COMMITTENTE:

File:

n. Elab.:

	RASTRUTTUR				EGICI	HE DEFIN	IITE	
PRO	OGETTO DEFII	OVITIVO						
POT TRA	DO DI MILANO TENZIAMENTO TTA RHO-GALI	DELLA LII LARATE				AZIONE	FSISTE	-NTF
Relaz	zione di calcolo -	Soletta di s	barco p	oiattaform	a eleva	atrice 3 ma	ırciapie	SCALA:
CON	MMESSA LOTTO	FASE ENTE	TIPO D	DOC. OPERA	O 1	PLINA PRO	OGR.	REV. Ordine de
Rev.	Descrizione EMISSIONE ESECUTIVA	Redatto Ingletti	Data Ott. '2010	Verificato Matera	Data Он. '2010	Approvato Barelli	Data	Ordine deglizagegneri della provincia

RELAZIONE DI CALCOLO SOLETTA DI SBARCO PIATTAFORMA ELEVATRICE 3 MARCIAPIEDE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

MDL1 11 D 44 CL FV0100002 A 2/6

INDICE

1 C	DESCRIZIONE DELL'OPERA	3
2 N	NORMATIVA DI RIFERIMENTO	4
3 N	MATERIALI	7
4 T	TRAVE IN C.A ANALISI DEI CARICHI	8
5 C	CALCOLO DELLE SOLLECITAZIONI TRAVE	9
6 C	CALCOLO DELLE SOLLECITAZIONI PILASTRO	9
7 V	/ERIFICHE	10
7.1	VERIFICHE TRAVE	10
7	7.1.1 Verifiche a flessione della trave	10
7	7.1.2 Verifiche a fessurazione della trave	11
7.2	VERIFICHE PILASTRO	12
7	7.2.1 Verifiche a pressoflessione del pilastro	12
7	7.2.2 Verifiche a fessurazione del pilastro	13
7.3	VERIFICHE LUNGHEZZE D'ANCORAGGIO DELLE BARRE D'INGHISAGGIO	14
8 C	CALCOLO INCIDENZA ARMATURA	15

TRATTA RHO-GALLARATE

RELAZIONE DI CALCOLO SOLETTA DI SBARCO PIATTAFORMA ELEVATRICE 3 MARCIAPIEDE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO MDL1 11 D 44 CL FV0100002 A 3/6

1 DESCRIZIONE DELL'OPERA

Nella presente relazione viene studiato l'inserimento di una soletta in c.a. per garantire l'accesso alla III banchina mediante l'utilizzo dell'elevatore posto in corrispondenza del sottopasso promiscuo della stazione di Rho.

L'inserimento della soletta comporta la demolizione della pensilina esistente a copertura delle scale e l'inserimento di due pilastri aventi sezione 30 x 30 cm². La soletta di spessore 20 cm, realizzata in c.a., poggia sul lato strada sui due pilastri di progetto ed è inghisata, sul setto esistente, lato sottopasso. La soletta presenta le seguenti dimensioni 2.60 m x 2.10 m x 0.20 m. Per garantire l'alloggiamento della soletta, in corrispondeza del lato sottopasso è prevista, per una lunghezza di 2.10 m, la demolizione di un tratto di trave della larghezza di 30 cm e di spessore pari a 15 cm, in modo tale da poggiare la nuova soletta e consentire l'inghisaggio delle barre di collegamento della nuova struttura all'esistente (vedi Fig.1).

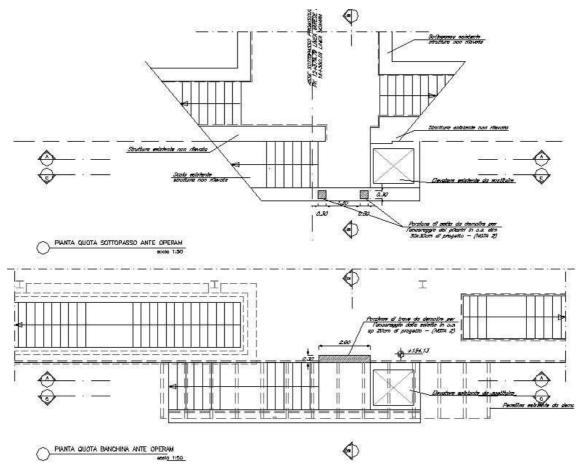


Fig.1 – Pianta delle demolizione

TRATTA RHO-GALLARATE

RELAZIONE DI CALCOLO SOLETTA DI SBARCO PIATTAFORMA ELEVATRICE 3 MARCIAPIEDE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

MDL1 11 D 44 CL FV0100002 A 4/6

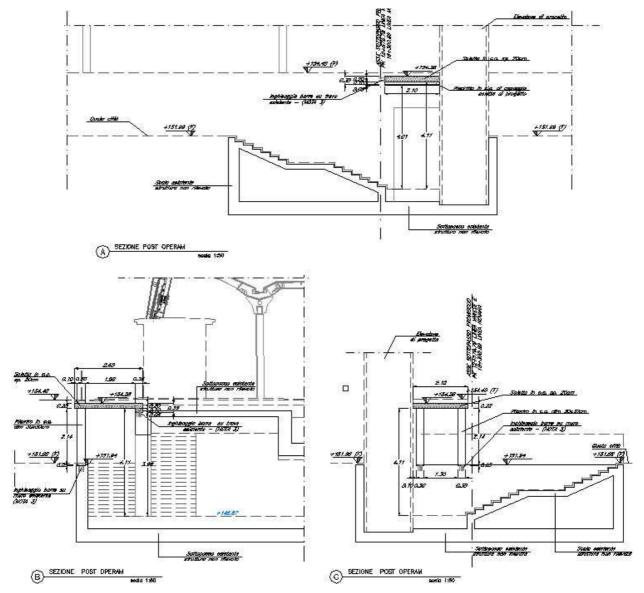


Fig.2 – Sezione trasversale nuova struttura

Così come illustrato nella tavola di Carpenteria relativa all'inserimento della soletta di sbarco piattaforma elevatrice, riportata in parte nelle figure sopra, l'intervento verrà realizzato per fasi:

FASE 1

- la demolizione della pensilina esistente a copertura delle scale lato strada;
- si procede poi con la demolizione di una porzione del setto (30x15 cm²), demolizione necessaria al collegamento della soletta all'esistente;
- la demolizione di una porzione di trave 210x30 cm² sp. 15 cm quota banchina;

TRATTA RHO-GALLARATE

RELAZIONE DI CALCOLO SOLETTA DI SBARCO PIATTAFORMA ELEVATRICE 3 MARCIAPIEDE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

MDL1 11 D 44 CL FV0100002 A 5/6

FASE 2

- la realizzazione dei due pilastri (30 x 30 cm²);
- la realizzazione di una trave in c.a. (30x45 cm² L=210 cm) inghisata al setto esistente;
- la realizzazione della soletta in c.a. di spessore 20 cm.

L'intervento di progetto prevede la realizzazione di due pilastri 30 x 30 cm ad interasse 1.60 m inghisati nel setto esistente lato strada.

La successiva realizzazione di una soletta in c.a. dello spessore di 20cm, anch'essa inghisata alla struttura esistente.

2 NORMATIVA DI RIFERIMENTO

I calcoli sono stati condotti nell'osservanza delle Normative vigenti con particolare riferimento a Leggi, Decreti e Specifiche di seguito riportate:

- L. 05.11.1971, n. 1086 Norme per la disciplina delle opere in conglomerato cementizio armato normale e precompresso ed a struttura metallica.
- D.M. 11.03.1988 Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione.
- Circ. 24.09.1988, n.30483 Istruzioni riguardanti riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione.
- D.M. 09.01.1996 e 14.02.1992 Norme tecniche per il calcolo, l'esecuzione e il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche.
- **D.M. 16.01.1996** Norme tecniche relative ai "Criteri per generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi.

TRATTA RHO-GALLARATE

RELAZIONE DI CALCOLO SOLETTA DI SBARCO PIATTAFORMA ELEVATRICE 3 MARCIAPIEDE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

MDL1 11 D 44 CL FV0100002 A 6/6

- Circ. 04.07.1996, n.156AA.GG./STC. Istruzioni per l'applicazione delle "Norme tecniche relative ai criteri per generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi " di cui al D.M. 16.01.1996.
- Circ. 15.10.1996, n.252AA.GG./STC. Istruzioni per l'applicazione delle "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle opere in cemento armato normale e precompresso e per le strutture metalliche" di cui al decreto ministeriale 09.01.1996.
- CNR-UNI 10011/88 Costruzioni di acciaio. Istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione.
- **D.M.** 16.01.1996 Norme tecniche per le costruzioni in zone sismiche.
- Istruzione FS (ASA Servizi di Ingegneria) n.44 a Criteri generali e prescrizioni tecniche per la progettazione e il collaudo di cavalcavia e passerelle pedonali sovrastanti la sede ferroviaria
- Istruzione FS (ASA Servizi di Ingegneria) n. 44 b Istruzioni tecniche per manufatti da costruire in zona sismica.
- Istruzione FS n.44 I/SC/PS-OM/2298 13.01.97 Sovraccarichi per il calcolo dei ponti ferroviari Istruzione per la progettazione, l'esecuzione e il collaudo.

TRATTA RHO-GALLARATE

RELAZIONE DI CALCOLO SOLETTA DI SBARCO PIATTAFORMA ELEVATRICE 3 MARCIAPIEDE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

MDL1 11 D 44 CL FV0100002 A 7/6

3 MATERIALI

CALCESTRUZZO

Si assumono le seguenti caratteristiche cubiche minime a compressione:

Magrone $R_{ck} = 15 \text{ N/mm}^2$ Fondazione $R_{ck} = 35 \text{ N/mm}^2$

Elevazione $R_{ck} = 35 \text{ N/mm}^2$

In conformità alla normativa vigente e delle citate Istruzioni, i massimi valori unitari di tensione da prendere in conto nelle verifiche con il metodo delle tensioni ammissibili sono:

 $R_{ck} = 35 \text{ N/mm}^2$

Tensione di compressione $\sigma_c = 11.00 \text{ N/mm}^2$

Tensioni tangenziali $\tau_{c0} = 0.67 \text{ N/mm}^2$ $\tau_{c1} = 1,97 \text{ N/mm}^2$

ACCIAIO

per tondi di diametro ≤26 mm FeB 44k per tondi di diametro ≥28 mm FeB 38k

In conformità alla normativa vigente e delle citate Istruzioni, i massimi valori unitari di tensione da prendere in conto nelle verifiche con il metodo delle tensioni ammissibili sono:

Acciaio tipo FeB 44k $\sigma s = 255 \text{ N/mm2}$ Acciaio tipo FeB 38k $\sigma s = 215 \text{ N/mm2}$

In accordo alla Tab. 2.2.2.4 delle istruzioni F.S., la tensione dell'acciaio (per le combinazioni TA1 e TA2), i diametri e le distanze tra le barre di acciaio, per limitare gli effetti della fessurazione, risultano:

 σ s ≤220 N/mm2 diametro ≤20 mm (massimo interasse barre 200mm) σ s ≤190 N/mm2 diametro ≤24 mm (massimo interasse barre 250mm) σ s ≤160 N/mm2 diametro ≤30 mm (massimo interasse barre 300mm)

COPRIFERRO

Soletta: 4 cm Struttura controterra: 4 cm

TRATTA RHO-GALLARATE

RELAZIONE DI CALCOLO SOLETTA DI SBARCO PIATTAFORMA ELEVATRICE 3 MARCIAPIEDE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

MDL1 11 D 44 CL FV0100002 A 8/6

4 TRAVE IN C.A. - ANALISI DEI CARICHI

Azioni permanenti

Le azioni permanenti sono quelle relativi ai pesi propri degli elementi strutturali e permanenti portati valutati sulla base delle loro caratteristiche geometriche e dei pesi specifici previsti nella normativa vigente.

In particolare si ha:

Peso proprio della soletta 0.20 x 1.30 x 25 = 6.50 kN/m;

Pavimentazione e malta di allettamento = 2 kN/m

Azioni variabili

Carico accidentale10 kN/mq X1.30 = 13 kN/m

TRATTA RHO-GALLARATE

RELAZIONE DI CALCOLO SOLETTA DI SBARCO PIATTAFORMA ELEVATRICE 3 MARCIAPIEDE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

MDL1 11 D 44 CL FV0100002 A 9/6

5 CALCOLO DELLE SOLLECITAZIONI TRAVE

Di seguito si riporta il calcolo delle sollecitazioni relative alla trave di bordo 30x20 che poggia sui piedritti.

In via del tutto conservativa, si scelgono due schemi di calcolo.

Si adotta lo schema di calcolo di trave appoggiata-appoggiata di luce 1.60 m al fine di definire le sollecitazioni massime in termini di momento flettente sulla trave.

Si riporta i valori del momento e del taglio in corrispondenza rispettivamente della mezzeria e dell'appoggio:

Il momento massimo è pari a :

 M_{max} = P I²/8 = 21.50 x (1.60)²/8 = 6.90 kNm

Il taglio massimo è pari a :

 $T_{maxapp} = PI/2 = 21.50 \text{ x } 1.60 /2 = 17.2 \text{ kN}$

6 CALCOLO DELLE SOLLECITAZIONI PILASTRO

Per il pilastro, per l'equilibrio del nodo quando si considera uno schema incastro/incastro per la trave, si considera conservativamente un momento pari a quello trasferito dalla trave considerata perfettamente incastrata. Il taglio sulla trave risulta nel pilastro come sforzo normale.

Per la trave, il momento massimo è pari a :

 $M_{\text{maxinc}} = P I^2/12 = 21.50 \text{ x } (1.60)^2/12 = 4.60 \text{ kNm}$

Il taglio massimo in caso di schema ad incastro è pari a $T_{maxinc} = T_{maxapp}$. = 17.2 kN.

TRATTA RHO-GALLARATE

RELAZIONE DI CALCOLO SOLETTA DI SBARCO PIATTAFORMA ELEVATRICE 3 MARCIAPIEDE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

MDL1 11 D 44 CL FV0100002 A 10/6

7 VERIFICHE

7.1 Verifiche trave

Si riportano di seguito le verifiche di resistenza per la trave e per il pilastro.

7.1.1 Verifiche a flessione della trave

Sollecitazioni							
Momento flettente	М	6.9	kN m				
Sforzo normale	N	0	kN				
Materiali							
Res. caratteristica cls	R_{ck}	35	N/mm²				
Tensione ammissibile cls	σc _{amm}	11.0	N/mm²				
Tensione ammissibile acciaio	σs _{amm}	260	N/mm²				
Coefficiente omog. acciaio-cls	n	15					
Caratteristiche geometriche							
Altezza sezione	Н	20	cm				
Larghezza sezione	В	30	cm				
Armatura compressa (1º strato)	As ₁ '	3.08	cm²		2 Ø 14	c _{s1} = 5	cm
Armatura compressa (2º strato)	As ₂ '	0.00	cm²		Ø	c _{s2} =	cm
Armatura tesa (2º strato)	As ₂	0.00	cm²		Ø	c _{i2} =	cm
Armatura tesa (1º strato)	As ₁	3.08	cm²		2 Ø 14	c _{i1} = 5	cm
Tensioni nei materiali							
Compressione max nel cls.	σε	6.3	N/mm²	<	OC _{amm}	7	
Trazione nell'acciaio (1º strato)	σs	171.1	N/mm²	<	σa _{amm}		
<u> </u>						_	
Eccentricità	е	∞	cm	>	H/6 Sez. p	arzializzata	
	u		cm				
Posizione asse neutro	У	5.4	cm				ı
Area ideale (sez. int. reagente)	A_{id}	686	cm²				
Mom. di inerzia ideale (sez. int. reag.)	J_{id}	22309.1	cm ⁴				
Mom. di inerzia ideale (sez. parz. N=0)	J _{id*}	5837.49	cm ⁴				
Verifica a taglio							
Taglio	Т	17	kN				
Tensione tangenziale	T	0.42	N/mm²				
	τς,0	0.67	N/mm²				

Si predispongono comunque una armatura minima a taglio costituita da staffe Ø 10 /20 cm.

TRATTA RHO-GALLARATE

RELAZIONE DI CALCOLO SOLETTA DI SBARCO PIATTAFORMA ELEVATRICE 3 MARCIAPIEDE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

MDL1 11 D 44 CL FV0100002 A 11/6

7.1.2 Verifiche a fessurazione della trave

Sollecitazioni Momento flettente	М	6.9	kN m			
Sforzo normale	N N	6.9 0	kN m kN			
STOLED FIGURE	1.9	U	I/I N			
Materiali						
Res. caratteristica cls	R_{ck}	35	N/mm²			
Tensione ammissibile cls	OC _{amm}	11.0	N/mm²			
Res. media a trazione cls	f_{ctm}	2.9	N/mm²			
Res, caratteristica a trazione cls	f_{ctk}	2.0	N/mm²			
Tensione ammissibile acciaio	σs _{amm}	260	N/mm²			
Coefficiente omog. acciaio-cls	n	15				
Caratteristiche geometriche						
Altezza sezione	Н	20	cm			
Larghezza sezione	В	30	cm			
Armatura compressa (1º strato)	As ₁ '	3.08	cm²	2 Ø 1 4	c _{s1} = 5	cm
Armatura compressa (2º strato)	As ₂ ¹	0.00	cm²	Ø	c _{s2} =	cm
Armatura tesa (2º strato)	As ₂	0.00	cm²	Ø	c _{i2} =	cm
Armatura tesa (1º strato)	As ₁	3.08	cm²	2 Ø 1 4	c _{i1} = 5	cm
Tourisui uni materiali						
Tensioni nei materiali Compressione max nel cls.	σε	6.3	N/mm²	< oc _{amm}		
Trazione nell'acciaio (1º strato)	os os	171.1	N/mm²	< oaamm		
Trazione herracciaio (1 30 ato)		1,1,1	14/111111	< ○amm		
Eccentricità	e (M)	œ	cm	> H/6 Sez. pa	rzializzata	
	u (M)	œ	cm			
Posizione asse neutro	y (M)	5.4	cm			
Area ideale (sez. int. reagente)	A_{id}	686	cm²			
Mom. di inerzia ideale (sez. int. reaq.)	J_{id}	22309.1	cm ⁴			
Mom. di inerzia ideale (sez. parz. N=0)	J _{id*}	5837.49	cm ⁴			
Verifica a fessurazione Momento di fessurazione (f _{ctk})	M _{fess} *	5	kN m	La sezione è fessu	wata	1
,,				La sezione e lessi	ırata	
Momento di fessurazione (f _{ctm})	M _{fess}	6	kN m			
Eccentricità per M=M _{fess}	e (M _{fess})	00	cm			
	u (M _{fess})		cm			
Compressione max nel cls. per M=M _{fess}	ocr	5.9				
Traz. nell'acciaio (1º str.) per M=M _{fess}	osr	159.8	N/mm²			
Posizione asse neutro per M=M _{fess}	y (M _{fess})	5.4	cm			
	β_1	1				
	β_2	0.5				
Deform, unitaria media dell'arm.	Esm	0.00046				
Copriferro netto	c'	4.3 (m			
Altezza efficace	d _{eff}	14.8				
Area efficace	Aceff	444	cm²			
Armatura nell'area efficace	Aseff	3.1	cm²			
	ρr	0.00693				
Distanza tra le barre	s	15.0	cm			
	K ₂	0.4				
	K ₃	0.125				
Distanza media tra le fessure	S _{rm}	21.7	cm			
Valore medio dell'ap. delle fessure	wm	0.10	mm			
Valore caratter, dell'ap, delle fessure	wk	0.17	mm			1

RELAZIONE DI CALCOLO SOLETTA DI SBARCO PIATTAFORMA ELEVATRICE 3 MARCIAPIEDE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
MDL1 11 D 44 CL FV0100002 A 12/6

7.2 Verifiche pilastro

7.2.1 Verifiche a pressoflessione del pilastro

Sollecitazioni							
Momento flettente	М	4.6	kN m				
Sforzo normale	N	17.2	kN				
Materiali							
Res. caratterística cls	R _{ck}	35	N/mm²				
Tensione ammissibile cls	σc _{amm}	11.0	N/mm²				
Tensione ammissibile acciaio	ØS _{amm}	260	N/mm²				
Coefficiente omog. acciaio-cls	n	15					
Caratteristiche geometriche							
Altezza sezione	Н	20	cm				
Larghezza sezione	В	30	cm			_	
Armatura compressa (1º strato)	As ₁ '	3.08	cm²		2 Ø 14	$c_{s1} = 5$	cm
Armatura compressa (2º strato)	As ₂ '	0.00	cm²		Ø	$c_{s2} =$	cm
Armatura tesa (2º strato)	As ₂	0.00	cm²		Ø	c _{i2} =	cm
Armatura tesa (1º strato)	As ₁	3.08	cm²		2 Ø 14	c _{i1} = 5	cm
Tensioni nei materiali							
Compressione max nel cls.	σε	4.1	N/mm²	<	σc _{amm}]	
Trazione nell'acciaio (1º strato)	σs	84.7	N/mm²	<	σa _{amm}		
Eccentricità	е	26.7	cm	>	H/6 Sez. pa	erzializzata	
Eccord icita	u	16.7	cm		1 1/10 002. pt	ai 2101122000	
Posizione asse neutro	у	6.3	cm				
Area ideale (sez. int. reagente)	Aid	686	cm²				
Mom. di inerzia ideale (sez. int. reaq.)	J _{id}	22309.1	cm ⁴				
Mom. di inerzia ideale (sez. parz. N=0)	J _{id} *	6093.04	cm ⁴				
, , ,							
Verifica a taglio							
Taglio	Т	0	kN				
Tensione tangenziale	T	0.00	N/mm²				
	тс,О	0.67	N/mm²				

Si predispongono comunque una armatura minima a taglio costituita da staffe Ø 10 /20 cm.

TRATTA RHO-GALLARATE

RELAZIONE DI CALCOLO SOLETTA DI SBARCO PIATTAFORMA ELEVATRICE 3 MARCIAPIEDE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

MDL1 11 D 44 CL FV0100002 A 13/6

7.2.2 Verifiche a fessurazione del pilastro

Sollecitazioni								
Momento flettente	М	4.6	kN m]				
Sforzo normale	N	0	kN					
Materiali								
Res, caratteristica cls	R _{ck}	35	N/mm²]				
Tensione ammissibile cls	OC _{amm}	11.0	N/mm²					
Res. media a trazione cls	f _{ctm}	2.9	N/mm²					
Res, caratteristica a trazione cls	f _{ctk}	2.0	N/mm²					
Tensione ammissibile acciaio	OS _{amm}	260	N/mm²					
Coefficiente omog, acciaio-cls	n ooamm	15	14,11111					
<u>-</u>				•				
Caratteristiche geometriche Altezza sezione	11	20						
Larghezza sezione	H B	20 30	cm cm					
Armatura compressa (1º strato)	As ₁ '	3.08	cm ²		2	Ø 14	c _{s1} = 5	cm
Armatura compressa (1° strato)	As ₂ '	0.00	cm ²			Ø	$C_{S2} = $	cm
Armatura tesa (2º strato)	As ₂	0.00	cm ²			Ø	C _{i2} =	cm
Armatura tesa (2 strato)	As ₁	3.08	cm ²		2	Ø 14	•	cm
Armatira tesa (1 suato)	A01	3.00	CIII-			D 14	41 - 3	CIII
Tensioni nei materiali							7	
Compressione max nel cls.	σε	4.2	N/mm²	<	σc _{ar}	nm		
Trazione nell'acciaio (1º strato)	σs	114.1	N/mm²	<	σa _{ar}	mm		
Eccentricità	e (M)	00	cm	>	H/6	Sez n	arzializzata	
Eccella Icida	u (M)	∞	cm	_	1,00	002. p	ai zializzaa	
Posizione asse neutro	y (M)	5.4	cm					1
Area ideale (sez. int. reagente)	Aid	686	cm²					'
Mom. di inerzia ideale (sez. int. reaq.)	J _{id}	22309.1	cm ⁴					
Mom. di inerzia ideale (sez. parz. N=0)	J _{id} *	5837.49	cm ⁴					
	-10							
Verifica a fessurazione								7
Momento di fessurazione (f _{ctk})	M_{fess}^*	5	kN m	Las	ezion	e è fes	surata	
Momento di fessurazione (f _{ctm})	M _{fess}	6	kN m					
Eccentricità per M=M _{fess}	e (M _{fess})	∞	cm					
	u (M _{fess})	∞	cm					
Compressione max nel cls. per M=M _{fess}	σcr	5.9						
Traz. nell'acciaio (1º str.) per M=M _{fess}	osr	159.8	N/mm²					Ι.
Posizione asse neutro per M=M _{fess}	y (M _{fess})	5.4	cm					
	β_1	1						
	β2	0.5						
 Deform. unitaria media dell'arm.	ESM ESM	0.00022						
Copriferro netto	c'	4.3 (m					
Altezza efficace	d_{eff}	14.8 (
Area efficace	Aceff	444	cm²					
Armatura nell'area efficace	Aseff	3.1	cm²					
	ρr	0.00693						
Distanza tra le barre	S	15.0	cm					
	K ₂	0.4						
	К3	0.125						
Distanza media tra le fessure	S _{rm}	21.7	cm					
Valore medio dell'ap. delle fessure	wm	0.05	mm					
Valore caratter, dell'ap, delle fessure	wk	0.08	mm	ı				1

TRATTA RHO-GALLARATE

RELAZIONE DI CALCOLO SOLETTA DI SBARCO PIATTAFORMA ELEVATRICE 3 MARCIAPIEDE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

MDL1 11 D 44 CL FV0100002 A 14/6

7.3 Verifiche lunghezze d'ancoraggio delle barre d'inghisaggio

Si riportano di seguito le verifiche della lunghezza di ancoraggio delle barre di spiccato del pilastro seguendo le prescrizioni contenute nel D.M.LL.PP del 9 gennaio 1996 e nella relativa circolare del 15 Ottobre 1996, n. 252 – paragrafo 5.3.3.

Le barre d'inghisaggio saranno prolungate oltre la sezione nella quale sono soggette alla massima tensione in misura sufficiente in modo tale da garantire l'acoraggio nell'ipotesi di ripartizione uniforme delle tensioni tangenziali di aderenza.

Le tensioni tangenziali di aderenza sono pari a :

$$\tau_b = 3 \tau_{c0} = 3*0.67 = 2.01 \text{ N/mm}^2$$

L'ancoraggio (in ogni caso pari a 20 diametri) non deve essere minore di 20 cm.

La lunghezza d'ancoraggio è definita dalla condizione di equilibrio delle forze nella direzione della barra:

$$L_{ancoraggio} = (\sigma_s * \varnothing)/(4 * \tau_b) = 260 * 14/(4 * 2.01)$$

Tenendo conto delle sollecitazioni effettive nell'acciao del pilastro (trazione max pari a 84.7 N/mm²), si definisce il valore seguente dell'ancoraggio :

$$L_{ancoraggio} = (\sigma_s * \emptyset)/(4 * \tau_b) = 84.7 * 14/(4 * 2.01) = 147 \text{ mm} < \text{al valore minimo}.$$

Si sceglie quindi una lunghezza pari al minimo prescritto dalla normativa ovvero:

Lancoraggio pari a 20 diametri e quindi un valore di 280 mm.

TRATTA RHO-GALLARATE

RELAZIONE DI CALCOLO SOLETTA DI SBARCO PIATTAFORMA ELEVATRICE 3 MARCIAPIEDE

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO MDL1 11 D 44 CL FV0100002 A 15/6

8 CALCOLO INCIDENZA ARMATURA

Le incidenze sono come segue: Armatura longitudinale Trave – 95 kg/m³ Pilastro - 70 kg /m³

Armatura trasversale

Trave - 60 kg/m³

Pilastro - 35 kg /m³