COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

PROGETTAZIONE:

MANDATARIA:

SWS™

MANDANTI:

PROGETTAZIONE:

ORDINE Ing. Paolo Cucino GEGNERI

IL DIRETTORE DELLA

Responsabile integrazione fra le varie

PROGETTO ESECUTIVO

PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"

RELAZIONE

08 - GALLERIE H-FINESTRA FORCH

_

Relazione di calcolo - Scavo Meccanizzato - Innesto by-pass

APPALTA	TORE							SCALA:
IL DIRETTORE		1 -						-
COMMESSA	ΩΤΤΩ	EVCE	ENITE	TIPO DOC	ODEDA/DISCIDI INA	DDOCD	DE\/	

| | B | O | U | 1 | B | E | Z | Z | C | L | G | N | O | 3 | O | O | O | O | O | C

Rev	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione	D.Neri	00/40/0004	C.lasello	30/12/2021	D.Buttafoco	10/01/0000	IL PROGETTISTA
_ ^	Emissione		23/12/2021		30/12/2021	(Dolomiti)	19/01/2022	DEGLI INGEGNERI
В	Emissione a seguito di	D.Neri	10/07/0000	C.lasello	10/07/0000	D.Buttafoco	20/07/2022	PROV. DI TRENTO
	indicazioni Committenza		18/07/2022		19/07/2022	(Dolomiti)		gtopadleceugino
С	Emissione a seguito di	D.Neri	13/03/2023	C.Iasello	44/02/2022	D.Buttafoco	15/03/2023	RIZIONE AL 16/03/2023 16
	istruttorie ed interlocuzioni		13/03/2023		14/03/2023		15/03/2023	
File:	B0U1BEZZCLGN0300006C.	docx						n. Elab.: X

APPALTATORE: PROGETTAZIONE:	webuild mplenid	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA						
· · · · · · · · · · · · · · · · · · ·		TRATTA "FORTEZZA – PONTE GARDENA"						
Mandataria:	Mandanti:	THE TOTAL POWER OF THE CONTROL OF TH						
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO					
08 - GALLERIE		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.	
Relazione di calcolo - Sca	vo Meccanizzato - Innesto by-pass	IB0U	1BEZZ	CL	GN0300006	С	2 di 43	

APPALTATORE:

PROGETTAZIONE:

Mandataria:

08 - GALLERIE

Mandanti:

Relazione di calcolo - Scavo Meccanizzato - Innesto by-pass

SWS Engineering S.p.A.

PINI ITALIA GDP GEOMIN SIFEL SIST

M Ingegneria

COMMESSA IB0U

PROGETTO ESECUTIVO

LOTTO 1BEZZ

LINEA FERROVIARIA FORTEZZA-VERONA

TRATTA "FORTEZZA – PONTE GARDENA"

CODIFICA CL

PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA

> DOCUMENTO GN0300006

REV. С

FOGLIO. 3 di 43

SOMMARIO

1.	PREMESSA	5
2.	SCOPO E CONTENUTI DEL DOCUMENTO	5
2.1	UNITÀ DI MISURA	6
3.	NORMATIVA, ELABORATI DI RIFERIMENTO E SOFTWARE UTILIZZATI	6
3.1	DOCUMENTI DI RIFERIMENTO	6
3.2	BIBLIOGRAFIA	7
3.3	SOFTWARE IMPIEGATI	7
3.4	ELABORATI DI RIFERIMENTO	7
4.	MATERIALI	8
4.1	CALCESTRUZZO PER CONCI PREFABBRICATI	9
4.2	CALCESTRUZZO MAGRO	. 10
4.3	ACCIAIO IN BARRE AD A.M.	. 10
4.4	BULLONI DA ROCCIA	. 10
5.	CARATTERIZZAZIONE GEOTECNICA	. 11
6.	DESCRIZIONE DEL SOFTWARE IMPIEGATO	. 12
6.1	STRAUS7 RELEASE 2.4.6	. 12
6.1.1	Fasi generali di calcolo	. 12
6.1.2	Elementi "BEAM"	. 13
6.1.3	Elementi "PLATE"	. 16
7.	CRITERI GENERALI DI VERIFICA	. 19
7.1	STATO LIMITE ULTIMO (S.L.U.)	. 19
7.2	STATO LIMITE DI ESERCIZIO (S.L.E.)	. 21
7.2.1	Verifica delle Tensioni	. 21
7.2.2	Verifica della fessurazione	. 22
8.	DESCRIZIONE DEL MODELLO DI CALCOLO	. 24
8.1	PREMESSA	. 24
8.1.1	Elementi di connessione	. 25
8.1.2	Interazione suolo – struttura	. 26
8.1.3	Analisi implementata	. 27

APPALTATORE:

PROGETTAZIONE:

Mandataria:

08 - GALLERIE

Mandanti:

SWS Engineering S.p.A. PINI ITALIA GDP GEOMIN SIFEL SIST

M Ingegneria

Relazione di calcolo - Scavo Meccanizzato - Innesto by-pass

PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"

PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
IB0U	1BEZZ	CL	GN0300006	С	4 di 43

8.1.4	Analisi per fasi	27
8.2	MODELLO DI CALCOLO	28
9.	ANALISI DEI CARICHI	30
9.1	CARICHI PERMANENTI	30
9.1.1	G00 PESO PROPRIO	30
9.1.2	G01 Carico dell'ammasso roccioso	30
10.	COMBINAZIONI DI CARICO	. 32
11.	VERIFICHE STRUTTURALI	. 32
	PREMESSA	
11.1		32
11.1 11.2	PREMESSA	32
11.1 11.2 11.3	PREMESSA VERIFICA DEI CONCI PREFABBRICATI	32
11.1 11.2 11.3 11.4	PREMESSA VERIFICA DEI CONCI PREFABBRICATI VERIFICA DEI CONNETTORI	32 33 40 40

APPALTATORE:	webuild principle CONSORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA					
PROGETTAZIONE: Mandataria: Mandanti:		LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO				
08 - GALLERIE Relazione di calcolo - Sca	vo Meccanizzato - Innesto by-pass	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO GN0300006	REV.	FOGLIO. 5 di 43

1. PREMESSA

Nell'ambito del Progetto Esecutivo della linea Fortezza – Ponte Gardena Lotto 1, per la Galleria Naturale di Forch realizzata con scavo meccanizzato, si prevede l' apertura di un solo by-pass alla pk 1+285 circa per il collegamento con la galleria tecnologica.

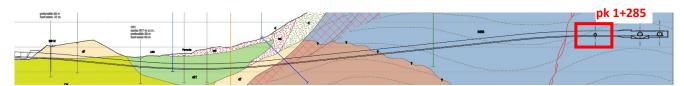


Figura 1: Profilo Geotecnico di Forch.

In base al profilo geotecnico è stato previsto, l'impiego di un'unica tipologia di sostegno, per le aperture in corrispondenza dei bypass, realizzata mediante barre tipo "Dywidag".

L'immagine seguente, estrapolata dalle tavole di progetto, riporta una vista complessiva dell'opera in oggetto.

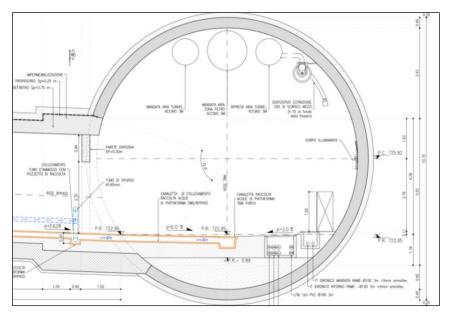


Figura 2: Carpenteria della dima di innesto del by-pass.

2. SCOPO E CONTENUTI DEL DOCUMENTO

Lo scopo principale del documento è quello di fornire le verifiche strutturali degli elementi di sostegno provvisorio mediante bulloni e dei conci prefabbricati afferenti all'apertura. Il sostegno definitivo viene affidato alla dima di innesto in calcestruzzo armato per la quale si rimanda alla relazione di calcolo della linea.

APPALTATORE:	webuild mplenia consorziopolomiti	REALIZZAZIO	NE DEL LO	TTO 1 DEL Q	CUZIONE DEI LA JADRUPLICAMI		
PROGETTAZIONE:	LINEA FERROVIARIA FORTEZZA-VERONA						
Mandataria:	Mandanti:	TRATTA "FORTEZZA – PONTE GARDENA"					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO					
08 - GALLERIE		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
Relazione di calcolo - Sca	vo Meccanizzato - Innesto by-pass	IB0U	1BEZZ	CL	GN0300006	С	6 di 43

2.1 UNITÀ DI MISURA

Nel seguito si adotteranno le seguenti unità di misura:

• lunghezze ⇒ m, mm

• carichi \Rightarrow kN, kN/m², kN/m³

azioni di calcolo ⇒ kN, kNm
 tensioni ⇒ N/mm²

3. NORMATIVA, ELABORATI DI RIFERIMENTO E SOFTWARE UTILIZZATI

3.1 DOCUMENTI DI RIFERIMENTO

- [1] Decreto Ministero delle Infrastrutture e Trasporti 14/01/2008, "Approvazione delle nuove norme tecniche per le costruzioni";
- [2] C.S.LL.PP., Circolare n°617 del 02/02/2009, "Istruzioni per l'applicazione delle "nuove norme tecniche per le costruzioni" di cui al DM 14/01/2008";
- [3] Manuale di Progettazione delle Opere Civili: PARTE I / Aspetti Generali (RFI DTC SI MA IFS 001 A);
- [4] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 1 / Ambiente e Geologia (RFI DTC SI AG MA IFS 001 A rev 30/12/2016);
- [5] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 2 / Ponti e Strutture (RFI DTC SI PS MA IFS 001 A– rev 30/12/2016);
- [6] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 3 / Corpo Stradale (RFI DTC SI CS MA IFS 001 A– rev 30/12/2016);
- [7] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 4 / Gallerie (RFI DTC SI GA MA IFS 001 A– rev 30/12/2016);
- [8] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 6 / Sagome e Profilo minimo degli ostacoli (RFI DTC SI CS MA IFS 003 A– rev 30/12/2016);
- [9] UNI 11104: Calcestruzzo: Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1;
- [10] CNR n.10024 dell'ottobre 1986. Analisi di strutture mediante elaboratore: impostazione e redazione delle relazioni di calcolo.
- [11] UNI EN 1990:2006: Eurocodice 0 Criteri generali di progettazione strutturale;
- [12] UNI EN 1991-1-1:2004 Parte 1-1: Eurocodice 1 Azioni in generale Pesi per unità di volume, pesi proprio e sovraccarichi per gli edifici;
- [13] UNI EN 1991-1-1:2004 Parte 1-2: Eurocodice 1 Azioni in generale Azioni sulle strutture esposte al fuoco:
- [14] UNI EN 1193-1-1:2005: Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici;
- [15] UNI EN 1193-1-8:2005: Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-8: Progettazione dei collegamenti.

APPALTATORE:	webuild mplerid CONSORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA						
PROGETTAZIONE: Mandataria:	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"							
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO						
08 - GALLERIE Relazione di calcolo - Sca	vo Meccanizzato - Innesto by-pass	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO GN0300006	REV.	FOGLIO. 7 di 43	

3.2 BIBLIOGRAFIA

[1] Strutture in acciaio, G. Ballio e F.M. Mazzolani, ed. Ulrico HOELPLI Milano (1987).

3.3 SOFTWARE IMPIEGATI

Per la redazione del Progetto sono stati impiegati ii seguenti software di calcolo:

• Straus7 Versione 2.4.6 Strand7 Pty Ltd

3.4 ELABORATI DI RIFERIMENTO

Costituiscono parte integrante di quanto esposto nel presente documento, l'insieme degli elaborati di progetto specifici relativi all'opera in esame e riportati in elenco elaborati:

- [1] IBOU1BEZZFZGE0001015A "Profilo geologico finestra di Forch";
- [2] IBOU1BEZZCLGN0300001A "Relazione generale e di calcolo conci in calcestruzzo armato";
- [3] IBOU1BEZZWBGN0300008A "By-pass di collegamento finestra con Galleria Tecnologica Scavo e consolidamento Innesto Finestra"
- [4] IBOU1BEZZWBGN0300009A "By-pass di collegamento finestra con Galleria Tecnologica Carpenteria"
- [5] IBOU1BEZZCLGN0000003A "Galleria di Linea scavo meccanizzato Relazione di calcolo Innesti by-pass Dima di innesto"

APPALTATORE:	webuild * Impleria CONSORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA					
PROGETTAZIONE:		TRATTA "FORTEZZA – PONTE GARDENA"					
Mandataria:	Mandanti:						
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO					
08 - GALLERIE		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
Relazione di calcolo - Sca	vo Meccanizzato - Innesto by-pass	IB0U	1BEZZ	CL	GN0300006	С	8 di 43

4. MATERIALI

Nella Tabella che segue si riportano in sintesi le Classi dei materiali impiegati per l'analisi strutturale:

ELEMENTO	CALCESTRUZZO
Conci Prefabbricati	C45/55
Magroni di pulizia	C12/15
ELEMENTO	ACCIAIO IN BARRE A.M.
Conci Prefabbricati	B450C

Tabella 1: Lista Materiali.

Le specifiche tecniche dei materiali, sopra descritti, sono ricavate nel seguente paragrafo, dove il riferimento principale per le verifiche SLE è stato assunto nelle Prescrizioni del Manuale RFI Parte 2 – Sezione 2 – 2.5.1.8.3.2.1.

APPALTATORE: PROGETTAZIONE: Mandataria:	webuild implement CONSORZIODOLOMITI Mandanti:	REALIZZAZIO LINEA FERRO	ONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI NE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA IVIARIA FORTEZZA-VERONA RTEZZA – PONTE GARDENA"					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO					
08 - GALLERIE		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.	
Relazione di calcolo - Sca	vo Meccanizzato - Innesto by-pass	IB0U	1BEZZ	CL	GN0300006	С	9 di 43	

4.1 CALCESTRUZZO PER CONCI PREFABBRICATI

Valore Caratteristico Resistenza Cubica a 28gg:	R _{ck} =	55	N/mm²
Valore Caratteristico Resistenza Cilindrica a 28gg:	f_{ck} =	45	N/mm²
Resistenza a compressione cilindrica media:	$f_{cm}=f_{ck}+8=$	53	N/mm²
Resistenza a trazione assiale:	$f_{ctm} = 0.30 * f_{ck}^{2/3} =$	3.80	N/mm²
	$f_{ctk.0.05} = 0.70 * f_{ctm} =$	2.66	N/mm²
Resistenza a trazione per flessione	$f_{cfm} = 1.20 * f_{ctm} =$	4.55	N/mm²
	$f_{cfk.0.05} = 0.70 * f_{cfm} =$	3.19	N/mm²
Verifiche agli SLU:	γ _c =	1.50	
Resistenza di calcolo a compressione	f_{cd} = 0.85 * f_{ck}/γ_c =	25.50	N/mm²
Resistenza di calcolo a trazione diretta	$f_{\rm ctd}$ = $f_{\rm ctk.0.05}/\gamma_{\rm c}$ =	1.51	N/mm²
Resistenza di calcolo a trazione per flessione	$f_{ctd.f}$ = 1.20 * f_{ctd} =	1.81	N/mm²
Modulo di Young secante:	$E_{cm} = 22 * [f_{cm}/10]^{0.3} =$	36000	N/mm²
Modulo di elasticità tangenziale:	G_{cm} = E / [2(1+ υ)] =	15000	N/mm²
Coefficiente di Poisson:	v=	0.20	
Coefficiente di dilatazione lineare:	α=	0.000010	°C ⁻¹
Tensione di aderenza acciaio-calcestruzzo:	η =	1.00	
	f_{bd} = 2.25 * f_{ctk} * η/γ_c =	3.99	N/mm²
Verifiche agli SLE:			
Combinazioni Quasi Permanenti	$\sigma_{\text{cmax.QP}}$ = 0.40 * f _{ck} =	18.00	N/mm²
Combinazioni Caratteristiche	$\sigma_{\text{cmax.R}}$ = 0.55 * f _{ck} =	24.75	N/mm²
Verifiche a Fessurazione	$\sigma_{\rm t}$ = f _{ctm} / 1.2 =	3.17	N/mm²

APPALTATORE: PROGETTAZIONE: Mandataria:	webuild Implemation CONSORZIODOLOMITI Mandanti:	REALIZZAZIO LINEA FERRO TRATTA "FOR	NE DEL LO VIARIA FO RTEZZA – F	OTTO 1 DEL QU ORTEZZA-VER PONTE GARDI			
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO					
08 - GALLERIE		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
Relazione di calcolo - Scavo Meccanizzato - Innesto by-pass		IB0U	1BEZZ	CL	GN0300006	С	10 di 43

4.2 CALCESTRUZZO MAGRO

Valore Caratteristico Resistenza Cubica a 28gg:	$R_{ck}=$	12 N/mm ²
---	-----------	-----------------------------

Resistenza a compressione cilindrica media:
$$f_{cm} = f_{ck} + 8 = 23 \text{ N/mm}^2$$

4.3 ACCIAIO IN BARRE AD A.M.

Tensione caratteristica di rottura (frattile 5%)	f_{tk} =	540	N/mm²
Tensione caratteristica di snervamento (frattile 5%)	f _{yk} =	450	N/mm²

Fattore di sovra resistenza
$$K = f_{tk}/f_{yk} = 1.20 \text{ N/mm}^2$$

Verifiche agli SLU:

Allungamento a rottura
$$\epsilon_{uk}$$
= 7.50 %

$$\varepsilon_{ud} = 0.9 * \varepsilon_{uk} = 6.75 \%$$

Coefficiente parziale per le verifiche agli SLU:
$$\gamma_s$$
= 1.15

Resistenza di calcolo allo SLU:
$$f_{yd} = f_{yk}/\gamma_s = 391.3 \text{ N/mm}^2$$

Modulo di elasticità:
$$E_f = 210000 \text{ N/mm}^2$$

Verifiche agli SLE:

Combinazioni Caratteristiche	σ_{smax} = 0.75 * f_{vk} =	337.5	N/mm ²
------------------------------	-------------------------------------	-------	-------------------

4.4 BULLONI DA ROCCIA

Per i bulloni da roccia si impiegano le caratteristiche di barre tipo "Dywidag" in acciaio da precompressione, riportate di seguito.

Diametro nominale:	Ø =	32	mm
Sezione trasversale:	A =	804	$\mathrm{mm^2}$
Carico a snervamento:	F _{p0,1k} =	760	kN
Carico ultimo:	F _{pk} =	845	kN

APPALTATORE:	webuild implered CONSORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA					
PROGETTAZIONE: Mandataria:	Mandanti:	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO					
08 - GALLERIE Relazione di calcolo - Sca	vo Meccanizzato - Innesto by-pass	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO GN0300006	REV.	FOGLIO. 11 di 43

5. CARATTERIZZAZIONE GEOTECNICA

Per la caratterizzazione geotecnica fare riferimento alla seguente relazione

Relazione geotecnica Galleria Scaleres - IBOU1BEZZGEGN0000001A

Le pressioni esercitate sul rivestimento in conci prefabbricati sono state ottenute dalla sezione di calcolo analizzata nelle seguenti relazione:

Relazione di calcolo - Scavo Meccanizzato - Conci in calcestruzzo armato- IBOU1BEZZCLGN0300003A

Sono stati definiti i carichi agenti sul rivestimento in conci prefabbricati per la verifica delle opere provvisionali di apertura degli innesti.

Di seguito viene indicata la sezione di calcolo utilizzata per la verifica dell'innesto:

SEZIONE TIPO B Forch pk 1+290

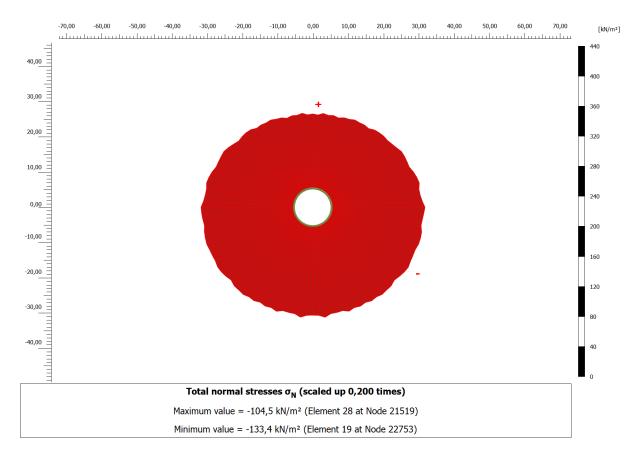


Figura 3: Sezione PK_1+290_Total normal stresses σ_N

APPALTATORE: PROGETTAZIONE: Mandataria:	webuild Impleta CONSORZIODOLOMITI Mandanti:	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO					
08 - GALLERIE Relazione di calcolo - Scavo Meccanizzato - Innesto by-pass		COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO GN0300006	REV.	FOGLIO. 12 di 43

6. DESCRIZIONE DEL SOFTWARE IMPIEGATO

Le analisi numeriche per le valutazioni degli effetti delle azioni sugli elementi strutturali sono state eseguite mediante il codice informatico Strand7, Release 2.4.6 distribuito da Strand7 Pty Ltd.

Nei paragrafi successivi viene data una breve descrizione dei codici di calcolo.

6.1 STRAUS7 RELEASE 2.4.6

Strand7 è un codice agli elementi finiti per l'analisi strutturale distribuito da Strand7 Pty Ltd.

Il programma calcola le forze risultanti, i momenti flettenti, lo sforzo di taglio, le forze normali, la torsione e molto altro.

Il motore di analisi Straus7 offre le seguenti funzionalità:

- Analisi statica e dinamica;
- Analisi lineare e non lineare;
- Analisi sismica dinamica e analisi push over statica;
- Analisi del carico dinamico dei veicoli per i ponti;
- Non linearità geometrica, inclusi effetti P-delta e di grande spostamento;
- Costruzione a gradini (incrementale);
- Effetti di creep, restringimento e invecchiamento;
- Analisi di instabilità;
- Analisi allo stato stazionario e densità spettrale di potenza;
- Elementi strutturali di telaio e guscio, inclusi comportamento trave-pilastro, capriata, membrana e piatto;
- Elementi con comportamento a cavo o fune;
- Elementi solidi piani e assialsimmetrici bidimensionali;
- Elementi solidi tridimensionali;
- Collegamento non lineare ed elementi di supporto;
- Collegamento dipendente dalla frequenza e proprietà di supporto.

6.1.1 Fasi generali di calcolo

I seguenti passaggi generali sono necessari per analizzare e progettare una struttura utilizzando Straus7:

- 1. Creare o modificare un modello che definisca numericamente la geometria, le proprietà, il carico e i parametri di analisi per la struttura;
- 2. Eseguire un'analisi del modello (analisi statica o modale);
- 3. Rivedere i risultati dell'analisi;
- 4. Verificare e ottimizzare il progetto della struttura con i codici standard (EC2, EC3...);

APPALTATORE:	webuild mplerid CONSORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA					
PROGETTAZIONE: Mandataria:	Mandanti:	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO					
08 - GALLERIE Relazione di calcolo - Sca	vo Meccanizzato - Innesto by-pass	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO GN0300006	REV.	FOGLIO. 13 di 43

Questo è di solito un processo iterativo che può coinvolgere diversi cicli della sequenza di passaggi di cui sopra.

Gli elementi più comuni utilizzati nella progettazione civile sono gli elementi trave e gli elementi piastra. Tutti loro sono brevemente descritti di seguito.

6.1.2 Elementi "BEAM"

L'elemento "Beam" è un elemento 1D che può essere utilizzato per modellare travi, colonne, controventi e tralicci in strutture planari e tridimensionali. L'elemento "Trave" utilizza una formulazione generale, tridimensionale, trave-colonna che include gli effetti di flessione biassiale, torsione, deformazione assiale e deformazione biassiale di taglio. Un elemento "Trave" è modellato come una linea retta che collega due punti. La variazione della rigidità alla flessione può essere lineare, parabolica o cubica su ciascun segmento di lunghezza. Le proprietà assiali, di taglio, torsionali, di massa e di peso variano tutte linearmente su ogni segmento.

L'elemento trave è definito dai nodi N1 e N2 come mostrato nella figura sottostante. Questo definisce anche il sistema di coordinate principale. Il sistema di assi viene utilizzato per definire le proprietà della sezione e per definire i risultati di forza, momento, sollecitazione e deformazione.

Per una trave con un nodo di riferimento, il sistema di assi principali, mostrato in Figura 4, è definito come segue:

- assi diretti dal nodo N1 al nodo N2.
- normale dell'asse ai 3 assi e giace nel piano formato dai nodi N1, N2 e dal nodo di riferimento RifN. È positivo verso il lato su cui il nodo RefNlies.
- asse 1 completa il sistema di assi di destra.

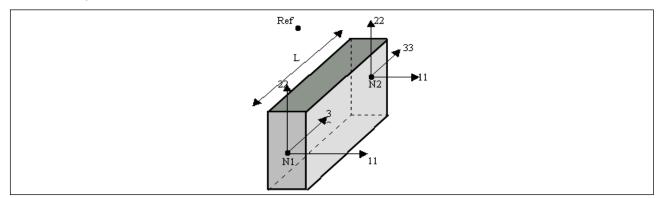


Figura 4: Sistema di coordinate principali di un elemento "Beam".

Straus7 fornisce i risultati della forza di taglio e del momento flettente per un elemento trave in due piani principali, Piano 1 e Piano 2. Il piano 1 è definito dall'asse 1 e dall'asse 3. Il piano 2 è definito dall'asse 2 e dall'asse 3.

APPALTATORE: PROGETTAZIONE: Mandataria:	webuild Implens CONSORZIODOLOMITI Mandanti:	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO					
08 - GALLERIE Relazione di calcolo - Scavo Meccanizzato - Innesto by-pass		COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO GN0300006	REV.	FOGLIO. 14 di 43

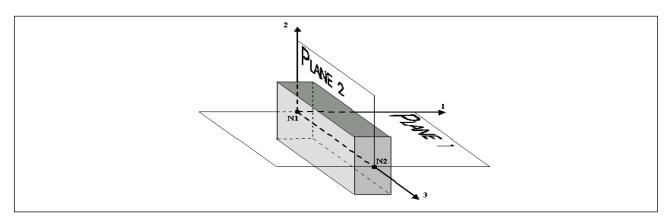


Figura 5: Principali piani di un elemento "Beam".

Di seguito sono illustrate le convenzioni di segno per le forze di taglio e i momenti flettenti in ciascun piano.

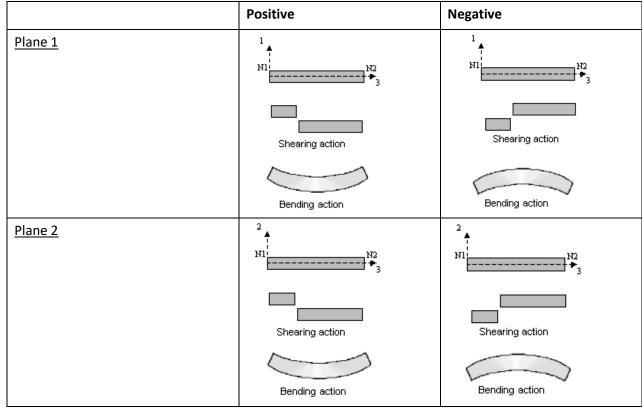


Figura 6: Convenzioni di segno per lo Sforzo di Taglio e per il Momento Flettente.

In ogni piano, una forza di taglio positiva taglia il lato N1 della trave verso il lato positivo dell'asse. Un momento flettente positivo genera una sollecitazione di compressione della fibra sul lato positivo dell'asse.

"Beam Element Property" è un insieme di proprietà materiali e geometriche che descrivono la sezione trasversale di uno o più elementi Frame. Le sezioni sono definite indipendentemente dagli elementi Frame e sono assegnate agli elementi. Le proprietà della sezione sono di due tipi fondamentali:

APPALTATORE:	webuild pripierid CONSORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA					
PROGETTAZIONE: Mandataria:	Mandanti:	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO					
08 - GALLERIE Relazione di calcolo - Scavo Meccanizzato - Innesto by-pass		COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO GN0300006	REV.	FOGLIO. 15 di 43

- Prismatico tutte le proprietà sono costanti lungo l'intera lunghezza dell'elemento;
- Non prismatico le proprietà possono variare lungo la lunghezza dell'elemento;

Le strutture che possono essere modellate con questo elemento includono:

- · Cornici tridimensionali;
- Tralicci tridimensionali;
- Telai planari;
- Griglie planari;
- Tralicci planari;
- Cavi.

Tra i principali attributi della trave presenti nel software Strand7, quello 'taper' permette di tenere conto della variabilità delle dimensioni della sezione trasversale. Questo può essere fatto con riferimento a uno o entrambi gli assi x e y locali della trave (vedi Figura 6 3) definendo due (uno per ciascuna direzione) valori positivi non dimensionali utilizzati per specificare la dimensione della sezione trasversale alle estremità come un rapporto della sezione trasversale originale della trave (come definito nel set di proprietà). Questi numeri possono essere costanti (se esiste una variabilità lineare) o un'equazione che definisce il rapporto in funzione della posizione dell'estremità della trave.

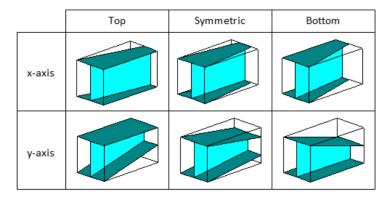


Figura 7: Attributo "Taper" nel software Straus7.

Quando si utilizzano le travi rastremate, il numero di sezioni che il solutore utilizza per le integrazioni degli elementi (che normalmente è posto pari a 5) viene utilizzato per definire per ognuna tutte le proprietà della sezione.

APPALTATORE:	webuild	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA					
PROGETTAZIONE:							
Mandataria:	Mandanti:	TRATTA "FOF	RTEZZA – F	ONTE GARDI	ENA"		
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO					
08 - GALLERIE		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
Relazione di calcolo - Scavo Meccanizzato - Innesto by-pass		IB0U	1BEZZ	CL	GN0300006	С	16 di 43

6.1.3 Elementi "PLATE"

"Plate" è un nome generico per un gruppo di elementi di superficie bidimensionali. Gli elementi di superficie (sempre indicati come "piastre" in Straus7) includono gli elementi triangolari a tre e sei nodi e gli elementi quadrilateri a quattro, otto e nove nodi. Questi elementi possono essere utilizzati per l'analisi di sollecitazione piana e deformazione piana, problemi solidi assialsimmetrici, analisi di piastre e shell, come pannelli di taglio, membrane 3D e per l'analisi del flusso di calore.

Il sistema di assi locale predefinito per questi elementi è mostrato nella figura seguente ed è costruito dai nodi N1, N2, N3 per il triangolo e N1, N2, N3, N4 per l'elemento quadrilatero come segue:

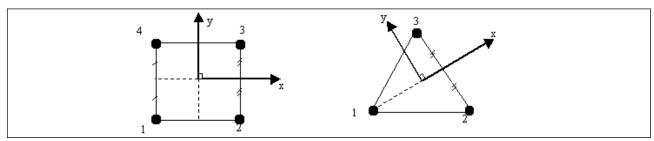


Figura 8: Assi locali per elementi "Plate" a 3 e 4 nodi.

- La x locale positiva unisce i punti medi dal lato (N1,N4) al lato (N2,N3) per l'elemento quadrilatero, o va da N1 al punto medio del lato (N2,N3) per il triangolo.
- Il locale positivo y è normale all'asse x locale diretto dal lato (N1,N2) e giace nel piano della piastra.

I pedici minuscoli x e y si riferiscono agli assi locali definiti sulla piastra e le sollecitazioni sono tensione positiva nella convenzione normale mostrata nella figura sottostante.

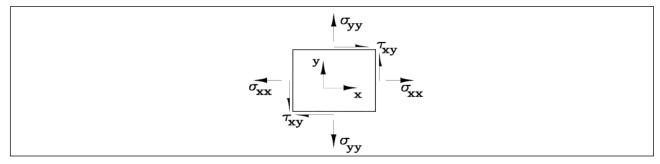


Figura 9: Convenzione positiva per le sollecitazioni nel piano.

Le convenzioni positive per i momenti sull'elemento piastra sono mostrate nella figura seguente.

APPALTATORE:	webuild	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA					
PROGETTAZIONE:		LINEA FERROVIARIA FORTEZZA-VERONA					
Mandataria:	Mandanti:	TRATTA "FORTEZZA – PONTE GARDENA" PROGETTO ESECUTIVO					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria						
08 - GALLERIE		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
Relazione di calcolo - Scavo Meccanizzato - Innesto by-pass		IBOU	1BEZZ	CL	GN0300006	С	17 di 43

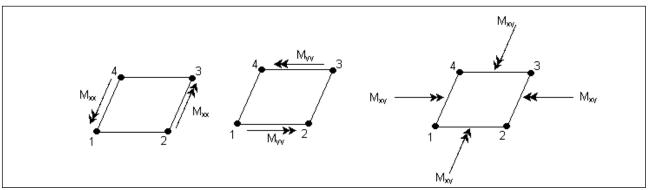


Figura 10: Convenzione positiva per i momenti sull'elemento "Plate".

Il momento Mxx dà σxx

Il momento Myy dà σyy

Il momento Mxy fornisce il taglio τyx e τxy .

Mxx e Myy positivi causano tensione sul lato z positivo della piastra e Mxy fornisce τxy positivo a z positivo.

Quando sono presenti membrana e flessione, le sollecitazioni nel piano variano linearmente attraverso la direzione dello spessore (z locale). Per una lastra isotropa, assumendo un'analisi statica lineare, queste sollecitazioni sono date da:

$$\sigma_{xx}(z) = \sigma_{xx} + 12 \frac{M_{xx}z}{t_B 3}$$

$$\sigma_{yy}(z) = \sigma_{yy} + 12 \frac{M_{yy}z}{t_B 3}$$

$$\tau_{xy}(z) = \tau_{xy} + 12 \frac{M_{xy}z}{t_B 3}$$

Qui t_B è lo spessore di piegatura. I valori di sollecitazione sopra riportati vengono utilizzati per calcolare le sollecitazioni principali sul piano medio e sulle superfici superiore e inferiore della piastra. Le risultanti delle forze di taglio sono riportate anche sulla piastra dove:

$$Q_{xz} = \frac{\partial M_{xx}}{\partial x} + \frac{\partial M_{xy}}{\partial y} \qquad Q_{yz} = \frac{\partial M_{yy}}{\partial y} + \frac{\partial M_{xy}}{\partial x}$$

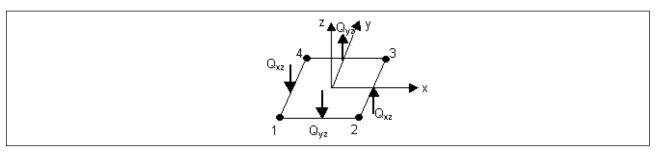


Figura 11: Convenzione positiva per gli sforzi di Taglio.

APPALTATORE:	webuild mplens CONSORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA					
PROGETTAZIONE: Mandataria:	Mandanti:	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO					
08 - GALLERIE Relazione di calcolo - Scavo Meccanizzato - Innesto by-pass		COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO GN0300006	REV.	FOGLIO. 18 di 43

Sono consentite proprietà del materiale dipendenti dalla temperatura e ortotrope. Ogni elemento può essere caricato per gravità e carichi uniformi in qualsiasi direzione; pressione superficiale sulle facce superiore, inferiore e laterale; e carichi dovuti a deformazioni e variazioni di temperatura. Per la rigidità Shell viene utilizzata una formulazione di integrazione numerica a quattro punti. Le sollecitazioni e le forze ei momenti interni, nel sistema di coordinate locali dell'elemento, sono valutati nei punti di integrazione di Gauss 2 per 2 e possono essere estrapolati ai giunti dell'elemento.

Le strutture che possono essere modellate con questo elemento includono:

- solette;
- pareti;
- impalcati di ponti;
- Involucri curvi tridimensionali, come serbatoi e cupole;
- modelli dettagliati di travi, pilastri, tubi e altri elementi strutturali.

APPALTATORE:	webuild mplerid CONSORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA					
PROGETTAZIONE:		LINEA FERROVIARIA FORTEZZA-VERONA					
Mandataria:	Mandanti:	TRATTA "FORTEZZA – PONTE GARDENA"					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO					
08 - GALLERIE		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
Relazione di calcolo - Scavo Meccanizzato - Innesto by-pass		IBOU	1BEZZ	CL	GN0300006	C	19 di 43

7. CRITERI GENERALI DI VERIFICA

I criteri generali di verifica utilizzati per la valutazione delle capacità resistenti delle sezioni, per la condizione SLU, e per le massime tensioni nei materiali nonché per il controllo della fessurazione, relativamente agli SLE, sono quelli definiti al p.to 4.1.2 del DM 14.01.08.

7.1 STATO LIMITE ULTIMO (S.L.U.)

La verifica agli Stai Limite Ultimi per presso-flessione viene condotta attraverso il calcolo dei domini di interazione N-M, ovvero il luogo dei punti rappresentativi di sollecitazioni che portano in crisi la sezione di verifica, secondo i criteri di resistenza da normativa.

Nel calcolo dei domini sono state mantenute le consuete ipotesi, tra cui:

- conservazione delle sezioni piane;
- legame costitutivo del calcestruzzo parabola-rettangolo non reagente a trazione, con plateaux ad una deformazione del $2^{\circ}/_{oo}$ e rottura al $3.5^{\circ}/_{oo}$, ($\sigma_{max} = 0.85 \times f_{ck}/1.5$);
- legame costitutivo dell'armatura d'acciaio elasto-perfettamente plastico con deformazione limite di rottura al 7.5°/o, (σ_{max} = f_{yk} / 1.15)

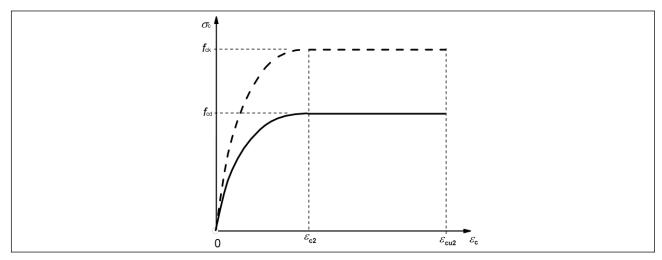


Figura 12: Diagramma Parabola – Rettangolo per calcestruzzo compresso.

Per l'armatura in acciaio è stato utilizzato il tratto orizzontale senza limite di deformazione.

APPALTATORE: PROGETTAZIONE: Mandataria: SWS Engineering S.p.A.	webuild property consortion of the consortion of	REALIZZAZIO LINEA FERRO TRATTA "FOR	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA" PROGETTO ESECUTIVO				
	M Ingegneria	T ROOL TO E	32001170				
08 - GALLERIE		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
Relazione di calcolo - Scavo Meccanizzato - Innesto by-pass		IB0U	1BEZZ	CL	GN0300006	С	20 di 43

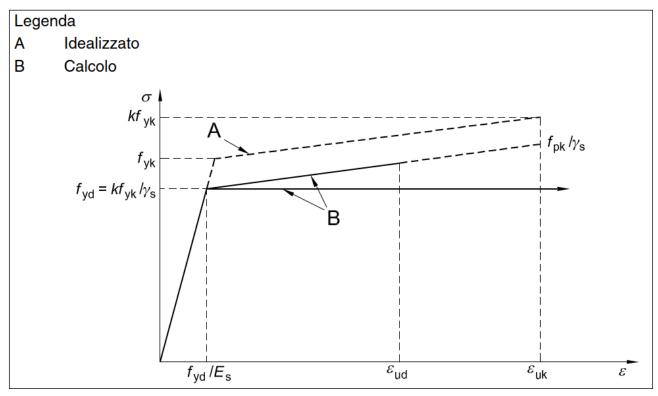


Figura 13: Diagramma tensioni-deformazioni idealizzati e di progetto per acciai da armature ordinarie (tese e compresse).

La verifica a taglio viene sempre eseguita secondo il seguente percorso.

Verifica della richiesta di armatura

$$\label{eq:vrd,c} \mbox{Vrd,c} = & [\ 0.18 \ * \ k \ * \ (100 \ \rho \ * \ fck)^{1/3} \ / \ \gamma + 0.15 \ \sigma_cp] \ * \ bw \ * \ d$$

$$k = 1 + radq(200/d)$$

$$v _min = & 0.035 \ * \ k^{3/2} \ * \ fck^{1/2}$$

$$\mbox{Vrd,min} = & (v _min + 0.15 \ * \ \sigma_cp) \ * \ bw \ * \ d$$

Verifica Biella Compressa

$$\label{eq:vrcd} \mbox{Vrcd} = \alpha \mbox{_cw* ν1 * fcd * [ctg(alfa)+ctg(teta)] / [1+ ctg^2(teta)] * bw * 0.9*d} $$$ 1.0 <= ctg(teta) <= 2.5 $$ alfa = 90^\circ$$$

 $\alpha_{\sf cw} \qquad \qquad \sigma_{\sf \, cp}$

APPALTATORE: PROGETTAZIONE: Mandataria: SWS Engineering S.p.A.	webuild Implement CONSORZODOLOMITI Mandanti: PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria		NE DEL LO VIARIA FO RTEZZA – F	OTTO 1 DEL QUE DE LE QUE D	_	_	
08 - GALLERIE		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
Relazione di calcolo - Scavo Meccanizzato - Innesto by-pass		IB0U	1BEZZ	CL	GN0300006	С	21 di 43

$$\begin{array}{ccc} 1.000 & \sigma_{cp} <= 0.00 * f_{cd} \\ \\ 1 + \sigma_{cp} / f_{cd} & 0.00 * f_{cd} < \sigma_{cp} <= 0.25 * f_{cd} \\ \\ 1.25 & 0.25 * f_{cd} < \sigma_{cp} <= 0.50 * f_{cd} \\ \\ 2.50 * (1 - \sigma_{cp} / f_{cd}) & 0.50 * f_{cd} < \sigma_{cp} <= 1.00 * f_{cd} \end{array}$$

$$v1 = 0.500$$

Verifica Armatura Trasversale

7.2 STATO LIMITE DI ESERCIZIO (S.L.E.)

7.2.1 Verifica delle Tensioni

I criteri di verifica delle Tensioni agli Stati Limite di Esercizio sono i seguenti:

Combinazione		Conci Prefabbricati	
	fck	45	N/mm²
CARATTERISTICHE	sigma_b =	0.55	* fck
	sigma_b =	-24.75	N/mm²
	w =	0.200	mm
QUASI PERM.	sigma_b =	0.40	* fck
	sigma_b =	-18.00	N/mm²

Analogamente per le armature si impone:

Combinazioni	B450C					
	fyk =	450	N/mm²			
CARATTERISTICHE	σ_{sr} = 0.75 * fyk =	337.50	N/mm²			

APPALTATORE:	webuild * Implement CONSORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA					
PROGETTAZIONE:		LINEA FERROVIARIA FORTEZZA-VERONA					
Mandataria:	Mandanti:	TRATTA "FORTEZZA – PONTE GARDENA"					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO					
08 - GALLERIE		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
Relazione di calcolo - Scavo Meccanizzato - Innesto by-pass		IB0U	1BEZZ	CL	GN0300006	С	22 di 43

I valori riportati in Tabella sono stabiliti nel documento RFI DTC SICS MA IFS 001 A – 2.5.1.8.3.2.1 (*Manuale di progettazione delle opere civili del 30/12/2016*).

7.2.2 Verifica della fessurazione

I valori adottati per le verifiche a fessurazione sono in accordo con quanto riportato nel documento RFI DTC SICS MA IFS 001 A – 2.5.1.8.3.2.4 (*Manuale di progettazione delle opere civili del 30/12/2016*).

In particolare, l'apertura convenzionale delle fessure δ_f dovrà rispettare i seguenti limiti:

- $\delta_f \leq w_1 = 0.2 \, mm$ per tutte le strutture in condizioni ambientali aggressive o molto aggressive (così come identificate nel par. 4.1.2.2.4.3 del DM 14.1.2008 Tab 4.1.III), per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture;
- $\delta_f \leq w_2 = 0.3 \ mm$ per strutture in condizioni ambientali ordinarie

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 2: Tabella 4.1.III – DM 14.01.2008 – Descrizione delle condizioni ambientali.

In definitiva, nel caso in esame, con riferimento alle indicazioni della tabella di cui in precedenza, si adotta il limite

sia per le parti in elevazione (piedritti e calotta) che per quelle in fondazione (arco rovescio), in quanto in entrambi i casi trattasi di strutture a permanente contatto col terreno.

L'approccio adottato, in conclusione, riporta la verifica a fessurazione propria delle condizioni frequenti alla L'analisi delle condizioni permanenti rimane immutato, salvo maggior penalizzazione del limite di apertura. Il calcolo dell'apertura della fessura è stato condotto con le relazioni:

$$W_k = S_{r,max} \cdot (\epsilon_{sm} - \epsilon_{cm})$$

$$S_{r,max} = k_3 \cdot c + k_1 \cdot k_2 \cdot k_4 \cdot \phi_{eq} / \rho_{p,eff}$$

In cui:

APPALTATORE: PROGETTAZIONE: Mandataria: SWS Engineering S.p.A.	Webuild Implement CONSORZIODOLOMITI Mandanti: PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria		NE DEL LO IVIARIA FO RTEZZA – P	OTTO 1 DEL QUE PRIEZZA-VER	_		
08 - GALLERIE		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
Relazione di calcolo - Scavo Meccanizzato - Innesto by-pass		IB0U	1BEZZ	CL	GN0300006	С	23 di 43

 $k_3 = 3.400$

ricoprimento dell'armatura;

 $k_1 = 0.800$ barre ad aderenza migliorata

 $k_2 = 0.500$ distribuzione delle deformazioni per flessione

 $k_4 = 0.425$

 $\phi_{eq} = \sum n_i \cdot \phi_i^2 / \sum n_i^* \phi_i$ diametro equivalente barre in zona tesa

 $\rho_{p,eff} = A_s / A_{c,ef}$ Area efficace di calcestruzzo intorno all'armatura tesa

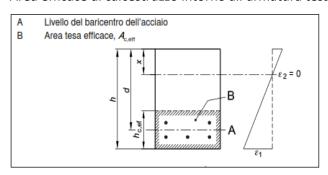


Figura 14: Area tesa efficace.

 $h_{c,ef} = min [2.5*(h-d) ; (h-x)/3 ; h/2]$

$$(\varepsilon_{sm} - \varepsilon_{cm})$$
 * Es = $\sigma_s - K_t$ * $f_{ct,eff} / \rho_{p,eff}$ * $(1 + \alpha_e * \rho_{p,eff}) >= 0.6 * \sigma_s$

K_t = 0.40 per carichi di lunga durata

K_t = 0.60 per carichi di breve durata

 α_e = Es / Ecm

 σ_{S} = tensione nell'armatura tesa in sezione fessurata

 $f_{ct,eff} = f_{ctm} / 1.2$

APPALTATORE: PROGETTAZIONE: Mandataria: SWS Engineering S.p.A.	webuild Implement CONSORZIODOLOMITI Mandanti: PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria		NE DEL LO VIARIA FO RTEZZA – P	TTO 1 DEL QUETEZZA-VER		_	
08 - GALLERIE		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
Relazione di calcolo - Scavo Meccanizzato - Innesto by-pass		IB0U	1BEZZ	CL	GN0300006	С	24 di 43

8. DESCRIZIONE DEL MODELLO DI CALCOLO

8.1 PREMESSA

Sono stati realizzati tre modelli di calcolo differenti in funzione della tipologia di sostegno adottata, con una comune base teorica, di seguito esposta e descritta.

Ciascun anello, modellato con elementi "plate", è stato considerato continuo in direzione trasversale. In direzione longitudinale ciascun anello è collegato, a quello adiacente, per mezzo di elementi di contatto e connettori.

Al fine di considerare la presenza dei giunti longitudinali, è stata considerata una riduzione della rigidezza flessionale dell'anello secondo la teoria di Muir-Wood (coefficiente η).

In particolare, la rigidezza flessionale dell'anello è stata calcolata secondo la seguente formulazione:

$$I_e = I_{giunto} + I_n (4 / n)^2$$

dove, Igiunto rappresenta l'inerzia della sezione in corrispondenza del giunto, considerato cautelativamente pari a zero, e n rappresenta il numero di conci di cui è composto l'anello, escluso il concio di chiave (n = 8).

Dal calcolo risulta dunque:

$$\eta = I_e / I_n = 0.250$$

Da cui lo spessore equivalente del concio risulta:

$$I_e = 1/12 \cdot \eta \cdot b \cdot t_{nom}^3 = 0.0027 m^4$$

 $t_e = (12 \cdot I_e / b)^{\Lambda 1/3} = 0.252 m$

Gli elementi "plate", impiegati per la simulazione dei conci, sono stati quindi modellati con spessore 0.40m nei riguardi delle azioni membranali ("membrane thickness") e con spessore 0.252 m nei riguardi delle azioni flettenti ("bending thickness").

Secondo la stessa teoria, per effetto della minore rigidezza dell'anello in corrispondenza del giunto, i connettori trasversali permettono una migrazione del momento flettente sul giunto verso i conci adiacenti. La quota parte di momento che viene scambiato attraverso i connettori è controllata dal coefficiente ξ , come segue:

$$M_{concio} = M_0 + \xi \cdot M_0 = (1 + \xi) \cdot M_0$$

$$M_{giunto} = M_0 - \xi \cdot M_0 = (1 - \xi) \cdot M_0$$

Considerando per il coefficiente ξ il valore di:

$$\xi = 1 - \eta = 0.750$$

il momento di progetto del concio e del giunto risultano rispettivamente:

$$M_{concio} = M_0 + \xi \cdot M_0 = (2 - \eta) \cdot M_0$$

$$M_{giunto} = M_0 - \xi \cdot M_0 = \eta \cdot M_0$$

APPALTATORE:	webuild mplend CONSORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA						
PROGETTAZIONE: Mandataria:	Mandanti:	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"						
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO						
08 - GALLERIE Relazione di calcolo - Sca	vo Meccanizzato - Innesto by-pass	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO GN0300006	REV.	FOGLIO. 25 di 43	

8.1.1 Elementi di connessione

Gli elementi di connessione (tipo Easy Click smart), inseriti tra anello ed anello in prossimità degli innesti, sono stati modellati sulla base dei dati reperiti dalle schede tecniche. Nel dettaglio, la rigidezza tangenziale è stata definita considerando la seguente geometria e schema statico:

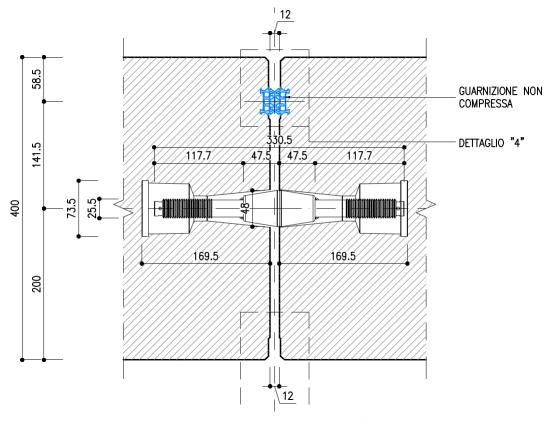


Figura 15: Geometria connettore metallico

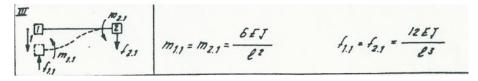


Figura 16: Schema statico connessione meccanica

Di conseguenza si ha:

 $J = \pi D^4 / 64 = \pi 22.50^4 / 64 = 12580.56 mm^4$

 $E = 210000 N/mm^2$

L = 330.50mm

 $K = 12 E J / I^3 = 12 210000 12580.56 / (330.5/2)^3 = 7025.48 N/mm$

APPALTATORE:	webuild Implend CONSORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA						
PROGETTAZIONE:		LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"						
Mandataria:	Mandanti:							
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO					
08 - GALLERIE		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.	
Relazione di calcolo - Scavo Meccanizzato - Innesto by-pass		IB0U	1BEZZ	CL	GN0300006	С	26 di 43	

Le resistenze massime a taglio e trazione, del connettore Easy Click smart, sono definite in base alle caratteristiche ricavate dalla scheda tecnica.

	Carico a rottura (kN)
Trazione (pull out)	110
Taglio (shear)	150

Figura 17: Resistenza a trazione e taglio connettore Easy Click smart

8.1.2 Interazione suolo – struttura

L'interazione terreno-struttura viene simulata mediante l'utilizzo di elementi support, posti in corrispondenza dei nodi del modello, e in grado di trasmettere alla struttura, solo se compressi, una reazione pari alla pressione di contatto terreno-struttura.

La rigidezza delle molle è determinata tenendo conto del modulo di reazione del terreno k.

Per la definizione della rigidezza del letto di molle radiali nei conci, si tiene conto del modulo elastico E, del coefficiente di Poisson v dell'ammasso roccioso e del raggio interno R della galleria.

$$K_R = E \cdot \frac{(1-\nu)}{(1+\nu)(1-2\cdot\nu)\cdot R}$$

- K_R = rigidezza del letto di molle radiali a contatto con l'anello interno;
- E = modulo elastico dell'ammasso roccioso;
- − v = coeff. di Poisson dell'ammasso roccioso;
- R = raggio della galleria linea di riferimento.

L'interazione terreno struttura è stata considerata anche in direzione tangenziale e longitudinale applicando ai conci vincoli elastici con rigidezza (k_R) pari a 1/30 volte la rigidezza in direzione radiale.

I valori applicati sono riassunti nella tabella seguente.

MODELLO	MODULO ELASTICO	COEFF. POISSON	RAGGIO	RIGIDEZZA MOLLE RADIALI	RIGIDEZZA MOLLE TANGENZIALI E LONGITUDINALI
	(E)	(v)	(R)	(K _R)	(k _R)
[-]	[GPa]	[-]	[m]	[kPa/m]	[kPa/m]
FORCH	12.30	0.30	5.15	3215086	107170

Tabella 3: Rigidezza Molle.

APPALTATORE:	webuild Implend CONSORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA						
PROGETTAZIONE:		LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"						
Mandataria:	Mandanti:							
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO					
08 - GALLERIE		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.	
Relazione di calcolo - Scavo Meccanizzato - Innesto by-pass		IB0U	1BEZZ	CL	GN0300006	С	27 di 43	

8.1.3 Analisi implementata

Il modello di calcolo è stato risolto attraverso una analisi non lineare per materiale, data la presenza di elementi reagenti unicamente a compressione.

8.1.4 Analisi per fasi

I modelli di calcolo sono stati analizzati, inoltre, seguendo un'analisi non lineare per fasi, costituita dai tre principali stage di costruzione:

- 1) Modello del tunnel indisturbato, soggetto al carico dell'ammasso roccioso;
- 2) Posa in opera degli elementi di sostegno in corrispondenza dell'apertura;
- 3) Apertura della finestra all'interno del tunnel.

APPALTATORE:	webuild mplerid CONSORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA					
PROGETTAZIONE: Mandataria:	<u>Mandanti:</u>	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO					
08 - GALLERIE Relazione di calcolo - Sca	vo Meccanizzato - Innesto by-pass	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO GN0300006	REV.	FOGLIO. 28 di 43

8.2 MODELLO DI CALCOLO

Il modello di calcolo analizza la situazione di carico intermedia, in cui il consolidamento dell'anello, realizzato con conci prefabbricati, avviene con bulloni da roccia Ø32 (tipo "Dywidag", in acciaio da precompressione – alta resistenza), disposti come illustrato nelle figure seguenti.

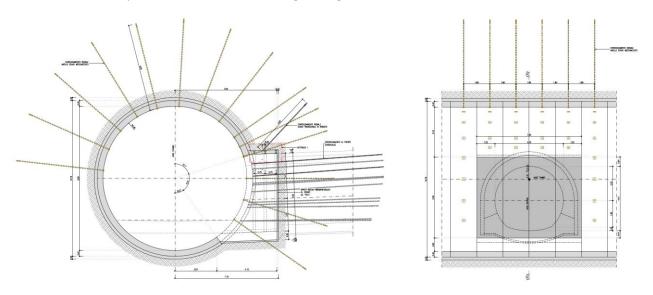


Figura 18: Carpenteria By-pass.

Le caratteristiche dei bulloni sono riportante nella tabella seguente.

Diametro nominale Ø	Tensione snerv. / rottura f _{0,1k} /f _{pk}	Sezione trasversale A	Carico snervamento F _{p0,1k}	Carico ultimo $F_{_{pk}}$	Peso	Peso DCP	Omolog.
[mm]	[N/mm²]	[mm ²]	[kN]	[kN]	[kg/m]	[kg/m]	
15	900/1.100	177	159	195	1.39	_	
26.5	950/1.050	552	525	580	4.48	7.4	
32	950/1.050	804	760	845	6.53	9.8	^

Tabella 4: Caratteristiche dei bulloni da roccia – Tipo "Dywidag" in acciaio da precompressione

In questo caso, il modello di calcolo, composto da 9 anelli, connessi tra loro mediante 24 connettori, simula la presenza dei bulloni mediante molle, la cui rigidezza è stata determinata come successivamente descritto.

È stata definita l'area di influenza di ciascun bullone e, successivamente, è stata modellata una porzione di terreno con elementi tridimensionali ("brick"), caratterizzati dal relativo modulo elastico del terreno, afferente a tale area, nella quale è inserito, per tutta la sua lunghezza, il bullone da roccia, modellato con elementi unifilari ("beam"). Applicando un carico unitario all'estremità del bullone, poiché è verificato lo sfilamento dello stesso dalla roccia, si definisce lo spostamento relativo a tale forza, con il quale si determina il valore di rigidezza da assegnare alle molle, che simulano il comportamento dei bulloni da roccia.

APPALTATORE:	webuild mplens CONSORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA					
PROGETTAZIONE: Mandataria:	Mandanti:	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO					
08 - GALLERIE Relazione di calcolo - Sca	vo Meccanizzato - Innesto by-pass	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO GN0300006	REV.	FOGLIO. 29 di 43

Figura 8.1.4-19: Modello di calcolo

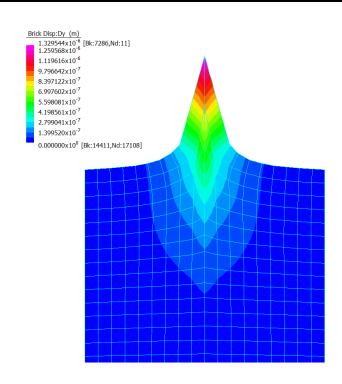


Figura 8.1.4-20: Spostamento Dy

 k_{R} = 1 / 1.329544 \cdot 10 $^{\text{-}6}$ = 752138 kN/m

Il modello di calcolo completo è riportato di seguito.

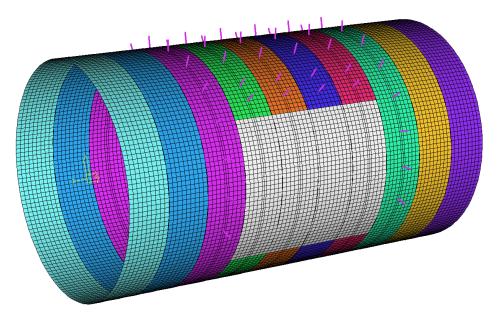


Figura 21: Modello di calcolo FEM.

APPALTATORE:	webuild mylenia consorzioDoLoMiti	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA					
PROGETTAZIONE:		TRATTA "FORTEZZA – PONTE GARDENA"					
Mandataria:	Mandanti:	IRATIA "FOR	KIEZZA – P	ONTE GARDI	ENA"		
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO					
08 - GALLERIE		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
Relazione di calcolo - Scavo Meccanizzato - Innesto by-pass		IB0U	1BEZZ	CL	GN0300006	С	30 di 43

9. ANALISI DEI CARICHI

I carichi agenti sulla struttura sono riportati e descritti di seguito.

9.1 CARICHI PERMANENTI

9.1.1 G00 PESO PROPRIO

Il carico di peso proprio è automaticamente calcolato dal programma, una volta inserite le caratteristiche dei materiali e delle sezioni. Secondo [12] ed in accordo con il paragrafo 3.1.3.1 delle NTC 2008, i carichi permanenti dei componenti strutturali devono essere calcolati con le seguenti ipotesi:

Calcestruzzo Armato:

Peso Specifico: $\gamma_{max} = 25 \text{ kN/m}^3$

Acciaio per Carpenteria Metallica:

Peso Specifico: $\gamma_{max} = 78.5 \text{ kN/m}^3$

9.1.2 G01 Carico dell'ammasso roccioso

Per effetto dell'apertura della finestra nel tunnel, il valore massimo di pressione si registra lateralmente, se si considera un sistema di riferimento polare con origine in calotta. Si riportano di seguito le distribuzioni delle pressioni applicate durante le fasi 1 e 2.

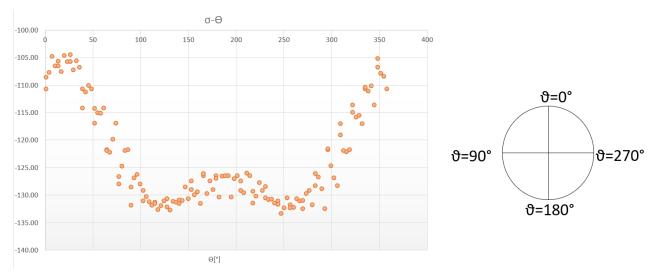


Figura 22: Distribuzione delle pressioni lungo l'anello.

APPALTATORE: PROGETTAZIONE: Mandataria: SWS Engineering S.p.A.	webuild Implement Im		NE DEL LO VIARIA FO RTEZZA – F	OTTO 1 DEL QUE PRIEZZA-VER			
08 - GALLERIE Relazione di calcolo - Scavo Meccanizzato - Innesto by-pass		COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO GN0300006	REV.	FOGLIO. 31 di 43

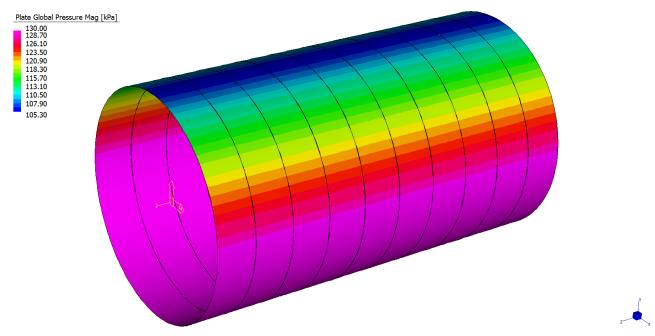


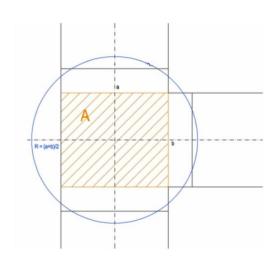
Figura 23: Carico applicato al modello FEM.

In aggiunta, per effetto del detensionamemento del terreno nell'area dell'apertura, si considera un incremento delle pressioni sugli anelli adiacenti all'area interessata dalla demolizione. Tale fenomeno, considerato in fase di Progetto Esecutivo, tramite il coefficiente amplificativo F = 1.465, è stato definito mediante la relazione empirica:

$$F = 1 + \frac{a \cdot b}{\pi \cdot R^2 - a \cdot b}$$

A = Area della zona di intersezione

R = raggio di carico incrementale


F = fattore di aumento del carico

a = 7.20m

b = 5.56m

R = 6.38m

F = 1.456

Pertanto, durante la fase 3 (apertura della finestra all'interno del tunnel), saranno applicate le distribuzioni di carico sui conci prefabbricati, rappresentate nella figura seguente.

APPALTATORE:	webuild Implerid CONSORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA					
PROGETTAZIONE: Mandataria:	Mandanti:	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO					
08 - GALLERIE Relazione di calcolo - Sca	vo Meccanizzato - Innesto by-pass	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO GN0300006	REV.	FOGLIO. 32 di 43

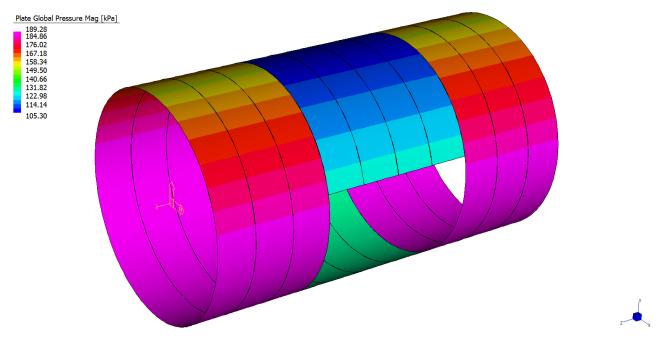


Figura 24: Pressione dell'ammasso roccioso sul rivestimento.

10. COMBINAZIONI DI CARICO

Le combinazioni delle azioni da analizzare sono considerate in conformità alle NTC2008, con i relativi coefficienti di combinazione ψ . Le combinazioni delle azioni, rilevanti per il dimensionamento del telaio metallico provvisorio e verifica dei conci prefabbricati, disposti a ridosso dell'apertura, sono riportate di seguito:

COMBINAZIONI	SLU_01	SLE_01
1: Peso_Proprio	1.35	1.00
2: Normal_Pressure_PLAXIS	1.35	1.00

Tabella 5: Combinazioni di carico.

11. VERIFICHE STRUTTURALI

11.1PREMESSA

In questo capitolo si riassumono i risultati ottenuti dal modello ad elementi finiti e si svolgono le verifiche dei conci prefabbricati in calcestruzzo. La fase di demolizione dei conci rappresenta infatti la condizione più gravosa per l'affidabilità strutturale degli stessi.

APPALTATORE:	webuild Implered CONSORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA					
PROGETTAZIONE: Mandataria:	Mandanti:	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO					
08 - GALLERIE Relazione di calcolo - Sca	vo Meccanizzato - Innesto by-pass	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO GN0300006	REV.	FOGLIO. 33 di 43

I valori di Momento Flettente, impiegati nelle verifiche strutturali, sono stati definiti integrando gli elementi maggiormente sollecitati ed assegnando il valore minimo (a favore di sicurezza) di sforzo normale corrispondente.

11.2 VERIFICA DEI CONCI PREFABBRICATI

Nel presente paragrafo si riportano le azioni sollecitanti e le verifiche svolte per i conci a seguito della perturbazione indotta dalla demolizione dell'apertura.

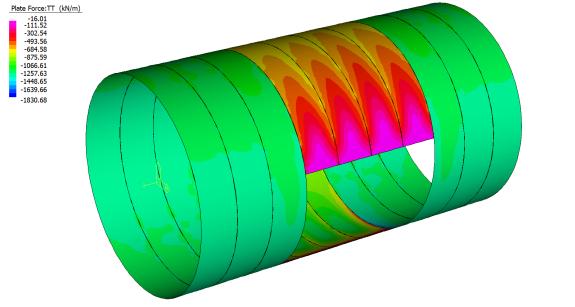


Figura 25: Sforzo Normale.

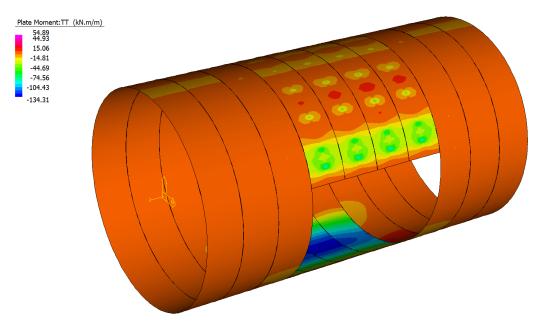


Figura 26: Momento Flettente.

APPALTATORE:	webuild mplerid CONSORZIODOLOMITI	REALIZZAZIO	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA							
PROGETTAZIONE: Mandataria:	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"									
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO								
08 - GALLERIE Relazione di calcolo - Sca	vo Meccanizzato - Innesto by-pass	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO GN0300006	REV.	FOGLIO. 34 di 43			

Le azioni di progetto per i conci sono state ricavate integrando nelle sezioni maggiormente critiche, la distribuzione della forza assiale (nella direzione tangenziale) e del momento flettente.

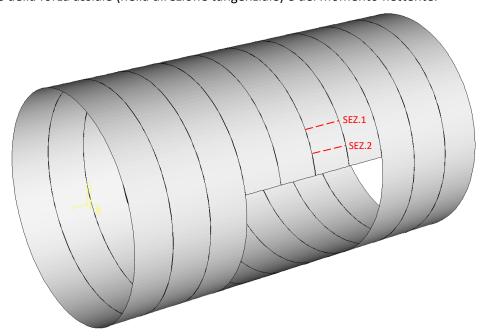
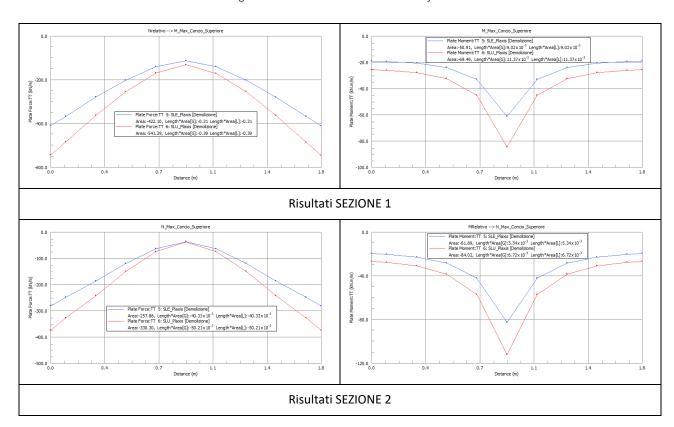
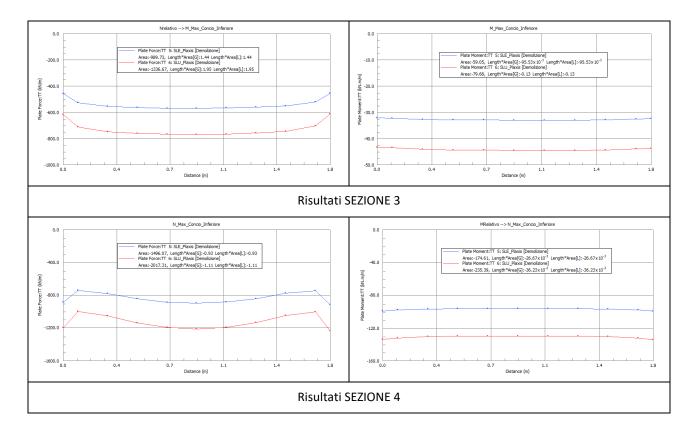




Figura 27: Ubicazione delle sezioni di verifica.

APPALTATORE:	webuild Implered CONSORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA							
PROGETTAZIONE: Mandataria:	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"								
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO							
08 - GALLERIE Relazione di calcolo - Sca	vo Meccanizzato - Innesto by-pass	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO GN0300006	REV.	FOGLIO. 35 di 43		

Le sezioni di verifica 3 e 4 sono posizionate specularmente, nella parte inferiore dell'anello, rispetto alle sezioni 1 e 2.

In accordo con la teoria di Muir-Wood, le sollecitazioni di progetto saranno moltiplicate per il coefficiente moltiplicativo ($1+\xi$) = 1.750 per considerare la presenza dei giunti longitudinali, in accordo con quanto riportato al paragrafo §8.1.

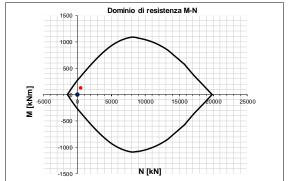
Di seguito si riportano le verifiche strutturali SLE (tensionali e fessurazione) e SLU dei conci con armatura standard (12 + 12 \emptyset 14).

	CODIFICA	DOCUMENTO	REV.	FOGLIO. 36 di 43
A	A LOTTO 1BEZZ			

			1411110	x - Con		
	INPUT				OUTPUT	
SOI	LLECITAZIONI DI VE	BIFICA			VERIFICHE IN ESERCIZIO	
301	ELLCITALIONIDIVI	ini ica			VERNITCHE IN ESERCIZIO	
Combinazione		N _{Sd} [kN]	M _{Sd} [kNm]	V _{Sd} [kN]	Verifica Tensionale	
	SLE Quasi Permanente	-422.1	89.1	-	Calcestruzzo SLE Quasi Permanente σ_c [Mpa] =	3.18
	SLE Frequente	-422.1	89.1	-	Calcestruzzo SLE Rara σ_c [Mpa] =	3.18
	SLE Rara SLU	-422.1 -541.3	89.1 121.6	0.0	Acciaio SLE Rara σ_s [Mpa] =	52.57
	SLV	0.0	0.0	0.0	Verifica di fessurazione	
	SLV	0.0	0.0	0.0	Combinazione SLE Quasi permanente w _d [mm] =	0.000
					Combinazione SLE Frequente w_d [imm] = w_d [imm] =	
CARATTERISTICH	IE GEOMETRICHE D	ELLA SEZI	ONE IN C.A	١.	VERIFICA DI RESISTENZA A TAGLIO)
Geometria della sezione					Sollecitazioni di progetto	
Base (ortogonale al Taglio)			B [cm]	180	Taglio sollecitante = max Taglio(SLU,SLV)	V _{Sd} [kN
Altezza (parallela al Taglio)			H [cm]	40	Sforzo Normale concomitante al massimo taglio	N _{Sd} [kN
Altezza utile della sezione			d [cm]	34		
Area di calcestruzzo			A _c [cm ²]	7200	Verifica di resistenza in assenza di armatura specifica	
					Resistenza di progetto senza armatura specifica	V _{Rd1} [KN
					Coefficiente di sicurezza	V_{Rd1}/V_{Sd}
Armatura longitudinale tesa Numero Barre	n	1° STRATO 12	2° STRATO 0	3° STRATO 0	Verifica di resistenza dell'armatura specifica	
Diametro	ή [mm	14	0	0	CoTan(θ) di progetto	cotan(θ
Posizione dal lembo esterno	φ [iiiii c [cm]	6.0	0.0	0.0	Resistenza a taglio delle bielle compresse in cls	V _{Rd2} (θ) [K
Area strato	As [cm ²	18.47	0.00	0.00	Resistenza a taglio dell'armatura	V _{Rd2} (θ) [K V _{Rd3} (θ) [K
Rapporto di armatura	ρ[%]	10.17	0.302%	0.00	Resistenza a taglio dell'armatara	V _{Rd} 3(O) [KN]
	F [.v]				Coefficiente di sicurezza	V _{Rd} /V _{So}
Armatura longitudinale compre	essa	1° STRATO	2° STRATO	3° STRATO		
Numero Barre	n	12	0	0	VERIFICA DI RESISTENZA A PRESSO-FLES	SSIONE
Diametro	φ[mm	14	0	0		
Posizione dal lembo esterno	c' [cm	6.0	0.0	0.0	Sollecitazioni di progetto	SLU
Area strato	As' [cm'	18.47	0.00	0.00	Momento sollecitante M _{Sd} [kNm]	
Rapporto di armatura	ρ' [%]		0.302%		Sforzo Normale concomitante N _{Sd} [kN]	-541.3
Armatura trasversale		1° TIPO	2° TIPO	3° TIPO	Verifica di resistenza in termini di momento	SLU
Diametro	φ [mn	0	0	0	Momento resistente M _{Rd} [kNm]	
Numero bracci	n _{bi}	0 30	0	0	Coefficiente di sicurezza M_{Rd}/M_{Sd}	2.86
Passo Inclinazione	s _w [cm	30 90	0 90	0 90	Verifica di resistenza in termini di sforzo normale	SLU
nciinazione Area armatura a metro	α [deg A_{sw}/s_w [cm ² /n	0.00	0.00	0.00	Sforzo normale resistente N _{Rd} [kN]	SLU
area armatara a metro	A _{sw} /s _w [cm /n	0.00	0.00	0.00	Solution in the resistence N_{Rd} [KN] Coefficiente di sicurezza N_{Rd}/N_{Sd}	-
					Dominio di resistenza M-N	
CARATTERIS	TICHE REOLOGICHI	E DEI MAT	ERIALI		1500	
Concrete					1000 -	
Resistenza cubica a compressione			RCK	55		
Resistenza cilindrica caratteristica	a compressione		f _{ck} [Mpa]	45.00		
Resistenza cilindrica media a com			f _{cm} [Mpa]	53.00	500	
Resistenza media a trazione per fl			f _{ctm} [Mpa]	3.80	- ·	
Resistenza caratteristica a trazion			f _{ctk} [Mpa]	2.66	<u>N.</u> -5000 5000 10000 15000 000	00 250
Resistenza di progetto a compressi	ione		f _{cd} [Mpa]	25.50	2 3000 4 3000 10000 13000 2000	,0 250

 $f_{cd'} \ [Mpa]$

f_{yd}[Mpa]


12.55

391.30

Resistenza di progetto a compressione ${\it Resistenza~di~progetto~delle~bielle~compresse}$

Resistenza di progetto a snervamento

Acciaio

 σ limit

20.250 27.000 360.000

w limit

0.200

0.300

0.0

0.0

337.50

2.5

SLV

0.0

0.0

SLV

264.0

SLV

APPALTATORE: PROGETTAZIONE: Mandataria: SWS Engineering S.p.A.	Mandanti: PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	REALIZZAZIO	NE DEL LO VIARIA FO RTEZZA – F	OTTO 1 DEL QU ORTEZZA-VER PONTE GARDI			
08 - GALLERIE	vo Meccanizzato - Innesto by-pass	COMMESSA	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO GN0300006	REV.	FOGLIO. 37 di 43

			141114	A COII	cio Superiore
	INPUT				
SOLLE	CITAZIONI DI VE	ERIFICA			
Combinazione	' Quasi Permanente	N _{Sd} [kN] -257.9	M _{Sd} [kNm] 108.3	V _{Sd} [kN]	Verifica Tensionale Calcestruzzo SLE Quasi Perma
SLE	SLE Frequente	-257.9	108.3		Calcestruzzo SLE Rara
	SLE Rara	-257.9	108.3	_	Acciaio SLE Rara
	SLU	-330.3	147.0	0.0	necialo 322 nara
	SLV	0.0	0.0	0.0	Verifica di fessurazione
					Combinazione SLE Quasi perm Combinazione SLE Frequente
CADATTEDICTICHE	PEOMETRICHE D	ELLA CEZ	ONE IN CA		VE
CARATTERISTICHE G	EUME I RICHE D	ELLA SEZ	UNE IN C.A		VE
Geometria della sezione					Sollecitazioni di progetto
Base (ortogonale al Taglio)			B [cm]	180	Taglio sollecitante = max Tagi
Altezza (parallela al Taglio)			H [cm]	40	Sforzo Normale concomitante
Altezza utile della sezione			d [cm]	34	
Area di calcestruzzo			A _c [cm ²]	7200	Verifica di resistenza in asse
					Resistenza di progetto senza a Coefficiente di sicurezza
Armatura longitudinale tesa		1° STRATO			
Numero Barre Diametro	n	12	0	0	Verifica di resistenza dell'ar
Siametro 6	φ [mm		0	-	CoTan(θ) di progetto
Posizione dal lembo esterno	c [cm]	6.0 18.47	0.0 0.00	0.0 0.00	Resistenza a taglio delle bielle Resistenza a taglio dell'armat
Area strato Rapporto di armatura	As [cm²] ρ [%]	10.47	0.302%	0.00	Resistenza a taglio di progetto
Rapporto di armatara	b [70]		0.30270		Coefficiente di sicurezza
Armatura longitudinale compressa		1° STRATO	2° STRATO	3° STRATO	
Numero Barre	n	12	0	0	VERIFICA
Diametro	φ [mm		0	0	
Posizione dal lembo esterno	c' [cm	6.0	0.0	0.0	Sollecitazioni di progetto
Area strato	As' [cm'		0.00	0.00	Momento sollecitante
Rapporto di armatura	ρ' [%]		0.302%		Sforzo Normale concomitante
Armatura trasversale		1° TIPO	2° TIPO	3° TIPO	Verifica di resistenza in terr
Diametro	φ [mn	0	0	0	Momento resistente
Numero bracci	n_{bi}	0	0	0	Coefficiente di sicurezza
Passo	s _w [cm	30	0	0	
Inclinazione	α [deg	90	90	90	Verifica di resistenza in terr
Area armatura a metro	A_{sw}/s_w [cm ² /n	0.00	0.00	0.00	Sforzo normale resistente Coefficiente di sicurezza
CARATTERISTIC	HE REOLOGICHI	E DEI MAT	ERIALI		1500 7
Concrete					1000 -
Resistenza cubica a compressione			RCK	55	
Resistenza cilindrica caratteristica a co	•		f _{ck} [Mpa]	45.00	500 -
Resistenza cilindrica media a compress			f _{cm} [Mpa]	53.00	
Resistenza media a trazione per flessio			f _{ctm} [Mpa]	3.80 2.66	F /
Resistenza caratteristica a trazione pe	-		f _{ctk} [Mpa]		<u>S</u> -5000
					2
Resistenza di progetto a compressione Resistenza di progetto delle bielle com			f _{cd} [Mpa] f _{cd'} [Mpa]	25.50 12.55	≥ -5000 ≥500

f_{yd} [Mpa]

391.30

Resistenza di progetto a snervamento

Acciaio

OUTPUT										
VERIFICHE I	N ESERCIZIO									
Verifica Tensionale			σlimit							
Calcestruzzo SLE Quasi Permanente	σ _c [Mpa] =	4.14	20.250							
Calcestruzzo SLE Rara	$\sigma_{c}[Mpa] =$	4.14	27.000							
Acciaio SLE Rara	σ_s [Mpa] =	121.64	360.000							
Verifica di fessurazione			w limit							
Combinazione SLE Quasi permanente	w _d [mm] =	0.000	0.200							
Combinazione SLE Frequente	w_d [mm] =	0.000	0.300							
VERIFICA DI RESI	STENZA A TAGLIO									
Sollecitazioni di progetto										
Taglio sollecitante = max Taglio(SLU,SLV)		V _{Sd} [kN]	0.0							
Sforzo Normale concomitante al massimo taglio		N _{Sd} [kN]	0.0							
-										
Verifica di resistenza in assenza di armatura	specifica									
Resistenza di progetto senza armatura specifica	V _{Rd1} [KN]	337.50								
Coefficiente di sicurezza		V_{Rd1}/V_{Sd}	-							
Verifica di resistenza dell'armatura specifica										
CoTan(θ) di progetto		$cotan(\theta)$	2.5							
Resistenza a taglio delle bielle compresse in cls		$V_{Rd2}(\theta)$ [KN]	-							
Resistenza a taglio dell'armatura		$V_{Rd3}(\theta)$ [KN]	-							
Resistenza a taglio di progetto	V _{Rd} [KN]	-								
Coefficiente di sicurezza		V_{Rd}/V_{Sd}	-							
VERIFICA DI RESISTENZ	ZA A PRESSO-FLES	SIONE								
Sollecitazioni di progetto		SLU	SLV							
Momento sollecitante	M _{Sd} [kNm]	147.0	0.0							
Sforzo Normale concomitante	N _{Sd} [kN]	-330.3	330.3 0.0							
Verifica di resistenza in termini di momento		SLU	SLV							
Momento resistente	M _{Rd} [kNm]	315.5	264.0							
Coefficiente di sicurezza	M_{Rd}/M_{Sd}	2.15	-							
Verifica di resistenza in termini di sforzo nor	male	SLU	SLV							
Sforzo normale resistente	N _{Rd} [kN]	-	-							
Coefficiente di sicurezza	-	-								
Deminis di	N _{Rd} /N _{Sd}									
1500										
-5000 5000 1000	00 15000 2000	0 25000								

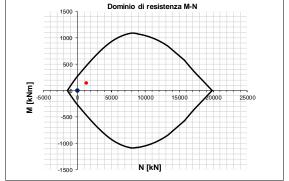
N [kN]

APPALTATORE: PROGETTAZIONE: Mandataria: SWS Engineering S.p.A.	Webuild Pimperia CONSORZIODOLOMITI Mandanti: PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria		NE DEL LO VIARIA FO RTEZZA – P	OTTO 1 DEL QUE PRIEZZA-VER			
08 - GALLERIE Relazione di calcolo - Sca	vo Meccanizzato - Innesto by-pass	COMMESSA	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO GN0300006	REV.	FOGLIO. 38 di 43

			Mm	ax - Con	cio Inferiore	
	INPUT				OUTPUT	
c	OLLECITAZIONI DI VE	DIEICA			VERIFICHE IN ESERCIZIO	
	OLLECITAZIONI DI VE	KIFICA			VERIFICHE IN ESERCIZIO	
Combinazione		N _{Sd} [kN]	M _{Sd} [kNm]	V _{Sd} [kN]	Verifica Tensionale	
	SLE Quasi Permanente	-989.7	103.3	-	Calcestruzzo SLE Quasi Permanente σ_c [Mpa] =	3.38
	SLE Frequente	-989.7	103.3	-	Calcestruzzo SLE Rara σ_c [Mpa] =	3.38
	SLE Rara	-989.7	103.3	-	Acciaio SLE Rara σ_s [Mpa] =	5.97
	SLU	-1336.7	139.4	0.0		
	SLV	0.0	0.0	0.0	Verifica di fessurazione	
					Combinazione SLE Quasi permanente w _d [mm] =	
					Combinazione SLE Frequente w _d [mm] =	0.000
CARATTERISTI	CHE GEOMETRICHE D	ELLA SEZ	IONE IN C.A	١.	VERIFICA DI RESISTENZA A TAGLIO)
Geometria della sezione					Sollecitazioni di progetto	
Base (ortogonale al Taglio)			B [cm]	180	Taglio sollecitante = max Taglio(SLU,SLV)	V _{Sd} [kN
Altezza (parallela al Taglio)			H [cm]	40	Sforzo Normale concomitante al massimo taglio	N _{Sd} [kN
Altezza utile della sezione			d [cm]	34		
Area di calcestruzzo			$A_c [cm^2]$	7200	Verifica di resistenza in assenza di armatura specifica	
					Resistenza di progetto senza armatura specifica	V _{Rd1} [KN
					Coefficiente di sicurezza	V_{Rd1}/V_{Sd}
Armatura longitudinale tesa			2° STRATO			
Numero Barre	n	12	0	0	Verifica di resistenza dell'armatura specifica	
Diametro	φ [mm	14	0	0	$CoTan(\theta)$ di progetto	cotan(θ)
Posizione dal lembo esterno	c [cm]	6.0	0.0	0.0	Resistenza a taglio delle bielle compresse in cls	V _{Rd2} (θ) [K
Area strato	As [cm ²]	18.47	0.00 0.302%	0.00	Resistenza a taglio dell'armatura	V _{Rd3} (θ) [K
Rapporto di armatura	ρ[%]		0.302%		Resistenza a taglio di progetto Coefficiente di sicurezza	V_{Rd} [KN] V_{Rd}/V_{Sd}
Armatura longitudinale comp	oressa	1° STRATO	2° STRATO	3° STRATO	Coefficiente di sicurezza	VRd/VSo
Numero Barre	n	12	0	0	VERIFICA DI RESISTENZA A PRESSO-FLE	SSIONE
Diametro	φ [mm	14	0	0		
Posizione dal lembo esterno	c' [cm	6.0	0.0	0.0	Sollecitazioni di progetto	SLU
Area strato	As' [cm'	18.47	0.00	0.00	Momento sollecitante M _{Sd} [kNm]	139.4
Rapporto di armatura	ρ' [%]		0.302%		Sforzo Normale concomitante N_{Sd} [kN]	-1336.7
Armatura trasversale		1° TIPO	2° TIPO	3° TIPO	Verifica di resistenza in termini di momento	SLU
Diametro	φ [mn	0	0	0	Momento resistente M _{Rd} [kNm]	466.3
Numero bracci	n_{bi}	0	0	0	Coefficiente di sicurezza M_{Rd}/M_{Sd}	3.34
Passo	s _w [cm	30	0	0		
Inclinazione	α [deg	90	90	90	Verifica di resistenza in termini di sforzo normale	SLU
Area armatura a metro	A_{sw}/s_w [cm ² /n	0.00	0.00	0.00	Sforzo normale resistente N_{Rd} [kN]	-
					Coefficiente di sicurezza N_{Rd}/N_{Sd}	-
CADATTED	HETICHE BEOLOCICH	CDELMAT	PEDIALI		Dominio di resistenza M-N	
CARATTER	ISTICHE REOLOGICHI	E DEI MAT	ERIALI		1500	
Concrete					1000	
Resistenza cubica a compression	пе		RCK	55	1000	
Resistenza cilindrica caratterist	ica a compressione		f _{ck} [Mpa]	45.00		
Resistenza cilindrica media a co	ompressione		f _{cm} [Mpa]	53.00	500	
Resistenza media a trazione per	r flessione		f _{ctm} [Mpa]	3.80		
Resistenza caratteristica a trazi	ione per flessione		f _{ctk} [Mpa]	2.66	<u>E</u> 5000 5000 10000 15000 200	
Resistenza di progetto a compre	essione		f _{cd} [Mpa]	25.50	<u>₹</u> -5000	00 2500
Resistenza di proaetto delle bie	lle compresse		f _{ed} [Mpa]	12.55	Σ /	

 $f_{cd'} \ [Mpa]$

f_{yd}[Mpa]


12.55

391.30

Resistenza di progetto a compressione ${\it Resistenza~di~progetto~delle~bielle~compresse}$

Resistenza di progetto a snervamento

Acciaio

 σ limit

20.250

27.000 360.000

w limit

0.200

0.300

0.0

0.0

337.50

2.5

SLV

0.0

0.0

SLV

264.0

SLV

OMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO. 39 di 43
0	MMESSA IBOU				

			Nma	ax - Cor	ncio Inferiore		
	INPUT				OUTPU'	Т	
c	OLLECITAZIONI DI VE	DIEICA			VERIFICHE IN ESEI	DCIZIO	
3	OLLECI I AZIONI DI VE	KIFICA			VERIFICHE IN ESE	KCIZIU	
Combinazione		N _{Sd} [kN]	M _{Sd} [kNm]	V _{Sd} [kN]	Verifica Tensionale		
	SLE Quasi Permanente	-1496.1	305.6	-	Calcestruzzo SLE Quasi Permanente	σ _c [Mpa] =	10.86
	SLE Frequente	-1496.1	305.6	-	Calcestruzzo SLE Rara	$\sigma_c[Mpa] =$	10.86
	SLE Rara	-1496.1	305.6	-	Acciaio SLE Rara	$\sigma_s[Mpa] =$	171.03
	SLU	-2017.3	411.9	0.0			
	SLV	0.0	0.0	0.0	Verifica di fessurazione		
					Combinazione SLE Quasi permanente	w _d [mm] =	0.185
					Combinazione SLE Frequente	w_d [mm] =	0.153
CARATTERISTI	CHE GEOMETRICHE D	ELLA SEZ	IONE IN C.A	١.	VERIFICA DI RESISTENZ	A A TAGLIO)
Annual della contant					C. H. chartest discounts		
Geometria della sezione Base (ortogonale al Taglio)			B [cm]	180	Sollecitazioni di progetto Taglio sollecitante = max Taglio(SLU,SLV)		V _{Sd} [kN]
Altezza (parallela al Taglio)			H [cm]	40	Sforzo Normale concomitante al massimo taglio		N _{Sd} [kN]
Altezza utile della sezione			d [cm]	34	Sjorzo Normale concomitante di massimo tagno		INSd [KIN]
Area di calcestruzzo			A _c [cm ²]	7200	Verifica di resistenza in assenza di armatura specific	2	
Area ai caicesti uzzo			A _c [ciii]	7200	Resistenza di progetto senza armatura specifica	d	V _{Rd1} [KN]
					Coefficiente di sicurezza		V_{Rd1} [KN] V_{Rd1}/V_{Sd}
Armatura longitudinale tesa		1° STRATO	2° STRATO	3° STRATO	Coefficiente di Sicurezza		VRd1/VSd
Numero Barre	n	12	0	0	Verifica di resistenza dell'armatura specifica		
Diametro	φ [mm	14	0	0	CoTan(θ) di progetto		cotan(θ)
Posizione dal lembo esterno	c [cm]	6.0	0.0	0.0	Resistenza a taglio delle bielle compresse in cls		V _{Rd2} (θ) [KN
Area strato	As [cm ²	18.47	0.00	0.00	Resistenza a taglio dell'armatura		$V_{Rd3}(\theta)$ [KN
Rapporto di armatura	ρ [%]		0.302%		Resistenza a taglio di progetto		V _{Rd} [KN]
	F [/*]				Coefficiente di sicurezza		V _{Rd} /V _{Sd}
Armatura longitudinale comp	ressa	1° STRATO	2° STRATO	3° STRATO			* Ku/ * Su
Numero Barre	n	12	0	0	VERIFICA DI RESISTENZA A PI	RESSO-FLES	SIONE
Diametro	φ [mm	14	0	0			
Posizione dal lembo esterno	c' [cm	6.0	0.0	0.0	Sollecitazioni di progetto		SLU
Area strato	As' [cm	18.47	0.00	0.00	Momento sollecitante	M _{Sd} [kNm]	411.9
Rapporto di armatura	ρ' [%]		0.302%		Sforzo Normale concomitante	N _{Sd} [kN]	-2017.3
Armatura trasversale		1° TIPO	2° TIPO	3° TIPO	Verifica di resistenza in termini di momento		SLU
Diametro	φ [mn	0	0	0	Momento resistente	M _{Rd} [kNm]	565.0
Numero bracci	n_{bi}	0	0	0	Coefficiente di sicurezza	M_{Rd}/M_{Sd}	1.37
Passo	s _w [cm	30	0	0			
Inclinazione	α [deg	90	90	90	Verifica di resistenza in termini di sforzo normale		SLU
Area armatura a metro	A_{sw}/s_w [cm ² /n	0.00	0.00	0.00	Sforzo normale resistente	N _{Rd} [kN]	-
					Coefficiente di sicurezza	N_{Rd}/N_{Sd}	-
CARATTER	ISTICHE REOLOGICHI	E DEI MAT	ΓERIALI		Dominio di resisten	za M-N	
Concrete			P.CV		1000 -		
Resistenza cubica a compression			RCK	55			
Resistenza cilindrica caratterist	ica a compressione		f _{ck} [Mpa]	45.00		\sim	

f_{cm} [Mpa] f_{ctm} [Mpa]

f_{ctk} [Mpa]

 $f_{cd} \, [Mpa]$

f_{cd'} [Mpa]

f_{yd} [Mpa]

53.00 3.80

2.66

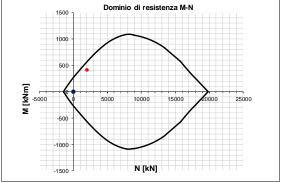
25.50

12.55

391.30

 $Resistenza\ cilindrica\ media\ a\ compressione$

 $Resistenza\ caratteristica\ a\ trazione\ per\ flessione$


 ${\it Resistenza~di~progetto~delle~bielle~compresse}$

 $Resistenza\ media\ a\ trazione\ per\ flessione$

 $Resistenza\ di\ progetto\ a\ compressione$

Resistenza di progetto a snervamento

Acciaio

 $\sigma\, limit$

20.250

27.000

360.000 w limit

0.200

0.300

0.0 0.0

337.50

2.5

SLV

0.0

0.0

SLV

264.0

SLV -

APPALTATORE:	webuild principle CONSORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"						
PROGETTAZIONE: Mandataria:	Mandanti:							
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO						
08 - GALLERIE Relazione di calcolo - Scavo Meccanizzato - Innesto by-pass		COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO GN0300006	REV.	FOGLIO. 40 di 43	

11.3 VERIFICA DEI CONNETTORI

Le sollecitazioni tangenziali massime agenti sui connettori sono riportate nella figura seguente.

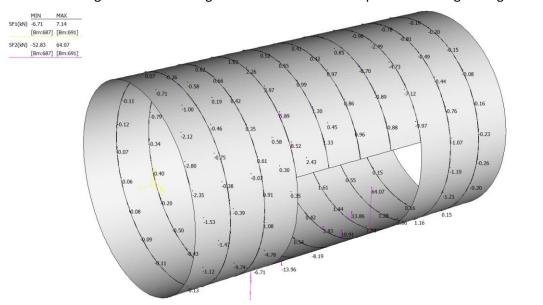


Figura 28: Connettori – Sforzo di Taglio.

Combinando l'azione tangenziale agente nelle due direzioni, lo sforzo di taglio massimo agente sul connettore più sollecitato risulta pari a V_{Ed} =64.47kN, inferiore al carico massimo ammissibile V_{Rd} =150/1.15=130kN.

11.4 VERIFICA DELLO SFORZO ASSIALE NEI BULLONI DA ROCCIA

Lo sforzo normale massimo, agente sui bulloni da roccia, è riportato nella figura seguente.

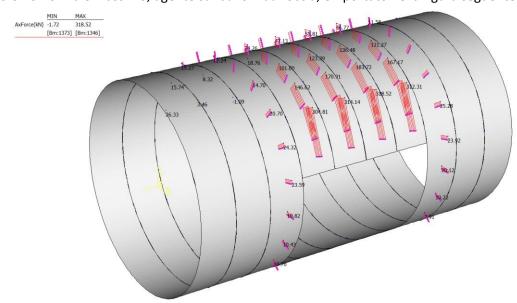


Figura 29: Bulloni da roccia – Sforzo Assiale.

APPALTATORE:	webuild Implered CONSORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA							
PROGETTAZIONE: Mandataria:	Mandanti:	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"							
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO							
08 - GALLERIE Relazione di calcolo - Scavo Meccanizzato - Innesto by-pass		COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO GN0300006	REV.	FOGLIO. 41 di 43		

Lo sforzo assiale massimo risulta pari a 318.52kN, inferiore al valore limite, pari a 760 / 1.15 = 660.86kN.

11.5 DEFORMAZIONI MASSIME

Si riportano infine le deformazioni attese dei conci in combinazione SLE.

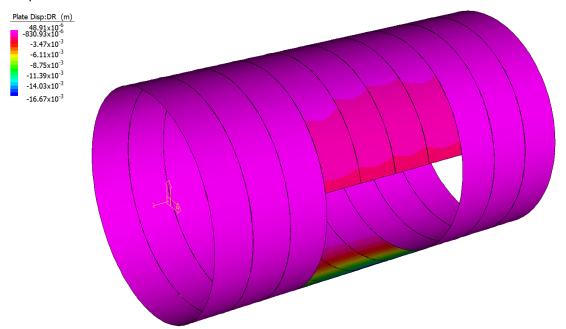


Figura 30: Spostamenti radiali attesi per i conci in corrispondenza dell'apertura.

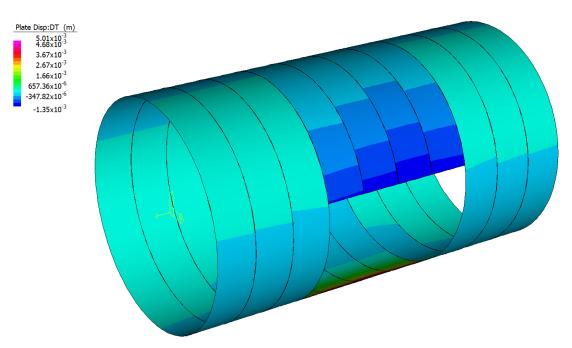


Figura 31: Spostamenti tangenziali attesi per i conci in corrispondenza dell'apertura.

APPALTATORE:	webuild mplerid CONSORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA							
PROGETTAZIONE:		LINEA FERROVIARIA FORTEZZA-VERONA							
Mandataria:	Mandanti:	TRATTA "FORTEZZA – PONTE GARDENA"							
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO							
08 - GALLERIE		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.		
Relazione di calcolo - Scavo Meccanizzato - Innesto by-pass		IB0U	1BEZZ	CL	GN0300006	С	42 di 43		

Gli spostamenti sono compatibili con la stabilità del sistema.

APPALTATORE:	webuild mplerid CONSORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA							
PROGETTAZIONE: Mandataria:	<u>Mandanti:</u>	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"							
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO							
08 - GALLERIE Relazione di calcolo - Scavo Meccanizzato - Innesto by-pass		COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO GN0300006	REV.	FOGLIO. 43 di 43		

12. VERIFICHE STRUTTURALI – DIMA

La carpenteria della Dima di innesto è la medesima di quella adottate nei bypass della Galleria di Linea. I carichi applicati sono inferiori a quelli impiegati per il dimensionamento del "TIPO B" nei tunnel di linea e, pertanto, si assume la stessa tipologia di armatura descritta e verificata nel documento IBOU1BEZZCLGN0000003C – Relazione di calcolo – Innesti By-pass – Dima di innesto. Si rimanda a tale documento per tutti i dettagli e le analisi di calcolo.

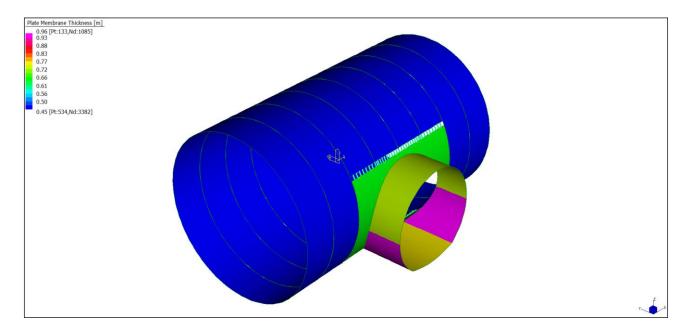


Figura 32:: By-pass di collegamento - modello 3D della dima d' innesto

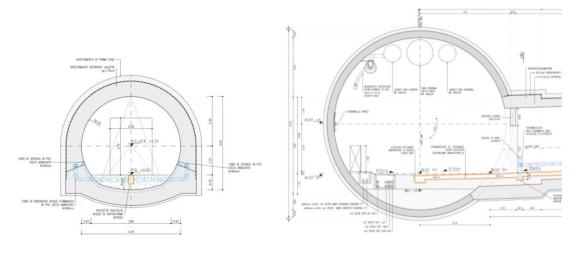


Figura 33:: By-pass di collegamento - geometria della dima 'a' innesto