Indirizzo e Sede legale PESCARA (PE) VIA CARAVAGGIO, 125 CAP 65125 Domicilio digitale/PEC windenergymafalda@legpec.it Numero REA PE - 42846 - P. iva 02372300687

COMUNI DI MAFALDA e MONTENERO DI BISACCIA (CB)

PROGETTO PER LA REALIZZAZIONE DI IMPIANTO EOLICO "MAFALDA"

REDAZIONE/PROGETTISTA:

Indirizzo:San Benedetto del Tronto (AP) - Italy VIA TURATI, 2 CAP 63074 - tel. (+39) 0735 431388

MAIL: info@cubeinfo.it gaestudio.it@gmail.com

TIMBRO E FIRMA PROGETTISTA:

TITOLO ELABORATO:

RELAZIONE TECNICA

CODICE ELABORATO:

PD 010

FORMATO

 A_4

Nr. EL.:

3.1

FASE:

PROGETTO DEFINITIVO

REV.	DESCRIZIONE	DATA	REDATTO	VERIFICATO	APPROVATO
00	Prima emissione	29/07/2023	A.M.	S.C.	
01					
02					
03					
04					

Progetto Definitivo

RELAZIONE TECNICA

 Codice Elaborato:
 PD007

 Data:
 09/08/2023

 Revisione:
 00

 Pagina:
 1 di 21

Sommario

1	Descrizi	ione del progetto	2
		emessa	
		opo oponente	
2		one delle opere	
3	Criteri p	rogettuali	5
	3.1 Gli	aerogeneratori	6
	3.1.1	Rotore	
	3.1.2	Navicella	
	3.1.3	Albero primario	8
	3.1.4	Moltiplicatore	8
	3.1.5	Generatore	8
	3.1.6	Trasformatore BT/MT e quadri elettrici	9
	3.1.7	Sistema di frenatura	9
	3.1.8	Sistema idraulico	9
	3.1.9	Dispositivo di orientamento del timone di direzione	9
	3.1.10	Torre e fondazioni	9
	3.1.11	Sistema di controllo	9
	3.1.12	Protezione antifulmine	10
		ma della producibilità	
4	•	civili ed industriali	
		ndazionibilità	
	4.2.1	Pendenza	
	4.2.2	Piazzole di montaggio	14
	4.2.3	Regimentazione acque	15
	4.3 Imp	piantistica	
	4.3.1	Reti elettriche (cavidotti)	15
	4.3.2	Altre reti elettriche eventualmente esistenti	15
	4.3.3	Attraversamenti stradali	15
	4.3.4	Descrizione del sistema elettrico del parco eolico	15
	4.3.5	Collegamento alla RTN	16
5	Ripristin	no dei luoghi	16
6	Piano d	i dismissione	17
7	Analisi (delle ricadute sociali e occupazionali	17

Dugasta Definitivo	Codice Elaborato:	PD007
Progetto Definitivo	Data:	09/08/2023
RELAZIONE TECNICA	Revisione:	00
RELAZIONE IECNICA	Pagina	2 di 21

1 Descrizione del progetto

1.1 Premessa

La società **WIND ENERGY MAFALDA SRL**, d'ora in avanti il proponente, intende realizzare un impianto di produzione di energia elettrica da fonte eolica nella provincia di Campobasso, nei comuni di Mafalda e Montenero di Bisaccia.

L'impianto, denominato "Mafalda", sarà costituito da 7 aerogeneratori di potenza unitaria nominale fino a 6,0 MW, per una potenza complessiva di 42,0 MW integrato da un sistema di accumulo.

Data la potenza dell'impianto, superiore ai 10.000 kW, il servizio di connessione sarà erogato in alta tensione (AT), ai sensi della Deliberazione dell'Autorità per l'energia elettrica e il gas 23 luglio 2008 n.99 e s.m.i.

Gli aerogeneratori forniscono energia elettrica in bassa tensione (690V) e sono pertanto dotati di un trasformatore MT/BT ciascuno, alloggiato all'interno dell'aerogeneratore stesso e in grado di elevare la tensione a quella della rete del parco. La rete del parco è costituita da un cavidotto interrato in media tensione (30kV), tramite il quale l'energia elettrica viene convogliata dagli aerogeneratori alla sottostazione elettrica (SSE) di trasformazione AT/MT di proprietà del proponente che sarà collegata in antenna ad una nuova stazione elettrica (SE) di smistamento a 150 kV della RTN, da inserirsi in modalità entra-esce sulla linea a 150 kV "Montecilfone", previa realizzazione degli interventi previsti nell'area di cui al Piano di Sviluppo Terna (421-P).

Le opere progettuali sono quindi sintetizzate nel seguente elenco:

- parco eolico composto da 7 aerogeneratori, da 6,0 MW ciascuno, con torre di altezza fino a 105 m e diametro del rotore fino a 150 m e dalle relative opere civili connesse quali strade di accesso, piazzole e fondazioni;
- impianto di rete, consistente in una nuova SE di smistamento a 150 kV della RTN da inserirsi in modalità entra-esce sulla futura linea a 150 kV "Montecilfone";
- impianto di utenza per la connessione alla RTN, consistente nella rete di terra, nella rete di comunicazione in fibra ottica, nel cavidotto in media tensione (30kV) interamente interrato e sviluppato principalmente sotto strade esistenti, nella SSE di trasformazione 150/30 kV di proprietà del Proponente e nell'elettrodotto di collegamento tra la SSE e la nuova SE.

I progetti del tipo in esame rispondono a finalità di interesse pubblico (riduzione dei gas ad effetto serra, risparmio di fonti fossili scarse ed importate) ed in quanto tali sono indifferibili ed urgenti, come stabilito dalla legge 1° giugno 2002, n. 120, concernente "Ratifica ed esecuzione del Protocollo di Kyoto alla Convenzione quadro delle Nazioni Unite sui cambiamenti climatici, fatto a Kyoto l'11 dicembre 1997" e dal D.Lgs. 29 dicembre 2003, n.387 "Attuazione della direttiva 2001/77/CE relativa alla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabili nel mercato interno dell'elettricità" e s.m.i..

L'utilizzo di fonti rinnovabili comporta infatti beneficio a livello ambientale, in termini di tonnellate equivalenti di petrolio (TEP) risparmiate e mancate emissioni di gas serra, polveri e inquinanti. Per il progetto in esame si stima una producibilità del parco eolico superiore a 84 GWh/anno, che consente di risparmiare almeno 15.710 TEP/anno (fonte ARERA: 0,187 TEP/MWh) e di evitare almeno 41.480 ton/anno di emissioni di CO_2 (fonte ISPRA,2020: 493,80 g 【CO】_2/kWh).

Drogotto Dofinitivo	Codice Elaborato:	PD007
Progetto Definitivo	Data:	09/08/2023
DEL AZIONE TECNICA	Revisione:	00
RELAZIONE TECNICA	Pagina:	3 di 21

1.2 Scopo

Scopo della presente relazione è la descrizione degli aspetti tecnici relativi alla progettazione del parco eolico in oggetto per la produzione di energia elettrica da fonte rinnovabile di tipo eolica, e la conseguente immissione dell'energia prodotta, attraverso la dedicata rete di connessione, sino alla Rete di Trasmissione Nazionale.

L'impianto, denominato "Mafalda", sarà costituito da 7 aerogeneratori di potenza unitaria nominale fino a 6,0 MW, per una potenza complessiva di 42 MW, e integrato da un sistema di accumulo.

1.3 Proponente

I dati del proponente sono i seguenti:

WIND ENERGY MAFALDA SrI

Indirizzo Sede legale PESCARA (PE)

VIA CARAVAGGIO 125 CAP 65125

Domicilio digitale/PEC: windenergymafalda@legpec.it

Numero REA PE - 424846 - P.iva 02372300687

2 Ubicazione delle opere

Come detto, il progetto prevede l'installazione di 7 aerogeneratori di potenza pari a 6,0 MW per una capacità complessiva di 42,0 MW.

Gli aerogeneratori ricadono:

- Nel comune di Mafalda, nello specifico le torri WTG1, WTG2, WTG4, WTG5, WTG6, WTG7
- Nel comune di Montenero di Bisaccia la torre WTG3

Le aree d'impianto sono servite dalla viabilità esistente costituita da strade statali, provinciali, comunali e da strade interpoderali e sterrate da adeguare.

Il tracciato del cavidotto esterno attraversa il territorio dell'agro di Mafalda e di Montenero di Bisaccia in provincia di Campobasso.

La sottostazione elettrica Utente (SSEU) e la stazione elettrica Terna (SE) ricadono sul territorio di Montecilfone (CB).

Gli aerogeneratori ricadono su un'area posta a nord-est del centro urbano di Mafalda ad una distanza di circa 2,1 km (WTG06).

Il parco eolico è circoscritto dalle seguenti strade statali:

SS 157 a sud

L'accesso alle torri è garantito in particolare dalla Strada Statale 157 passando per il centro abitato di Montenero di Bisaccia. La viabilità da realizzare non prevede opere di impermeabilizzazione.

Wind Energy Mafalda srl
Impianto Eolico
"Mafalda"

D 01 1.1	Codice Elaborato:	PD007
Progetto Definitivo	Data:	09/08/2023
DEL AZIONE TECNICA	Revisione:	00
RELAZIONE TECNICA	Pagina:	4 di 21

Sono inoltre previste piazzole in prossimità degli aerogeneratori sempre in materiale arido drenante.

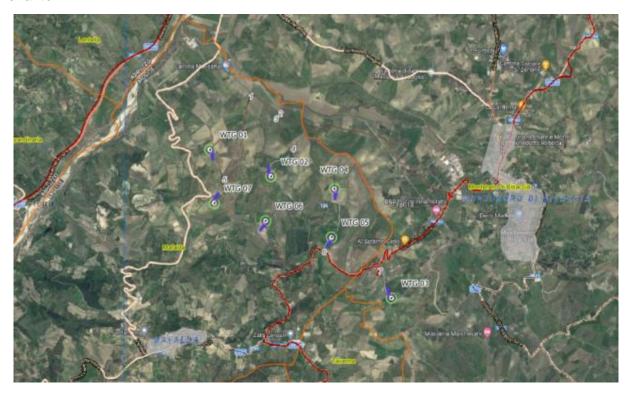


Fig. 1 – Inquadramento dell'area su foto satellitare

Gli aerogeneratori sono localizzabili alle coordinate riportate in Tab. 1:

WTG	Comune	х	У	Altitudine
1	Mafalda	478794	4645061	224,8243943
2	Mafalda	478844	4645867	129,5295735
3	Montenero di Bisaccia	477786	4646073	151,5218382
4	Mafalda	477696	4645334	178,8958804
5	Mafalda	476841	4645629	194,7432027
6	Mafalda	476770	4646520	181,5101565
7	Mafalda	479790	4644050	227,506209

Tab. 1 – Coordinate degli aerogeneratori

Le turbine sono identificate agli estremi catastali riportati in Tab. 2:

WTG	FOGLIO	PARTICELLA	Comune
1	4	73	Mafalda
2	5	44	Mafalda
3	62	54	Montenero di Bisaccia
4	11	10	Mafalda
5	12	3	Mafalda
6	10	54	Mafalda

Wind Energy Mafalda srl	Progetto Definitivo		Codice Elaborato:	PD007
9.	Progetto De	шшио	Data:	09/08/2023
Impianto Eolico	RELAZIONE TECNICA		Revisione:	00
"Mafalda"	KELAZIONE .	IECNICA	Pagina:	5 di 21
7	9	171	Mafa	lda

Tab. 2 – Estremi catastali degli aerogeneratori

3 Criteri progettuali

I criteri che hanno guidato l'analisi progettuale sono orientati al fine di minimizzare il disturbo ambientale dell'opera e si distinguono in:

- Criteri di localizzazione;
- Criteri strutturali.

I criteri di localizzazione del sito hanno guidato la scelta tra varie aree disponibili in località diverse del comune. Le componenti che hanno influito maggiormente sulla scelta effettuata sono state:

- verifica della presenza di risorsa eolica economicamente sfruttabile;
- disponibilità di territorio a basso valore relativo alla destinazione d'uso rispetto agli strumenti pianificatori vigenti;
- basso impatto visivo;
- esclusione di aree di elevato pregio naturalistico:
- viabilità opportunamente sviluppata in modo da ridurre al minimo gli interventi su di essa;
- vicinanza di linee elettriche per ridurre al minimo le esigenze di realizzazione di elettrodotti;
- esclusione di aree vincolate da strumenti pianificatori territoriali o di settore.

I criteri strutturali che hanno condotto all'ottimizzazione della disposizione delle macchine, delle opere e degli impianti al fine di ottenere la migliore resa energetica compatibilmente con il minimo disturbo ambientale sono stati:

- Disposizione degli aerogeneratori in prossimità di tracciati stradali già esistenti che richiedono interventi minimi o nulli, al fine di evitare in parte o del tutto l'apertura di nuove strade:
- Scelta dei punti di collocazione per le macchine, gli impianti e le opere civili in aree non coperte da vegetazione o dove essa è più rada o meno pregiata;
- Distanza da fabbricati maggiore di 400 m;
- Condizioni morfologiche favorevoli per minimizzare gli interventi sul suolo, escludendo le pendenze elevate (max 5-10%); sarà mantenuta una adeguata distanza tra le macchine e scarpate ed impluvi;
- Soluzioni progettuali a basso impatto quali sezioni stradali realizzate in massicciata tipo con finitura in ghiaietto stabilizzato o similare;
- Percorso per le vie cavo interrato adiacente al tracciato della viabilità interna per esigenze di minor disturbo ambientale, ad una profondità minima di 1,0 m.

Wind Energy Mafalda srl
Impianto Eolico
"Mafalda"

Progetto Definitivo	Codice Elaborato:	PD007
Frogetto Delinitivo	Data:	09/08/2023
RELAZIONE TECNICA	Revisione:	00
RELAZIONE IECNICA	Pagina:	6 di 21

Le opere civili sono state progettate nel rispetto dei regolamenti comunali e secondo quanto prescritto dalla L. n° 1086/71 ed in osservanza del D.M. NTC 2018.

3.1 Gli aerogeneratori

Tipicamente, la configurazione di un aerogeneratore ad asse orizzontale è costituita da una torre di sostegno tubolare che porta alla sua sommità la navicella; nella navicella sono contenuti l'albero di trasmissione lento, il moltiplicatore di giri, l'albero veloce, il generatore elettrico e i dispositivi ausiliari.

All'interno della torre/navicella sono inoltre presenti il trasformatore MT/BT, il quadro MT ed il sistema di controllo della macchina.

La rappresentazione schematica dell'aerogeneratore tipo, previsto nel presente progetto, è riprodotta nell'elaborato PD012, che considera una turbina da 6,0 MW con altezza mozzo 105 m e diametro del rotore 150 m.

L'energia meccanica del rotore mosso dal vento è trasformata in energia elettrica dal generatore, tale energia viene trasportata in cavo sino al trasformatore MT/BT che trasforma il livello di tensione del generatore ad un livello di media tensione tipicamente pari a 30 kV.

Il sistema di controllo dell'aerogeneratore consente alla macchina di effettuare in automatico la partenza e l'arresto della macchina in diverse condizioni di vento.

Il sistema di controllo ottimizza costantemente la produzione attraverso i comandi di rotazione delle pale attorno al loro asse (controllo di passo) sia comandando la rotazione della navicella.

All'estremità dell'albero lento e all'esterno della navicella è fissato il rotore sul quale sono montate le pale.

La navicella è in grado di ruotare rispetto al sostegno allo scopo di mantenere l'asse della macchina sempre parallelo alla direzione del vento. Opportuni cavi convogliano al suolo l'energia elettrica prodotta.

La forma delle pale è disegnata in modo che il flusso dell'aria che le investe azioni il rotore.

L'aerogeneratore opera a seconda della forza del vento. Al di sotto di una certa velocità la macchina è incapace di partire; perché ci sia l'avviamento è necessario che la velocità raggiunga una soglia minima di inserimento, diversa da macchina a macchina. Ad elevate velocità l'aerogeneratore è posto fuori servizio per motivi di sicurezza.

Ogni aerogeneratore è provvisto di sottostazione di trasformazione posta all'interno della torre.

Gli aerogeneratori impiegati nel parco eolico in oggetto saranno dotati di tutte le apparecchiature e circuiti di potenza nonché di comando, protezione, misura e supervisione. Il trasformatore BT/MT è collocato all'interno della navicella o della torre.

A livello macroscopico e funzionale, un aerogeneratore è composto da 4 elementi fondamentali: rotore, navicella, torre e fondazioni.

Nel dettaglio invece, un aerogeneratore è composto da molte componenti, tra cui:

- rotore;
- navicella;
- albero primario;
- moltiplicatore;
- generatore;
- trasformatore BT/MT e quadri elettrici;
- sistema di raffreddamento e di filtraggio;

Wind Energy Mafalda srl
Impianto Eolico
"Mafalda"

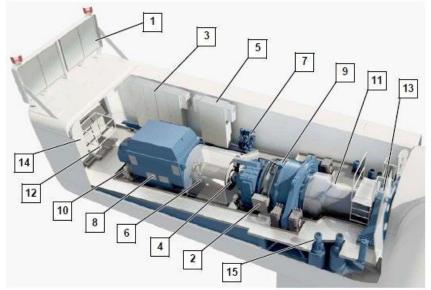
Duo cotto Dofinitino	Codice Elaborato:	PD007
Progetto Definitivo	Data:	09/08/2023
RELAZIONE TECNICA	Revisione:	00
	Pagina:	7 di 21

- sistema di frenatura;
- sistema idraulico;
- sistema di orientamento;
- torre e fondamenta;
- sistema di controllo;
- protezione dai fulmini.

3.1.1 Rotore

Il rotore è costituito da tre pale, un mozzo e l'azionamento per regolare l'angolo d'orientamento delle pale (Controllo di Passo). Le pale sono tipicamente costituite da fibre composite a base di vetroresina rinforzata.

Il sistema di controllo di passo è un particolare dispositivo che permette la rotazione delle pale in maniera tale da consentirne un adattamento ottimale in funzione del vento. In particolare, per la fase di frenatura le pale sono ruotate di 90° rispetto al proprio asse, il che genera una resistenza all'aria altissima, che induce alla frenatura del rotore (freno aerodinamico).


Ciascuna pala è dotata, di un sistema di protezione antifulmine, munito di ricettore che convoglia l'energia verso il circuito di messa a terra della macchina al fine di salvaguardare la sicurezza e lo stato delle apparecchiature.

3.1.2 Navicella

La navicella è costituita da una struttura principale in ghisa e da un involucro in vetroresina di alta qualità (GRP).

La forma particolare della navicella e la posizione dello scambiatore nella sezione superiore della turbina contribuiscono alla generazione di un flusso di aria che viene sfruttato per il raffreddamento. All'interno della navicella è istallato un argano di servizio, utilizzato per sollevare strumenti o materiali.

Nacelle layout drawing

1 Heat exchanger
3 Switch cabinet 2
5 Switch cabinet 1
7 Hydraulic unit
9 Gearbox
11 Rotor shaft

13 Rotor bearing

15 Yaw drives

- 2 Gear oil cooler 4 Rotor brake
- 6 Coupling 8 Generator
- 10 Cooling water pump
 12 Hatch for on-board crane
- 14 Switch cabinet 3

Fig. 2 – Struttura della navicella di un aerogeneratore

3.1.3 Albero primario

Il gruppo meccanico azionante è formato dall'albero rotore, dal moltiplicatore connesso tramite un adeguato accoppiamento meccanico al generatore.

Il mozzo viene collegato ad un primo albero, detto albero lento, che ruota alla stessa velocità angolare del rotore. L'albero lento è collegato al moltiplicatore di giri da cui si diparte un albero veloce, che ruota con velocità angolare tipica del generatore. Sull'albero veloce è posizionato il freno meccanico.

3.1.4 Moltiplicatore

Il moltiplicatore costituito da diversi stadi è tipicamente costituito da ruote epicicloidali e ruote dentate cilindriche. Il moltiplicatore è fornito di un sistema di raffreddamento; la temperatura dei cuscinetti e dell'olio è costantemente monitorata da sensori facenti capo al sistema di controllo.

3.1.5 Generatore

Il generatore è concepito quale macchina tipicamente asincrona a rotore avvolto con terminali accessibili.

Il generatore è mantenuto nel suo range ottimale di temperatura attraverso un circuito dedicato di raffreddamento.

Wind Energy Mafalda srl
Impianto Eolico
"Mafalda"

Progetto Definitivo	Codice Elaborato:	PD007
Frogetto Delimitivo	Data:	09/08/2023
RELAZIONE TECNICA	Revisione:	00
	Pagina:	9 di 21

3.1.6 Trasformatore BT/MT e quadri elettrici

All'interno della navicella o della torre di ogni aerogeneratore è presente un trasformatore MT/BT che ha il compito di trasformare la tensione del generatore al livello tipico di 30 kV.

All'interno della torre sono inoltre presenti il quadro MT di manovra, il quadro di controllo, il quadro di conversione e il quadro BT degli ausiliari.

Dal quadro di media tensione si dipartiranno i cavi di potenza che andranno a collegare le varie macchine tra loro.

3.1.7 Sistema di frenatura

Oltre alla regolazione di passo sull'albero veloce, tra moltiplicatore e generatore, è stato montato un freno idraulico a dischi, il quale interviene tipicamente solo nei casi di spegnimenti di sicurezza durante le fermate di emergenza.

Il sistema di controllo delle macchine gestisce le frenature della macchina in maniera tale da non sollecitare meccanicamente la componentistica di macchina.

3.1.8 Sistema idraulico

Il sistema idraulico fornisce la pressione dell'olio per le operazioni di frenatura del sistema di orientamento e frenatura del rotore.

3.1.9 Dispositivo di orientamento del timone di direzione

La direzione del vento è continuamente monitorata da due anemometri collocati sul tetto della navicella. A seguito di un cambiamento di direzione del vento il sistema di controllo effettua la rotazione della navicella; la navicella è infatti collegata alla torre mediante un giunto rotante a sfere e può essere spostata mediante motoriduttori.

3.1.10 Torre e fondazioni

La torre è costituita da diversi tronconi collegati tra loro durante la fase di montaggio della macchina in sito.

All'interno della torre sono presenti dispositivi di sicurezza a norma di legge (illuminazione normale e di emergenza, cartelli monitori, pedane di sosta, ecc).

3.1.11 Sistema di controllo

Il sistema di controllo esegue diverse funzioni:

 il controllo della potenza elettrica erogata, che può essere eseguito ruotando le pale intorno all'asse principale in maniera da aumentare o ridurre la superficie esposta al vento, oppure in termini costruttivi, tramite la scelta di un opportuno profilo delle pale;

Wind Energy Mafalda srl
Impianto Eolico
"Mafalda"

Duogotto Dofinitivo	Codice Elaborato:	PD007
Progetto Definitivo	Data:	09/08/2023
RELAZIONE TECNICA	Revisione:	00
	Pagina:	10 di 21

- il controllo della posizione della navicella, detto controllo dell'imbardata, che serve ad inseguire la direzione del vento, ma che può essere anche utilizzato per il controllo della potenza;
- l'avviamento e l'arresto automatico della macchina a seconda dell'intensità del vento.

3.1.12 Protezione antifulmine

Gli aerogeneratori sono dotati di sistemi antifulmine tali da scaricare a terra i fulmini, al fine di salvaguardare la sicurezza e mantenere per quanto possibile l'integrità di tutti i componenti della macchina.

Il sistema di messa a terra della macchina sarà conforme alla normativa vigente.

3.2 Stima della producibilità

Nel merito della valutazione dell'indice di ventosità e delle conseguenti determinazioni sulla producibilità specifica ci si è avvalsi della Ricerca di Sistema svolta dal C.E.S.I. - Università degli Studi di Genova (Dipartimento di Fisica) nell'ambito del Progetto ENERIN. L'obiettivo della valutazione è stato quello di verificare i seguenti aspetti:

- valutare e confrontare le stime presunte con il limite minimo previsto dal Regolamento Regionale per quanto attiene alla ventosità delle aree dichiarate eleggibili (1.600 h/eq anno);
- valutare la producibilità stimata in termini di effettivo interesse da parte delle aziende di settore.

La Ricerca assunta alla base della valutazione ha messo a punto un metodo di stima della ventosità e della conseguente producibilità energetica partendo dalla simulazione di campi di vento attuata mediante modelli matematici che tengono conto, per quanto possibile, degli effetti prodotti da rilievi montuosi ed ostacoli in genere, oltre che della rugosità superficiale del terreno. La simulazione suddetta è stata sviluppata nel corso del 2000 e 2001 dall'Università degli Studi di Genova - Dipartimento di Fisica, che ha utilizzato il proprio modello WINDS (Wind-field Interpolation by Non Divergent Schemes), derivato dal modello capostipite NOABL con l'inserimento di appropriati algoritmi e modifiche finalizzate a migliorarne le prestazioni. Il modello è quindi da ritenersi modello accreditato (secondo quanto indicato dall'art.6 – Criteri tecnici - comma a)) da enti pubblici e/o di ricerca.

Alla messa a punto di tale modello di simulazione hanno contribuito le analisi basate sulla raccolta ed elaborazione dei dati anemometrici disponibili sul territorio (rete anemometrica ENEL-CESI, rete ENEA, rete dei Servizi Meteorologici dell'Aeronautica Militare e quelli reperiti presso reti regionali ed altre reti – ad es. da piattaforme off-shore).

Ai fini dell'interesse specifico per la presente relazione si evidenziano alcuni aspetti determinanti della stima riportata:

 le valutazioni sono state effettuate in particolare attingendo ai dati di velocità della sola mappa a 50 m dal suolo (l'orientamento attuale della tecnologia determina altezze operative degli aerogeneratori dai 70 ai 100 m di esercizio, introducendo un elemento di tutela rispetto alle determinazioni di massima indicate);

Wind Energy Mafalda srl
Impianto Eolico
"Mafalda"

Progetto Definitivo	Codice Elaborato:	PD007
Progetto Delilitivo	Data:	09/08/2023
RELAZIONE TECNICA	Revisione:	00
	Pagina:	11 di 21

- le mappe riportate forniscono localmente dati più rappresentativi per condizioni anemologiche in condizioni orografiche non riparate, il che è sostanzialmente verificato per le opportunità che offrono le aree eleggibili potenziali;
- la producibilità riportata è desunta dalle seguenti condizioni di riferimento: 50m di altezza slm, ed è da intendersi come producibilità teorica, quindi con disponibilità dell'aerogeneratore pari al 100% e senza considerare perdite di energia di alcun tipo. L'utilizzo del dato di producibilità specifica è quello suggerito dalla stessa definizione;
- stima dell'incertezza dei parametri valutati:
 - o +/- 1.5-1.6 m/s a 50 m di quota
 - o +/- 1.6-1.8 m/s a 70 m di quota
- ai fini della producibilità riportata si ricorda che, a parte la precisione del modello di simulazione concorrono alla determinazione reali fattori esterni di natura tecnica (curva di potenza dell'aerogeneratore e regime di funzionamento a Pnom) variabili per tipologia e marca);
- il calcolo della producibilità specifica si effettua mediante l'analisi di due curve: la curva di
 distribuzione della velocità del vento all'altezza di mozzo e la curva di potenza
 dell'aerogeneratore di interesse, pure espressa normalmente in funzione della velocità del
 vento all'altezza di mozzo. Una valutazione accurata richiede ovviamente una conoscenza
 altrettanto accurata delle due curve.

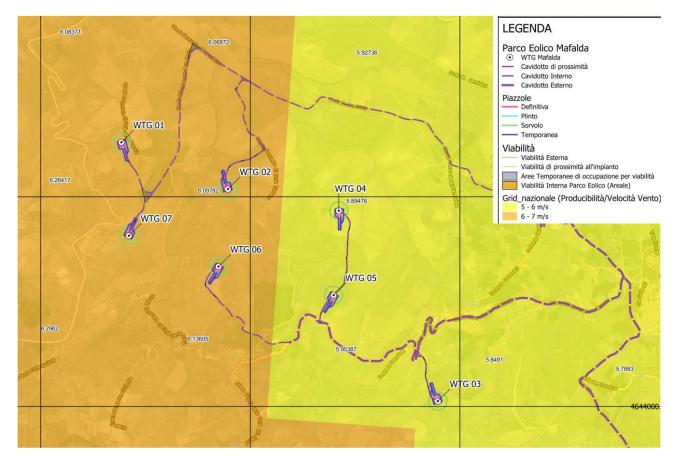


Fig. 3 – Velocità media annua del vento a 100 m slm nella zona d'impianto

L'analisi delle mappe riportate individua come eleggibile il contesto territoriale individuato. I valori di riferimento desunti dal modello consentono di riportare le seguenti considerazioni finali:

Wind Energy Mafalda srl	Progetto Definitivo	Codice Elaborato:	PD007
Impianto Eolico "Mafalda"	Frogetto Definitivo	Data:	09/08/2023
	RELAZIONE TECNICA	Revisione:	00
		Pagina:	12 di 21

- velocità media del vento a 100 m = 6,26 m/s;
- producibilità netta media annua (P₅₀) = 87 GWh/anno

Per una trattazione più ampia si faccia riferimento all'elaborato PD002 - Relazione Anemometrica. La seguente sezione mostra il sommario dei risultati basati, sulle specifiche statistiche di Weibull, sui dati metereologici, sui dati anemometrici. I calcoli sono stati eseguiti con i metodi in precedenza descritti tenendo in conto anche delle perdite elettriche.

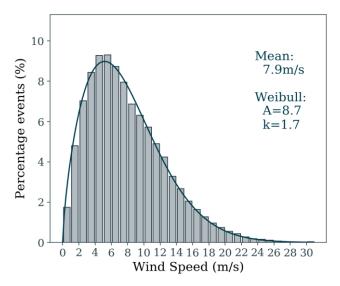


Fig. 4 - Distribuzione in frequenza del vento a 100m con relativo fitting di Weibull

	Air density [kg/m³]													
Wind speed [m/s]	1.225	0.950	0.975	1.000	1.025	1.050	1.075	1.100	1.125	1.150	1.175	1.200	1.250	1.275
3.0	42	13	16	18	20	23	25	28	31	33	36	39	45	48
3.5	138	87	92	97	101	106	111	115	120	124	129	134	143	147
4.0	252	177	184	191	197	204	211	218	225	232	239	246	259	266
4.5	393	286	295	305	315	325	334	344	354	364	373	383	403	412
5.0	567	421	434	448	461	474	487	501	514	527	540	553	580	593
5.5	780	586	603	621	639	656	674	692	709	727	745	763	798	816
6.0	1039	784	807	831	854	877	900	923	946	970	993	1016	1062	1085
6.5	1346	1021	1051	1080	1110	1140	1169	1199	1228	1258	1287	1316	1375	1404
7.0	1705	1300	1337	1374	1411	1448	1485	1522	1558	1595	1632	1668	1741	1778
7.5	2108	1614	1659	1704	1749	1794	1839	1884	1929	1974	2018	2063	2152	2196
8.0	2542	1953	2007	2060	2114	2168	2221	2275	2328	2382	2435	2489	2595	2648
8.5	2979	2292	2355	2418	2480	2543	2605	2667	2730	2792	2854	2917	3041	3103
9.0	3450	2660	2732	2804	2876	2948	3020	3092	3164	3236	3307	3378	3520	3590
9.5	3901	3019	3100	3181	3262	3344	3424	3505	3585	3666	3744	3822	3975	4048
10.0	4248	3327	3416	3505	3594	3683	3769	3855	3941	4026	4100	4174	4310	4372
10.5	4470	3587	3682	3776	3870	3965	4047	4129	4211	4293	4352	4411	4512	4554
11.0	4604	3816	3910	4003	4096	4190	4261	4332	4403	4474	4518	4561	4629	4653
11.5	4661	4003	4090	4177	4264	4351	4409	4466	4524	4581	4608	4635	4674	4686
12.0	4684	4131	4212	4292	4373	4454	4499	4543	4588	4633	4650	4667	4692	4700
12.5	4695	4218	4292	4366	4440	4514	4550	4586	4621	4657	4670	4682	4701	4707
13.0	4700	4289	4355	4422	4488	4555	4584	4613	4642	4671	4681	4690	4705	4710
13.5	4707	4338	4397	4456	4515	4574	4601	4627	4653	4679	4688	4698	4711	4715
14.0	4710	4388	4441	4494	4547	4600	4622	4644	4665	4687	4695	4702	4713	4716
14.5	4712	4430	4477	4525	4572	4620	4638	4657	4675	4694	4700	4706	4715	4718
15.0	4713	4457	4500	4544	4587	4630	4646	4662	4678	4695	4701	4707	4715	4717
15.5	4714	4469	4510	4551	4592	4633	4649	4665	4681	4696	4702	4708	4716	4718
16.0	4713	4473	4513	4552	4592	4632	4648	4664	4679	4695	4701	4707	4715	4717
16.5	4712	4474	4514	4553	4592	4631	4646	4662	4678	4693	4700	4706	4714	4717
17.0	4711	4476	4514	4553	4591	4629	4645	4660	4676	4692	4698	4705	4714	4716
17.5	4708	4454	4493	4532	4571	4610	4629	4647	4666	4685	4692	4700	4711	4715
18.0	4708	4464	4501	4539	4576	4614	4632	4650	4668	4686	4693	4701	4711	4714
18.5	4708	4478	4514	4550	4585	4621	4638	4655	4672	4688	4695	4702	4712	4715
19.0	4699	4477	4511	4544	4578	4612	4628	4644	4660	4676	4683	4691	4703	4706
19.5	4641	4421	4453	4485	4516	4548	4564	4581	4597	4614	4623	4632	4647	4653
20.0	4503	4282	4312	4343	4373	4403	4420	4437	4455	4472	4482	4493	4512	4520

Tabella 3 - Andamento della potenza in base alla velocità del vento alle varie densità dell'aria

Wind Energy Mafalda srl
Impianto Eolico
"Mafalda"

Duogatta Dafinitiva	Codice Elaborato:	PD007
Progetto Definitivo	Data:	09/08/2023
RELAZIONE TECNICA	Revisione:	00
	Pagina:	13 di 21

Poiché la potenza estraibile da un flusso eolico è direttamente proporzionale alla densità dell'aria, nel caso in cui essa, nelle aree relative al sito in questione, si scosti dal suddetto valore standard è necessario correggere le curve di potenza e del coefficiente di spinta in riferimento alla densità realmente rilevata.

Il valore della distribuzione della densità di Weibull così calcolato si traduce in un funzionamento annuo dell'impianto.

In relazione alle caratteristiche degli aerogeneratori e dei dati anemometrici si prevede una produzione annua totale per il parco eolico, al netto delle perdite elettriche e dell'accuratezza delle stime anemologiche e anemometriche effettuate.

In funzione della velocità media annua stimata e in base alla resa dell'aerogeneratore previsto in progetto, si è desunta la produttività energetica media degli aerogeneratori, pari a circa **14.000 MWh/anno** con una probabilità del 50% di essere superata.

La velocità del vento cresce, quindi, con l'aumentare della quota secondo la legge logaritmica. In base ai rilevamenti effettuati nella zona interessata, desunti i valori di rugosità del terreno e valutata la classe di stabilità atmosferica di Pasquill-Gifford di appartenenza, si è stimato il valore medio annuo della velocità del vento alla quota di 100 m, cioè in corrispondenza del mozzo degli aerogeneratori, pari a 6,26 m/s

4 Opere civili ed industriali

Le opere civili previste consistono essenzialmente nella realizzazione di:

- spianamento del terreno in quota;
- fondazioni delle torri degli aerogeneratori;
- viabilità interna;
- piazzole delle macchine;
- viabilità interna, tale da consentire il collegamento di ciascuna delle postazioni con la viabilità principale.

4.1 Fondazioni

In base ai valori delle sollecitazioni statiche e dinamiche a terra tipiche degli aerogeneratori installati ed alle caratteristiche geologiche dei terreni saranno effettuati i dimensionamenti tipo delle fondazioni.

Si tratta di fondazioni costituite da plinti in calcestruzzo armato di idonee dimensioni poggianti, eventualmente, a seconda della natura del terreno, su cui ogni singola torre dovrà sorgere, sopra una serie di pali la cui profondità varierà in funzione delle caratteristiche geotecniche del sito. A tali plinti verrà collegato il concio di fondazione in acciaio delle torri.

Al fine di permettere al momento di dismissione dell'impianto il ripristino ambientale, la faccia superiore della platea di fondazione in calcestruzzo sarà posizionata al disotto del piano di campagna.

Wind Energy Mafalda srl	Progetto Definitivo	Codice Elaborato:	PD007
30	Frogetto Definitivo	Data:	09/08/2023
Impianto Eolico "Mafalda"	RELAZIONE TECNICA	Revisione:	00
	RELAZIONE TECNICA	Pagina:	14 di 21

4.2 Viabilità

La viabilità da realizzare consiste in una serie di strade interne al fine di raggiungere agevolmente tutte le piazzole in cui verranno collocati gli aerogeneratori.

Dette strade, la cui larghezza sarà tipicamente di 5 m, ad eccezione dei raccordi tra le strade, che saranno dimensionati per il passaggio del mezzo che trasporterà i componenti degli aerogeneratori, verranno realizzate seguendo l'andamento topografico esistente del sito, cercando di ridurre al minimo eventuali movimenti di terra.

Le acque meteoriche non assorbite dalla superficie e convogliate dalle cunette laterali dei piazzali e delle strade verranno tipicamente convogliate ed indirizzate verso l'impluvio naturale esistente.

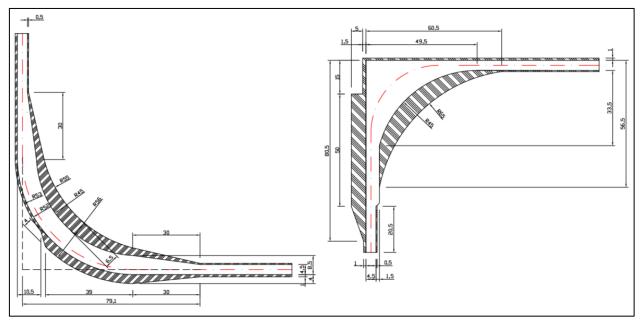


Fig. 5 – Particolare realizzazione raccordo strade

4.2.1 Pendenza

In particolare, le strade di accesso devono possedere i requisiti per il passaggio dei veicoli sotto descritti e potranno avere una pendenza massima di 14%, (corrispondente a circa 8°), in fase di progetto si sono previste strade con una pendenza massima del 12%.

Per la realizzazione delle piazzole invece la superfice non può essere superiore al 2-3%.

4.2.2 Piazzole di montaggio

In corrispondenza di ogni aerogeneratore saranno realizzate delle piazzole di servizio per il posizionamento della gru di sollevamento e montaggio dell'aerogeneratore delle dimensioni circa 50 m x 25 m. Tali piazzole verranno utilizzate solo in fase di montaggio e quindi restituite al precedente uso, dopo aver ripristinato lo stato dei luoghi mantenendo comunque la necessaria viabilità di servizio attorno a ciascuna macchina per l'esercizio e la manutenzione del parco.

Progette Definitive	Codice Elaborato:	PD007
Progetto Definitivo	Data:	09/08/2023
RELAZIONE TECNICA	Revisione:	00
	Pagina:	15 di 21

4.2.3 Regimentazione acque

Nel realizzare la pavimentazione dei tracciati si sceglierà di utilizzare pietrisco, macadam o similare, per garantire la conservazione del regime di infiltrazione delle acque meteoriche, ovviando in tal modo ai problemi di drenaggio delle precipitazioni.

4.3 Impiantistica

Le opere impiantistiche riguardano i collegamenti elettrici in MT tra i singoli aerogeneratori e la cabina di impianto e tra la stessa e la SSEU.

4.3.1 Reti elettriche (cavidotti)

Gli aerogeneratori sono elettricamente suddivisi in gruppi funzionali denominati sottocampi. All'interno di ciascun sottocampo gli aerogeneratori sono connessi tra loro mediante una connessione in entra-esci.

La rete di distribuzione in Media Tensione sarà realizzata secondo uno schema radiale con linea principale e linee in derivazione provenienti dai sottocampi.

L'energia viene trasportata, tramite dei cavi MT esistenti, fino alla cabina di raccolta in agro di Montecilfone per poi arrivare alla sottostazione utente SSEU e, da questa, tramite cavi AT, alla futura Stazione Elettrica RTN 150 kV.

I cavi saranno prevalentemente posati ad una profondità di 1,30 m e circondati da uno strato di sabbia. I cavidotti seguiranno percorsi interrati lungo la viabilità interna o esistente.

Gli scavi saranno ripristinati con riempimento di terreno vagliato proveniente dagli scavi e successivamente chiusi con terreno vegetale. Saranno infine posizionati pozzetti prefabbricati di ispezione in CLS, per la manutenzione della rete elettrica, in cui collocare le giunzioni dei cavi e i picchetti di terra.

4.3.2 Altre reti elettriche eventualmente esistenti

Per l'eventuale presenza nel parco di linee aeree di MT e BT si procederà all'interramento delle stesse ad opera e spese del proponente del progetto. Il punto di interramento con le modalità di esecuzione dell'opera sarà concordato con il gestore rete nazionale.

4.3.3 Attraversamenti stradali

Gli attraversamenti di strade principali, nell'area di pertinenza del sito, ad opera di cavidotti interni per il collegamento delle torri e/o collegamento delle stesse con la sottostazione, saranno realizzati con l'uso della "Trivellazione Orizzontale Controllata"; gli altri cavidotti saranno opportunamente interrati ad una profondità di 1,20 m. La linea di attraversamento avrà un angolo di attacco con la sede ferroviaria e/o stradale di 90°.

4.3.4 Descrizione del sistema elettrico del parco eolico

Ogni aerogeneratore fornisce energia elettrica a 30 kV prima del trasporto, in un centro di trasformazione ubicato nella cabina di macchina alla base dell'aerogeneratore collocato all'interno

Wind Energy Mafalda srl Impianto Eolico "Mafalda"	Progetto Definitivo	Codice Elaborato:
		Data:
	RELAZIONE TECNICA	Revisione:
		Pagina:

della torre stessa.

Il trasporto di energia elettrica avverrà tramite cavidotto interno al parco eolico in MT che collegherà ogni torre presso una cabina di raccolta per poi trasportare energia, sempre in MT, tramite cavidotto esterno dalla cabina di raccolta alla sottostazione utente SSEU e, da questa, tramite cavidotto in AT, alla futura stazione elettrica in agro del comune di Montecilfone.

PD007 09/08/2023 00 16 di 21

Sarà inoltre presente un cavidotto per i cavi di segnale a servizio del sistema di controllo del parco. I percorsi dei cavi saranno principalmente lungo il margine delle strade interne ed esterne al parco, pur rimanendo valido il principio che dovrà essere minimizzato il percorso al fine di ridurre la lunghezza dei cavi impiegati e le perdite di energia lungo i medesimi. Sarà scopo del progetto esecutivo definire in maniera più dettagliata il posizionamento puntuale dei cavi.

4.3.5 Collegamento alla RTN

La connessione alla Rete di Trasmissione Nazionale dell'impianto eolico per una potenza in immissione di 42,0 MW sarà mediante collegamento MT fino alla sottostazione utente e successivamente in AT ad una stazione RTN 150 kV di nuova realizzazione, sita nel Comune di Montecilfone (CB).

5 Ripristino dei luoghi

Terminata la costruzione, i terreni interessati dall'occupazione temporanea dei mezzi d'opera o dal deposito provvisorio dei materiali di risulta o di quelli necessari alle varie lavorazioni, dovranno essere

ripristinati. Nel dettaglio tali operazioni interesseranno le seguenti superfici:

- Piste: fasce relative agli allargamenti in corrispondenza di curve ed intersezioni;
- Piazzole: aree di assemblaggio e superficie non interessata dalla porzione di piazzola che esisterà in fase di esercizio;
- Area principale di cantiere: ripristino di tutta la superficie interessata;
- Altre superfici: aree interessate dal deposito dei materiali rivenienti dagli scavi e dai movimenti materie.

Le operazioni di ripristino consisteranno in:

- Finitura con uno strato superficiale di terreno vegetale;
- Idonea preparazione del terreno per l'attecchimento.

Particolare cura si dovrà osservare per:

- eliminare dalla superficie della pista e/o dall'area provvisionale di lavoro, ogni residuo di lavorazione o di materiali;
- provvedere al ripristino del regolare deflusso delle acque di pioggia attraverso la rete idraulica costituita dalle fosse campestri, provvedendo a ripulirle ed a ripristinarne la sezione originaria;
- dare al terreno la pendenza originaria al fine di evitare ristagni.

Progetto Definitivo	Codice Elaborato:	PD007
Frogetto Demittivo	Data:	09/08/2023
RELAZIONE TECNICA	Revisione:	00
RELAZIONE IEUNICA	Pagina:	17 di 21

6 Piano di dismissione

Alla fine dell'esercizio avverrà lo smantellamento dell'impianto.

I costi di dismissione e delle opere di rimessa in pristino dello stato dei luoghi saranno coperti da una fideiussione bancaria indicata nell'atto di convenzione definitivo fra società proponente ed i Comuni interessati dall'intervento o la Regione.

Lo smantellamento dell'impianto prevede:

- lo smontaggio delle torri, delle navicelle e dei rotori, con il recupero (per il riciclaggio) dell'acciaio;
- l'allontanamento dal sito, per il recupero o per il trasporto a rifiuto, di tutti i componenti
- dell'impianto;
- l'annegamento, ovvero la ricopertura tramite terreno vegetale per futura piantumazione quindi per il ripristino del verde e dell'ecosistema ambientale, della struttura in calcestruzzo sotto il piano campagna per almeno un metro, demolizione parziale dei plinti di fondazione, il trasporto a rifiuto del materiale rinvenente dalla demolizione, la copertura sempre con terra vegetale di tutte le cavità createsi con lo smantellamento dei plinti;
- il ripristino dello stato dei luoghi;
- la rimozione completa delle linee elettriche e conferimento agli impianti di recupero e trattamento secondo la normativa vigente;
- rispetto dell'obbligo di comunicazione a tutti gli assessorati regionali interessati, della dismissione o sostituzione di ciascun aerogeneratore.

7 Analisi delle ricadute sociali e occupazionali

Il parco eolico, come ogni altra opera infrastrutturale, ha importanti impatti socio-economici e occupazionali a livello locale, sia a livello diretto che a livello indiretto. Il parco eolico quindi si inserisce come strumento per lo sviluppo sostenibile legato alle fonti energetiche rinnovabili, al fine del raggiungimento degli obiettivi al 2030 inseriti nel quadro per il clima e l'energia 2030 approvato dal Consiglio Europeo del 23 e 24 ottobre 2014.

La risorsa eolica mondiale disponibile e tecnicamente sfruttabile è quattro volte l'energia elettrica consumata dal pianeta, ed eviterebbe l'utilizzo di 3.000 milioni di tonnellate di combustibile fossile e la conseguente emissione in atmosfera di 13.000 milioni di tonnellate di CO2 ed altri gas responsabili

dell'effetto serra. Il vento è una risorsa globalmente diffusa sul nostro pianeta: si calcola che il 9% dell'energia solare si trasforma in eolica. Sulla terra, attraverso i cinque continenti, soffiano venti il cui potenziale energetico è stimato a 53.000 TWh.

L'energia elettrica che verrà generata dal parco eolico è assolutamente da fonte primaria "pulita", consentendo di evitare la produzione di tonnellate di anidride carbonica, di anidride solforosa e di ossidi di azoto (gas di scarico caratteristici invece delle centrali termoelettriche). La realizzazione del Parco Eolico in oggetto, pertanto, si inquadra perfettamente nel programma di più ampio sforzo nazionale di incrementare il ricorso a fonti energetiche alternative, contribuendo allo stesso tempo ad acquisire una diversificazione del mix di approvvigionamento energetico ed a diminuire la vulnerabilità del sistema energetico nazionale.

In termini di potenza installata, al 31 dicembre 2022 la potenza efficiente lorda di generazione è risultata pari a 123,6 GW, lievemente in aumento rispetto al dato dell'anno precedente. In aumento la capacità delle fonti rinnovabili quali il fotovoltaico, l'eolico e l'idroelettrico.

December Definition	Codice Elaborato:	PD007
Progetto Definitivo	Data:	09/08/2023
RELAZIONE TECNICA	Revisione:	00
	Pagina:	18 di 21

Lo studio pubblicato da ANEV (Associazione Nazionale Energia del Vento), sul potenziale realizzabile nel nostro Paese per quanto riguarda l'eolico, su terraferma e in mare, oltre a stimare il contributo in termini di produzione di energia elettrica da fonte rinnovabile affronta la questione anche in termini occupazionali.

Tale studio, si è posto come obiettivo quello di delineare lo scenario relativamente alle potenzialità del settore eolico al 2030 sia in termini di produzione che di ricadute occupazionali. Se il numero degli occupati alla fine del 2016 contava 28.942 unità, si stima che entro il 2030 il numero di posti di lavoro sarà più che raddoppiato. Infatti, entro il 2030, si prevede un numero complessivo di lavoratori pari a 67.200 unità in tutto il territorio nazionale, di cui un terzo di occupati diretti (22.562) e due terzi di occupati dell'indotto (44.638).

_	CEDIMATO		OFSTIONER			_
REGIONE	SERVIZIO E SVILUPPO	INDUSTRIA	GESTIONE E MANUTENZIONE	TOTALE	DIRETTI	INDIRETTI
PUGLIA	3.500	4.271	3.843	11.614	2.463	9.15
CAMPANIA	3.192	1.873	3.573	8.638	2.246	6.39
SICILIA	2.987	1.764	2.049	6.800	2.228	4.57
SARDEGNA	3.241	1.234	2.290	6.765	2.111	4.65
MARCHE	987	425	1.263	2.675	965	1.71
CALABRIA	2.125	740	1.721	4.586	1.495	3.09
UMBRIA	987	321	806	2.114	874	1.24
ABRUZZO	1.758	732	1.251	3.741	1.056	2.68
LAZIO	2.487	1.097	1.964	5.548	3.145	2.40
BASILICATA	1.784	874	1697	4.355	2658	1.69
MOLISE	1.274	496	1396	3.166	1248	1.91
TOSCANA	1.142	349	798	2.289	704	1.58
LIGURIA	500	174	387	1.061	352	70
EMILIA	367	128	276	771	258	51:
ALTRE	300	1.253	324	1.877	211	1.66
OFFSHORE	529	203	468	1.200	548	65
TOTALE	27.417	16.205	23.388	67.200	22.562	44.63

In termini energetici invece emerge che al 2030 sono raggiungibili i seguenti obiettivi: Obiettivo elettrico 36,4 TWh;

- Obiettivo di potenza 17.150 MW Con:
- Produzione per ogni abitante: 606 KWh;
- Occupazione del territorio in termini assoluti: 0.0008%;
- Previsione della produzione eolica rispetto al Consumo interno lordo: 9.58%.

Dall'analisi di tali dati si desume il dato medio in Italia relativo al numero di addetti nel settore per ogni MW installato; quindi, per 17.150 MW installati e 67.200 addetti totali si avranno 3,92 addetti /MW.

Nel Gennaio 2008 l'ANEV e la UIL hanno sottoscritto un Protocollo di Intesa, rinnovato nel 2010, 2012 e nel 2014, finalizzato alla predisposizione di uno studio congiunto, che delineasse uno scenario sul panorama occupazionale relativo al settore dell'eolico. Lo studio si configura come

Duo cotto Dofinitino	Codice Elaborato:	PD007
Progetto Definitivo	Data:	09/08/2023
RELAZIONE TECNICA	Revisione:	00
	Pagina:	19 di 21

un'elaborazione approfondita del reale potenziale occupazionale, verificando a fondo gli aspetti della crescita prevista del comparto industriale, delle società di sviluppo e di quelle di servizi. In particolare, sono state considerate le ricadute occupazionali dirette e indotte nei seguenti settori. L'analisi del dato conclusivo relativo al potenziale eolico, trasposto in termini occupazionali dall'ANEV rispetto ai criteri utilizzati genericamente in letteratura, indica un potenziale occupazionale al 2030 in caso di realizzazione dei 19.300 MW previsti di 67.200 posti di lavoro complessivi. Tale dato è divisibile in un terzo di occupati diretti e due terzi di occupati dell'indotto. L'applicazione della metodologia ANEV e UIL stima ad oggi circa 16.000 unità di lavoratori nel settore eolico in Italia; lo stesso valore è stato ottenuto con un'altra metodologia elaborata da Deloitte per conto di Wind Europe, confermando l'accuratezza della stima.

Partendo da queste considerazioni, in questo studio è stata effettuata anche un'analisi delle possibili

ricadute occupazionali locali, derivanti dalla realizzazione dell'impianto eolico da ubicare nel comune di Mafalda e Montenero di Bisaccia. Oltre ai benefici di carattere ambientale che scaturiscono dall'utilizzo di fonti rinnovabili esplicitabili in barili di petrolio risparmiati, tonnellate di anidride carbonica, anidride solforosa, polveri, e monossidi di azoto evitate si hanno anche benefici legati agli sbocchi occupazionali derivanti dalla realizzazione di campi eolici.

L'occupazione nel settore eolico è associata alle principali tipologie di attività di seguito elencate:

Costruzione	Installazione	Gestione/Manutenzione
Generatori eolici	Consulenza	Generatori eolici
Moltiplicatore di giri	Fondazioni	Moltiplicatore di giri
Rotore	Installazione elettriche	Rotore (pale e mozzo)
Torre	Cavi e connessione al a rete	Trasformatori
Freni	Trasformatori	Freni
Sistemi elettronici	Sistemi di controllo remoto	Installazioni elettriche
Navicella	Strade	Sistemi di controllo remoto

L'insieme dei benefici derivanti dalla realizzazione dell'opera possono essere suddivisi in due categorie: quelli derivanti dalla fase realizzativa dell'opera e quelli conseguenti alla sua realizzazione.

Nello specifico, in corso di realizzazione dei lavori si determineranno da un lato variazioni a breve termine sull'occupazione della popolazione residente, dall'altro un'influenza sulle prospettive a medio-lungo periodo soprattutto per le categorie dell'indotto:

- esperienze professionali generate;
- specializzazione di mano d'opera locale;
- qualificazione imprenditoriale spendibile in attività analoghe future, anche fuori zona, o in settori diversi;

oltre che dei principali settori produttivi coinvolti come:

- fornitura di materiali locali;
- noli di macchinari;
- · prestazioni imprenditoriali specialistiche in subappalto;
- produzione di componenti e manufatti prefabbricati, ecc.

Wind Energy Mafalda srl
Impianto Eolico
"Mafalda"

Progetto Definitivo	Codice Elaborato:	PD007
	Data:	09/08/2023
RELAZIONE TECNICA	Revisione:	00
	Pagina:	20 di 21

Si prevede inoltre una crescente domanda di servizi e di consumi generata dalla ricaduta occupazionale con potenziamento delle esistenti infrastrutture e sviluppo di nuove attrezzature nei settori:

- alloggi per maestranze e tecnici fuori sede e loro familiari;
- ristorazione;
- ricreazione:
- commercio al minimo di generi di prima necessità, ecc.

Tali benefici, non dovranno intendersi tutti legati al solo periodo di esecuzione dei lavori, né resteranno confinati nell'ambito del solo territorio comunale. Ad esempio, le esperienze professionali e tecniche maturate saranno facilmente spendibili in altro luogo e/o tempo soprattutto in virtù del crescente interesse nei confronti dell'utilizzo delle fonti rinnovabili per la produzione di energia e del crescente numero di installazioni di tal genere.

Ad impianto in esercizio, ci saranno opportunità di lavoro nell'ambito delle attività di monitoraggio, telecontrollo e manutenzione del parco eolico, svolte da ditte specializzate che spesso si servono a loro volta di personale locale.

Più nello specifico l'occupazione nel settore eolico è associata alle seguenti principali tipologie di attività:

Sviluppo:

- o consulenza specialistica (rilievi plano altimetrici, carotaggi, ecc.)
- o consulenze specialistiche locali (agronomi, geologi, cartografi, ecc.)
- o consulenze legali locali (contratti acquisto terreni, preliminari, ecc.)
- o rogiti notarili (contratti, atti di servitù, cessioni, ecc.)
- o scouting, anemometria, anemologia, ingegneria di progetto, studi ed analisi ambientali, monitoraggi, carteggi progettuali, iter autorizzativo, ecc.

Finanziamento:

- o studi legali, periti (due diligence legale e amministrativa)
- istituzioni bancarie per il finanziamento

Costruzione:

- Aerogeneratore (generatore eolico, moltiplicatore di giri, rotore cioè pale e mozzo torre, freni, sistemi elettronici, navicella)
- o società di ingegneria, periti (due diligence tecnica)
- Automazione di controllo e gestione, sistema trasmissione dati, sistemi di controllo remoto:
- Apparecchiature elettromeccaniche (cavi elettrici, connessione alla rete, quadri elettrici, trasformatori MT/AT, ecc.);
- consulenti assicurativi, periti (due diligence assicurativa)
- opere civili per strade di impianto, adeguamento viabilità, piazzole e fondazioni, sottostazioni elettriche e connessione con rete elettrica nazionale, scavi per cavidotti interrati, rilievi, livellamenti, ripristini ambientali, ecc.

Gestione/manutenzione:

- parco eolico (manutenzione strade, sgombero neve, cartellonistica, ecc.);
- aerogeneratori (ordinaria e straordinaria manutenzione);
- sottostazione elettrica (ordinaria e straordinaria manutenzione).

In particolare, per le diverse iniziative riguardanti solo le attività dirette e tralasciando la componente

Wind Energy Mafalda srl
Impianto Eolico
"Mafalda"

Duo cotto Dofinitino	Codice Elaborato:	PD007
Progetto Definitivo	Data:	09/08/2023
RELAZIONE TECNICA	Revisione:	00
	Pagina:	21 di 21

indiretta di ricaduta sul territorio che comunque gioca un ruolo importante, mediando tra tutti i parchi

sviluppati si evince la distribuzione occupazionale ed una corrispondenza previsionale relativa all'impianto in progetto.

	N persone coinvolte	Mesi di Lavoro
Sviluppo + ingegneria	10	16
Finanziamento	10	16
Costruzione	50	16
Istallazione	70	16
Gestione	10	320

Tab. - dati occupazionali previsionali Parco eolico in progetto

A tali addetti si aggiungono tutte le competenze tecniche e professionali che svolgono lavoro sotto forma indiretta e che sono parte del sistema economico a monte e a valle della realizzazione dell'impianto eolico pari a circa il doppio rispetto a quello diretto.

Wind Energy Mafalda srl	Progetto Definitivo	Codice Elaborato:	PD007
Impianto Eolico		Data:	11/09/2023
	ELENCO PROGETTISTI	Revisione:	00
"Mafalda"		Pagina:	1 di 1

1 di 1

Elenco progettisti coinvolti nella progettazione e valutazione di impatto ambientale

ASPETTI PROGETTUALI ED AMBIANTALI	PROGETTISTA	
Progettazione impianto eolico	Ing. Marco Sciarra	
Valutazione Impatto Ambientale, VINCA	Ing. Sergio Ciampolillo	
Geologia	Geol. Alessandro Mascitti	
Aspetti agronomici	Dott. Agr. Marco Cardinali	
Aspetti acustici	Ing. Sergio Agostini	