COMMITTENTE:

PROGETTAZIONE:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

DIREZIONE TECNICA - CENTRO DI PRODUZIONE DI MILANO PROGETTO DEFINITIVO PER APPALTO INTEGRATO

POTENZIAMENTO DELLA LINEA RHO-ARONA. TRATTA RHO-GALLARATE PRG DI RHO

Idrologia e Idraulica

Relazione idraulica

									SCALA:
COMM	ESSA LOTTO) FASE EN	ITE TI	PO DOC.	OPERA/D	ISCIPLINA	PROGR.	REV.	
MDL	1 11	D 2	6 R	1	ID00	00	001	В	
Revis.	Descrizi	one	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato / Dat
Α	Emissione E	Esecutiva	C. Di Serio	22/07/2010			S. Borelli		S. D.
В	Rev. tracciato sing	olo binario Nord	G.Grimaldi	24/11/2011	Klee	30/11/14	S.Borelli		Dreffen Ort. As Arts
									200

File: CARTIGLI

n. Elab.:

Preduzione Tenica Preduzione Centro Nord Dott, Ing. Roberto Borghi

POTENZIAMENTO DELLA LINEA RHO-ARONA PROGETTO DEFINITIVO - TRATTA RHO-GALLARATE

RELAZIONE IDRAULICA

COMMESSA MDL1 LOTTO 11

CODIFICA D 26 RI DOCUMENTO ID 00 00 001 REV. B FOGLIO 2 di 45

INDICE

1	PREMESSA	. 3
2	DESCRIZIONE DEL SISTEMA DI DRENAGGIO.	. 4
3	IDROLOGIA	. 6
4	DIMENSIONAMENTO DELLA RETE DI RACCOLTA E DI COLLETTAMENTO	. 7
5	FOSSI DI GUARDIA NON RIVESTITI	14
6	MATERIALI IMPIEGATI	15

1 PREMESSA

Nella presente relazione si descrivono le metodologie adoperate nonché i risultati conseguiti, per il dimensionamento dei manufatti di raccolta ed allontanamento delle acque zenitali pertinenti alla piattaforma della linea ferroviaria Rho-Gallarate (tratta relativa al PRG di Rho).

Il sistema di drenaggio delle acque zenitali pertinenti alla piattaforma ferroviaria prevede la raccolta a mezzo di canalette rettangolari. Le acque intercettate dalla rete sono previste essere recapitate, laddove presenti, in fossi non rivestiti a sezione trapezia con sponde inclinate a 45 gradi, in alcuni casi provvisti di un cassonetto riempito con materiale drenante, al fine di incrementare la superficie disperdente ed il volume invasato. Nei tratti in cui non sono presenti tali manufatti si prevede l'immissione nell'idrografia (rogge, canali scolmatori, scoline di campo, etc).

Il periodo di ritorno assunto per i dimensionamenti dei manufatti in oggetto è pari a cento anni. Il metodo adottato per il dimensionamento dei sistemi di raccolta e collettamento si basa sulla formula razionale, assumendo valide le condizioni di moto uniforme. Per la verifica dei fossi disperdenti si è considerato un approccio variazionale basato metodo della corrivazione.

GRUPPO FERROVIE DELLO STATO				A RHO-ARONA T TA RHO-GALL		
RELAZIONE IDRAULICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	MDL1	11	D 26 RI	ID 00 00 001	В	4 di 45

2 DESCRIZIONE DEL SISTEMA DI DRENAGGIO.

La tipologia costruttiva prevista per la rete di drenaggio a servizio del tratto ferroviario in oggetto prevede generalmente una o due canalette rettangolari in cls, di dimensioni $B \times H = 0.5 \times 0.8$ m. Per alcuni tratti il valore dell'altezza della canaletta è stata opportunamente incrementato sino ad un massimo di 1.4 m. E' previsto che tali canalette scarichino nei fossi drenanti posti esternamente a protezione della sede ferroviaria, oppure nel reticolo idrografico superficiale.

Rimandando alla planimetria idraulica i dettagli, in quanto segue si descrive sinteticamente il sistema di drenaggio. Tra le pk 0+405 e 0+223 sul lato destro si prevedono due canalette CDE23-CDE3 e CDI4-CDI1. Dal nodo idraulico CDE3 la portata defluente in entrambe viene convogliata dalla canaletta CDE3-CDE1 al fosso disperdente FD3 (tipo 7, L=120 m, dotato di cassonetto drenante BxH = 0.75x1.25) sottoposto al fosso per tutta la sua lunghezza). Parimenti, sull'altro lato della linea, la canaletta CSE1-CSE3 (a partire dalla pk. 0+351) recapita la portata in essa defluente nell'idrografia superficiale, in prossimità della pk 0+180. Nel medesimo corpo idrico trovano destino anche le acque raccolte dal fosso di guardia rivestito FS1-FS10. Trattasi di un fosso di sezione trapezia di base 0.5 m e altezza 0.5 m con sponde inclinate di 45 gradi (tipo 5). Negli ultimi 300 m (tratto FS7-FS10) la base è stata incrementata a 0.75 m (tipo 6).

Tra le progressive 0+430 e 0+622 si localizza il fosso disperdente FD2 (tipo 2, L=185 m, dotato di cassonetto drenante B x H= 0.5 m x0.5 m) sottoposto al fosso per tutta la sua lunghezza). Sempre sul medesimo lato della linea ferroviaria tra le pk 0+620 c.a. e 0+986 il sistema di drenaggio prevede due canalette CDE5-CDE24 e CDI15-CDI10, che recapitano la portata in esse defluenti nel fosso disperdente T1 (tipo 4, fosso trapezio con sponde inclinate a 45°, base minore b=1.5 m, altezza 2.0 m e lunghezza L=130 m, con sottoposto cassonetto drenante B x H = 1.5 m x 0.75 m). Nel medesimo manufatto trovano destino anche le acque collettate dalla canaletta CDE10-CDE24 (pk. 1+091-0.990 ca), nonché dalle due canalette CDE16-CDE17 e CDI11-CDI17, che si sviluppano tra le pk. 1+510 e 1+171. Sempre nel fosso T1 trovano recapito le acque raccolte dal fosso di guardia rivestito FC1-FC6 (fosso tipo 5 tra i nodi FC1 e FC5 e tipo 6 nei restanti 100 metri (FC5-FC6)) nonché dalla canaletta CDI18-CDI20 che si sviluppa a partire dalla pk 1+043 sino alla pk 1+170.

Dall'altro lato della linea ferroviaria tra le pk. 1+510 e 0+667 si sviluppa la canaletta CSI15-CSI13, che recapita le acque ad essa pertinenti nel fosso disperdente T2 (fosso trapezio con sponde inclinate a 45°, base minore b=1.5 m, altezza 2.0 m e lunghezza L=130 m, fosso tipo 4, con sottoposto cassonetto drenante BxH= 1.5 m x 0.75 m). Nel medesimo fosso sono recapitate le acque raccolte dalle canalette CSE9-CSE8 (pk. 1+128-0+667), CSI1-CSI13 (pk. 0+429-0+667) e CSE4-CSE8 (pk. 0+357-0+667). Sul medesimo lato della linea si localizzano i fossi disperdenti tipo 2 FD1 (L=367 m), FD10 (L=150 m), FD8 (L=50 m), FD5 (L=90 m), FD11 (L=175 m), tutti dotati di cassonetto drenante (BxH= 0.5 m x 0.5 m) sottoposto al fosso per tutta la sua lunghezza, unitamente ai fossi tipo 3 FD9 (L=50 m) FD4 (L=145 m) le cui dimensioni del cassonetto sono di contro (BxH= 0.75 m x 0.75 m). In particolare, nei fossi FD10, FD9, FD8 e FD4 pervengono le acque defluenti nelle canalette CSE20-CSE22 e CSI14-CSI15 (FD10), CSE27-CSE21 (FD9), CSE26-CSE28 (FD8), CSE25-CSE18 (FD4). Le acque pertinenti alla piattaforma ferroviaria compresa tra le pk. 1+820 e 1+531, sempre sul medesimo lato, trovano recapito nel fosso drenante FD11 (L=175 m, tipo 2). In prossimità del termine dell'intervento si localizza infine la canaletta CSE35-CSE38 che recapita la portata in essa defluente nel fosso disperdente FD6 (L=73 m, tipo 7).

Sull'altro lato della linea si individuano la canaletta su rilevato CDE18-CDE19-CDE20, che raccoglie l'acqua di piattaforma fra le progressive pk km.-0+318.66 e km.-0+118.66, recapitandola alla canaletta posta ai piedi del muro di sostegno CDE21-CDE22 che recapita a sua volta nel fosso disperdente FD12 (L=60 m, tipo 7). Oltre

STALFERR GRUPPO FERROVIE DELLO STATO				A RHO-ARONA IT A RHO-GALL		
RELAZIONE IDRAULICA	COMMESSA MDL1	LOTTO	CODIFICA D 26 RI	DOCUMENTO	REV.	FOGLIO 5 di 45

l'Oona si prevede il fosso disperdente FD7 (L=435 m, tipo 3). Entrambi i fossi sono dotati di cassonetti drenanti sottoposti ai fossi per tutta la lunghezza di dimensioni, rispettivamente BxH=0.75 m x 1.25 m e BxH=0.75 m x 0.75 m rispettivamente.

WDF1 11	ļ.	l l	D 56 RI	100 00 00 01	8	64 ib 9
COMMESSA LOTTO	OJ AS	OTTO	CODIFICA	DOCUMENTO	.V3A	FOGLIO
POTENZIAMENTO PROGETTO DEFIN						REAL SETS OF THE SET SET SET SET SET SET SET SET SET SE

B IDROLOGIA

La curva di possibilità pluviometrica adottata per il dimensionamento dei manufatti destinati alla raccolta ed allontanamento delle acque di piattaforma fa riferimento ad un periodo di ritorno pari a 100 anni. Rimandando alla relazione idrologica i necessari approfondimenti, in tale sede si riporta unicamente la legge di pioggia adottata espressa in forma monomia valida per eventi di durata inferiori all'ora:

$$h_T = a_T d^n$$

con h espresso in mm e d in ore. Nella tabella che segue si riportano i valori dei coefficienti della legge di possibilità pluviometrica per differenti periodi di ritorno.

Tadella I Parametri della legge di possibilità pluviometrica

007	001	05	52	07	(inna) T
9£.28	₹9°6L	73.57	£4.78	25.29	(mm/h ⁿ)
22.0	22.0	22.0	22.0	22.0	(-) u

Nella figura che segue si riporta in forma grafica la legge di possibilità pluviometrica per i periodi di ritorno di interesse.

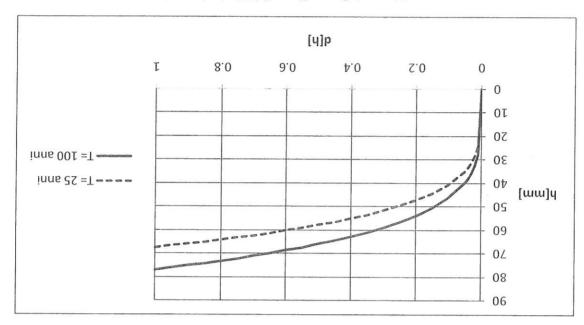


Figura 1 Curve di possibilità pluviometrica

GRUPPO FERROVIE DELLO STATO				A RHO-ARONA FT A RHO-GALL	ARATE	RECONCILISE PROPERTY OF A PARKET
RELAZIONE IDRAULICA	COMMESSA MDL1	LOTTO 11	CODIFICA D 26 RI	DOCUMENTO ID 00 00 001	REV.	FOGLIO 7 di 45

4 DIMENSIONAMENTO DELLA RETE DI RACCOLTA E DI COLLETTAMENTO

Per il dimensionamento dei manufatti deputati alla raccolta ed il convogliamento delle acque zenitali pertinenti alla piattaforma ferroviaria si è fatto riferimento al metodo della corrivazione. Come è ben noto, secondo tale metodo il massimo valore di portata Q_T che, per un assegnato valore del periodo di ritorno T, perviene alla sezione di chiusura di un bacino è espresso da:

$$Q_{T} = j_{T}(t_{c}) \phi A$$
 (2)

in cui si è indicato con ϕ il coefficiente di afflusso, assunto pari a 0.9 per la piattaforma ferroviaria di nuova realizzazione, 0.7 per la scarpata, e pari a 0.5 per quella esistente (in considerazione delle peggiori condizioni del ballast), con A la superficie colante, infine con $j_T(t_c)$ il valore dell'intensità di pioggia (j) di durata pari al tempo di corrivazione t_c e corrispondente al periodo di ritorno T. Il dimensionamento dei manufatti di raccolta e collettamento è stato condotto con riferimento ad un periodo di ritorno pari a T=100 anni, e pertanto i parametri della legge di possibilità pluviometrica sono:

$$a=79.64 \text{ mm/h}^n$$
 $n=0.22$ (3)

Il tempo di corrivazione è stato stimato facendo riferimento all'espressione suggerita dal Civil Engineering Department dell'Università di Maryland (1971) (Da Deppo e Datei, Le opere Idrauliche nelle costruzioni stradali, Bios, 1994):

$$t_c = 26.3 \frac{\left(\frac{L}{K_s}\right)^{0.6}}{j^{0.4} S^{0.3}} \quad \text{con} \qquad j = \frac{a}{1000} \left(\frac{t_c}{3600}\right)^{n-1}$$
 (4)

in cui si è indicato con:

t_c tempo di corrivazione (s);

L lunghezza della superficie scolante (m);

Ks coefficiente di Gauckler-Strickler, assunto pari a 66 m^{1/3}/s;

- j intensità di pioggia (m/h);
- a, n parametri della legge di pioggia;

S pendenza media della superficie colante (assunta pari a 0.03).

Nella stima del tempo di corrivazione si è tuttavia imposto che il suo valore sia non inferiore a 5 minuti, ipotesi giustificabile tenendo conto del tempo che le particelle idriche impiegano per l'ingresso nella rete di drenaggio. L'ubicazione planimetrica degli scarichi è stata condotta assicurando un grado di riempimento nei manufatti, in

GRUPPO FERROVIE DELLO STATO				A RHO-ARONA T TA RHO-GALL		
RELAZIONE IDRAULICA	COMMESSA MDL1	LOTTO 11	CODIFICA D 26 RI	DOCUMENTO ID 00 00 001	REV.	FOGLIO 8 di 45

condizioni di moto uniforme, inferiore a 0.7. Le verifiche idrauliche sono state condotte applicando la formula di Gauckler-Stricker:

$$Q = Ks \sigma R^{2/3} i^{1/2}$$
 (5)

in cui si è indicato con

Q la portata (m³/s)

i la pendenza della canaletta (m/m);

 σ la sezione idrica (m²);

Ks coefficiente di Gauckler-Strickler, assunto pari a 66 m^{1/3}/s;

R il raggio idraulico pari al rapporto tra sezione idrica e perimetro bagnato (m),

Nella figura che segue si riportano la scala di deflusso specifica relativa alla canaletta rettangolare di base 0.5 m.

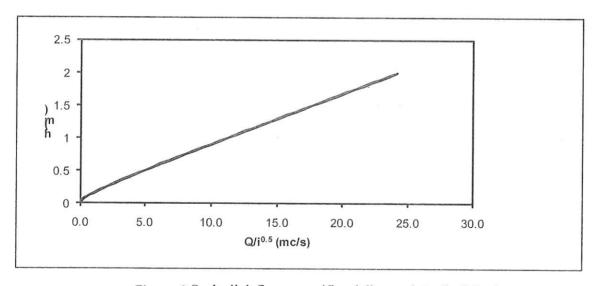


Figura 2 Scala di deflusso specifica della canaletta (b=0.5 m)

Rimandando alla planimetria idraulica l'identificazione dei nodi idraulici, nelle tabelle che seguono si riportano i risultati delle elaborazioni.

Tabella 2 Verifica delle canalette (T=100 anni)

POTENZIAMENTO DELLA LINEA RHO-ARONA PROGETTO DEFINITIVO - TRATTA RHO-GALLARATE

	RELAZIONE IDRAUL	ICA			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
			Table and the same of the same		MDL1	-11	D 26 RI	ID 00 00 001	В	9 di 45
Г						4)				
ı					1 1					4

Nome	Pendenza	L (m)	Lunghezze progressive (m)	Aree ridotte progetto (m²) 1	Aree ridotte esistente (m ²) ¹	Aree ridotte totale (m²)	Aree ridotte progressive (m²)	t _c (h)	B(m)	H(m)	Q (1/s)	h/H
CSE1-CSE2	1.00%	72	72	637	215	852	852	0.08	0.5	0.8	126	0.22
CSE2-CSE3	1.00%	88	160	630	139	769	1621	0.08	0.5	0.8	241	0.35
CSE4-CSE5	0.20%	23	23	230	62	292	292	0.08	0.5	0.8	43	0.18
CSE5-CSE6	0.20%	100	123	834	123	957	1249	0.08	0.5	0.8	185	0.54
CSE6-CSE7	0.20%	100	223	630	0	630	1879	0.08	0.5	0.9	279	0.67
CSE7-CSE8	0.20%	80	303	510	0	510	2388	0.08	0.5	1.1	355	0.67
CSE9-CSE10	1.10%	38	38	432	0	432	432	0.08	0.5	0.8	64	0.13
CSE10-CSE11	1.10%	100	138	1029	0	1029	1461	0.08	0.5	0.8	217	0.31
CSE11-CSE12	1.10%	100	238	677	111	788	2249	0.08	0.5	0.8	334	0.44
CSE12-CSE13	1.10%	100	338	546	111	657	2906	0.08	0.5	0.8	431	0.53
CSE13-CSE14	1.04%	100	438	672	0	672	3578	0.08	0.5	0.8	528	0.64
CSE14-CSE8	1.04%	14	452	93	0	93	3671	0.09	0.5	0.8	531	0.65
CSE25-CSE19	0.05%	50	50	324	279	604	604	0.08	0.5	0.8	90	0.52
CSE19-CSE18	0.05%	32	82	208	222	430	1034	0.08	0.5	0.9	153	0.72
CSE26-CSE20	0.05%	50	50	328	216	543	543	0.08	0.5	0.8	81	0.48
CSE20-CSE28	0.05%	25	75	165	137	302	845	0.08	0.5	0.8	126	0.69
CSE27-CSE21	0.06%	75	75	497	500	998	998	0.08	0.5	0.8	148	0.72
CSE20-CSE22	0.04%	100	100	545	334	879	879	0.08	0.5	0.9	130	0.69
CSE30-CSE23	0.05%	100	100	424	0	424	424	0.08	0.5	0.8	63	0.40
CSE23-CSE24	0.05%	6	106	25	0	25	449	0.08	0.5	0.8	67	0.41
CSE24-CSE17	0.09%	65	171	259	91	351	1688	0.08	0.5	1.1	251	0.69
CSE15-CSE16	0.10%	78	78	295	218	513	513	0.08	0.5	0.8	76	0.35
CSE16-CSE17	0.10%	26	104	99	73	172	685	0.08	0.5	0.8	102	0.44
CSE35-CSE36	0.55%	31	31	282	0	282	282	0.08	0.5	0.8	42	0.12
CSE36-CSE37	0.55%	100	131	950	52	1002	1284	0.08	0.5	0.8	191	0.37
CSE37-CSE38	0.55%	60	191	593	63	655	1940	0.08	0.5	0.8	288	0.51
CDI5-CDI6	0.09%	78	78	441	165	606	606	0.08	0.5	0.8	90	0.42
CDI6-CDI7	1.26%	100	178	625	192	817	1423	0.08	0.5	0.8	211	0.29
CDI7-CDI8	1.26%	100	278	880	451	1331	2754	0.08	0.5	0.8	409	0.48
CDI8-CDI9	1.26%	100	378	785	366	1151	3905	0.08	0.5	0.8	580	0.64
CDI9-CDI10	1.26%	10	387	49	0	49	3954	0.08	0.5	0.8	587	0.65
CDI11-CDI12	0.97%	100	100	678	0	678	678	0.08	0.5	0.8	101	0.19
CDI12-CDI13	0.99%	100	200	742	0	742	1419	0.08	0.5	0.8	211	0.32
CDI13-CDI14	1.00%	100	300	854	0	854	2273	0.08	0.5	0.8	337	0.46
CDI14-CDI15	1.00%	100	400	964	0	964	3236	0.08	0.5	0.8	480	0.61

¹ Si intende per area ridotta l'area effettiva moltiplicata per il coefficiente di deflusso

POTENZIAMENTO DELLA LINEA RHO-ARONA PROGETTO DEFINITIVO - TRATTA RHO-GALLARATE

RELAZIONE IDRAULICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	MDL1	11	D 26 RI	ID 00 00 001	В	10 di 45

Nome	Pendenza	L (m)	Lunghezze progressive (m)	Aree ridotte progetto (m²) 1	Aree ridotte esistente (m²) ¹	Aree ridotte totale (m²)	Aree ridotte progressive (m²)	t _c (h)	B(m)	H(m)	Q (1/s)	H/H
CDI15-CDI16	0.70%	100	500	919	0	919	4155	0.09	0.5	0.9	561	0.71
CDI16-CDI17	0.40%	22	522	191	0	191	4346	0.10	0.5	1.2	570	0.68
CDI18-CDI19	0.40%	79	79	854	0	854	854	0.08	0.5	0.8	127	0.31
CDI19-CDI20	0.40%	49	128	446	0	446	1300	0.08	0.5	0.8	193	0.42
CDI4-CDI3	0.59%	26	26	112	33	145	145	0.08	0.5	0.8	22	0.08
CDI3-CDI2	0.59%	100	126	496	65	560	706	0.08	0.5	0.8	105	0.23
CDI2-CDI1	0.32%	100	226	495	0	495	1201	0.08	0.5	0.8	178	0.43
CDE5-CDE9	0.09%	52	52	284	0	284	284	0.08	0.5	0.8	42	0.24
CDE9-CDE6	1.26%	100	152	460	0	460	745	0.08	0.5	0.8	111	0.18
CDE6-CDE7	1.26%	100	252	411	0	411	1155	0.08	0.5	0.8	172	0.25
CDE7-CDE8	1.26%	100	352	442	0	442	1598	0.08	0.5	0.8	237	0.32
CDE8-CDE24	1.26%	7	359	31	0	31	1629	0.08	0.5	0.8	242	0.32
CDE10-CDE24	1.26%	91	91	401	0	401	401	0.08	0.5	0.8	60	0.12
CDE18-CDE19	0.43%	100	100	800	0	800	900	0.08	0.5	0.8	130	0.30
CDE19-CDE20	0.43%	100	200	800	0	800	1600	0.08	0.5	0.8	260	0.52
CDE21-CDE22	0.17%	77	277	0	0	0	1600	0.08	0.5	0.8	260	0.52
CDE16-CDE15	0.97%	100	100	735	62	797	797	0.08	0.5	0.8	118	0.21
CDE15-CDE14	0.99%	100	200	742	0	742	1538	0.08	0.5	0.8	228	0.34
CDE14-CDE13	1.00%	100	300	579	123	701	2239	0.08	0.5	0.8	332	0.45
CDE13-CDE12	0.99%	100	400	590	228	818	3058	0.08	0.5	0.8	454	0.58
CDE12-CDE11	0.70%	100	500	631	155	786	3844	0.09	0.5	0.9	519	0.66
CDE11-CDE17	0.70%	25	525	131	25	155	3999	0.10	0.5	0.9	523	0.67
CDE23-CDE22	0.61%	27	27	141	160	302	302	0.08	0.5	0.8	45	0.13
CDE22-CDE4	0.61%	100	127	490	297	787	1089	0.08	0.5	0.8	162	0.31
CDE4-CDE3	0.63%	55	182	260	0	260	1349	0.08	0.5	0.8	200	0.36
CDE3-CDE2	0.61%	43	225	215	0	215	2765	0.08	0.5	0.8	410	0.65
CDE2-CDE1	0.61%	52	277	269	0	269	3033	0.08	0.5	0.8	450	0.70
CSI1-CSI2	0.40%	52	52	261	96	357	357	0.08	0.5	0.8	53	0.16
CSI2-CSI3	0.40%	100	152	538	200	738	1094	0.08	0.5	0.8	162	0.37
CSI3-CSI13	0.43%	100	252	574	229	803	1898	0.08	0.5	0.8	282	0.55
CSI5-CSI17	0.05%	50	50	253	286	539	539	0.08	0.5	0.8	80	0.48
CSI17-CSI6	0.05%	50	50	253	286	539	539	0.08	0.5	0.8	80	0.48
CSI6-CSI7	0.05%	100	100	305	589	894	894	0.08	0.5	0.8	133	0.72
CSI7-CSI8	0.05%	100	100	473	310	783	783	0.08	0.5	0.8	116	0.65
CSI8-CSI9	0.36%	100	200	540	119	659	1442	0.08	0.5	0.8	214	0.48
CSI9-CSI10	1.09%	100	300	568	252	820	2262	0.08	0.5	0.8	336	0.44
CSI10-CSI11	1.10%	100	400	610	243	853	3115	0.08	0.5	0.8	462	0.56
CSI11-CSI12	1.09%	100	500	526	63	588	3703	0.09	0.5	0.8	500	0.60

Nome	Pendenza	L (m)	Lunghezze progressive (m)	Aree ridotte progetto (m²) 1	Aree ridotte esistente (m²) ¹	Aree ridotte totale (m²)	Aree ridotte progressive (m²)	t _c (h)	B(m)	H(m)	Q (I/s)	h/H
CSI12-CSI13	1.10%	100	600	537	123	659	4363	0.11	0.5	0.8	521	0.62
CSI14-CSI15	0.05%	95	95	420	374	794	794	0.08	0.5	0.8	118	0.65
CSI15-CSI16	0.05%	100	100	445	444	888	888	0.08	0.5	0.8	132	0.72

L'analisi dei risultati mostra come che il grado di riempimento massimo è pari al 72%. Nella tabella che segue si riportano le verifiche idrauliche dei due fossi rivestiti.

Tabella 3 Verifica fossi di guardia rivestiti (T=100 anni)

Nome	Pendenza	L (m)	Lunghezze progressive (m)	Aree ridotte progetto (m²)	Aree ridotte esistente (m²)	Aree ridotte totale (m²)	Aree ridotte progressive (m²)	t _c (h)	B(m)	H(m)	Q (I/s)	H/H
FS1-FS2	4.71%	94	94	0	167	167	167	0.08	0.5	0.5	25	0.07
FS2-FS3	4.71%	100	194	0	0	0	167	0.08	0.5	0.5	25	0.07
FS3-FS4	0.33%	100	294	0	500	500	667	0.08	0.5	0.5	99	0.33
FS4-FS5	0.33%	100	394	0	766	766	1433	0.08	0.5	0.5	213	0.51
FS5-FS6	0.33%	100	494	0	441	441	1874	0.09	0.5	0.5	255	0.56
FS6-FS7	0.33%	100	594	0	883	883	2757	0.11	0.5	0.5	331	0.65
FS7-FS8	0.33%	100	694	0	1462	1462	4219	0.13	0.75	0.5	456	0.64
FS8-FS9	0.33%	100	794	0	1036	1036	5255	0.14	0.75	0.5	518	0.69
FS9-FS10	0.33%	67	861	0	302	302	5557	0.15	0.75	0.5	519	0.69
FC1-FC2	0.19%	57	57	0	117	117	117	0.08	0.5	0.5	17	0.14
FC2-FC3	0.19%	100	157	0	444	444	561	0.08	0.5	0.5	83	0.35
FC3-FC4	0.19%	100	257	0	718	718	1279	0.08	0.5	0.5	190	0.56
FC4-FC5	0.19%	100	357	0	672	672	1951	0.08	0.5	0.5	290	0.70
FC5-FC6	0.19%	100	457	0	517	517	2468	0.09	0.75	0.5	355	0.65

L'analisi dei risultati mostra come che il grado di riempimento massimo è pari al 70%.


Nella tabella 4 si riportano i valori di portata corrispondenti ai singoli scarichi, con riferimento al periodo di ritorno pari a 100 anni, così come da dimensionamento.

Tabella 4 Scarichi

Codice	Tratti confluenti	Q ₁₀₀ (1/s)	Recapito	
S1	CSI12-CSI13	802	TO	
51	CSI3-CSI13	802	T2	
S2	CSI5-CSI17	80	FD1	
S3	CSI17-CSI6	80	FD1	
S4	CSI6-CSI7	133	FD1	
S5	CSI14-CSI15	118	FD10	
0.6	FS9-FS10	770	Scolina di	
S6	CSE2-CSE3	759	campo esistente	
S7	CSE7-CSE8	0.05	TO	
5/	CSE14-CSE8	885	Т2	
S8	CSE19-CSE18	153	FD4	
S9	CSE20-CSE28	126	FD8	
S10	CSE27-CSE21	148	FD9	
S11	CSE20-CSE22	130	FD10	
610	CSE24-CSE17	250	ED11	
S12	CSE16-CSE17	352	FD11	
S13	CSE37-CSE38	288	FD6	
S14a	CDI19-CDI20	193	T1	
	CDE10-CDE24			
S14b	CDE8-CDE24	888	T1	
	CDI9-CDI10			
S16	CDI16-CDI17	1002	T-1	
510	CDE11-CDE17	1092	T1	
S17	CDE18-CDE22	260	FD12	
S19	CDE2-CDE1	450	FD3	
S20	FC5-FC6	355	T1	

Gli scarichi dalle canalette sono previsti a mezzo di collettori circolari in PVC di dimensione variabile in dipendenza dalla portata scaricata e dalla pendenza. Nelle figure che seguono si riportano le relative scale di deflusso specifiche, nonché il massimo valore di portata defluibile con un grado di riempimento pari a 70% in funzione della pendenza. Le elaborazioni sono state condotte con riferimento alle condizioni di moto uniforme (formula di Gauckler e Strickler), assumendo K=66 m^{1/3}/s.

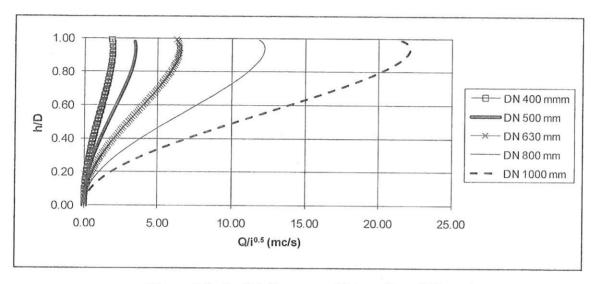


Figura 3 Scale di deflusso specifiche collettori di scarico

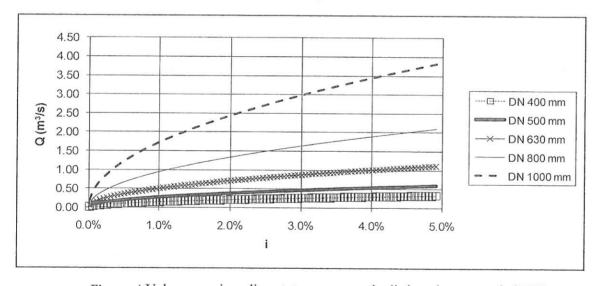


Figura 4 Valore massimo di portata con un grado di riempimento pari al 70%

GRUPPO FERROVIE DELLO STATO				A RHO-ARONA T TA RHO-GAL L		eleksistika ereksistika ereksistika ereksistika ereksistika ereksistika ereksistika ereksistika ereksistika er
RELAZIONE IDRAULICA	COMMESSA MDL1	LOTTO 11	CODIFICA D 26 RI	DOCUMENTO ID 00 00 001	REV.	FOGLIO

5 FOSSI DI GUARDIA NON RIVESTITI

Il progetto prevede in fregio alla strada, laddove possibile, la presenza di fossi di guardia disperdenti, di sezione trapezia con base minore pari a b_f = 0.5 m oppure b_f =0.75m, altezza h_f =0.5 m ed inclinazione delle sponde pari a 45°. Dimensioni differenti sono previste solo per i fossi T1 e T2, che presentano una base minore di 1.5 m ed un'altezza pari a 2 m.

Il proporzionamento di tali manufatti è stato condotto applicando un approccio variazionale. Il metodo di calcolo prevede, per una fissata durata dell'evento piovoso, la scrittura dell'equazione di continuità con riferimento al volume di controllo costituito dal fosso:

$$\frac{dW}{dt} = q_{inp}(t) - q_{out}(t) \tag{6}$$

Dove con W si è indicato il volume invasato nel fosso, e con $q_{inp}(t)$ e $q_{out}(t)$ le portate, in ingresso ed in uscita dal fosso medesimo.

L'idrogramma della portata in ingresso è stato generato applicando il metodo della corrivazione, assumendo un valore del coefficiente di afflusso pari a 0.9 per la piattaforma ferroviaria (di nuova realizzazione), 0.7 per le scarpate, mentre il valore di 0.5 è stato assunto per la piattaforma esistente e per l'area esterna, eventualmente gravante sul fosso. Il tempo di corrivazione è stato assunto cautelativamente pari a 5 minuti. Il periodo di ritorno è stato fissato pari a 100 anni.

Per la valutazione della portata in uscita si è ipotizzato che la filtrazione avvenga attraverso le pareti laterali ed il fondo del fosso medesimo. La portata in uscita è stata pertanto valutata moltiplicando la velocità di filtrazione per la superficie (fondo + laterale) bagnata dal liquido. La velocità di filtrazione, a sua volta, è stata calcolata, in accordo con "Sistemi di Fognatura: manuale di progettazione," (Hoepli, 2001), assumendo un valore unitario della cadente piezometrica. Il coefficiente di filtrazione è stato assunto pari a 3 ·10⁻⁴ m/s.

Avendo considerato fossi di sezione trasversale trapezia, di base minore b_f, con inclinazione delle sponde a 45 gradi, indicando con L la lunghezza del fosso e con h' l'altezza d'acqua nel fosso (misurata rispetto al fondo del fosso) risulta:

volume invasato = $(b_f + h')*h'*L$

superficie filtrante = $(b_f + 2*h'\sqrt{2})$ L

Laddove è risultato necessario è stato previsto un cassonetto drenante sottoposto al fosso di larghezza b_t uguale alla base minore del trapezio, altezza pari a h_t, e lunghezza pari all'intera lunghezza del fosso. Il contributo del cassonetto drenante è stato portato in conto, sia conteggiando il volume invasato all'interno di esso, sia incrementando congruentemente la superficie filtrante al variare del livello di riempimento. Si fa notare che pertanto si è definito il tirante idrico (h) a partire dal fondo del cassonetto.

Il contributo del cassonetto (sia in termini di volume che di superficie filtrante) non è stato considerato nel caso dei fossi T1 e T2. Per essi il cassonetto è stato previsto con funzione cautelativa di sola emergenza.

Pertanto, fissata la durata dell'evento piovoso, è stato determinato l'idrogramma di ingresso al fosso q_{inp}(t) (assunto di forma triangolare o trapezia così come previsto dal metodo della corrivazione) e dalla soluzione dell'equazione (6), alle differenze finite, è stato valutato il massimo valore del tirante all'interno del fosso.

Variando quindi la durata dell'evento piovoso è stato possibile determinare la durata critica alla quale corrisponde il massimo valore del tirante idrico (metodo variazionale). La necessità di un metodo variazionale è dettata dal fatto che, come ben noto, l'evento critico per i manufatti in oggetto ha una durata diversa da quella relativa all'evento critico assunto per il dimensionamento dei manufatti di raccolta e collettamento (t_c).

Nella tabella che segue si riportano i risultati delle elaborazioni condotte, unitamente ai dati di base impiegati per il calcolo. Con riferimento a questi ultimi, sono riportati, oltre alla lunghezza del fosso, i valori delle superfici (ridotte) che gravano sui manufatti, sia direttamente che in virtù della rete di drenaggio.

Le successive figure rappresentano graficamente sia i massimi valori di portata (entrante ed uscente) e di tirante nel fosso, al variare della durata dell'evento piovoso, sia l'evoluzione temporale, con riferimento al solo evento critico, della portata (entrante ed uscente) e del tirante nel fosso. A riguardo va ricordato che il tirante è misurato a partire dal fondo del cassonetto (se essa risulta presente). Come può verificarsi, anche nella condizione più critica risulta sempre $h_{max} < h_{fosso} + h_{cass}$ con un franco di sicurezza non inferiore a 15 cm, ad eccezione del fosso T1 (franco 6 cm) per il quale tuttavia nelle elaborazioni non si è tenuto in conto (al pari del fosso T2) del cassonetto drenante sottoposto.

Tabella 5 Verifica fossi disperdenti

	ta 1 ²)	ra n²)	otta (m²)	ridotta	(m)		Casso	onetto		Ev	ento crit	ico	
Fosso	Area ridotta collettata (m²)	Area ridotta aggiuntiva (m ³	Area totale rid (m²)	Lunghezza (1	Base (m)	h _{cass} (m)	B (m)	tp/tc	q _{i,max} (m ³ /s)	q _{u,max} (m ³ /s)	h _{max} (m)	Grado di riempimento	
T1	18097		18097	130	1.50			4.56	0.85	0.27	1.94	0.97	
T2	12319		12319	130	1.50			3.66	0.69	0.22	1.44	0.72	
FD10	1672		1672	150	0.50	0.50	0.50	1.26	0.21	0.08	0.62	0.62	
FD8	845		845	50	0.50	0.50	0.50	1.44	0.10	0.04	0.84	0.84	
FD9	998		998	50	0.75	0.75	0.75	1.62	0.11	0.04	0.86	0.69	
FD3	3033	576	3609	120	0.75	1.25	0.75	1.80	0.35	0.13	1.39	0.79	
FD2		1536	1536	185	0.50	0.50	0.50	1.14	0.21	0.08	0.46	0.46	
FD7		5554	5554	435	0.75	0.75	0.75	1.38	0.66	0.23	0.51	0.41	
FD1	1972	2139	4111	367	0.50	0.50	0.50	1.26	0.53	0.20	0.62	0.62	
FD4	1034	2007	3041	145	0.75	0.75	0.75	1.68	0.31	0.12	0.90	0.72	
FD5		1148	1148	90	0.50	0.50	0.50	1.32	0.14	0.05	0.69	0.69	

	2)	n ²)	ridotta	(m)		Casso	onetto	Evento critico					
Fosso	Area ridotta collettata (m²)	Area ridotta aggiuntiva (m	Area totale rid (m²)	Lunghezza (r	Base (m)	h _{cass} (m)	B (m)	tp/tc	q _{i,max} (m ³ /s)	q _{u,max} (m ³ /s)	h _{max} (m)	Grado di riempimento	
FD6		660	2600	73	0.50	0.75	0.75	1.92	0.24	0.09	1.57	0.90	
FD11			2373	175	0.50	0.50	0.50	1.32	0.29	0.11	0.72	0.72	
FD12			1934	60	0.75	0.75	0.75	1.86	0.29	0.11	1.49	0.89	

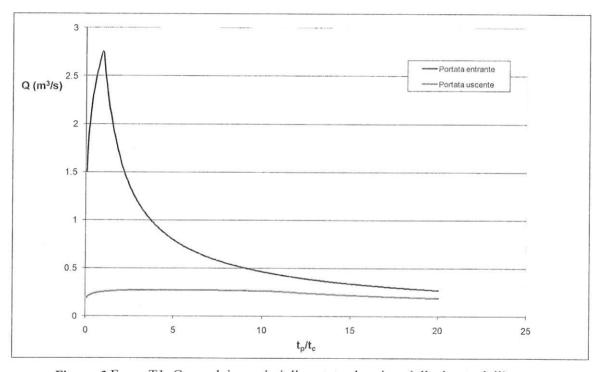


Figura 5 Fosso T1: Curva dei massimi di portata al variare della durata dell'evento

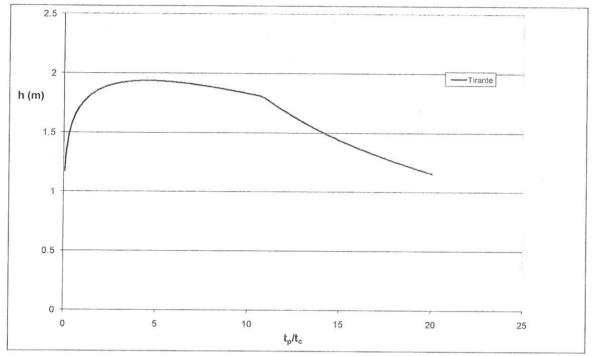


Figura 6 Fosso T1: Curva dei massimi di tirante al variare della durata dell'evento

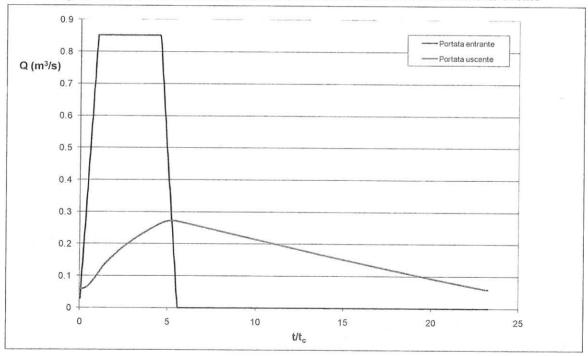


Figura 7 Fosso T1: Andamento temporale della portata durante l'evento critico

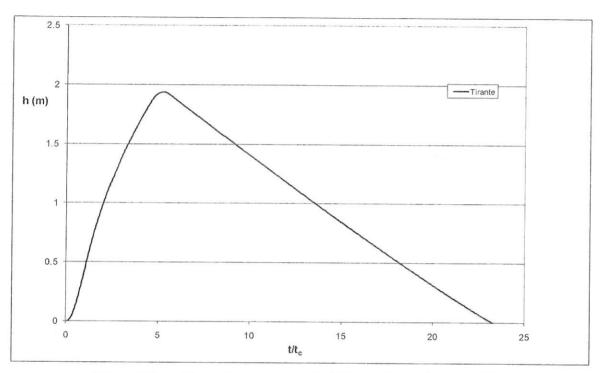


Figura 8 Fosso T1: Andamento temporale del tirante durante l'evento critico

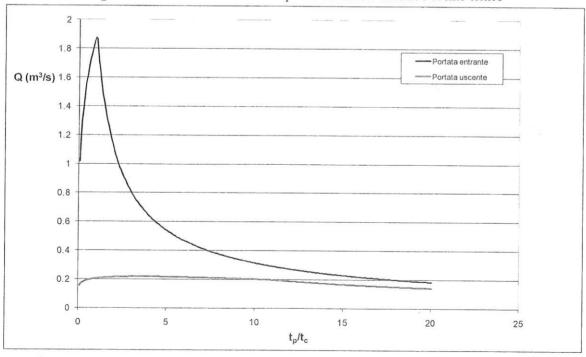


Figura 9 Fosso T2: Curva dei massimi di portata al variare della durata dell'evento

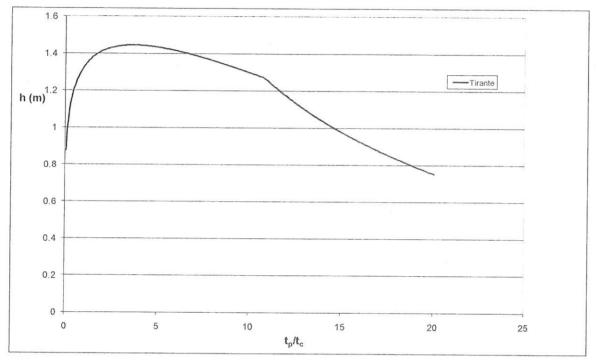


Figura 10 Fosso T2: Curva dei massimi di tirante al variare della durata dell'evento

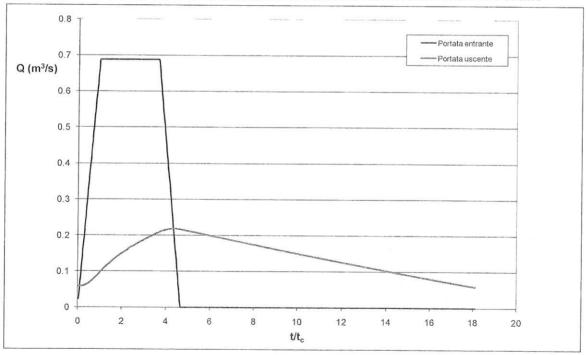


Figura 11 Fosso T2: Andamento temporale della portata durante l'evento critico

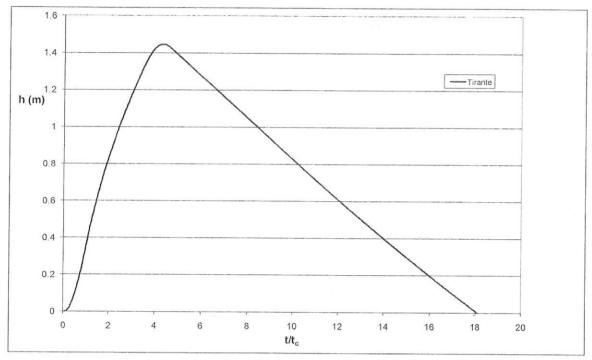


Figura 12 Fosso T2: Andamento temporale del tirante durante l'evento critico

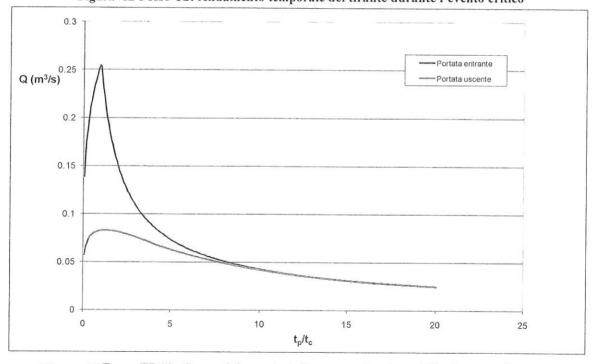


Figura 13 Fosso FD10: Curva dei massimi di portata al variare della durata dell'evento

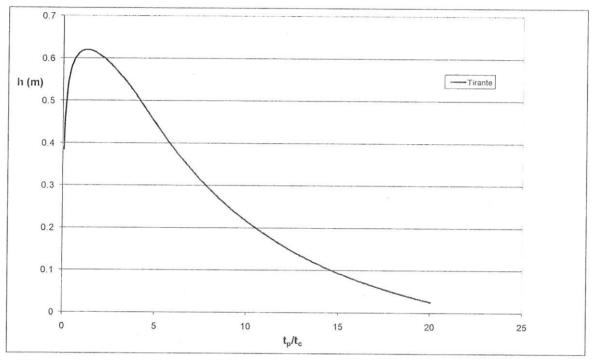


Figura 14 Fosso FD10: Curva dei massimi di tirante al variare della durata dell'evento

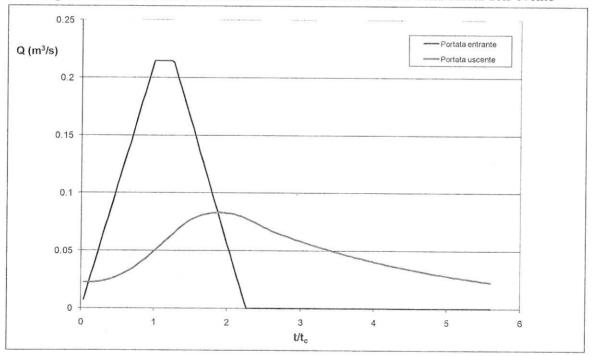


Figura 15 Fosso FD10: Andamento temporale della portata durante l'evento critico

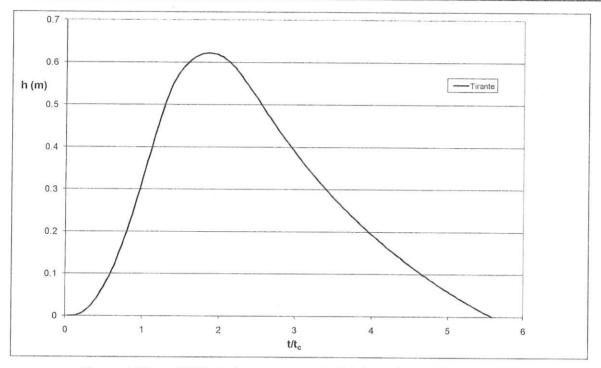


Figura 16 Fosso FD10: Andamento temporale del tirante durante l'evento critico

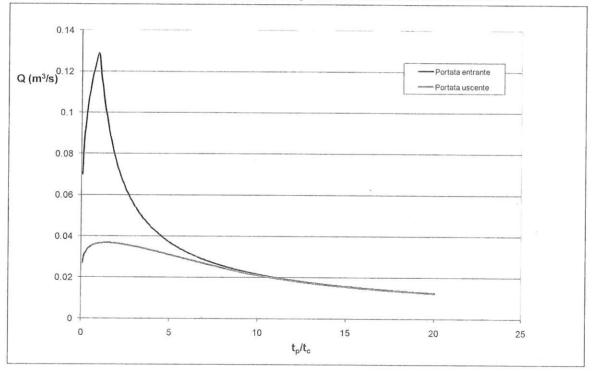


Figura 17 Fosso FD8: Curva dei massimi di portata al variare della durata dell'evento

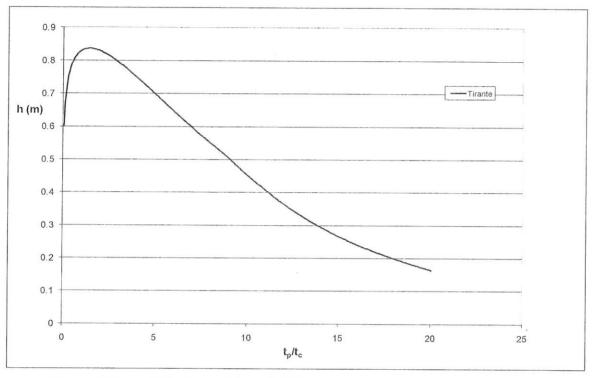


Figura 18 Fosso FD8: Curva dei massimi di tirante al variare della durata dell'evento

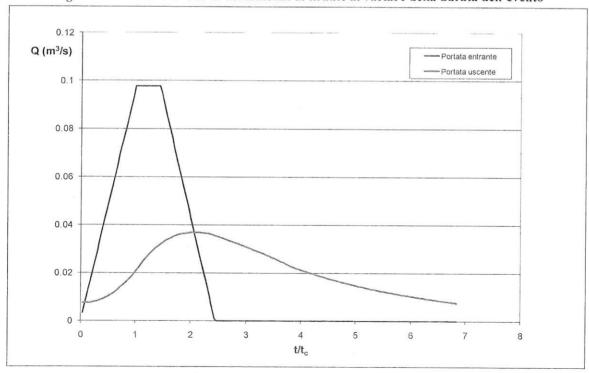


Figura 19 Fosso FD8: Andamento temporale della portata durante l'evento critico

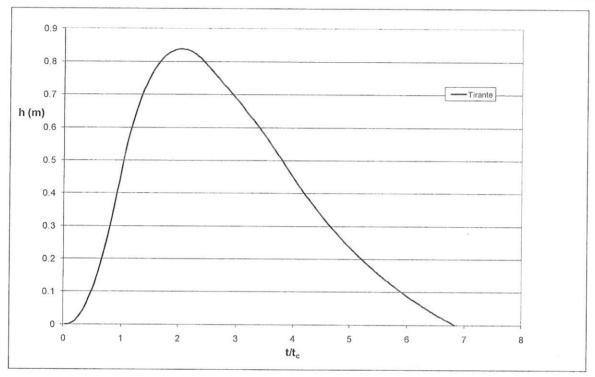


Figura 20 Fosso FD8: Andamento temporale del tirante durante l'evento critico

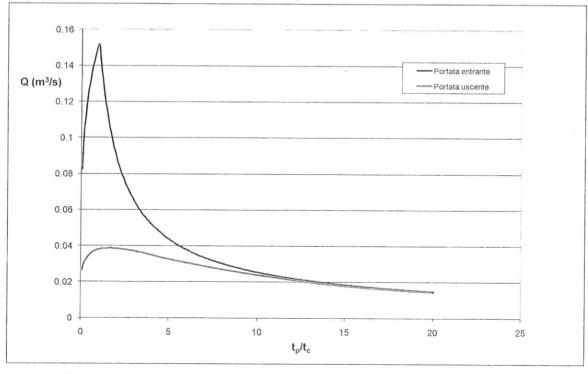


Figura 21 Fosso FD9: Curva dei massimi di portata al variare della durata dell'evento

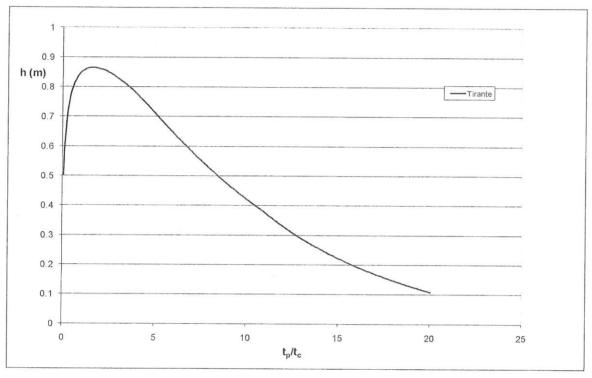


Figura 22 Fosso FD9: Curva dei massimi di tirante al variare della durata dell'evento

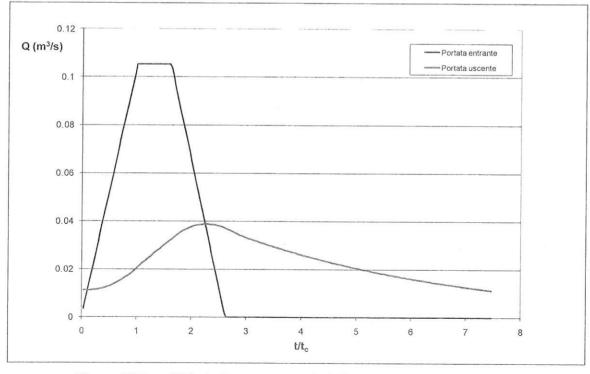


Figura 23 Fosso FD9: Andamento temporale della portata durante l'evento critico

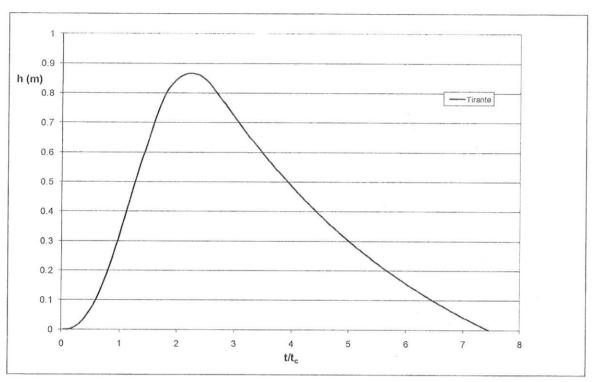


Figura 24 Fosso FD9: Andamento temporale del tirante durante l'evento critico

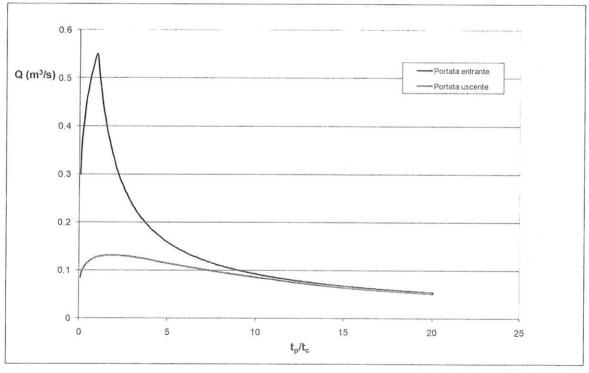


Figura 25 Fosso FD3: Curva dei massimi di portata al variare della durata dell'evento

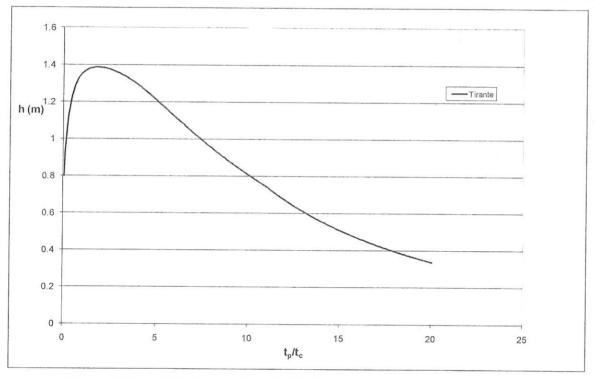


Figura 26 Fosso FD3: Curva dei massimi di tirante al variare della durata dell'evento

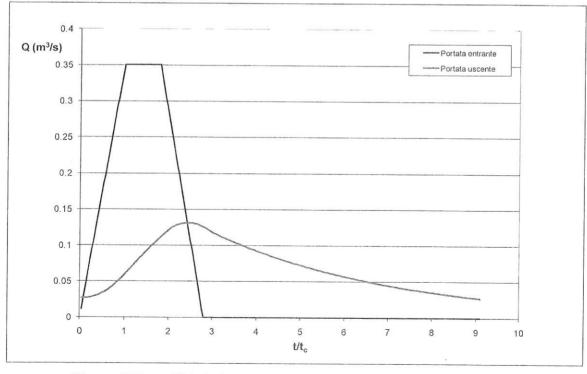


Figura 27 Fosso FD3: Andamento temporale della portata durante l'evento critico

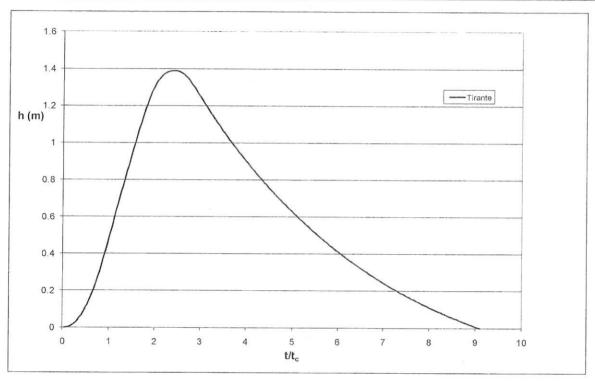


Figura 28 Fosso FD3: Andamento temporale del tirante durante l'evento critico

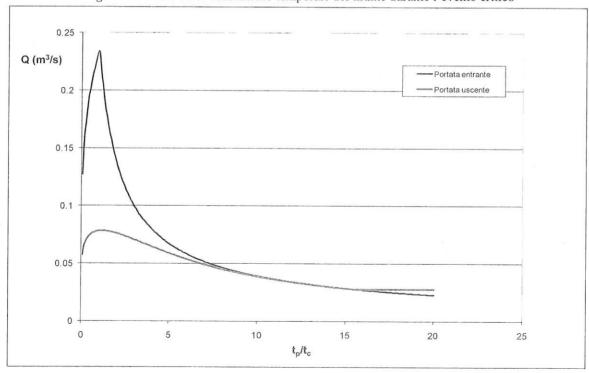


Figura 29 Fosso FD2: Curva dei massimi di portata al variare della durata dell'evento

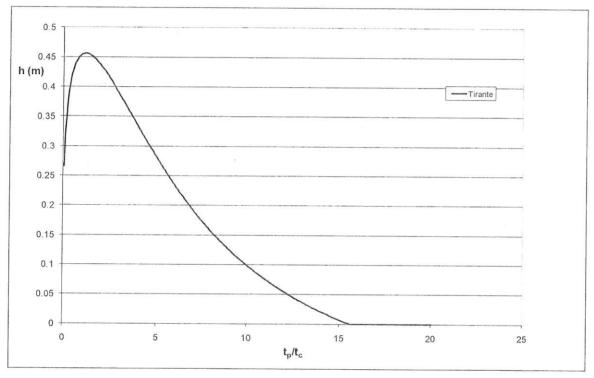


Figura 30 Fosso FD2: Curva dei massimi di tirante al variare della durata dell'evento

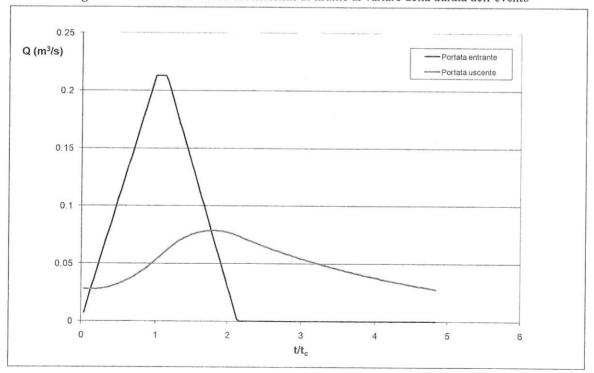


Figura 31 Fosso FD2: Andamento temporale della portata durante l'evento critico

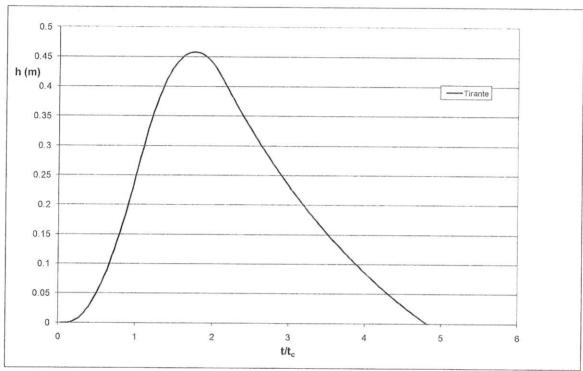


Figura 32 Fosso FD2: Andamento temporale del tirante durante l'evento critico

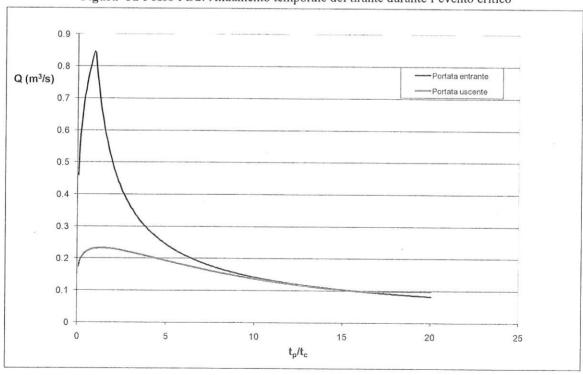


Figura 33 Fosso FD7: Curva dei massimi di portata al variare della durata dell'evento

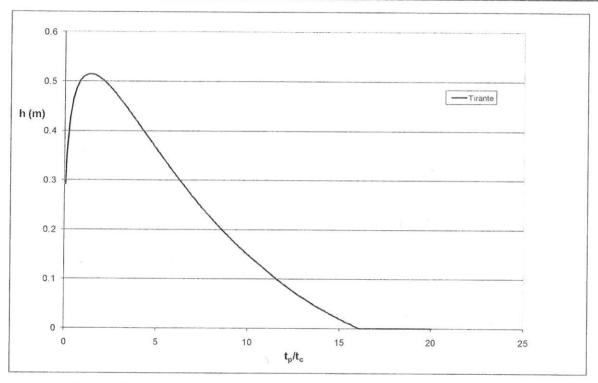


Figura 34 Fosso FD7: Curva dei massimi di tirante al variare della durata dell'evento

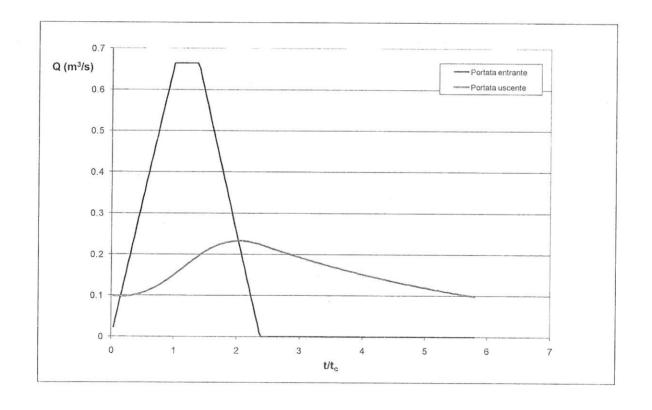


Figura 35 Fosso FD7: Andamento temporale della portata durante l'evento critico

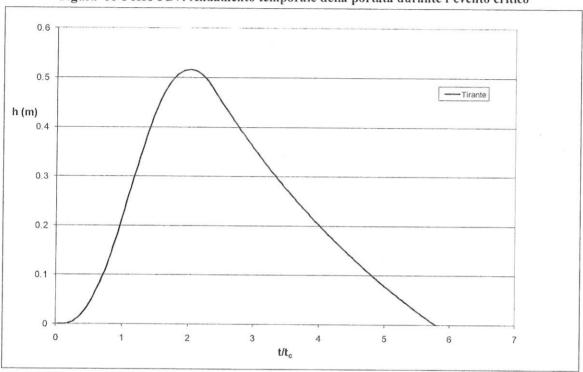


Figura 36 Fosso FD7: Andamento temporale del tirante durante l'evento critico

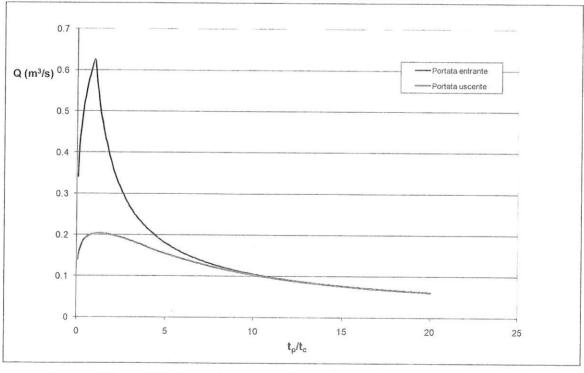


Figura 37 Fosso FD1: Curva dei massimi di portata al variare della durata dell'evento

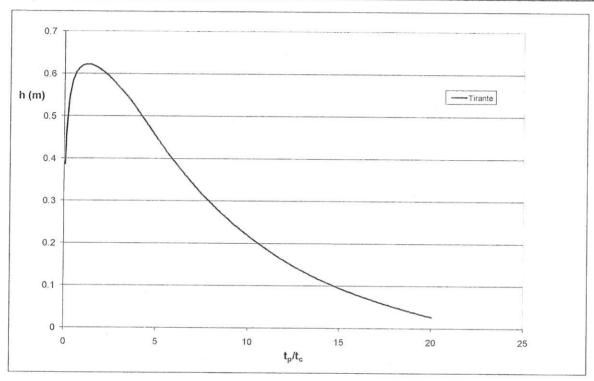


Figura 38 Fosso FD1: Curva dei massimi di tirante al variare della durata dell'evento

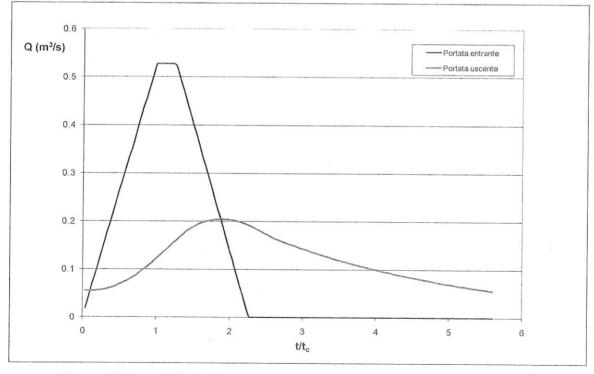


Figura 39 Fosso FD1: Andamento temporale della portata durante l'evento critico

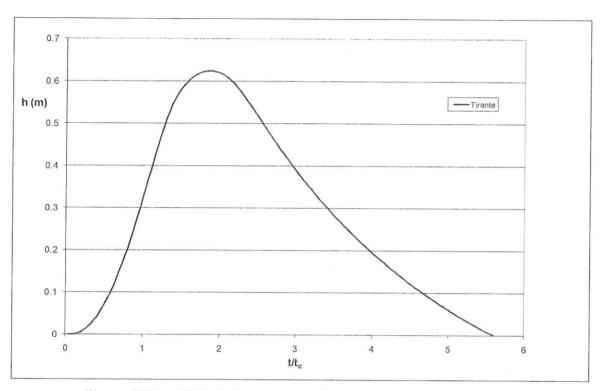


Figura 40 Fosso FD1: Andamento temporale del tirante durante l'evento critico

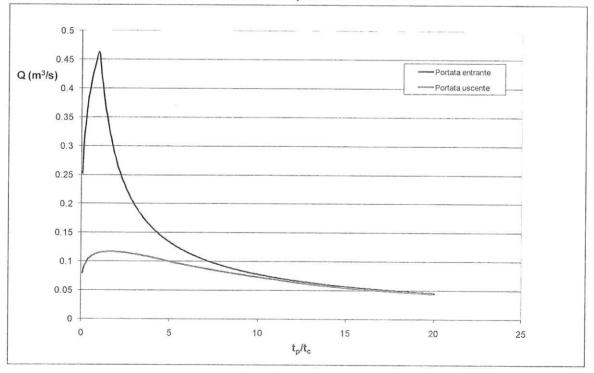


Figura 41 Fosso FD4: Curva dei massimi di portata al variare della durata dell'evento

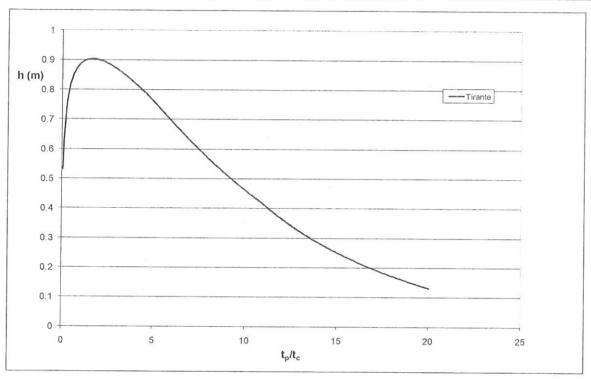


Figura 42 Fosso FD4: Curva dei massimi di tirante al variare della durata dell'evento

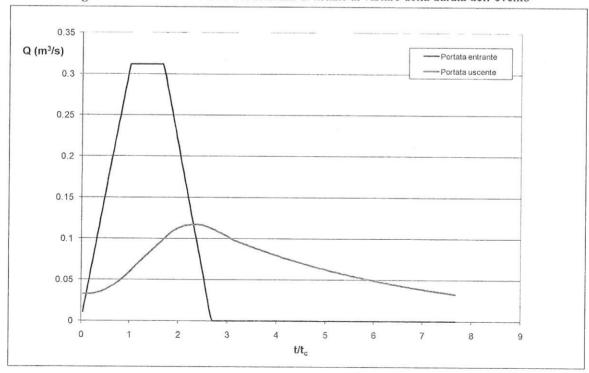


Figura 43 Fosso FD4: Andamento temporale della portata durante l'evento critico

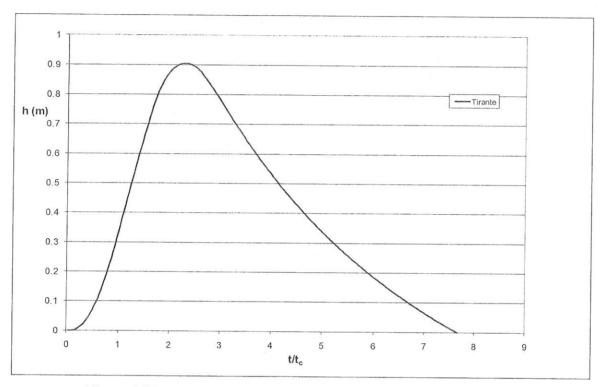


Figura 44 Fosso FD4: Andamento temporale del tirante durante l'evento critico

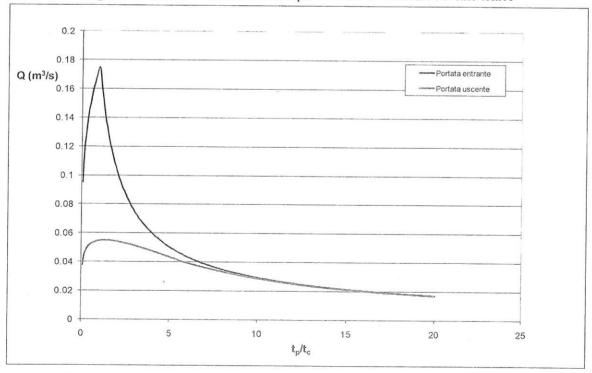


Figura 45 Fosso FD5: Curva dei massimi di portata al variare della durata dell'evento

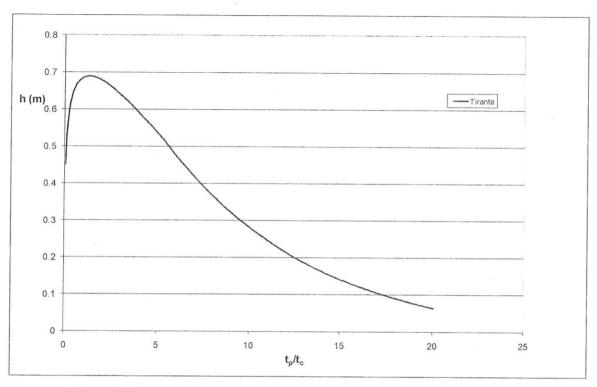


Figura 46 Fosso FD5: Curva dei massimi di tirante al variare della durata dell'evento

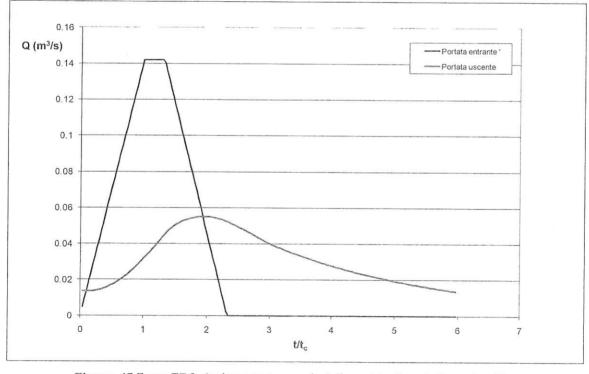


Figura 47 Fosso FD5: Andamento temporale della portata durante l'evento critico

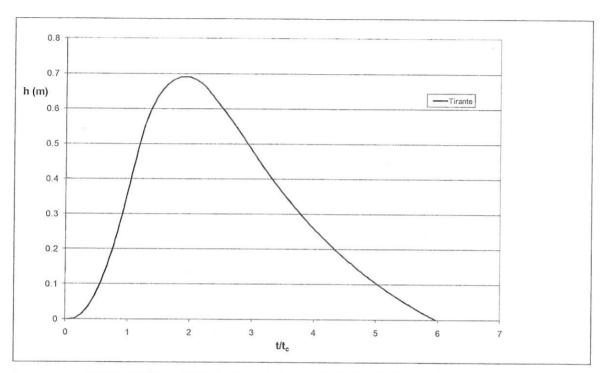


Figura 48 Fosso FD5: Andamento temporale del tirante durante l'evento critico

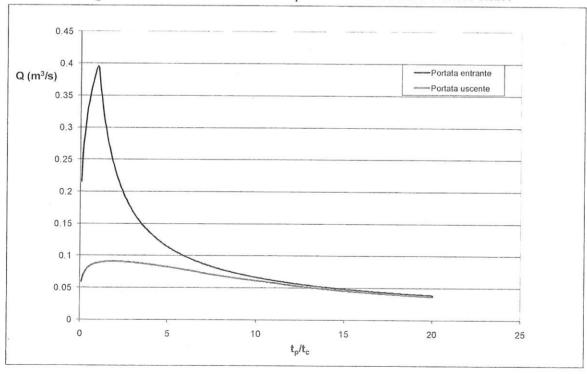


Figura 49 Fosso FD6: Curva dei massimi di portata al variare della durata dell'evento

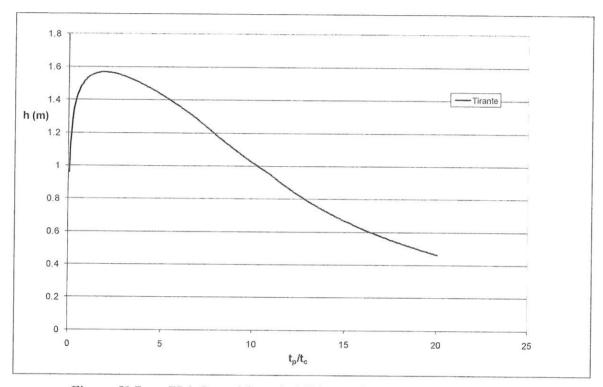


Figura 50 Fosso FD6: Curva dei massimi di tirante al variare della durata dell'evento

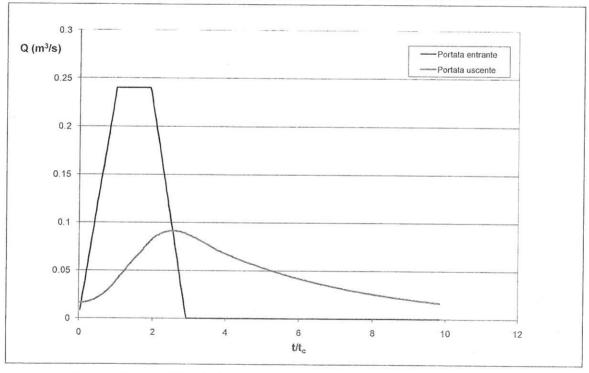


Figura 51 Fosso FD6: Andamento temporale della portata durante l'evento critico

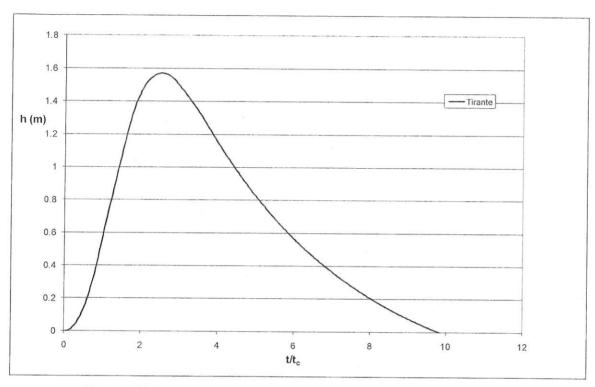


Figura 52 Fosso FD6: Andamento temporale del tirante durante l'evento critico

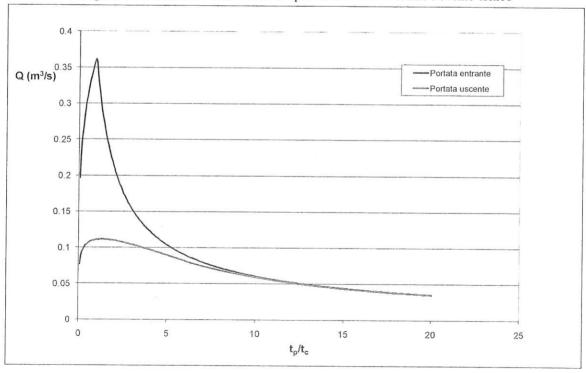


Figura 53 Fosso FD11: Curva dei massimi di portata al variare della durata dell'evento

Figura 54 Fosso FD11: Curva dei massimi di tirante al variare della durata dell'evento

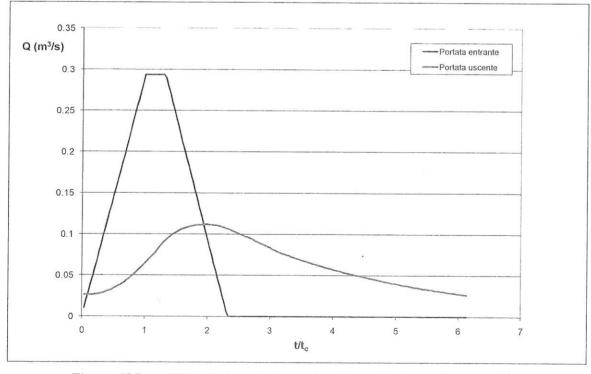


Figura 55 Fosso FD11: Andamento temporale della portata durante l'evento critico

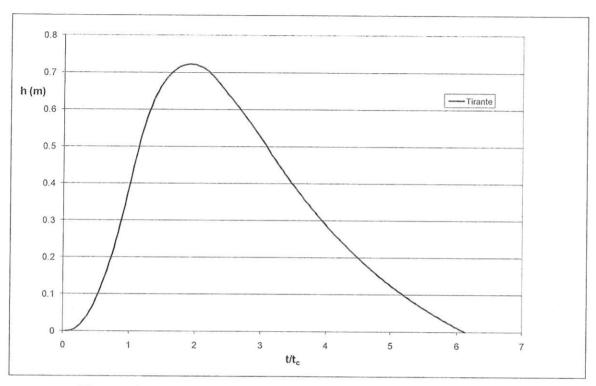


Figura 56 Fosso FD11: Andamento temporale del tirante durante l'evento critico

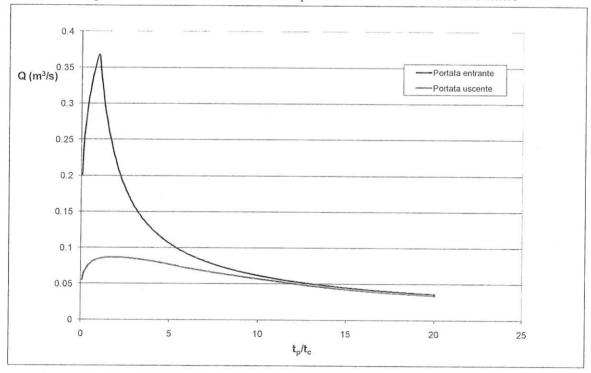


Figura 57 Fosso FD12: Curva dei massimi di portata al variare della durata dell'evento

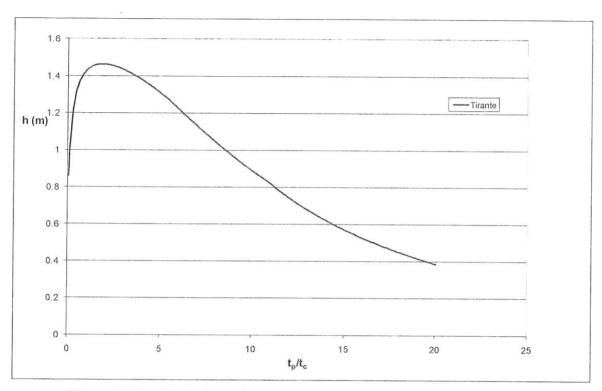


Figura 58 Fosso FD12: Curva dei massimi di tirante al variare della durata dell'evento

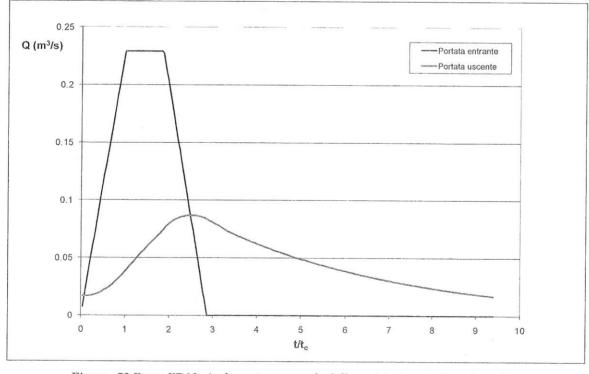


Figura 59 Fosso FD12: Andamento temporale della portata durante l'evento critico

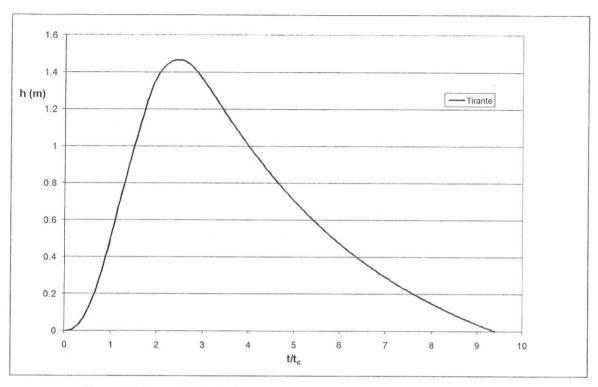


Figura 60 Fosso FD12: Andamento temporale del tirante durante l'evento critico

6 MATERIALI IMPIEGATI

Le canalette sono previste realizzate con impasto di conglomerato cementizio armato semiasciutto sottoposto, per l'ottenimento di una resistenza non inferiore a RcK 35 MPa, a ciclo lavorativo di vibrazione e compressione. L'armatura è costituita da gabbia rigida in acciaio singola elettrosaldata a barre longitudinali.

Le tubazioni sono previste in PVC rigido con giunto a bicchiere con anello elastomerico per condotte interrate non in pressione conformi alle norme UNI EN 1401 con classe di rigidità SN8 (8kN/m²).

I pozzetti, con finalità sia di ispezione che di confluenza saranno prefabbricati e realizzati in cemento Tipo 42.5 R e inerti lavati e vagliati per ottenere un cls di classe maggiore di 35 MPa. La posa avverrà su platea realizzata in calcestruzzo di spessore 0.10 m e le sigillature saranno realizzate con malta cementizia.

Per ulteriori dettagli sui materiali impiegati si rimanda all'elaborato grafico "Smaltimento acque di sede – Opere Tipologiche - MDL111D26BCID0000001A"