COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

PROGETTAZIONE:

MANDATARIA:

SWS™

MANDANTI:

Ing. Paolo Cucino

ORDINE DEGLI INGEGNERI

Responsabile integrazione fra le varie ENTO

prestazioni specialistiche

IL DIRETTORE DELLA PROGETTAZIONE:

OOTHOGEOPA CLEERICANO
ISCRIZIONE ALBO Nº 2216

SI.F.EL.

PROGETTO ESECUTIVO

PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"

RELAZIONE

11 - OPERE CIVILI

B2-PIAZZALI AGLI IMBOCCHI DELLE GALLERIE E VIABILITA' DI ACCESSO VIABILITA' ACCESSO ALL'AREA DI FUNES - VIABILITA' DI CANTIERE USCITA A-22

Relazione idrologica e idraulica di piattaforma

APPA	LTATORE		· ·					SCALA:
	ORE TECNICO	1						-
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV	<u>'</u> .

I B 0 U 1 B E	Z Z C L	N V 0 4 3 0	0 0 1 C
---------------	---------	-------------	---------

Rev	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data			
Δ	A Emissione	M.Ingianni	00/04/0000	A.Valente	07/04/0000	D.Buttafoco	00/04/0000	IL PROGETTISTA			
_ ^	Emissione		26/01/2022		27/01/2022	(Dolomiti)	28/01/2022	A.Roll)			
В	Emissione a seguito di	B. Fiorentino	10/07/0000	A.Valente	19/07/2022	D.Buttafoco	20/07/2022	A CHE			
	indicazioni committenza		18/07/2022		19/07/2022	(Dolomiti)	20/07/2022	S OHOUME NOO!			
С	Emissione a seguito di	B. Fiorentino	05/00/0000	P. Fontana	0.5 /0.0 /0.0.0	D.Buttafoco	07/00/0000	MINGERIA			
	Istruttoria e interlocuzioni		25/02/2023		26/02/2023	(Dolomiti)	27/02/2023	15 N. /F			
								19540			
								09/03/2023			

File: IBOU1BEZZCLNV0430001C.docx n. Elab.:

APPALTATORE:) implesta SSORZIODOLOMITI	REALIZZAZIO	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA							
PROGETTAZIONE:		LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"								
Mandataria:	Mandanti:	TRATTA "FOI	RTEZZA – F	ONTE GARD	ENA"					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO							
11 - OPERE CIVILI		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.			
Relazione idrologica e idraulica di piattaforma		IB0U	1BEZZ	CL	NV0430001	С	1 di 36			

SOMMARIO

1.	PREMESSA	2
2.	INQUADRAMENTO GENERALE	3
2.1	RISOLUZIONE DELLE INTERFERENZE CON LA RETE ESISTENTE	4
3.	ELABORATI DI RIFERIMENTO	5
4.	ANALISI IDROLOGICA	б
5.	ANALISI IDRAULICA	<u>s</u>
5.1	IDRAULICA DI PIATTAFORMA	9
5.1.1	Dimensionamento dell'interasse degli embrici	12
5.1.2	Dimensionamento dell'interasse delle caditoie in cunetta	13
5.1.3	Dimensionamento delle canalette	14
5.1.4	Dimensionamento dei collettori	16
6.	VASCHE DI PRIMA PIOGGIA	19
6.1	CALCOLO DELLE PORTATE DI PRIMA PIOGGIA	19
6.2	DIMENSIONAMENTO SCOLMATORI DI BY-PASS	20
6.2.1	Sfioratore VPP 1	23
6.2.2	Sfioratore VPP 2	24
7.	ALLEGATI	26
7.1	ALLEGATO 1: DESCRIZIONE DEL CODICE DI CALCOLO HY-8	26
7.2	ALLEGATO 2: BACINI SCOLANTI	. 34

APPALTATORE:	build	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA					
PROGETTAZIONE: Mandataria:	<u>Mandanti:</u>	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO					
11 - OPERE CIVILI Relazione idrologica e id	Iraulica di piattaforma	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 2 di 36

1. PREMESSA

Gli interventi necessari all'esecuzione delle opere relative all'imbocco della Finestra Funes (GA06) e della relative viabilità di accesso ricadono nell'ambito del progetto di Quadruplicamento della Linea Fortezza – Verona (linea Fortezza – Ponte Gardena - Lotto 1A).

La presente relazione tecnica illustra la soluzione progettuale ed il dimensionamento delle opere idrauliche a servizio della viabilità di accesso all'area di Funes dall'Autostrada A-22 (menzionata come NV043), necessaria per una più efficace logistica di cantiere e per ridurre il numero di mezzi in uscita al casello di Chiusa-Val Gardena durante la realizzazione delle opere e degli interventi relativi all'imbocco della Finestra di accesso alla nuova infrastruttura ferroviaria.

APPALTATORE:	Male (€ → Implemu SORZIODOLOMITI	REALIZZAZIO	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA						
PROGETTAZIONE: Mandataria:	Mandanti:	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"							
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO							
11 - OPERE CIVILI Relazione idrologica e idr	aulica di piattaforma	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 3 di 36		

2. INQUADRAMENTO GENERALE

L'uscita dall'Autostrada A-22 per l'accesso all'area di Funes (NV043), è situata nella località di Gudon - Putzen, e presenta uno sviluppo complessivo di circa 450,70m. L'inizio del tracciato stradale è posto in corrispondenza della spalla Sud del ponte autostradale sul fiume Isarco, detto Tiso, il quale è situato circa 1,5 km a Nord dello svincolo autostradale di Chiusa-Val Gardena della A-22. La rampa permetterà il collegamento dalla A22 all'area di cantiere e verrà realizzata senza interrompere il traffico e mantenendo l'operatività dell'infrastruttura stradale. Si propone nell'immagine seguente un inquadramento territoriale delle aree di intervento.

Figura 2-1 – Street view del ponte autostradale Tiso – Google Earth

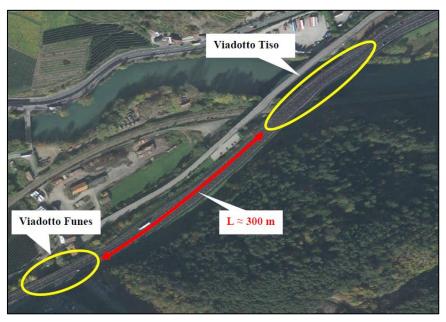


Figura 2-2 – Planimetria dell'area di intervento – Google Earth

APPALTATORE:	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA							
PROGETTAZIONE:		LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"						
Mandataria:	Mandanti:	TRATTA "FORTEZZA – PONTE GARDENA"						
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO						
11 - OPERE CIVILI		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.	
Relazione idrologica e idr	IB0U	1BEZZ	CL	NV0430001	c	4 di 36		

Le verifiche riguardano le seguenti opere idrauliche della rete di raccolta e scarico delle acque di piattaforma a servizio della rampa di uscita dall'Autostrada A-22.

- Canalette ad embrici;
- Cunette alla francese;
- Canalette a sezione trapezoidale in c.a.;
- Pozzetti prefabbricati in c.a.v con caditoia in ghisa sferoidale carrabile UNI/EN 124 classe D 400;
- Canalette rettangolare in c.a.;
- Tubi in PVC SN8 di diametro variabile, per il collettamento delle acque.
- Vasche di prima pioggia.

2.1 RISOLUZIONE DELLE INTERFERENZE CON LA RETE ESISTENTE

Nell'area della fermata del bus in corsia Nord della SP27, la rete fognaria bianca esistente consta di un collettore principale profondo (tubazione in CLS – diametro 300mm) da cui si ramificano tubazioni di diametro minore che raggiungono le caditoie poste in corrispondenza del ciglio stradale della SP27.

Vista la particolare condizione morfologica approfondita in fase di progettazione esecutiva si è ritenuto di convogliare nel collettore principale esistente le acque raccolte al piede della scarpata della NV043, diversamente da quanto previsto nel progetto definitivo che preferiva gestire con un fosso a cielo aperto le suddette acque (i rilievi hanno confermato che tale soluzione sarebbe stata difficilmente percorribile).

Lungo il collettore principale esistente è stato identificato un pozzetto con caditoia denominato: "Pozzetto Esistente W"; le tubazioni che si trovano a monte di questo (trattasi di una parte del Φ300-cls e di una ramificazione con caditoia di estremità) verranno demolite contestualmente alla realizzazione delle opere NV043; la ramificazione verrà ripristinata contestualmente alla realizzazione dello scatolare per mezzo di:

- Pozzetto con caditoia in strada (posizionato in corrispondenza del precedente)
- Tubazione DN250 di collettamento al pozzetto "W"

La parte sommitale della NV043 verrà rilevata dettagliatamente in fase di progettazione esecutiva di dettaglio, in modo da poter definire interventi utili alla sua sostituzione. Al termine dei lavori del Lotto 1, quando verranno smantellate le opere della NV043 (viabilità provvisoria), si manterranno i suddetti presidi.

Le tubazioni esistenti che si trovano a valle del "Pozzetto Esistente W" (trattasi dell'altra parte del Φ 300-cls e di altre ramificazioni convergenti al collettore) verranno mantenute operative come nello stato ante-operam, sia durante i lavori del Lotto 1 che al termine di questi (quando verranno smantellate le opere della NV043, si ripristinera' in toto l'idraulica ante-operam e verrà ricollettata al "Pozzetto Esistente W").

Nella scelta dei presidi idraulici è stata prestata particolare attenzione anche al parcheggio esistente sulla SP27, in corrispondenza del quale è stato preferito inserire una cunetta alla francese (quindi carrabile) di ingombro limitato in luogo della canaletta trapezia 50/150 h50 prevista nel progetto definitivo; in questo modo si è potuto limitare il consumo di aree già destinate al parcheggio che sarebbero state sacrificate alla realizzazione del fosso di guardia al piede dell'allargamento autostradale.

Le quote della fognatura verranno rilevate dettagliatamente in fase di progettazione esecutiva di dettaglio; pertanto le verifiche di capacità idraulica vengono rimandate a tale fase progettuale così come lo studio di dettaglio delle interferenze ed il progetto di risoluzione delle stesse.

APPALTATORE:	Ma 🙋 👚 Implemu SORZIODOLOMITI	REALIZZAZIO	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA							
PROGETTAZIONE:		LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"								
Mandataria:	Mandanti:									
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO							
11 - OPERE CIVILI		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.			
Relazione idrologica e idraulica di piattaforma		IBOU	1BEZZ	CL	NV0430001	С	5 di 36			

3. ELABORATI DI RIFERIMENTO

Gli elaborati relativi alle opere idrauliche sono codificati:

- IBOU1BEZZP8NV0430001 Planimetria idraulica
- IBOU1BEZZBZNV0430002- Particolari idraulici Tav 1 di 2
- IBOU1BEZZBZNV0430007- Particolari idraulici Tav 2 di 2
- IBOU1BEZZBZNV0420001– Sezioni tipologiche stradali con opere idrauliche

APPALTATORE:	REALIZZAZIOI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA						
PROGETTAZIONE: Mandataria:	Mandanti:	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"						
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ES	SECUTIVO					
11 - OPERE CIVILI Relazione idrologica e idi	raulica di piattaforma	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 6 di 36	

4. ANALISI IDROLOGICA

Come indicato nella relazione idrologica del progetto definitivo (IBL11BD26RIID0000001A – capitolo 5.1), il metodo di calcolo impiegato è quello della regionalizzazione (analisi regionale), con i dati forniti dall'autorità di bacino. Per la formulazione di tali dati sono state prese in esame le serie storiche misurate alle stazioni dotate di pluviografo, presenti nell'area e ritenute rappresentative (24 stazioni pluviografiche), in particolare sono state considerate le durate pari a 15', 30', 45' e 1h, 3h, 6h, 12h e 24h; come per la progettazione definitiva, sono stati assunti i dati relativi ai bacini in zona Albes (stazione di riferimento).

L'osservazione dell'andamento dei dati delle stazioni esaminate nel corso della progettazione definitiva ha permesso di stabilire, negli studi dell'AdB, che il modello probabilistico che meglio si adotta a caratterizzare la curvatura che presenta la legge di probabilità campionaria in carta probabilistica asintotica del massimo valore è quello costituito dalla GEV.

Dallo studio del progetto definitivo sono stati desunti i parametri di input impiegati anche per la progettazione esecutiva; a seguire si riportano i parametri della curva di possibilità climatica adottata (a favore di sicurezza) per differenti tempi di ritorno.

APPALTATORE:	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA						
PROGETTAZIONE: Mandataria:	Mandanti:	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO					
11 - OPERE CIVILI Relazione idrologica e idr	aulica di piattaforma	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 7 di 36

			PRE	CIPIT	AZIO	NI			
Durata				Tem	po di	Ritori	no		
(h)	2	5	10	20	30	50	100	200	300
0.25	11.3	15.7	18.6	21.4	22.9	24.9	27.6	30.3	31.9
0.50	14.6	20.2	23.9	27.5	29.6	32.1	35.6	39.1	41.1
0.75	16.9	23.4	27.8	31.9	34.3	37.3	41.3	45.3	47.7
1.00	18.8	26.0	30.9	35.5	38.1	41.4	45.9	50.4	53.0
2.00	22.6	31.4	37.2	42.7	45.9	49.9	55.3	60.7	63.8
3.00	25.2	35.0	41.5	47.7	51.2	55.7	61.7	67.7	71.2
4.00	27.3	37.8	44.8	51.5	55.3	60.1	66.6	73.1	76.9
5.00	29.0	40.2	47.6	54.7	58.8	63.9	70.8	77.6	81.6
6.00	30.4	42.2	50.0	57.4	61.7	67.1	74.3	81.5	85.7
7.00	31.7	44.0	52.1	59.8	64.3	69.9	77.5	85.0	89.4
8.00	32.9	45.6	54.0	62.0	66.7	72.5	80.3	88.1	92.6
9.00	33.9	47.0	55.7	64.0	68.8	74.8	82.9	90.9	95.6
10.00	34.9	48.4	57.3	65.9	70.8	77.0	85.3	93.5	98.4
11.00	35.8	49.6	58.8	67.6	72.6	79.0	87.5	96.0	100.9
12.00	36.7	50.8	60.2	69.2	74.4	80.8	89.5	98.2	103.3
13.00	37.5	51.9	61.5	70.7	76.0	82.6	91.5	100.4	105.6
14.00	38.2	53.0	62.7	72.1	77.5	84.2	93.3	102.4	107.7
15.00	38.9	54.0	63.9	73.5	79.0	85.8	95.1	104.3	109.7
16.00	39.6	54.9	65.0	74.7	80.3	87.3	96.7	106.1	111.6
17.00	40.3	55.8	66.1	76.0	81.7	88.88	98.3	107.9	113.5
18.00	40.9	56.7	67.1	77.2	82.9	90.1	99.9	109.6	115.2
19.00	41.5	57.5	68.1	78.3	84.1	91.5	101.3	111.2	116.9
20.00	42.1	58.3	69.1	79.4	85.3	92.7	102.7	112.7	118.5
21.00	42.6	59.1	70.0	80.4	86.4	93.9	104.1	114.2	120.1
22.00	43.1	59.8	70.8	81.4	87.5	95.1	105.4	115.6	121.6
23.00	43.7	60.5	71.7	82.4	88.6	96.3	106.7	117.0	123.1
24.00	44.2	61.2	72.5	83.4	89.6	97.4	107.9	118.4	124.5

Figure 4-1 - Valori di precipitazioni per differenti durate e tempi di ritorno.

	PARAMETRI C.P.P. – B340												
	a n												
			Temp	o di Ri	torno				Dur Precipit				
2	5	10	20	30	50	100	200	300	< 1h	> 1h			
18.8	26.0	30.9	53.0	0.37	0.27								

Figure 4-2 - Parametri della curva di possibilità climatica.

APPALTATORE:	build	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA								
PROGETTAZIONE: Mandataria:	<u>Mandanti:</u>	TRATTA "FOI								
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO							
11 - OPERE CIVILI Relazione idrologica e id	Iraulica di piattaforma	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 8 di 36			

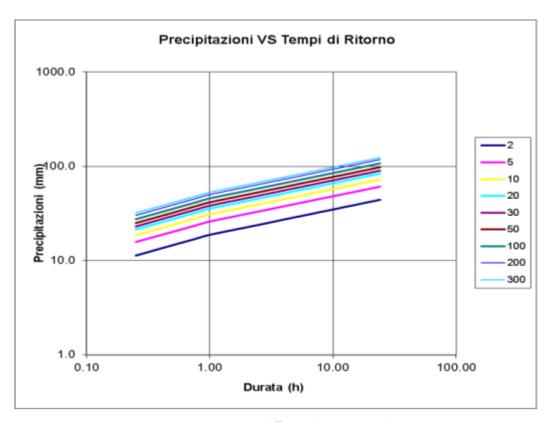


Figure 4-3 - Precipitazioni per differenti durate e tempi di ritorno.

Tr	Tipo	а	n
[anni]	-		-
30	Piattaforma e cunetta	38.1	0.37
50	Fossi-Cunetta esterni	41.40	0.37
200	Tombini-Fiumi	50.40	0.37

Figure 4-4 - Parametri a e n adottati per la verifica delle opere idrauliche in progetto.

Per stimare l'altezza di pioggia si adotta la seguente formula:

$$h(T) = a d^n$$

che, esprime la legge di variazione dei massimi annuali di pioggia in funzione della durata della precipitazione, d, ad assegnata frequenza di accadimento o periodo di ritorno T.

APPALTATORE:	uid	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA									
PROGETTAZIONE: Mandataria:	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"										
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO								
11 - OPERE CIVILI Relazione idrologica e idi	raulica di piattaforma	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 9 di 36				

5. ANALISI IDRAULICA

L' analisi idraulica è volta al dimensionamento e verifica delle opere di drenaggio in progetto, sulla base delle curve di possibilità pluviometrica per i relativi tempi di ritorno, determinate nell'ambito dell'attività di analisi idrologica.

5.1 IDRAULICA DI PIATTAFORMA

Nel presente capitolo si fornisce una descrizione delle opere di drenaggio della piattaforma stradale, fornendo gli elementi e i criteri utili per il corretto dimensionamento e verifica delle stesse.

Gli schemi della rete di smaltimento verranno studiati per consentire lo scarico a gravità delle acque di drenaggio verso 2 impianti di trattamento delle acque di prima pioggia prima dello scarico finale nel Fiume Isarco che averrà a valle dell'innesto in un collettore Ф1000 esistente. Si precisa che la NV043 è una viabilità provvisoria (ovvero verrà smantellata al termine dei lavori del Lotto 1) e che, analogamente a quanto previsto nel progetto definitivo, sia le acque della piattaforma stradale che quelle (modeste) di versante verranno inviate alle vasche di prima pioggia prima di essere recapitate agli scarichi finali.

Nel calcolo delle opere di drenaggio delle acque di piattaforma, la sollecitazione meteorica che si assume alla base del progetto è quella corrispondente ad un tempo di ritorno pari a 30 anni (elementi di drenaggio che raccolgono esclusivamente l'acqua proveniente dalla piattaforma stradale).

Per il dimensionamento degli elementi di raccolta delle acque di scarpata e versante (fossi di guardia e canalette), si assume la sollecitazione meteorica corrispondente ad un tempo di ritorno pari a 50 anni. I collettori sono stati dimensionati anch'essi per eventi con tempo di ritorno di 50 anni.

Lungo tutta la rampa di uscita dall'autostrada è previsto un sistema di raccolta a mezzo di embrici che convogliano le acque nel fosso di guardia al piede del rilevato costituito da canaletta a sezione trapezoidale in c.a. Il tratto da sezione 1 a sezione 14 avrà uno schema simile a quello previsto sull'A22; attualmente le acque della piattaforma stradale vengono raccolte a mezzo di embrici nel sottostante fosso di guardia al piede del rilevato e convogliata, senza trattamento, allo scarico esistente costituito da un tombino Ø 1000. Il progetto esecutivo, in linea con quanto previsto nel progetto definitivo, prevede il trattamento delle acque di prima pioggia prima dello scarico nel tubo Ø 1000 esistente; nel PD si prevedeva uno scarico diretto al fiume Isarco ma il rilievo celerimetrico del 2021 ha evidenziato come tale soluzione fosse difficilmente praticabile in ragione dello stato dei luoghi. Tuttavia si precisa che il pozzetto di recapito a valle della VPP1, che collega la rete di progetto al tubo Ø 1000 esistente, riceverà contributi minori o uguali a quelli che vengono attualmente qui indirizzati, in ragione delle superfici drenate. Il posizionamento della vasca di prima pioggia è stato previsto nell'area interclusa fra la SP27 consentendo agevoli operazioni di manutenzione agli operatori incaricati.

APPALTATORE:	ILI () Implemial SORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"									
PROGETTAZIONE: Mandataria:	Mandanti:										
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO								
11 - OPERE CIVILI Relazione idrologica e idr	aulica di piattaforma	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 10 di 36				

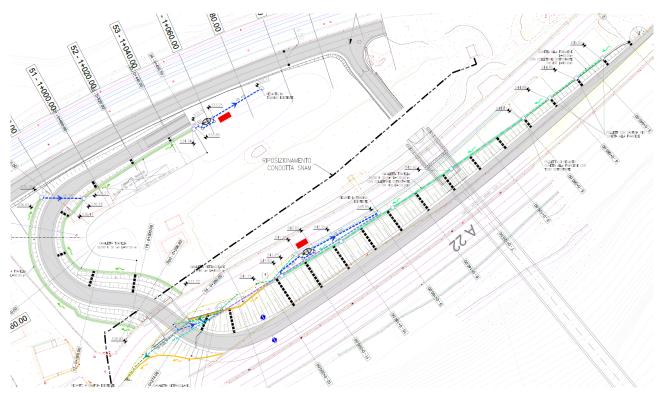


Figura 5-1 – Estratto della "Planimetria idraulica" (codifica: IBOU1AEZZP8NV0430001)

Dalla sezione 14 fino alla sezione 24 (fine intervento), si prevede un sistema di raccolta mediante canalette ad embrice che recapitano nei fossi di guardia rivestiti in c.a. al piede del rilevato stradale verso un secondo impianto di trattamento. In prossimità della sezione 18, verrà realizzato un attraversamento idraulico per convogliare le acque raccolte dal fosso di guardia in sinistra nel fosso di guardia in destra, che terminerà in un pozzetto di entrata alla vasca di prima pioggia, posizionata al termine della rampa in destra (come da PD). Lo scarico della vasca verrà convogliato direttamente al recapito esistente (senza impegnare l'idraulica di piattaforma della NV042). Si precisa che il recapito a valle della VPP2 raccoglierà i medesimi contributi di pioggia che prende attualmente. Si precisa che l'acqua raccolta nell'area verde in sinistra lungo il tratto di affiancamento alla viabilità NV042 (fra le sezioni 20 e 24) viene drenata verso il sistema di raccolta di quest'ultima in quanto nel tratto di affiancamento non c'è sufficiente spazio per il prolungamento del fosso di guardia; per maggiori informazioni si rimanda alla relazione idraulica della NV042.

Nell'area situata a sinistra del sovrappasso (considerando le progressive crescenti) si prevede di inserire una canaletta rettangolare per raccogliere l'acqua di una porzione dei rilevati della NV043 e dell'autostrada (con riferimento allo stralcio sotto riportato, ci si riferisce alla linea gialla che si trova in basso a sinistra).

APPALTATORE:	INIA (№ 1) Implemia SORZIODOLOMITI		NE DEL LO	TTO 1 DEL Q	CUZIONE DEI LA UADRUPLICAMI ONA	_						
Mandataria:	Mandanti:	TRATTA "FORTEZZA – PONTE GARDENA"										
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO									
11 - OPERE CIVILI		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.					
Relazione idrologica e idi	aulica di piattaforma	IBOU 1BEZZ CL NV0430001 C 11 di 36										

L'acqua raccolta verrà recapitata alla caditoia esistente a valle del sovrappasso SP27 che riveverà un modesto contributo aggiuntivo dato dalla porzione di rilevato NV043 di nuova realizzazione (ca. 150 m²).

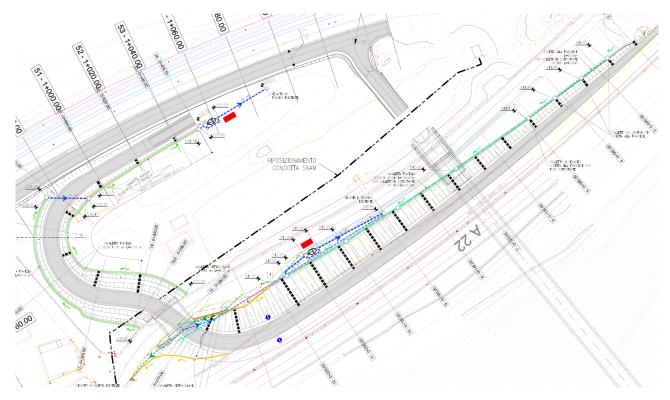


Figura 5-2 - Estratto della "Planimetria idraulica" (codifica: IBOU1AEZZP8NV0430001)

APPALTATORE:	build	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA								
PROGETTAZIONE: Mandataria:	<u>Mandanti:</u>	TRATTA "FOI								
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO							
11 - OPERE CIVILI Relazione idrologica e id	Iraulica di piattaforma	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 12 di 36			

5.1.1 Dimensionamento dell'interasse degli embrici

Il dimensionamento di questi elementi consiste nello stabilire l'interasse massimo in modo che l'acqua presente sulla strada transiti in un tratto delimitato dal cordolo definito al massimo pari a 1 m per il tratto in affiancamento all'autostrada e 1,5 m per la rampa, tale da determinare un tirante idraulico che non comporti rischio per la circolazione e nel contempo risultare compatibile con l'altezza del cordolo in funzione della pendenza longitudinale e trasversale della carreggiata.

La portata affluente è data dalla formula:

$$q_0 = \varphi \, bi = \varphi \, ba \, t^{n-1}$$

con b larghezza della falda, ϕ coefficiente di deflusso ed i intensità di pioggia calcolata con i parametri corrispondenti ad un evento piovoso con tempo di ritorno pari a 30 anni.

Il coefficiente di deflusso è stato posto pari ad 0.9 per le superfici pavimentate.

In base alla teoria dell'onda cinematica si ha che la condizione più gravosa è quella per cui il tempo di pioggia è pari al tempo di corrivazione. Si è imposto un tempo di corrivazione minimo pari a 3 minuti poiché per tempi molto brevi la curva dell'intensità di pioggia a due parametri tende all'infinito, fornendo quindi dati non realistici. Per il calcolo della portata massima transitante nella banchina si è utilizzata la formula di Chézy ponendo come parametro di Strickler il valore di 70 (Manning n = 0.0143).

Si ha:

$$A = \frac{B^2 j_t}{2}$$

$$C = B \left[j_t + \frac{1}{\cos(arctg j_t)} \right]$$

Come ampiezza massima di fascia allagata (*B*) si è considerato 1.00 *m* per il tratto iniziale di autostrada e 1,5 m per la rampa di uscita.

L'interasse massimo degli embrici è comunque stato posto pari a 15 m per il tratto di autostrada e 20 m per la rampa di uscita, non ritenendosi prudente superare tali valori.

Prog	getto	Interasse	e embri	ci su c	iglio in	rilevat	0															
										Curva	di poss	ibilità p	oluviom	etrica:	Tr = 30	anni	a =	38.10		n =	0.370	1
				Ele	menti d	el tratto)							bagnata	g					000	rici	rici
Prog. Iniziale	Prog. Finale	Lunghezza del tratto	Pendenza del tratto	Area impermeabile	Coeff. d'afflusso medio ф	Area effettiva	Area ridotta S	Pendenza trasversale	Tempo di accesso	Tempo di corrivazione	Intensità media di pioggia	Coefficiente udometrico	Portata	Larghezza banchina bagı	Coefficiente di scabrezza	Area bagnata	Contorno bagnato	Raggio idraulico	tirante max	Portata massima dello sp considerato	Interasse massimo embrici	Interasse massimo embrici adottato
		(m)	(%)	(m ²)		(m ²)	(m ²)	(%)	(s)	(s)		(l/s ha)			(m1/3s-1)	(m ²)	(m)	(m)	(m)	(m ³ /s)	(m)	(m)
0.230.00	0+140.00	90	1.30	1230	0.900	1200	1080	4.160	43	180		628.8	0.075	1.00	70	0.021	1.04	0.020	0.042	0.012	15	15
0+140.00	0+000.00	140	2.17	1452	0.900	1724	1552	4.160	49	180	251.5	628.8	0.108	1.00	70	0.021	1.04	0.020	0.042	0.016	20	15
0+230.00	0+274.00	44	2.50	448	0.900	448	403	3.500	33	180	251.5	628.8	0.028	1.50	70	0.039	1.55	0.025	0.053	0.038	59	20
0+300.00	0+400.00	100	10.00	010	0.000	040	040	2 500	42	100	251.5	620.0	0.057	4.50	70	0.030	4 EE	0.025	0.053	0.075	424	20
		100	10.00	910	0.900	910	819	3.500	42	180	251.5		0.057	1.50	70	0.039	1.55	0.025	0.053	0.075	131	20
0+400.00	0+450.00	50	2.90	304	0.900	304	274	2.500	33	180	251.5	628.8	0.019	1.50	70	0.028	1.54	0.018	0.038	0.023	61	20

Tabella 5-1 - Verifica interassi embrici.

APPALTATORE:	Ma 🙋 👚 Implemu SORZIODOLOMITI	REALIZZAZIO	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA										
PROGETTAZIONE: Mandataria:	Mandanti:	_	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"										
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO										
11 - OPERE CIVILI Relazione idrologica e idr	aulica di piattaforma	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 13 di 36						

5.1.2 Dimensionamento dell'interasse delle caditoie in cunetta

La cunetta alla francese è prevista nel tratto al piede del rilevato autostradale a margine del parcheggio allo scopo di ottimizzare gli spazi ed evitare l'ingombro del parcheggio con un fosso di guardia a cielo aperto. La cunetta ha uno sviluppo di ca. 57 m ed ha le caratteristiche geometriche indicate nelle sezioni tipo, con forma compatibile con la previsione di un possibile svio in sicurezza del veicolo. La sua funzione è quella di raccogliere oltre alle acque provenienti dalla piattaforma anche quelle provenienti dalle scarpate. Il drenaggio è stato realizzato attraverso l'inserimento di caditoie collegate con collettori circolari PVC SN8. Le caditoie sono costituite da pozzetti prefabbricati in calcestruzzo con griglia conforme alla UNI EN 124, con area minima effettivamente drenante pari al 50% del totale e barre poste nel senso del moto per garantire una maggiore efficienza idraulica della caditoia.

La portata massima smaltibile dalla cunetta in funzione della pendenza longitudinale è stata calcolata con la formula di Chezy, applicata ad un canale a sezione triangolare, avendo fissato la pendenza trasversale della cunetta j = 15 %, ed il massimo riempimento utile pari ad hu = 9 cm (per garantire un opportuno franco di sicurezza):

$$Q = \frac{1}{n} A \cdot R^{2/3} \cdot i^{1/2} \text{ (m}^3/\text{s)}$$

con:

n = 0.0143 m $^{-1/3}$ s coefficiente di Manning (Strickler = 70 m1/3s-1)valido per cunette in calcestruzzo; $A = h_u^2/2j \qquad \text{area bagnata (m}^2);$ $B = h_u(1 + \sqrt{1 + 1/j^2}) \text{ contorno bagnato (m);}$ $R = A/B \qquad \text{raggio idraulico (m);}$ regularization pendenza longitudinale (m/m).

Quando l'apporto di acqua piovana di un determinato tratto stradale, calcolata con la formula razionale, raggiunge la massima portata smaltibile in tutta sicurezza dalla cunetta, è necessario inserire una caditoia che consenta di deviare le acque della cunetta nel sottostante tubo collettore. In questo modo si calcola la massima distanza ammissibile in cunetta tra i pozzetti d'intercettazione al fine di evitare che i deflussi creino condizioni di interferenza o pericolo per la circolazione, garantendo così che i deflussi si propaghino integralmente nella cunetta senza interessare la piattaforma stradale.

Dalle verifiche risulta necessario inserire i pozzetti d'intercettazione ad interasse pari a 15 m.

Progetto:	Progetto: Interasse caditoie su ciglio strada in cunetta																		
												CPP:	Tr = 6	0 anni	a =	41.400	n =		0.3700
	Elementi del tratto										za				ОЭ	sso	pozzetti e		
NOTE	Identificazione tratto	Lunghezza del tratto	Pendenza del tratto	Area impermeabile	Area permeabile	Coeff. d'afflusso medio	Area effettiva	Area ridotta ∮ S	Tempo di accesso	ntensità media di pioggia	Coefficiente udometrico	Portata	Coefficiente di scabreza	Area bagnata	Contorno bagnato	Raggio idraulico	Portata massima dello sp considerato	Velocità massima del flus	Interasse massimo dei poz di intercettazione
		(m)	(%)	(m ²)	(m ²)		(m ²)	(m ²)	(s)	(mm/h)	(l/s ha)	(m³/s)	m1/3s-1	(m2)	(m)	(m)	(m3/s)	(m/s)	(m)
Cunetta alla francese L 75 cm	0+000 - 0+080	57	0.40	917	412	0.78	1329	1031	300	198.1	427.0	0.057	70	0.028	0.70	0.040	0.014	0.52	15

Tabella 5-2 - Verifica interasse caditoie in cunetta (i colori delle aree scolanti fanno riferimento alle immagini riportate in Allegato 2)

APPALTATORE:	build	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA							
PROGETTAZIONE: Mandataria:	<u>Mandanti:</u>	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"							
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO						
11 - OPERE CIVILI Relazione idrologica e id	Iraulica di piattaforma	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 14 di 36		

5.1.3 Dimensionamento delle canalette

Il dimensionamento delle canalette testa muro e delle canalette trapezoidali in cls viene eseguita utilizzando le usuali formule dell'idraulica in condizioni di moto uniforme con l'espressione di Chezy. Tale formula è funzione della dimensione, scabrezza e pendenza di posa dello speco, e si fonda sull'assunzione di considerare la pendenza di posa coincidente con la pendenza della linea dei carichi energetici; tale ipotesi è del tutto accettabile nella verifica delle canalette con corrente di flusso a pelo libero, quali quelle in studio. La portata massima smaltibile dalla canaletta in funzione della pendenza longitudinale della strada è stata calcolata con la legge di Gauckler-Strickler.

La portata vale:

$$Q = K \cdot A_c \cdot R_l^{2/3} \cdot j_c^{1/2}$$

Dove:

K= 70 $m^{1/3}$ /sec (Coefficiente di Gauckler - Strickler);

jc = pendenza longitudinale;

Ac = area bagnata in mq;

R = raggio idraulico in m.

Per giungere al dimensionamento di tutti i rami della rete di drenaggio occorre preventivamente definire, sulla base degli elementi idrologici, idraulici e geometrici disponibili, le portate generate da un evento meteorico, di pre-assegnata frequenza probabile, assunto come sollecitazione di progetto.

Come già illustrato in precedenza, le ipotesi alla base del progetto sono quelle di considerare un evento corrispondente ad un tempo di ritorno pari a 50 anni e proporzionare la rete di drenaggio in modo che tutti gli elementi della rete raggiungano un grado di riempimento accettabile. Per la valutazione delle massime portate, affluenti nelle canalizzazioni dei diversi tronchi del sistema di drenaggio, è stata utilizzata la formula, derivata dal metodo razionale:

$$Q_p = \frac{(\Phi_i + A_i + \Phi_s A_s) * i (30, \tau)}{3600}$$

Dove:

Q = portata massima di smaltimento in l/s;

 Φ i = coefficiente di deflusso della superficie pavimentata = 0.9;

 Φ s = coefficiente di deflusso della scarpata = 0.4;

 A_i = Area impermeabile in mq;

 A_s = Area della scarpata in mq;

i (50, τ)= Intensità di pioggia in funzione del tempo di ritorno (Tr=50) e del tempo di corrivazione τ :

$$\tau = Tr + Ta$$

dove:

Tr = Tempo di rete calcolato per iterazione;

Ta = Tempo di accesso fissato in 5 minuti (cautelativo per le acque di scarpata).

APPALTATORE:	build	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA							
PROGETTAZIONE: Mandataria:	Mandanti:	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"							
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO						
11 - OPERE CIVILI Relazione idrologica e id	Iraulica di piattaforma	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 15 di 36		

Si riportano nella seguente tabella i risultati ottenuti.

																Tr = 50	anni	a =	41	.400	n =	0.0	370
				0		E	lement	ti del tra	atto			Elen pro		Ris	ultati	dell'iteraz	ione di	calcolo	=				
Note	Progressiva iniziale	Progressiva finale		Tempo di corrivazione	Lunghezza del tratto	Pendenza del tratto	Area impermeabile	Area permeabile	Coeff. d'afflusso medio <	Pendenza trasversale mir	Tempo di accesso	Area effettiva	Area ridotta S	Tempo di rete	Tempo di corrivazione	Intensità media di pioggia	Coefficiente udometrico	Portata	Base canalette rettangolari/trapezoidali	Tirante idrico	Velocità	Grado di riempimento	Altezza canaletta
				(s)	(m)	(%)	(m ²)	(m ²)	(-)	(%)	(s)	(m ²)	(m ²)	(s)	(s)	(mm/h)	(l/s ha)	(m ³ /s)	(mm)	(m)	(m/s)	(%)	(mm)
Fosso	0+080	0+210	dx	0	139.00	2.00	1773	1341	0.73	2.50	300	3114	2266	73	373	172.7	349.1	0.1087	300	0.131	1.90	43.8	300
Canaletta testa muro	0+274	0+220	dx	0	38.00	8.00	695	545	0.72	2.50	300	1240	898	16	316	191.6	385.5	0.0478	400	0.051	2.34	12.8	400
					55.66																		
Canaletta rettangolare	0+255	0+280	SX	0	48.00	18.00	395	606	0.66	2.50	300	1001	659	18	318	191.1	349.2	0.0350	400	0.032	2.72	8.0	400
Fosso	0+300	0+380	SX	0	58.00	2.17	0	572	0.50	2.50	300	572	286	55	355	178.2	247.5	0.0142	300	0.040	1.06	13.3	300
		0.000	_			4.40	704	504	0.74	0.50	000	4005	005	-	000	470.0	004.5			0.004	4.00		L
Fosso	0+300	0+380	dx	0	82.00	1.40	781	524	0.74	2.50		1305	965	62	362	176.0	_	0.0472	_	0.091	1.32	30.3	_
Fosso	0+380	0+450	dx	382	67.00	3.30	434	491	0.69	2.50	300	2802	1887	31	414	161.8	302.7	0.0848	300	0.100	2.13	33.2	300

Tabella 5-3 - Verifica riempimento delle canalette (i colori delle aree scolanti fanno riferimento alle immagini riportate in Allegato 2)

APPALTATORE:	build	REALIZZAZIO	NE DEL LO	TTO 1 DEL Q	CUZIONE DEI LA UADRUPLICAMI		
PROGETTAZIONE: Mandataria:	<u>Mandanti:</u>	TRATTA "FOI					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO				
11 - OPERE CIVILI Relazione idrologica e id	Iraulica di piattaforma	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 16 di 36

5.1.4 Dimensionamento dei collettori

Per il dimensionamento dei collettori si considerano tubi in PVC SN 8 kN/m² con diametro nominale minimo DN 400 mm e massimo DN 500 mm, ed un coefficiente di scabrezza di Manning pari a 0,0125 m^{-1/3} s (valido per tubazioni in materiale plastico in esercizio).

Per evitare che i collettori vadano in pressione si è considerato un riempimento massimo del 70%.

Il dimensionamento di una rete di drenaggio dipende dalle portate critiche valutate in corrispondenza della sezione terminale di ogni singolo collettore. Tali portate dipendono dalle caratteristiche geometriche della rete e dalle caratteristiche generali delle aree scolanti che compongono il sottobacino a monte della sezione considerata.

Tale dimensionamento è stato condotto utilizzando il *metodo cinematico* o *della corrivazione* che si presta ad essere utilizzato con risultati cautelativi in bacini dove lo scorrimento dell'acqua prevale sulle zone d'invaso, ipotesi certamente verificata lungo il percorso di una strada.

Tale metodo si basa sulle seguenti ipotesi semplificative:

- la formazione della piena è dovuta unicamente ad un fenomeno di trasferimento della massa liquida;
- ogni singola goccia di pioggia si muove sulla superficie del bacino seguendo un percorso immutabile che dipende soltanto dalla posizione del punto in cui essa è caduta;
- la velocità di ogni singola goccia non è influenzata dalla presenza delle altre gocce, cioè ognuna di esse scorre indipendentemente dalle altre;
- la portata defluente si ottiene sommando tra loro le portate elementari provenienti dalle singole aree del bacino che si presentano allo stesso istante nella sezione di chiusura (funzionamento sincrono).

L'equazione di base del metodo cinematico che fornisce la portata al colmo è la seguente:

$$Q_c = \frac{C \cdot i \cdot A}{3600}$$

dove:

- Q_c è la portata massima espressa in l/s;
- A è la superficie del bacino (m²);
- C è il coefficiente di deflusso;
- i è l'intensità di precipitazione (mm/h) corrispondente ad una durata della precipitazione pari alla durata critica θ_c della pioggia e dipendente dal tempo di ritorno (Tr 50 anni).

Il coefficiente C è un parametro minore dell'unità tramite il quale si tiene globalmente conto del complesso delle perdite del bacino (compresa la ritenzione nelle depressioni superficiali), a causa delle quali la portata al colmo è minore della portata di pioggia.

APPALTATORE:	build	REALIZZAZIO	NE DEL LO	TTO 1 DEL Q	CUZIONE DEI LI UADRUPLICAMI		
PROGETTAZIONE: Mandataria:	<u>Mandanti:</u>	TRATTA "FOI					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO				
11 - OPERE CIVILI Relazione idrologica e id	Iraulica di piattaforma	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 17 di 36

In base al metodo cinematico la durata critica θ_c della pioggia, per la quale si ha la massima portata alla sezione di calcolo, è pari al tempo di corrivazione del bacino (per il quale si verifica la condizione di bacino totalmente contribuente).

Il coefficiente di deflusso è stato assunto pari a 0.9 per la piattaforma stradale e 0.5 per le aree permeabili di scarpata.

Una volta definiti i sottobacini, la durata critica della pioggia viene valutata, facendo riferimento al percorso idraulico più lungo, a partire dalla seguente formulazione:

$$\mathcal{G}_c = t_a + t_r$$

dove t_a , rappresenta il tempo d'accesso alla rete, mentre t_r il tempo di percorrenza all'interno di essa.

Il dimensionamento della rete è stato effettuato come un processo iterativo che può essere suddiviso nei seguenti passi:

Fissato il punto d'uscita dell'acqua dall'i-esimo sottobacino si è valutata l'area S del sottobacino contribuente a monte di esso e la corrispondente area ridotta dal coefficiente di deflusso medio pesato;

Si è assunto un tempo di accesso alla rete, relativo all'i-esimo sottobacino drenato, cautelativo pari a 5 minuti¹:

Si è ipotizzato un valore del diametro commerciale del collettore nel tratto immediatamente a monte esaminato;

Si è determinata la velocità di primo tentativo con la formula di Chezy:

$$V_u = \chi \cdot \sqrt{R \cdot i} \quad \text{(m/s)}$$

dove:

R è il raggio idraulico (m)

i è la pendenza del collettore (m/m)

χ è il coefficiente di resistenza

e la corrispondente portata di primo tentativo:

$$Q_{\mu} = V_{\mu} \cdot A \quad (\text{m}^3/\text{s})$$

Nello studio in esame si sono utilizzati collettori a sezione A circolare il cui raggio idraulico è, quindi, pari a $\emptyset/4$ e un coefficiente di resistenza valutato secondo la formula di Gauckler-Strickler con $\chi = K s *R^{1/6}$, in cui il coefficiente Ks di Stickler corrisponde all'inverso del coefficiente n di Manning.

¹ AA.VV. – Sistemi di fognatura. Manuale di progettazione – Centro studi deflussi urbani – Ed. Hoepli.

APPALTATORE:	Male (€ → Implemu SORZIODOLOMITI	REALIZZAZIO	NE DEL LO	TTO 1 DEL Q	CUZIONE DEI LA UADRUPLICAMI		
PROGETTAZIONE: Mandataria:	Mandanti:	TRATTA "FOI					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO				
11 - OPERE CIVILI Relazione idrologica e idr	aulica di piattaforma	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 18 di 36

Si è considerato ragionevole, e sufficientemente cautelativo, visto il tipo di tubazioni previste in materiale plastico, assumere $n = 0.0125 \text{ m}^{-1/3} \text{ s}$.

Si è poi calcolato il tempo di rete t_r come somma dei tempi di percorrenza di ogni singola canalizzazione seguendo il percorso più lungo della rete fognaria, facendo riferimento alle velocità di moto uniforme V_u che assume la portata di piena nelle singole canalizzazioni:

$$t_r = \sum_{i} \frac{L_i}{V_{ui}}$$

nella quale la sommatoria va estesa a tutti i rami che costituiscono il percorso più lungo della rete fognaria.

Si sottolinea come questi parametri siano stati valutati, per la sezione di chiusura considerata, riferendosi al tratto a monte di essa in cui si è realizzato il percorso idraulico più lungo, quindi la durata critica maggiore.

A partire dalle formule prima introdotte si sono valutate infine la durata ϑ_c come somma di t_a e del tempo di rete t_r di primo tentativo. Noto ϑ_c si è determinata l'intensità media della pioggia di durata pari al tempo di corrivazione e quindi la portata al colmo di piena in funzione della quale è stato proporzionato lo speco e calcolata la velocità di moto uniforme corrispondente, procedendo, iterativamente, fino a quando la velocità calcolata non coincide con quella stimata al passo precedente. Il rapporto tra il tirante d'acqua relativo alla portata critica Q_c ed il diametro interno della condotta, fornisce il grado di riempimento h/\emptyset .

Nel dimensionamento delle condotte si è considerato un massimo grado di riempimento (rapporto tra l'altezza del pelo liquido e il diametro del tubo) pari a 0,70 per tubazioni di diametro $\emptyset \ge 400$ mm e pari a 0,50 per $\emptyset < 400$ mm; dove il diametro di primo tentativo non avesse rispettato tale condizione, si è provveduto a modificarlo cercando, inoltre, di contenere la velocità dell'acqua entro valori non superiori a 4 m/s e non inferiori a 0,5 m/s per evitare problemi di deposito.

Di seguito si riportano i tabulati di calcolo per il dimensionamento idraulico dei collettori circolari della rete di drenaggio della piattaforma stradale.

												Curva di	possibili	tà pluv	iometri	Tr = 50	anni	a =	41.400	n =	0.370		
		Tratti cor	nfl.			E	Elemen	ti del t	ratto			Elemen	ti progr.	R	isultati de	ell'iterazior	ne di calc	olo					
Note	Tratto	Tratti confluenti	Tempo di corrivazione	Lunghezza del tratto	Pendenza del tratto	Area Impermeabile (0.9)	Area Permeabile (0.5)	Coeff. d'afflusso medio	Area effettiva	Area ridotta	Tempo di accesso	Area effettiva	Area ridotta S	Tempo di rete	Tempo di corrivazione	Intensità media di pioggia	Coefficiente udometrico	Portata	Tipo di condotta	Tirante Idraulico	Velocità	Grado di Riempimento	Diametro Interno
			(s)	(m)	(%)	(m ²)	(m ²)	(-)	(m ²)	(m ²)	(s)	(m ²)	(m ²)	(s)	(s)	(mm/h)	(l/s ha)	(m³/s)	(mm)	(m)	(m/s)	(%)	(mm)
Attr.	0+380		355	20.00	0.50	0	572	0.50	572.00	286.00	300	572.00	286.00	27 15	382.15	170.08	236.23	0.01	Ø 500	0.08	0.74	16	Ø 475
Au.	0+300		333	20.00	0.50	-	312	0.50	372.00	200.00	300	372.00	200.00	21.13	302.13	170.00	230.23	0.01	2 300	0.08	0.74	10	2 4/3
VPP1	Tubo		442	2.00	0.50	3385	2298	0.74	5683.00	4195.50	300	5683.00	4195.50	1.33	443.33	154.89	317.64	0.18	Ø 500	0.31	1.50	64	Ø 475
VPP2			444	2.00	0.50	4045	4507	0.07	2002.00	4007.00	200	2002.00	4007.00	4.04	445.04	404.00	204.70	0.00	G 400	0.22	4.05		G 200
VPPZ	Tubo		414	2.00	0.50	1215	1587	0.67	2802.00	1887.00	300	2802.00	1887.00	1.61	415.61	161.32	301.79	0.08	Ø 400	0.22	1.25	58	Ø 380
Tubo sotto cunetta	0+000 0+080		0	57.00	0.40	917	412	0.78	1329.00	1031.30	300	1329.00	1031.30	56.40	356.40	177.73	383.10	0.05	Ø 400	0.17	1.01	45	Ø 380
Tubo sotto fosso	0+080 0+210	0+000 0+080	356	139.00	2.00	1773	1341	0.73	3114.00	2266.20	300	4443.00	3297.50	57.55	413.94	161.73	333.43	0.15	Ø 400	0.20	2.42	53	Ø 380

Tabella 5-4 - Verifica del rimepimento dei collettori.

APPALTATORE:	Male (€ → Implemu SORZIODOLOMITI	REALIZZAZIO	NE DEL LO	TTO 1 DEL Q	CUZIONE DEI LA UADRUPLICAMI		
PROGETTAZIONE: Mandataria:	Mandanti:	TRATTA "FOI					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO				
11 - OPERE CIVILI Relazione idrologica e idr	aulica di piattaforma	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 19 di 36

6. VASCHE DI PRIMA PIOGGIA

Le superfici impermeabili allo scoperto possono essere fonte d'inquinamento dovuto al dilavamento meteorico. L' acqua piovana scorrendo e convogliandosi, raccoglie sostanze inquinanti quali oli, idrocarburi e sabbie di varia natura più o meno grossolane. Tale evento può interessare direttamente i corsi d'acqua superficiali o le falde acquifere recando danno alle risorse idriche sotterranee.

In ottemperanza con il Piano di Gestione delle Acque della Provincia di Bolzano e corentemente al Progetto Definitivo Approvato, a monte di ogni recapito nel tombino esistente Ø 1000, viene previsto un impianto di trattamento delle acque di prima pioggia finalizzato al trattamento (sedimentazione e disoleazione) delle acque di prima pioggia drenate dalla piattaforma (della A22 e NV43) e di eventuali sversamenti accidentali.

Il processo di depurazione avverrà mediante un trattamento in continuo combinato di dissabbiatura e disoleazione. Il funzionamento a **flusso continuo** (Sistema di portata) è sicuramente più efficiente del sistema volumetrico (accumulo e rilancio) per sviluppi stradali quale quello in oggetto e comporta minori costi di esercizio e manutenzione.

Nel caso specifico si è scelto di adottare, per ciascun presidio, un separatore di fanghi, oli minerali e benzine rappresentato da un sistema statico che prevede la separazione degli idrocarburi rispetto all'acqua sfruttando il diverso peso specifico. Il sistema è provvisto di un filtro a pacco lamellare o a coalescenza. È dotato inoltre di chiusura a galleggiante per eventuali sversamenti accidentali e di pozzetto scolmatore con by-pass per sfiorare le seconde piogge. Il sistema ha delle portelle di ispezione delle dimensioni di 600x600 mm. Tutti i raccordi sono in PVC UNI 1401-1.

Il separatore dovrà essere conforme alla norma UNI EN 858 classe I.

6.1 CALCOLO DELLE PORTATE DI PRIMA PIOGGIA

Il calcolo della portata di prima pioggia afferente al singolo impianto è stata calcolata con riferimento ad un'intensità di precipitazione pari a 20 mm/h (corrispondente a 5 mm di acqua meteorica di dilavamento uniformemente distribuita su tutta la superficie scolante servita dal sistema di drenaggio, assumendo che tale valore si verifichi in un periodo di tempo di 15 minuti).

Si ricorre pertanto alla seguente espressione:

$$Q = \frac{\Phi \cdot I \cdot A}{360}$$

nella quale Q è la portata di calcolo (espressa in m³/sec), I è l'intensità di pioggia sopra calcolata ed espressa in mm/h, A è la superficie scolante (espressa in ettari), Φ è il coefficiente di afflusso alla rete medio (si è posto un coefficiente di afflusso pari a 1 per le aree impermeabili e pari a 0,3 per le aree permeabili).

Le superfici scolanti e le portate di calcolo sono sintetizzate nella seguente tabella con riferimento alle due vasche previste in progetto:

APPALTATORE:	All Section 1	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA							
PROGETTAZIONE:		TRATTA "FOI							
Mandataria:	Mandanti:	THE TO		ONTE GAME					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO						
11 - OPERE CIVILI		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.		
Relazione idrologica e idi	aulica di piattaforma	IB0U	1BEZZ	CL	NV0430001	С	20 di 36		

		Dimensi	onamento	Vasca Prima	Pioggia 1		
Area impermeabile (1)	Area permeabile (0.3)	Area ridotta (mq)	Volume prima pioggia (mc)	Portata in arrivo alla vasca (I/s)	Portata prima pioggia (I/s)	NS Vasca prima pioggia	Portata da sfiorare (I/s)
3385	2298	4074	20.372	180.51	22.64	25	155.51
		Dimensi	onamento	Vasca Prima	Pioggia 2		
Area impermeabile (1)	Area permeabile (0.3)	Area ridotta (mq)	Volume prima pioggia (mc)	Portata in arrivo alla vasca (I/s)	Portata prima pioggia (I/s)	NS Vasca prima pioggia	Portata da sfiorare (l/s)
1215	1587	1691	8.4555	84.56	9.40	15	69.56

Tabella 6-1 - Stima delle portate di prima pioggia da trattare.

6.2 DIMENSIONAMENTO SCOLMATORI DI BY-PASS

Per il "controllo" delle portate in ingresso alle vasche di trattamento, sono posti degli stramazzi dimensionati per far defluire la portata relativa alle acque di prima pioggia calcolata secondo le norme già citate. Gli sfioratori laterali rettangolari posti in testa agli impianti risultano essere una sicurezza contro i fenomeni di overflow negli impianti di trattamento delle acque di prima pioggia. Nel caso specifico vengono utilizzati degli scaricatori di piena "laterali". Tali sfioratori sono costituiti essenzialmente da una soglia sfiorante orizzontale che ha la funzione di scaricare la portata esuberante che viene convogliata da una tubazione di by-pass verso il recapito finale. La quota della soglia e la lunghezza dello stramazzo devono essere calcolate in modo che a valle la portata e il corrispondente livello idrico non superino i livelli assegnati, anche quando la portata in arrivo assume il massimo valore di progetto, con il duplice scopo di garantire sempre il passaggio delle acque di prima pioggia e scaricare l'eccesso d'acqua in arrivo rispetto a quella da derivare.

I manufatti di sfioro sono costituiti da un semplice pozzetto prefabbricato in c.a., all'interno del quale viene realizzato un setto per lo stramazzo delle acque di seconda pioggia.

La metodologia di calcolo utilizzata è legata alla semplicità dello schema del manufatto che si è scelto di adottare ed ha lo scopo di valutare, caso per caso, le quote di scorrimento della tubazione di derivazione delle acque di prima pioggia e la quota della soglia sfiorante delle acque di seconda pioggia, con prefissata lunghezza, in relazione alla quota di scorrimento della tubazione in ingresso al manufatto.

Il criterio utilizzato è stato quello di dimensionare la soglia di sfioro laterale in modo da contenere il carico dello stramazzo sotto la quota di scorrimento del collettore in arrivo al pozzetto scolmatore, per evitare fenomeni di rigurgito nella rete di monte e, contemporaneamente, garantire il transito verso valle delle acque di prima pioggia da inviare al trattamento, tramite la corretta stima della quota di scorrimento del collettore di derivazione.

Si procede quindi, per ogni sfioratore laterale, ad una doppia verifica idraulica (per la simbologia vedi schemi grafici):

APPALTATORE:	Ma	REALIZZAZIO	NE DEL LO	TTO 1 DEL Q	CUZIONE DEI LA UADRUPLICAMI		
PROGETTAZIONE: Mandataria:	Mandanti:	TRATTA "FOI					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO				
11 - OPERE CIVILI Relazione idrologica e idr	aulica di piattaforma	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 21 di 36

- calcolo dell'altezza di stramazzo delle seconde piogge sopra la soglia di sfioro (per la definizione di H1 e L);
- calcolo del tirante idraulico a monte del collettore di derivazione delle acque di prima pioggia (per la definizione di H2).

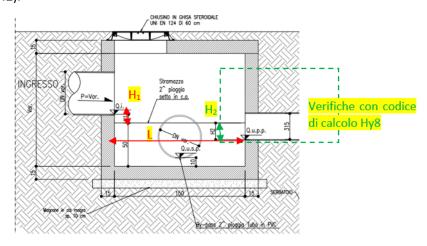


Figure 6-1 - Schema di verifica degli sfioratori laterali

Dai tabulati di calcolo relativi ai collettori di drenaggio delle acque di piattaforma, si deducono i seguenti valori di portata necessari per il dimensionamento di ciascun sfioratore:

- Q_P portata di piena in arrivo a ciascun sfioratore in progetto;
- Q_n portata nera (acque di prima pioggia) calcolata in funzione delle aree scolanti a monte dello sfioratore;
- Q_S portata da sfiorare (seconde piogge) ottenuta come differenza tra Q_P e Q_n.

Per il calcolo dell'altezza di stramazzo delle seconde piogge sopra la soglia di sfioro si è utilizzata la formula di Bazin per stramazzi rettangolari:

$$Q = \mu L h \sqrt{2g h}$$

dove:

- Q portata sfiorata (m³/s);
- μ coefficiente di portata (assunto cautelativamente = 0.385)
- L lunghezza dello stramazzo (m)
- h carico dello stramazzo (m)

da cui posto $Q = Q_S$ e fissato L = 1.50 m, è stato calcolato h.

Il valore H1 è stato posto ≥ ad h, per evitare fenomeni di rigurgito nella rete di monte.

APPALTATORE:	build	REALIZZAZIO	NE DEL LO	TTO 1 DEL Q	CUZIONE DEI LI UADRUPLICAMI		
PROGETTAZIONE: Mandataria:	<u>Mandanti:</u>	TRATTA "FOI					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO				
11 - OPERE CIVILI Relazione idrologica e id	Iraulica di piattaforma	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 22 di 36

Per il calcolo del tirante idraulico a monte del collettore di derivazione delle acque di prima pioggia, si è adottata la stessa metodologia di calcolo normalmente utilizzata per la verifica di tombini idraulici, essendo lo schema idraulico in oggetto del tutto paragonabile.

Infatti il comportamento idraulico del collettore di derivazione, in maniera del tutto analoga a quella di un tombino, dipende principalmente dalla forma dell'imbocco e dal tipo di sezione, dalla scabrezza, dalla pendenza e dalle condizioni idrometriche di monte e di valle.

Risulterebbe, quindi, molto semplificativo procedere ad una verifica in moto uniforme con la formula di Chezy. Infatti tale formula è funzione solo della dimensione, scabrezza e pendenza di posa del tubo, e si fonda sull'assunzione di considerare la pendenza di posa coincidente con la pendenza della linea dei carichi energetici. Tale ipotesi nel caso di tombini non è corretta, non essendo trascurabili le perdite di carico concentrate negli imbocchi e sbocchi.

Nell'ottica di un corretto e cautelativo dimensionamento, la verifica idraulica di tale componente dei pozzetti sfioratori è stata effettuata con il software HY-8, che prevede come dati in ingresso la geometria del tubo, (diametro \emptyset), la tipologia e forma dell'imbocco, le quote di imbocco z_i e sbocco z_s assolute e rispetto al terreno naturale e la scabrezza. Per la descrizione del codice di calcolo HY-8 si rimanda all'Allegato 7.1.

Il valore H2 è stato posto pari al massimo valore del carico idraulico di monte in ingresso al tubo di derivazione, per garantire sempre il transito di portate ≥ alle acque di prima pioggia verso l'impianto di trattamento.

Di seguito si riporta una tabella riassuntiva con le caratteristiche principali degli sfioratori in testa ai 2 impianti.

Identificativo Vasca Prima Pioggia	Portata in Ingresso	Portata da trattare	Portata da scolmare	H1	H2
	I/s	I/s	I/s	m	m
VPP1	179	25	154	0.16	0.19
VPP2	84	15	69	0.10	0.14

Tabella 6-2 - Tabella dimensionamento scolmatori VPP

Di seguito si riportano le verifiche idrauliche di ciascun sfioratore laterale.

APPALTATORE:	ild	REAL	IZZAZION	E DEL LO	TTO 1 DEL Q	CUZIONE DEI LA JADRUPLICAME		
PROGETTAZIONE: Mandataria:	<u>Mandanti:</u>				RTEZZA-VER ONTE GARDI			
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL M Ingegneria	SIST PROC	GETTO ES	ECUTIVO				
11 - OPERE CIVILI Relazione idrologica e idi	aulica di piattaforma		MESSA BOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 23 di 36

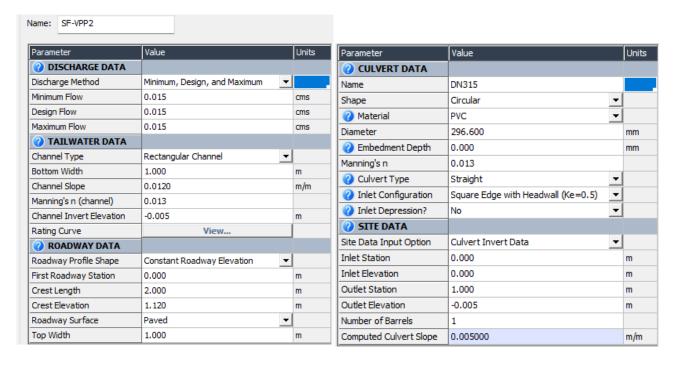
6.2.1 Sfioratore VPP 1

Dimensionamento dell'altezza della soglia sfiorante rispetto alla quota di scorrimento del collettore delle acque di prima pioggia in ingresso alla VPP (H₂):

DATI:

GRAFICO:

APPALTATORE:	Ma	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA					
PROGETTAZIONE: Mandataria:	Mandanti:	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ES	SECUTIVO				
11 - OPERE CIVILI Relazione idrologica e idr	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 24 di 36	

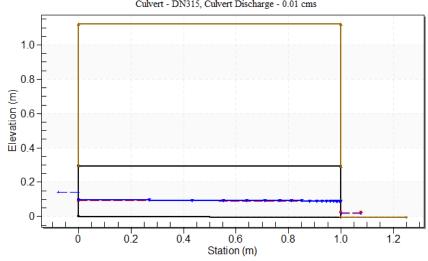

Il dimensionamento della quota di scorrimento del collettore in arrivo rispetto alla soglia (H1), è stato effettuato mediante l'utilizzo della formula di Bazin per stramazzi rettangolari.

Q da sfiorare [l/s]	H1 [cm]	L [m]
155.5	0.16	1.5

6.2.2 Sfioratore VPP 2

Dimensionamento dell'altezza della soglia sfiorante rispetto alla quota di scorrimento del collettore delle acque di prima pioggia in ingresso alla VPP (H₂):

DATI:


RISULTATI:

Total Discharge (cms)	Culvert Discharge (cms)	Headwater Elevation (m)	Inlet Control Depth(m)	Outlet Control Depth(m)	Flow Type	Normal Depth (m)	Critical Depth (m)	Outlet Depth (m)	Tailwater Depth (m)	Outlet Velocity (m/s)	Tailwater Velocity (m/s)
0.01	0.01	0.14	0.13	0.14	2-M2c	0.10	0.09	0.09	0.02	0.81	0.66

APPALTATORE:	uta (* ®) Impieriul ISORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA					
PROGETTAZIONE: Mandataria:	Mandanti:	TRATTA "FORTEZZA – PONTE GARDENA"					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ES	SECUTIVO				
11 - OPERE CIVILI Relazione idrologica e idraulica di piattaforma		COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 25 di 36

GRAFICO:

Il dimensionamento della quota di scorrimento del collettore in arrivo rispetto alla soglia (H1), è stato effettuato mediante l'utilizzo della formula di Bazin per stramazzi rettangolari.

Q da sfiorare [l/s]	H1 [cm]	L [m]
69.6	0.10	1.5

APPALTATORE:	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA						
PROGETTAZIONE:		LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"					
Mandataria:	Mandanti:	TRATTA "FORTEZZA – PONTE GARDENA"					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO				
11 - OPERE CIVILI		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
Relazione idrologica e idraulica di piattaforma		IB0U	1BEZZ	CL	NV0430001	c	26 di 36

7. ALLEGATI

7.1 ALLEGATO 1: DESCRIZIONE DEL CODICE DI CALCOLO HY-8

Il programma HY-8 Culvert è un software sviluppato dalla Federal Highway Administration, in accordo ai criteri della FHWA definiti nelle pubblicazioni seguenti: HDS-5, "Hydraulic Design of Highway Culverts," e HEC-14, "Hydraulic Design of Energy Dissipators for Culverts and Channels"ed ha lo scopo di consentire un supporto alla progettazione ed alla verifica delle intersezioni dei corsi d'acqua minori con le infrastrutture viarie come strade e ferrovie.

I principali risultati che si possono ottenere tramite questo programma sono:

determinare la dimensione, la forma ed il numero di opere d'arte (tombini e scatolari) necessari a far defluire una portata di progetto;

- definire la capacità di deflusso di un manufatto esistente imponendo il livello idrico ammissibile di monte;
- calcolare il livello idrico raggiunto a monte del manufatto per far defluire una determinata portata, sia in condizioni di normale deflusso che in condizioni di acqua ferma all'imbocco.
- determinare la scala di portata o altre relazioni tra le principali variabili idrauliche per determinare il livello di rischio della struttura.
- determinare il profilo idrico della portata transitante nell'opera.

Il programma fornisce direttamente output sintetici con le variabili principali della simulazione ed alcuni grafici che mostrano il comportamento idraulico della struttura al variare della portata di progetto o del livello idrico di monte.

I dati di ingresso sono i seguenti:

Culvert Data

project name : nome del progetto

- the station or location : progressiva

- the date (automatically set): data

I dati di portata sono:

minimum discharge : portata minima di deflusso

- design discharge : portata di progetto

- maximum discharge : portata massima di deflusso

- number of barrels : numero di manufatti

APPALTATORE:	Ald (%) Implemia SORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA					
PROGETTAZIONE:		LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"					
Mandataria:	Mandanti:	INALIA IOI	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	OITIL GAILD	LIVA		
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO				
11 - OPERE CIVILI		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
Relazione idrologica e idraulica di piattaforma		IB0U	1BEZZ	CL	NV0430001	С	27 di 36

La portata di progetto deve essere sempre maggiore della minima, mentre quella massima sarà di norma maggiore o pari a quelle di progetto. Tali dati sono utilizzati solo nel caso si vogliano determinare le scale di deflusso del manufatto ed eseguire analisi di sensitività.

Nel caso specifico è stata condotta solo l'analisi per la portata di progetto.

I dati del tombino prevedono:

- culvert shape : forma del tombino

- size : dimensioni

- inlet : tipo di imbocco

- material: materiale

- roughness coefficients : scabrezza di Manning.

I dati di output sono i seguenti:

headwater depth: carico idraulico totale in coordinate relative, della corrente nel tombino. Tale valore è stato assunto come livello idrico all'imbocco nel caso in cui il tombino preveda acqua ferma

- (es. un pozzo) all'ingresso.
- inlet control elevation : quota assoluta del carico all'imbocco
- inlet depth: altezza idrica all'imbocco nel caso di imbocco senza pozzo di ingresso, ovvero considerando il carico cinetico all'ingresso
- break control elevation: carico idraulico in termini di quote assolute
- critical depth : altezza critica
- tailwater depth : altezza idrica nel canale di valle
- occurrence of a hydraulic jump : presenza di risalto idraulico
- hydraulic jump location (if occurred) . posizione del risalto
- hydraulic jump length (if occurred) lunghezza del risalto
- outlet depth: altezza idrica nella sezione di sbocco
- outlet velocity : velocità nella sezione di sbocco
- outlet Froude number : numero di Froude nella sezione di sbocco.

Il comportamento idraulico dei tombini è piuttosto complesso perché può ricadere sia nel campo dell'idraulica a pelo libero che in quello delle condotte in pressione, in funzione della portata transitante.

L'approccio utilizzato affronta il problema individuando due possibili sezioni di controllo per il moto:

l'ingresso (Inlet control) e l'uscita (Outlet control).

APPALTATORE:	Male (€ → Implemu SORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DEL			-		
PROGETTAZIONE: Mandataria:	Mandanti:	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO					
11 - OPERE CIVILI Relazione idrologica e idr	aulica di piattaforma	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 28 di 36

- Il funzionamento idraulico dei manufatti di attraversamento a sezione chiusa dipende da numerosi fattori quali:
- la pendenza;
- la sezione;
- la forma;
- la scabrezza;
- i livelli liquidi a monte e a valle del collettore.

Le verifiche idrauliche compiute sono finalizzate a determinare che il deflusso relativo agli eventi di piena di riferimento siano compatibili con il funzionamento delle opere di attraversamento senza interessare l'infrastruttura stradale.

La verifica proposta dalla FHWA (Federal Highway Administration) ossia l'Agenzia del Dipartimento dei Trasporti degli Stati Uniti che detta i criteri e gli standard di progettazione delle strade, intende stabilire il tipo di funzionamento del tombino, che può essere controllato da monte (inlet control) o da valle (outlet control) e ricavare in base ad esso il grado di riempimento della sezione.

Il "controllo da monte" si realizza quando il tombino può convogliare più portata di quanta transiti attraverso l'ingresso. La sezione di controllo si localizza appena oltre l'ingresso come sezione ad altezza critica e prosegue in regime supercritico.

Per ottenere un deflusso all'imbocco a superficie libera è necessario che nella verifica idraulica il carico a monte (indicato con Hw) sia al massimo pari a 1,2 D (dove D è l'altezza del tombino), essendo libero lo sbocco di valle.

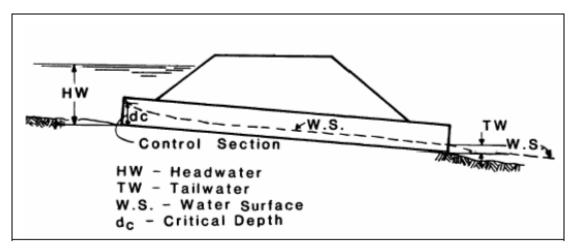


Figura 7-1 - Esempio di moto controllato dalla sezione di ingresso

Il livello idrico a monte è stato valutato sulla base dei diagrammi sperimentali (Hydraulic Charts for the selection of highway culverts – Bureau of Public Roads – 1964, USA).

APPALTATORE:	APPALTATORE: webuild			PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA						
PROGETTAZIONE:		LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"								
Mandataria: SWS Engineering S.p.A.	Mandanti: PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO								
11 - OPERE CIVILI Relazione idrologica e idr	aulica di piattaforma	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 29 di 36			

I diagrammi nelle figure delle pagine seguenti forniscono tale livello in condizioni di "controllo da monte" rispettivamente per tombini scatolari e circolari, prendendo in considerazione la portata di progetto e la geometria dell'ingresso (forma e area della sezione).

Il "controllo da valle" si verifica quando il tombino non è in grado di convogliare tanta portata quanta ne accetta l'ingresso. La sezione di controllo si localizza all'uscita del tombino o più a valle. In queste condizioni il moto può essere sia a pelo libero che in pressione.

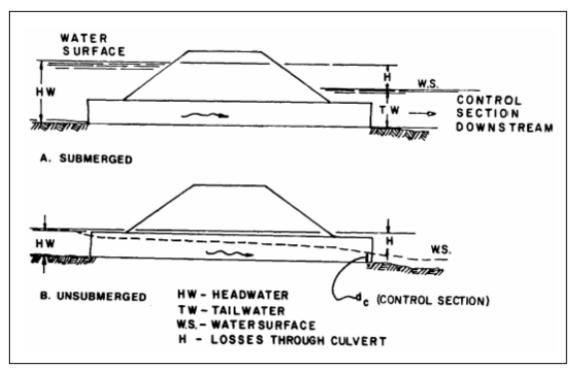


Figura 7-2 – Esempi di moto controllato da sezioni a valle del tombino

I diagrammi nelle figure successive, nel caso di funzionamento per "controllo da valle", consentono di valutare il livello idrico tenendo conto della scabrezza, della lunghezza della canna e di eventuali livelli idrici a valle.

Il software HY-8 determina, per diversi valori della portata, il tipo di controllo (inlet/outlet) che si instaura nella canna e fornisce per esso il profilo della superficie idrica lungo la canna e il tirante all'imbocco e allo sbocco, le velocità di deflusso e nel canale di valle (tailwater).

APPALTATORE:	Ma (% Imperial SORZIODOLOMITI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA					
PROGETTAZIONE:		LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"					
Mandataria:	Mandanti:	maria 10.		OITIE GAILD			
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO E	SECUTIVO				
11 - OPERE CIVILI		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
Relazione idrologica e idraulica di piattaforma		IB0U	1BEZZ	CL	NV0430001	С	30 di 36

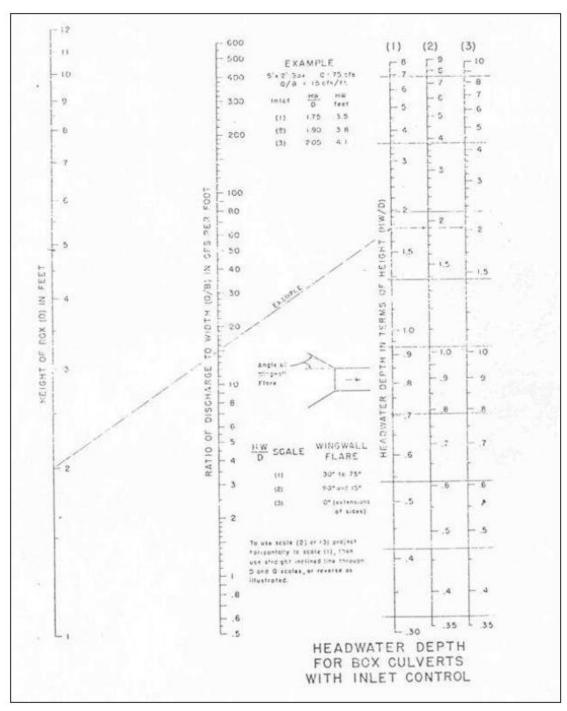


Figura 7-3 – Verifica del riempimento di tombini scatolari con controllo da monte (Hydraulic Charts for the selection of highway culverts – Bureau of Public Roads – 1964, USA)

APPALTATORE:	uid	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA					
PROGETTAZIONE: Mandataria:	Mandanti:	LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO					
11 - OPERE CIVILI Relazione idrologica e idraulica di piattaforma		COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 31 di 36

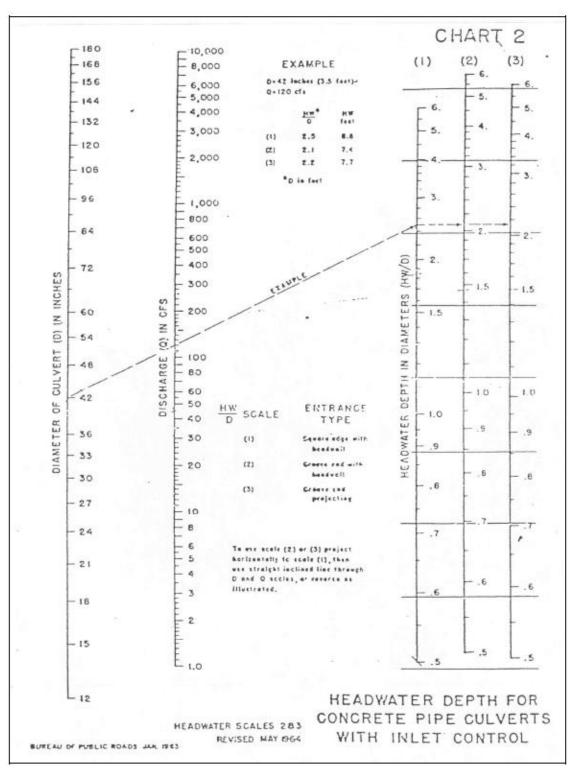


Figura 7-4 - Verifica del riempimento di tombini circolari con controllo da monte (Hydraulic Charts for the selection of highway culverts – Bureau of Public Roads – 1964, USA)

APPALTATORE:	ebuild (%) Implenia DNSORZIODOLOMITI	REALIZZAZIO	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA					
PROGETTAZIONE: Mandataria:	<u>Mandanti:</u>		LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"					
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIS M Ingegneria	T PROGETTO E	PROGETTO ESECUTIVO					
11 - OPERE CIVILI Relazione idrologica e i	draulica di piattaforma	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 32 di 36	

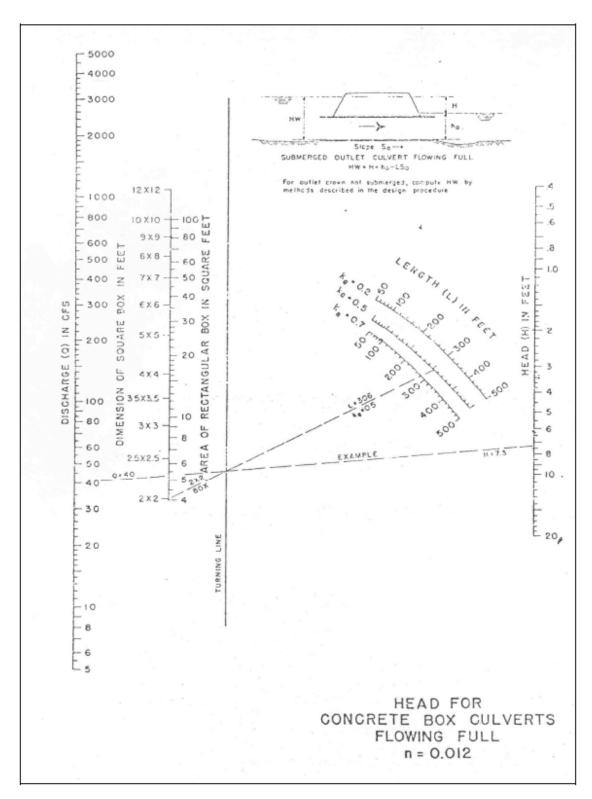


Figura 7-5 – Verifica del riempimento di tombini scatolari con controllo da valle (Hydraulic Charts for the selection of highway culverts – Bureau of Public Roads – 1964, USA)

APPALTATORE:		PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"						
PROGETTAZIONE: Mandataria:								
SWS Engineering S.p.A.	Mandanti: PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO						
11 - OPERE CIVILI Relazione idrologica e idr	aulica di piattaforma	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 33 di 36	

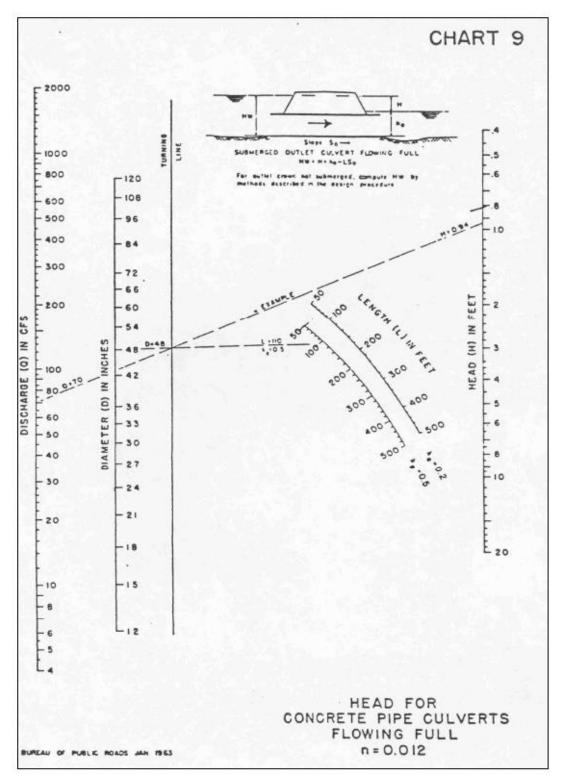


Figura 7-6 – Verifica del riempimento di tombini circolari con controllo da valle (Hydraulic Charts for the selection of highway culverts – Bureau of Public Roads – 1964, USA)

APPALTATORE:		REALIZZAZI	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"						
PROGETTAZIONE: Mandataria:									
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL S M Ingegneria	PROGETTO	PROGETTO ESECUTIVO						
11 - OPERE CIVILI Relazione idrologica e id	aulica di piattaforma	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 34 di 36		

7.2 ALLEGATO 2: BACINI SCOLANTI

Per facilitare l'interpretazione delle aree dei bacini scolanti considerati per i singoli tratti nelle verifiche idrauliche, nelle seguenti immagini sono state individuate le aree impermeabili e permeabili con differenti colori. Le aree utilizzate nelle verifiche idrauliche sono state evidenziate con i medesimi colori delle aree individuate in planimetria.

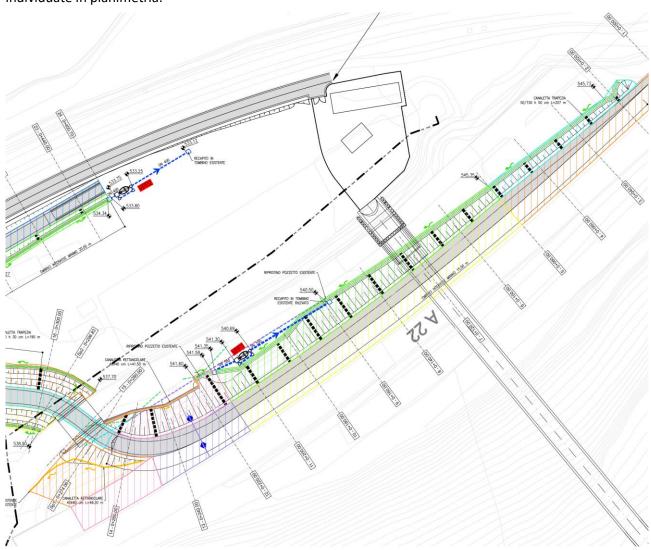


Figura 7-7 – Aree scolanti riferite ai singoli tratti

APPALTATORE: webuild ** Implement CONSORZIODOLOMITI		PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"						
PROGETTAZIONE: Mandataria:								
SWS Engineering S.p.A.	PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO						
11 - OPERE CIVILI Relazione idrologica e idr	aulica di piattaforma	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO NV0430001	REV.	FOGLIO. 35 di 36	

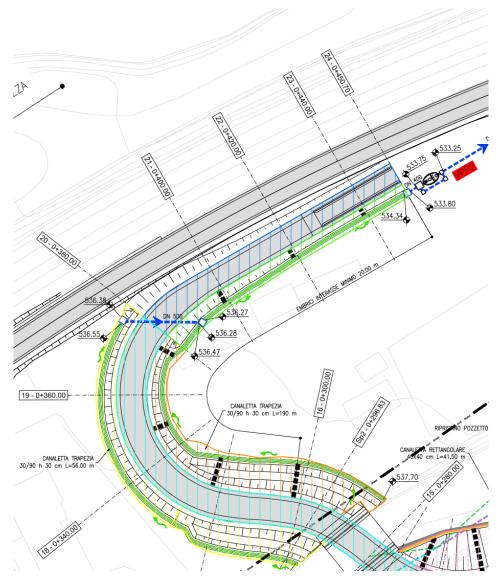


Figura 7-8 - Aree scolanti riferite ai singoli tratti