.000000000	-0.000090310	0.001041785	0.347	0.874
7	0.000000000	-0.000071864	0.000429378	0.180	0.700
8	0.000000000	-0.000090310	0.001041785	0.347	0.874

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Ver

Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] ${\rm Xc\ max,\ Yc\ max}$ Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Ss min Minima tensione (negativa se di trazione) nell'acciaio [MPa]

Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Xs min, Ys min Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb	Ver	Sc max	Xc max \	c max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.70	-50.0	40.0	-42.5	20.9	6.8	885	10.1
2	S	1.68	-50.0	0.0	-51.9	20.9	33.2	935	10.1

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandanti</u> <u>Mandataria</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 216 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IF3A 02 IN0200 001 В 261

3	S	1.70	-50.0	40.0	-42.5	20.9	6.8	885	10.1
4	S	1.68	-50.0	0.0	-52.4	20.9	33.2	935	10.1
5	S	0.00	-50.0	40.0	-26.9	20.9	6.8	3207	20.1
6	S	0.93	-50.0	40.0	2.1	20.9	6.8	0	0.0
7	S	0.00	-50.0	0.0	-30.4	20.9	33.2	3207	20.1
8	S	0.93	-50.0	40.0	2.1	20.9	6.8	0	0.0

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Ver. Esito della verifica Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e1 e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] k1 kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k3 k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC] Massima distanza tra le fessure [mm] sr max Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk Mx fess.

Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. Ver e2 k2 Ø Cf Mx fess My fess e1 e sm - e cm sr max wk 1 S -0.00028 0.00000 0.500 16.0 60 0.00013 (0.00013) 443 0.057 (0.20) 107.92 0.00 0.00000 0.00016 (0.00016) 0.071 (0.20) -99.03 0.00 2 S -0.00034 0.500 16.0 60 457 S 3 -0.00028 0.00000 0.500 16.0 60 0.00013 (0.00013) 443 0.057 (0.20) 107.92 0.00 4 S -0.00034 0.00000 0.500 16.0 60 0.00016 (0.00016) 457 0.072 (0.20) -98.69 0.00 S 0.00008 (0.00008) 750 0.00 5 -0.00015 -0.00004 0.629 16.0 60 0.061 (0.20) 36.49 S 6 0.00000 0.00000 60 0.00008 (0.00008) 0 0.001 (0.20) 1651.03 0.00 0.629 16.0 7 S -0.00017 -0.00006 0.00009 (0.00009) 783 0.071 (0.20) 0.00 0.667 16.0 60 -33.10 S 0.00000 0.00000 0.00009 (0.00009) 0 8 0.667 16.0 60 0.001 (0.20) 1651.03 0.00

APPALTATORE: Consorzio Soci HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE:

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER**

M-INGEGNERIA

PROGETTO ESECUTIVO Tombino circolare IN02 - Relazione di calcolo

LOTTO COMMESSA CODIFICA E ZZ CL IF3A 02

DOCUMENTO REV. IN0200 001 В

FOGLIO 217 di 261

Direzione 2 (armatura verticale)

	TABLE: I	BLE: Element Forces - Area Shells						3	4	3	4
	Area	Joint	OutputCase	F22	F12	M22	M12	N2d+	N2d-	M2d+	M2d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M22 max SLU/SLV	100	20	SLV_05	-78	80	24	-10	-33	-157	34	0
M22 min SLU/SLV	214	184	SLV_05	43	41	-48	3	84	2	0	-51
M2d max SLU/SLV	100	20	SLV_05	-78	80	24	-10	-33	-157	34	0
M2d min SLU/SLV	214	184	SLV_05	43	41	-48	3	84	2	0	-51
N22 max SLU/SLV	169	122	SLV_03	136	30	12	-2	166	106	14	0
N22 min SLU/SLV	206	180	SLV_06	-227	-20	-28	1	0	-247	0	-29
N2d max SLU/SLV	206	149	SLV_03	110	162	4	-2	272	-52	6	0
N2d min SLU/SLV	100	20	SLV_03	-192	182	19	-1	0	-374	19	17

	TABLE:	ABLE: Element Forces - Area Shells						3			4
	Area	Joint	OutputCase	F22	F12	M22	M12	N2d+	N2d-	M2d+	M2d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M22 max SLE	101	19	SLE_04	-12	-11	9	4	0	-23	12	0
M22 min SLE	214	184	SLE_04	-42	-1	-29	0	0	-43	0	-30
M2d max SLE	101	19	SLE_04	-12	-11	9	4	0	-23	12	0
M2d min SLE	214	184	SLE_04	-42	-1	-29	0	0	-43	0	-30
N22 max SLE	183	158	SLE_01	29	-6	-2	1	35	0	-2	-3
N22 min SLE	210	184	SLE_05	-101	-3	-21	0	0	-104	0	-21
N2d max SLE	183	158	SLE_05	25	-23	-3	1	48	2	-2	-5
N2d min SLE	210	183	SLE_02	-75	47	-7	0	-28	-122	0	-7

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A. NOME SEZIONE: IN02_SETTO_Y1_DIR2

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive Assi x,y principali d'inerzia Riferimento Sforzi assegnati: Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Def.unit. max resistenza ec2: Def.unit. ultima ecu: Diagramma tensione-deformaz.:	C30/37 17.0 0.0020 0.0035 Parabola-Rettangolo	MPa
	Modulo Elastico Normale Ec:	32836.0	MPa
	Resis. media a trazione fctm:	2.90	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	12.0	MPa
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm²

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 218 di Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В 261

> Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces		Poligonale C30/37
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	40.0
3	50.0	40.0
4	50.0	0.0

DATI BARRE ISOLATE

N

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.6	8.4	16
2	-41.6	31.6	16
3	41.6	31.6	16
4	41.6	8.4	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione N°Barra Fin. N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	16
2	2	3	3	16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia										
Му		Momento flettente	e [kNm] intorno all'a	mere il lembo sup. d Isse y princ. d'inerzi mere il lembo destro	а						
Vy				a all'asse princ.d'ine							
Vx		Componente del Taglio [kN] parallela all'asse princ.d'inerzia x									
N°Comb.	N	Mx	Му	Vy	Vx						
1	33.00	34.00	0.00	0.00	0.00						
2	-84.00	-51.00	0.00	0.00	0.00						
3	33.00	34.00	0.00	0.00	0.00						
4	-84.00	-51.00	0.00	0.00	0.00						
5	-166.00	14.00	0.00	0.00	0.00						
6	247.00	-29.00	0.00	0.00	0.00						

Sforzo normale [kN] applicato nel Baric. (+ se di compressione)

APPALTATORE:

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A **NET ENGINEERING** PINI

M-INGEGNERIA

GCF

ELETTRI-FER

PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

II LOTTO FUNZIONALE HIRPINIA - ORSARA

FOGLIO

219 di

261

7 0.00 0.00 0.00 -272.00 6.00 8 374.00 19.00 0.00 0.00 0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	0.00	12.00	0.00
2	0.00	-30.00	0.00
3	0.00	12.00	0.00
4	0.00	-30.00	0.00
5	-35.00	-3.00	0.00
6	104.00	-21.00	0.00
7	-48.00	-5.00	0.00
8	122.00	-7.00	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.6 cm Interferro netto minimo barre longitudinali: 19.2 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Му Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) N Res

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Mv Res Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	33.00	34.00	0.00	33.03	118.94	0.00	3.50	10.1(6.7)
2	S	-84.00	-51.00	0.00	-84.00	-100.85	0.00	1.98	10.1(6.7)
3	S	33.00	34.00	0.00	33.03	118.94	0.00	3.50	10.1(6.7)
4	S	-84.00	-51.00	0.00	-84.00	-100.85	0.00	1.98	10.1(6.7)
5	S	-166.00	14.00	0.00	-165.86	87.90	0.00	6.28	10.1(6.7)
6	S	247.00	-29.00	0.00	247.27	-150.87	0.00	5.20	10.1(6.7)
7	S	-272.00	6.00	0.00	-271.95	70.75	0.00	11.79	10.1(6.7)
8	S	374.00	19.00	0.00	373.89	169.05	0.00	8.90	10.1(6.7)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max Deform. unit. massima del calcestruzzo a compressione Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45 x/d Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Xc max Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Deform. unit. minima nell'acciaio (negativa se di trazione) es min

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 220 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IF3A 02 IN0200 001 В

261

Xs min Ys min es max Xs max Ys max) K X	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Deform. unit. massima nell'acciaio (positiva se di compress.) Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)								
N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00069	0.261	-50.0	40.0	-0.00001	41.6	31.6	-0.00196	-41.6	8.4
2	0.00059	0.231	-50.0	0.0	-0.00009	-41.6	8.4	-0.00196	41.6	31.6
3	0.00069	0.261	-50.0	40.0	-0.00001	41.6	31.6	-0.00196	-41.6	8.4
4	0.00059	0.231	-50.0	0.0	-0.00009	-41.6	8.4	-0.00196	41.6	31.6
5	0.00051	0.206	50.0	40.0	-0.00015	41.6	31.6	-0.00196	-41.6	8.4
6	0.00087	0.308	-50.0	0.0	0.00012	-41.6	8.4	-0.00196	41.6	31.6
7	0.00040	0.169	50.0	40.0	-0.00023	41.6	31.6	-0.00196	-41.6	8.4
8	0.00097	0.332	-50.0	40.0	0.00019	41.6	31.6	-0.00196	-41.6	8.4

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

a	b	С	x/d	C.Rid.
0.000000000	0.000083802	-0.002660434	0.261	0.766
0.000000000	-0.000080470	0.000586343	0.231	0.728
0.000000000	0.000083802	-0.002660434	0.261	0.766
0.000000000	-0.000080470	0.000586343	0.231	0.728
0.000000000	0.000077978	-0.002611519	0.206	0.700
0.000000000	-0.000089503	0.000871779	0.308	0.825
0.000000000	0.000074463	-0.002581990	0.169	0.700
0.000000000	0.000092727	-0.002735410	0.332	0.855
	0.00000000 0.00000000 0.00000000 0.000000	0.000000000 0.000083802 0.000000000 -0.000080470 0.000000000 0.000083802 0.000000000 -0.000080470 0.000000000 0.000077978 0.000000000 -0.000089503 0.000000000 0.000074463	0.000000000 0.000083802 -0.002660434 0.000000000 -0.000080470 0.000586343 0.000000000 0.000083802 -0.002660434 0.000000000 -0.000080470 0.000586343 0.000000000 0.000077978 -0.002611519 0.000000000 -0.000089503 0.000871779 0.000000000 0.000074463 -0.002581990	0.000000000 0.000083802 -0.002660434 0.261 0.000000000 -0.000080470 0.000586343 0.231 0.000000000 0.000083802 -0.002660434 0.261 0.000000000 -0.000080470 0.000586343 0.231 0.000000000 0.000077978 -0.002611519 0.206 0.000000000 -0.00089503 0.000871779 0.308 0.000000000 0.000074463 -0.002581990 0.169

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ss min Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff

N°Comb	Ver	Sc max	Xc max \	c max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.00	-50.0	40.0	-41.4	-41.6	8.4	1007	10.1
2	S	2.49	50.0	0.0	-103.6	0.0	31.6	1007	10.1
3	S	1.00	-50.0	40.0	-41.4	-41.6	8.4	1007	10.1
4	S	2.49	50.0	0.0	-103.6	0.0	31.6	1007	10.1
5	S	0.14	50.0	0.0	-29.8	0.0	31.6	1207	10.1
6	S	1.48	-50.0	0.0	-22.5	41.6	31.6	857	10.1
7	S	0.30	50.0	0.0	-43.9	20.8	31.6	1207	10.1
8	S	0.53	-50.0	0.0	2.1	41.6	31.6		

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 221 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В 261

sr ma	- e cm	Minima de = 0.8 per = 0.4 per = 0.5 per f = 3.400 C = 0.425 C Diametro Copriferro Differenza Tra pareni Massima de	eformazione un barre ad adere comb. quasi p flessione; =(e1 oeff. in eq.(7.1 [mm] equivaler [mm] netto cal tra le deforma tesi: valore min distanza tra le	itaria di tra: enza miglion permanenti + e2)/(2*e- 1) come da 1) come da nte delle ba lcolato con uzioni media nimo = 0.6 s fessure [mr	zione nel rata [eq.(/ = 0.6 pe 1) per traz annessi annessi rre tese c riferimen e di accia Smax / Es n]	calcestruzzo 7.11)EC2] er comb.frequent propositione eccent propositionali	uzzo [(7.8)EC2 e (C4.1.7)NTC] ? e (C4.1.8)NTC]	essurata C2]			
wk Mx fe	ess.		essure in mm o nte momento d) [(7.8)EC2 e (C4.1.7)NTC]. Valor sse X [kNm]	re limite t	ra parentesi		
My fe	ess.	Compone	nte momento d	li prima fes	surazione	intorno all'a	sse Y [kNm]				
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00028	0.00000	0.500	16.0	76	0.00012 (0.00012)	531	0.066 (0.20)	83.22	0.00
2	S	-0.00071	0.00000	0.500	16.0	76	0.00031 (0.00031)	531	0.165 (0.20)	-83.22	0.00
3	S	-0.00028	0.00000	0.500	16.0	76	0.00012 (0.00012)	531	0.066 (0.20)	83.22	0.00
4	S	-0.00071	0.00000	0.500	16.0	76	0.00031 (0.00031)	531	0.165 (0.20)	-83.22	0.00
_	_								: :		

Verifica di resistenza a taglio (SLU, SLV)

0.00000

0.00000

0.00000

0.00000

0.500

0.500

0.500

16.0

16.0

16.0

76

76

76

-0.00019

-0.00017

-0.00028

0.00000

5

6

7

8

S

S

S

S

	TABLE: E	Element F	orces - Area	Shells
	Area	Joint	OutputCase	V13/V23
	Text	Text	Text	KN/m
V max/min SLU/SLV	210	184	SLV 05	95

0.00009 (0.00009)

0.00007 (0.00007)

0.00013 (0.00013)

585

490

585

0.052 (0.20)

0.033 (0.20)

0.077 (0.20)

0.000 (0.20)

-46.80

-50.73

-124.27

1651.03

0.00

0.00

0.00

0.00

Elementi senza armature trasversali resiste	nti a taglio § 4.1.2.3.5.1	NTC2018			l
Resistenza a taglio (4.1.23 NTC 2018)	V _{Rd,1} = (0.18·k·(100-	$\rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \sigma_{cp}) \cdot b_w \cdot d = 0.000$	146	(kN)	M .
	V	$R_{d,2} = (V_{min} + 0.15\sigma_{cp}) \cdot b_w \cdot d = 0.00$	147	(kN)	and the state of t
		$V_{Rd} = max (V_{Rd,1}; V_{Rd,2}) = $	147	(kN)	
Resistenza a taglio precompresso (4.1.24 N	C 2018)				_
	$V_{Rd} = 0.$	$7 \cdot b_w \cdot d \cdot (f_{ctd}^2 + \sigma_{cp} + f_{ctd})^{1/2} = $	434	(kN)	_
Taglio sollecitante		V _{Ed} =	95	(kN)	Verifica soddisfatta!
larghezza minima della sezione		$b_w = $	1000.00	(mm)	-
altezza totale della sezione		h =	400.00	(mm)	_
copriferro		c =	84.00	(mm)	
altezza utile della sezione		d =	316.00	(mm)	_
resistenza caratteristica a compressione		$f_{ck} = $	30.71	(N/mmq)	~
resistenza di progetto a trazione cls		$f_{ctd} = $	2	(N/mmq)	
armatura longitudinale della sezione		$A_{sl} = $	1005.31	(mmq)	
area di calcestruzzo		$A_c = b_w \cdot d = $	316000	(mmq)	_
rapporto geometrico di armatura longitudinale		$\rho_1 = A_{sl}/A_c =$	0	< 0.02	w
sforzo normale agente		N _{ed} =	0.00	(N)	_
tensione media di compressione nella sezione		$\sigma_{cp} = N_{Ed}/A_c = $	0	(N/mmq)	<=0,2fcd
tensione media di compressione nella sezione i	nserita nel calcolo	$\sigma_{cp} = N_{Ed}/A_c =$	0		
k calcolato		k =	2	< 2	_
k inserito nella formula		k =	2		
Tensione resistente tang. Max offerta dal solo c	S	$v_{min} = 0.035 \cdot k^{3/2} f_{ck}^{1/2} =$	0	(N/mmq)	

APPALTATORE:

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI GCF ELETTRI-FER

M-INGEGNERIA

Tombino circolare IN02 - Relazione di **calcolo**

PROGETTO ESECUTIVO

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

COMMESSA IF3A LOTTO 02 CODIFICA E ZZ CL DOCUMENTO IN0200 001 REV. B FOGLIO 222 di 261

13.7.4 SETTO Y2

Verifica di resistenza a pressoflessione (SLU, SLV, SLE)

Armatura int (sup) 5Φ16 Armatura est (inf) 5Φ16

Armatura a taglio non necessaria

• Direzione 1 (armatura orizzontale)

	TABLE: E	Element F	orces - Area S	Shells				1	2	1	2
	Area	Joint	OutputCase	F11	F12	M11	M12	N1d+	N1d-	M1d+	M1d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M11 max SLU/SLV	239	190	SLV_08	-344	15	61	3	-340	-359	63	0
M11 min SLU/SLV	257	227	SLV_04	-112	16	-48	5	0	-129	-46	-53
M1d max SLU/SLV	239	190	SLV_08	-344	15	61	3	-340	-359	63	0
M1d min SLU/SLV	257	227	SLV_04	-112	16	-48	5	0	-129	-46	-53
N11 max SLU/SLV	239	189	SLV_05	52	-22	9	3	74	0	11	0
N11 min SLU/SLV	239	189	SLV_04	-436	101	-4	-9	-367	-537	5	-13
N1d max SLU/SLV	280	265	SLV_03	-5	-204	1	-1	199	-209	2	0
N1d min SLU/SLV	239	189	SLV_04	-436	101	-4	-9	-367	-537	5	-13

	TABLE: I	Element F	orces - Area 🤄	Shells				1			2
	Area	Joint	OutputCase	F11	F12	M11	M12	N1d+	N1d-	M1d+	M1d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M11 max SLE	239	189	SLE_05	-76	2	22	-2	-75	-78	24	0
M11 min SLE	243	243	SLE_06	-48	3	-22	0	-48	-51	-22	-23
M1d max SLE	239	189	SLE_05	-76	2	22	-2	-75	-78	24	0
M1d min SLE	230	217	SLE_06	-47	2	-22	-1	-47	-50	-22	-23
N11 max SLE	266	260	SLE_04	16	23	1	-1	39	-7	2	0
N11 min SLE	239	190	SLE_06	-187	-8	13	1	-186	-195	14	12
N1d max SLE	280	265	SLE_02	-4	-50	-1	0	46	-54	-1	-2
N1d min SLE	239	190	SLE_06	-187	-8	13	1	-186	-195	14	12

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A. NOME SEZIONE: IN02_SETTO_Y2_DIR1

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione:

Condizioni Ambientali:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

A Sforzo Norm. costante

Moderat. aggressive

Assi x,y principali d'inerzia

Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C30/37

Resis. compr. di progetto fcd: 17.0 MPa
Def.unit. max resistenza ec2: 0.0020
Def.unit. ultima ecu: 0.0035
Diagramma tensione-deformaz.: Parabola-Rettangolo
Modulo Elastico Normale Ec: 32836.0 MPa
Resis. media a trazione fctm: 2.90 MPa

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO COMMESSA CODIFICA DOCUMENTO REV. 223 di Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В 261

	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	12.0	MPa
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	337.50	MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del De Classe Calces		Poligonale C30/37
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	40.0
3	50.0	40.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.8	6.8	16
2	-41.8	33.2	16
3	41.8	33.2	16
4	41.8	6.8	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione N°Barra Fin. N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	16
2	2	3	3	16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 224 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В 261

N /s.

Vx		Componente del	Taglio [kN] parallela	a all'asse princ.d'ine	rzia x
N°Comb.	N	Mx	Му	Vy	Vx
1	340.00	63.00	0.00	0.00	0.00
2	0.00	-53.00	0.00	0.00	0.00
3	340.00	63.00	0.00	0.00	0.00
4	0.00	-53.00	0.00	0.00	0.00
5	-74.00	11.00	0.00	0.00	0.00
6	537.00	-13.00	0.00	0.00	0.00
7	-199.00	2.00	0.00	0.00	0.00
8	537.00	-13.00	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
	con verso positivo se tale da comprimere il lembo superiore della sezione
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
	con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	IVIX	IVIY
1	75.00	24.00	0.00
2	48.00	-23.00	0.00
3	75.00	24.00	0.00
4	47.00	-23.00	0.00
5	-39.00	2.00	0.00
6	195.00	14.00	0.00
7	-46.00	-2.00	0.00
8	195.00	14.00	0.00

RISULTATI DEL CALCOLO

NIOComb

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.0 cm Interferro netto minimo barre longitudinali: 19.3 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Mx Му Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) N Res

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia My Res Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC] As Tesa

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1 2 3 4 5	S S S S	340.00 0.00 340.00 0.00 -74.00	63.00 -53.00 63.00 -53.00 11.00	0.00 0.00 0.00 0.00 0.00	339.81 0.00 339.81 0.00 -74.05	170.05 -119.11 170.05 -119.11 107.47	0.00 0.00 0.00 0.00 0.00	2.70 2.25 2.70 2.25 9.77	10.1(6.7) 10.1(6.7) 10.1(6.7) 10.1(6.7) 10.1(6.7)

APPALTATORE:

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

<u>Mandataria</u> Mandanti

ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER**

M-INGEGNERIA

PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 225 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IF3A 02 IN0200 001 В 261

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

II LOTTO FUNZIONALE HIRPINIA - ORSARA

6	S	537.00	-13.00	0.00	536.83	-197.92	0.00	15.22	10.1(6.7)
7	S	-199.00	2.00	0.00	-199.01	87.35	0.00	43.67	10.1(6.7)
8	S	537.00	-13.00	0.00	536.83	-197.92	0.00	15.22	10.1(6.7)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

Deform. unit. massima del calcestruzzo a compressione ec max x/d Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45 Xc max Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Deform. unit. minima nell'acciaio (negativa se di trazione) es min Xs min Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ys min Deform. unit. massima nell'acciaio (positiva se di compress.) es max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Xs max Ys max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00089	0.313	-50.0	40.0	0.00031	-41.8	33.2	-0.00196	-41.8	6.8
2	0.00062	0.240	-50.0	0.0	0.00009	-41.8	6.8	-0.00196	41.8	33.2
3	0.00089	0.313	-50.0	40.0	0.00031	-41.8	33.2	-0.00196	-41.8	6.8
4	0.00062	0.240	-50.0	0.0	0.00009	-41.8	6.8	-0.00196	41.8	33.2
5	0.00055	0.220	-50.0	40.0	0.00004	-41.8	33.2	-0.00196	-41.8	6.8
6	0.00104	0.347	-50.0	0.0	0.00043	-41.8	6.8	-0.00196	41.8	33.2
7	0.00043	0.181	-50.0	40.0	-0.00006	-41.8	33.2	-0.00196	-41.8	6.8
8	0.00104	0.347	-50.0	0.0	0.00043	-41.8	6.8	-0.00196	41.8	33.2

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000085800	-0.002539941	0.313	0.831
2	0.000000000	-0.000077537	0.000617736	0.240	0.740
3	0.000000000	0.000085800	-0.002539941	0.313	0.831
4	0.000000000	-0.000077537	0.000617736	0.240	0.740
5	0.000000000	0.000075573	-0.002470399	0.220	0.715
6	0.00000000	-0.000090310	0.001041785	0.347	0.874
7	0.000000000	0.000071980	-0.002445965	0.181	0.700
8	0.000000000	-0.000090310	0.001041785	0.347	0.874

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Ss min Minima tensione (negativa se di trazione) nell'acciaio [MPa]

Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Xs min, Ys min Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb	Ver	Sc max	Xc max \	∕c max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.70	-50.0	40.0	-42.5	20.9	6.8	885	10.1
2	9	1 68	-50 O	0.0	-51 0	20.0	33.3	035	10 1

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 226 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В 261

3	S	1.70	-50.0	40.0	-42.5	20.9	6.8	885	10.1
4	S	1.68	-50.0	0.0	-52.4	20.9	33.2	935	10.1
5	S	0.00	-50.0	40.0	-26.9	20.9	6.8	3207	20.1
6	S	0.93	-50.0	40.0	2.1	20.9	6.8	0	0.0
7	S	0.00	-50.0	0.0	-30.4	20.9	33.2	3207	20.1
8	S	0.93	-50.0	40.0	2.1	20.9	6.8	0	0.0

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Ver. Esito della verifica Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e1 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k3 k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø Copriferro [mm] netto calcolato con riferimento alla barra più tesa Cf Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC] Massima distanza tra le fessure [mm] sr max Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm]
My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
S	-0 00028	0.00000	0.500	16.0	60	0 00013 (0 00013)	443	0 057 (0 20)	107 92	0.00
S	-0.00034	0.00000	0.500	16.0	60	0.00016 (0.00016)	457	0.071 (0.20)	-99.03	0.00
S	-0.00028	0.00000	0.500	16.0	60	0.00013 (0.00013)	443	0.057 (0.20)	107.92	0.00
S	-0.00034	0.00000	0.500	16.0	60	0.00016 (0.00016)	457	0.072 (0.20)	-98.69	0.00
S	-0.00015	-0.00004	0.629	16.0	60	0.00008 (0.00008)	750	0.061 (0.20)	36.49	0.00
S	0.00000	0.00000	0.629	16.0	60	0.00008 (0.00008)	0	0.001 (0.20)	1651.03	0.00
S	-0.00017	-0.00006	0.667	16.0	60	0.00009 (0.00009)	783	0.071 (0.20)	-33.10	0.00
S	0.00000	0.00000	0.667	16.0	60	0.00009 (0.00009)	0	0.001 (0.20)	1651.03	0.00
	S S S S S S S	S -0.00028 S -0.00034 S -0.00028 S -0.00034 S -0.00015 S 0.00000 S -0.00017	S -0.00028 0.00000 S -0.00034 0.00000 S -0.00028 0.00000 S -0.00034 0.00000 S -0.00015 -0.00004 S 0.00000 0.00000 S -0.00017 -0.00006	\$ -0.00028 0.00000 0.500 \$ -0.00034 0.00000 0.500 \$ -0.00028 0.00000 0.500 \$ -0.00034 0.00000 0.500 \$ -0.00015 -0.00004 0.629 \$ 0.00000 0.00000 0.629 \$ -0.00017 -0.00006 0.667	S -0.00028 0.00000 0.500 16.0 S -0.00034 0.00000 0.500 16.0 S -0.00028 0.00000 0.500 16.0 S -0.00034 0.00000 0.500 16.0 S -0.00015 -0.00004 0.629 16.0 S 0.00000 0.00000 0.629 16.0 S -0.00017 -0.00006 0.667 16.0	\$ -0.00028 0.00000 0.500 16.0 60 \$ -0.00034 0.00000 0.500 16.0 60 \$ -0.00028 0.00000 0.500 16.0 60 \$ -0.00034 0.00000 0.500 16.0 60 \$ -0.00015 -0.00004 0.629 16.0 60 \$ 0.00000 0.00000 0.629 16.0 60 \$ -0.00017 -0.00006 0.667 16.0 60	S -0.00028 0.00000 0.500 16.0 60 0.00013 (0.00013) S -0.00034 0.00000 0.500 16.0 60 0.00016 (0.00016) S -0.00028 0.00000 0.500 16.0 60 0.00013 (0.00013) S -0.00034 0.00000 0.500 16.0 60 0.00016 (0.00016) S -0.00015 -0.00004 0.629 16.0 60 0.00008 (0.00008) S 0.00000 0.00000 0.629 16.0 60 0.00008 (0.00008) S -0.00017 -0.00006 0.667 16.0 60 0.00009 (0.00009)	S -0.00028 0.00000 0.500 16.0 60 0.00013 (0.00013) 443 S -0.00034 0.00000 0.500 16.0 60 0.00016 (0.00016) 457 S -0.00028 0.00000 0.500 16.0 60 0.00013 (0.00013) 443 S -0.00034 0.00000 0.500 16.0 60 0.00016 (0.00016) 457 S -0.00015 -0.00004 0.629 16.0 60 0.00008 (0.00008) 750 S 0.00000 0.00000 0.629 16.0 60 0.00008 (0.00008) 0 S -0.00017 -0.00006 0.667 16.0 60 0.00009 (0.00009) 783	S -0.00028 0.00000 0.500 16.0 60 0.00013 (0.00013) 443 0.057 (0.20) S -0.00034 0.00000 0.500 16.0 60 0.00016 (0.00016) 457 0.071 (0.20) S -0.00028 0.00000 0.500 16.0 60 0.00013 (0.00013) 443 0.057 (0.20) S -0.00034 0.00000 0.500 16.0 60 0.00016 (0.00016) 457 0.072 (0.20) S -0.00015 -0.00004 0.629 16.0 60 0.00008 (0.00008) 750 0.061 (0.20) S 0.00000 0.00000 0.629 16.0 60 0.00008 (0.00008) 0 0.001 (0.20) S -0.00017 -0.00006 0.667 16.0 60 0.00009 (0.00009) 783 0.071 (0.20)	S -0.00028 0.00000 0.500 16.0 60 0.00013 (0.00013) 443 0.057 (0.20) 107.92 S -0.00034 0.00000 0.500 16.0 60 0.00016 (0.00016) 457 0.071 (0.20) -99.03 S -0.00028 0.00000 0.500 16.0 60 0.00013 (0.00013) 443 0.057 (0.20) 107.92 S -0.00034 0.00000 0.500 16.0 60 0.00016 (0.00016) 457 0.072 (0.20) -98.69 S -0.00015 -0.00004 0.629 16.0 60 0.00008 (0.00008) 750 0.061 (0.20) 36.49 S 0.00000 0.00000 0.629 16.0 60 0.00008 (0.00008) 0 0.001 (0.20) 1651.03 S -0.00017 -0.00006 0.667 16.0 60 0.00009 (0.00009) 783 0.071 (0.20) -33.10

APPALTATORE:

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

<u>Mandataria</u> Mandanti

ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER**

M-INGEGNERIA

PROGETTO ESECUTIVO

Tombino circolare IN02 - Relazione di calcolo

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

II LOTTO FUNZIONALE HIRPINIA - ORSARA

DOCUMENTO

IN0200 001

CODIFICA

E ZZ CL

FOGLIO

227 di

261

REV.

В

Direzione 2 (armatura verticale)

	`		,								
	TABLE: Element Forces - Area Shells									3	4
	Area	Joint	OutputCase	F22	F12	M22	M12	N2d+	N2d-	M2d+	M2d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M22 max SLU/SLV	216	189	SLV_06	-79	79	25	-10	-34	-158	35	0
M22 min SLU/SLV	276	266	SLV_06	45	40	-47	4	85	5	0	-51
M2d max SLU/SLV	216	189	SLV_06	-79	79	25	-10	-34	-158	35	0
M2d min SLU/SLV	276	266	SLV_06	45	40	-47	4	85	5	0	-51
N22 max SLU/SLV	264	232	SLV_04	126	46	11	-1	171	80	11	0
N22 min SLU/SLV	264	192	SLV_05	-229	8	-26	1	0	-236	0	-27
N2d max SLU/SLV	284	258	SLV_04	105	157	4	-2	262	-51	6	0
N2d min SLU/SLV	216	189	SLV 02	-195	183	19	-2	0	-378	19	17

COMMESSA

IF3A

LOTTO

02

	TABLE: E	Element F	orces - Area S	Shells							4
	Area	Joint	OutputCase	F22	F12	M22	M12	N2d+	N2d-	M2d+	M2d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M22 max SLE	216	189	SLE_05	-12	11	9	-4	0	-23	12	0
M22 min SLE	284	270	SLE_05	-42	1	-29	0	0	-43	0	-30
M2d max SLE	216	189	SLE_05	-12	11	9	-4	0	-23	12	0
M2d min SLE	284	270	SLE_05	-42	1	-29	0	0	-43	0	-30
N22 max SLE	266	260	SLE_01	29	6	-2	-1	35	0	-2	-3
N22 min SLE	280	270	SLE_04	-101	3	-21	0	0	-104	0	-21
N2d max SLE	266	260	SLE_04	25	23	-3	-1	48	2	-2	-5
N2d min SLE	280	269	SLE_02	-75	-47	-7	0	-28	-122	0	-7

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A. NOME SEZIONE: IN02 SETTO Y2 DIR2

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive Assi x,y principali d'inerzia Riferimento Sforzi assegnati: Comb. non sismiche Riferimento alla sismicità:

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -Classe: C30/37

Resis. compr. di progetto fcd: MPa 17.0 Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Parabola-Rettangolo Diagramma tensione-deformaz.: Modulo Elastico Normale Ec: 32836.0 MPa

Resis. media a trazione fctm: 2.90 MPa Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: MPa 12.0

ACCIAIO -Tipo: B450C

> Resist. caratt. snervam. fyk: 450.0 MPa Resist. caratt. rottura ftk: 450.0 MPa Resist. snerv. di progetto fyd: 391.3 MPa Resist. ultima di progetto ftd: 391.3 MPa Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 228 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В 261

> Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces		Poligonale C30/37
N°vertice:	X [cm]	Y [cm]
1 2	-50.0 -50.0	0.0 40.0
3	50.0	40.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.6	8.4	16
2	-41.6	31.6	16
3	41.6	31.6	16
4	41.6	8.4	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione Numero di barre generate equidistanti cui si riferisce la generazione N°Barra Fin.

N°Barre

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	16
2	2	3	3	16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My Vy Vx	Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. de My Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro Vy Componente del Taglio [kN] parallela all'asse princ.d'iner Vx Componente del Taglio [kN] parallela all'asse princ.d'iner				linerzia sup. della sez. linerzia destro della sez. c.d'inerzia y
N°Comb.	N	Mx	Му	Vy	Vx
1	34.00	35.00	0.00	0.00	0.00
2	-85.00	-51.00	0.00	0.00	0.00
3	34.00	35.00	0.00	0.00	0.00
4	-85.00	-51.00	0.00	0.00	0.00
5	-171.00	11.00	0.00	0.00	0.00
6	236.00	-27.00	0.00	0.00	0.00
7	-262.00	6.00	0.00	0.00	0.00
8	378.00	19.00	0.00	0.00	0.00

APPALTATORE:
Consorzio

<u>Soci</u>

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI GCF ELETTRI-FER

M-INGEGNERIA

PROGETTO ESECUTIVO

Tombino circolare IN02 - Relazione di calcolo

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF3A
 02
 E ZZ CL
 IN0200 001
 B
 229 di 261

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	0.00	12.00	0.00
2	0.00	-30.00	0.00
3	0.00	12.00	0.00
4	0.00	-30.00	0.00
5	-35.00	-3.00	0.00
6	104.00	-21.00	0.00
7	-48.00	-5.00	0.00
8	122.00	-7.00	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.6 cm Interferro netto minimo barre longitudinali: 19.2 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r.Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	34.00	35.00	0.00	34.17	119.11	0.00	3.40	10.1(6.7)
2	Š	-85.00	-51.00	0.00	-85.06	-100.68	0.00	1.97	10.1(6.7)
3	S	34.00	35.00	0.00	34.17	119.11	0.00	3.40	10.1(6.7)
4	S	-85.00	-51.00	0.00	-85.06	-100.68	0.00	1.97	10.1(6.7)
5	S	-171.00	11.00	0.00	-170.74	87.12	0.00	7.92	10.1(6.7)
6	S	236.00	-27.00	0.00	236.27	-149.26	0.00	5.53	10.1(6.7)
7	S	-262.00	6.00	0.00	-262.23	72.34	0.00	12.06	10.1(6.7)
8	S	378.00	19.00	0.00	378.11	169.65	0.00	8.93	10.1(6.7)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)

APPALTATORE:

<u>Consorzio</u> <u>Soci</u> **HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI**

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI GCF ELETTRI-FER

M-INGEGNERIA

PROGETTO ESECUTIVO

Tombino circolare IN02 - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
1F3A 02 E ZZ CL IN0200 001 B 261

es max

Deform. unit. massima nell'acciaio (positiva se di compress.)

Xs max

Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

Ys max

Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00069	0.261	-50.0	40.0	-0.00001	41.6	31.6	-0.00196	-41.6	8.4
2	0.00059	0.230	-50.0	0.0	-0.00009	-41.6	8.4	-0.00196	41.6	31.6
3	0.00069	0.261	-50.0	40.0	-0.00001	41.6	31.6	-0.00196	-41.6	8.4
4	0.00059	0.230	-50.0	0.0	-0.00009	-41.6	8.4	-0.00196	41.6	31.6
5	0.00050	0.204	50.0	40.0	-0.00015	41.6	31.6	-0.00196	-41.6	8.4
6	0.00086	0.306	-50.0	0.0	0.00011	-41.6	8.4	-0.00196	41.6	31.6
7	0.00041	0.172	50.0	40.0	-0.00022	41.6	31.6	-0.00196	-41.6	8.4
8	0.00098	0.333	-50.0	40.0	0.00020	41.6	31.6	-0.00196	-41.6	8.4

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000000000	0.000083832	-0.002660690	0.261	0.767
2	0.000000000	-0.000080439	0.000585377	0.230	0.728
3	0.000000000	0.000083832	-0.002660690	0.261	0.767
4	0.000000000	-0.000080439	0.000585377	0.230	0.728
5	0.000000000	0.000077826	-0.002610235	0.204	0.700
6	0.000000000	-0.000089212	0.000862603	0.306	0.822
7	0.00000000	0.000074799	-0.002584815	0.172	0.700
8	0.000000000	0.000092834	-0.002736309	0.333	0.856

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Ss min
Minima tensione (negativa se di trazione) nell'acciaio [MPa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)
Ac eff.
As eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.00	-50.0	40.0	-41.4	-41.6	8.4	1007	10.1
2	Š	2.49	50.0	0.0	-103.6	0.0	31.6	1007	10.1
3	S	1.00	-50.0	40.0	-41.4	-41.6	8.4	1007	10.1
4	S	2.49	50.0	0.0	-103.6	0.0	31.6	1007	10.1
5	S	0.14	50.0	0.0	-29.8	0.0	31.6	1207	10.1
6	S	1.48	-50.0	0.0	-22.5	41.6	31.6	857	10.1
7	S	0.30	50.0	0.0	-43.9	20.8	31.6	1207	10.1
8	S	0.53	-50.0	0.0	2.1	41.6	31.6		

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 231 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В 261

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali = 0.425 Coeff. in eq.(7.11) come da annessi nazionali k4 Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC] sr max Massima distanza tra le fessure [mm] Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk Componente momento di prima fessurazione intorno all'asse X [kNm] Mx fess. Componente momento di prima fessurazione intorno all'asse Y [kNm] My fess.

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00028	0.00000	0.500	16.0	76	0.00012 (0.00012)	531	0.066 (0.20)	83.22	0.00
2	Š	-0.00071	0.00000	0.500	16.0	76	0.00031 (0.00031)	531	0.165 (0.20)	-83.22	0.00
3	S	-0.00028	0.00000	0.500	16.0	76	0.00012 (0.00012)	531	0.066 (0.20)	83.22	0.00
4	S	-0.00071	0.00000	0.500	16.0	76	0.00031 (0.00031)	531	0.165 (0.20)	-83.22	0.00
5	S	-0.00019	0.00000	0.500	16.0	76	0.00009 (0.00009)	585	0.052 (0.20)	-46.80	0.00
6	S	-0.00017	0.00000	0.500	16.0	76	0.00007 (0.00007)	490	0.033 (0.20)	-124.27	0.00
7	S	-0.00028	0.00000	0.500	16.0	76	0.00013 (0.00013)	585	0.077 (0.20)	-50.73	0.00
8	S	0.00000	0.00000						0.000 (0.20)	1651.03	0.00

Verifica di resistenza a taglio (SLU, SLV)

	TABLE: E	lement F	orces - Area	Shells
	Area	Joint	OutputCase	V13/V23
	Text	Text	Text	KN/m
V max/min SLU/SLV	280	265	SLV_06	94

Resistenza a taglio (4.1.23 NTC 2018)	$V_{Rd,1} = (0.18 \cdot k \cdot (10$	$0 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \sigma_{cp} \cdot b_w \cdot d =$	146	(kN)	_
		$V_{Rd,2} = (v_{min} + 0.15\sigma_{cp}) \cdot b_w \cdot d =$	147	(kN)	999
		$V_{Rd} = max (V_{Rd,1}; V_{Rd,2}) = $	147	(kN)	
Resistenza a taglio precompresso (4.1.24 N	TC 2018)	total	***************************************	***************************************	no.
	$V_{Rd} = 0$	$0.7 \cdot b_w \cdot d \cdot (f_{ctd}^2 + \sigma_{cp} + f_{ctd})^{1/2} = $	434	(kN)	760
Taglio sollecitante		V _{Ed} =	94	(kN)	 Verifica soddisfatta
larghezza minima della sezione		b _w =	1000.00	(mm)	
altezza totale della sezione		h =	400.00	(mm)	
copriferro		c =	84.00	(mm)	nosi
altezza utile della sezione		d =	316.00	(mm)	
resistenza caratteristica a compressione		f _{ck} =	30.71	(N/mmq)	nu.
resistenza di progetto a trazione cls		$f_{ctd} = $	2	(N/mmq)	
armatura longitudinale della sezione		A _{sl} =	1005.31	(mmq)	ma.
area di calcestruzzo		$A_c = b_w \cdot d = $	316000	(mmq)	974
rapporto geometrico di armatura longitudinale		$\rho_1 = A_{sl}/A_c = $	0	< 0.02	AAA
sforzo normale agente		N _{ed} =	0.00	(N)	um
tensione media di compressione nella sezione		$\sigma_{cp} = N_{Ed}/A_c =$	0	(N/mmq)	<=0,2fcd
tensione media di compressione nella sezione	inserita nel calcolo	$\sigma_{cp} = N_{Ed}/A_c =$	0	****	mad .
k calcolato		k =	2	< 2	D04
k inserito nella formula		k =	2		nu
Tensione resistente tang. Max offerta dal solo	els	$V_{min} = 0.035 \cdot k^{3/2} f_{ck}^{1/2} =$	0	(N/mmq)	

APPALTATORE:

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI GCF ELETTRI-FER

M-INGEGNERIA

PROGETTO ESECUTIVO

Tombino circolare IN02 - Relazione di calcolo

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF3A
 02
 E ZZ CL
 IN0200 001
 B
 232 di 261

13.7.5 FONDAZIONE

Verifica di resistenza a pressoflessione (SLU, SLV, SLE)

Armatura int (sup) 5Φ16 Armatura est (inf) 5Φ16

Armatura a taglio non necessaria

• Direzione 1 (armatura orizzontale)

	TABLE: I	Element F	orces - Area	Shells				1	2	1	2
	Area	Joint	OutputCase	F11	F12	M11	M12	N1d+	N1d-	M1d+	M1d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M11 max SLU/SLV	661	593	SLV_03	0	0	55	4	0	0	59	54
M11 min SLU/SLV	665	597	SLV_01	0	0	-53	-1	0	0	-53	-54
M1d max SLU/SLV	660	593	SLV_03	0	0	55	4	0	0	59	54
M1d min SLU/SLV	654	594	SLV_02	0	0	-52	-4	0	0	-52	-56
N11 max SLU/SLV	681	613	SLV_07	0	2	20	-4	2	-2	24	20
N11 min SLU/SLV	681	3	SLV_04	0	1	-3	9	1	-1	5	-12
N1d max SLU/SLV	666	599	SLV_02	0	3	37	1	3	-3	38	37
N1d min SLU/SLV	666	605	SLV 02	0	-3	46	1	3	-3	47	46

	TABLE: Element Forces - Area Shells					1			2		
	Area	Joint	OutputCase	F11	F12	M11	M12	N1d+	N1d-	M1d+	M1d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M11 max SLE	653	271	SLE_02	0	0	29	0	0	0	29	29
M11 min SLE	658	597	SLE_02	0	0	-22	0	0	0	-22	-23
M1d max SLE	653	271	SLE_02	0	0	29	0	0	0	29	29
M1d min SLE	647	587	SLE_03	0	0	-20	-3	0	0	-20	-24
N11 max SLE	681	320	SLE_03	0	1	8	7	1	-1	15	0
N11 min SLE	666	605	SLE_03	0	-2	9	-1	2	-2	11	0
N1d max SLE	666	599	SLE_03	0	2	21	0	2	-2	21	20
N1d min SLE	666	605	SLE_03	0	-2	9	-1	2	-2	11	0

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A. NOME SEZIONE: IN02_FONDAZIONE_DIR1

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione:

Condizioni Ambientali:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

A Sforzo Norm. costante

Moderat. aggressive

Assi x,y principali d'inerzia

Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C30/37

Resis. compr. di progetto fcd: 17.0 MPa
Def.unit. max resistenza ec2: 0.0020
Def.unit. ultima ecu: 0.0035
Diagramma tensione-deformaz.: Parabola-Rettangolo
Modulo Elastico Normale Ec: 32836.0 MPa
Resis. media a trazione fctm: 2.90 MPa

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO LOTTO COMMESSA CODIFICA DOCUMENTO REV. 233 di Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В 261

	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	12.0	MPa
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	337.50	MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del D Classe Calce		Poligonale C30/37
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	50.0
3	50.0	50.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-43.2	6.8	16
2	-43.2	43.2	16
3	43.2	43.2	16
4	43.2	6.8	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione N°Barra Fin. Numero di barre generate equidistanti cui si riferisce la generazione N°Barre

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	16
2	2	3	3	16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 234 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В 261

Vx		Componente del Taglio [kN] parallela all'asse princ.d'inerzia x						
N°Comb.	N	Mx	Му	Vy	Vx			
1	0.00	59.00	0.00	0.00	0.00			
2	0.00	-54.00	0.00	0.00	0.00			
3	0.00	59.00	0.00	0.00	0.00			
4	0.00	-56.00	0.00	0.00	0.00			
5	-2.00	24.00	0.00	0.00	0.00			
6	1.00	-12.00	0.00	0.00	0.00			
7	-3.00	38.00	0.00	0.00	0.00			
8	3.00	47.00	0.00	0.00	0.00			

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
	con verso positivo se tale da comprimere il lembo superiore della sezione
Му	Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	0.00	29.00	0.00
2	0.00	-23.00	0.00
3	0.00	29.00	0.00
4	0.00	-24.00	0.00
5	-1.00	15.00	0.00
6	2.00	11.00	0.00
7	-2.00	21.00	0.00
8	2.00	11.00	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.0 cm Interferro netto minimo barre longitudinali: 20.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S	= combinazione verificata / N = combin. non verificata
-------	--

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	59.00	0.00	0.00	156.74	0.00	2.66	10.1(7.2)
2	S	0.00	-54.00	0.00	0.00	-156.74	0.00	2.90	10.1(7.2)
3	S	0.00	59.00	0.00	0.00	156.74	0.00	2.66	10.1(7.2)
4	S	0.00	-56.00	0.00	0.00	-156.74	0.00	2.80	10.1(7.2)
5	S	-2.00	24.00	0.00	-2.09	156.34	0.00	6.51	10.1(7.2)

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** Mandataria Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 235 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В 261 6 S 1.00 0.00 -12.000.00 1.18 -157.00 13.08 10.1(7.2) 7 S -3.00 38.00 0.00 -2.74156.21 0.00 4.11 10.1(7.2)

157.39

0.00

3.35

10.1(7.2)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

3.14

0.00

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

47.00

8

S

3.00

$N^{\circ}Comb$	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00052	0.210	-50.0	50.0	0.00013	43.2	43.2	-0.00196	-43.2	6.8
2	0.00052	0.210	-50.0	0.0	0.00013	-43.2	6.8	-0.00196	43.2	43.2
3	0.00052	0.210	-50.0	50.0	0.00013	43.2	43.2	-0.00196	-43.2	6.8
4	0.00052	0.210	-50.0	0.0	0.00013	-43.2	6.8	-0.00196	43.2	43.2
5	0.00052	0.210	50.0	50.0	0.00013	43.2	43.2	-0.00196	-43.2	6.8
6	0.00052	0.210	-50.0	0.0	0.00013	-43.2	6.8	-0.00196	43.2	43.2
7	0.00052	0.210	50.0	50.0	0.00013	43.2	43.2	-0.00196	-43.2	6.8
8	0.00052	0.211	-50.0	50.0	0.00013	43.2	43.2	-0.00196	-43.2	6.8

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb b x/d C.Rid. С 0.00000000 0.000057342 -0.002346423 0.210 0.703 0.000000000 2 -0.000057342 0.000520659 0.210 0.703 0.000000000 0.000057342 -0.002346423 0.703 3 0.210 4 0.000000000 -0.000057342 0.000520659 0.210 0.703 5 0.000000000 0.000057308 -0.002346195 0.210 0.702 0.210 0.000521625 6 0.000000000 -0.000057364 0.703 7 0.000000000 0.000057297 -0.002346119 0.210 0.702 8 0.000000000 0.000057398 -0.002346803 0.211 0.704

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Ss min
Minima tensione (negativa se di trazione) nell'acciaio [MPa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)
Ac eff.
As eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max `	rc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.39	-50.0	50.0	-72.7	-43.2	6.8	1303	10.1
2	S	1.10	50.0	0.0	-57.6	21.6	43.2	1303	10.1

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 236 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В 261

3	S	1.39	-50.0	50.0	-72.7	-43.2	6.8	1303	10.1
4	S	1.15	50.0	0.0	-60.2	0.0	43.2	1303	10.1
5	S	0.72	-50.0	50.0	-38.1	-43.2	6.8	1303	10.1
6	S	0.53	-50.0	50.0	-26.6	-43.2	6.8	1303	10.1
7	S	1.01	-50.0	50.0	-53.6	-21.6	6.8	1303	10.1
8	S	0.53	-50.0	50.0	-26.6	-43.2	6.8	1303	10.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Ver. Esito della verifica Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

e2 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] k1

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

= 3.400 Coeff. in eq.(7.11) come da annessi nazionali k3

k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø

Copriferro [mm] netto calcolato con riferimento alla barra più tesa Cf

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max

e1

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Componente momento di prima fessurazione intorno all'asse X [kNm] Mx fess. My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00044	0.00000	0.500	16.0	60	0.00022 (0.00022)	557	0.121 (0.20)	132.42	0.00
2	S	-0.00035	0.00000	0.500	16.0	60	0.00017 (0.00017)	557	0.096 (0.20)	-132.42	0.00
3	S	-0.00044	0.00000	0.500	16.0	60	0.00022 (0.00022)	557	0.121 (0.20)	132.42	0.00
4	S	-0.00036	0.00000	0.500	16.0	60	0.00018 (0.00018)	557	0.100 (0.20)	-132.42	0.00
5	S	-0.00023	0.00000	0.500	16.0	60	0.00011 (0.00011)	557	0.064 (0.20)	131.67	0.00
6	S	-0.00016	0.00000	0.500	16.0	60	0.00008 (0.00008)	557	0.044 (0.20)	134.53	0.00
7	S	-0.00032	0.00000	0.500	16.0	60	0.00016 (0.00016)	557	0.090 (0.20)	131.34	0.00
8	S	-0.00016	0.00000	0.500	16.0	60	0.00008 (0.00008)	557	0.044 (0.20)	134.53	0.00

APPALTATORE:
Consorzio

Consorzio Soci
HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI GCF ELETTRI-FER

M-INGEGNERIA

Tombino circolare IN02 - Relazione di **calcolo**

PROGETTO ESECUTIVO

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

COMMESSA IF3A LOTTO 02 CODIFICA E ZZ CL DOCUMENTO IN0200 001 REV. B FOGLIO 237 di 261

Direzione 2 (armatura verticale)

	TABLE: E	Element F	orces - Area		3	4	3	4			
	Area	Joint	OutputCase	F22	F12	M22	M12	N2d+	N2d-	M2d+	M2d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M22 max SLU/SLV	636	577	SLV_08	0	0	50	4	0	0	54	0
M22 min SLU/SLV	642	583	SLV_05	0	0	-51	-3	0	0	0	-54
M2d max SLU/SLV	643	577	SLV_08	0	0	50	5	0	0	55	0
M2d min SLU/SLV	642	583	SLV_05	0	0	-51	-3	0	0	0	-54
N22 max SLU/SLV	687	404	SLV_03	0	-3	-2	-10	3	-3	8	-12
N22 min SLU/SLV	687	404	SLV_06	0	3	1	-4	3	-3	5	0
N2d max SLU/SLV	666	605	SLV_02	0	-3	12	1	3	-3	13	0
N2d min SLU/SLV	666	599	SLV 02	0	3	25	1	3	-3	26	0

	TABLE: E	TABLE: Element Forces - Area Shells									4
	Area	Joint	OutputCase	F22	F12	M22	M12	N2d+	N2d-	M2d+	M2d-
	Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	KN-m/m	KN-m/m
M22 max SLE	635	270	SLE_05	0	0	29	0	0	0	30	0
M22 min SLE	657	589	SLE_04	0	0	-21	0	0	0	0	-22
M2d max SLE	636	270	SLE_05	0	0	29	1	0	0	30	0
M2d min SLE	641	582	SLE_04	0	0	-20	-3	0	0	0	-23
N22 max SLE	652	356	SLE_03	0	-2	5	2	2	-2	7	0
N22 min SLE	652	591	SLE_03	0	2	-2	3	2	-2	1	-2
N2d max SLE	659	591	SLE_03	0	2	-2	1	2	-2	-1	-2
N2d min SLE	659	599	SLE_03	0	-2	1	0	2	-2	1	0

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A. NOME SEZIONE: IN02_FONDAZIONE_DIR2

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione:

Condizioni Ambientali:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

A Sforzo Norm. costante

Moderat. aggressive

Assi x,y principali d'inerzia

Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C30/37

Resis. compr. di progetto fcd: 17.0 MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Parabola-Rettangolo Diagramma tensione-deformaz.: Modulo Elastico Normale Ec: 32836.0 MPa Resis. media a trazione fctm: 2.90 MPa Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: 12.0 MPa

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

Resist. snerv. di progetto fyd:

Resist. ultima di progetto ftd:

Deform. ultima di progetto Epu:

450.0 MPa
391.3 MPa
391.3 MPa
0.068

Modulo Elastico Ef 2000000 daN/cm²

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER GCF** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 238 di Tombino circolare IN02 - Relazione di calcolo IF3A E ZZ CL IN0200 001 02 В 261

> Bilineare finito Diagramma tensione-deformaz.: Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 337.50 MPa Sf limite S.L.E. Comb. Rare:

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces		Poligonale C30/37
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	50.0
3	50.0	50.0
4	50.0	0.0

DATI BARRE ISOLATE

N

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.6	8.4	16
2	-41.6	41.6	16
3	41.6	41.6	16
4	41.6	8.4	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione N°Barra Ini. Numero della barra finale cui si riferisce la generazione N°Barra Fin. N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	16
2	2	3	3	16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Mx My		Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.							
Vy Vx		Componente del	Taglio [kN] parallela	mere il lembo destro a all'asse princ.d'ine a all'asse princ.d'ine	erzia y				
N°Comb.	N	Mx	My	Vy	Vx				
1	0.00	54.00	0.00	0.00	0.00				
2	0.00	-54.00	0.00	0.00	0.00				
3	0.00	55.00	0.00	0.00	0.00				
4	0.00	-54.00	0.00	0.00	0.00				
5	-3.00	-12.00	0.00	0.00	0.00				
6	3.00	5.00	0.00	0.00	0.00				

Sforzo normale [kN] applicato nel Baric (+ se di compressione)

APPALTATORE:

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

Tombino circolare IN02 - Relazione di calcolo

ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER**

M-INGEGNERIA PROGETTO ESECUTIVO II LOTTO FUNZIONALE HIRPINIA - ORSARA

FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 239 di E ZZ CL IF3A 02 IN0200 001 В 261

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

7 0.00 0.00 -3.00 13.00 0.00 8 3.00 26.00 0.00 0.00 0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) N

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	0.00	30.00	0.00
2	0.00	-22.00	0.00
3	0.00	30.00	0.00
4	0.00	-23.00	0.00
5	-30.00	7.00	0.00
6	108.00	-2.00	0.00
7	-45.00	-2.00	0.00
8	116.00	1.00	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.6 cm Interferro netto minimo barre longitudinali: 19.2 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

Ν Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Му Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) N Res

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Mv Res Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	54.00	0.00	0.00	150.95	0.00	2.80	10.1(7.0)
2	S	0.00	-54.00	0.00	0.00	-150.95	0.00	2.80	10.1(7.0)
3	S	0.00	55.00	0.00	0.00	150.95	0.00	2.74	10.1(7.0)
4	S	0.00	-54.00	0.00	0.00	-150.95	0.00	2.80	10.1(7.0)
5	S	-3.00	-12.00	0.00	-3.24	-150.31	0.00	12.53	10.1(7.0)
6	S	3.00	5.00	0.00	3.18	151.59	0.00	30.32	10.1(7.0)
7	S	-3.00	13.00	0.00	-3.24	150.31	0.00	11.56	10.1(7.0)
8	S	3.00	26.00	0.00	3.18	151.59	0.00	5.83	10.1(7.0)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max Deform. unit. massima del calcestruzzo a compressione Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45 x/d Xc max Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Deform. unit. minima nell'acciaio (negativa se di trazione) es min

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 240 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В

261

Xs min Ys min es max Xs max Ys max) K X	Ordinata in c Deform. unit. Ascissa in c	m della barra c massima nell'a m della barra c	corrisp. a es macciaio (positivorrisp. a es ma	n (sistema rif.) in (sistema rif.) va se di compre ax (sistema rif.) ax (sistema rif.	(,Y,O sez.) ss.) X,Y,O sez.)				
N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00055	0.219	-50.0	50.0	0.00004	41.6	41.6	-0.00196	-41.6	8.4
2	0.00055	0.219	-50.0	0.0	0.00004	-41.6	8.4	-0.00196	41.6	41.6
3	0.00055	0.219	-50.0	50.0	0.00004	41.6	41.6	-0.00196	-41.6	8.4
4	0.00055	0.219	-50.0	0.0	0.00004	-41.6	8.4	-0.00196	41.6	41.6
5	0.00055	0.218	-50.0	0.0	0.00004	-41.6	8.4	-0.00196	41.6	41.6
6	0.00055	0.219	-50.0	50.0	0.00004	41.6	41.6	-0.00196	-41.6	8.4
7	0.00055	0.218	50.0	50.0	0.00004	41.6	41.6	-0.00196	-41.6	8.4
8	0.00055	0.219	-50.0	50.0	0.00004	41.6	41.6	-0.00196	-41.6	8.4

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

Coeff. di riduz. momenti per sola flessione in travi continue C.Rid.

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000060197	-0.002462157	0.219	0.713
2	0.000000000	-0.000060197	0.000547706	0.219	0.713
3	0.000000000	0.000060197	-0.002462157	0.219	0.713
4	0.00000000	-0.000060197	0.000547706	0.219	0.713
5	0.000000000	-0.000060139	0.000545291	0.218	0.712
6	0.000000000	0.000060255	-0.002462645	0.219	0.714
7	0.000000000	0.000060139	-0.002461669	0.218	0.712
8	0.00000000	0.000060255	-0.002462645	0.219	0.714

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ss min Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff

N°Comb	Ver	Sc max	Xc max `	rc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.57	-50.0	50.0	-78.1	-41.6	8.4	1306	10.1
2	S	1.15	50.0	0.0	-57.3	20.8	41.6	1306	10.1
3	S	1.57	-50.0	50.0	-78.1	-41.6	8.4	1306	10.1
4	S	1.20	50.0	0.0	-59.9	20.8	41.6	1306	10.1
5	S	0.31	-50.0	50.0	-34.3	0.0	8.4	1445	10.1
6	S	0.25	-50.0	0.0	2.6	20.8	41.6		
7	S	0.00	50.0	0.0	-28.4	-41.6	41.6	3473	20.1
8	S	0.24	-50.0	50.0	3.1	20.8	8.4		

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 241 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В 261

e1 e2 k1 kt k2 k3 k4 Ø Cf e sm sr ma wk Mx fe	ess.	Minima de = 0.8 per = 0.4 per = 0.5 per i = 3.400 C = 0.425 C Diametro Copriferro Differenza Tra paren Massima Apertura f Compone	eformazione un barre ad adere comb. quasi p flessione; =(e1 oeff. in eq.(7.1 [mm] equivaler [mm] netto ca tra le deforma tesi: valore mir distanza tra le	itaria di tra: enza migliori permanenti + e2)/(2*e* 1) come da 1) come da nte delle ba licolato con lizioni medie nimo = 0.6 s fessure [mr calcolata = li prima fesi	zione nel rata [eq.(7, / = 0.6 pe 1) per traz annessi annessi rre tese c riferimen e di acciai Smax / Es m] sr max*(¢ surazione	calcestruzzo 7.11)EC2] or comb.frequicione eccentinazionali nazionali comprese ne to alla barra to e calcestru e [(7.9)EC2 e_sm - e_cm intorno all'a	uzzo [(7.8)EC2 e (C4.1.7)NTC] e (C4.1.8)NTC]) [(7.8)EC2 e (C4.1.7)NTC]. Valor sse X [kNm]	essurata C2]			
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00049	0.00000	0.500	16.0	76	0.00023 (0.00023)	612	0.143 (0.20)	130.47	0.00
2	S	-0.00036	0.00000	0.500	16.0	76	0.00017 (0.00017)	612	0.105 (0.20)	-130.47	0.00
3	S	-0.00049	0.00000	0.500	16.0	76	0.00023 (0.00023)	612	0.143 (0.20)	130.47	0.00
4	S	-0.00038	0.00000	0.500	16.0	76	0.00018 (0.00018)	612	0.110 (0.20)	-130.47	0.00
_											1 11

Verifica di resistenza a taglio (SLU, SLV)

0.00000

0.00000

-0.00007

0.00000

0.500

0.713

16.0

16.0

76

76

-0.00021

-0.00016

-0.00016

-0.00016

5

6

7

8

S

S

S

S

	TABLE: Element Forces - Area Shells					
	Area	V13/V23				
	Text	Text	Text	KN/m		
V max/min SLU/SLV	667	318	SLV_02	157		

0.00010 (0.00010)

0.00009 (0.00009)

649

928

0.067 (0.20)

0.000 (0.20)

0.079 (0.20)

0.000 (0.20)

95.68

134.53

-44.85

134.53

0.00

0.00

0.00

0.00

Elementi senza armature trasversali resiste	ti a taglio § 4.1.2.3.5.1 NTC2018				Ī
Resistenza a taglio (4.1.23 NTC 2018)	$V_{Rd,1} = (0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \sigma_{co})$		165	(kN)	· ·
Nesisienza a tagno (4.1.23 NTC 2016)	$V_{Rd,1} = (0.16 \cdot K(100^{\circ} P_1^{\circ} l_{ck}) - 7 \gamma_c + 0.15 \sigma_{cp})$ $V_{Rd,2} = (V_{min} + 0.15 \sigma_{cp})$		178	(kN)	_
	$V_{Rd,2} = (V_{min} + 0.130_{cp})$ $V_{Rd} = max (V_{Rd,1}; V_{Rd,1}; V_{$	***********	178	(kN)	-
Resistenza a taglio precompresso (4.1.24 N		Rd,2) -	170	(KIN)	nu
Resistenza a tagno precompresso (4.1.24 Ni	$V_{Rd} = 0.7 \cdot b_w \cdot d \cdot (f_{ctd}^2 + \sigma_{co} + f_{c})$	χ1/2 _	571	(kN)	
	VRd = U.7-Dw-U -(-lctd +Ocp+-lc	etd) =	371	(KIN)	~
Taglio sollecitante		V _{Ed} =	157	(kN)	 Verifica soddisfa
					_
larghezza minima della sezione		b _w =	1000.00	(mm)	-
altezza totale della sezione		h =	500.00	(mm)	-
copriferro		c =	84.00	(mm)	
altezza utile della sezione		d =	416.00	(mm)	_
resistenza caratteristica a compressione		f _{ck} =	30.71	(N/mmq)	
resistenza di progetto a trazione cls		f _{ctd} =	2	(N/mmq)	-
armatura longitudinale della sezione		A _{sl} =	1005.31	(mmq)	
area di calcestruzzo	A _c =	b _w ·d =	416000	(mmq)	_
rapporto geometrico di armatura longitudinale	$\rho_1 = A$	Λ _{sI} /A _c =	0	< 0.02	
sforzo normale agente		N _{ed} =	0.00	(N)	
tensione media di compressione nella sezione	$\sigma_{cp} = N_{E}$	_{Ed} /A _c =	0	(N/mmq)	<=0,2fcd
tensione media di compressione nella sezione i	serita nel calcolo $\sigma_{cp} = N_{E}$	_{Ed} /A _c =	0		_
k calcolato		k =	2	< 2	_
k inserito nella formula		k =	2		
Tensione resistente tang. Max offerta dal solo c	$v_{min} = 0.035 \cdot k^{3/2}$	fck ^{1/2} =	0	(N/mmq)	_

APPALTATORE: Consorzio HIRPINIA - ORSARA AN PROGETTAZIONE: Mandataria ROCKSOIL S.P.A M-INGEGNERIA	Soci / WEBUILD ITALIA PIZZAROTTI Mandanti NET ENGINEERING PINI GCF ELETTRI-FER		DDOPF	PIO TRAT	NAPOLI – BA TA APICE - LE HIRPINIA	ORSAF	
PROGETTO ESECUTOMBINO CIRCOlare IN02 -		COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ CL	DOCUMENTO IN0200 001	REV. B	FOGLIO 242 di 261

14 VERIFICHE GEO

Le verifiche sono condotte secondo l'approccio 2 considerando la combinazione A1+M1+R3.

Le azioni di progetto sono le massime delle combinazioni SLU, le quali sono ricavate applicando ai carichi i coefficienti di combinazione A1 (per carichi stradali).

La verifica è soddisfatta se il coefficiente di sicurezza FS = qlim / q risulta maggiore del valore 2,3, coefficiente parziale per la capacità portante.

14.1 SCATOLARE

TABLE: Joint Reactions								
OutputCase		F1	F3					
Text	Text	KN	KN					
SLU_01	Combination	0	323					
SLU_02	Combination	0	323					
SLU 03	Combination	-117	323					
SLU 04	Combination	0	323					
SLU 05	Combination	0	323					
SLU_06	Combination	-117	323					
SLU 07	Combination	0	323					
SLU_08	Combination	0	323					
SLU 09	Combination	-117	323					
SLU_10	Combination	0	323					
SLU 11	Combination	0	323					
SLU 12	Combination	-117	323					
SLU_13	Combination	0	112					
SLU_14	Combination	-117	112					
SLU_15	Combination	0	112					
SLU_15	Combination	-117	112					
SLU_17	Combination	-117	270					
SLU_17	Combination	-164	270					
		-						
SLU_19	Combination	-254	270					
SLU_20	Combination	-164	270					
SLU_21	Combination	-164	270					
SLU_22	Combination	-254	270					
SLU_23	Combination	-164	270					
SLU_24	Combination	-164	270					
SLU_25	Combination	-254	270					
SLU_26	Combination	-164	270					
SLU_27	Combination	-164	270					
SLU_28	Combination	-254	270					
SLU_29	Combination	0	270					
SLU_30	Combination	0	270					
SLU_31	Combination	-90	270					
SLU_32	Combination	0	270					
SLU_33	Combination	0	270					
SLU_34	Combination	-90	270					
SLU_35	Combination	0	270					
SLU_36	Combination	0	270					
SLU_37	Combination	-90	270					
SLU_38	Combination	0	270					
SLU_39	Combination	0	270					
SLU_40	Combination	-90	270					
SLU_41	Combination	0	112					
SLU_42	Combination	-90	112					
SLU_43	Combination	0	112					
SLU_44	Combination	-90	113					
			-					

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO LOTTO COMMESSA CODIFICA DOCUMENTO REV.

IF3A

02

DATI FONDAZIONE

Geometria fondazione

Base della fondazione Lunghezza della fondazione Altezza della fondazione Ricoprimento

Tombino circolare IN02 - Relazione di calcolo

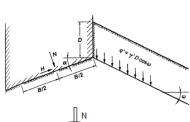
В	2.00	m
L	1.00	m
Н	0.40	m
D	2.49	m

IN0200 001

E ZZ CL

FOGLIO

243 di


261

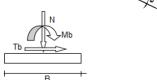
В

Geometria terreno e piano di posa

Inclinazione del piano di posa Inclinazione del piano campagna

α	0.00	0
ω	0.00	0


Sollecitazioni


Sforzo normale Taglio

Forza attorno al lato lungo

Calcolo pressione massima

Cod	161.50	kN/m²
M	0.00	kNm
Tb	117.0	kN
IN	323.0	KIN

GEOTECNICA

Falda

Falda sotto il piao di posa Quota falda dal piano campagna Peso specifico acqua

	no	
hw		m
γw		kN/m ³

Terreno sotto la fondazione

Peso specifico coesione drenata angolo di attrito

Collie		
Ϋ́r	20.50	kN/m ³
c'		kN/m ²
d'	27.00	0

Terreno di ricoprimento

Peso specifico

γ_r 19.00 kN/m³

rilevato stradale

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 244 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В 261

fattori di capacità portante (De Beer)

			-	$N_{\nu} = 2(N_{o} + 1)tan(\varphi')$ (Vesic 1973)	$N_c = (N_a - 1)cot(\varphi')$
Nq	13.20	m		, , , , , , , , , , , , , , , , , , , ,	
Nc	23.94	m	•	$N_{\gamma} = (N_q - 1)tan(1.4\varphi')$ (Meyerhof 1963)	$V = \frac{1}{2} \left(450 + \varphi' \right) \pi tan(a')$
Νγ	14.47	m	Vesic, 1973		$N_q = tan^2 \left(45^\circ + \frac{1}{2}\right)e^{ntan(\phi)}$
***************************************				$N_{\nu} = 1.5(N_{\sigma} - 1)tan(\varphi')$ (Hansen 1970)	. '

Fattori di forma della fondazione

considerare?	no	
sq	1.00	m
SC	1.00	m
Sγ	1.00	m

Forma della fondazione	S_c	S_q	S_{γ}
Rettangolare	$1 + \frac{B'}{L'} \cdot \frac{N_q}{N_c}$	$1 + \frac{B'}{L'} \cdot \tan \phi$	$1 - 0.4 \cdot \frac{B'}{L'}$

Fattori di profondità (Brich-Hansen, 1970; Vesic, 1973)

considerare?	si	
dq	1.272	m
dc	1.294	m
dγ	1.000	m

Valore di ø	d_c		d_q	d_{γ}
φ>0 sabbia e	1-d _q	$\frac{D}{B'} \leq 1$	$1 + 2 \cdot \tan \phi \cdot \left(1 - \text{sen}\phi\right)^2 \cdot \frac{D}{B'}$,
argilla in condizioni drenate	$d_q - \frac{1}{N_c \cdot \tan \phi}$	$\frac{D}{B'} > 1$	$1 + 2 \cdot tan \phi \cdot \big(1 - sen \phi\big)^2 \cdot arctan \bigg(\frac{D}{B'}\bigg)$	1

Coefficienti di inclinazione del carico (Vesic, 1973)

considerare?	no	
ia	1.000	m
14	1.000	
ic	1.000	m
iγ	1.000	m
mL	1.667	
mB	1.333	
m	1.333	
θ	1.57	rad

Terreno	i_c	i_q	i_{γ}
$c > 0, \phi > 0$ argilla in condizioni drenate	$i_{_{q}}-\frac{1-i_{_{q}}}{N_{_{c}}\cdot\tan\varphi}$	$\left[1 - \frac{H}{V + B'.L'.c'\cdot\cot g\phi'}\right]^{m+1}$	$\left[1 - \frac{H}{V + B' \cdot L' \cdot c' \cdot \cot g \phi'}\right]^{m+1}$
c = 0 sabbia	-	$\left(1-\frac{H}{V}\right)^m$	$\left(1-\frac{H}{V}\right)^{m+1}$
$m = m_{L} \cdot \cos^{2} \vartheta + m_{B} \cdot \sin^{2} \vartheta$	$m_B = \frac{2 + \frac{B'}{L'}}{1 + \frac{B'}{L'}}$	$m_L = \frac{2 + \frac{L'}{B'}}{1 + \frac{L'}{B'}}$	θ è l'angolo fra la direzione del carico proiettata sul piano di fondazione e la direzione di L

Coefficienti di inclinazione del piano di posa (Brich Hansen, 1970)

considerare?	si		
bq	1.000	m	
bc	1.000	m	
bγ	1.000	m	

b_c	b_q	b_{γ}
$b_{q} - \frac{1 - b_{q}}{N_{c} \cdot \tan \phi}$	$(1 - \varepsilon \cdot \tan \phi)^2$	$(1-\varepsilon\cdot\tan\phi)^2$

contributo sovraccarico

Coefficienti di inclinazione del piano campagna (Brich Hansen, 1970)

considerare?	si		g,	g_a	Ø.,
gq	1.000	m	- Ov	- Cy	87
gc	1.000	m	$1-g_q$	(1 +)2	$\mathbf{g}_{\mathfrak{q}}$
gγ	1.000	m	$g_q - \frac{N_c \cdot \tan \phi}{N_c \cdot \tan \phi}$	$(1 - \tan \omega)$	

CALCOLO CARICO LIMITE

contributo forze di attrito

q _{lim, γ} 296.63 kPa	q _{lim, c} 247.83 kPa	q _{lim, q} 794.07 kPa
carico limite	pressione massima agente	
q _{lim} 1338.5 kPa	q _{lim, sd} 582.0 kPa >	σ _{sd} 161.5 kPa CS= 3.6

contributo forze di coesione

APPALTATORE:
Consorzio

<u>Soci</u>

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI GCF ELETTRI-FER

M-INGEGNERIA

PROGETTO ESECUTIVO

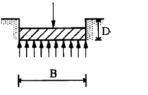
Tombino circolare IN02 - Relazione di calcolo

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

COMMESSA IF3A LOTTO 02 CODIFICA E ZZ CL DOCUMENTO IN0200 001 REV. B FOGLIO 245 di 261

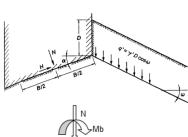
14.2 MURI AD U


TABLE: Joint Reactions								
OutputCase	CaseType	F1	F3					
Text	Text	KN	KN					
SLU_01	Combination	0	94					
SLU_02	Combination	0	94					
SLU_03	Combination	-34	94					
SLU_04	Combination	-34	70					
SLU_05	Combination	0	0					
SLU_06	Combination	0	0					

DATI FONDAZIONE

Geometria fondazione

Base della fondazione Lunghezza della fondazione Altezza della fondazione Ricoprimento



В		m
L		m
H		m
D	2.15	m

Geometria terreno e piano di posa

Inclinazione del piano di posa Inclinazione del piano campagna

α	0.00	0
ω	0.00	0

Sollecitazioni

Sforzo normale Taglio

Forza attorno al lato lungo

Calcolo pressione massima

_		LAL/ma ²	
MI	0.00		
Tb	34.0		
N		kN	

GEOTECNICA

Falda

Falda sotto il piao di posa

no	no	

Terreno sotto la fondazione

Peso specifico coesione drenata angolo di attrito

Coltre		
γr	20.50	kN/m ³
C'		kN/m ²
ф'	27.00	٥

Terreno di ricoprimento

Peso specifico

rilevato	stradale
THE VAIO	Suadaic

γ_r 19.00 kN/m³

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 246 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В 261

fattori di capacità portante (De Beer)

			-	$N_Y = 2(N_q + 1)tan(\varphi')$ (Vesic 1973)	$N_c = (N_q - 1)cot(\varphi')$
Nq	13.20	m			
Nc	23.94	m		$N_{\gamma} = (N_q - 1)tan(1,4arphi')$ (Meyerhof 1963)	$N = 4\pi m^2 \left(458 + \varphi'\right) \pi tan(\varphi')$
Νγ	14.47	m	V 6310, 1313		$N_q = tan^2 \left(45^\circ + \frac{1}{2}\right)e^{-tan(4)^\circ}$
				$N_{\gamma}=1.5(N_q-1)tan(\varphi')$ (Hansen 1970)	

Fattori di forma della fondazione

considerare?	no					
sq	1.00	m	Forma della fondazione	Sc	Sa	S.,
sc	1.00	m	· ·	·	7	
Sγ	1.00	m	Pattangolara	$1 + \frac{B'}{P} \cdot \frac{N_q}{q}$	$1 + \frac{B'}{B} \cdot \tan \phi$	$1 - 0.4 \cdot \frac{B'}{A}$
			Rettaligolate	L' N _c	L'	L'

Fattori di profondità (Brich-Hansen, 1970; Vesic, 1973)

considerare?	si 1.181		Valore di	d		d	d
dq dc	1.196	m m	ϕ	uc		uq	u_{γ}
dγ		m	$\phi > 0$		$\frac{D}{<1}$	$1 + 2 \cdot \tan \phi \cdot (1 - \operatorname{sen}\phi)^2 \cdot \frac{D}{D}$	
	1.000		sabbia e	1-d ₉	B'	B'	
			argilla in	$\frac{d_q}{N_c \cdot \tan \phi}$	D.	(D)	1
			condizioni drenate		$\frac{-}{\mathbf{R'}} > 1$	$1 + 2 \cdot \tan \phi \cdot (1 - \operatorname{sen}\phi)^2 \cdot \arctan\left(\frac{D}{R^2}\right)$	

Coefficienti di inclinazione del carico (Vesic, 1973)

considerare?	no		Terreno	i_c	i_q	i_{γ}
iq	1.000	m	$c > 0, \phi > 0$	1_i	Г , ¬m+1	Г , ¬m+1
ic	1.000	m	argilla in condi-	i _q	1- H	1- H
ϳγ	1.000	m	zioni drenate	^q N _c · tan φ	V + B'⋅L'⋅c'⋅ cot gφ'	V + B'⋅L'⋅c'⋅ cot gφ' ∫
mL	1.783	***************************************	c = 0		$(H)^m$	$\left(1-\frac{H}{m}\right)^{m+1}$
mB	1.217		sabbia	•	$\left(1-\frac{1}{V}\right)$	$\left(\mathbf{v} - \mathbf{v} \right)$
m	1.217					
θ	1.57	rad	$m = m_L \cdot \cos^2 \vartheta$	$2 + \frac{B'}{11}$	2 + L'	θ è l'angolo fra la direzione del
			$+ m_{B} \cdot sen^{2} \vartheta$	$m_{B} = \frac{L}{1 + \frac{B'}{L'}}$	$m_{L} = \frac{B}{1 + \frac{L'}{B'}}$	carico proiettata sul piano di fon- dazione e la direzione di L

Coefficienti di inclinazione del piano di posa (Brich Hansen, 1970)

considerare?	si		b_c	b_{q}	b_{γ}
bq	1.000	m		•	•
bc	1.000	m	$b_{q} = \frac{1 - b_{q}}{1 - b_{q}}$	$(1-\varepsilon \cdot \tan \phi)^2$	$(1 - \varepsilon \cdot \tan \phi)^2$
bγ	1.000	m	$^{\rm q}$ $N_{\rm c} \cdot \tan \phi$	$(1-\varepsilon \cdot \tan \varphi)$	$(1-\varepsilon \cdot \tan \varphi)$

Coefficienti di inclinazione del piano campagna (Brich Hansen, 1970)

$\frac{gq}{gc} = \frac{1.000}{1.000} \frac{m}{m}$ $\frac{g_q}{g_q} = \frac{1-g_q}{(1-\tan \phi)^2}$ $\frac{g_q}{g_q} = \frac{1-g_q}{(1-\tan \phi)^2}$	considerare?	si		g _c	g_a	9
$gc = 1.000 \text{ m}$ $g_{q} - \frac{1-g_{q}}{(1-\tan \omega)^{2}}$ $g_{q} = \frac{g_{q}}{(1-\tan \omega)^{2}}$					- Oq	8/
$\frac{1}{2}$	gc	1.000	m	$1-g_q$	$(1 + top c)^2$	g_{q}
$g\gamma$ 1.000 m $V_c \cdot \tan \phi$	gγ	1.000	m	$g_q - \frac{1}{N_o \cdot \tan \phi}$	$(1 - \tan \omega)$	

CALCOLO CARICO LIMITE

contributo forze di attrito	contributo forze di coesione	contributo sovraccarico
q _{lim, γ} 533.93 kPa	q _{lim, c} 229.14 kPa	q _{lim, q} 637.01 kPa
carico limite	carico limite	pressione massima agente
q _{lim} 1400.1 kPa	q _{lim, sd} 608.7 kPa >	σ _{sd} 26.1 kPa CS= 23.3

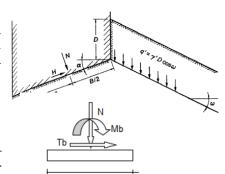
APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO LOTTO COMMESSA CODIFICA DOCUMENTO REV. 247 di 261 Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В

14.3 POZZO

DATI FONDAZIONE

Geometria fondazione

Base della fondazione Lunghezza della fondazione Altezza della fondazione Ricoprimento


В	3.80	m
L	3.80	m
Н	0.50	m
D	4.80	m

D B

Geometria terreno e piano di posa

Inclinazione del piano di posa Inclinazione del piano campagna

α	0.00	0
ω	0.00	0

GEOTECNICA

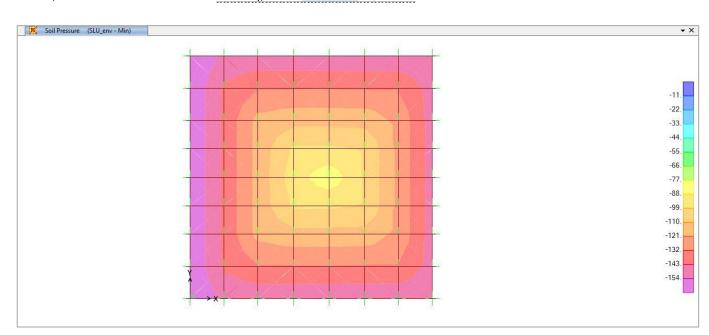
Falda

Falda sotto il piao di posa

	no	

Terreno sotto la fondazione

Peso specifico coesione drenata angolo di attrito


γr		kN/m ³
C'	8.00	kN/m ²
φ'	27.00	0

Terreno di ricoprimento

Peso specifico

rila nata	o tro do lo	

γ_r 19.00 kN/m³

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 248 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В 261

fattori di capacità portante (De Beer)

				$N_{\gamma} = 2(N_q + 1)tan(\varphi^{-})$ (Vesic 1973)	$N_c = (N_q - 1)cot(\varphi')$
Nq	13.20	m			
Nc	23.94	m		$N_{\gamma} = (N_q - 1)tan(1.4\varphi')$ (Meyerhof 1963)	$N = 4\pi m^2 \left(4\pi g + \varphi' \right) \pi tan(g')$
Νγ	14.47	m	Vesic, 1973		$N_q = tan^2 \left(45^\circ + \frac{1}{2}\right)e^{-tan(t^*)}$
				$N_{\gamma}=1.5(N_q-1)tan(\varphi')$ (Hansen 1970)	

Fattori di forma della fondazione

considerare?	no	
sq	1.00	m
sc	1.00	m
Sγ	1.00	m

Forma della fondazione	S_{c}	S_q	S_{γ}
Rettangolare	$1 + \frac{B'}{L'} \cdot \frac{N_q}{N}$	$1 + \frac{B'}{L'} \cdot \tan \phi$	$1 - 0.4 \cdot \frac{B'}{L'}$

Fattori di profondità (Brich-Hansen, 1970; Vesic, 1973)

considerare?	si	
dq	1.274	m
dc	1.296	m
dγ	1.000	m

Valore di ø	d_c	d_q	d_{γ}
φ>0 sabbia e	1-d _q	$\frac{D}{B'} \le 1 \qquad \qquad 1 + 2 \cdot \tan \phi \cdot \left(1 - \text{sen}\phi\right)^2 \cdot \frac{D}{B'}$	
argilla in condizioni drenate	$a_q - \frac{1}{N_c \cdot \tan \phi}$	$\frac{D}{B'} > 1 - 1 + 2 \cdot \tan \phi \cdot \left(1 - sen\phi\right)^2 \cdot \arctan\left(\frac{D}{B}\right)^2 \cdot \left(\frac{D}{B}\right)^2 \cdot \left(D$	(

Coefficienti di inclinazione del carico (Vesic, 1973)

considerare?	no	
iq	1.000	m
ic	1.000	m
ίγ	1.000	m
mL	1.500	
mB	1.500	
m	1.500	
θ	1.57	rad

Terreno	i_c	i_q	i_{γ}
$c > 0, \phi > 0$ argilla in condizioni drenate	$i_{_{q}}-\frac{1-i_{_{q}}}{N_{_{c}}\cdot\tan\varphi}$	$\left[1 - \frac{H}{V + B'L' \cdot c' \cdot \cot g \phi'}\right]^{m+1}$	$\left[1 - \frac{H}{V + B' L' \cdot c' \cdot \cot g \phi'}\right]^{m+1}$
c = 0 sabbia	-	$\left(1-\frac{H}{V}\right)^m$	$\left(1 - \frac{H}{V}\right)^{m+1}$
$m = m_{L} \cdot \cos^{2} \vartheta + m_{B} \cdot \sin^{2} \vartheta$	$m_B = \frac{2 + \frac{B'}{L'}}{1 + \frac{B'}{L'}}$	$m_{L} = \frac{2 + \frac{L'}{B'}}{1 + \frac{L'}{B'}}$	θ è l'angolo fra la direzione del carico proiettata sul piano di fondazione e la direzione di L

Coefficienti di inclinazione del piano di posa (Brich Hansen, 1970)

considerare?	si	
bq	1.000	m
bc	1.000	m
bγ	1.000	m

b_c	b_q	b_{γ}
$b_{q} - \frac{1 - b_{q}}{N_{c} \cdot \tan \phi}$	$(1-\varepsilon\cdot\tan\phi)^2$	$(1-\varepsilon\cdot\tan\phi)^2$

contributo sovraccarico

Coefficienti di inclinazione del piano campagna (Brich Hansen, 1970)

considerare?	si		g,	g_a	9,,
gq	1.000	m		- J	8/
gc	1.000	m	$1-g_q$	$(1 + \cos \alpha)^2$	$\mathbf{g}_{\mathbf{q}}$
gγ	1.000	m	$g_q = \frac{N_c \cdot \tan \phi}{N_c \cdot \tan \phi}$	$(1 - \tan \omega)$	

CALCOLO CARICO LIMITE

q _{lim, γ}	563.59 kPa	q _{lim, c}	248.27	kPa		q _{lim, q}	1533.32	kPa	
carico limi	ite	carico lim				pressione		agente	
q _{lim}	2345.2 kPa	q _{lim, sd}	1019.6	kPa	>	σ_{sd}	154.0	kPa	CS= 6.6

contributo forze di coesione

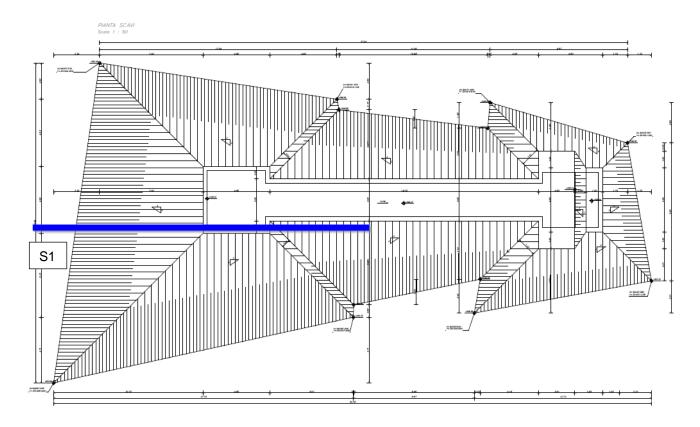
APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 249 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IF3A 02 IN0200 001 В

261

15 INCIDENZA ARMATURE

Si riportano di seguito le incidenze di ogni elemento componente lo scatolare, i manufatti ad U di raccordo e le strutture a pozzo.

L'armatura secondaria (longitudinale) è tale da rispettare la condizione prevista dall'EN1992-1-1: "Nelle piastre a portanza unidirezionale deve di regola essere prevista una armatura trasversale secondaria. Tale armatura secondaria sarà almeno pari al 20% dell'armatura principale".


Data la configurazione circolare dell'opera, piedritti e soletta di copertura sono considerati e modellati come un unico elemento.e pertanto è indicato un unico valore di incidenza, determinato come media sul volume effettivo di calcestruzzo di piedritti e soletta.

	INCIDENZ	E ARMATURA														
N. ordine	Ubicazione	Elemento	Lung h. (m)	Largh . (m)	Alt. (m)	Vol. CLS (mc)	Armatura	ø	Num. barre / strati	Passo barre (cm)	Num. barre tot.	Lungh . barre (m)	Lungh. barre tot. (m)	Peso unitario (kg/ml)	Peso acciaio armatura (kg)	Incidenza armatura(kg/mc)
1	Scatolare	Fondazione	1.00	2.00	0.40	0.80	base sup.	20	1	20	5.0	2.50	12.50	2.47	30.83	
							base inf.	20	1	20	5.0	4.80	24.00	2.47	59.19	
							aggiuntiva sup.	20	1	100	1.0	2.50	2.50	2.47	6.17	
							longitudinale sup.	12	1		10.0	1.15	11.50	0.89	10.21	
							longitudinale inf.	12	1		10.0	1.15	11.50	0.89	10.21	
							cavallotti	16	3		4.0	1.50	6.00	1.58	9.47	
							TOT								126.07	
2	Scatolare	Piedritto	1.00	0.40	1.20	0.48	base int.	20			5.0	2.50	12.50	2.47	30.83	
							longitudinale sup.	12	1		6.0	1.15	6.90	0.89	6.13	
							longitudinale inf.	12	1		6.0	1.15	6.90	0.89	6.13	
							spilli	10	2.5	40	8.0	0.50	4.00	0.62	2.47	
							TOT								45.54	
3	Scatolare	Soletta copertura	1.00	2.00	0.40	0.80	base sup.	20	1		5.0	4.80	24.00	2.47	59.19	
							base inf.	20	1		5.0	2.50	12.50	2.47	30.83	
							longitudinale sup.	12	1		10.0	1.15	11.50	0.89	10.21	
							longitudinale inf.	12	1	20	10.0	1.15	11.50	0.89	10.21	
							spilli estremità	10	5	40	15.0	0.50	7.50	0.62	4.62	
				<u> </u>		0.05	TOT				22.2		10.00		115.06	
2+3	Scatolare	Elevazione (piedritto	+ copertur	a)		2.07	Ferri obliqui	10	4	20	20.0	2.30	46.00	0.62	28.36	
_	M Code	E. d. See	4.00	2.00	0.50	4.00		40		00	5.0	4.00	04.50	4.50	234.51	
4	Muri ad U	Fondazione	1.00	3.60	0.50	1.80	base sup.	16	1		5.0 5.0	4.30	21.50	1.58	33.93	
			_				base inf.	16 12	1			6.00 1.15	30.00 20.70	1.58 0.89	47.35 18.38	
							longitudinale sup.	12	1		18.0 18.0			0.89		
							longitudinale inf. cavallotti	16			9.0	1.15 1.50	20.70 13.50	1.58	18.38 21.31	
							TOT	10	3		9.0	1.50	13.30	1.30	139.35	
5	Muri ad U	Piedritto	1.00	0.30	1.35	0.41	base int.	16	1	20	5.0	1.50	7.50	1.58	11.84	
- 3	IVIUIT AU U	rieuriilo	1.00	0.30	1.00	0.41	base int.	16			5.0	1.50	7.50	1.58	11.84	
							attesa int.	16			5.0	1.45	7.25	1.58	11.44	
			+				longitudinale sup.	12	1		7.0	1.15	8.05	0.89	7.15	
							longitudinale inf.	12	1		7.0	1.15	8.05	0.89	7.15	
							spilli	10			9.0	0.40	3.60	0.62	2.22	
							ТОТ		2.0	10	0.0	0.10	0.00	0.02	51.63	
6	Pozzo	Fondazione	3.80	3.80	0.50	7.22	base sup.	16	2	20	38.0	4.50	171.00	1.58	269.90	
Ť			0.00	0.50	0.50	7.22	base inf.	16	2		38.0	6.10	231.80	1.58	365.86	
							cavallotti	16			27.0	1.50	40.50	1.58	63.92	
							TOT								699.68	
7	Pozzo	Parete	3.80	0.40	4.30	5.85	vert int.	16	1	20	19.0	4.55	86.45	1.58	136.45	
							vert est.	16	1		19.0	4.55	86.45	1.58	136.45	
							attesa vert int.	16		20	19.0	1.55	29.45	1.58	46.48	
							oriz. int	16	1		22.0	4.30	94.60	1.58	149.31	
							oriz. est.	16			22.0	4.30	94.60	1.58	149.31	
							spilli	10			81.0	0.50	40.50	0.62	24.97	
							TOT								642.97	110.00

APPALTATORE: <u>Consorzio</u> HIRPINIA - ORSARA A	<u>Soci</u> V webuild Italia Pizzarotti		ITIN	ERARIO I	NAPOLI – B	ARI	
PROGETTAZIONE: Mandataria ROCKSOIL S.P.A M-INGEGNERIA	Mandanti NET ENGINEERING PINI GCF ELETTRI-FER				TA APICE - LE HIRPINIA		
PROGETTO ESECUTOMBINO 2	• • •	COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ CL	DOCUMENTO IN0200 001	REV. B	FOGLIO 250 di 261

16 VERIFICA DI STABILITA' DEGLI SCAVI

Si riporta la pianta degli scavi dell'opera in oggetto, su cui viene individuata la sezione S1 analizzata nel seguito; la sezione identifica la situazione cautelativamente rappresentativa degli scavi previsti in progetto:

16.1 TIPO DI ANALISI SVOLTA

L'analisi e le verifiche di stabilità sono condotte con l'ausilio di un codice di calcolo automatico.

I metodi di calcolo implementati sono i classici metodi delle strisce, basati sul concetto dell'equilibrio limite globale. La superficie di rottura è suddivisa in un determinato numero di strisce che consentono di calcolare le grandezze che entrano in gioco nelle equazioni risolutive.

Nel modulo terreni si adotta il criterio di rottura di Mohr-Coulomb. Nel modulo rocce si può adottare il criterio di rottura di Hoek-Brown o di Barton.

Il programma consente di inserire degli interventi di stabilizzazione, che possono intervenire secondo sue modalità diverse: variazione delle forze di interstriscia o resistenza a taglio equivalente.

L'analisi sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente secondo le disposizioni del capitolo 7 del DM 17/01/2018.

16.2 ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO

Titolo STAP - Stabilità Pendii Terreni

Versione 14.0

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO **FOGLIO** COMMESSA LOTTO CODIFICA DOCUMENTO REV. 251 di Tombino circolare IN02 - Relazione di calcolo IF3A 02 E ZZ CL IN0200 001 В 261

Produttore Aztec Informatica srl, Casali del Manco - Loc. Casole Bruzio (CS)

Licenza AIU0515XL

Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore del software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego. La società produttrice Aztec Informatica srl ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

16.3 NORMATIVE DI RIFERIMENTO

- Legge nr. 64 del 02/02/1974.

Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.

- D.M. LL.PP. del 11/03/1988.

Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione.

- D.M. 16 Gennaio 1996

Norme Tecniche per le costruzioni in zone sismiche

- Circolare Ministero LL.PP. 15 Ottobre 1996 N. 252 AA.GG./S.T.C.

Istruzioni per l'applicazione delle Norme Tecniche di cui al D.M. 9 Gennaio 1996

- Circolare Ministero LL.PP. 10 Aprile 1997 N. 65/AA.GG.

Istruzioni per l'applicazione delle Norme Tecniche per le costruzioni in zone sismiche di cui al D.M. 16 Gennaio 1996

- Norme Tecniche per le Costruzioni 2018 (D.M. 17 Gennaio 2018).

16.4 DESCRIZIONE METODO DI CALCOLO

La verifica alla stabilità del pendio deve fornire un coefficiente di sicurezza non inferiore a 1.10.

Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare.

In particolare il programma esamina un numero di superfici che dipende dalle impostazioni fornite e che sono riportate nella corrispondente sezione. Il processo iterativo permette di determinare il coefficiente di sicurezza di tutte le superfici analizzate.

Nella descrizione dei metodi di calcolo si adotterà la seguente simbologia:

- I lunghezza della base della striscia
- lpha angolo della base della striscia rispetto all'orizzontale
- b larghezza della striscia b=l x $cos(\alpha)$
- angolo di attrito lungo la base della striscia
- c coesione lungo la base della striscia
- γ peso di volume del terreno
- *u* pressione neutra
- W peso della striscia
- N sforzo normale alla base della strisciaT sforzo di taglio alla base della striscia
- Es, Ed forze normali di interstriscia a sinistra e a destra

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO **FOGLIO** COMMESSA LOTTO CODIFICA DOCUMENTO REV. 252 di Tombino circolare IN02 - Relazione di calcolo IF3A 02 E ZZ CL IN0200 001 В 261

X_s, X_d forze tangenziali di interstriscia a sinistra e a destra

Ea, Eb forze normali di interstriscia alla base ed alla sommità del pendio

 ΔX variazione delle forze tangenziali sulla striscia $\Delta X = X_d - X_s$ ΔE variazione delle forze normali sulla striscia $\Delta E = E_d - E_s$

Metodo di Bishop

Il coefficiente di sicurezza nel metodo di Bishop semplificato si esprime secondo la seguente formula:

$$\begin{array}{c} c_{i}\;b_{i}+\left(N_{i}/cos(\alpha_{i})-u_{i}\;b_{i}\right)\;tg\phi_{i}\\ \Sigma_{i}\;\left(\begin{array}{c} \\ \end{array}\right) \end{array}$$

dove il termine m è espresso da

$$m = (1 + \frac{tg\phi_i tg\alpha_i}{F}) \cos\alpha_i$$

In questa espressione \mathbf{n} è il numero delle strisce considerate, \mathbf{b}_i e α_i sono la larghezza e l'inclinazione della base della striscia \mathbf{i}_{esima} rispetto all'orizzontale, \mathbf{W}_i è il peso della striscia \mathbf{i}_{esima} , \mathbf{c}_i e ϕ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia ed \mathbf{u}_i è la pressione neutra lungo la base della striscia. L'espressione del coefficiente di sicurezza di **Bishop semplificato** contiene al secondo membro il termine \mathbf{m} che è funzione di \mathbf{F} . Quindi essa viene risolta per successive approssimazioni assumendo un valore iniziale per \mathbf{F} da inserire nell'espressione di \mathbf{m} ed iterare fin quando il valore calcolato coincide con il valore assunto.

16.5 SEZIONE S1

16.5.1 Dati

Descrizione terreno

Simbologia adottata

Nr. Indice del terreno
Descrizione Descrizione terreno

 $\begin{array}{lll} \gamma & \text{Peso di volume del terreno espresso in kg/mc} \\ \gamma_w & \text{Peso di volume saturo del terreno espresso in kg/mc} \\ \phi & \text{Angolo d'attrito interno 'efficace' del terreno espresso in gradi} \\ c & \text{Coesione 'efficace' del terreno espressa in kg/cmq} \\ \phi_u & \text{Angolo d'attrito interno 'totale' del terreno espresso gradi} \\ c_u & \text{Coesione 'totale' del terreno espressa in kg/cmq} \end{array}$

APPALTATORE:

Consorzio Soci
HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:
Mandataria Mandanti

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

ROCKSOIL S.P.A NET ENGINEERING PINI
GCF ELETTRI-FER
M-INGEGNERIA

PROGETTO ESECUTIVO

Tombino circolare IN02 - Relazione di calcolo

COMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIOIF3A02E ZZ CLIN0200 001B253 di
261

n°	Descrizione	γ	γ _{sat}	φ'	c'
		[kg/mc]	[kg/mc]	[°]	[kg/cmq]
1 Coltre		2050	2050	27.00	0.080
2 STF2		2100	2100	27.00	0.020

Profilo del piano campagna

Simbologia e convenzioni di segno adottate

L'ascissa è intesa positiva da sinistra verso destra e l'ordinata positiva verso l'alto.

Nr. Identificativo del punto

X Ascissa del punto del profilo espressa in mY Ordinata del punto del profilo espressa in m

n°	Х	Y
	[m]	[m]
1	0.00	10.00
2	15.00	10.00
3	23.85	15.90
4	100.00	25.30

Descrizione stratigrafia

Simbologia e convenzioni di segno adottate

Gli strati sono descritti mediante i punti di contorno (in senso antiorario) e l'indice del terreno di cui è costituito

Strato N° 1 costituito da terreno n° 2 (STF2)

Coordinate dei vertici dello strato nº 1

n°	Х	Υ		
	[m]	[m]		
1	0.00	4.40		
2	0.00	0.00		
3	100.00	0.00		
4	100.00	16.60		
5	20.60	6.90		

Strato N° 2 costituito da terreno n° 1 (Coltre)

Coordinate dei vertici dello strato nº 2

n°	Х	Y
	[m]	[m]
1	100.00	16.60
2	100.00	25.30
3	23.85	15.90
4	15.00	10.00
5	0.00	10.00
6	0.00	4.40
7	20.60	6.90

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 254 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В 261

Descrizione falda

Livello di falda

n°	Х	Υ		
	[m]	[m]		
1	0.00	8.10		
2	20.60	10.60		
3	100.00	20.30		

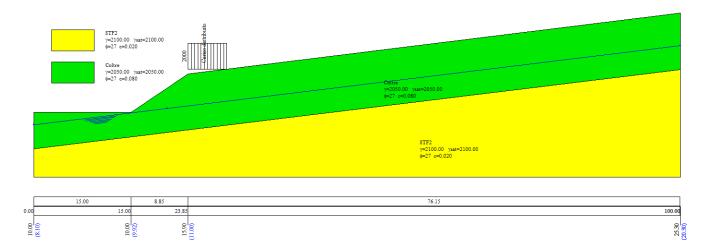
Carichi sul profilo

Simbologia e convenzioni di segno adottate

L'ascissa è intesa positiva da sinistra verso destra. N° Identificativo del sovraccarico agente

Descrizione Descrizione carico
Tipo Tipo carico

Ψ₂ Coefficiente sismico carico variabile


Carichi distribuiti

 P_{i} , P_{f} Posizione iniziale e finale del carico espressa in [m]

Vxi, Vxf, Vyj, VyfIntensità del carico in direzione X e Y nei punti iniziale e finale, espresse in [kg/m]

Carichi distribuiti

n°	Descrizione	Tipo	Ψ_2	Pi	Pf	Vy	Vx
				[m]	[m]	[kg/m]	[kg/m]
1	Carico distribuito	Variabile	1.00	23.85 15.90	29.85 16.64	2000 2000	0

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 255 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В

261

Dati normativa

Normativa:

Norme Tecniche sulle Costruzioni 17/01/2018

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto	Simbologia	A2 Statico	A2 Sismico
Permanenti	Favorevole	γGfav	1.00	1.00
Permanenti	Sfavorevole	γGsfav	1.00	1.00
Variabili	Favorevole	γQfav	0.00	0.00
Variabili	Sfavorevole	γ̈Qsfav	1.30	1.00

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri	Simbologia	M2 Statico	M2 Sismico
Tangente dell'angolo di attrito	γ _{tanφ'}	1.25	1.00
Coesione efficace	γ _{c'}	1.25	1.00
Resistenza non drenata	γcu	1.40	1.00
Peso dell'unità di volume	γγ	1.00	1.00

Coefficiente di sicurezza richiesto

Tipo calcolo	Simbolo	Statico	Sismico
Pendio naturale	γR	1.00	1.00
Fronte di scavo	γR	1.10	1.20

Impostazioni delle superfici di rottura

Superfici di rottura circolari

Si considerano delle superfici di rottura circolari generate tramite la seguente maglia dei centri

Origine maglia $X_0 = 0.00$ $Y_0 = 10.00$ [m] Passo maglia dX = 2.00 dY = 2.00[m] Numero passi Nx = 20Ny = 20

R = 5.00Raggio [m]

Si utilizza un raggio variabile con passo dR=1.00 [m] ed un numero di incrementi pari a 30

APPALTATORE: <u>Consorzio</u> HIRPINIA - ORSARA A V	<u>Soci</u> / Webuild Italia Pizzarotti	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE: Mandataria ROCKSOIL S.P.A M-INGEGNERIA	Mandanti NET ENGINEERING PINI GCF ELETTRI-FER				TA APICE - LE HIRPINIA		
PROGETTO ESECUTOMBINO CIRCOlare IN02 -	COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ CL	DOCUMENTO IN0 2 00 001	REV. B	FOGLIO 256 di 261	

Opzioni di calcolo

Per l'analisi sono stati utilizzati i seguenti metodi di calcolo:

- BISHOP

Le superfici sono state analizzate in condizioni **statiche**.

Le superfici sono state analizzate per i casi:

- Parametri di progetto [A2-M2]
- Sisma orizzontale e Sisma verticale (verso il basso e verso l'alto)

Analisi condotta in termini di tensioni efficaci

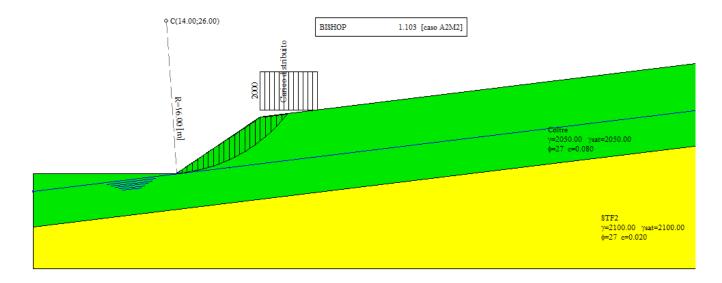
Presenza di falda

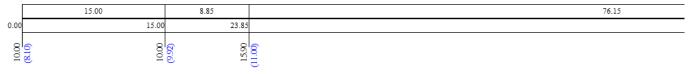
Presenza di carichi distribuiti

Condizioni di esclusione

Sono state escluse dall'analisi le superfici aventi:

- lunghezza di corda inferiore a	1.00	m
- freccia inferiore a	0.50	m
- volume inferiore a	2.00	mc
- pendenza media della superficie inferiore a	1.00	[%]


APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 257 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IN0200 001 IF3A 02 В 261


16.6 RISULTATI ANALISI

Numero di superfici analizzate 2661 Coefficiente di sicurezza minimo 1.103 Superficie con coefficiente di sicurezza minimo 1

Quadro sintetico coefficienti di sicurezza

Metodo	Nr. superfici	FS _{min}	S _{min}	FS _{max}	S _{max}
BISHOP	2661	1.103	1	-15.633	2662

Caratteristiche delle superfici analizzate

Simbologia adottata

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto N° numero d'ordine della superficie cerchio

C_x numero d'ordine della superficie cerch

C_x ascissa x del centro [m]
C_y ordinata y del centro [m]
R raggio del cerchio espresso in m

 $\begin{array}{ll} x_v & \text{ascissa del punto di intersezione con il profilo (valle) espresse in } m \\ x_m & \text{ascissa del punto di intersezione con il profilo (monte) espresse in } m \end{array}$

V volume interessato dalla superficie espresso [mc]

F_s coefficiente di sicurezza

caso di calcolo

APPALTATORE:

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A NET ENGINEERING PINI GCF **ELETTRI-FER**

M-INGEGNERIA

PROGETTO ESECUTIVO

Tombino circolare IN02 - Relazione di calcolo

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

COMMESSA IF3A

LOTTO 02

CODIFICA E ZZ CL

DOCUMENTO IN0200 001

REV. В

FOGLIO 258 di 261

Metodo di BISHOP (R)

etodo di BISHOP (B)										
N°	Forma	C _x	Cy	R	Χ _ν	Xm	V	Fs	Caso	Sisma
		[m]	[m]	[m]	[m]	[m]	[mc]			
1	С	14.00	26.00	16.00	15.05	26.69	19.37	1.103 (B)	[A2M2]	
2	С	16.00	22.00	12.00	15.06	26.52	23.33	1.108 (B)	[A2M2]	
3	С	14.00	28.00	18.00	15.05	27.75	23.23	1.117 (B)	[A2M2]	
4	С	16.00	24.00	14.00	15.05	27.75	27.83	1.121 (B)	[A2M2]	
5	С	14.00	24.00	14.00	15.06	25.57	15.37	1.124 (B)	[A2M2]	
6	С	16.00	24.00	13.00	16.52	26.41	14.60	1.144 (B)	[A2M2]	
7	С	14.00	30.00	20.00	15.04	28.76	26.96	1.144 (B)	[A2M2]	
8	С	16.00	20.00	10.00	15.07	25.19	18.56	1.145 (B)	[A2M2]	
9	С	12.00	32.00	22.00	15.40	27.46	17.88	1.146 (B)	[A2M2]	
10	С	12.00	30.00	20.00	15.45	26.50	14.51	1.147 (B)	[A2M2]	
11	С	16.00	26.00	16.00	15.04	28.89	32.11	1.152 (B)	[A2M2]	
12	С	16.00	26.00	15.00	16.51	27.48	17.85	1.162 (B)	[A2M2]	
13	С	16.00	22.00	13.00	11.00	27.72	40.34	1.162 (B)	[A2M2]	
14	С	12.00	34.00	24.00	15.35	28.38	21.18	1.164 (B)	[A2M2]	
15	С	18.00	20.00	9.00	16.65	26.15	17.59	1.167 (B)	[A2M2]	
16	С	18.00	20.00	11.00	13.42	28.42	46.79	1.168 (B)	[A2M2]	
17	С	16.00	20.00	11.00	11.42	26.32	34.13	1.169 (B)	[A2M2]	
18	С	18.00	20.00	10.00	15.48	27.30	30.59	1.171 (B)	[A2M2]	
19	С	18.00	22.00	11.00	16.63	27.43	21.54	1.176 (B)	[A2M2]	
20	С	16.00	22.00	11.00	16.52	25.27	11.19	1.178 (B)	[A2M2]	
21	С	14.00	32.00	22.00	15.04	29.74	30.60	1.178 (B)	[A2M2]	
22	С	18.00	18.00	9.00	13.88	26.83	39.64	1.179 (B)	[A2M2]	
23	С	16.00	24.00	15.00	10.61	29.01	46.21	1.180 (B)	[A2M2]	
24	С	18.00	22.00	12.00	15.42	28.66	35.74	1.186 (B)	[A2M2]	
25	С	16.00	28.00	18.00	15.04	29.98	36.23	1.188 (B)	[A2M2]	-
26	С	18.00	22.00	13.00	13.00	29.84	53.36	1.189 (B)	[A2M2]	
27	С	12.00	36.00	26.00	15.32	29.28	24.42	1.190 (B)	[A2M2]	
28	С	12.00	28.00	18.00	15.52	25.51	11.06	1.190 (B)	[A2M2]	

APPALTATORE:

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

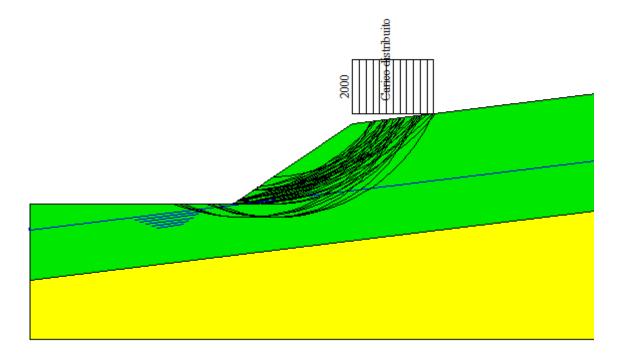
ROCKSOIL S.P.A NET ENGINEERING PINI GCF ELETTRI-FER

M-INGEGNERIA

PROGETTO ESECUTIVO

Tombino circolare IN02 - Relazione di calcolo

ITINERARIO NAPOLI - BARI


RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF3A
 02
 E ZZ CL
 IN0200 001
 B
 259 di

 261
 261

N°	Forma	C _x	C _v	R	Χ _ν	X _m	V	Fs	Caso	Sisma
		[m]	[m]	[m]	[m]	[m]	[mc]			
29	С	18.00	22.00	10.00	18.00	26.13	10.44	1.195 (B)	[A2M2]	
30	С	16.00	28.00	17.00	16.51	28.50	20.98	1.197 (B)	[A2M2]	
31	С	14.00	30.00	19.00	16.81	27.18	13.29	1.198 (B)	[A2M2]	
32	С	14.00	28.00	17.00	16.86	26.23	10.51	1.199 (B)	[A2M2]	

Analisi della superficie critica

Simbologia adottata

 Y_g

Le ascisse X sono considerate positive verso destra Le ordinate Y sono considerate positive verso l'alto Le strisce sono numerate da valle verso monte

N° numero d'ordine della striscia

 $\begin{array}{lll} X_s & \text{ascissa sinistra della striscia espressa in m} \\ Y_{ss} & \text{ordinata superiore sinistra della striscia espressa in m} \\ Y_{si} & \text{ordinata inferiore sinistra della striscia espressa in m} \\ X_g & \text{ascissa del baricentro della striscia espressa in m} \end{array}$

 α angolo fra la base della striscia e l'orizzontale espresso °(positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in kg/cmq

ordinata del baricentro della striscia espressa in m

L sviluppo della base della striscia espressa in m(L=b/cosα)
 u pressione neutra lungo la base della striscia espressa in kg/cmq

W peso della striscia espresso in kg

Q carico applicato sulla striscia espresso in kg

N sforzo normale alla base della striscia espresso in kg

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 260 di Tombino circolare IN02 - Relazione di calcolo E ZZ CL IF3A 02 IN0200 001 В 261

 $\begin{array}{ll} T & \text{sforzo tangenziale alla base della striscia espresso in kg} \\ U & \text{pressione neutra alla base della striscia espressa in kg} \\ E_s, E_d & \text{forze orizzontali sulla striscia a sinistra e a destra espresse in kg} \\ X_s, X_d & \text{forze verticali sulla striscia a sinistra e a destra espresse in kg} \end{array}$

ID Indice della superficie interessata dall'intervento

Superficie nº 1

Analisi della superficie 1 - coefficienti parziali caso A2M2

Geometria e caratteristiche strisce

N°	Xs	Y _{ss}	Y _{si}	X _d	Y _{ds}	Y_{di}	Χg	Yg	L	α	ф	С
	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[°]	[°]	[kg/cm q]
1	15.05	10.03	10.03	15.61	10.40	10.08	15.42	10.17	0.56	4.77	22.18	0.06
2	15.61	10.40	10.08	16.16	10.77	10.15	15.91	10.36	0.56	6.76	22.18	0.06
3	16.16	10.77	10.15	16.72	11.14	10.23	16.46	10.58	0.56	8.77	22.18	0.06
4	16.72	11.14	10.23	17.27	11.51	10.34	17.01	10.81	0.56	10.79	22.18	0.06
5	17.27	11.51	10.34	17.83	11.88	10.46	17.56	11.05	0.57	12.82	22.18	0.06
6	17.83	11.88	10.46	18.38	12.25	10.61	18.11	11.31	0.57	14.86	22.18	0.06
7	18.38	12.25	10.61	18.94	12.62	10.78	18.66	11.57	0.58	16.93	22.18	0.06
8	18.94	12.62	10.78	19.49	12.99	10.97	19.22	11.84	0.59	19.02	22.18	0.06
9	19.49	12.99	10.97	20.05	13.36	11.19	19.77	12.13	0.59	21.13	22.18	0.06
10	20.05	13.36	11.19	20.60	13.73	11.42	20.33	12.43	0.60	23.28	22.18	0.06
11	20.60	13.73	11.42	21.14	14.09	11.68	20.87	12.73	0.60	25.44	22.18	0.06
12	21.14	14.09	11.68	21.68	14.46	11.97	21.41	13.05	0.61	27.60	22.18	0.06
13	21.68	14.46	11.97	22.23	14.82	12.28	21.96	13.38	0.62	29.82	22.18	0.06
14	22.23	14.82	12.28	22.77	15.18	12.62	22.50	13.72	0.64	32.08	22.18	0.06
15	22.77	15.18	12.62	23.31	15.54	12.99	23.04	14.08	0.66	34.40	22.18	0.06
16	23.31	15.54	12.99	23.85	15.90	13.39	23.58	14.45	0.68	36.79	22.18	0.06
17	23.85	15.90	13.39	24.42	15.97	13.86	24.13	14.78	0.73	39.31	22.18	0.06
18	24.42	15.97	13.86	24.98	16.04	14.37	24.69	15.05	0.76	41.99	22.18	0.06
19	24.98	16.04	14.37	25.55	16.11	14.93	25.25	15.35	0.80	44.79	22.18	0.06
20	25.55	16.11	14.93	26.12	16.18	15.55	25.81	15.68	0.84	47.73	22.18	0.06
21	26.12	16.18	15.55	26.69	16.25	16.25	26.31	15.99	0.90	50.85	22.18	0.06

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD ITALIA PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A NET ENGINEERING PINI GCF **ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO LOTTO COMMESSA CODIFICA DOCUMENTO REV.

IF3A

02

E ZZ CL

IN0200 001

FOGLIO

261 di 261

В

Forze applicate sulle strisce [BISHOP]

Tombino circolare IN02 - Relazione di calcolo

N°	w	Q	N	Т	U	Es	Ed	Xs	X_d	ID
	[kg]	[kg]	[kg]							
1	184	0	153	380	0	0	366	0	0	
2	541	0	485	504	0	366	809	0	0	
3	876	0	791	618	0	809	1299	0	0	
4	1187	0	1071	724	0	1299	1809	0	0	
5	1476	0	1327	821	0	1809	2315	0	0	
6	1741	0	1560	910	0	2315	2794	0	0	
7	1982	0	1771	991	0	2794	3227	0	0	
8	2198	0	1958	1064	0	3227	3595	0	0	
9	2388	0	2124	1130	0	3595	3884	0	0	
10	2551	0	2266	1188	0	3884	4079	0	0	
11	2621	0	2328	1208	0	4079	4171	0	0	
12	2722	0	2418	1249	0	4171	4157	0	0	
13	2793	0	2485	1281	0	4157	4033	0	0	
14	2833	0	2526	1305	0	4033	3796	0	0	
15	2840	0	2538	1319	0	3796	3451	0	0	
16	2810	0	2519	1324	0	3451	3003	0	0	
17	2688	1475	3863	1853	0	3003	1989	0	0	
18	2202	1475	3413	1705	0	1989	973	0	0	
19	1660	1475	2894	1534	0	973	23	0	0	
20	1051	1475	2287	1335	0	23	-772	0	0	
21	364	1475	1563	1099	0	-772	-1290	0	0	