COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

CONSORZIO:

SOCI:

HIRPINIA - ORSARA AV

PROGETTAZIONE:

MANDATARIA:

MANDANTI:

PROGETTO ESECUTIVO

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

VIABILITA

IV01-CAVALCAVIA PROVVISORIO VIABILITÀ PROVVISORIA DI ACCESSO AL CANTIERE Rotatoria S.S. 90 – Illuminazione intersezioni - Relazione tecnica

APPALTATORE	DIRETTORE DELLA PROGETTAZIONE	PROGETTISTA
Consorzio HIRPINIA - ORSARA AV II Direttore Tecnico Ing. P. M. Gianvecchio 08/02/2022	II Responsabile integrazione fra le varie prestazioni specialistiche Ing. G. Cassani	NET INGINEERING

COMMESSA

LOTTO FASE ENTE TIPO DOC.

OPERA/DISCIPLINA

PROGR.

REV.

SCALA:

F 3 A

0 2

R O

0

	ı
Λ	
\boldsymbol{A}	l

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	C 08.00 – Emissione 180gg	A. Celsi	08/02/2022	F. Cervellin	08/02/2022	T. Finocchietti	08/02/2022	Ing. T. Finocchietti
			00/02/2022		00/02/2022		00/02/2022	g
								08/02/2022

File: IF3A02EZZROIV0101001A.docx n. Elab.: -

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD PIZZAROTTI

PROGETTAZIONE:

ROCKSOIL S.P.A **NET ENGINEERING** PINI **ELETTRI-FER** GCF

M-INGEGNERIA

PROGETTO ESECUTIVO

<u>Mandataria</u> <u>Mandanti</u>

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

Rotatoria S.S. 90 - Illuminazione intersezioni - Relazione tecnica

COMMESSA

LOTTO

CODIFICA

DOCUMENTO

REV.

FOGLIO

Indice

	IN	TRODUZIONE	4
2	DE	NOMINAZIONI ED ABBREVIAZIONI UTILIZZATE	4
3	LE	GGI E NORME DI RIFERIMENTO	5
4	CL	ASSIFICAZIONE DELLE AREE E DEGLI AMBIENTI	6
5	DA	ATI GENERALI	7
6	IMI	PIANTI ELETTRICI DI POTENZA	7
	6.1	GENERALITÀ	7
	6.2	VIABILITÀ	
	6.3	DATI SPECIFICI DI PROGETTO DELLA RETE ELETTRICA BT	
	6.4	STRUTTURA GENERALE DELLA RETE ELETTRICA	
	6.5	FORNITURE ENERGIA ELETTRICA BT	9
	6.6	QUADRO BT DI CONSEGNA E DI DISTRIBUZIONE	9
	6.7	RETI BT DI DISTRIBUZIONE	9
	6.8	IMPIANTO DI TERRA E DI PROTEZIONE DAI FULMINI	
7	IMI	PIANTI DI ILLUMINAZIONE DELLE STRADE DI VIABILITA' E DELLE ROTA	TORIE.11
7	IM I 7.1	PIANTI DI ILLUMINAZIONE DELLE STRADE DI VIABILITA' E DELLE ROTA GENERALITÀ	
7			11
7	7.1	GENERALITÀ	11 11
7	7.1 7.2	GENERALITÀ VERIFICA DEL RISPETTO DELLE L.R. E DEI CAM	11 11 11
7	7.1 7.2 7.3	GENERALITÀ VERIFICA DEL RISPETTO DELLE L.R. E DEI CAM DESCRIZIONE APPARECCHI ILLUMINANTI UTILIZZATI	11 11 11
7	7.1 7.2 7.3 7.4	GENERALITÀ VERIFICA DEL RISPETTO DELLE L.R. E DEI CAM DESCRIZIONE APPARECCHI ILLUMINANTI UTILIZZATI DESCRIZIONE DEI PALI DI SOSTEGNO	11 11 11 12
8	7.1 7.2 7.3 7.4 7.5 7.6	GENERALITÀ VERIFICA DEL RISPETTO DELLE L.R. E DEI CAM DESCRIZIONE APPARECCHI ILLUMINANTI UTILIZZATI DESCRIZIONE DEI PALI DI SOSTEGNO SISTEMI DI SUPPORTO DEI SOSTEGNI	1111111213
8	7.1 7.2 7.3 7.4 7.5 7.6	GENERALITÀ VERIFICA DEL RISPETTO DELLE L.R. E DEI CAM DESCRIZIONE APPARECCHI ILLUMINANTI UTILIZZATI DESCRIZIONE DEI PALI DI SOSTEGNO SISTEMI DI SUPPORTO DEI SOSTEGNI SISTEMA DI COMANDO E REGOLAZIONE DELL'IMPIANTO DI ILLUMINAZIONE	1111121313
8	7.1 7.2 7.3 7.4 7.5 7.6 RE	GENERALITÀ VERIFICA DEL RISPETTO DELLE L.R. E DEI CAM DESCRIZIONE APPARECCHI ILLUMINANTI UTILIZZATI DESCRIZIONE DEI PALI DI SOSTEGNO SISTEMI DI SUPPORTO DEI SOSTEGNI SISTEMA DI COMANDO E REGOLAZIONE DELL'IMPIANTO DI ILLUMINAZIONE ELAZIONE DI CALCOLO ELETTRICO	111112131314
8 9	7.1 7.2 7.3 7.4 7.5 7.6 RE INT	GENERALITÀ VERIFICA DEL RISPETTO DELLE L.R. E DEI CAM DESCRIZIONE APPARECCHI ILLUMINANTI UTILIZZATI DESCRIZIONE DEI PALI DI SOSTEGNO SISTEMI DI SUPPORTO DEI SOSTEGNI SISTEMA DI COMANDO E REGOLAZIONE DELL'IMPIANTO DI ILLUMINAZIONE ELAZIONE DI CALCOLO ELETTRICO	111112131414
8 9 1	7.1 7.2 7.3 7.4 7.5 7.6 RE INT	GENERALITÀ VERIFICA DEL RISPETTO DELLE L.R. E DEI CAM	11111213141414
8 9 1	7.1 7.2 7.3 7.4 7.5 7.6 RE INT 0 LE 1 DA	GENERALITÀ VERIFICA DEL RISPETTO DELLE L.R. E DEI CAM DESCRIZIONE APPARECCHI ILLUMINANTI UTILIZZATI DESCRIZIONE DEI PALI DI SOSTEGNO SISTEMI DI SUPPORTO DEI SOSTEGNI SISTEMA DI COMANDO E REGOLAZIONE DELL'IMPIANTO DI ILLUMINAZIONE ELAZIONE DI CALCOLO ELETTRICO TRODUZIONE GGI E NORME DI RIFERIMENTO	11121314141415

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI GCF ELETTRI-FER

GCF M-INGEGNERIA

PROGETTO ESECUTIVO

Rotatoria S.S. 90 - Illuminazione intersezioni - Relazione tecnica

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA

II LOTTO FUNZIONALE HIRPINIA - ORSARA

DOCUMENTO

REV.

FOGLIO

CODIFICA

12.2 DIMENSIONAMENTO E VERIFICA A SOVRACCARICO DEI CAVI	16
12.2.1 GENERALITÀ	16
12.2.2 MODALITÀ DI POSA	18
12.2.3 DETERMINAZIONE DELLA PORTATA	23
12.2.4 DIMENSIONAMENTO DEI CONDUTTORI DI NEUTRO	33
12.2.5 DIMENSIONAMENTO DEI CONDUTTORI DI PROTEZIONE	33
12.2.6 CALCOLO DELLA TEMPERATURA DEI CAVI	34
12.3 CADUTE DI TENSIONE	34
12.4 VERIFICA DELLA PROTEZIONE A CORTOCIRCUITO DELLE CONDUTTURE	35
12.4.1 GENERALITÀ	
12.4.2 INTEGRALE DI JOULE	36
12.4.3 Massima lunghezza protetta	37
12.5 VERIFICA CONTATTI INDIRETTI	
12.5.1 SISTEMA DI DISTRIBUZIONE TT	38
12.6 CALCOLI DIMENSIONALI LINEE BT	38

COMMESSA

LOTTO

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD ΡΙΖΖΔΡΩΤΤΙ PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Rotatoria S.S. 90 - Illuminazione intersezioni - Relazione tecnica E ZZ RO 4 di 38

1 INTRODUZIONE

La presente relazione tecnica intende illustrare le soluzioni progettuali adottate per gli impianti di illuminazione asserviti alle strade della viabilità di accesso all'area d'imbocco lato Bari che saranno costruite nell'ambito degli interventi per la realizzazione della nuova linea ferroviaria Hirpinia-Orsara.

Il presente documento intende relazionare in merito alle caratteristiche tecniche del progetto elettrico ed ai calcoli eseguiti per il dimensionamento dei quadri elettrici e delle linee elettriche di distribuzione dell'alimentazione ai punti luce.

Nel presente documento, col termine "impianti di illuminazione" si intendono compresi i seguenti impianti: impianti di alimentazione elettrica BT di illuminazione esterna comprendenti:

- a. consegna ENEL in BT e nuovo quadro elettrico di illuminazione esterna
- b. reti BT di distribuzione principale
- C. reti BT di distribuzione terminale

impianti di illuminazione comprendenti:

- d. illuminazione delle strade di viabilità e delle rotatorie tramite pali equipaggiati con apparecchi a LED
- e. sistema di gestione dei Punti Luce (PL) asserviti alle strade di viabilità ed alle rotatorie

Nella progettazione sono state adottate le soluzioni che garantiscono i seguenti obiettivi:

la sicurezza degli operatori, degli utenti e degli impianti

la semplicità ed economia di manutenzione

la scelta di apparecchiature improntata a criteri di uniformità, elevata qualità, semplicità e robustezza, per sostenere le condizioni di lavoro più gravose

Per ulteriori dettagli tecnici rispetto a quanto riportato nel presente documento si rinvia al "Capitolato speciale di appalto – norme tecniche impianti elettrici e speciali" nonché ai vari elaborati grafici.

2 DENOMINAZIONI ED ABBREVIAZIONI UTILIZZATE

Nel seguito verranno impiegate le seguenti abbreviazioni (in ordine alfabetico):

AD - Azienda distributrice di energia elettrica (ENEL)

BT o bt - Simbolo generico di "Sistema di bassa tensione in c.a." (400/230V)

CA - Continuità assoluta

Cc o Dc - Corrente Continua
CAM - Criteri Ambientali Minimi

CEI - Comitato Elettrotecnico Italiano

CSA - Capitolato Speciale di Appalto

DL - Direzione dei Lavori, generale o specifica

FM - Forza Motrice
GE - Gruppo Elettrogeno

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD PIZZAROTTI PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Rotatoria S.S. 90 - Illuminazione intersezioni - Relazione tecnica E ZZ RO IV0101 001

HW - Hardware

IMQ - Istituto Italiano per il Marchio di Qualità

I/O - Input/Output

IP - Illuminazione Pubblica

LED - Light Emitting Diode

L.R. - Legge Regionale in materia di inquinamento luminoso e risparmio energetico

MIT - Ministero delle Infrastrutture e dei Trasporti

MT - Media Tensione in c.a.PC - Personal Computer

PGEP - Posto di Gestione Emergenza Periferico

PL - Punto Luce

RFI - Rete Ferroviaria Italiana

SA - Servizi Ausiliari SW - Software

UNEL - Unificazione Elettrotecnica Italiana

UNI - Ente Nazionale Italiano di UnificazioneUPS - Gruppo di continuità assoluta

Eventuali altri acronimi potranno essere introdotti solo dopo che siano stati definiti, tra parentesi, accanto alla definizione estesa del proprio significato.

3 LEGGI E NORME DI RIFERIMENTO

Nel seguito vengono elencati i principali riferimenti legislativi e normativi che sono stati considerati nello sviluppo del progetto esecutivo degli impianti elettromecca nici.

Leggi e Decreti

- D. Leg.vo n. 285 del 1992 "Nuovo Codice della Strada", D. Leg.vo n.9 del 15/01/2002, "Disposizioni integrative e correttive del nuovo codice della strada" e s.m.i.
- L.R. della Campania n.12 del 25/07/2002 "Norme per il contenimento dell'inquinamento luminoso e del consumo energetico da illuminazione esterna pubblica"
- D.M. del 5/11/2001 "Norme funzionali e geometriche per la costruzione delle strade"
- D.M. del 27/09/2017 "Criteri Ambientali Minimi per l'acquisizione di sorgenti luminose per illuminazione pubblica, l'acquisizione di apparecchi per illuminazione pubblica, l'affidamento del servizio di progettazione di impianti per illuminazione pubblica".

Norme CEI

Tutta la normativa del Comitato Elettrotecnico Italiano in generale, di interesse per le opere in progetto ed in particolare:

Norma CEI 0-21 - Regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti BT delle imprese distributrici di energia elettrica (nel caso di fornitura in BT).

Norma CEI 11-17 - "Impianti di produzione, trasmissione e distribuzione di energia elettrica. Linee in cavo"

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD **PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA **Mandataria** Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV. Rotatoria S.S. 90 - Illuminazione intersezioni - Relazione tecnica E ZZ RO

Norma CEI 11-25 - "Calcolo delle correnti di cortocircuito nelle reti trifasi a corrente alternata."

Norma CEI 17-5 - "Apparecchiature a bassa tensione. Parte 2: Interruttori automatici"

Norma CEI 17-113 - "Apparecchiature assiemate di protezione e di manovra per bassa tensione (quadri BT)"

Norma CEI EN 61386-24 - "Sistemi di tubi ed accessori per installazioni elettriche – Parte 24: Prescrizioni particolari – Sistemi di tubi interrati"

Norma CEI 64-8 - "Impianti elettrici utilizzatori a tensione nominale non superiore a 1.000 Volt in corrente alternata e 1.500 Volt in corrente continua"

Norme CEI 64-19 – "Guida agli impianti di illuminazione esterna"

Norma CEI 315-4 - Guida all'efficienza energetica degli impianti di illuminazione pubblica: aspetti generali

Norme UNI

Tutta la normativa UNI, di interesse per le opere in progetto ed in particolare:

Norma UNI 11248:2016 - Illuminazione stradale - Selezione delle categorie illuminotecniche

Norma UNI EN 13201-2:2016 - Illuminazione stradale - Parte 2: Requisiti prestazionali

Norma UNI EN 13201-3:2016 - Illuminazione stradale - Parte 3: Calcolo delle prestazioni

Norma UNI EN 13201-4:2016 - Illuminazione stradale - Parte 4: Metodi di misurazione delle prestazioni fotometriche

Norma UNI 12464-2 - "Illuminazione dei posti di lavoro in esterno"

Norma UNI EN 40 - Norme relative ai pali per illuminazione pubblica

Norma UNI 10819 – Luce e illuminazione - Impianti di illuminazione esterna - Requisiti per la limitazione della dispersione verso l'alto del flusso luminoso

Norma UNI 11095 - Luce e illuminazione – Illuminazione delle gallerie stradali

Norma UNI EN 12665 - Luce e illuminazione – Termini fondamentali e criteri per i requisiti illuminotecnici

Norma UNI 12767 - Sicurezza passiva di strutture di sostegno per attrezzature stradali - Requisiti, classificazione e metodi di prova

Altro

Prescrizioni delle Norme Tecniche ENEL

4 CLASSIFICAZIONE DELLE AREE E DEGLI AMBIENTI

Gli impianti previsti nel presente progetto dovranno essere realizzati nei seguenti ambienti tipici:

- aree esterne (strade ed aree di svincolo, piazzali): in tale contesto trova applicazione la sezione 714 della Norma CEI 64-8/7 relativa agli "Impianti di illuminazione situati all'esterno". Tale sezione prescrive i seguenti provvedimenti particolari che si possono, con i dovuti adeguamenti, estendere per analogia anche per gli altri impianti realizzati all'aperto:
 - pali di sostegno conformi alla Norma UNI EN 40
 - grado di protezione minimo IP65 per componenti elettrici posti all'esterno, in particolare per gli apparecchi illuminanti sarà richiesto un grado di protezione IP67 se posti ad una altezza maggiore di 2,5m dal piano di calpestio
 - grado di protezione minimo IP68 per componenti elettrici nei pozzetti con drenaggio o per componenti direttamente interrati

APPALTATORE:							
Consorzio	Soci	ITINEDADIO NADOLI, DADI					
HIRPINIA - ORSARA AV	WEBUILD PIZZAROTTI	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE - ORSARA					
PROGETTAZIONE:							
<u>Mandataria</u>	<u>Mandanti</u>	II LOTTO FUNZIONALE HIRPINIA - ORSARA					
ROCKSOIL S.P.A	NET ENGINEERING PINI GCF ELETTRI-FER			711/7			
M-INGEGNERIA							
PROGETTO ESECUT	IVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Rotatoria S.S. 90 – Illum	inazione intersezioni - Relazione tecnica	IF3A	02	E ZZ RO	IV0101 001	Α	7 di 38

caduta di tensione massima pari al 4%

Si sottolinea che, tutti i cavi previsti per l'opera in oggetto dovranno essere rispondenti al CPR (regolamento prodotti da costruzione UE 305/11), dotati di marcatura CE e provvisti di dichiarazione di performance.

Per l'opera in oggetto la tipologia di cavo ammesse, sono:

per impianti posati all'aperto, euroclasse C_{ca} - s3, d1, a3 tipo FG16(O)R16 0,6/1kV

5 DATI GENERALI

Lo sviluppo del progetto è stato eseguito facendo riferimento alle seguenti condizioni principali:

Ubicazione:	Provincia di Avellino
Altitudine:	< 500 m s.l.m.
Destinazione ambienti:	opere all'aperto
Temperature e umidità di riferimento:	T invernale: -3,8 °C
	UR invernale: 80 %
	T estiva: 31 °C
	UR estiva: 53 %
Classificazione strade (D.M.5/11/2001-UNI 11248):	
	Strada locale extraurbana / altre situazioni (50 km/h – altri assi)
Velocità di pecorrenza della strada	< 50 km/h

6 IMPIANTI ELETTRICI DI POTENZA

6.1 Generalità

Nel seguito si riporta la descrizione tecnica degli impianti di alimentazione elettrica asserviti all'impianto di illuminazione della strada di accesso al cantiere Grottaminarda; questa strada viene derivata dalla SS90 attraveso una rotatoria di nuova realizzazione.

Il progetto comprende quindi l'impianto di illuminazione della rotatoria e dell'uscita verso la strada di accesso al cantiere.

Per ulteriori dettagli si rinvia agli altri elaborati di progetto (in particolare alle relazioni di calcolo, agli elaborati grafici ed agli schemi unifilari dei quadri elettrici).

6.2 Viabilità

La nuova rotatoria sarà realizzata lungo la SS90; la strada risulta già dotata di impianto di illuminazione, con PL distribuiti lungo la stessa alimentati tramite una linea aerea appoggiata ai sostegni dei corpi illuminanti.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD PIZZAROTTI PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Rotatoria S.S. 90 - Illuminazione intersezioni - Relazione tecnica E ZZ RO IV0101 001

L'intervento in progetto prevede in sintesi:

- Realizzazione di nuova rotatoria
- Realizzazione di nuova viabilità in uscita dalla rotatoria in direzione est
- Interramento della linea aerea di alimentazione dell'IP a monte ed a valle della rotatoria
- Realizzazione di nuova IP lungo il perimetro della rotatoria e nel primo tratto della nuova strada che da accesso al cantiere Grottaminarda.

Per ogni dettagli si rimanda alla planimetria di progetto.

6.3 Dati specifici di progetto della rete elettrica BT

Si riportano nel seguito i dati assunti per la definizione della rete elettrica BT:

• Dati rete ENEL in BT: tensione di alimentazione: $400 \text{ V} \pm 10\%$

corrente di cortocircuito trifase nel punto di consegna BT: 10 kA

sistema di distribuzione: TT

Assorbimenti unitari (W):
 Apparecchio illuminante tipo A1 (sorgente a LED,

360mA): ≤ 34 W

o Apparecchio illuminante tipo B1 (sorgente a LED,

320mA): ≤ 70 W

Caduta di tensione massima: ≤ 4%
 Riserva di spazio (o interruttori) sui quadri BT: ≥ 20%
 Riserva di spazio nelle canalizzazioni: ≥ 50%

Riserva di spazio nelle tubazioni: diametro interno della tubazione pari a 1,5 volte il diametro del

cerchio che circoscrive il fascio dei cavi

Tipologia conduttori BT: cavi interrati all'aperto posati all'interno di tubazioni in materiale

plastico: FG16(O)R16 0.6/1 kV

6.4 Struttura generale della rete elettrica

Gli impianti di Illuminazione Pubblica, di cui trattasi, saranno tutti alimentati in bassa tensione, in derivazione da quadri elettrici posti all'esterno in prossimità delle aree da servire. Tali quadri saranno a loro volta alimentati in BT da una consegna dedicata da parte dell'Ente Distributore, realizzata in corrispondenza di appositi vani contatori presenti nella carpenteria dello stesso quadro BT di alimentazione.

Per ogni zona servita si prevede una rete di alimentazione elettrica così articolata:

fornitura dedicata dell'energia elettrica in BT, a 400V/230Vac, da parte dell'Ente Distributore, completa di apparato di misura installato nel vano contatori BT previsto nella carpenteria (armadio da esterno in vetroresina a due vani) del quadro BT di alimentazione.

quadro elettrico di protezione e comando, posto immediatamente a valle del contatore all'interno del vano dedicato dell'armadio su menzionato, contenente il Dispositivo Generale di Linea (DGL1) di utente e tutti gli interruttori derivati necessari per l'alimentazione e la regolazione delle utenze in campo,

rete di distribuzione BT dedicata all'alimentazione delle utenze terminali, tipicamente costituite dagli apparecchi illuminanti su palo

impianto di terra e di protezione dai fulmini

APPALTATORE:							
Consorzio	Soci	ITINED ADIO NADOLI. DADI					
HIRPINIA - ORSARA AV	WEBUILD PIZZAROTTI	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE - ORSARA					
PROGETTAZIONE:							
<u>Mandataria</u>	<u>Mandanti</u>	II LOTTO FUNZIONALE HIRPINIA - ORSARA					
ROCKSOIL S.P.A	NET ENGINEERING PINI GCF ELETTRI-FER			711/7			
M-INGEGNERIA							
PROGETTO ESECUT	IVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Rotatoria S.S. 90 – Illum	inazione intersezioni - Relazione tecnica	IF3A	02	E ZZ RO	IV0101 001	Α	9 di 38

6.5 Forniture energia elettrica BT

La Fornitura di energia Elettrica sarà realizzata in conformità alla Norma CEI 0-21. – "Regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti BT delle imprese distributrici di energia elettrica".

La consegna BT sarà eseguita, come già precisato, in corrispondenza del vano contatore BT del Distributore predisposto specificatamente a tale scopo all'interno dell'armadio in vetroresina da esterno. L'armadio sarà collocato in posizione accessibile agli operatori da strada o spazio pubblico.

Per quanto concerna le potenze stimate per la fornitura si riporta i relativi valori nella seguente tabella:

QUADRO DI ALIMENTAZIONE Quadro QBT1	SIGLA FORNITURA	POTENZA ASSORBITA [kW]
Quadro QBT1	NC01	≈ 1,5

6.6 Quadro BT di consegna e di distribuzione

All'interno dello stesso armadio nel quale sarà collocato il contatore del Distributore, in vano separato, sarà installato il quadro elettrico di consegna e di distribuzione (QBT1).

Tale quadro, realizzato entro carpenteria in materiale plastico IP55 e forma di segregazione 1, conterrà

- i Dispositivi Generali di Linea (DGL) di utente costituiti da interruttori magnetotermici differenziali, di tipo modulare, aventi potere di interruzione adeguato al punto di installazione e taglia adeguata alle esigenze dei diversi sistemi alimentati. Per il DGL relativo ai circuiti luce si prevede inoltre di equipaggiare il DGL stesso con un dispositivo di richiusura automatico (per almeno n.3 cicli)
- gli interruttori derivati dedicati alle varie linee di alimentazione dei PL costituiti da interruttori magnetotermici modulari, aventi potere di interruzione adeguato al punto di installazione

i necessari dispositivi ausiliari (orologio e/o crepuscolare).

Ogni armadio (QBT1) sarà fissato su zoccolo in calcestruzzo realizzato in opera, predisposto per consentire sia l'ingresso dei cavi del Distributore che l'uscita di quelli in partenza, asserviti alle varie utenze in campo.

Non sono previsti sistemi di rifasamento automatico delle utenze, in quanto tutti gli apparecchi illuminanti costituiscono già dei carichi rifasati.

Per i dettagli delle apparecchiature contenute nei quadri elettrici si rinvia agli schemi elettrici unifilari allegati al presente progetto.

6.7 Reti BT di distribuzione

Costituiscono oggetto del presente paragrafo le reti BT derivate dal quadro QBT1 per l'alimentazione delle apparecchiature in campo (PL su palo).

Tali reti, di tipo monofase (F+neutro), saranno costituite da cavi multipolari BT tipo FG16OR16 - 0.6/1 kV (a norme CEI 20-13, CPR UE 305/11), posate entro tubazioni in PVC (cloruro di polivinile) serie pesante interrate.

Gli impianti elettrici di alimentazione dell'illuminazione stradale avranno le seguenti caratteristiche:

cavi di distribuzione principale a doppio isolamento, multipolari, tipo FG16OR16 0.6/1 kV (a norme CEI 20-13, CPR UE 305/11), aventi sezione tale da contenere la caduta di tensione entro il 4% e tale da garantire il coordinamento con il relativo dispositivo di protezione installato sul quadro di alimentazione. Sono previste più linee che alimentano i vari PL, ed i PL saranno distribuiti in modo alternato su queste linee. Con tale soluzione, anche nel caso di fuori servizio di un circuito, il tratto di strada rimane comunque illuminato, seppur ad un livello e con uniformità degradati

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD **PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Rotatoria S.S. 90 - Illuminazione intersezioni - Relazione tecnica 10 di 38

- le linee di distribuzione principale saranno interrate e protette da tubi in materiale plastico aventi diametro adeguato (tipicamente 100mm). I cavidotti saranno collocati ad almeno 0.5 m di profondità. Ogni 30÷40 m, e comunque in corrispondenza di ogni cambio di direzione, sarà previsto un pozzetto onde facilitare la posa e la successiva ispezione delle linee elettriche. Tali pozzetti saranno inoltre dislocati in corrispondenza di ogni punto luce al fine di permettere la derivazione del cavo di alimentazione al punto luce stesso. I pozzetti saranno di tipo prefabbricato aventi dimensioni indicative pari a 450x450xh600mm (salvo diversa indicazione evidenziata negli elaborati grafici), completi di chiusino in calcestruzzo (classe D400 se collocati in aree normalmente carrabili) ovvero classe C250 se collocati in aree normalmente non carrabili)) cementati superiormente per prevenzione da atti vandalici. In taluni casi (es. posa nei sottopassi, lungo ponti/viadotti, in cunicoli, ecc.), è previsto l'uso di canalizzazioni o tubazioni metalliche in acciaio zincato a caldo, fisate a parete del manufatto.
- la derivazione dalla dorsale di alimentazione agli apparecchi illuminanti sarà realizzata direttamente in morsettiera su palo o tramite muffola di derivazione in pozzetto. In entrambi i casi i componenti di derivazione saranno in classe II.
- circuito di alimentazione terminale, derivato dalla morsettiera su palo (o dalla muffola di derivazione in pozzetto), realizzato con cavo a doppio isolamento, di tipo multipolare 2x2,5mm², FG16OR16 0.6/1 kV (a norme CEI 20-13, CPR UE 305/11)
- è prevista una seconda linea in tubo PVC interrato per garantire la continuità di alimentazione ai PL posti lungo la SS90 a monte (nord) ed a valle (sud) della tratta di intervento. In corrispondenza del primo PL (a nord del PL A-01) e dell'ultimo PL (a sud del PL B-09) è prevista la discesa nella tibazione interrata della linea aerea esistente che alimenta i PL esistenti. Alla base di questi pali è previsto un pozzetto di dimensioni 600x600xh600mm, completi di chiusino in calcestruzzo (classe D400 se collocati in aree normalmente carrabili ovvero classe C250 se collocati in aree normalmente non carrabili)) cementati superiormente per prevenzione da atti vandalici.

Il numero e lo sviluppo planimetrico dei cavidotti sono indicati negli elaborati grafici.

6.8 Impianto di terra e di protezione dai fulmini

Gli impianti di illuminazione previsti saranno in classe di isolamento II, pertanto non sarà distribuito il conduttore PE a valle del quadro QBT1.

Per ottenere il sistema TT sarà necessario realizzare, a servizio del quadro elettrico BT, un impianto disperdente di terra avente un valore di resistenza idoneo per la protezione contro i contati indiretti, quindi compatibile con la taratura della protezione differenziale che sarà prevista.

L'impianto disperdente sarà costituito da:

- un picchetto verticale a croce, avente lunghezza 1,5m, posato all'interno del primo pozzetto di derivazione o in corrispondenza del quadro elettrico
- corda di rame nuda da 35 mmq avente lunghezza sufficiente (almeno pari a 50m) per raggiungere il valore di resistenza di terra desiderato, posta a contatto col terreno lungo i cavidotti elettrici, ad una profondità minima di 0,6 m.

All'impianto di terra sarà collegata, tramite il conduttore di terra, la sbarra di terra del quadro QBT1.

Ai sensi della Norma CEI 64-8/7 sezione 714 la protezione contro i fulmini dei sostegni di illuminazione non è necessaria.

Tuttavia, con lo scopo di garantire una maggiore immunità degli impianti dalle sovratensioni, come conseguenza di fenomeni naturali (effetti indiretti di scariche atmosferiche) o derivanti da azioni umane (manovre sui circuiti, inserzioni di batterie di condensatori, etc.), il quadro elettrico BT sarà dotato di limitatori di sovratensione (SPD) di classe II, installati in corrispondenza della loro sezione di ingresso.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD **PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Rotatoria S.S. 90 - Illuminazione intersezioni - Relazione tecnica E ZZ RO IV0101 001 11 di 38

7 IMPIANTI DI ILLUMINAZIONE DELLE STRADE DI VIABILITA' E DELLE ROTATORIE

7.1 Generalità

L'obiettivo che si desidera raggiungere con l'illuminazione delle strade e delle zone di conflitto (rotatorie) è quello di assicurare a chi sopraggiunge, di notte o di sera, un senso di sicurezza e di comfort uguale a quello che l'utente può avere durante il giorno.

Lo scopo si ottiene quando l'impianto di illuminazione trasmette al conducente adeguate informazioni visive sullo stato del tracciato che si appresta a percorrere, sul movimento di altri veicoli e sulla presenza di eventuali ostacoli.

In quest'ottica, l'impianto di illuminazione deve necessariamente fornire le seguenti prestazioni:

deve illuminare il piano stradale con un adeguato livello di luminanza e di uniformità

la luce deve avere un angolo di incidenza rispetto al piano di visuale tale da fornire elevata visibilità del tracciato deve illuminare adeguatamente le corsie n modo da fornire all'utente un più ampio angolo di visibilità

Il progetto prevede un impianto di illuminazione costituito da apparecchi equipaggiati con sorgenti a LED ed ottica di tipo stradale, installati su pali aventi altezza fuori terra di 8 / 8,5m rispetto al piano stradale, eventualmente dotati di sbraccio, avente lunghezza di 1,5 ÷2 m ed alzata di circa 0,3 m;

Per quanto concerne dati di progetto, definizione delle categorie illuminotecniche e risultati di calcolo si rinvia alle relazioni di calcolo illuminotecnico facente parte del progetto, mentre la disposizione degli impianti di illuminazione di viabilità è riportata nelle tavole grafiche.

7.2 VERIFICA DEL RISPETTO DELLE L.R. e dei cam

La progettazione degli impianti di illuminazione di cui trattasi è stata redatta in conformità alle disposizioni prescritte dalla Legge Regionale n.12 del 25/07/2002 – "Norme per il contenimento dell'inquinamento luminoso e del consumo energetico da illuminazione esterna pubblica" vigente in tema di risparmio energetico e di lotta all'inquinamento luminoso.

Dettagli ed ulteriori considerazioni in merito al soddisfacimento dei requisiti di cui alla L.R. e dei CAM sono riportati nelle relazioni di calcolo illuminotecnico.

Per quanto concerne il rispetto dei "Criteri Ambientali Minimi per l'acquisizione di sorgenti luminose per illuminazione pubblica, l'acquisizione di apparecchi per illuminazione pubblica, l'affidamento del servizio di progettazione di impianti per illuminazione pubblica" di cui al D.M. del 27/09/2017, resta inteso che tali criteri si applicano soltanto agli impianti di illuminazione pubblica ovvero asserviti alle aree aperte al traffico pubblico.

Nel caso specifico quindi essi trovano applicazione nell'ambito degli impianti di illuminazione dedicati alle strade di viabilità, mentre sono esclusi gli impianti asserviti ai piazzali di servizio ad uso dei fabbricati che costituiscono delle zone chiuse al pubblico ad uso esclusivo degli addetti.

7.3 Descrizione apparecchi illuminanti utilizzati

Per l'illuminazione delle strade di viabilità e delle rotatorie sono previsti apparecchi su palo con sorgenti LED, corpo in alluminio e vetro piano di chiusura.

La dissipazione del calore è garantita da adeguati dissipatori montati superiormente ai moduli LED.

L'alimentazione interna, in corrente continua, è garantita attraverso reattori elettronici di pilotaggio (driver), caratterizzati da elevata efficienza (>90%) e da elevata durata (70.000 ore) idonei per una gestione basata sul concetto di "mezzanotte virtuale".

Altre caratteristiche degli apparecchi illuminanti si possono così riassumere:

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI GCF ELETTRI-FER

M-INGEGNERIA

PROGETTO ESECUTIVO Rotatoria S.S. 90 – Illuminazione intersezioni - Relazione tecnica

THE INIA - ORDANA AV WEDDIED TIZZAROTTI

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF3A
 02
 E ZZ RO
 IV0101 001
 A
 12 di 38

durata LED (L80B10): ≥ 100.000 ore a 25°C di temperatura ambiente

grado di protezione: IP67 resistenza agli urti: IK09 classe di isolamento: II resa cromatica: > 70

temperatura di colore: 4.000 K fattore di potenza: ≥ 0,95

superficie esposta al vento dell'apparecchio (SCx): 0,05 m2

peso: 6 kg

predisposizione per montaggio su testa palo ø 40÷60mm

temperatura di funzionamento da -20°C a +40°C.

SPD integrato, tipo II, per sovratensioni di modo comune fino a 10 kV

alimentazione da 220÷240Vac a 50Hz

conforme a CEI EN 60598-2-3.

Si prevede l'utilizzo di differenti tipologie di corpi illuminanti. Le diverse tipologie, evidenziate nella seguente tabella, si distinguono in base alla potenza ed al flusso dell'apparecchio nonché sulla base della corrente di pilotaggio del driver:

TIPO APPARECCHIO	CORRENTE DI PILOTAGGIO	POTENZA ASSORBITA APPARECCHIO	ASSORBITA EMESSO	
Stradale tipo A	360 mA	≤ 34 W	≥ 4.600 lm	≥ 130 lm/W
Stradale tipo B	320 mA	≤ 70 W	≥ 9.500 lm	≥ 130 lm/W

La distribuzione dei punti luce, nelle diverse zone servite dall'impianto di illuminazione, è riportata nelle tavole grafiche facenti parte del progetto.

7.4 Descrizione dei pali di sostegno

I pali di supporto degli apparecchi a LED saranno in acciaio zincato del tipo laminato a caldo, saldati longitudinalmente ad alta frequenza, realizzati in lamiera di acciaio S275 JOH (Fe430B) con caratteristiche meccaniche conformi alla UNI EN 10025.

I pali, progettati secondo la UNI EN 40 e dotati di marcatura CE, saranno zincati a caldo, internamente ed esternamente, secondo al Norma UNI EN ISO 1461.

Essi avranno una forma conica diritta e laddove indicato nei disegni, saranno completi di sbraccio.

Si prevedono pali aventi le seguenti caratteristiche (si vedano anche gli elaborati grafici):

altezza: 8 o 8,5m (vedi sezioni su tavole grafiche) fuori terra rispetto al piano stradale da illuminare

spessore ≥ 3 mm

diametro di testa: 60mm diametro di base: 127 mm

peso: circa 90 kg

portata con riferimento ad una zona di vento 3 e categoria esposizione terreno I: > 0,1 mq

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD PIZZAROTTI PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Rotatoria S.S. 90 - Illuminazione intersezioni - Relazione tecnica E ZZ RO 13 di 38

foro ingresso cavi a circa 600mm dalla base

asola per l'alloggiamento morsettiera posta a circa 1800 mm dalla base chiusa con portella in alluminio grado di protezione IP55

completi di morsettiera in classe II con portafusibile e fusibile di protezione

Come detto sopra i pali saranno generalmente dotati di sbraccio singolo, realizzato in acciaio S235JRH, UNI EN 10025, zincato a caldo secondo al Norma UNI EN ISO 1461, avente le seguenti caratteristiche:

lunghezza: 1,5 ÷2 m alzata: circa 0,3m peso: 8 – 10 kg spessore ≥ 3 mm

diametro di testa: 60mm

Saranno infine corredati di attacco filettato per il collegamento all'impianto di terra ed avere, in corrispondenza della sezione di incastro, un rinforzo protettivo esterno costituito da guaina termorestringente in polietilene applicata con processo a caldo avente spessore non inferiore a 4mm e lunghezza di circa 450mm.

7.5 Sistemi di supporto dei sostegni

Per il supporto dei pali di illuminazione dovranno essere utilizzati plinti di fondazione interrati di tipo prefabbricato aventi dimensioni indicative di 1.000x1.000x1.100mm idonei per pali di altezza fino a 16m.

Il plinto avrà predisposto sia il foro verticale di infilaggio del palo sia il foro per il raccordo "orizzontale" con il pozzetto di transito delle condutture di alimentazione. Per la posa dovrà essere eseguita una platea di appoggio in magrone con spessore di circa 150 mm mentre la sezione cava dovrà essere riempita con terreno ad elevata portanza.

Laddove necessario (ed indicato nelle tavole grafiche facenti parte del progetto) il palo, anziché su plinto, sarà fissato su supporti metallici "a Bicchiere" realizzati in acciaio S235JRH.

L'arretramento dei sostegni in caso di barriera (guard-rail) sarà pari a 1,5 m, lo stesso arretramento sarà comunque mantenuto anche in assenza di barriera.

7.6 Sistema di comando e regolazione dell'impianto di illuminazione

L'attivazione ON – OFF dei circuiti d'illuminazione sarà essenzialmente gestita ad orario e/o tramite crepuscolare.

Ai sensi della Norma UNI 11248, nelle ore notturne, caratterizzate da un basso o scarso volume di traffico, si può ridurre il livello di luminanza del manto stradale. A tale scopo gli apparecchi a LED saranno equipaggiati di driver adeguati ad essere gestiti in base al concetto di "Mezzanotte virtuale". Trattasi di sistema "stand-alone" che consente la regolazione del flusso luminoso emesso dagli apparecchi stessi senza l'aggiunta di cablaggi aggiuntivi.

La regolazione segue gradini pre-impostati e i risultati in termini di risparmio sono ottimali, in quanto il dispositivo si aggiorna automaticamente in funzione degli orari di accensione e spegnimento dell'impianto. La riduzione del flusso luminoso avviene attraverso un processo di auto-apprendimento dell'apparecchio, che, in funzione delle accensioni e spegnimenti pregressi, determina l'ipotetica "mezzanotte virtuale", media tra l'istante di accensione (tramonto) e quello di spegnimento (alba). La "mezzanotte virtuale" costituisce il punto di riferimento (o punto medio di accensione) per applicare la riduzione dell'emissione luminosa secondo il profilo desiderato, su più livelli a fasce orarie, che possono variare secondo le necessità e le norme da rispettare.

Il sistema calcola la mezzanotte virtuale in automatico ed il calcolo viene continuamente aggiornato nel corso dell'anno in base al variare degli orari di accensione e di spegnimento dei PL nelle diverse stagioni.

Per il primo giorno, seguenti al montaggio, le lampade funzioneranno a piena potenza ed un microprocessore, acquisendo i tempi di accensione, calcola il tempo di commutazione desiderato partendo dalla mezzanotte virtuale. A partire dal giorno successivo si inizia la gestione dell'impianto su più livelli: in funzione delle esigenze specifiche

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD **PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandataria</u> Mandanti II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Rotatoria S.S. 90 - Illuminazione intersezioni - Relazione tecnica E ZZ RO IV0101 001 14 di 38

sarà possibile definire un profilo di regolazione su almeno 5 diversi livelli, a fasce orarie, configurabili tramite software dedicato.

Per rispettare le specifiche previste dalla UNI 11248 sarà impostato il ciclo orario in modo che le condizioni di sicurezza siano garantite nella giornata più trafficata dell'anno, quando il traffico sarà sceso sotto il 50% e sotto il 25% del valore massimo si potrà ridurre il flusso, rispettivamente, del 25% e del 50%.

Si precisa infine che la riduzione dei livelli di emissione luminosa da parte degli impianti di illuminazione risulta prescritta anche dalle disposizioni regionali vigenti in tema di risparmio energetico e di lotta all'inquinamento luminoso (vedi Legge Regionale della Campania n.12 del 12/07/2002).

8 RELAZIONE DI CALCOLO ELETTRICO

9 INTRODUZIONE

Nella presente relazione vengono illustrate le modalità di calcolo ed i risultati del dimensionamento, relativamente agli impianti di illuminazione asserviti alla alle strade della viabilità di accesso all'area d'imbocco lato Bari che saranno costruite nell'ambito degli interventi per la realizzazione della nuova linea ferroviaria Hirpinia-Orsara.

Il presente documento, relativamente ai calcoli dimensionali degli impianti di Bassa Tensione (BT), intende evidenziare:

la normativa tecnica utilizzata per il dimensionamento;

i criteri di dimensionamento, tenendo conto dei vincoli impiantistici e della normativa vigente:

i dati di input

i risultati dei calcoli dimensionali e delle verifiche di calcolo necessarie per la definizione degli impianti BT.

In particolare, sono descritti in generale i principali metodi di calcolo e di verifica, riportando le prescrizioni indicate dalla normativa in uso. Talvolta nei casi specifici, qualora sia necessario, potranno essere introdotte opportune ipotesi semplificative.

I risultati delle verifiche di impianto, ottenute con software commerciale o tramite fogli di calcolo, sono riportati negli allegati, a cui dovrà essere fatto riferimento anche per le sigle e la simbologia adottata.

Per ulteriori dettagli si rimanda agli elaborati grafici relativi ed in particolare agli schemi unifilari dei quadri elettrici.

10 LEGGI E NORME DI RIFERIMENTO

Nello sviluppo del progetto esecutivo delle opere impiantistiche descritte nel presente documento, oltre ai riferimenti legislativi, sono stati considerati, in particolare, i seguenti riferimenti:

Norma CEI 0-21 – "Regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti BT delle imprese distributrici di energia elettrica" (nel caso di fornitura in BT)

Norma CEI 11-17 - "Impianti di produzione, trasmissione e distribuzione di energia elettrica. Linee in cavo"

CEI 11-25 (IEC 60909) – "Correnti di cortocircuito nei sistemi trifasi in corrente alternata. Parte 0: Calcolo delle correnti"

Norma CEI 11-25 (IEC 60909) - "Calcolo delle correnti di cortocircuito nelle reti trifasi a corrente alternata";

Norma CEI EN 60947-2 - "Apparecchiature a bassa tensione. Parte 2: Interruttori automatici"

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA - ORSARA A	V WEBUILD	PIZZAROTTI						
PROGETTAZIONE:			RADDOPPIO TRATTA APICE - ORSARA					
<u>Mandataria</u>	<u>Mandanti</u>							
ROCKSOIL S.P.A	NET ENGIN GCF	EERING PINI ELETTRI-FER	II LOTTO FUNZIONALE HIRPINIA - ORSARA		אווא			
M-INGEGNERIA								
PROGETTO ESECUTIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Rotatoria S.S. 90 - Illu	minazione inte	sezioni - Relazione tecnica	IF3A	02	E ZZ RO	IV0101 001	Α	15 di 38

Norma CEI EN 60898-1 - "Interruttori automatici per la protezione dalle sovracorrenti per impianti domestici e similari. Parte 1: Interruttori automatici per funzionamento in corrente alternata"

Norma CEI 64-8 - "Impianti elettrici utilizzatori a tensione nominale non superiore a 1000V in corrente alternata e a 1500V in corrente continua"

Norma CEI EN 50272 - "Prescrizioni di sicurezza per batterie di accumulatori e loro installazioni"

Norma IEC 364-5-523 - "Wiring system. Current-carring capacities"

Norma CEI UNEL 35023 - "Cavi di energia per tensione nominale U=1 kV - Cadute di tensione"

Norma CEI UNEL 35024/1 - "Cavi elettrici isolati con materiale elastomerico o termoplastico per tensioni nominali non superiori a 1000 V in corrente alternata e a 1500 V in corrente continua. Portate di corrente in regime permanente per posa in aria"

Norma CEI UNEL 35024/1 - "Cavi elettrici isolati con materiale elastomerico o termoplastico per tensioni nominali non superiori a 1000 V in corrente alternata e a 1500 V in corrente continua. Portate di corrente in regime permanente per posa in aria";

Norma CEI UNEL 35026 - "Cavi elettrici con materiale elastomerico o termoplastico per tensioni nominali di 1000 V in corrente alternata e 1500 V in corrente continua. Portate di corrente in regime permanente per posa interrata"

Norma IEC 60287 - "Electric cables - Calculation of the current rating"

11 DATI DI BASE DEL PROGETTO

I calcoli di progetto per la realizzazione del nuovo impianto di illuminazione del quadro BT, saranno eseguiti facendo riferimento alle seguenti condizioni principali:

Assorbimenti utenze:

Apparecchio illuminante tipo A1 (sorgente a LED, 360mA): ≤ 34 W Apparecchio illuminante tipo B1 (sorgente a LED, 320mA): ≤ 70 W

Tipologia conduttori BT:

cavi della dorsale di illuminazione (entro cavidotti interrati): FG16(O)R16 0.6/1 kV

Per maggiori dettagli sulle apparecchiature soggette all'intervento si rimanda agli elaborati grafici ed in particolare agli schemi unifilari dei quadri elettrici.

12 DIMENSIONAMENTO LINEE BT

12.1 Calcolo delle correnti d'impiego

Per i carichi o le utenze presenti nell'impianto, la corrente d'impiego è calcolata dalla formula seguente, sulla base della potenza realmente assorbita:

$$I_b = \frac{P_d}{k_{ca} \cdot V_n \cdot \cos \varphi}$$

nella quale:

P_d = Potenza effettivamente assorbita dal carico

APPALTATORE: Consorzio HIRPINIA - ORSARA AN PROGETTAZIONE: Mandataria	Soci V WEBUILD PIZZAROTTI Mandanti	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSAR					
ROCKSOIL S.P.A M-INGEGNERIA	NET ENGINEERING PINI GCF ELETTRI-FER	201					
PROGETTO ESECU' Rotatoria S.S. 90 – Illur	COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ RO	DOCUMENTO IV0101 001	REV.	FOGLIO 16 di 38	

- V_n = Tensione nominale del sistema
- cos φ = Fattore di potenza
- k_{ca} = fattore dipendente dal sistema di collegamento
- k_{ca} = 1 sistema monofase o bifase, due conduttori attivi;
- k_{ca} = 1.73 sistema trifase, tre conduttori attivi.

Se la rete è in corrente continua il fattore di potenza cosφ è pari a 1.

Dal valore massimo (modulo) di l_b vengono calcolate le correnti di fase in notazione vettoriale (parte reale ed immaginaria) con le formule:

$$\begin{split} \dot{I}_1 &= I_b \cdot e^{-j\varphi} = I_b \cdot \left(\cos\varphi - j\sin\varphi\right) \\ \dot{I}_2 &= I_b \cdot e^{-j(\varphi - 2\pi/3)} = I_b \cdot \left(\cos\left(\varphi - \frac{2\pi}{3}\right) - j\sin\left(\varphi - \frac{2\pi}{3}\right)\right) \\ \dot{I}_3 &= I_b \cdot e^{-j(\varphi - 4\pi/3)} = I_b \cdot \left(\cos\left(\varphi - \frac{4\pi}{3}\right) - j\sin\left(\varphi - \frac{4\pi}{3}\right)\right) \end{split}$$

Il vettore della tensione Vn è supposto allineato con l'asse dei numeri reali:

$$\dot{V}_n = V_n + j0$$

La potenza di dimensionamento P_d è data dal prodotto:

$$P_d = P_n \cdot coeff$$

nella quale coeff è pari al fattore di utilizzo per utenze terminali oppure al fattore di contemporaneità per utenze di distribuzione.

La potenza P_n , invece, è la potenza nominale del carico per utenze terminali, ovvero, la somma delle P_d delle utenze a valle per utenze di distribuzione (somma vettoriale).

La potenza reattiva delle utenze viene calcolata invece secondo la:

$$Q_n = P_n \cdot \tan \varphi$$

per le utenze terminali, mentre per le utenze di distribuzione viene calcolata come somma vettoriale delle potenze reattive nominali a valle.

Il fattore di potenza per le utenze di distribuzione viene valutato, di conseguenza, con la:

$$\cos\varphi = \cos\left(\arctan\left(\frac{Q_n}{P_n}\right)\right)$$

12.2 Dimensionamento e verifica a sovraccarico dei cavi

12.2.1 Generalità

Di seguito sono illustrati i criteri di dimensionamento e verifica dei cavi e delle relative protezioni, in relazione alle correnti di sovraccarico.

Il riferimento è la Norma CEI 64-8/4 (par. 433.2), secondo la quale il dispositivo di protezione deve essere coordinato con la conduttura in modo da verificare le condizioni:

APPALTATORE:								
Consorzio	<u>Soci</u>			ITINI		NADOLL D	NDI	
HIRPINIA - ORSARA AV	WEBUILD	PIZZAROTTI		HIIN	ERAKIO	NAPOLI – BA	AKI	
PROGETTAZIONE:			RΔΓ		IO TRAT	TA APICE -	ORSAR	Δ
<u>Mandataria</u>	Mandanti					E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEE		II LOI	1010	INZIONAL		- OKO	7177
M-INGEGNERIA	GCF	ELETTRI-FER						
PROGETTO ESECUTIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Rotatoria S.S. 90 – Illuminazione intersezioni - Relazione tecnica		IF3A	02	E ZZ RO	IV0101 001	Α	17 di 38	

a)
$$I_b \le I_n \le I_z$$

b) $I_f \le 1.45 \cdot I_z$

dove:

- Ib = Corrente di impiego del circuito
- I_n = Corrente nominale del dispositivo di protezione
- Iz = Portata in regime permanente della conduttura
- I_f = Corrente di funzionamento del dispositivo di protezione

Affinché sia verificata la condizione a) è necessario dimensionare il cavo in base alla corrente nominale della protezione. Dalla corrente Ib, pertanto, viene determinata la corrente nominale della protezione (seguendo i valori normalizzati) e con questa si procede alla determinazione della sezione.

Il dimensionamento dei cavi rispetta anche i seguenti casi:

- condutture senza protezione derivate da una conduttura principale protetta contro i sovraccarichi con dispositivo idoneo ed in grado di garantire la protezione anche delle condutture derivate;
- conduttura che alimenta diverse derivazioni singolarmente protette contro i sovraccarichi, quando la somma
 delle correnti nominali dei dispositivi di protezione delle derivazioni non supera la portata Iz della conduttura
 principale.

L'individuazione della portata si effettua utilizzando le seguenti tabelle di posa assegnate ai cavi:

- CEI 64-8 Tabella 52C (esempi di condutture);
- CEI-UNEL 35024/1 (portata dei cavi isolati in PVC ed EPR);
- CEI-UNEL 35026 (portata dei cavi interrati);

Esse oltre a riportare la corrente ammissibile (portata) in funzione del tipo di isolamento del cavo, del tipo di posa e del numero di conduttori attivi, riportano anche la metodologia di valutazione dei coefficienti di declassamento. La portata minima del cavo viene calcolata come:

$$I_z = I_{zo} \cdot k_{tot}$$

dove Izo è il valore ricavato dalle tabelle nelle Norme per una specifica posa e (ktot) tiene conto dei seguenti fattori:

- · tipo di materiale conduttore;
- · temperature ambiente;
- tipo di isolamento del cavo;
- · condizioni di posa;
- numero di conduttori in prossimità compresi eventuali paralleli.

Gli eventuali paralleli vengono calcolati nell'ipotesi che abbiano tutti la stessa sezione, lunghezza e tipo di posa, considerando la portata minima come risultante della somma delle singole portate (declassate dal coefficiente di declassamento per prossimità).

Con gli interruttori, in virtù del loro elevato livello di precisione, la corrente I_f è sempre inferiore a 1.45 In così che, quando la protezione da sovraccarico è realizzata con interruttori, la condizione b) è automaticamente verificata. Le condutture dimensionate con questo criterio sono, pertanto, protette contro le sovracorrenti.

APPALTATORE:							
Consorzio	Soci		ITINI		NABOLL B	A D.I	
HIRPINIA - ORSARA AV	WEBUILD PIZZAROTTI		HIIN	ERAKIO	NAPOLI – B	AKI	
PROGETTAZIONE:		PΔI		OIO TRAT	TA APICE -	ORSAR	Δ
<u>Mandataria</u>	Mandanti		_	_	E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERING PINI GCF ELETTRI-FER	" " " " " "	1010	INZIONAL		- 01(3)	717.7
M-INGEGNERIA							
PROGETTO ESECUTIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Rotatoria S.S. 90 – Illuminazione intersezioni - Relazione tecnica		IF3A	02	E ZZ RO	IV0101 001	Α	18 di 38

Una volta individuata una sezione dei conduttori si calcola la caduta di tensione (cdt %): il dimensionamento dei cavi sarà verificato garantendo una cdt % inferiore al 4%. Nel caso la sezione individuata non garantisse tale limite si dovrà scegliere una sezione immediatamente superiore e rifare i calcoli per rientrare entro il 4%.

Nei capitoli che seguono sono specificate:

- le modalità di posa contemplate dalla Norma CEI 64-8;
- i metodi per la determinazione della portata.

12.2.2 Modalità di posa

Con riferimento alla norma CEI 64-8/5, le tipologie di installazione previste sono riportate nella tabella seguente:

ESEMPIO	RIFERIMENTO	DESCRIZIONE
	1	cavi senza guaina in tubi protettivi circolari posati entro muri termicamente isolati
	2	cavi multipolari in tubi protettivi circolari posati entro muri termicamente isolati
	3	cavi senza guaina in tubi protettivi circolari posati su o distanziati da pareti
	ЗА	cavi multipolari in tubi protettivi circolari posati su o distanziati da pareti
	4	cavi senza guaina in tubi protettivi non circolari posati su pareti
	4A	cavi multipolari in tubi protettivi non circolari posati su pareti

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI GCF ELETTRI-FER

M-INGEGNERIA

PROGETTO ESECUTIVO

Rotatoria S.S. 90 - Illuminazione intersezioni - Relazione tecnica

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF3A
 02
 E ZZ RO
 IV0101 001
 A
 19 di 38

ESEMPIO	RIFERIMENTO	DESCRIZIONE
	5	cavi senza guaina in tubi protettivi annegati nella muratura
	5A	cavi multipolari in tubi protettivi annegati nella muratura
	11	cavi multipolari (o unipolari con guaina), con o senza armatura, posati su o distanziati da pareti
	11A	cavi multipolari (o unipolari con guaina) con o senza armatura fissati su soffitti
	12	cavi multipolari (o unipolari con guaina), con o senza armatura, su passerelle non perforate
	13	cavi multipolari (o unipolari con guaina), con o senza armatura, su passerelle perforate con percorso orizzontale o verticale
	14	cavi multipolari (o unipolari con guaina), con o senza armatura, su mensole
	15	cavi multipolari (o unipolari con guaina), con o senza armatura, fissati da collari

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD PIZZAROTTI

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF **ELETTRI-FER**

M-INGEGNERIA

PROGETTO ESECUTIVO

Rotatoria S.S. 90 - Illuminazione intersezioni - Relazione tecnica

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. E ZZ RO 20 di 38

ESEMPIO	RIFERIMENTO	DESCRIZIONE
	16	cavi multipolari (o unipolari con guaina), con o senza armatura, su passerelle a traversini
	17	cavi unipolari con guaina (o multipolari) sospesi a od incorporati in fili o corde di supporto
	18	conduttori nudi o cavi senza guaina su isolanti
	21	cavi multipolari (o unipolari con guaina) in cavità di strutture
	22	cavi unipolari senza guaina in tubi protettivi non circolari posati in cavità di strutture
	22A	cavi multipolari (o unipolari con guaina) in tubi protettivi circolari posati in cavità di strutture
	23	cavi unipolari senza guaina in tubi protettivi non circolari posati in cavità di strutture
0-00-0	24	cavi unipolari senza guaina in tubi protettivi non circolari annegati nella muratura

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD PIZZAROTTI

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING PINI GCF ELETTRI-FER

M-INGEGNERIA

PROGETTO ESECUTIVO

Rotatoria S.S. 90 - Illuminazione intersezioni - Relazione tecnica

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

COMMESSA

LOTTO

CODIFICA E ZZ RO DOCUMENTO

REV. FOGLIO A 21 di 38

ESEMPIO	RIFERIMENTO	DESCRIZIONE
8 8	24A	cavi multipolari (o unipolari con guaina), in tubi protettivi non circolari annegati nella muratura
<u> </u>	25	cavi multipolari (o unipolari con guaina) posati in: controsoffitti pavimenti sopraelevati
© © ©	31	cavi senza guaina e cavi multipolari (o unipolari con guaina) in canali posati su parete con percorso orizzontale
	32	cavi senza guaina e cavi multipolari (o unipolari con guaina) in canali posati su parete con percorso verticale
	33	cavi senza guaina posati in canali incassati nel pavimento
	33A	cavi multipolari posati in canali incassati nel pavimento
	34	cavi senza guaina in canali sospesi
	34A	cavi multipolari (o unipolari con guaina) in canali sospesi

Consorzio Soci

HIRPINIA - ORSARA AV WEBUILD PIZZAROTTI

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF **ELETTRI-FER**

M-INGEGNERIA

PROGETTO ESECUTIVO

Rotatoria S.S. 90 - Illuminazione intersezioni - Relazione tecnica

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA II LOTTO FUNZIONALE HIRPINIA - ORSARA

FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. E ZZ RO 22 di 38

ESEMPIO	RIFERIMENTO	DESCRIZIONE
	41	cavi senza guaina e cavi multipolari (o cavi unipolari con guaina) in tubi protettivi circolari posati entro cunicoli chiusi, con percorso orizzontale o verticale
	42	cavi senza guaina in tubi protettivi circolari posati entro cunicoli ventilati incassati nel pavimento
	43	cavi unipolari con guaina e multipolari posati in cunicoli aperti o ventilati con percorso orizzontale e verticale
	51	cavi multipolari (o cavi unipolari con guaina) posati direttamente entro pareti termicamente isolanti
•	52	cavi multipolari (o cavi unipolari con guaina) posati direttamente nella muratura senza protezione meccanica addizionale
	53	cavi multipolari (o cavi unipolari con guaina) posati nella muratura con protezione meccanica addizionale
3	61	cavi unipolari con guaina e multipolari in tubi protettivi interrati od in cunicoli interrati
entra din	62	cavi multipolari (o unipolari con guaina) interrati senza protezione meccanica addizionale

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD **PIZZAROTTI** PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF **ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

E ZZ RO

IV0101 001

23 di 38

ESEMPIO	RIFERIMENTO	DESCRIZIONE
	63	cavi multipolari (o unipolari con guaina) interrati con protezione meccanica addizionale
	71	cavi senza guaina posati in elementi scanalati
	72	cavi senza guaina (o cavi unipolari con guaina o cavi multipolari) posati in canali provvisti di elementi di separazione: circuiti per cavi per comunicazione e per elaborazione dati
	73	cavi senza guaina in tubi protettivi o cavi unipolari con guaina (o multipolari) posati in stipiti di porte
	74	cavi senza guaina in tubi protettivi o cavi unipolari con guaina (o multipolari) posati in stipiti di finestre
	75	cavi senza guaina, cavi multipolari o cavi unipolari con guaina in canale incassato
	81	cavi multipolari immersi in acqua

Tabella 1 - Esempi di condutture (rif. CEI 64-8 tab.52C)

Le figure riportate sono solo indicative dei metodi di installazione descritti, ma non rappresentano la reale messa in opera.

12.2.3 Determinazione della portata

Cavi isolati in PVC ed EPR (CEI-UNEL 35024/1)

Rotatoria S.S. 90 - Illuminazione intersezioni - Relazione tecnica

APPALTATORE: Consorzio HIRPINIA - ORSARA AV PROGETTAZIONE: Mandataria ROCKSOIL S.P.A M-INGEGNERIA	Soci WEBUILD Mandanti NET ENGINE	PIZZAROTTI ERING PINI ELETTRI-FER		DDOPF	PIO TRAT	NAPOLI – BA TA APICE - LE HIRPINIA	ORSAF	
PROGETTO ESECUTIVO Rotatoria S.S. 90 – Illuminazione intersezioni - Relazione tecnica			COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ RO	DOCUMENTO IV0101 001	REV.	FOGLIO 24 di 38

Per la determinazione della portata dei cavi in rame isolati in materiale elastomerico o termoplastico si fa riferimento alla tabella CEI-UNEL 35024/1.

La norma non prende in considerazione i cavi con posa interrata, in acqua o i cavi posti all'interno di apparecchi elettrici o quadri e cavi per rotabili o aeromobili.

In particolare:

- il coefficiente k_{tot} è ottenuto dal prodotto dei coefficienti k₁ e k₂ ricavati dalle tabelle 3, 4, 5, 6;
- la portata nominale è ricavata dalla tabelle 7 e 8 in relazione al numero della posa (secondo CEI 64-8/5), all'isolante e al numero di conduttori attivi (riferita a 30°C).

k₁ è il coefficiente di correzione relativo alla temperatura ambiente

k₂ è il coefficiente di correzione per i cavi in fascio, in strato o su più strati.

Il coefficiente k_2 si applica ai cavi del fascio o dello strato aventi sezioni simili (rientranti nelle tre sezioni unificate adiacenti) e uniformemente caricati.

Qualora k₂ non sia applicabile, è sostituito dal coefficiente F:

$$F = \frac{1}{\sqrt{n}}$$

dove *n* è il numero di cavi che compongono il fascio:

n	1	2	3	4	5	6	7	8
F	1	0.71	0.57	0.5	0.44	0.41	0.37	0.35

Tabella 2 - Fattore di correzione per conduttori in fascio F

APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD PIZZAROTTI PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF **ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Rotatoria S.S. 90 - Illuminazione intersezioni - Relazione tecnica E ZZ RO 25 di 38

Temperatura [°C]	PVC	EPR
10	1,22	1,15
15	1.17	1.12
20	1.12	1.08
25	1.06	1.04
30	1.00	1.00
35	0.94	0.96
40	0.87	0,91
45	0.79	0.87
50	0.71	0.82
55	0,61	0.76
60	0,50	0,71
65	-	0,65
70	-	0,58
75	-	0,50
80	-	0,41

Tabella 3 - Influenza della temperatura k1

n° di posa CEI 64-8	disposizione				nun	nero di (circuiti d	o di cavi	multipo	olari			
		1	2	3	4	5	6	7	8	9	12	16	20
tutte le altre pose	raggruppati a fascio, annegati	1	0,8	0,7	0,65	0,6	0,57	0,54	0,52	0,5	0,45	0,41	0,38
11/12/2025	singolo strato su muro, pavimento o passerelle non perforate	1	0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,7			
11A	strato a soffitto	0,95	0,81	0,72	0,68	0,66	0,64	0,63	0,62	0,61	200	suna ulte	rioro
13	strato su passerelle perforate orizzontali o verticali (perforate o non perforate)	1	0,88	0,82	0,77	0,75	0,73	0,73	0,72	0,72	riduzio cii	one per produitione per produiti o canno c	oiù di 9 avi
14-15-16-17	strato su scala posa cavi o graffato ad un sostegno	1	0,87	0,82	0,8	0,8	0,79	0,79	0,78	0,78			

Tabella 4 - Circuiti realizzati con cavi in fascio o strato k2

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD **PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ RO 26 di 38 Rotatoria S.S. 90 - Illuminazione intersezioni - Relazione tecnica

n° posa CEI 64-8	metodo di i	nstallazione	numero	di cavi	per ogn	i suppo	rto		
			numero di passerelle	1	2	3	4	6	9
		posa	2	1,00	0,87	0,80	0,77	0,73	0,68
13	passerelle	ravvicinata	3	1,00	0,86	0,79	0,76	0,71	0,66
13	perforate orizzonatali	posa	2	1,00	0,99	0,96	0,92	0,87	
		distanziata	3	1,00	0,98	0,95	0,91	0,85	
13	passerelle perforate	posa ravvicinata	2	1,00	0,88	0,81	0,76	0,71	0,70
13	verticali	posa distanziata	2	1,00	0,91	0,88	0,87	0,85	
	scala posa	posa	2	1,00	0,86	0,80	0,78	0,76	0,73
14-15-16-	cavi	ravvicinata	3	1,00	0,85	0,79	0,76	0,73	0,70
17	elemento	posa	2	1,00	0,99	0,98	0,97	0,96	
	di sostegno	distanziata	3	1,00	0,98	0,97	0,96	0,93	

Tabella 5 - Circuiti realizzati con cavi multipolari in strato su più supporti (es. passerelle) k2

Per posa distanziata si intendono cavi posizionati:

- ad una distanza almeno doppia del loro diametro in caso di cavi unipolari
- ad una distanza almeno pari alloro diametro in caso di cavi multipolari.

Se i cavi sono installati ad una distanza superiore a quella sopra indicata il fattore correttivo per circuiti in fascio non si applica $(k_2 = 1)$.

Nelle pose su passerelle orizzontali o su scala posa cavi, i cavi devono essere posizionati ad una distanza dalla superficie verticale (parete) maggiore o uguale a 20 mm.

n° posa CEI 64-8		numero d circu	iti trifas	i		utilizzato per
		numero di passerelle	1	2	3	
13	passerelle perforate	2	0,96	0,87	0,81	3 cavi in formazione
13	passerelle periorate	3	0,95	0,85	0,78	orizzontale
13	passerelle perforate	2	0,95	0,84		3 cavi in formazione verticale
14-15-16-17	scala posa cavi o elemento	2	0,98	0,93	0,89	3 cavi in formazione
14-15-16-17	di sostegno	3	0,97	0,90	0,86	orizzontale
13	passerelle perforate	2	0,97	0,93	0,89	
13	passerelle periorate	3	0,96	0,92	0,86	
13	passerelle perforate	2	1,00	0,90	0,86	3 cavi in formazione a trefolo
14-15-16-17	scala posa cavi o elemento	2	0,97	0,95	0,93	
14-13-10-17	di sostegno	3	0,96	0,94	0,9	

Tabella 6 - Circuiti realizzati con cavi unipolari in strato su più supporti k2

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD **PIZZAROTTI** PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Rotatoria S.S. 90 - Illuminazione intersezioni - Relazione tecnica E ZZ RO 27 di 38

Nelle pose su passerelle orizzontali o su scala posa cavi, i cavi devono essere posizionati ad una distanza dalla superficie verticale (parete) maggiore o uguale a 20 mm. Le terne di cavi in formazione a trefolo si intendono disposte ad una distanza maggiore di due volte il diametro del singolo cavo unipolare.

Metod. di install	Altri tipi di I. posa della	lsol.	n° conduttori									Sezione	Portata [A]	اقاً-			-			1 -	III-	
	CEI Off-C		cailcati 2	,	1,5	2,5	4 %	9 %	10	91	52	32	110	151	182 7	210 240	0 185	320	300	400	200	930
cavi in tubo	1-51-71-73-	PVC	3		13,5	18	24	31	42	26	73	╀	╀	╁	⊢	⊢	╀	╄	ŀ	Ŀ	Ŀ	Ŀ
incassato in parete isolante	74	dan	2		19	56	32	45	61	81	106	131	158 2	200	241 27	278 318	8 362	424		Ŀ	Ŀ	·
		-	3	-	17	23	31	40	54	73	. 36	117 1	141 1	179 2	216 24	249 285	5 324	1 380	-			
	3-4-5-22-23	٥٨٥	2	13,5	17,5	24	32	41	57	92	101	125	151	192 2	232 26	269 309	9 353	3 415	•	•	٠	•
cavi in tubo in	24-31-32-33		3	12	15,5	21	28	36	90	89	. 68	110 1	134	171 2	207 23	239 275	5 314	1 369		•	-	٠
<u> </u>	34-41-42-72	EPR	2	17	23	31	42	54	. 92	100	133	164	861	253 3	306	354 402	2 472	2 555	٠	•	•	٠
			3	15	20	28	37	48	99	88	117	144	175 2	222 2	269 3	312 355	5 417	7 490	·	Ŀ	Ŀ	Ŀ
cavi in aria libera	er.	PVC	2		19,5	56	35	46	63	92	112	138	891	213 2	258 29	299 344	4 392	461	٠		•	٠
in posizione non	18		3	٠	15,5	21	28	36	22	92	101	125 1	151	192 2	232 26	269 309	9 353	3 415	٠	·	·	·
a portata di mano	0	dan	2		24	33	45	28	08	107	142	175 2	212 2	270 3	327	<u> </u>	_					-
		4	3	٠	20	28	37	48	71	96	127	157 1	190	242 2	293	H	'	·	Ľ	Ľ	Ľ	Ľ
cavi in aria libera	а 11-12-21-25	PVC	8		19,5	56	35	46	63	82	110	137	791	216 2	264 30	308 356	6 409	9 485	561	929	749	855
a trifoglio	43-52-53	EPR	3		24	33	45	58	80	107	135	169	207 2	268 3	328 38	383 444	4 510	(02	703	823	946	1088
cavi in aria libera	13-14-15-16-	PVC	2	-	22	30	40	52	71	96	131	162	196	251 3	304 36	352 406	6 463	3 546	629	754	898	1005
in piano a	17		3		19,5	26	35	46	63	85	114	143 1	174 2	225 2	275 32	321 372	2 427	207	587	689	789	902
contatto		ddi	2		27	37	20	64	88	119	161	200	242	310 3	377 40	437 504	4 575	679	783	940	1083	1254
		4	3	٠	24	33	45	28	80	107	141	176 2	216 2	279 3	342 4(400 464	4 533	3 634	736	898	866	1151
cavi in aria libera	m .	PVC	2								146	181	219	281	341 36	396 456	6 521	1 615	200	852	982	1138
nziani su un	14-15-16		3							,	146	181	219 2	281 3	341 36	396 456	6 521	1 615	209	852	982	1138
orizzontale(2)		dal	2	-		-			-		182	226 2	275	353 4	430 50	500 577	199 2	181	905	1085	1253	1454
		LL	3				-	-	-	-	182	226 2	275	353 4	430 50	500 577	7 661	181	902	1085	1253	1454
l di circ		PVC	2				$\lceil \cdot \rceil$				130	162	197 2	254 3	311 36	362 41	419 480	999	629	795	920	1070
cavi in aria libera distanziati su un	distanziati su un 13-14-15-16	?	3	·			Ī				130	162	197	254 3	311 36	362 419	9 480	999	629	795	920	1070
piano verticale (2)	2	FPR	2				,				161	201 2	246	318 3	389 4	454 527	7 605	5 719	833	1008	1169	1362
		_																				

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD **PIZZAROTTI** PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Rotatoria S.S. 90 - Illuminazione intersezioni - Relazione tecnica E ZZ RO 28 di 38

Tabella 7 - Portata cavi unipolari con e senza guaina con isolamento in PVC o EPR 12

1 PVC: mescola termoplastica a base di polivinilcloruro (temperatura massima del conduttore uguale a 70 °C). EPR: mescola elastomerica reticolata a base di gomma etilenpropilenica o similari (temperatura massima del conduttore uguale a 90 °C)

² I cavi unipolari affiancati che compongono il circuito trifase si considerano distanziati se posati in modo che la distanza tra di essi sia superiore o uguale a due volte il diametro esterno del singolo cavo unipolare.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD **PIZZAROTTI** PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF **ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Rotatoria S.S. 90 - Illuminazione intersezioni - Relazione tecnica E ZZ RO IV0101 001 29 di 38

		630	1			-												
		200	'	٠		•				Ŀ	·							L
		400	•	٠	٠			٠		ŀ	٠							
		300	334	298	442	968	394	339	532	455	293	497	741	129	530	464	693	576
		240	291	261	386	346	344	297	459	398	514	430	641	538	461	403	299	200
		185	248	223	329	295	294	255	384	340	434	364	542	456	392	341	909	424
		150	219	196	290	528	258	225	334	300	379	319	473	668	344	299	441	371
		120	192	172	253	227	232	206	305	268	328	276	410	346	299	529	382	322
	nm2]	92	167	150	220	161	201	179	265	233	282	238	352	867	258	223	328	278
Portata [A]	Sezione nominale [mm2]	20	139	125	183	164	168	149	221	194	232	196	289	246	213	184	269	229
Porta	uou auc	20	110	66	145	130	133	118	175	154	180	153	225	190	168	144	509	179
	Sezic	35	95	83	121	109	111	66	146	128	148	126	185	158	138	119	171	147
		25	75	89	66	68	06	80	119	105	119	101	149	127	112	96	138	110
		16	22	52	92	89	69	62	91	80	94	80	115	100	85	92	107	96
		10	43	39	22	51	52	46	69	09	70	09	98	75	63	22	80	71
		9	32	59	42	38	38	34	51	44	51	43	63	54	46	41	28	52
		4	25	23	33	30	30	27	40	32	40	34	49	42	36	32	45	Oγ
		2,5	18,5	17,5	25	22	23	20	30	26	30	25	36	32	27	24	33	30
		1,5	14	13	18,5	16,5	16,5	15	22	19,5	22	18,5	26	23	19,5	17,5	24	22
		1	,			-	13,5	12	17	15	15	13,6	19	17	15	13,5	19	17
n°	conduttori	caricati	2	ε	2	3	2	ε	2	3	2	3	2	3	2	3	2	3
	lsol.		Ç	2	EPR		Ç	2	EPR			PVC	EPR		Ç	2	997	L L
Altri tipi di	posa della	CEI 64-8		2-51-73-74			3A-4A-5A-21	22A-24A-25	33A-31-34A	43-32			13-14-15-16-		11-11A-52- 53-	12		
Motod di	inetall	IIIsraii.	cavo in tubo	incassato in	parete isolante		cavo in tubo 3A-4A-5A-21	in aria			cavo in aria	libera, distanziato	dalla parete/soffitt o	o su passerella	cavo in aria	libera, fissato	alla parete/	coffitto

Tabella 8 - Portata cavi multipolari con e senza guaina con isolamento in PVC o EPR 3

3 PVC: mescola termoplastica a base di polivinilcloruro (temperatura massima del conduttore uguale a 70 °C). EPR: mescola elastomerica reticolata a base di gomma etilenpropilenica o similari (temperatura massima del conduttore uguale a 90 °C)

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA - ORSARA AV WEBUILD **PIZZAROTTI** PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Rotatoria S.S. 90 - Illuminazione intersezioni - Relazione tecnica IF3A E ZZ RO 30 di 38

Cavi interrati (CEI-UNEL 35026)

Per la determinazione della portata dei cavi in rame con isolamento elastomerico o termoplastico si fa riferimento alla tabella CEI-UNEL 35026.

In particolare:

- il coefficiente ktot è ottenuto dal prodotto dei coefficienti k1, k2, k3 e k4, ricavati dalle tabelle 9, 10, 11, 12.
- la portata nominale è ricavata dalla tabella 13 in relazione al numero della posa (secondo CEI 64-8/5), all'isolante e al numero di conduttori attivi (riferita a d una temperatura del terreno di 20°C).

 $k_1 \ \grave{e} \ il \ coefficiente \ di \ correzione \ relativo \ alla \ temperatura \ del \ terreno$ $k_2 \ \grave{e} \ il \ coefficiente \ di \ correzione \ per \ gruppi \ di \ circuiti \ installati \ sullo \ stesso \ piano$

k₃ è il coefficiente di correzione relativo alla profondità di interramento

k4 è il coefficiente di correzione relativo alla resistività termica del terreno

Temperatura terreno [°C]	PVC	EPR
10	1.1	1.07
15	1.05	1.04
20	1	1
25	0.95	0.96
30	0.89	0.93
35	0.84	0.89
40	0.77	0.85
45	0.71	0.8
50	0.63	0.76
55	0.55	0.71
60	0.45	0.65
65	-	0.6
70	-	0.53
75	-	0.46
80	-	0.38

Tabella 9 - Influenza della temperatura del terreno – k1

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD **PIZZAROTTI** PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI GCF **ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Rotatoria S.S. 90 - Illuminazione intersezioni - Relazione tecnica E ZZ RO IV0101 001 31 di 38

	un cavo mu	ltipolare per o	iascun tubo	
n° circuiti		distanza fra	i circuiti [m]	
ii circuiti	a contatto	0.25	0.5	1
2	0.85	0.9	0.95	0.95
3	0.75	0.85	0.9	0.95
4	0.7	0.8	0.85	0.9
5	0.65	0.8	0.85	0.9
6	0.6	0.8	0.8	0.9
	un cavo un	ipolare per ci	ascun tubo	
n° circuiti		distanza fra	i circuiti [m]	
ii circuiti	a contatto	0.25	0.5	1
2	0.8	0.9	0.9	0.95
3	0.7	0.8	0.85	0.9
4	0.65	0.75	0.8	0.9
5	0.6	0.7	0.8	0.9
6	0.6	0.7	0.8	0.9

Tabella 10 - Gruppi di più circuiti installati sullo stesso piano – k2

profonità di posa [m]	0.5	0.8	1	1.2	1.5
fattore di correzione	1.02	1	0.98	0.96	0.94

Tabella 11 - Influenza della profondità di posa – k3

	cavi u	nipolari			
resistività del terreno [K m/W]	1	1.2	1.5	2	2.5
fattore di correzione	1.08	1.05	1	0.9	0.82
	cavi m	ultipolari			
resistività del terreno [K m/W]	1	1.2	1.5	2	2.5
fattore di correzione	1.06	1.04	1	0.91	0.84

Tabella 12 - Influenza della resistività termica del terreno - k4

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA - ORSARA AV WEBUILD **PIZZAROTTI** PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** <u>Mandataria</u> <u>Mandanti</u> II LOTTO FUNZIONALE HIRPINIA - ORSARA ROCKSOIL S.P.A **NET ENGINEERING** PINI **GCF ELETTRI-FER** M-INGEGNERIA PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ RO 32 di 38 Rotatoria S.S. 90 - Illuminazione intersezioni - Relazione tecnica

Portata [A]	tori Sezione nominale [mm²]	11 1.5 2.5 4 6 10 16 25 35 50 70 95 120 150 185 240 300 400 500 630	22 29 38 47 63 82 105 127 157 191 225 259 294 330 386	20 26 34 43 57 74 95 115 141 171 201 231 262 293 342	26 34 44 54 73 95 122 148 182 222 261 301 343 385 450 509 592 666 759	23 31 40 49 67 85 110 133 163 198 233 268 304 340 397 448 519 583 663	21 27 36 45 61 78 101 123 153 187 222 256 292 328 385	18 23 30 38 51 66 86 104 129 158 187 216 246 277 325	24 32 41 52 70 91 118 144 178 218 258 298 340 383 450 510 595 671 767	21 27 35 44 59 77 100 121 150 184 217 251 287 323 379 429 500 565 645	19 25 33 41 56 73 94 115 143 175 208 240 273 307 360	16 21 28 35 47 61 79 97 120 148 175 202 231 259 304	23 30 39 49 66 86 111 136 168 207 245 284 324 364 428	
		9	47 63	43	54	49	45	38	52 70	44 59	41	32	49	22 44 66
				L	H	H			H				H	40
"u	conduttori	caricati	2	3	2	3	2	8	2	3	2	3	2	٠
	lsol.		PVC		001	L L	PVC		001	LLI	PVC		001	4
Altri tipi di	posa della	CEI 64-8						61				61		
	Metod. di install.		cavi unipolari in tubi interrati a contatto	(1 cavo per tubo)				cavi unipolari in	tubo interrato		:	cavi multipolari in	tubo interrato	

Tabella 13 - Portata cavi unipolari con e senza guaina e cavi multipolari con isolamento in PVC o EPR 45

4 PVC: mescola termoplastica a base di polivinilcloruro (temperatura massima del conduttore uguale a 70°C; EPR: mescola elastomerica reticolata a base di gomma etilenpropilenica o similari (temperatura massima del conduttore uguale a 90°C).

5 Per posa direttamente interrata con o senza protezione meccanica (posa 62 e 63), applicare il fattore correttivo1,15 unitamente ai fattori correttivi K1, k2, k3, e k4.

APPALTATORE:							
Consorzio	Soci		ITINI	ED A DIO I	NAPOLI – BA	A DI	
HIRPINIA - ORSARA A	/ WEBUILD PIZZAROTTI		HIIN	EKAKIU	NAPULI - B	AKI	
PROGETTAZIONE:		РΛΙ		DIO TRAT	TA APICE -	OPSAE	۸
<u>Mandataria</u>	<u>Mandanti</u>				E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERING PINI GCF ELETTRI-FER	" " " "	1010	INZIONAL		- 01(3)	711/7
M-INGEGNERIA	GCF ELETTRIFIER						
PROGETTO ESECU	TIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Rotatoria S.S. 90 - Illur	ninazione intersezioni - Relazione tecnica	IF3A	02	E ZZ RO	IV0101 001	Α	33 di 38

12.2.4 Dimensionamento dei conduttori di neutro

La norma CEI 64-8 par. 524.2 e par. 524.3, prevede che la sezione del conduttore di neutro, nel caso di circuiti polifasi, può avere una sezione inferiore a quella dei conduttori di fase se sono soddisfatte le seguenti condizioni:

- il conduttore di fase abbia una sezione maggiore di 16 mm₂;
- la massima corrente che può percorrere il conduttore di neutro non sia superiore alla portata dello stesso
- la sezione del conduttore di neutro sia almeno uguale a 16 mm₂; se il conduttore è in rame e a 25 mm₂; se il conduttore è in alluminio.

Nel caso in cui si abbiano circuiti monofasi o polifasi e questi ultimi con sezione del conduttore di fase minore di 16 mm²; (conduttore in rame) e 25 mm²; (conduttore in allumino), il conduttore di neutro deve avere la stessa sezione del conduttore di fase.

$$S_f < 16mm^2$$
: $S_n = S_f$
 $16 \le S_f \le 35mm^2$: $S_n = 16mm^2$
 $S_f > 35mm^2$: $S_n = S_f/2$

Qualora, in base a esigenze progettuali, si scelga di dimensionare il neutro per la reale corrente circolante, dovranno essere fatte le medesime considerazioni relative ai conduttori di fase.

12.2.5 Dimensionamento dei conduttori di protezione

Le norme CEI 64.8 par. 543.1 prevedono due metodi di dimensionamento dei conduttori di protezione:

- determinazione in relazione alla sezione di fase:
- determinazione mediante calcolo.

Il primo criterio consiste nel determinare la sezione del conduttore di protezione seguendo vincoli analoghi a quelli introdotti per il conduttore di neutro:

$$S_f < 16mm^2$$
: $S_{PE} = S_f$
 $16 \le S_f \le 35mm^2$: $S_{PE} = 16mm^2$
 $S_f > 35mm^2$: $S_{PE} = S_f / 2$

Il secondo criterio determina tale valore con l'integrale di Joule, ovvero la sezione del conduttore di protezione non deve essere inferiore al valore determinato con la seguente formula:

$$S_p = \frac{\sqrt{I^2 \cdot t}}{K}$$

dove:

- S_p è la sezione del conduttore di protezione (mm²);
- I è il valore efficace della corrente di guasto che può percorrere il conduttore di protezione per un guasto di impedenza trascurabile (A);
- t è il tempo di intervento del dispositivo di protezione (s);
- K è un fattore il cui valore dipende dal materiale del conduttore di protezione, dell'isolamento e di altre parti.

APPALTATORE:							
Consorzio	<u>Soci</u>		ITINI		NAPOLI – BA	۸Ы	
HIRPINIA - ORSARA A	/ WEBUILD PIZZAROTTI		11111	ENANIO	NAPOLI - B	ANI	
PROGETTAZIONE:		RΔI	DOPE	IO TRAT	TA APICE -	ORSAF	ΡΔ
<u>Mandataria</u>	<u>Mandanti</u>				E HIRPINIA		
ROCKSOIL S.P.A	NET ENGINEERING PINI GCF ELETTRI-FER	" " "	1010	INZIONAL		- 010	AIVA
M-INGEGNERIA							
PROGETTO ESECU	ΓΙVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Rotatoria S.S. 90 – Illur	ninazione intersezioni - Relazione tecnica	IF3A	02	E ZZ RO	IV0101 001	Α	34 di 38

Se il risultato della formula non è una sezione unificata, viene presa una unificata immediatamente superiore.

In entrambi i casi si deve tener conto, per quanto riguarda la sezione minima, del paragrafo 543.1.3.

Esso afferma che la sezione di ogni conduttore di protezione che non faccia parte della conduttura di alimentazione non deve essere, in ogni caso, inferiore a:

- 2,5 mm² se è prevista una protezione meccanica
- 4 mm² se non è prevista una protezione meccanica

12.2.6 Calcolo della temperatura dei cavi

La valutazione della temperatura dei cavi si esegue in base alla corrente di impiego e alla corrente nominale tramite le seguenti espressioni:

$$T_{cavo}(I_b) = T_{ambiente} + \left(\alpha_{cavo} \cdot \frac{I_b^2}{I_z^2}\right)$$

$$T_{cavo}(I_n) = T_{ambiente} + \left(\alpha_{cavo} \cdot \frac{I_n^2}{I_z^2}\right)$$

espresse in °C.

Esse derivano dalla considerazione che la sovratemperatura del cavo a regime è proporzionale alla potenza in esso dissipata.

Il coefficiente α_{cavo} è vincolato dal tipo di isolamento del cavo e dal tipo di tabella di posa che si sta usando.

12.3 Cadute di tensione

Le cadute di tensione possono essere calcolate vettorialmente con la formula seguente. Per ogni utenza, la caduta di tensione vettoriale è calcolata in ogni fase e nel conduttore di neutro (se distribuito). Tra i valori calcolati in corrispondenza delle tre fasi, il valore maggiore, in percentuale della tensione nominale, sarà considerato.

$$cdt(i_b) = \max\left(\left|\sum_{i=1}^k \dot{Z}f_i \cdot \dot{I}f_i - \dot{Z}n_i \cdot \dot{I}n_i\right|\right)_{f=R,S,T}$$

dove:

- (f) indica i conduttori delle fasi: R, S, T;
- (n) è il conduttore di neutro;
- (i) è l'indice relativo all'utenza calcolata.

In alternativa, le cadute di tensione possono essere calcolate con la formula approssimata:

$$cdt(I_b) = k_{cdt} \cdot I_b \cdot \frac{L_c}{1000} \cdot (R_{cavo} \cdot \cos\varphi + X_{cavo} \cdot \sin\varphi) \cdot \frac{100}{V_n}$$

con:

- k_{cdt} = coefficiente pari a 2 per i sistemi monofase e 1.73 per i sistemi trifase;
- I_b = corrente di impiego;
- L_c = lunghezza del cavo/linea;
- V_n = tensione nominale;

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA - ORSARA A	V WEBUILD PIZZA	ROTTI					AKI	
PROGETTAZIONE:			RADDOPPIO TRATTA APICE - ORSARA					
<u>Mandataria</u>	<u>Mandanti</u>		II LOTTO FUNZIONALE HIRPINIA - ORSARA					
ROCKSOIL S.P.A	NET ENGINEERING GCF E	PINI LETTRI-FER				7117		
M-INGEGNERIA	201	LLTTKI-TEK						
PROGETTO ESECUTIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Rotatoria S.S. 90 – Illuminazione intersezioni - Relazione tecnica		IF3A	02	E ZZ RO	IV0101 001	Α	35 di 38	

φ = angolo di sfasamento.

I parametri R_{cavo} e X_{cavo} sono ricavati dalla tabella UNEL 35023 dove:

- R_{cavo} (Ω/km) è riferita alla temperatura di esercizio di cui al paragrafo precedente;
- X_{cavo} (Ω/km) è riferita a 50Hz.

La caduta di tensione da monte a valle (totale) di una utenza è determinata come somma vettoriale delle cadute di tensione, riferite ad un solo conduttore, in percentuale della tensione nominale. La caduta di tensione percentuale massima sarà contenuta entro il 4%.

Nel caso in cui siano presenti trasformatori, il calcolo della caduta di tensione tiene conto della caduta interna e della presenza di eventuali prese di regolazione del rapporto spire.

Nel caso in cui siano presenti gruppi elettrogeni, al fine di limitare la caduta di tensione nell'impianto (e limitare la variazione di tensione rispetto alla condizione ordinaria/da rete), dovrà essere opportunamente valutata l'impostazione della tensione di riferimento nella centralina di regolazione dei gruppi elettrogeni stessi.

12.4 Verifica della protezione a cortocircuito delle condutture

12.4.1 Generalità

Secondo la norma 64-8 par.434.3 "Caratteristiche dei dispositivi di protezione contro i cortocircuiti", le caratteristiche delle apparecchiature di protezione contro i cortocircuiti devono soddisfare a due condizioni:

- il potere di interruzione non deve essere inferiore alla corrente di cortocircuito presunta nel punto di installazione (a meno di protezioni adeguate a monte);
- la caratteristica di intervento deve essere tale da impedire che la temperatura del cavo non oltrepassi, in condizioni di guasto in un punto qualsiasi, la massima consentita.

La prima condizione viene considerata in fase di scelta delle protezioni.

La seconda invece può essere tradotta nella relazione:

$$I^2 \cdot t \le K^2 S^2$$

dove:

- I: corrente di corto circuito [A] espressa in valore efficace
- t: durata del corto circuito
- S: sezione del conduttore [mm²;]
- K: coefficiente che dipende dal tipo di cavo e dall'isolamento (descritto nei paragrafi successivi)

Pertanto, l'energia specifica sopportabile dal cavo deve essere maggiore o uguale a quella lasciata passare dalla protezione.

La norma CEI al par. 533.3 "Scelta dei dispositivi di protezioni contro i cortocircuiti" prevede pertanto un confronto tra le correnti di guasto minima (a fondo linea) e massima (inizio linea) con i punti di intersezione tra le curve. Le condizioni sono pertanto:

Le intersezioni sono due:

- Iccmin≥linters min (quest'ultima riportata nella norma come la);
- Iccmax≤linters max (quest'ultima riportata nella norma come lb).

L'intersezione è unica o la protezione è costituita da un fusibile:

• Iccmin≥linters min.

L'intersezione è unica e la protezione comprende un magnetotermico:

APPALTATORE:								
Consorzio	Soci		ITINERARIO NAPOLI – BARI					
HIRPINIA - ORSARA A	WEBUILD PIZZAROTTI							
PROGETTAZIONE:		RADDOPPIO TRATTA APICE - ORSARA						
<u>Mandataria</u>	<u>Mandanti</u>		II LOTTO FUNZIONALE HIRPINIA - ORSARA					
ROCKSOIL S.P.A	NET ENGINEERING PINI					- ONSANA		
M-INGEGNERIA	GCF ELETTRI-FER							
PROGETTO ESECUTIVO		cc	MMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Rotatoria S.S. 90 – Illuminazione intersezioni - Relazione tecnica		cnica	IF3A	02	E ZZ RO	IV0101 001	Α	36 di 38

Icc max≤linters max.

Sono pertanto verificate le relazioni in corrispondenza del guasto, calcolato, minimo e massimo.

12.4.2 Integrale di Joule

La verifica a corto circuito, come riportato nel paragrafo precedente, fa riferimento al calcolo dell'integrale di Joule:

$$I^2 \cdot t = K^2 \cdot S^2$$

La costante K viene data dalla norma 64-8/4 (par. 434.3), per i conduttori di fase e neutro e, dal paragrafo 64-8/5 (par. 543.1), per i conduttori di protezione in funzione al materiale conduttore e al materiale isolante. Per i cavi ad isolamento minerale le norme attualmente sono allo studio, i paragrafi sopraccitati riportano però nella parte commento dei valori prudenziali.

I valori di K riportati dalla norma sono per i conduttori di fase (par. 434.3):

alon	di K riportati dalla norma sono per i conduttori di rase (par. 434.3):		
•	Cavo in rame e isolato in PVC:		K = 115
•	Cavo in rame e isolato in gomma G:	K = 135	
•	Cavo in rame e isolato in gomma etilenpropilenica G5-G7-G16-G18:	K = 143	
•	Cavo in rame serie L rivestito in materiale termoplastico:		K = 115
•	Cavo in rame serie L nudo:	K = 200	
•	Cavo in rame serie H rivestito in materiale termoplastico:		K = 115
•	Cavo in rame serie H nudo:	K = 200	
•	Cavo in alluminio e isolato in PVC:	K = 74	
•	Cavo in alluminio e isolato in G, G5-G7-G16-G18:	K = 87	

I valori di K per i conduttori di protezione unipolari (par. 543.1) tab. 54B:

•	Cavo in rame e isolato in PVC:	K	(= 143
•	Cavo in rame e isolato in gomma G:	K = 166	
•	Cavo in rame e isolato in gomma G5-G7-G16-G18:	K = 176	
•	Cavo in rame serie L rivestito in materiale termoplastico:	K	(= 143
•	Cavo in rame serie L nudo:	K = 228	
•	Cavo in rame serie H rivestito in materiale termoplastico:	K	(= 143
•	Cavo in rame serie H nudo:	K = 228	
•	Cavo in alluminio e isolato in PVC:	K = 95	
•	Cavo in alluminio e isolato in gomma G:	K	ζ = 110
•	Cavo in alluminio e isolato in gomma G5-G7-G16-G18:	K	(= 116

I valori di K per i conduttori di protezione in cavi multipolari (par. 543.1) tab. 54C:

•	Cavo in rame e isolato in PVC:	K = 115
•	Cavo in rame e isolato in gomma G:	K = 135
•	Cavo in rame e isolato in gomma G5-G7-G16-G18:	K = 143
•	Cavo in rame serie L rivestito in materiale termoplastico:	K = 115
•	Cavo in rame serie L nudo:	K = 228
•	Cavo in rame serie H rivestito in materiale termoplastico:	K = 115
•	Cavo in rame serie H nudo:	K = 228
•	Cavo in alluminio e isolato in PVC:	K = 76

APPALTATORE: Consorzio HIRPINIA - ORSARA AV PROGETTAZIONE: Mandataria ROCKSOIL S.P.A M-INGEGNERIA	Consorzio Soci HIRPINIA - ORSARA AV WEBUILD PIZZAROTTI PROGETTAZIONE: Mandataria Mandanti ROCKSOIL S.P.A NET ENGINEERING PINI GCF ELETTRI-FER			DDOPF	PIO TRAT	NAPOLI – BA TA APICE - LE HIRPINIA	ORSAF	
PROGETTO ESECUTIVO Rotatoria S.S. 90 – Illuminazione intersezioni - Relazione tecnica		COMMESSA IF3A	LOTTO 02	CODIFICA E ZZ RO	DOCUMENTO IV0101 001	REV.	FOGLIO 37 di 38	

• Cavo in alluminio e isolato in gomma G:

K = 89

Cavo in alluminio e isolato in gomma G5-G7-G16-G18:

K = 94

12.4.3 Massima lunghezza protetta

Il calcolo della massima lunghezza protetta è eseguito mediante il criterio proposto dalla norma CEI 64-8 al paragrafo 533.3, secondo cui la corrente di cortocircuito presunta è calcolata come:

$$I_{ctocto} = \frac{0.8 \cdot U}{1.5 \cdot \rho \cdot (1+m) \cdot \frac{L_{\text{max prot}}}{S_f}}$$

partendo da essa e nota la taratura magnetica della protezione è possibile calcolare la massima lunghezza del cavo protetta in base ad essa.

Pertanto:

$$L_{\text{max prot}} = \frac{0.8 \cdot U}{1.5 \cdot \rho \cdot (1+m) \cdot \frac{I_{\text{ctocto}}}{S_f}}$$

Dove:

- U: è la tensione concatenata per i neutro non distribuito e di fase per neutro distribuito;
- P : è la resistività a 20°C del conduttore;
- m: rapporto tra sezione del conduttore di fase e di neutro (se composti dello stesso materiale);
- I_{mag}: taratura della magnetica.

Viene tenuto conto, inoltre, dei fattori di riduzione (per la reattanza):

- 0.9 per sezioni di 120 mm²;
- 0.85 per sezioni di 150 mm²;
- 0.8 per sezioni di 185 mm²;
- 0.75 per sezioni di 240 mm²;

Per ulteriori dettagli si veda norma CEI 64-8 par.533.3 sezione commenti.

12.5 Verifica contatti indiretti

La verifica della protezione contro i contatti indiretti è eseguita secondo i criteri descritti dalla Norma CEI 64-8 e di seguito riportati, relativamente ai diversi sistemi di distribuzione.

Per assicurare la protezione contro i contatti indiretti mediante interruzione automatica del circuito è necessario adottare i seguenti accorgimenti:

- Collegamento a terra di tutte le masse metalliche;
- Collegamento al collettore di terra dell'edificio dei conduttori di protezione, delle masse estranee (ad esempio: le delle tubazioni metalliche entranti nel fabbricato) tramite collegamenti equipotenziali principali e supplementari.

APPALTATORE:	Casi						
Consorzio	Soci		ITINERARIO NAPOLI – BARI				
HIRPINIA - ORSARA A	RADDOPPIO TRATTA APICE - ORSARA						
PROGETTAZIONE:							
<u>Mandataria</u>	<u>Mandanti</u>	II LOTTO FUNZIONALE HIRPINIA - ORSARA					
ROCKSOIL S.P.A	NET ENGINEERING PINI GCF ELETTRI-FER	II LOTTO FUNZIONALE HIRPINIA - ORSAR			711/7		
M-INGEGNERIA							
PROGETTO ESECUTIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Rotatoria S.S. 90 – Illuminazione intersezioni - Relazione tecnica		IF3A	02	E ZZ RO	IV0101 001	Α	38 di 38

12.5.1 Sistema di distribuzione TT

La protezione contro i contatti indiretti, in un sistema TT, deve essere garantita mediante una o più delle seguenti misure:

- Interruzione automatica del circuito mediante protezioni differenziali coordinate con l'impianto di terra
- Utilizzo di componenti di classe II
- Realizzazione di separazione elettrica con l'uso di trasformatore di isolamento

Nel primo caso, affinché sia verificata la protezione contro i contatti indiretti, è necessario che in ogni punto dell'impianto sia rispettata la condizione:

$$I_{dn} < \frac{V_L}{R_F}$$

dove:

- I_{dn} [A] è il valore massimo di corrente differenziale presente nell'impianto che nel caso di cui trattasi risulta pari a 0.3A;
- V_L [V] è la tensione limite di contatto che nel caso di cui trattasi risulta pari a 50 V;
- R_E [Ω] è la resistenza di terra (Ω)

Pertanto, nel caso specifico, il valore massimo ammissibile per la resistenza dell'impianto di terra (R_E) dovrà essere pari a 166Ω .

L'eventuale interruttore differenziale presente sul gruppo di misura non può essere utilizzato ai fini della protezione contro i contatti indiretti. A monte delle protezioni differenziali non devono rimanere masse (comprese le carpenterie di eventuali quadri metallici).

Nel caso di utilizzo, a diversi livelli dell'impianto, di più dispositivi differenziali, dovrà essere garantita la selettività di intervento.

12.6 Calcoli dimensionali linee BT

I calcoli e le verifiche delle linee BT sono stati condotti con foglio di calcolo che tiene conto dei vincoli e dei procedimenti sopra indicati.

I report di calcolo delle linee BT sono riportati in Allegato 01.

12.7 ALLEGATI

Gli allegati sono organizzati nel seguente ordine:

- Allegato 1 Cavetteria
- Allegato 2 Potenze impianto
- Allegato 3 Protezioni
- Allegato 4 Protezioni e cavi