COMMITTENTE: **RFI** RETE FERROVIARIA ITALIANA RUPPO FERROVIE DELLO STATO PROGETTAZIONE: ERROVIE DELLO STATO INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA **LEGGE OBIETTIVO N. 443/01 U.O. PRODUZIONE CENTRO-NORD PROGETTO DEFINITIVO** POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-**GALLARATE PRG RHO** OPERE PRINCIPALI – PONTI E VIADOTTI VI04 – Attraversamento fiume Olona – Solettone su pali di grande diametro km 0-112 singolo binario Nord Relazione di calcolo opera SCALA: **COMMESSA** LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. 0 0 D 2 6 0 0 1 MIDIL

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	p. Autoriz	zato Data	abrizi
А	Emissione Esecutiva	A.Ingletti	03/2013	Mara	03/2013	SB	03/2013	Roboto Borilla Roboto Borilla Roboto Borilla Roman di Monza el	TRE S.	Arduini F
							4	Luzior Lott. Ing.	Direzio Entro Pro	ott. And
File: MD	DL100D26CLVI0400001_A	doc			210		2000	n. Elab.:	()	9 1

Relazione di calcolo opera

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N.443/01

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-**GALLARATE PRG RHO**

LOTTO

00

COMMESSA MDL1

CODIFICA D 26 CL

DOCUMENTO VI0400001

REV.

Α

FOGLIO 2 di 100

INDICE

1	PRE	EMESSA	4
2		DPO DEL DOCUMENTO	
3	ALI	LEGATI	6
4	NO	RMATIVA DI RIFERIMENTO	6
5	MA	TERIALI	7
6	TEF	RRENI	10
7	МО	DELLO DI CALCOLO	11
	7.1	MODELLAZIONE DEL TERRENO	13
8	GEO	OMETRIA DI CALCOLO	15
9	AZI	ONI DI CALCOLO	17
	9.1	PESO PROPRIO	17
	9.2	CARICHI PERMANENTI PORTATI	17
	9.3	SOVRACCARICHI TRENI	19
	9.4	CARICO INDOTTO DALLA FRENATA E DALL'AVVIAMENTO	22
	9.5	CARICO INDOTTO DALLA FORZA CENTRIFUGA	24
	9.6	CARICO INDOTTO DAL SERPEGGIO	26
	9.7	CARICHI VARIABILI	27
	9.8	VENTO	27
	9.9	AZIONI TERMICHE	27
	9.10	RITIRO DEL CLS NELLA SOLETTA DI COPERTURA	28
	9.11	AZIONE SISMICA	31
	9.11	1.1 SLV	33
	9.11	1.2 SLD	34
	9.12	SPINTE LATERALI DEL TERRENO IN FASE STATICA	35

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-GALLARATE PRG RHO

Relazione di calcolo opera

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

MDL1 00 D 26 CL VI0400001 A 3 di 100

	9.12	2.1 Spinte laterali per il sovraccarico	37
9	9.13	SPINTE LATERALI DEL TERRENO IN FASE SISMICA	38
10	CON	NDIZIONI E COMBINAZIONI DI CARICO	40
11	RIS	ULTATI STRUTTURALI	46
	11.1	INVILUPPO - SLU-G1	47
	11.2	INVILUPPO – SLU-G3	50
	11.3	INVILUPPO - SLE_FREQUENTE - G4	53
,	11.4	INVILUPPO - SLE_QUASIPERMANENTE	56
	11.5	INVILUPPO - SLE_RARA - G1	59
	11.6	INVILUPPO - SLE_RARA - G3	62
	11.7	INVILUPPO – SLV	65
	11.8	INVILUPPO - SLD	68
12	VER	RIFICHE	71
	12.1	TRAVI IN C.A. VERIFICA DI RESISTENZA	73
,	12.2	CORDOLO	82
	12.3	PALO	88
	12.3	.1 Sezione Testa Palo	88
	12.4	VERIFICHE GEOTENICHE	93
	12.4	.1 Capacità Portante	93
	12.4	.2 Cedimenti	95
	12.4	3 Carichi Orizzontali	96
	12.5	Verifiche di Deformabilità	. 100

ITALFERR GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBII PROGETTO POTENZIAM GALLARATE	ETTIVO N DEFINITI IENTO	.443/01 VO DELLA LINE	TRATEGICHE D		DALLA .TTA RHO-
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO 4 di 100

1 PREMESSA

La presente relazione ha per oggetto le verifiche di resistenza del ponte ferroviario posto al km -0+112 del progetto definitivo di potenziamento della linea Rho - Arona.

2 SCOPO DEL DOCUMENTO

Scopo del presente documento è quello di verificare il portale di cui alla premessa.

Il ponte ferroviario è costituito da un solo binario, la larghezza complessiva dell'impalcato è pari a 9.15 m.

Il portale è in obliquo e ha luce retta pari a 15.40 m ed è costituito da 9 travi in C.A. aventi sezione a "T" rovescia solidarizzate tra loro mediante una soletta superiore in C.A., gettata in opera di spessore variabile da un minimo di 0.25 m in prossimità della parte più esterna della soletta, a un massimo di 0.31 m in mezzeria. Sono presenti 2 traversi di campata, di spessore 40 cm.

Le travi sono poste ad interasse di 1 m. Le travi hanno un'altezza pari ad 1.35 m ed una larghezza pari a 1.00 m.

L'impalcato poggia su due spalle sostenute da pali Ø 1500 ad interasse 1.70 m, lunghi 25.0 m.

Nella seguente figura è riportata la sezione trasversale del portale.

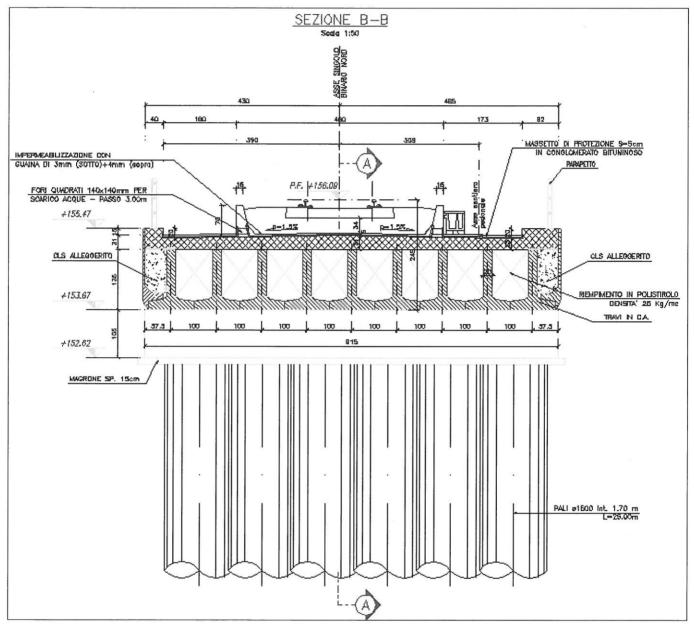


Figura 1 – Sezione trasversale del portale

Le verifiche sono svolte sulla trave di bordo, poiché è la più sollecitata.

Unità di misura

- lunghezza [m] - forze [kN] - angoli [°]

- tensioni [N/mm²]

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBI PROGETTO POTENZIAN GALLARATI	ETTIVO N DEFINITI MENTO	I.443/01 VO DELLA LINE	TRATEGICHE DE			RHO-
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO	

3 ALLEGATI

Il documento è corredato dai seguenti allegati:

Input e output del modello di calcolo.

4 NORMATIVA DI RIFERIMENTO

I calcoli sono stati svolti in ottemperanza alla Normativa vigente ed in particolare:

- L.1086 5/11/71 Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica.
- **D.M. 14 febbraio 1992** Norme tecniche l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche.
- **DM 09/01/96** Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche.
- **DM 16/01/96** Norme tecniche relative ai "Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi".
- **DM 16/01/96** Norme tecniche per le costruzioni in zone sismiche.
- Istruzione FF.SS. 44/b aggiornamento 16 dicembre 1997 Istruzioni tecniche per manufatti sotto binario da costruire in zona sismica
- Istruzione FF.SS. I/SC/PS-OM/2298 aggiornamento 13 gennaio 1997: Sovraccarichi per il calcolo dei ponti ferroviari. Istruzioni per la progettazione, l'esecuzione ed il collaudo.
- Istruzione FF.SS. 44/d : Istruzione tecnica per la progettazione e l'esecuzione di impalcati ferroviari a travi in ferro a doppio T incorporate nel calcestruzzo.
- **Istruzione FF.SS. 44/e**: Istruzione tecnica per il calcolo,l'esecuzione, il collaudo e la posa in opera dei dispositivi di vincolo e dei coprigiunti negli impalcati ferroviari e nei cavalcavia.

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBII PROGETTO POTENZIAN GALLARATE	ETTIVO N DEFINITI ENTO	VO DELLA LINE			DALLA
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO 7 di 100

5 MATERIALI

CALCESTRUZZI

Calcestruzzo per opere non armate

Classe di resistenza	C	12 / 15	
Contenuto min. di Cemento	200	kg/mc	
Modulo elastico $E_{cm} = 22000[f_{cm}/10]^{0,3}$	27085	N/mmq	
Resistenza media a traz. semplice $(f_{ctm} = 0.30 f_{ck}^{2/3})$	1.57	N/mmq	
Resistenza caratt. a traz. semplice $(f_{ctk} = 0.7f_{ctm})$	1.10	N/mmq	
Resistenza di progetto a traz. semplice f _{ctk} /1,5	0.73	N/mmq	
Resistenza media a traz. per flessione $f_{cfm} = 1.2 f_{ctm}$	1.89	N/mmq	
Resistenza caratt. a traz. Per flessione $f_{\text{cfk}} = 0.7 f_{\text{cfin}}$	1.32	N/mmq	
Resistenza di calcolo a comp. $f_{cd} = \alpha_{ce} f_{ck} / 1,5$	6.80	N/mmq	

Calcestruzzo per travi C.A.

Classe di resistenza	C		45 /	55
Classe di esposizione	XC3			
Classe di consistenza	S5			
Max Rapporto a/c	0.45			
Contenuto min. di Cemento	340	kg/mc		
Diametro max. Aggregato	20	mm		
Modulo elastico $E_{cm} = 22000[f_{cm}/10]^{0,3}$	36283	N/mmq		
Resistenza caratt. a compress. taglio trefoli ($f_c = 0.7f_{ckj}$)	23.82	N/mmq		
Resistenza media a traz. semplice $(f_{ctm} = 0.30 f_{ck}^{2/3})$	3.80	N/mmq		
Resistenza caratt. a traz. semplice ($f_{ctk} = 0.7f_{ctm}$)	2.66	N/mmq		
Resistenza di progetto a traz. semplice f _{ctk} /1,5	1.77	N/mmq		
Resistenza media a traz. per flessione $f_{cfm} = 1.2 f_{ctm}$	4.55	N/mmq		
Resistenza caratt. a traz. Per flessione $f_{cfk} = 0.7 f_{cfin}$	3.19	N/mmq		
Resistenza di calcolo a comp. $f_{cd} = \alpha_{cc} f_{ck} / 1,5$	25.50	N/mmq		

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-

GALLARATE PRG RHO

Relazione di calcolo opera

COMMESSA LOTTO MDL1 00

CODIFICA D 26 CL

DOCUMENTO VI0400001

REV.

FOGLIO 8 di 100

Elevazioni Spalle (Cordoli) Soletta e traversi

Classe di resistenza	C		28	/	35
Classe di esposizione	XC3				
Classe di consistenza	S4-S5				
Max Rapporto a/c	0.55				
Contenuto min. di Cemento	340	kg/mc			
Diametro max. Aggregato	25	mm			
$Modulo\ elastico\ E_{cm}=22000[f_{cm}/10]^{0,3}$	32308	N/mmq			
Resistenza media a traz. semplice $(f_{ctm} = 0.30 f_{ck}^{2/3})$	2.77	N/mmq			
Resistenza caratt. a traz. semplice ($f_{ctk} = 0.7f_{ctm}$)	1.94	N/mmq			
Resistenza di progetto a traz. semplice $f_{ctk}/1,5$	1.29	N/mmq			
Resistenza media a traz. per flessione $f_{cfm} = 1,2f_{ctm}$	3.32	N/mmq			
Resistenza caratt. a traz. Per flessione $f_{cfk} = 0.7 f_{cfin}$	2.32	N/mmq			
Resistenza di calcolo a comp. $f_{cd} = \alpha_{cc} f_{ck} / 1,5$	15.87	N/mmq			

Calcestruzzo per pali

Classe di resistenza	C		25	/	30
Classe di esposizione	XD1				
Classe di consistenza	S4				
Max Rapporto a/c	0.55				
Contenuto min. di Cemento	300	kg/mc			
Diametro max. Aggregato	25	mm			
Modulo elastico $E_{cm} = 22000[f_{cm}/10]^{0,3}$	31476	N/mmq			
Resistenza media a traz. semplice $(f_{ctm} = 0.30 f_{ck}^{2/3})$	2.56	N/mmq			
Resistenza caratt. a traz. semplice ($f_{ctk} = 0.7f_{ctm}$)	1.80	N/mmq			
Resistenza di progetto a traz. semplice $f_{ctk}/1,5$	1.20	N/mmq			
Resistenza media a traz. per flessione $f_{cfm} = 1,2f_{ctm}$	3.08	N/mmq			
Resistenza caratt. a traz. Per flessione $f_{cfk} = 0.7 f_{cfin}$	2.15	N/mmq			
Resistenza di calcolo a comp. $f_{cd} = \alpha_{cc} f_{ck}/1,5$	14.17	N/mmq			

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-

GALLARATE PRG RHO

Relazione di calcolo opera

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

MDL1 00 D 26 CL VI0400001 A 9 di 100

ACCIAI

Armatura Lenta

Tipo FeB44k

Resistenza caratteristica di snervamento - fy 430 N/mmq

Modulo Elastico 210000 N/mmq

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-

GALLARATE PRG RHO

 Relazione di calcolo opera
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 00
 D 26 CL
 VI0400001
 A
 10 di 100

6 TERRENI

Nel calcolo delle spinte, si è trascurata l'effetto della coesione.

Tipo Terreno	[kN/		φ' [°]		c' [kPa]		cu [kPa]		E' [Mpa]	
	Min.	Medi	Min.	Medi	Min.	Medi	Min.	Medi	Min.	Medi
Riporto	18	19	30	32	0	0	/	/	25	30
11a – Argille	18	19	32	35	0	0	/	/	35	40

Tabella 1: caratteristiche geotecniche terreni

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBIE PROGETTO POTENZIAM GALLARATE	ETTIVO N DEFINITI IENTO	VO DELLA LINEA			DALLA ATTA RHO-
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO

7 MODELLO DI CALCOLO

Il modello di calcolo è stato realizzato con il Software agli elementi finiti MidasGen 2010 V1.1.

La struttura nel suo complesso è stata analizzata attraverso un modello 3D. L'approccio tridimensionali consente di cogliere, tra l'altro, anche tutti quegli effetti trasversali che altrimenti verrebbero trascurati con un approccio "a telaio", come ad esempio l'eccentricità del treno di carico LM71, la forza centrifuga, il serpeggio, il ritiro, il vento.

I materiali sono modellati con un legame costitutivo elastico-lineare.

All'interno del modello si sono utilizzati elementi monodimensionali "beam" e elementi bidimensionali "schell".

Gli elementi FEM utilizzati sono tutti riferiti ai rispettivi assi baricentrici degli elementi.

Figura 2 - Modello di calcolo 3D

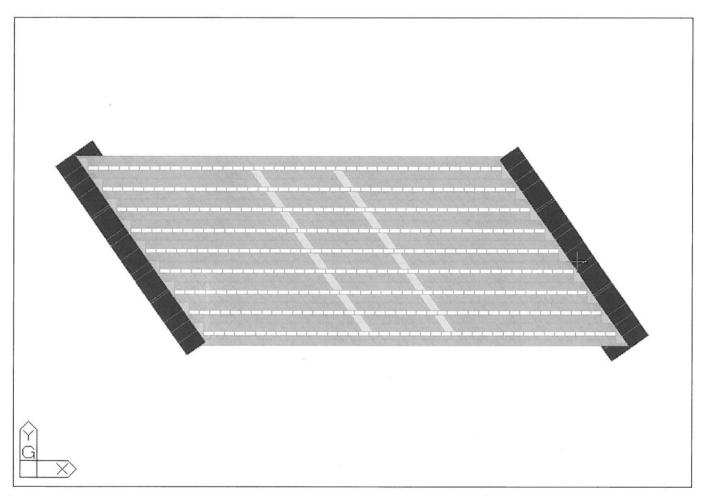


Figura 3 - Pianta Modello di calcolo

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBII PROGETTO POTENZIAM GALLARATE	ETTIVO N DEFINITI IENTO	IVO DELLA LINE			DALLA ATTA RHO-
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO 13 di 100

7.1 Modellazione del terreno

Per quanto riguarda le spinte del terreno, si sono considerate le spinte agenti solamente fino a fondo scavo, che corrisponde a un fronte di scavo pari a 5.00 m, mentre da fondo scavo fino alla base del palo si sono inserite dei vincoli elastici puntuali con la corrispondente rigidezza del terreno incontrata dal palo. La rigidezza delle molle è stata calcolata attraverso la formula di *Reese e Matlock*:

$$K_h = n_h \cdot \frac{z}{d}$$

$$d = diametro \quad palo$$

$$z = profondità$$

Terreni coerenti

Per i terreni coerenti i valori orientativi di n_h sono riportati nella seguente tabella :

Tipo di terreno	n _h n[N/cm ³]	Fonte
Argilla n.c. o lievemente o.c.	0,2 + 3,5	Reese, Matlock (1956) Davisson, Prakash (1963)
	0,3 ÷ 0,5 0,1 ÷ 1,0	Peck, Davisson (1970)
Argilla organica n.c.	0,1 ÷ 0,8	Davisson (1970)
Torba	0,05 0,03 ÷ 0,1	Davisson (1970) Wilson, Hilts (1967)
Loess	8 ÷ 10	Bowles (1968)

Terreni incoerenti

Per i terreni incoerenti il valore di n_h dipende dallo stato di addensamento e dalla presenza o meno della falda.

Stato di addensamento	Sciolto	Medio	Denso
Campo dei valori di A	100 ÷ 300	300 ÷1000	1000 ± 3000
Valore consigliato di A	200	600	1500
N _h [N/cm ³], sabbie non immerse	2,5	7,5	20
N _h [N/cm ³], sabbie immerse	1,5	5	12

Per i terreni presenti al di sotto del fondo scavo abbiamo :

Tipo terreno	z [m]	γ [kN/m³]	γ' [kN/m³]	n _h [N/cm ³]	D [m]	k _h [kN/m ³]	k _{h,Medio} [kN/m ³]	
Ghiaie Sabbiase	5.07	19	22	7.5	1.5	25350	91675	Fondo Scavo
Ghiaie Sabbiase	27.6	19	22	7.5	1.5	138000	81675	Fine strato

Tabella 2: caratteristiche molle puntuali

I carichi sui pali sono stati applicati a metro lineare, tenendo conto dell'interasse dei pali, pari a 1.40 m, mentre per quanto riguarda i carichi sulle *shell* si sono applicati carichi di superficie.

ITALFERR GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBII PROGETTO POTENZIAM GALLARATE	ETTIVO N DEFINIT	IVO DELLA LINEA			DALLA NTTA RHO-
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO 15 di 100

8 GEOMETRIA DI CALCOLO

La geometria dell'opera è la seguente :

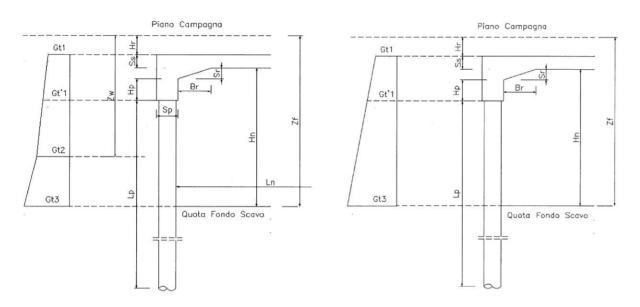
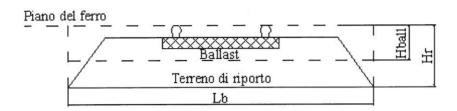


Figura 4: Schema geometrico struttura con spinta delle terre, con e senza falda.

Dati Geometrici


$H_r =$	0.0	m	
$S_{rilevato Stradale} =$	0.0	m	
S _{Finiture} =	0.05	m	
S _S =	0.28	m	(spessore soletta trave)
H _t =	1.35	m	(altezza trave)
S _R =	0	m	
H _N =	3.5	m	
$D_p = L_{t,SX} =$	1.5	m	
$L_{t,SX} =$	21.0	m	
i _p =	1.7	m	(interasse palo esterno)

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-GALLARATE PRG RHO

FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. Relazione di calcolo opera MDL1 00 VI0400001 Α 16 di 100 D 26 CL

Ltr =	2.4	m	(luce traversa)
Htr =	0.21	m	(altezza traverso)
Ss =	0.28	m	(spessore soletta)
	1.43		
s =	5	m	(scartamento)
Btr =	0.6	m	(interasse traverse)
Eb =	0.17	m	(altezza testa binario più alto da estradosso traversa)
		kN/m	
g =	18	С	(peso specifico ballast)
Hball =	8.0	m	
		kN/m	
gril =	20	С	(peso specifico rilevato secco)
		kN/m	
gril,w =	22	С	(peso specifico rilevato saturo)
Hr=	0	m	
Lb =	4.3	m	(larghezza impronta rilevato)

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBI PROGETTO POTENZIAN GALLARATI	ETTIVO N DEFINITI IENTO	VO DELLA LINE			DALLA ATTA RHO-
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO 17 di 100

9 AZIONI DI CALCOLO

9.1 Peso Proprio

Il peso proprio della struttura viene calcolato automaticamente dal programma di calcolo.

9.2 Carichi Permanenti Portati

Tra i carichi permanenti portati abbiamo quelli dovuti al peso del massetto bituminoso di spessore pari a 0.05 m, quelli dovuti al peso del rilevato e quelli dovuti alla presenza del ballast. Per quanto riguarda la larghezza della sezione trasversale del peso del ballast le dimensioni sono Lb, nel caso di un solo binario e Lb+Ib nel caso di due binari. In pianta il carico ha un'impronta parallela all'orientamento dei binari. I carichi permanenti agenti sulle suole di fondazione tengono conto, anche del terreno di fondazione secco e/o saturo.

Pertanto i carichi distribuiti sono:

<u>Finiture</u> (massetto di protezione bitu $0,05m$)	minoso – s	[m]	$[kN/m^3]$	$[kN/m^2]$
$q_{finiture} = h_{finiture} * \gamma_{cls,all} =$		0.05	20.00	1.00
Qb1 = Hball*gball Qb2 = (Hr-Hball)*gril Qb2 = (Hr-Hball)*gsat	0.0	kN/mq (car		opertura) soletta senza falda) soletta con falda)

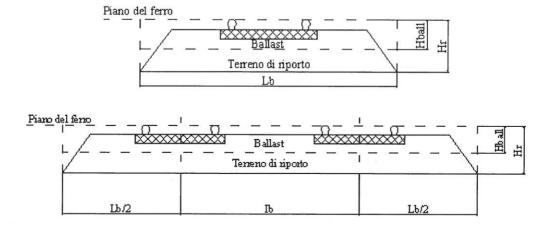
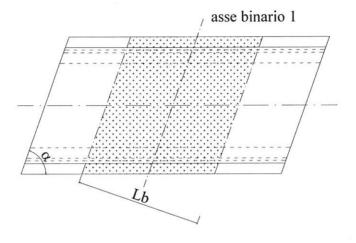



Figura 5: Schema sezione del rilevato in presenza di binario singolo o doppio.

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBI PROGETTO POTENZIAN GALLARATI	DEFINIT	IVO DELLA LINEA			DALLA
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO 18 di 100

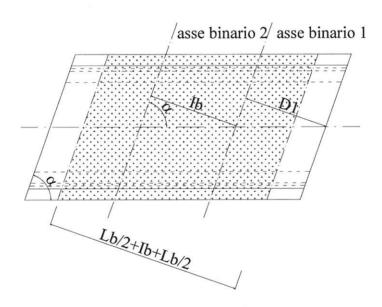


Figura 6: Schema rappresentazione dell'impronta del carico per binario singolo o doppio.

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBII PROGETTO POTENZIAM GALLARATE	ETTIVO N DEFINITI IENTO	VO DELLA LINEA			DALLA ATTA RHO-
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VIO400001	REV.	FOGLIO 19 di 100

9.3 Sovraccarichi Treni

I sovraccarichi dovuti al passaggio dei treni sono definiti per mezzo di modelli di carico. In particolare sono forniti due differenti treni di carico. Il primo legato al traffico normale (LM71) e un secondo legato al traffico pesante, a sua volta distinto in due sottogruppi (SW/0, SW/2):

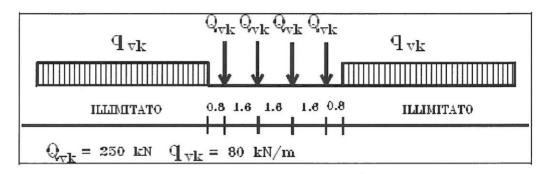
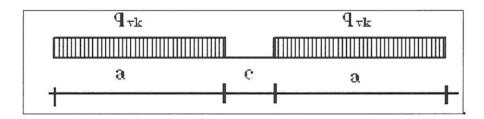



Figura 7: Schema Treno di carico LM71

Tipo di Carico	q _{vk} [kN/m]	a [m]	c [m]
SW/0	133	15,0	5,3
SW/2	150	25,0	7,0

Figura 8: Schema Treno di carico SW/0, SW/2

I carichi suddetti sono stati applicati su impronte di carico la cui larghezza è pari a Bd = Ltr + (Hball - Htr)/2 + (Hr - Hball) + Ss

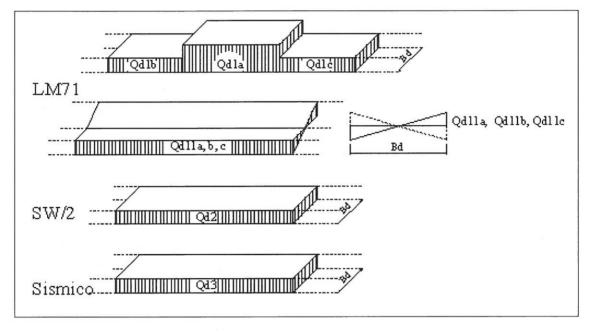


Figura 9: Schema dei carichi indotti dai treni.

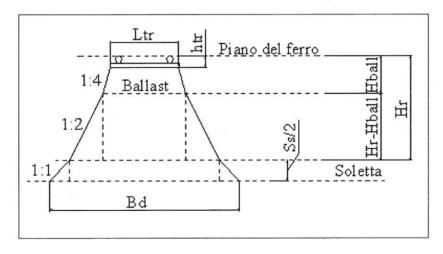


Figura 10: Schema coni di diffusione dei carichi.

ITALFERR.
GRUPPO FERROVIE DELLO STATO

 $Qd1b = Qd1c = (\alpha 11*LM71q/Bd)*\Phi3$

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N.443/01

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-

GALLARATE PR	G	RHO
--------------	---	-----

COMMESSA LOTTO CODIFICA DOCUMENTO **FOGLIO** Relazione di calcolo opera MDL1 00 D 26 CL VI0400001 21 di 100

$\alpha 11 =$	1.1	(coeff. Di adattamento LM71)
$\alpha 21 =$	1.1	(coeff. Di adattamento SW/0)
$\alpha 22 =$	1	(coeff. Di adattamento SW/2)
$L \varphi =$	11.44 m	(lunghezza caratteristica)
Φ 2 = (1.44/(L ϕ -0.2)^0.5)+0.82	1.25	
Φ 3 = (2.16/(L ϕ -0.2)^0.5)+0.73	1.37	
Lq = (1.6*3 + 1.6) =	6.4 m	
Bd = Ltr + (Hball-Htr)/2 + (Hr-Hball) + Ss	3.78 m	

LM71

Qvk =	250	kN
assi =	4	
qvk =	80	kN/m
Qd1a = $(\alpha 11*LM71p / (Lq*Bd))*\Phi3$	62.57	kN/mq

Per questo modello di carico è prevista un'eccentricità del carico rispetto all'asse del binario dipendente dallo scartamento s = 1435 mm, per tener conto dello spostamento dei carichi. Per tenere in conto l'effetto di questa eccentricità si incrementa il carico uniforme con un carico a "farfalla":

32.04 kN/mg

e = s/18	0.0797	m
$Qd11a = (LM71p*e/(Lq*Bd))*\Phi3$	4.53	kN/mq
$Qd11b = Qd11c = (LM71q*e/Bd)*\Phi3$	2.32	kN/mq

Sw/0

qvk =	133	kN/m
$Qd2 = (\alpha 21*SW0q / Bd)*\Phi3$	48.42	kN/mq

Sw/2

qvk =	150	kN/m
$Qd2 = (\alpha 22*SW2q / Bd)*\Phi3$	54.61	kN/mq

GRUPPO FERROVIE DELLO STATO	INFRASTRUTTURE FERROVIARIE STRATEGICHE I LEGGE OBIETTIVO N.443/01 PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA RHO-AROI GALLARATE PRG RHO	
Relazione di calcolo opera	COMMESSA LOTTO CODIFICA DOCUMENTO	REV. FOGLIO
, , o. a	MDL1 00 D 26 CL VI0400001	A 22 di 100

9.4 Carico indotto dalla frenata e dall'avviamento

La forza di frenatura e avviamento agiscono sulla sommità del binario nella direzione longitudinale dello stesso, ad un'altezza pari a Hf = Hr + Ss/2. Il carico definito in funzione dei vari treni di carico, viene ripartito orizzontalmente su un'area pari a uno sviluppo longitudinale corrispondente alla lunghezza della soletta misurata lungo lo sviluppo del binario e larghezza Bd.

Le azioni di frenatura e avviamento saranno combinate con i relativi carichi verticali.

Nel caso di ponti a doppio binario si devono considerare due treni in transito in versi opposti, uno in fase di avviamento, l'altro in fase di frenatura.

Si trascurano gli effetti flettenti indotti dall'eccentricità Hf.

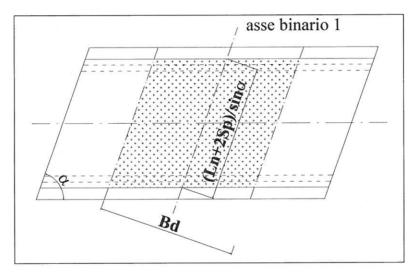


Figura 11: Schema impronta dei carichi.

			(LM71,SW/0,SW/2
Q1a,k =	33	kN/m)
Q1b,k =	20	kN/m	(LM71,SW/0)
Q1b,k =	35	kN/m	(SW/2)

Avviamento

LM71

 $Qa,LM = \alpha 11*Q1a,k/Bd$

9.62 kN/mq

SW/0, SW/2

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-

GALLARATE PRG RHO

 Relazione di calcolo opera
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 00
 D 26 CL
 VI0400001
 A
 23 di 100

 $Qa,SW = \alpha 21*Q1a,k/Bd$

8.74 kN/mq

<u>Frenatura</u>

LM71

 $Qf,LM = \alpha 11*Q1b,k/Bd$

5.83 kN/mq

SW/0

 $Qf,SW = \alpha 21*Q1b,k/Bd$

5.30 kN/mq

SW/2

 $Qf,SW = \alpha 22*Q1b,k/Bd$

9.27 kN/mq

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBI PROGETTO POTENZIAN GALLARATI	ETTIVO N DEFINIT IENTO	IVO DELLA LINEA			DALLA ATTA RHO-
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO 24 di 100

9.5 Carico indotto dalla forza centrifuga

La forza centrifuga si considera agente verso l'esterno della curva, in direzione orizzontale ed applicata alla quota di 1.80 m al di sopra del P.F., quindi ad un'altezza pari a Hfc = 1.80 m + Eb + Hr + Ss/2.

I calcoli si basano sulla velocità massima compatibile con il tracciato della linea e dove siano considerati gli effetti dei modelli di carico SW, si assumerà una velocità di 100 km/h.

Hfc = 1.80m+Eb+Hr+Ss/2 =	2.11	m	
$Qtk = (v^2/g*r)*(f*Qvk) = (V^2/127*r)*(f*Qvk)$	19	kN	
$qtk = (v^2/g*r)*(f*qvk) = (V^2/127*r)*(f*qvk)$	6	kN	(LM71)
$qtk = (v^2/g*r)*(f*qvk) = (V^2/127*r)*(f*qvk)$	3.9	kN	(SW/0)
$qtk = (v^2/g*r)*(f*qvk) = (V^2/127*r)*(f*qvk)$	4.4	kN	(SW/2)
$f = (1-((V-120)/1000)*(814/V + 1.75)*(1-(2.88/L_f)^{0.5}))$	0.83		
v =	44.44	m/s km/	(velocità di progetto)
V(LM71) =	160	h km/	(velocità max di progetto)
V(SW) =	100	h	(velocità di progetto)
f =	calcola	ı	(fattore di riduzione)
g =	9.81	m/s	(accelerazione di gravità)
r =	2200	m	(raggio di curvatura) (lunghezza di influenza della parte curva di
$L_f =$	21	m	binario sul ponte)

 $f = 1 \text{ per V} \le 120 \text{ km/h o L}_f \le 2.88 \text{ m}$ $f < 1 \text{ per } 120 \le \text{V} \le 300 \text{ km/h e L}_f > 2.88 \text{ m}$ f(V) = f(300) per V > 300 km/h

Per tener conto degli effetti flessionali indotti dall'eccentricità Hfc si applica al piano medio della soletta di copertura, su di un'area con impronta di larghezza Bh = Btr + (Hball - Htr)/2 + (Hr - Hball) + Ss e sviluppo pari a Lf, un carico distribuito a "farfalla".

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-

GALLARATE PRG RHO

Relazione di calcolo opera

COMMESSA LOTTO MDL1 00

CODIFICA D 26 CL

DOCUMENTO VI0400001

REV.

FOGLIO 25 di 100

LM71

V > 120 km/h

caso a) V = 120 km/h, f = 1

(velocità di V(LM71) =120 km/h progetto)

 $Qtk = (v^2/g*r)*(f*Qvk) = (V^2/127*r)*(f*Qvk)$ 11 kN

 $qtk = (v^2/g^*r)^*(f^*qvk) = (V^2/127^*r)^*(f^*qvk)$ 3 kN (LM71)

f = 0.83

 $Qtk,dis. = Qtk*Hfc/(Bh*Bd^2/6)$ 5 kN/mg qtk,dis. = qtk*Hfc/(Bd) 2 kN/mq

caso b) V = max di progetto

 $Qtk = (v^2/g^*r)^*(f^*Qvk) = (V^2/127^*r)^*(f^*Qvk)$ 19 kN $qtk = (v^2/g*r)*(f*qvk) = (V^2/127*r)*(f*qvk)$ 6 kN

 $Qtk,dis. = Qtk*Hfc/(Bh*Bd^2/6)$ 9 kN/mq qtk,dis. = qtk*Hfc/(Bd) 3 kN/mq

SW/0

V = 100 km/h

qtk,dis. = qtk*Hfc/(Bd) 2.20 kN/mg

SW/2

V = 100 km/h

qtk,dis. = qtk*Hfc/(Bd) 2.48 kN/mg

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBI PROGETTO POTENZIAN GALLARATI	ETTIVO I DEFINITI IENTO	TIVO DELLA LINEA			DALLA ATTA RHO-
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO 26 di 100

9.6 Carico indotto dal serpeggio

Per tener conto della forza laterale indotta dal serpeggio, si considera una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolare all'asse del binario. Il valore caratteristico di tale forza sarà assunto pari a Qsk = 100 kN e deve essere moltiplicato per α (se α >1), ma non per il coefficiente Φ . Questa forza laterale deve essere sempre combinata con i carichi verticali.

L'altezza di applicazione è data da Hh = Eb + Hr + Ss/2 dal piano medio della soletta di copertura dei manufatti. Per tener conto degli effetti flettenti indotti dall'eccentricità Hh si applica il contributo di Qsk su di un'area con impronta di larghezza Bh = Btr + (Hball - Htr)/2 + (Hr - Hball) + Ss e sviluppo longitudinale pari alla lunghezza della soletta stessa misurata lungo lo sviluppo del binario, un carico distribuito "a farfalla".

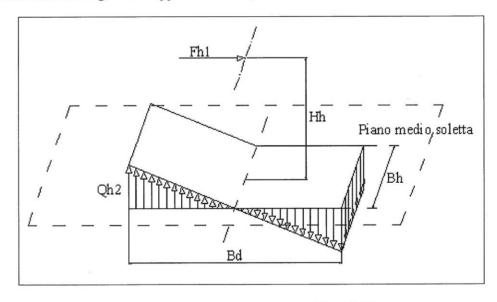


Figura 12: Schema impronta dei carichi.

Bh = Btr+(Hball-Htr)/2+(Hr-Hball)+Ss	1.975	m
Hh = Eb + Hr + Ss/2	0.31	m
Qsk =	100	kN
$Qh2 = Qsk*Hh/(Bh*Bd^2/6)$	6.61	kN/mq

ITALFERR GRUPPO FERROVIE DELLO STATO	INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N.443/01 PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-GALLARATE PRG RHO
Relazione di calcolo opera	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO MDL1 00 D 26 CL VI0400001 A 27 di 100

9.7 Carichi variabili

Oltre ai carichi variabili dettati dai treni di carico si sono presi in considerazione anche dei carichi variabili legati alla folla che sono stati posizionati lungo il sentiero pedonale che costeggia da un solo lato la linea ferroviaria:

q = 5.0 kN/mq

9.8 Vento

Per tenere conto della azione dovuta alla presenza del vento, come previsto dalla normativa, si considera una pressione statica convenzionale di intensità $Qv = 2.5 \text{ kN/m}^2$, applicata sulla superficie esposta della struttura che viene considerata parallela all'asse del binario e di altezza pari a 4m misurati dal piano del ferro, più l'altezza del rilevato e lo spessore della soletta di copertura.

L'azione orizzontale risultante di tale pressione è pari ad Fv = 2.5 * (Ss+Hr+Hsv), considerata applicata a 2m dal piano del ferro e, pertanto, ad una altezza Hfv=Hsv+Hr+Ss/2 dal piano medio della soletta di copertura.

Per tener conto degli effetti flettenti indotti dall'eccentricità Hfv si applica al piano medio della soletta di copertura, su di una area con impronta di larghezza Bd e sviluppo longitudinale pari alla lunghezza della soletta stessa misurata lungo lo sviluppo del binario, un carico distribuito "a farfalla". Di seguito sono riportati i valori per la descrizione dei carichi orizzontali e verticali.

			(altezza
Hsv =	4	m	vagone)
Hfv = Hsv+Hr+Ss/2 =	4.14	m	
Fv = 2.5*(Ss+Hr+Hsv) =	10.70	kN/m	
$Pv = Fv*Hfv/(Bd^2/6)$	18.65	kN/mq	

9.9 Azioni termiche

Le variazioni termiche uniformi, si considerano applicate alla sola soletta superiore dando in imput un valore Dt positivo.

 $Dt = \pm 15^{\circ}$

9.10 Ritiro del cls nella soletta di copertura

La deformazione totale da ritiro si può esprimere come :

$$\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$$

 ϵ_{cs}

deformazione totale per ritiro

 ϵ_{cd}

deformazione per ritiro da essiccamento

 ϵ_{ca}

deformazione per ritiro autogeno

Il valore medio a tempo infinito della deformazione per irtiro da essiccamento $\epsilon_{cd,\infty}=k_h*\epsilon_{cd0}$ può essere valutato in funzione della resistenza caratteristica a compressione, dell'umidità relativa e del parametro h_0

	Defo	rmazione	da ritiro	per essic	camento (in ‰)
\mathbf{f}_{ck}		Uı	nidità Re	lativa (in	%)	
	20	40	60	80	90	100
20	-0,62	-0,58	-0,49	-0,30	-0,17	+0,00
40	-0,48	-0,46	-0,38	-0,24	-0,13	+0,00
60	-0,38	-0,36	-0,30	-0,19	-0,10	+0,00
80	-0,30	-0.28	-0.24	-0,15	-0.07	+0.00

h ₀ (mm)	k _h
100	1
200	0.85
300	0.75
≥ 500	0.7

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-GALLARATE PRG RHO

Relazione di calcolo opera	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Trelazione di calcolo opera	MDL1	00	D 26 CL	VI0400001	Α	29 di 100

Dati Geometrici :		
H=	0.28	[m]
$B_1 =$	1	[m]
$t_{v} =$	0	[m]
$t_{fl} =$	0	[m]
B ₂ =	0	[m]
t ₂ =	0	[m]
A =	0.28	[m2]
u =	2.56	[m]
$\mathbf{h}_0 =$	218.75	[mm]
t =	10	[gg]
$t_s =$	28	[gg]
$\beta_{\rm ds}({\rm t-t_s}) =$	-0.16155923	
$k_h =$	0.75	
$\varepsilon_{\rm cd0} =$	0.0038	
Umidità Relativa	55	[%]
$\mathbf{f}_{ck} =$	45	[N/mm2]
$arepsilon_{\mathrm{cd},\infty}=$	0.002840625	[mm]
$\varepsilon_{\rm cd}$ (t) =	-0.00045893	[mm]
$\varepsilon_{\mathrm{ca},\infty}=$	0.0000875	[mm]
$\beta_{as}(t) =$	0.468714391	
$\varepsilon_{\mathrm{ca}}\left(\mathrm{t}\right)=$	4.10125E-05	[mm]
ε _{cs} =	-0.00041792	[mm]

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-**GALLARATE PRG RHO**

Relazione di calcolo opera

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO MDL1 00 D 26 CL VI0400001 30 di 100

L'azione del ritiro viene considerata applicando alla soletta di copertura una equivalente diminuzione di temperatura:

Dt, ritiro =
$$-\varepsilon_{cs} / (1 + \Phi) * C_{ESP}$$

 $\Phi =$

2.1

 $C_{ESP} =$

 $10x10^{-6}$

m/°C

(Coefficiente di espansione termica)

 $\Delta t =$

-13.48

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO

GALLARATE PRG RHO

Relazione di calcolo opera

COMMESSA LOTTO MDL1 00

CODIFICA D 26 CL

DOCUMENTO VI0400001

FOGLIO 31 di 100

REV.

9.11 Azione Sismica

L'azione sismica è stata calcolata secondo le indicazioni delle NTC'08 perché più gravosa rispetto all'azione calcolata con il Dm'96, come riportato di seguito :

DM'96

zona sismica di III Categoria

a/g=C R I
$$\varepsilon$$
 β = 0.048

$$C = 6-2 / 100 = 0.04$$

R = 1.0

 $\varepsilon = 1.0$

 $\beta = 1.2$

I=1.0

NTC '08

Si sono calcolati gli spettri sismici, partendo dalle coordinate geografiche dell'opera, attraverso il foglio elettronico *Spettri-NTCver*. 1.0.3 ipotizzando un fattore di struttura q = 1.

Dagli spettri sismici, si è ricavata la forza statica equivalente applicata al baricentro della nostra struttura, in funzione della massa:

$$F_i = F_h \cdot z_i \cdot W_i / \Sigma_j z_j W_j$$

$$F_h = S_d(T_1) \cdot W \cdot \lambda / g$$

$$T_1 = C_1 \cdot H^{3/4}$$

 $C_1 =$ 0.085 per costruzioni con struttura a telaio in acciaio, 0.075 per costruzioni con struttura a telaio in calcestruzzo armato, 0.050 per qualsiasi altro tipo di struttura;

H =altezza della costruzione;

forza da applicare alla massa i-esima; $F_i =$

 $W_i e W_i$ sono i pesi della massa i e della massa j;

sono le quote delle masse i e j; $z_i e z_j$

Relazione di calcolo opera

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N.443/01

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-GALLARATE PRG RHO

GALLANATE THO IN

MDL1

COMMESSA LOTTO

00

CODIFICA D 26 CL DOCUMENTO VI0400001 REV.

FOGLIO 32 di 100

 $S_d(T_1)$

è l'ordinata dello spettro di risposta di progettodefinito;

W

peso complessivo della costruzione

λ

0.85 se la costruzione ha almeno tre orizzontamenti e se $T_1 < 2T_C$, pari a 1 in tutti gli altri casi;

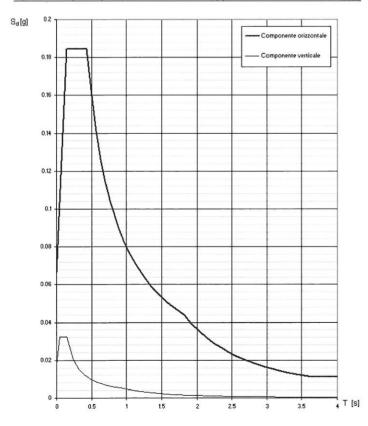
Lat.: 45.520118°

Long.: 9.030814°

Categoria di Sottosuolo: B

Categoria Topografica: T1

9.11.1 SLV


Parametri indipendenti

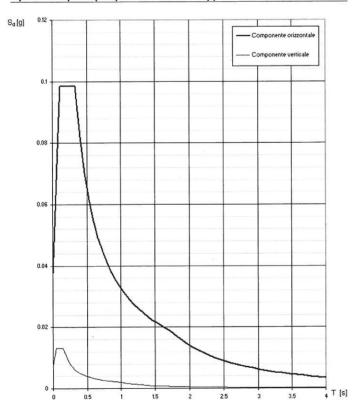
STATO LIMITE	SLV
a _g	0.055 g
F.	2.771
T _c *	0.312 s
Ss	1.200
Cc	1.388
S _T	1.000
q	1.000

Parametri dipendenti

S	1.200
η	1.000
T _B	0.145 s
T _c	0.434 s
T _D	1.822 s

Spettri di risposta (componenti orizz. e vert.) per lo stato limite SLV

9.11.2 SLD


Parametri indipendenti

STATO LIMITE	SLD
ag	0.031 g
F.	2.620
T _c *	0.224 s
Ss	1.200
S _s	1.484
S _T	1.000
q	1.000

Parametri dipendenti

S	1.200
η	1.000
T _B	0.111 s
T _c	0.332 s
Tp	1.725 s

Spettri di risposta (componenti orizz. e vert.) per lo stato limite SLD

I ITALFERR
GRUPPO FERROVIE DELLO STATO

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA RHO-ARONA, TRATTA RHO LINEA GALLARATE PRG RHO

Relazione di calcolo opera

DOCUMENTO REV. FOGLIO COMMESSA LOTTO CODIFICA MDL1 D 26 CL VI0400001 35 di 100

9.12 Spinte laterali del terreno in fase statica

Sia sul cordolo della paratia che sui pali è stata applicata la spinta a riposo, prendendo in conto anche l'eventuale presenza della falda. Sui pali il carico è stato linearizzato in funzione dell'interasse dei pali. I valori caratteristici delle spinte sono:

$$G_{t1} = K_0 * (\gamma_{ril} * (H_r))$$

$$G_{t'1} = G_{t1} + K_0 \gamma_{ti} (H_p + S_r + S_s)$$

$$G_{t2} = G_{t'1} + K_0 \gamma_{ti} (Z_W - H_r)$$

$$G_{t3} = G_{t2} + K_0 ((Z_f - Z_w)(\gamma'_{ti.s}))$$

In presenza di falda

$$G_{t3} = G_{t2} + K_0 ((Z_f - Z_w)(\gamma_{ti}))$$

In assenza di falda

essendo:

$$Z_f = H_r + S_s + S_f + H_n$$

per i portali

 $H_r =$

spessore ricoprimento

 S_r

spessore ringrosso agli spigoli

 γ_{ri}

peso specifico del rilevato

 γ_{ti}

peso specifico dello strato di terreno i-esimo

y'ti

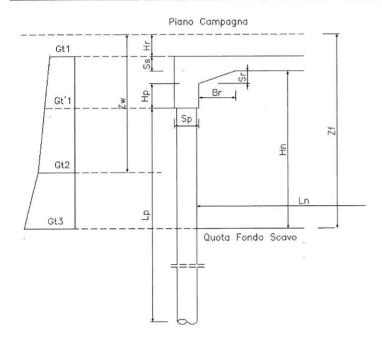
peso specifico del terreno immerso

 γ_{cls}

peso specifico calcestruzzo

 $K_0 = (1-\text{sen}\phi')$

coefficiente di spinta a riposo


 $K_a = (1-\text{sen}\phi') / (1+\text{sen}\phi')$

coefficiente di spinta attiva

 $K_p = (1 + \operatorname{sen}\varphi') / (1 - \operatorname{sen}\varphi')$

coefficiente di spinta passiva

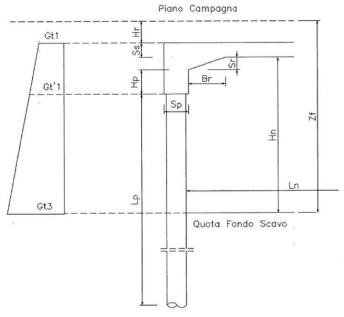


Figura 13: Schema geometrico struttura con spinta delle terre, con e senza falda.

 $G_{t1} = 0.0 [kN/m^2]$

 $G_{t'1} = 23.22 [kN/m^2]$

 $G_{t3} = 71.62 [kN/m]$

In assenza di falda

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBII PROGETTO POTENZIAN GALLARATE	ETTIVO N DEFINITI IENTO	.443/01 VO DELLA LINE	TRATEGICHE D		DALLA ATTA RHO-
Relazione di calcolo opera	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	MDI 1	00	D 26 CI	VI0400001	Α	37 di 100

9.12.1 Spinte laterali per il sovraccarico

A seguito del sovraccarico lungo il piedritto si viene a creare una sovraspinta per i carichi verticali da traffico. Tale incremento di spinta per l'analisi statica è dipendente dall'angolo di attrito del terreno :

$$\sigma_{ht} = k_0 * q$$

$$k_0 = 1$$
-sen ϕ ' = 1-sen32 = 0.47

dove al posto di ϕ ' si è preso il valore dell'angolo di attrito maggiormente penalizzante della stratigrafia presente.

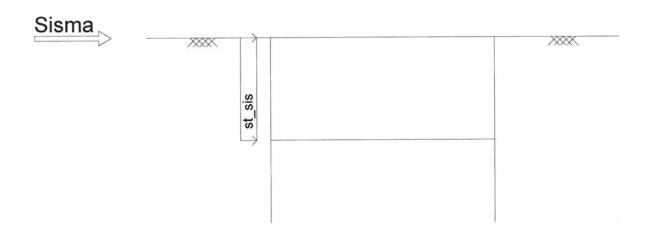
Per il carico ripartito $Qd2(SW/2) = 54.61 \text{ kN/m}^2 \text{ si ha}$

$$\sigma_{ht} = 0.47*54.61 = 25.67 \text{ kN/m}$$

Per il carico ripartito Qb1= 14.4 kN/m² si ha

$$\sigma_{ht} = 0.47*14.4 = 6.77 \text{ kN/m}$$

Il carico totale ripartito $Qd2(SW/2) + Qb1 = 69.01 \text{ kN/m}^2 \text{ si ha}$


$$\sigma_{ht} = 0.47*69.01 = 32.43 \text{ kN/m}$$

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBIE PROGETTO POTENZIAM GALLARATE	ETTIVO N DEFINITI ENTO	.443/01 VO DELLA LINE	TRATEGICHE DI		DALLA ATTA RHO-
Relazione di calcolo opera	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
100 mg/mm/mm/mm/mm/mm/mm/mm/mm/mm/mm/mm/mm/m	MDI 1	00	D 26 CI	VI0400001	Α	38 di 100

9.13 Spinte laterali del terreno in fase sismica

Il calcolo delle spinte del terreno in fase sismica è stato condotto attraverso il metodo di WOOD, in favore di sicurezza:

$$\sigma = \left(\frac{a_g}{g}\right) \cdot S_S \cdot S_T \cdot \gamma \cdot H$$

Dati Sismici del Sito

SLV

$$S_s = 1.2$$
 $S_T = 1$
 $a_g = 0.055 g$
 $g = 9.81$

SLD

$$S_s = 1.2$$
 $S_T = 1$
 $a_g = 0.031 g$
 $g = 9.81$

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N.443/01

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-

GALLARATE PRG RHO

Relazione di calcolo opera

COMMESSA LOTTO MDL1 00

CODIFICA DOCUMENTO D 26 CL VI0400001

REV.

Α

FOGLIO 39 di 100

Spinte sismiche agenti

SLV

Cordolo

σ=

6 [kN/m]

Pali

σ=

11 [kN/m]

SLD

Cordolo

σ=

4 [kN/m]

Pali

σ=

6.1 [kN/m]

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA

LEGGE OBIETTIVO N.443/01

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-

GALLARATE PRG RHO

Relazione di calcolo opera

COMMESSA LOTTO
MDL1 00

D 26 CL

DOCUMENTO REV.
VI0400001 A

FOGLIO 40 di 100

10 CONDIZIONI E COMBINAZIONI DI CARICO

Di seguito si riportano le singole condizioni di carico utilizzate per rappresentare le varie condizioni di carico con le relative combinazioni di calcolo :

PP

(Peso Proprio)

Qb1 Qb2 (Peso dovuto al ballast) (Peso dovuto al rilevato)

Perm Acces

(Peso dovuto a elementi accessori presenti sull'impalcato)

Ritiro

Var.

(Carichi variabili Marciapiedi)

Vento

Dt

(Variazione Termica)

ESTR-SLV

(Azione sismica SLV)

ESTR-SLD

(Azione sismica SLD)

LM71

SW/0

SW/2

DDDD ATA

FREN_AVV

(Frenatura Avviamento)

CENTRIF SERP (Centrifuga)

~= ~ ~~

(Serpeggio)

 $ST_S(K0)$

(Spinta Statica Terreno)

SST S(K0)

(Spinta Statica Terreno dovuto al Sovraccarico)

ST SIS(Ka) SLV

(Spinta Sismica del Terreno)

SST SIS(Ka) SLV

(Spinta Sismica Terreno dovuto al Sovraccarico)

ST SIS SLV

(Incremento spinta terreno dovuto al Sisma)

ST SIS(Ka) SLD

(Spinta Sismica del Terreno)

SST SIS(Ka) SLD

(Spinta Sismica Terreno dovuto al Sovraccarico)

ST SIS SLD

(Incremento spinta terreno dovuto al Sisma)

La Normativa definisce diverse combinazioni di carico, in funzione dei vari stati limite che si vogliono verificare.

- Stati Limite Ultimi (SLU):

$$\gamma_{G1} * G_1 + \gamma_{G2} * G_2 + \gamma_P * P + \gamma_{O1} * Q_{K1} + \gamma_{O2} * \psi_{02} * Q_{K2} + \gamma_{O3} * \psi_{03} * Q_{K3} + \dots$$

 Combinazione Rara per stati limite di esercizio irreversibili da utilizzare nelle verifiche alle tensioni ammissibili (SLE):

$$G_1 + G_2 + P + Q_{K1} + \psi_{02} Q_{K2} + \psi_{03} Q_{K3} + \dots$$

- Combinazione frequente usata per gli stati limite di esercizio reversibili (SLE):

$$G_1 + G_2 + P + \psi_{11} * Q_{K1} + \psi_{22} * Q_{K2} + \psi_{23} * Q_{K3} + \dots$$

- Combinazione quasi permanente impiegata per gli effetti a lungo termine (SLE):

$$G_1 + G_2 + P + \psi_{21} Q_{K1} + \psi_{22} Q_{K2} + \psi_{23} Q_{K3} + \dots$$

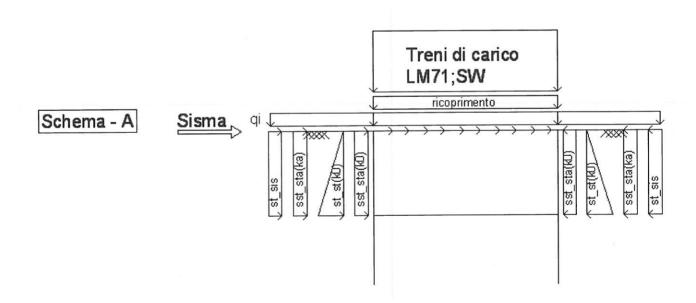
- Combinazione Sismica impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} Q_{K1} + \psi_{22} Q_{K2} + \psi_{23} Q_{K3} + \dots$$

Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto
 Ad:

$$G_1 + G_2 + P + A_d + \psi_{21} Q_{K1} + \psi_{22} Q_{K2} + \psi_{23} Q_{K3} + \dots$$

La scelta dei coefficienti da utilizzare nella verifica degli stati limite abbiamo tre casi:


- Lo stato limite di equilibrio come corpo rigido EQU
- Lo stato limite di resistenza della struttura compresi gli elementi di fondazione STR
- Lo stato limite di resistenza del terreno GEO

Per quanto riguarda gli stati limite STR, GEO, si possono adottare due differenti approcci, l'*Approccio1* (Combinazione1 – Combinazione2) e l'*Approccio2*. L'Approccio1-Combinazione1 è più severa nei confronti del dimensionamento strutturale delle opere a contatto col terreno, l'Approccio1-Combinazione2 è più severa nei riguardi del dimensionamento geotecnico.

Le combinazioni sono distinte in funzione di differenti schemi di carico.

Per ogni schema di carico si sono analizzate differenti combinazioni di carico di seguito riportate con i relativi coefficienti moltiplicativi, provenienti dal capito sui ponti stradali per quanto riguarda i carichi da traffico e le spinte del terreno, mentre per quanto riguarda la variazione termica e il ritiro si sono utilizzati i classici coefficienti presenti al capitolo 2 dell'NTC'08 sulle combinazioni.

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N.443/01

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-GALLARATE PRG RHO

Relazione di calcolo opera COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO MDL1 00 D 26 CL VI0400001 A 43 di 100

Name	Active	Type	PP	Qbl	Qb2	Perm Acces	Ritiro	Var.	Vento	Dt	ESTR-SLV ESTR
1A-SLU-G1	Strength/Stress	Add	1.35	1.5	1.35	1.5	1.35	1.45	0.9	0.9	
2A-SLU-G1	Strength/Stress	Add	1.35	1.5	1.35	1.5	1.35		1.5	0.9	
3A-SLU-G1	Strength/Stress	Add	1.35	1.5	1.35	1.5	1.35	1.16	0.9	1.5	
4A-SLU-G3	Strength/Stress	Add	1.35	1.5	1.35	1.5	1.35	1.45	0.9	0.9	
5A-SLU-G3	Strength/Stress	Add	1.35	1.5	1.35	1.5	1.35		1.5	0.9	
6A-SLU-G3	Strength/Stress	Add	1.35	1.5	1.35	1.5	1.35	1.16	0.9	1.5	
7A-SLE_F-G1	Serviceability	Add	1.0	1.0	1.0	1.0	1.0	0.8		0.5	
8A-SLE_F-G1	Serviceability	Add	1.0	1.0	1.0	1.0	1.0		0.5	0.5	
9A-SLE-F_G1	Serviceability	Add	1.0	1.0	1.0	1.0	1.0			0.6	
10A-SLE_F-G3	Serviceability	Add	1.0	1.0	1.0	1.0	1.0	0.8		0.5	
11A-SLE_F-G3	Serviceability	Add	1.0	1.0	1.0	1.0	1.0		0.5	0.5	
12A-SLE-F_G3	Serviceability	Add	1.0	1.0	1.0	1.0	1.0			0.6	
13A-SLE_F-G4	Serviceability	Add	1.0	1.0	1.0	1.0	1.0	1.0		0.5	
14A-SLE_F-G4	Serviceability .	Add	1.0	1.0	1.0	1.0	1.0		0.5	0.5	
15A-SLE-F_G4	Serviceability .	Add	1.0	1.0	1.0	1.0	1.0			0.6	
16A-SLE_QP-G1	Serviceability	Add	1.0	1.0	1.0	1.0	1.0			0.5	
17A-SLE_R-G1	Serviceability	Add	1.0	1.0	1.0	1.0	1.0	1.0	0.6	0.6	
18A-SLE_R-G1	Serviceability	Add	1.0	1.0	1.0	1.0	1.0	0.8	1.0	0.6	
19A-SLE-R_G1	Serviceability	Add	1.0	1.0	1.0	1.0	1.0	0.8	0.6	1.0	
20A-SLE_R-G3	Serviceability	Add	1.0	1.0	1.0	1.0	1.0	1.0	0.6	0.6	
21A-SLE_R-G3	Serviceability	Add	1.0	1.0	1.0	1.0	1.0	0.8	1.0	0.6	
22A-SLE-R_G3	Serviceability	Add	1.0	1.0	1.0	1.0	1.0	0.8	0.6	1.0	
23A-SLE_R-G4	Serviceability	Add	1.0	1.0	1.0	1.0	1.0	1.0	0.6	0.6	10.000
24A-SLE_R-G4	Serviceability	Add	1.0	1.0	1.0	1.0	1.0	0.8	1.0	0.6	
25A-SLE-R_G4	Serviceability	Add	1.0	1.0	1.0	1.0	1.0	0.8	0.6	1.0	
26A-SLV	Strength/Stress	Add	1.0	1.0	1.0	1.0	1.0			0.5	1.0
27A-SLD	Strength/Stress	Add	1.0	1.0	1.0	1.0	1.0			0.5	1.

A_ST_S(K0)	A_SST_S(K0)	A_ST_SIS(Ka)_SLV	A_SST_SIS(Ka)_SLV	A_ST_SIS_SLV	A_ST_SIS(Ka)_SLD	A_SST_SIS(Ka)_SLD	A_ST_SIS_S
1.35	1.35			ini .			
1.35	1.35						
1.35	1.35						
1.35	1.35		500 0200 300 damen				
1.35	1.35						
1.35	1.35						3000-1171
1.0	1.0						
1.0	1.0						
1.0	1.0						
1.0	1.0			700/11/70			
1.0	1.0						
1.0	1.0						
1.0	1.0						
1.0	1.0						
1.0	1.0			9700	The second second		
1.0	1.0						
1.0	1.0						
1.0	1.0						
1.0	1.0						
1.0	1.0						
1.0	1.0						
1.0	1.0						
1.0	1.0						
1.0	1.0						
1.0	1.0						
		1.0	1.0	1.0			
					1.0	1.0	1.0

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N.443/01

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-**GALLARATE PRG RHO**

Relazione di calcolo opera

COMMESSA LOTTO MDL1 00

CODIFICA D 26 CL

DOCUMENTO VI0400001

REV.

FOGLIO 44 di 100

uppo1_LM71	Gruppo1_SW2	Gruppo3_LM71	Gruppo3_SW2	Gruppo4_LM71	Gruppo4_SW
	1.45				
	1.16		1.81		
			1.45		
			W W/W		
			1.16		1
	0.8				
			2.2		
			0.8		
		4			1.0
					1.0
	1.0			000	***
	0.8				
	0.8				
	2000-2000-2		1.0		
			0.8		
			0.8		
					1.0
					0.8
					0.8

Gli inviluppi associati alle singole combinazioni di carico sono :

ENV_SLU-G1

1A-SLU-G1

2A-SLU-G1

3A-SLU-G1

ENV_SLU-G3

4A-SLU-G3

5A-SLU-G3

6A-SLU-G3

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N.443/01

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-

GALLARATE PRG RHO

Relazione di calcolo opera

COMMESSA LOTTO
MDL1 00

CODIFICA D 26 CL DOCUMENTO VI0400001 REV. FOGLIO

45 di 100

ENV_SLE_F-G1

7A-SLE_F-G1

8A-SLE_F-G1

9A-SLE-F_G1

ENV_SLE_F-G3

10A-SLE_F-G3

11A-SLE F-G3

12A-SLE-F_G3

ENV_SLE_F-G4

13A-SLE_F-G4

14A-SLE F-G4

15A-SLE-F_G4

ENV_SLE_QP-G1

16A-SLE_QP-G1

ENV_SLE_R-G1

17A-SLE_R-G1

18A-SLE R-G1

19A-SLE-R_G1

ENV_SLE_R-G3

20A-SLE R-G3

21A-SLE_R-G3

22A-SLE-R_G3

ENV_SLE_R-G4

23A-SLE_R-G4

24A-SLE_R-G4

25A-SLE-R_G4

Relazione di calcolo opera

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N.443/01

PROGETTO DEFINITIVO

00

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-GALLARATE PRG RHO

COMMESSA LOTTO CODIFICA DOCUMENTO

CODIFICA DOCUMENTO REV.
D 26 CL VI0400001 A

FOGLIO 46 di 100

11 RISULTATI STRUTTURALI

Si riportano di seguito i diagrammi delle sollecitazioni dovute agli inviluppi di progetto.

Il valore di verifica delle travi in mezzeria è stato preso considerando la situazione nella Fase1, cioè nel momento della posa in opera delle travi, prima della presa del getto della soletta di completamento. In questo caso il modello di calcolo è quello di trave appoggiata, soggetta al peso proprio della trave e al peso del getto della soletta.

MDI 1

Dati:

A = 0.456 mq (Area sez. trave)

B = 1.0 m (larghezza trave)

L = 21.0 m (luce trave)

s = 0.28 m (spessore soletta)

 $\gamma = 25 \text{ kN/mc}$

 $\gamma_{G1} = 1.35$ (coeff. Parziali azioni)

Azioni:

$$P = (A \times \gamma) + (s \times \gamma \times B) = (0.456x25) + (0.28x25x1.0) = 18.4 \text{ kN/m}$$

Sollecitazioni:

$$M = (\gamma_{G1}xP) \times L^2 / 8 = (1.35x18.4) \times 21^2 / 8 = 1369 \text{ kNm}$$

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBIE PROGETTO POTENZIAM GALLARATE	DEFINITIENTO	TIVO DELLA LINEA			DALLA ATTA RHO-
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO 47 di 100

11.1 Inviluppo – SLU-G1

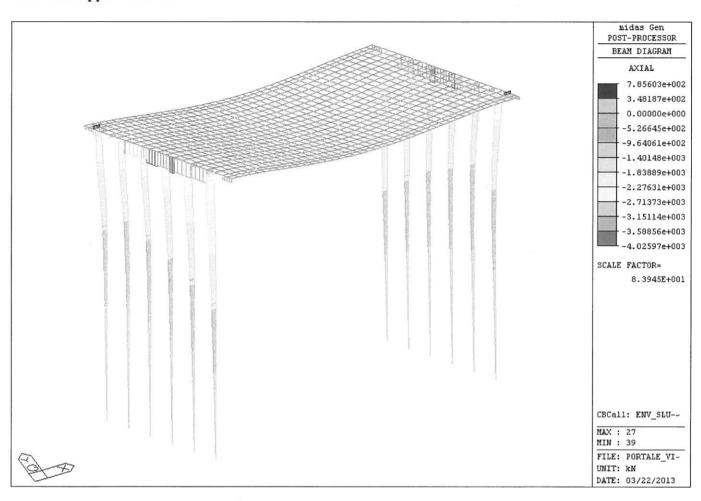


Figura 14: Sforzo Normale N.

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBIE PROGETTO POTENZIAM GALLARATE	TTIVO I DEFINIT ENTO	IVO DELLA LINEA			DALLA ATTA RHO-
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO 48 di 100

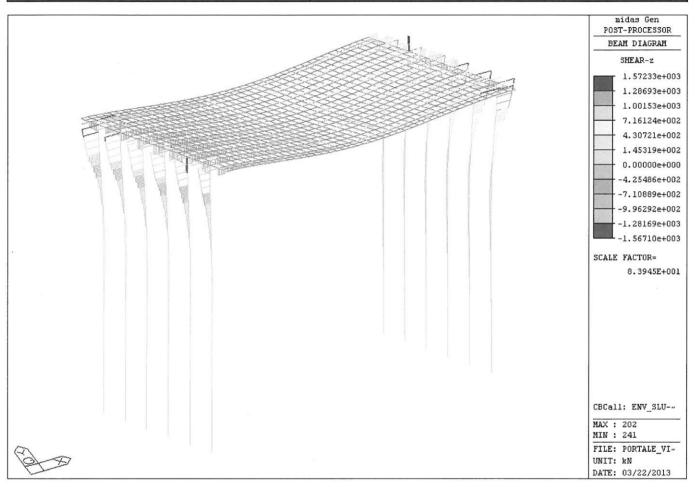


Figura 15: Sforzo di Taglio Fz.

ITALFERR GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBIE PROGETTO POTENZIAM GALLARATE	ETTIVO N DEFINITI ENTO	I.443/01 IVO DELLA LINEA	TRATEGICHE DE		DALLA ATTA RHO-
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO 49 di 100

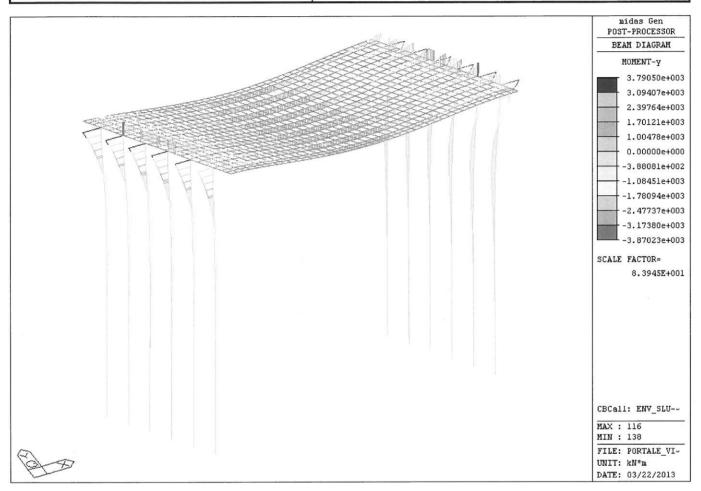


Figura 16: Momento Flettente My.

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBII PROGETTO POTENZIAM GALLARATE	ETTIVO N DEFINITI ENTO	.443/01 VO DELLA LINE/	TRATEGICHE DI		DALLA ATTA RHO-
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VIO400001	REV.	FOGLIO 50 di 100

11.2 Inviluppo – SLU-G3

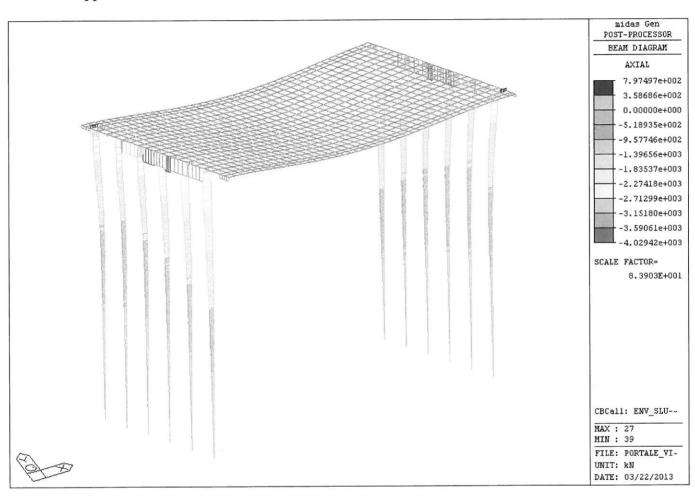


Figura 17: Sforzo Normale N.

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBIE PROGETTO POTENZIAM GALLARATE	DEFINITIENTO	TIVO DELLA LINEA			DALLA ATTA RHO-
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO 51 di 100

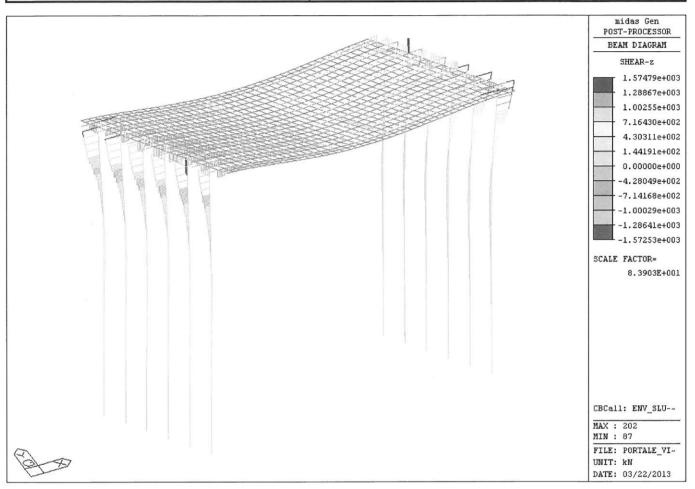


Figura 18: Sforzo di Taglio Fz.

TALFERR GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBIE PROGETTO POTENZIAM GALLARATE	ETTIVO N DEFINITI ENTO	.443/01 VO DELLA LINE	TRATEGICHE D		DALLA ATTA RHO-
Relazione di calcolo opera	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	MDL1	00	D 26 CL	VI0400001	A	52 di 100

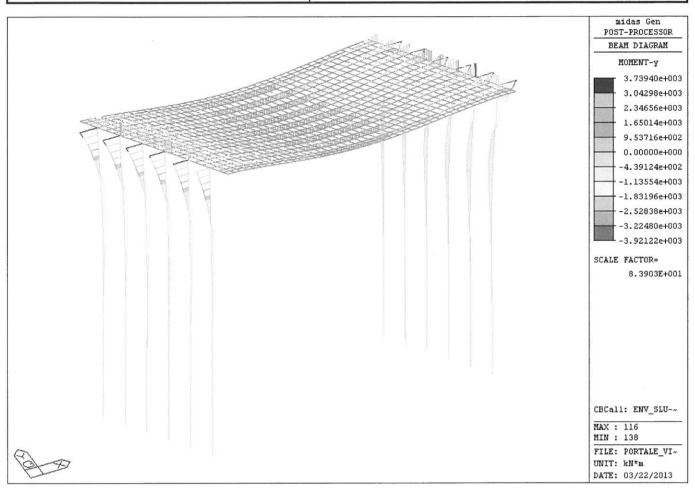


Figura 19: Momento Flettente My.

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBIE PROGETTO POTENZIAM GALLARATE	DEFINITION N	IVO DELLA LINEA			
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO 53 di 100

11.3 Inviluppo – SLE_Frequente – G4

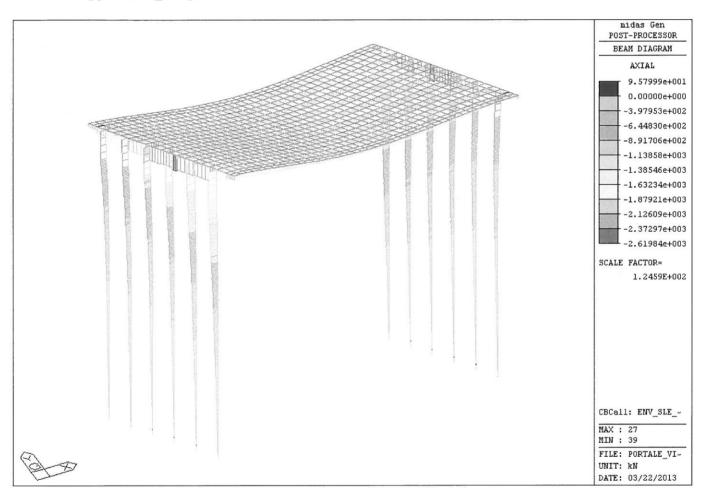


Figura 20: Sforzo Normale N.

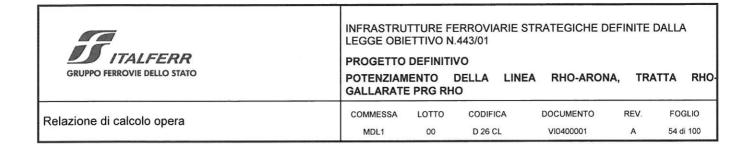


Figura 21: Sforzo di Taglio Fz.

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBIE PROGETTO POTENZIAM GALLARATE	TTIVO N DEFINIT ENTO	IVO DELLA LINEA			
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO 55 di 100

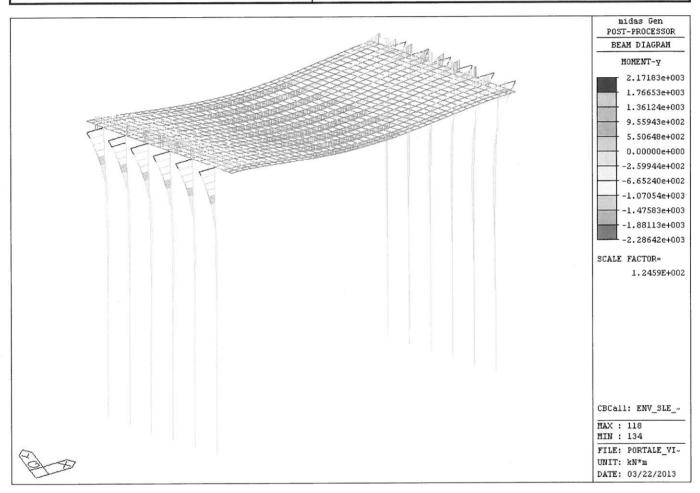


Figura 22: Momento Flettente My.

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBII PROGETTO POTENZIAN GALLARATE	DEFINIT	IVO DELLA LINE			DALLA
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO 56 di 100

$11.4 \quad In viluppo-SLE_Quasi Permanente$

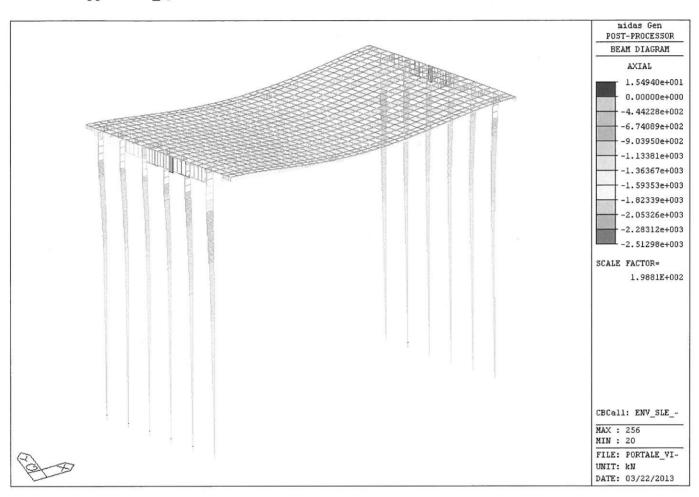


Figura 23: Sforzo Normale N.

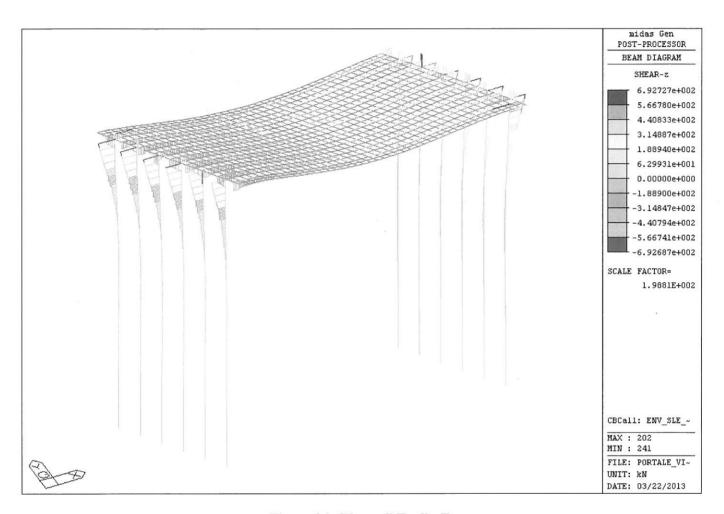


Figura 24: Sforzo di Taglio Fz.

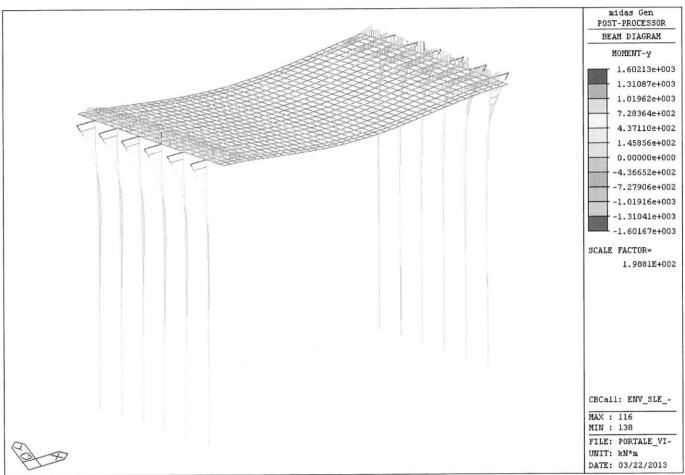


Figura 25: Momento Flettente My.

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBIE PROGETTO POTENZIAM GALLARATE	DEFINIT	IVO DELLA LINEA			DALLA NTTA RHO-
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO 59 di 100

11.5 Inviluppo – SLE_Rara – G1

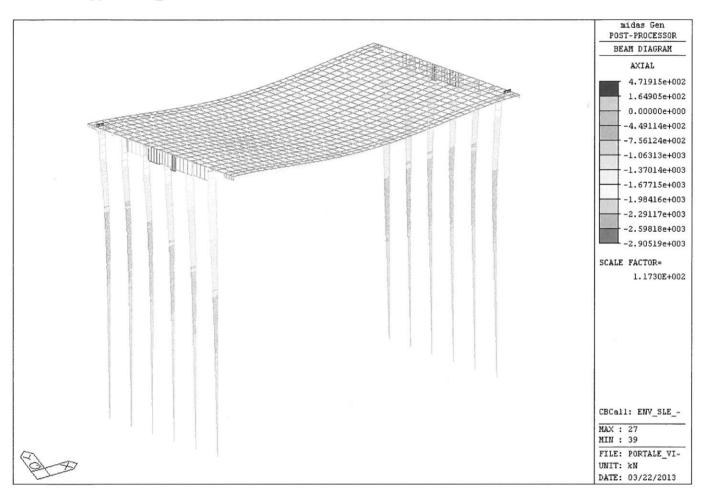


Figura 26: Sforzo Normale N.

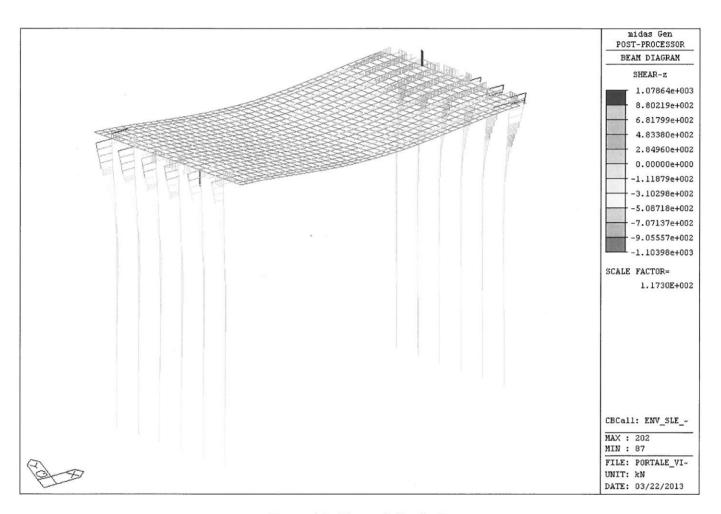
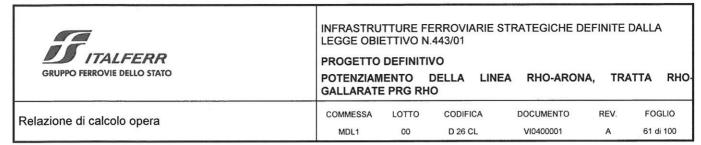



Figura 27: Sforzo di Taglio Fz.

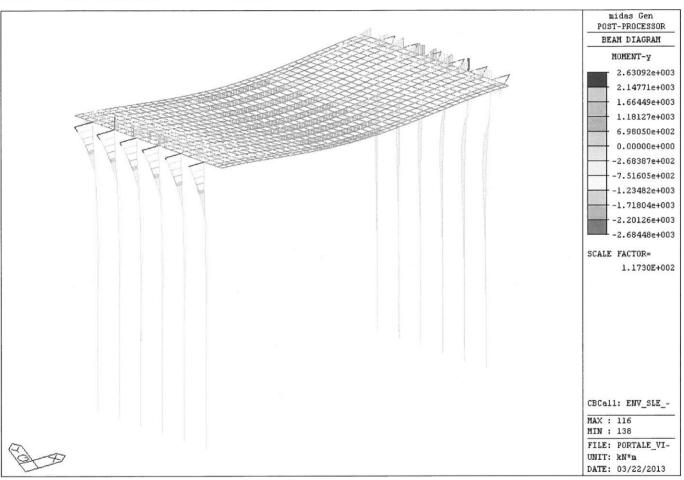


Figura 28: Momento Flettente My.

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBII PROGETTO POTENZIAN GALLARATE	ETTIVO N DEFINITI IENTO	IVO DELLA LINEA			DALLA ATTA RHO-
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO 62 di 100

11.6 Inviluppo – SLE_Rara – G3

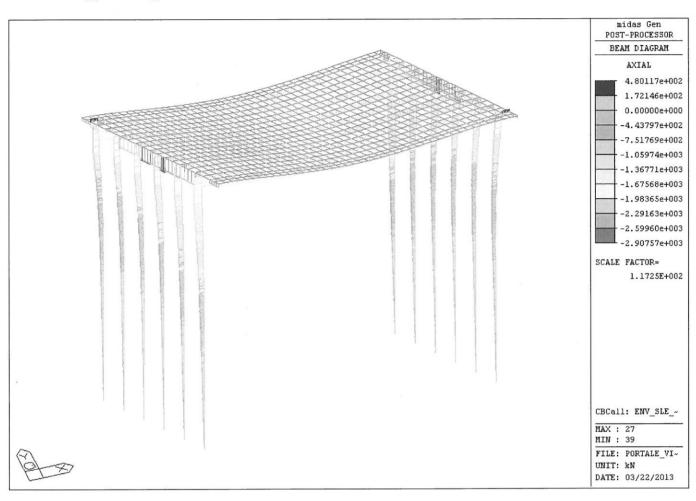


Figura 29: Sforzo Normale N.

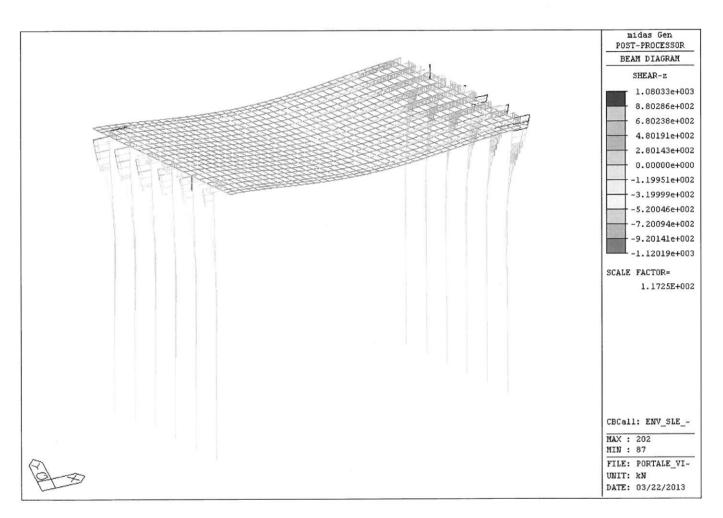


Figura 30: Sforzo di Taglio Fz.

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBIE PROGETTO POTENZIAM GALLARATE	DEFINITENTO	TIVO DELLA LINEA	X-1000000000000000000000000000000000000		DALLA
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO 64 di 100

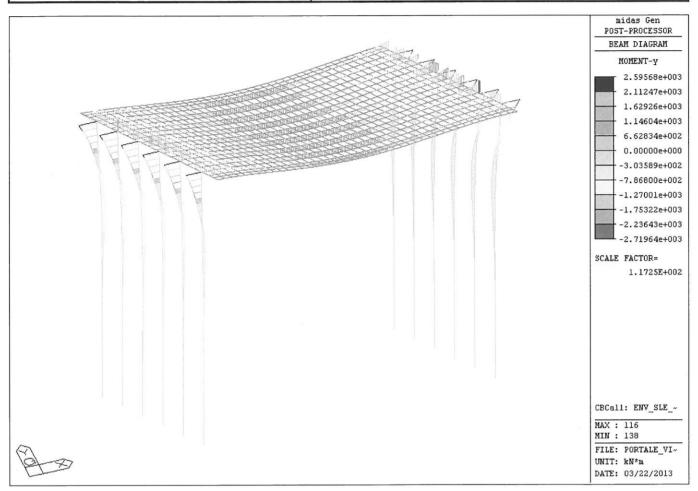


Figura 31: Momento Flettente My.

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBIE PROGETTO POTENZIAM GALLARATE	DEFINIT	IVO DELLA LINEA			DALLA NTTA RHO-
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO 65 di 100

11.7 Inviluppo – SLV

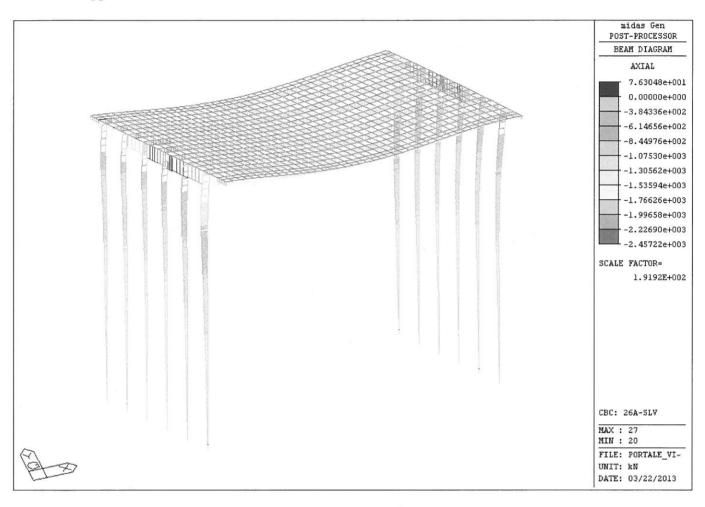


Figura 32: Sforzo Normale N.

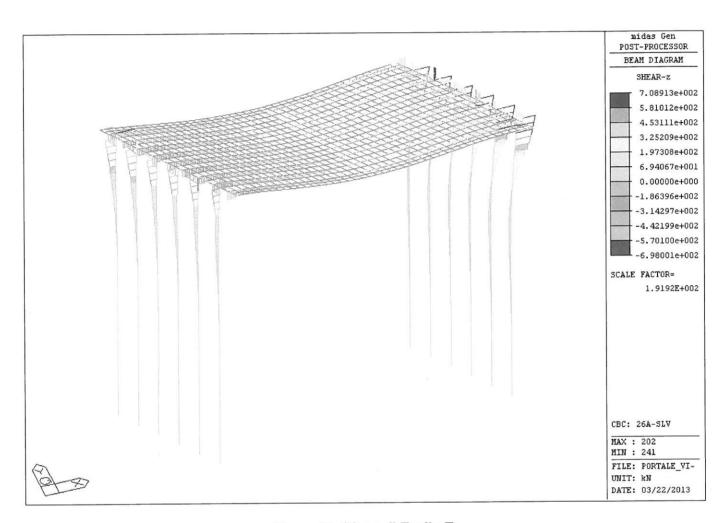


Figura 33: Sforzo di Taglio Fz.

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBI PROGETTO POTENZIAN GALLARATI	ETTIVO N DEFINIT	IVO DELLA LINEA			DALLA ATTA RHO-
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO 67 di 100

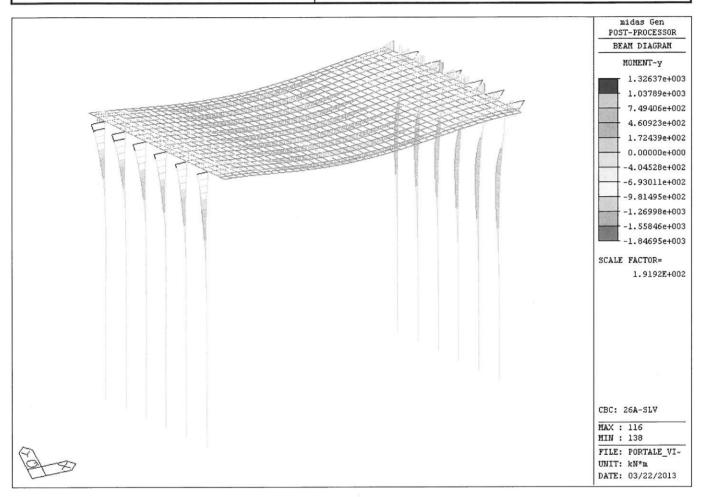


Figura 34: Momento Flettente My.

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBIE PROGETTO POTENZIAM GALLARATE	DEFINIT	IVO DELLA LINEA			DALLA ATTA RHO-
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO 68 di 100

11.8 Inviluppo – SLD

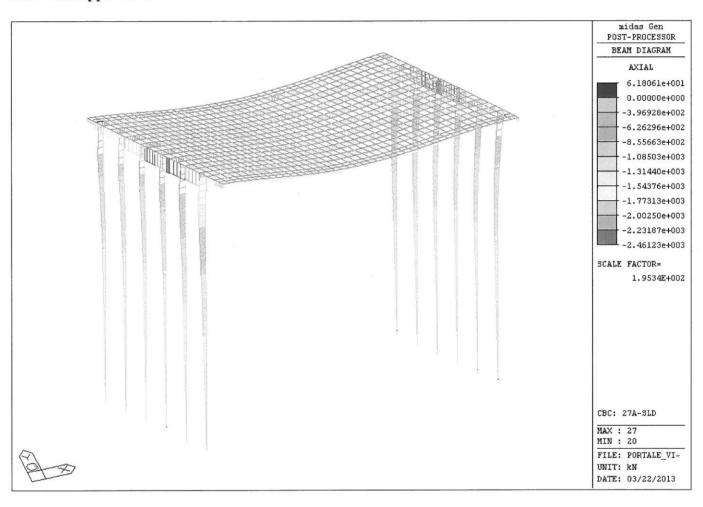


Figura 35: Sforzo Normale N.

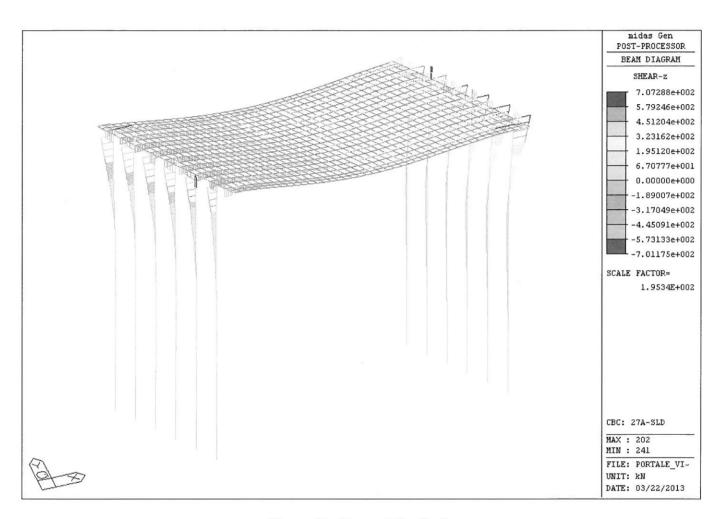


Figura 36: Sforzo di Taglio Fz.

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBIE PROGETTO POTENZIAM GALLARATE	DEFINIT	IVO DELLA LINEA			DALLA ATTA RHO-
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VIO400001	REV.	FOGLIO 70 di 100

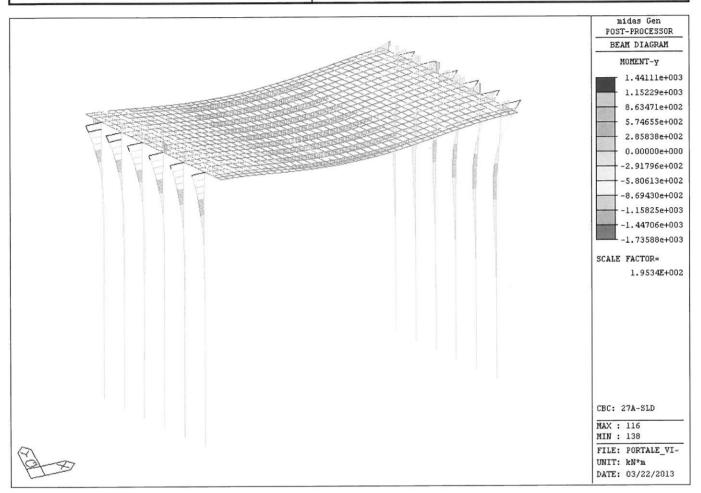


Figura 37: Momento Flettente My.

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBII PROGETTO POTENZIAN GALLARATE	ETTIVO N DEFINITI IENTO	VO DELLA LINE			DALLA
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO 71 di 100

12 VERIFICHE

Di seguito si evidenziano le verifiche strutturali e geoteniche.

Le verifiche sono state condotte nei punti notevoli del portale, prendendo le sollecitazioni agenti massime, che provengono dall'analisi sismica, per quanto riguarda le verifiche a rottura. I punti notevoli di maggiore interesse sono rappresentati da :

- Cordolo Pali
- Palo :
 - o Sezione Testa Palo
 - Verifiche Geotecniche
- Trave:
 - o Testata
 - Mezzeria

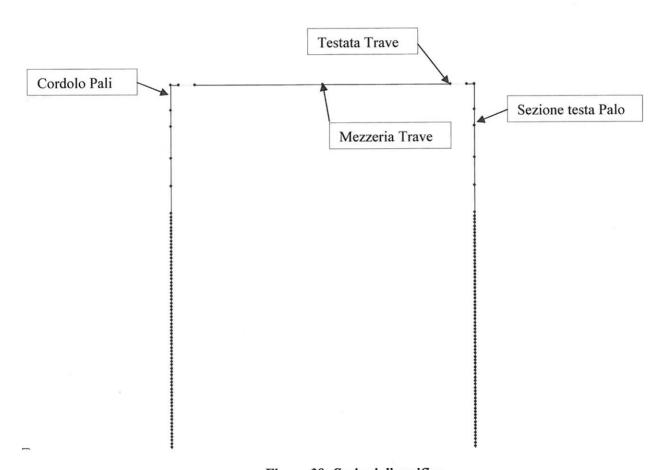


Figura 38: Sezioni di verifica.

Cordolo

				<<	(Cordolo		>>			
	Nc.	N [kN]	My [kNm]	Mx [kNm]	Ty [kN]	Tx [kN]	Mt [kNm]	Myt [kNm]	Mxt [kNm]	V.D.	V.T.
D	1	3317.0000	-3428.6000	0.0000	1166.0000	0.0000	0.0000	-3428.6000	0.0000	SI	NO
	2	2841.0000	-606.7000	0.0000	1572.5000	0.0000	0.0000	-606.7000	0.0000	SI	NO
	3	2082.0000	-1578.0000	0.0000	0.0000	0.0000	0.0000	-1578.0000	0.0000	NO	SLEF
	4	2517.0000	-1311.0000	0.0000	0.0000	0.0000	0.0000	-1311.0000	0.0000	NO	SLEQP
	5	2378.0000	-2332.0000	0.0000	0.0000	0.0000	0.0000	-2332.0000	0.0000	NO	SLER

Palo

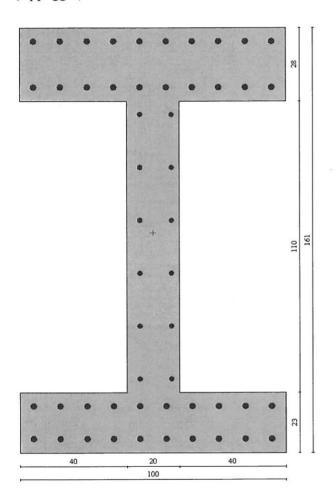
				<<	Te	sta_Palo		>>			
1	Nc.	N [kN]	My [kNm]	Mx [kNm]	Ty [kN]	Tx [kN]	Mt [kNm]	Myt [kNm]	Mxt [kNm]	V.D.	V.T.
•	1	1309.0000	-3921.0000	0.0000	1449.0000	0.0000	0.0000	-3921.0000	0.0000	SI	NO
	2	914.0000	-2282.0000	0.0000	0.0000	0.0000	0.0000	-2282.0000	0.0000	NO	SLEF
	3	635.0000	-1602.0000	0.0000	0.0000	0.0000	0.0000	-1602.0000	0.0000	NO	SLEQF
	4	918.5000	-2719.0000	0.0000	0.0000	0.0000	0.0000	-2719.0000	0.0000	NO	SLER

Trave

			<<	Trave	e_Appoggio		>>			
Nc.	N [kN]	My [kNm]	Mx [kNm]	Ty [kN]	Tx [kN]	Mt [kNm]	Myt [kNm]	Mxt [kNm]	V.D.	V.T.
1	1273.7000	-2323.0000	0.0000	736.0000	0.0000	0.0000	-2323.0000	0.0000	SI	NO
2	916.0000	-1468.0000	0.0000	0.0000	0.0000	0.0000	-1468.0000	0.0000	NO	SLEF
3	1522.0000	-897.0000	0.0000	0.0000	0.0000	0.0000	-897.0000	0.0000	NO	SLEQP
4	804.0000	-853.0000	0.0000	0.0000	0.0000	0.0000	-853.0000	0.0000	NO	SLEQP
5	935.0000	-1629.9000	0.0000	0.0000	0.0000	0.0000	-1629.9000	0.0000	NO	SLER

	Trave_Mezzeria													
Nc.	N [kN]	My[kNm]	Mx[kNm]	Ty[kN]	Tx[kN]	Mt[kNm]	Myt[kNm]	Mxt[kNm]	V.D.	V.T.				
1	0.0	1369	0.00	0.00	0.00	0.00	1369	0.00	SI	NO				

N.B.


V.D. = Verifiche Stato Limite Ultimo, costruzione Dominio Resistente

V.T. = Verifiche Tensionali.

12.1 Travi in c.a. verifica di resistenza

(Appoggio)

Armatura Inferiore Soletta: Ø 24 / 10

Armatura Superiore Soletta: Ø 24 / 10

Armatura anima Trave: Ø 20 /20

Staffe: Ø 16/10

Resistenza

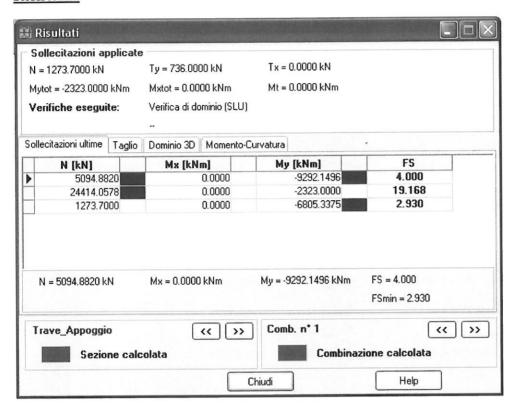
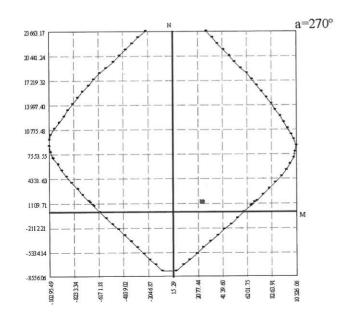
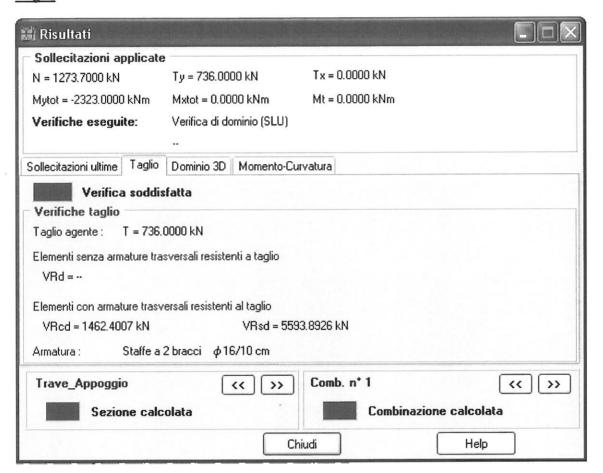




Diagramma M - N

Taglio

PROGETTO DEFINITIVO

TRATTA RHO-POTENZIAMENTO DELLA LINEA RHO-ARONA,

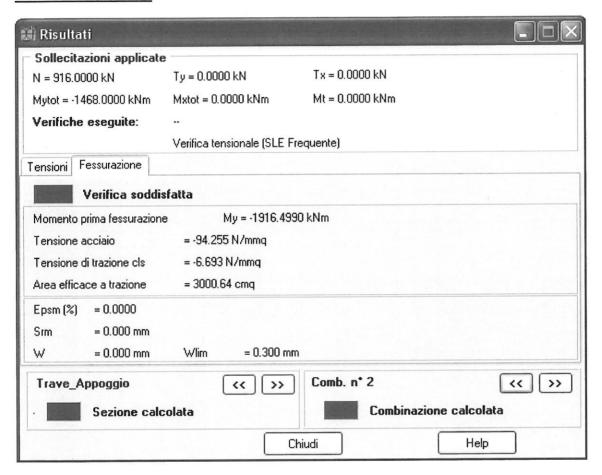
GALLARATE PRG RHO

Relazione di calcolo opera

COMMESSA LOTTO

00

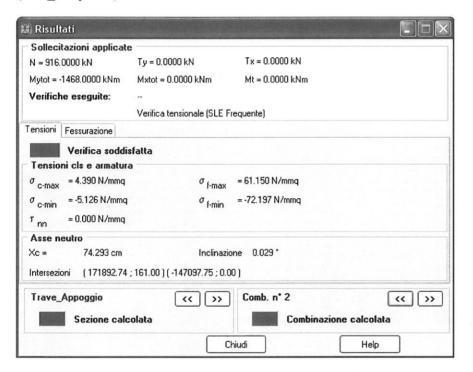
MDL1

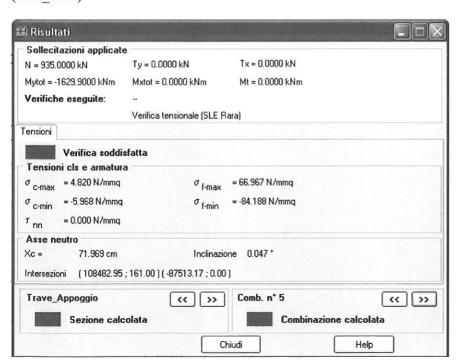

CODIFICA D 26 CL

DOCUMENTO VI0400001

REV.

FOGLIO 76 di 100


Verifica Fessurazione



Verifica Tensionale

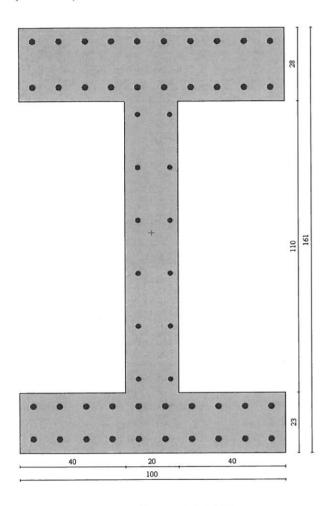
(SLE_Frequente)

(SLE_Rara)

Relazione di calcolo opera

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N.443/01

PROGETTO DEFINITIVO


POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-

GALLARATE PRG RHO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 00
 D 26 CL
 VI0400001
 A
 78 di 100

(Mezzeria)

Armatura Inferiore Soletta: Ø 24 / 10

Armatura Superiore Soletta: Ø 24 / 10

Armatura anima Trave: Ø 20 /20

Staffe: Ø 16/20

Resistenza

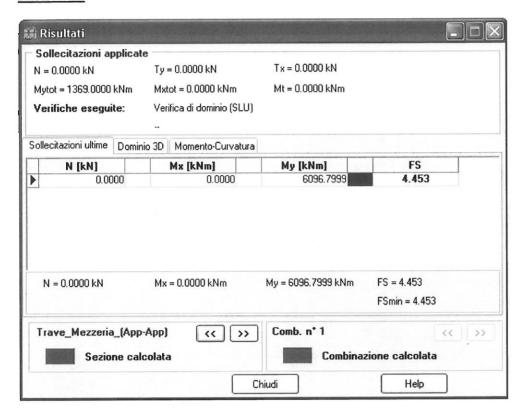
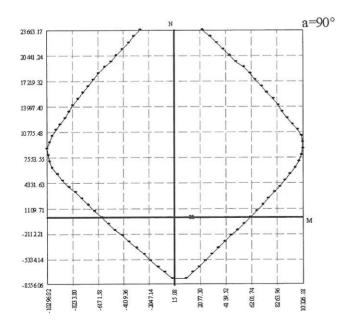
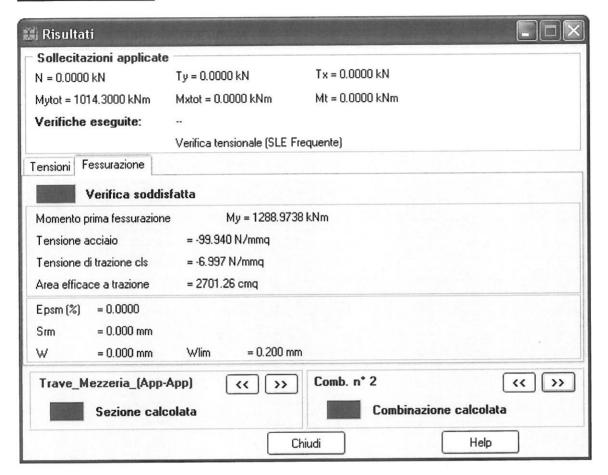
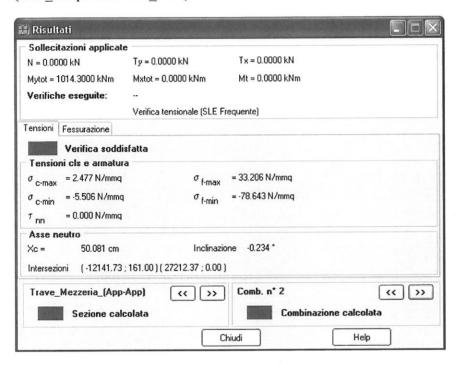




Diagramma M - N


Verifica Fessurazione

Verifica Tensionale

(SLE Frequente / SLE_Rara)

Relazione di calcolo opera

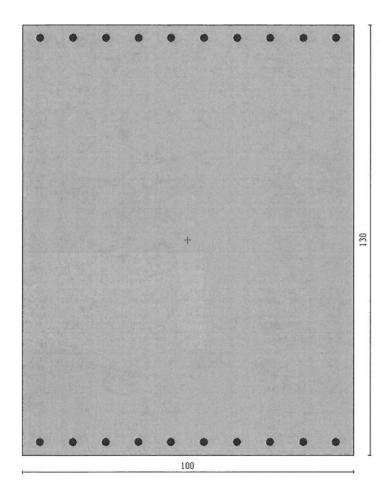
INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N.443/01

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-**GALLARATE PRG RHO**

MDL1

COMMESSA LOTTO


CODIFICA 00 D 26 CL

DOCUMENTO VI0400001

REV.

FOGLIO 82 di 100

12.2 Cordolo

Armatura esterna: Ø 24/10

Armatura interna: Ø 24/10

Staffe: Ø16/10

Resistenza

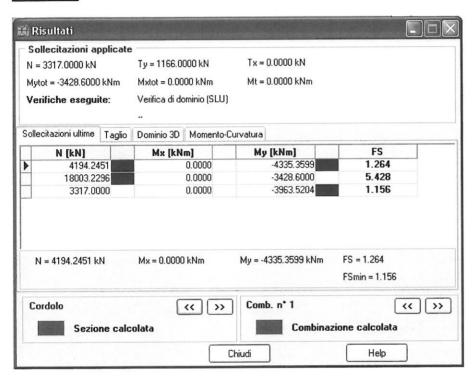
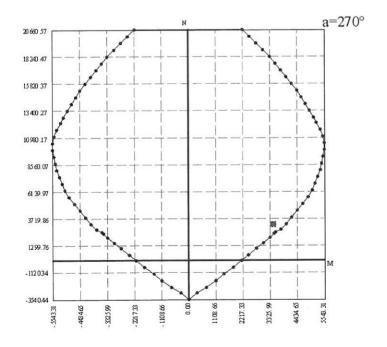
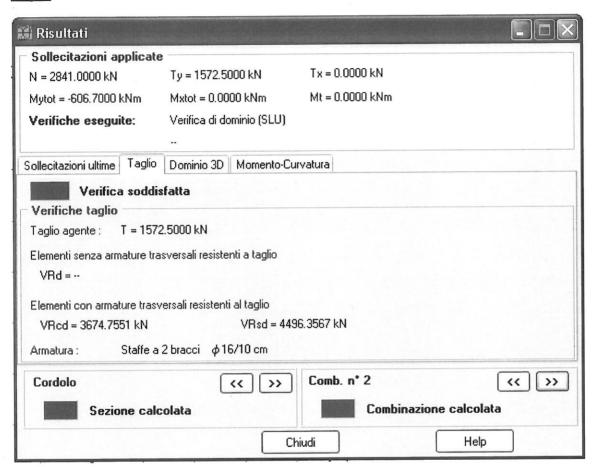
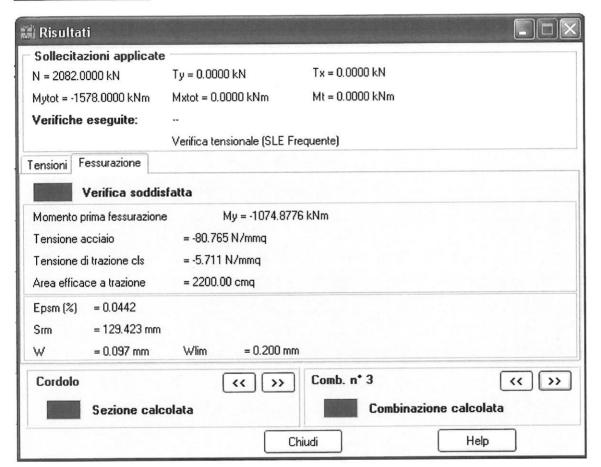
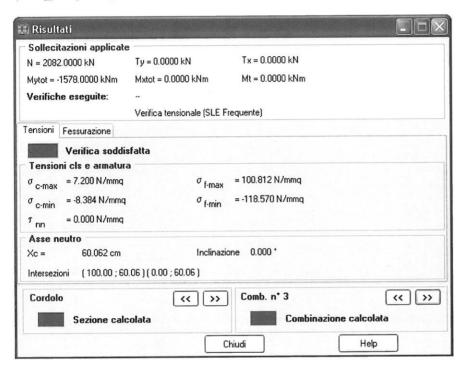




Diagramma M - N



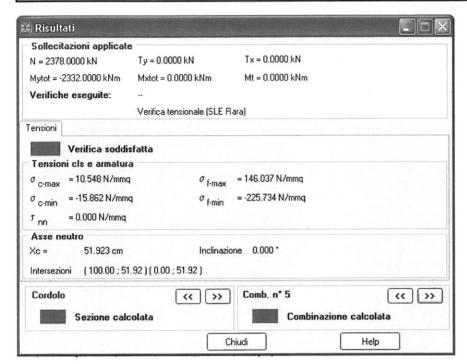
Taglio


Verifica Fessurazione

Verifica Tensionale

(SLE_Frequente)

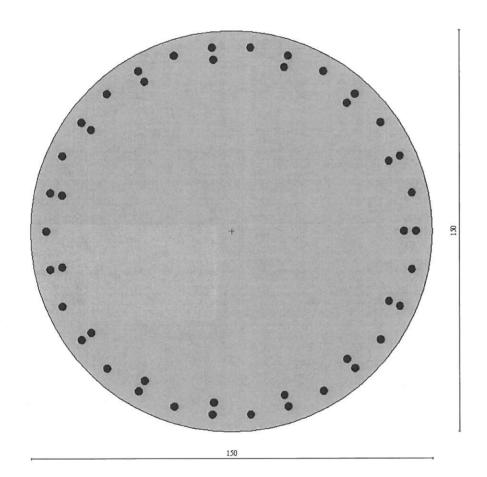
(SLE_Rara)


PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-GALLARATE PRG RHO

Relazione di calcolo opera

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO


 MDL1
 00
 D 26 CL
 VI0400001
 A
 87 di 100

12.3 Palo

12.3.1 Sezione Testa Palo

Armatura esterna: 30 Ø 30

Armatura interna: 15 Ø 30 (per una lunghezza di 6.0 m)

Staffe: Ø16/10 (per 4.50 m)

Staffe: Ø16/20 (per la restante parte)

Resistenza

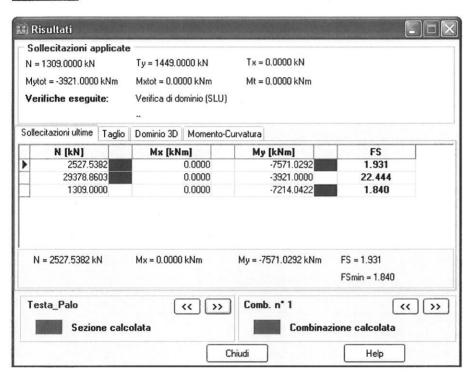
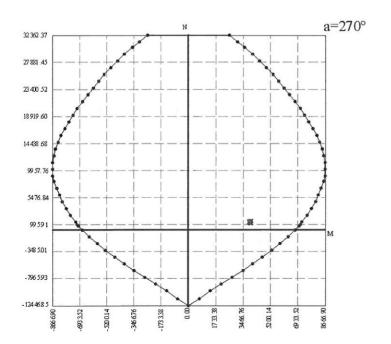
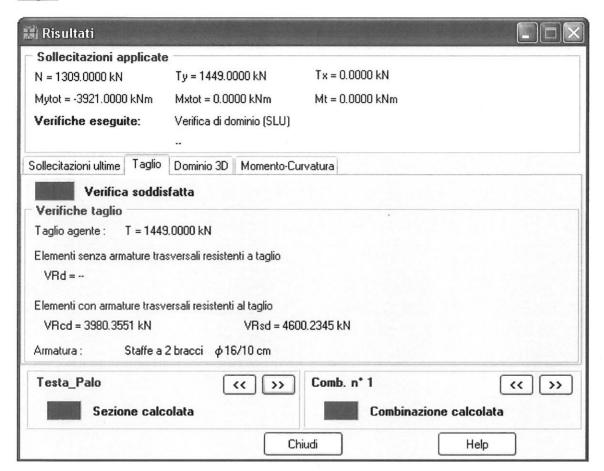




Diagramma M - N

Taglio

Verifica Fessurazione

La sezione circolare del palo è stata riportata ad una sezione rettangolare equivalente attraverso le formule :

be = 0.9 D (base equivalente)

 $w_1 = \beta_0 \cdot S_{co} \cdot \varepsilon_{co} = 0.184 \text{ mm}$

de = 0.45 D + 0.64 (d - D/2) (altezza utile equivalente)

dove: "D" è il diametro e "d" è l'altezza utile

VERIFICHE ALLO STATO LIMITE DI FESSURAZIONE Verifica allo stato limite di apertura delle fessure TIPO COMBINAZIONE: Frequente CONDIZIONI AMBIENTE: b - moderatamente aggressivo SENSIBILITA' ARMATURA: • armatura poco sensibile TIPO ARMATURA: barre aderenza migliorata • 0.200 mm (limite di apertura delle fessure per la combinazione esaminata) W = SEZIONE RETTANGOLARE 30 N/mm² Resistenza caratteristica 2.61 N/mm² a traz, semplice 3.13 N/mm² a traz, per flessione 210000 N/mm² E, = Modulo elastico Coeff. omogenizzazione N°_{terri} = 20 Numero barre tese h = 1350 mm 60 8 = mm Interasse barre 1116.6 mm 30 mm **d** = Diametro barre 14137 mm² d = 75 mm Area armatura tesa 60.0 mm 156 N/mm² Tensione di lavoro acciaio 0 s = Larghezza efficace x = 356.31350 mm mm Altezza efficace ≤ (h-x)/2 $h_{eff} = c + 7.5 \phi =$ (h-x)/2 = 380.2 mm 285 mm Aces = bes x hes = 384750 mm² Area efficace pr = As / Ac,eff = 0.0367 (0.4 = barre aderenza migliorata; 0.8 = barre lisce) $k_2 = 0.4$ (0.125 = presso-flessione; 0.250 = trazione pura) presso-flessione Distanza media fra le fessure in corrispondenza del livello 172.8 mm baricantrico dell'armatura all'interno dell'area efficace (1.0 = barre aderenza migliorata; 0.5 = barre lisce) $\beta_1 = 1.0$ azioni lunga durata 💌 (1.0 = breve durata; 0.5 = lunga durata / ripetute) $\beta_2 = 0.5$ 1155.1 kNm Momento di prima fessurazione M_{1fess} = $\sigma_{\rm sr}$ = 86.8 N/mm² Tensione nell'acciaio, nella sezione fessurata, al raggiungimento della resistenza a trazione f_{cm} nella fibra di cls più sollecitata 6.28E-04 Deformazione unitaria media dell'armatura $\varepsilon_{sv} \ge 0.4 \frac{\sigma_{s}}{\varepsilon} = 2.97E-04$

Valore caratterístico di apertura delle fessure

Verifica Tensionale

(SLE Frequente)

(SLE_Rara)

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-

GALLARATE PRG RHO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo opera MDL1 00 D 26 CL VI0400001 Α 93 di 100

12.4 Verifiche Geoteniche

12.4.1 Capacità Portante

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI GRANDE DIAMETRO

CANTIERE: DATI DI INPUT:

VI04

Diametro del Palo (D):

1.50 (m) Area del Palo (Ap):

1.767 (m²)

Quota testa Palo dal p.c. (Z₂):

2.70 (m) Quota falda dal p.c. (z_v):

25.00

(m)

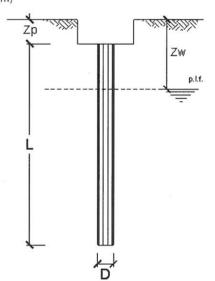
Carico Assiale Permanente (G):

1054 (kN) Carico Assiale variabile (Q):

22.40

OPERA:

252 (kN)


Numero di strati

Lpalo =

(m)

	coefficienti parzi	ali	azio	oni	resistenz	a laterale	e di base
	Metodo di calcolo		permanenti ''G	variabili %	70	76	Va traz
SLU	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00
	A2+M1+R2	(6)	1.00	1.30	1.70	1.45	1.60
	A1+M1+R3	0	1.30	1.50	1.35	1.15	1.25
	SISMA	0	1.00	1.00	1.35	1.15	1.25
DM88	3	0	1.00	1.00	1.00	1.00	1.00
definiti dal progettista		\circ	1.10	1.20	1.50	1.30	1.30

n	1	2 O	3 O	4 O	5 O	7 O	≥10 C	T.A. O	prog.
Š3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
Š 4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-

GALLARATE PRG RHO

Relazione di calcolo opera

COMMESSA	LOTTO	

00

CODIFICA D 26 CL VI0400001

DOCUMENTO REV.

Α

FOGLIO 94 di 100

PARAMETRI MEDI

MDL1

Strato	Space		P:	arametri	del terrer	10
Strato	Shess	Tipo di terreno	C' med	Φ' med	C _{u med}	
(-)	ato spess Tipo di terreno γ c' π (kN/m³) (kP	(kPa)	(")	(kPa)		
1	22.40	Ghiaia Sabbiosa	19.00		35.0	150.0
						1

C	oefficient	di Calco	lo
k	μ	а	(ZL
(-)	(-)	(-)	(-)
0.43	0.70		0.35

(n.b.: lo spessore degli strati è computato dalla quota di intradosso del plinto)

PARAMETRI MINIMI (solo per SLU)

Strato	Spess		P	arametri	del terrer	10
Juato	apeaa	Tipo di terreno	Y	C' min	φ' min	C _{u min}
(-)	(m)		(kN/m³)	(kPa)	(°)	(kPa)
1	22.40	Ghiaia Sabbiosa	18.00		32.0	120.0

Coefficienti di Calcolo										
k µ a α										
(-)	(-)	(-)	(-)							
0.47	0.62		0.35							

RISULTATI

Strato	Spess				media				mini	ma (solo	SLU)	
311410	Spess	Tipo di terreno	Qsi	Nq	Nc	qb	Qbm	Qsi	Nq	Nc	qb	Qbm
(-)	(m)		(kN)	(-)	(-)	(kPa)	(kN)	(kN)	(-)	(-)	(kPa)	(kN)
1	22.40	Ghiaia Sabbiosa	5541.8	0.00	9.00	1826.9	3228.4	4433.4	0.00	9.00	4518.0	7984.0
-			-									
			-									
			-									
						-						

CARICO ASSIALE AGENTE

 $Nd = N_G \cdot \gamma_G + N_Q \cdot \gamma_Q$

Nd = 1381.6 (kN)

CAPACITA' PORTANTE MEDIA

base $R_{b;cal\ med} =$ 3228.4 (kN) laterale Rs;cal med = 5541.8 (kN)

totale R_{c;cal med} = 8770.2 (kN) CAPACITA' PORTANTE MINIMA

base 7984.0 (kN) Rb;cal min = laterale R_{s;cal min} = 4433.4 (kN)

totale R_{c;cal min} = 12417.4 (kN)

CAPACITA' PORTANTE CARATTERISTICA

CAPACITA' PORTANTE DI PROGETTO

 $R_{b,k} = Min(R_{b,cal\ med}/\xi_3 \; ; \; R_{b,cal\ min}/\xi_4) = 1899.1 \; (kN)$

 $R_{c,d} = R_{bk}/\gamma b + R_{sk}/\gamma s$

Fs = Rc,d / Nd

 $R_{s,k} = Min(R_{s,cal\ med}/\xi_3; R_{s,cal\ min}/\xi_4) = 2607.9 (kN)$

 $R_{c,d} = 2915.6 (kN)$

Fs = 2.11

 $R_{c,k} = R_{b,k} + R_{s,k}$

= 4506.9 (kN)

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-

GALLARATE PRG RHO

MDL1

Relazione di calcolo opera

LOTTO COMMESSA

00

CODIFICA D 26 CL

DOCUMENTO VI0400001

REV. Α

FOGLIO 95 di 100

12.4.2 Cedimenti

OPERA:

VI04

DATI DI IMPUT:

Diametro del Palo (D):

1.50 (m)

Carico sul palo (P):

1306.0 (kN)

Lunghezza del Palo (L):

22.40 (m)

Lunghezza Utile del Palo (Lu):

22.00

9

Modulo di Deformazione (E):

40.00 (MPa)

Numero di pali della Palificata (n):

(-)

(m)

Spaziatura dei pali (s)

1.7 (m)

CEDIMENTO DEL PALO SINGOLO:

$\delta = \beta * P / E * Lutile$

Coefficiente di forma

0.5 + Log(Lutile / D):

1.67 (-)

Cedimento del palo

 $\delta = \beta * P / E * Lutile$

2.47 (mm)

CEDIMENTO DELLA PALIFICATA:

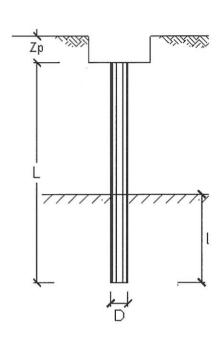
δp = Rs * δ = n *Rg * δ

Coefficiente di Gruppo

 $Rq = 0.5 / R + 0.13 / R^2$

(Viggiani, 1999)

 $R = (n * s / L)^{0.5}$


R 0.826

Cedimento della palificata

 $\delta p = n * Rg * \delta =$

0.80

17.70 (mm)

PROGETTO DEFINITIVO

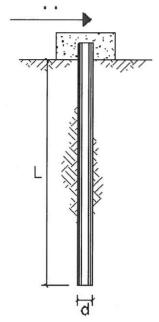
POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-

GALLARATE PRG RHO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Relazione di calcolo opera MDL1 00 D 26 CL VI0400001 96 di 100 A

12.4.3 Carichi Orizzontali

(tensioni efficaci)


OPERA:

VI04

TEORIA DI BASE:

(Broms, 1964)

CO	efficienti parz	iali	A		M	R
M	letodo di calco	olo	permanenti Ye	variabili Yo	γ_{φ}	Э́τ
	A1+M1+R1	O	1.30	1.50	1.00	1.00
SLU	A2+M1+R2	•	1.00	1.30	1.00	1.60
Ŋ	A1+M1+R3	\circ	1.30	1.50	1.00	1.30
	SISMA	O	1.00	1.00	1.00	1.30
DM88		\circ	1.00	1.00	1.00	1.00
definiti dal progettista			1.30	1.50	1.25	1.00

n	1 •	2 O	3 O	4 0	5 C	7 O	≥10 C	T.A. O	prog.
ξ₃	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ ₄	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

Palo corto:

$$H = 1.5k_p \gamma d^3 \left(\frac{L}{d}\right)^2$$

Palo intermedio:

$$H = \frac{1}{2}k_p \gamma d^3 \left(\frac{L}{d}\right)^2 + \frac{M_y}{L}$$

Palo lungo:

$$H = k_p \gamma d^3 \sqrt{3.676 \frac{M_y}{k_p \gamma d^4}}^2$$

ITALFERR.
GRUPPO FERROVIE DELLO STATO

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA. TRATTA RHO-**GALLARATE PRG RHO**

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo opera MDL1 VI0400001 97 di 100 00 D 26 CL Α

DATI DI INPUT:

Lunghezza del palo

L= 22.40 (m)

Diametro del palo

d = 1.50 (m)

Momento di plasticizzazione della sezione

 $M_V =$ 6945.82 (kN m)

Angolo di attrito del terreno

 $\varphi'_{\mathsf{med}} =$ 35.00 (°)

 $\varphi^*_{\min} =$ 32.00 (*)

Angolo di attrito di calcolo del terreno

35.00 (°) $\varphi'_{\mathsf{med.d}} =$

(°) $\varphi'_{\text{min.d}} =$ 32.00

Coeff. di spinta passiva (kp = $(1+\sin\varphi)/(1-\sin\varphi)$)

kp med = 3.69

kp min = 3.25 (-)

Peso di unità di volume (con falda y = y)

 $\gamma =$ 19.00

 (kN/m^3)

(-)

Carico Assiale Permanente (G):

G = 354.2 (kN) Q = 296.5 (kN)

Palo corto:

H1 med= 79155.08 (kN)

Carico Assiale variabile (Q):

H1 min= 69811.70 (kN)

Palo intermedio:

H2 med= 26695.11 (kN)

23580.65 H2 min= (kN)

Palo lungo:

H3 med= 4092.89 (kN) H3 min= 3925.06 (kN)

H med =

4092.89

(kN)

palo lungo

 $H_{min} =$ 3925.06 (kN)

palo lungo

 $H_k = Min(H_{med}/\xi_3; R_{min}/\xi_4) =$

2308.86

(kN)

 $H_d = H_k/\gamma_T =$

1443.04

(kN)

 $F_d = G \cdot \gamma_G + Q \cdot \gamma_Q =$

739.65

(kN)

FS = Hd/Fd =

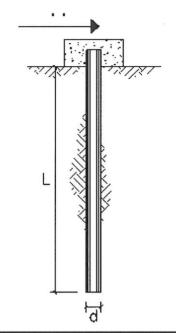
1.95

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, TRATTA RHO-GALLARATE PRG RHO

COMMESSA CODIFICA DOCUMENTO FOGLIO LOTTO REV. Relazione di calcolo opera MDL1 D 26 CL VI0400001 98 di 100

(tensioni totali)


OPERA:

IV02

TEORIA DI BASE:

(Broms, 1964)

CO	efficienti parz	iali	А		M	R
N	Metodo di calcolo			variabili %≏	γ _{ои}	γт
	A1+M1+R1	0	1.30	1.50	1.00	1.00
\supset	A2+M1+R2	•	1.00	1.30	1.00	1.60
SLU	A1+M1+R3	O	1.30	1.50	1.00	1.30
	SISMA	O	1.00	1.00	1.00	1.30
DM88 C		\circ	1.00	1.00	1.00	1.00
definiti dal progettista			1.30	1.50	1.40	1.00

n	1	2 O	3 ()	4 O	5 O	7 O	≥10 ○	T.A. C	prog.
ξ ₃	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

Palo corto:

$$H = 9c_u d^2 \left(\frac{L}{d} - 1.5 \right)$$

Palo intermedio:

$$\begin{split} H &= -9c_{u}d^{2}\!\!\left(\frac{L}{d} + 1.5\right) + 9c_{u}d^{2}\sqrt{2\!\!\left(\frac{L}{d}\right)^{2} + \frac{4}{9}\frac{M_{y}}{c_{u}d^{3}}} + 4.5 \\ H &= -13.5c_{u}d^{2} + c_{u}d^{2}\sqrt{182.25 + 36\frac{M_{y}}{c_{u}d^{3}}} \end{split}$$

Palo lungo:

$$H = -13.5c_{u}d^{2} + c_{u}d^{2}\sqrt{182.25 + 36\frac{M_{y}}{c_{u}d^{3}}}$$

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA RHO-ARONA, **GALLARATE PRG RHO**

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo opera MDL1 00 D 26 CL VI0400001 99 di 100 Α

DATI DI INPUT:

Lunghezza del palo

L= 22.40 (m)

Diametro del palo

d = 1.50 (m)

Momento di plasticizzazione della sezione

 $M_V =$ 6945.82 (kN m)

Coesione non drenata

150.00 (kPa) Cu med=

120.00 (kPa) cu min=

Coesione non drenata di progetto

150.00 (kPa) Cu med.d=

Q =

120.00 (kPa) Cu min.d=

Carico Assiale Permanente (G):

G = 354.2 (kN)

296.5 (kN)

Palo corto:

H1 med= 40803.75 (kN)

Carico Assiale variabile (Q):

H1 min= 32643.00 (kN)

Palo intermedio:

H2 med= 14990.14 (kN)

H2 min= 12078.72 (kN)

Palo lungo:

H3 med= 4219.89 (kN) $H3_{min} =$ 3990.11 (kN)

H med =

4219.89

(kN) palo lungo H min = 3990.11 (kN)

palo lungo

 $H_k = Min(H_{med}/\xi_3; R_{min}/\xi_4) =$

2347.13

(kN)

 $H_d = H_k/\gamma_T =$

1466.95

(kN)

 $F_d = G \cdot \gamma_G + Q \cdot \gamma_Q =$

739.65

(kN)

FS = Hd / Fd =

1.98

GRUPPO FERROVIE DELLO STATO	INFRASTRU LEGGE OBIE PROGETTO POTENZIAM GALLARATE	DEFINIT	i.443/01 IVO DELLA LINE	TRATEGICHE D		DALLA ATTA RHO-
Relazione di calcolo opera	COMMESSA MDL1	LOTTO 00	CODIFICA D 26 CL	DOCUMENTO VI0400001	REV.	FOGLIO 100 di 100

12.5 Verifiche di Deformabilità

Si riportano di seguito le verifiche di deformabilità della struttura.

Per quanto riguarda la salvaguardia della funzionalità dell'opera, le frecce a lungo termine, calcolate sotto la condizione quasi permanente dei carichi, non dovrebbero superare il limite di 1/250 della luce.

Nel nostro caso:

L = 21.00 m

 $\delta_{max} = 2100 / 250 = 8.4 \text{ cm}$

 $\delta_{SLE\ QP} = 0.68\ cm$

Verifica : $\delta_{SLE\ QP} < \delta_{max} \rightarrow ok$

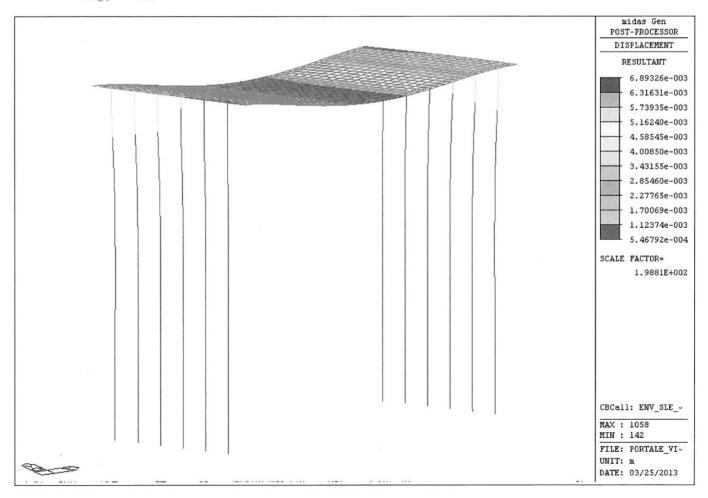


Figura 39: Deformata verticale ENV_SLE_QP.