

Progetto

PROGETTO DELL'IMPIANTO AGRIVOLTAICO E DELLE RELATIVE OPERE DI CONNESSIONE DA REALIZZARE NEL COMUNE DI MARTIS e CHIARAMONTI (SS) CON POTENZA IN IMMISSIONE PARI A 39,2MW.
DENOMINAZIONE IMPIANTO "19185 - MARTIS"

Proponente

LUCE MARTIS S.R.L. Via N. Sauro, 22 42017 Novellara (RE)

Progettisti

RESPONSABILE DEL PROGETTO P.I. Luca Catellani Collegio Periti RE n. 1101

PROGETTAZIONE IMPIANTO DI UTENZA PER LA CONNESSIONE Ing. Francesco Chiri

Ordine Ingegneri Palermo n. 5963

Firma

Procedura di Valutazione Impatto Ambientale ai sensi dell'art. 23 del D.Lgs 152 / 2006 e ss. mm. ii.

Autorità competente

Ministero dell'Ambiente e della Sicurezza Energetica

IMPIANTO AGRIVOLTAICO " 19185 - MARTIS" IMPIANTO DI UTENZA PER LA CONNESSIONE

01.04		
Rev. 00 novembre 2023	Pag. 1 di 10	

CARATTERISTICHE COMPONENTI ELETTRODOTTO INTERRATO

SOMMARIO

00	GGETTO		2
1	COMPON	NENTI COLLEGAMENTO IN CAVO AT	2
	1.1 TIPO	D DI CAVO	2
	1.1.1	Conduttore	2
	1.1.2	Isolamento	4
	1.1.3	Strati semiconduttivi interno ed esterno	4
	1.1.4	Schermo	4
	1.1.5	Guaina esterna	5
	1.2 Pro	DFONDITÀ E MODALITÀ DI POSA DEL CAVO	6
	1.3 CAM	MERA GIUNTI	9
	1.4 TER	MINALI CAVI	10

IMPIANTO AGRIVOLTAICO " 19185 - MARTIS" IMPIANTO DI UTENZA PER LA CONNESSIONE

CARATTERISTICHE COMPONENTI ELETTRODOTTO INTERRATO

Codifica 01.04		
Rev. 00 novembre 2023	Pag.	2 di 10

OGGETTO

Nella presente relazione sono indicate le principali caratteristiche ed ingombri dei componenti necessari per la realizzazione del collegamento in cavo AT.

1 COMPONENTI COLLEGAMENTO IN CAVO AT

1.1 TIPO DI CAVO

Il cavo impiegato sarà del tipo ad isolamento estruso costituito come nello schema sotto riportato, esso viene fornito tipicamente in pezzature di lunghezza compresa, salvo particolari esigenze, tra i 450 e 600 m. Nel caso in esame, pertanto, non dovrebbe risultare necessario prevedere la realizzazione di appositi giunti elettrici per connettere più tratte di cavi. Nel caso in cui tale necessità dovesse emergere in fase esecutiva, tali giunti saranno alloggiati all'interno delle buche descritte nel successivo par. 1.3.

1.1.1 Conduttore

Il conduttore deve essere a corda compatta circolare o Milliken, di rame ricotto non stagnato od alluminio, tamponato e con una superficie esterna priva di tutte le imperfezioni visibili ad occhio nudo (ad esempio dentellature, tacche, rugosità non conformi ad un adeguato processo produttivo).

Le sezioni normalizzate dovranno essere conformi alla norma CEI EN 60228 (conduttori di classe 2).

Non sono ammessi conduttori con fili rivestiti (smaltati o simili).

IMPIANTO AGRIVOLTAICO " 19185 - MARTIS" IMPIANTO DI UTENZA PER LA CONNESSIONE

CARATTERISTICHE COMPONENTI ELETTRODOTTO INTERRATO

01.04

Rev. 00
novembre 2023

Pag. 3 di 10

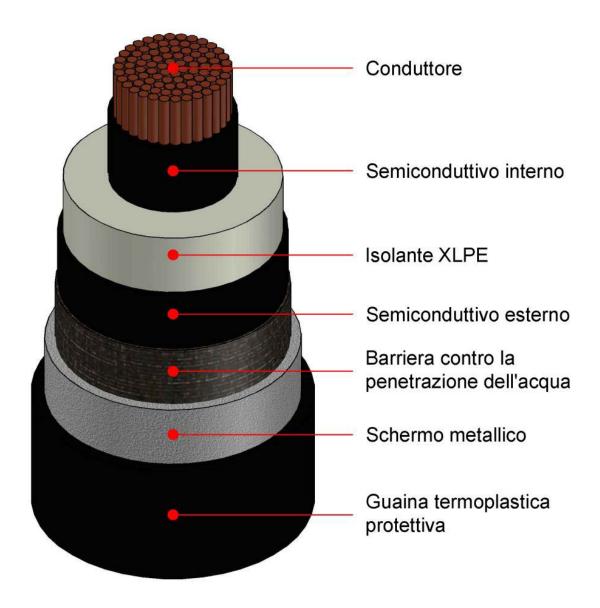


Fig. 1 – Schema costruttivo tipico di un cavo ad isolamento estruso da 1600 mm²

IMPIANTO AGRIVOLTAICO " 19185 - MARTIS" IMPIANTO DI UTENZA PER LA CONNESSIONE

CARATTERISTICHE COMPONENTI ELETTRODOTTO INTERRATO

Codifica 01.04	
Rev. 00 novembre 2023	Pag. 4 di 10

1.1.2 Isolamento

L'isolamento del cavo deve essere composto da un unico strato di mescola di polietilene reticolato (XLPE) estruso e dovrà avere un basso fattore di perdite dielettriche. Lo strato isolante e gli strati semiconduttivi devono essere estrusi in una sola operazione attraverso una testa di estrusione tripla.

L'isolamento deve soddisfare i requisiti richiesti nel paragrafo 10.6 della Norma IEC 62067 (ed.2.0 2011-11).

1.1.3 Strati semiconduttivi interno ed esterno

Gli strati semiconduttivi interno ed esterno devono essere composti ciascuno da un unico strato di mescola estrusa. Tale strato deve essere continuo, con uno spessore medio costante, non dovrà presentare alcuna irregolarità superficiale e dovrà essere perfettamente aderente all'intera superficie dell'isolamento in qualsiasi condizione di lavoro.

Gli schermi semiconduttivi non devono produrre alcun danno di tipo chimico sugli elementi del cavo con i quali sono a contatto. In particolare, non devono includere alcuna sostanza dannosa incline a diffondere all'interno dell'isolante.

Lo strato di semiconduttivo esterno dovrà essere del tipo non pelabile.

Il Fornitore deve dichiarare la marca e la sigla commerciale delle mescole utilizzate per la realizzazione dei pacchetti isolanti (isolamento e strati semiconduttivi).

1.1.4 Schermo

Lo schermo metallico deve essere realizzato per assolvere alle seguenti funzioni:

- contribuire ad assicurare la protezione meccanica del cavo;
- assicurare la tenuta ermetica radiale;
- consentire il passaggio delle correnti corto circuito;

IMPIANTO AGRIVOLTAICO " 19185 - MARTIS" IMPIANTO DI UTENZA PER LA CONNESSIONE

CARATTERISTICHE COMPONENTI ELETTRODOTTO INTERRATO

01.04

Rev. 00 povembre 2023

Rev. 5 di 10

• contenere il campo elettrico all'interno dell'isolante.

Lo schermo può essere realizzato utilizzando i seguenti elementi costitutivi o una combinazione di essi:

- · guaina di piombo;
- fili di rame ricotto non stagnato;
- fili di alluminio o lega di alluminio;
- foglio laminato di rame o alluminio, di tipo liscio o corrugato.

La tenuta ermetica radiale deve essere assicurata mediante processi di estrusione o saldatura (di testa) delle parti metalliche; non è ammesso l'impiego di schermi di tipo incollato.

Non è ammesso l'impiego di saldature trasversali all'interno dello schermo metallico.

Il costruttore deve indicare la natura dei materiali impiegati, le modalità di costruzione, le dimensioni di ciascuna parte dello schermo metallico e le misure adottate per il tamponamento longitudinale.

1.1.5 Guaina esterna

La guaina termoplastica deve impedire l'ingresso di acqua evitando in tal modo possibili corrosioni dello schermo sottostante; pertanto lo spessore dovrà essere opportuno e tale da prevenire qualsiasi danneggiamento dovuto alle sollecitazioni meccaniche durante le operazioni in fabbrica, di trasporto e posa ed alle condizioni ambientali per tutta la vita utile del cavo.

Il rivestimento protettivo esterno sarà costituito da una guaina di PE nera, grafitata oppure rivestita da una microguaina semiconduttiva in PE; laddove è necessario evitare il propagarsi della fiamma, la guaina sarà in PVC nera non propagante la fiamma o PE opportunamente addizionato (PE-AN) oppure deve essere prevista una microguaina aggiuntiva in PE opportunamente addizionato.

Impianto agrivoltaico " 19185 - MARTIS" Impianto di Utenza per la Connessione

CARATTERISTICHE COMPONENTI ELETTRODOTTO INTERRATO

Codifica 01.04	
Rev. 00 novembre 2023	Pag. 6 di 10

1.2 Profondità e modalità di posa del cavo

I cavi verranno posati normalmente all'interno di trincee profonde circa 1,5 m.

Di seguito sono riportate le tipiche sezioni di posa utilizzate in funzione della diversa natura del terreno esistente lungo il tracciato ipotizzato.

In corrispondenza di attraversamenti critici o di difficile superamento potrà essere prevista la realizzazione di perforazioni teleguidate (directional drilling) di seguito rappresentate.

Le modalità e le profondità di esecuzione di detta perforazione saranno puntualmente definite in fase di progettazione esecutiva, avendo cura di rispettare le eventuali prescrizioni imposte dagli Enti preposti.

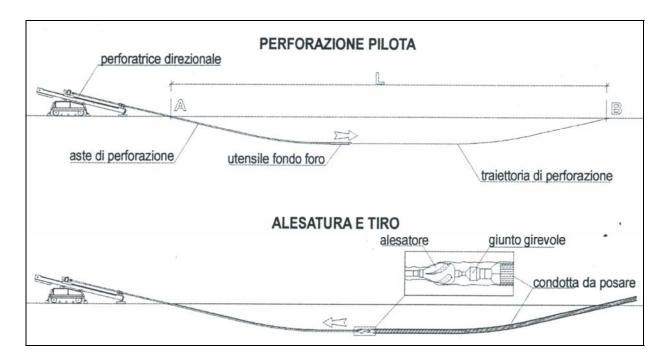
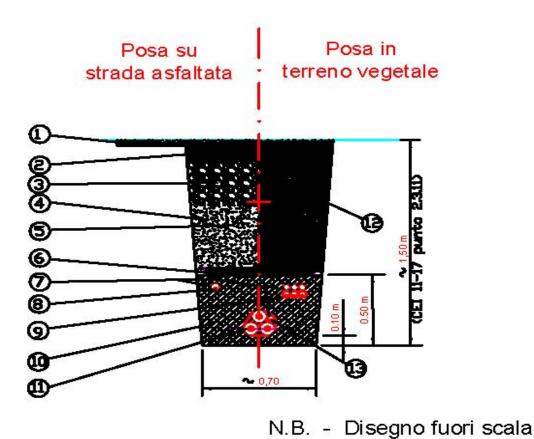


Fig. 2 - Directional drilling


IMPIANTO AGRIVOLTAICO " 19185 - MARTIS" IMPIANTO DI UTENZA PER LA CONNESSIONE

CARATTERISTICHE COMPONENTI ELETTRODOTTO INTERRATO

01.04

Rev. 00
novembre 2023

Pag. **7** di 10

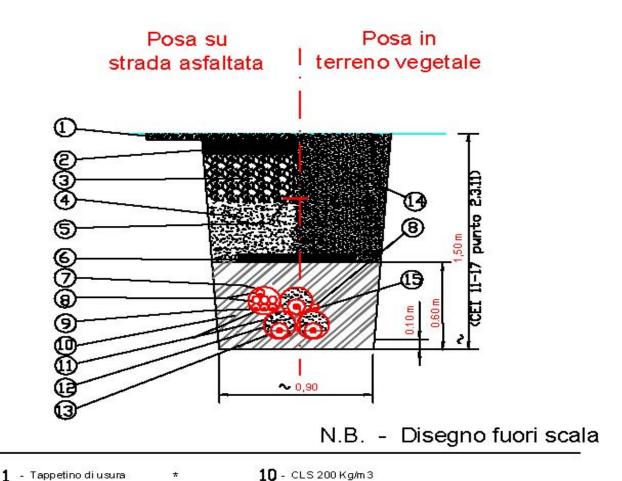
1 - Tappetino di usura * 9 - Cavi di Servizio (f.o.)
2 - Binder di sottofondo * 10 - Cement mortar
3 - Sottofondo in stabilizzato * 11 - Cavi XLPE a 150 kV disposti a trifoglio
4 - Materiale di riempimento * 12 - Terreno vegetale
5 - Nastro di segnalazione in PVC
6 - Lastre in cemento armato
7 - Tritubi e tubi PEHD PN6 d0,05 - Ø 50

Fig. 3 - sezione tipo per posa di cavi a trifoglio

8 - Cavo di terra eventuale

IMPIANTO AGRIVOLTAICO " 19185 - MARTIS"

IMPIANTO DI UTENZA PER LA CONNESSIONE


CARATTERISTICHE COMPONENTI ELETTRODOTTO INTERRATO

Codifica

01.04

Rev. 00
novembre 2023

Pag. 8 di 10

11 - Tubo Ø 200 PE AD

14 - Terreno vegetale

12 - Riempimento con materiale idoneo termicamente

13- Cavi XLPE a 150 kV disposti a trifoglio in Tubiera

15 - Cavo F.O. per DTS controllo temperatura

Fig. 4 - sezione tipo per posa di cavi a trifoglio in tubiera

2 - Binder di sottofondo 3 - Sottofondo in stabilizzato

4 - Materiale di riempimento

7 - Cavo di terra eventuale

9 - Cavi di Servizio (F.O.)

5 - Nastro di segnalazione in PVC6 - Lastre in cemento armato

8 - Tritubi e tubo PEHD PN6 d0,05 - Ø 50

IMPIANTO AGRIVOLTAICO " 19185 - MARTIS" IMPIANTO DI UTENZA PER LA CONNESSIONE

CARATTERISTICHE COMPONENTI ELETTRODOTTO INTERRATO

Codifica 01.04		
Rev. 00 novembre 2023	Pag. 9 di 10	

1.3 CAMERA GIUNTI

L'esecuzione dei giunti dei sistemi in cavo ad alta tensione estrusi non richiede la realizzazione di camere o strutture in cemento armato.

In fig. 5 è indicata una tipica installazione di giunti per cavi a 150 kV, direttamente in trincea realizzato con dimensioni tali da poter agevolmente operare.

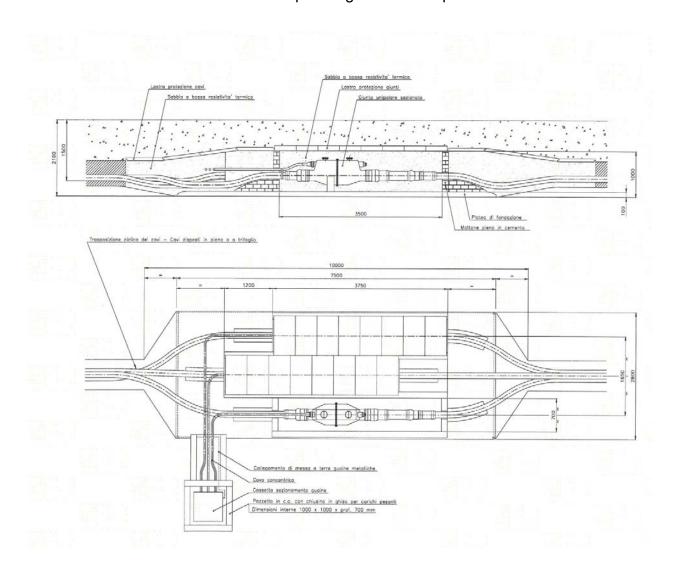


Fig. 5 - Camera giunti

Impianto agrivoltaico " 19185 - MARTIS" Impianto di Utenza per la Connessione

CARATTERISTICHE COMPONENTI ELETTRODOTTO INTERRATO

Codifica 01.04		
Rev. 00 novembre 2023	Pag. 10 di 1(

1.4 TERMINALI CAVI

Di seguito una immagine esemplificativa della tipologia di terminali che saranno utilizzati.

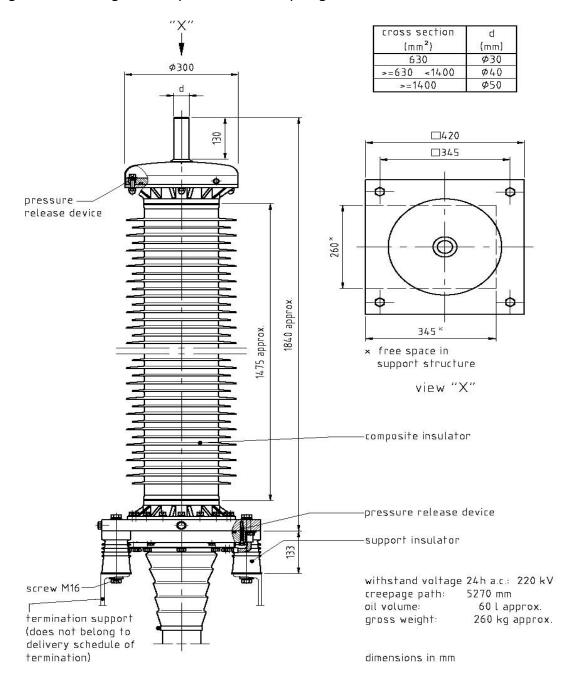


Fig. 6 - Terminali in aria montati su cavo in stazione 150 kV