COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

PROGETTAZIONE:

MANDATARIA:

SWS™

MANDANTI:

IL DIRETTORE DELLA PROGETTAZIONE:

Ing. Paolo Cucino

PRESPONSABILE INTEGRAL IN GEGNERI

PRESPONSABILE INTEGRAL IN GEGNERI

PRESPONSABILE IN GEGNERI

PROGETTO ESECUTIVO

PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"

RELAZIONE

02 - DEPOSITI DEFINITIVI E — DEPOSITO PRINCIPALE Relazione idraulica

APPA	ALTATORE							SCALA:
	O Gianvecchio	1						-
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV	

 I B O U
 1 B E
 Z Z
 C L
 R I O 3 5 0
 O O 3
 B

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
^	A Emissione	M.Ingianni	26 (04 (2022	A.Valente	27/04/2022	D.Buttafoco	20/04/2022	IL PROGETTISTA
_ ^			26/01/2022		27/01/2022	(Dolomiti)	28/01/2022	A.Rollin
В	Emissione a seguito di	M.C Pulici	0.1/1.0/0.000	P. Fontana	02/12/2022	D. Buttafoco	05/12/2022	NA CHE
0	istruttorie e interlocuzioni		01/12/2022		02/12/2022		03/12/2022	ST OHOUNE NOO
								MINGER
								15 N. /F
								19540
								15/12/2022

File: IB0U1BEZZCLRI0350003B.docx n. Elab.:

APPALTATORE:

PROGETTAZIONE:

Relazione idraulica

Mandataria:

Mandanti:

SWS Engineering S.p.A. PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria

PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"

PROGETTO ESECUTIVO

Depositi definitivi E – Deposito principale

COMMESSA IB0U

LOTTO CODIFICA DOCUMENTO 1BEZZ CL

REV. RI0350003 С

FOGLIO. 1 di 22

Sommario

1.	PREMESSA	2
2.	NORMATIVA DI RIFERIMENTO	3
2.1	DOCUMENTAZIONE DI RIFERIMENTO	3
2.2	NORMATIVE, RACCOMANDAZIONI, LINEE GUIDA E MANUALI	3
3.	INQUADRAMENTO GENERALE	4
3.1	SCELTA DELLA TIPOLOGIA DI OPERE DI DRENAGGIO	4
3.2	CANALETTE	5
3.2.1	Caratteristiche	5
3.2.2	Descrizione delle lavorazioni	6
3.3	POZZETTI	6
3.3.1	Caratteristiche	6
3.3.2	Descrizione delle lavorazioni	6
4.	IDROLOGIA	6
5.	COMPATIBILITA' IDRAULICA	8
5.1	PIANO GESTIONE RISCHIO ALLUVIONI (PGRA)	8
5.2	PIANI DELLE ZONE DI PERICOLO (PZP)	9
6.	DIMENSIONAMENTO DEGLI ELEMENTI IDRAULICI1	2
7.	METODO DI CALCOLO	3
7.1	RISULTATI1	5
8.	OPERA DI SCARICO	1
8.1	VERIFICA A TRASCINAMENTO	3
8.1.1	Metodo di verifica	3
8.1.2	Verifiche al trascinamento	4

APPALTATORE: PROGETTAZIONE: would for the consortion of the conso	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"								
SWS Engineering S.p.A. PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO								
Depositi definitivi E – Deposito principale Relazione idraulica	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO RI0350003	REV.	FOGLIO. 2 di 22			

1. PREMESSA

Il progetto in esame riguarda l'asse ferroviario Monaco – Verona, accesso sud alla galleria di base del Brennero ed in particolare il quadruplicamento della linea Fortezza – Verona, Lotto 1: Fortezza – Ponte Gardena.

Nell'ambito di tale progetto si prevede anche la sistemazione dei depositi comunemente indicati come depositi in Val Riga. Tali depositi verranno sfruttati nella prima fase del progetto per cavare il materiale utile alle lavorazioni; in seconda battuta il progetto prevede il ripristino e la sistemazione di tali aree mediante un rinterro per recuperare la quota topografica. Sia in fase provvisoria di scavo sia in fase definitiva, il progetto prevede delle sistemazioni idrauliche per la regimazione delle acque meteoriche.

In accordo a quanto previsto in normativa (Doc. Rif [9]), le acque di origine meteorica dilavanti la superficie dei depositi è da ritenersi pulita e quindi recapitabile direttamente nel fiume Isarco o nel sottosuolo senza bisogno di alcun trattamento preventivo. Nel sistema di drenaggio sono escluse le acque del cantiere che saranno oggetto del progetto della cantierizzazione (con gli opportuni trattamenti richiesti).

In particolare la presente relazione idraulica riguarda le sistemazioni idrauliche in fase di scavo e in fase definitiva di progetto per l'area Hinterriger dei depositi di Val Riga.

Lungo il perimetro dell'area sono previsti degli interventi definitivi sin dalla fase di scavo. In particolare sono previsti fossi di guardia di convogliamento delle acque meteoriche. Lungo i fossi sono presenti pozzetti di recapito e collegamento. Il sistema è strutturato in modo tale da convogliare le acque bianche dalle banche superiori ai pozzi di recapito al piede del rilevato dai quali partiranno le condotte e i canali per lo scarico delle acque verso l'Isarco.

Lungo i tratti in piano delle banche sono previste delle canalette trapezoidali in cls gettate in opera, mentre lungo la linea di massima pendenza delle scarpate sono previste canalette in cls nei tratti in pendenza e tubazioni suborizzontali (lungo le banche): tali elementi saranno collegati da pozzetti di raccordo.

APPALTATORE: PROGETTAZIONE: webuild property consonezupooloomiti Mandataria: Mandanti: SWS Engineering S.p.A. PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria		AMENTO	DELLA PONTE (LINEA FERRO		VORI DI REALIZZAZIONE DEL LOTTO 1 DEL FORTEZZA-VERONA
Depositi definitivi E – Deposito principale Relazione idraulica	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO RI0350003	REV.	FOGLIO. 3 di 22

2. NORMATIVA DI RIFERIMENTO

Nella stesura della relazione si è fatto riferimento a quanto elencato di seguito.

2.1 DOCUMENTAZIONE DI RIFERIMENTO

- [1]. Tratta Fortezza-Ponte Gardena Lotto 1 Progetto Esecutivo Depositi definitivi In Val di Riga Relazione tecnico- descrittiva IBOU1AEZZCLRI0350001
- [2]. Tratta Fortezza-Ponte Gardena Lotto 1 Progetto Esecutivo Depositi definitivi in Val di Riga DEPOSITO PRINCIPALE Planimetria di progetto fase finale IBOU1AEZZP7RI0350002;
- [3]. Tratta Fortezza-Ponte Gardena Lotto 1 Progetto Esecutivo Depositi definitivi in Val di Riga DEPOSITO PRINCIPALE Sezioni trasversali IBOU1AEZZWARI0350001 e IBOU1AEZZWARI0350002
- [4]. Tratta Fortezza-Ponte Gardena Lotto 1 Progetto Esecutivo Depositi definitivi in Val di Riga DEPOSITO PRINCIPALE Particolari e dettagli realizzativi IBOU1AEZZBBRI0350001.
- [5]. Tratta Fortezza-Ponte Gardena Lotto 1 Progetto Esecutivo Depositi definitivi in Val di Riga DEPOSITO PRINCIPALE Planimetria sistema drenante superficiale IBOU1AEZZP7RI0350003.
- [6]. Tratta Fortezza-Ponte Gardena Lotto 1 Progetto Esecutivo Depositi definitivi in Val di Riga DEPOSITO PRINCIPALE Particolari opere idrauliche Tombini di scarico IBOU1AEZZBZRI0350003, IBOU1AEZZBZRI0350004, IBOU1AEZZBZRI0350005
- [7]. Dati pluviometrici riferiti allo studio idrologico idraulico di Tratta Fortezza-Ponte Gardena Lotto 1 Progetto Esecutivo "Relazione idraulica bacini minori" IBOU1BEZZRIID0000002A.

2.2 NORMATIVE, RACCOMANDAZIONI, LINEE GUIDA E MANUALI

- [8]. Decreto Ministeriale del 14 gennaio 2008: "Approvazione delle Nuove Norme Tecniche per le Costruzioni", G.U. n.29 del 04.2.2008, Supplemento Ordinario n.30.
- [9]. "Linee guida per la progettazione di reti fognarie Specifica Tecnica"; Italferr, Luglio 2011 (Doc. G09009961).
- [10]. Decreto del Presidente della Provincia, 21 gennaio 2008, n. 6 "Regolamento di esecuzione alla legge provinciale del 18 giugno 2002, n. 8 recante «Disposizioni sulle acque» in materia di tutela delle acque" (CAPO IV ACQUE METEORICHE E DI LAVAGGIO DI AREE ESTERNE, art. 37 art. 47) Provincia autonoma di Bolzano Alto Adige;
- [11]. Manuale di progettazione ferroviaria.

PROGETTAZIONE: PROGETTAZIONE: Mandataria: SWS Engineering S.p.A. PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	i	AMENTO	DELLA PONTE (LINEA FERRO		VORI DI REALIZZAZIONE DEL LOTTO 1 DEL ORTEZZA-VERONA
Depositi definitivi E – Deposito principale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
Relazione idraulica	IBOU	1BEZZ	CL	RI0350003		4 di 22

3. INQUADRAMENTO GENERALE

3.1 SCELTA DELLA TIPOLOGIA DI OPERE DI DRENAGGIO

Lo scopo delle opere di drenaggio in progetto è fondamentalmente quello di intercettare l'acqua e di convogliarla a gravità in direzione del vicino fiume Isarco che costituisce una zona di recapito naturale. La necessità di convogliare l'acqua di ruscellamento naturale nasce dalla necessità di ridurre i disagi dovuti alle precipitazioni intense che con il loro scorrimento provocano danni di carattere superficiale e di erosione del terreno. I drenaggi superficiali in progetto sono costituiti da canalette a sezione trapezoidale e sono destinate a raccogliere le acque meteoriche che altrimenti scorrerebbero liberamente sulla superficie di terreno favorendo fenomeni di erosione o alimentando ulteriormente la falda idrica sotterranea.

In accordo a quanto previsto in normativa (Doc. Rif. [10]), le acque di origine meteorica dilavanti la superficie dei depositi è da ritenersi pulita e quindi recapitabile direttamente nel fiume Isarco o nel sottosuolo senza bisogno di alcun trattamento preventivo. Nel sistema di drenaggio sono escluse le acque del cantiere che saranno oggetto del progetto della cantierizzazione (con gli opportuni trattamenti richiesti).

La tipologia di canalette scelte è rappresentata da canalette trapezoidali prefabbricate in calcestruzzo, come illustrato nelle Figure 3-1, 3-2 e 3-3.

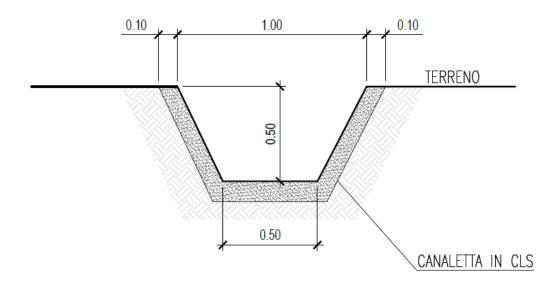


Figure 3-1 - Tipologia di sezioni trapezie in calcestruzzo utilizzate - CANALETTA TIPO 1

APPALTATORE: PROGETTAZIONE: webuild process ONSORZIODOLOMITI Mandataria: Mandanti: SWS Engineering S.p.A. PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria		CAMENTO	DELLA PONTE (LINEA FERRO		VORI DI REALIZZAZIONE DEL LOTTO 1 DEL ORTEZZA-VERONA
Depositi definitivi E – Deposito principale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
Relazione idraulica	IBOU	1BEZZ	CL	RI0350003		5 di 22

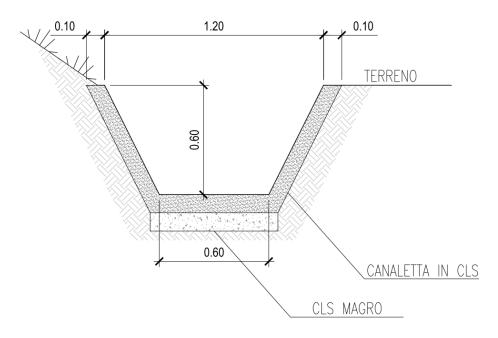


Figure 3-2 Tipologia di sezioni trapezie in calcestruzzo utilizzate – CANALETTA TIPO 2

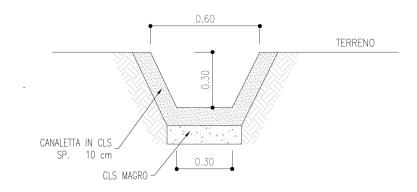


Tabella 3-3 Tipologia di sezioni trapezie in calcestruzzo utilizzate – CANALETTA SU BANCA

Dove si ha il cambio di pendenza delle canalette e nei punti di confluenza tra più rami di canalette, si è previsto l'inserimento di un pozzetto prefabbricato in cls. Le caratteristiche geometriche di tale manufatto sono riportate nella tavola di progetto (Doc. Rif. [4]).

La distribuzione planimetrica degli interventi è indicata nelle planimetrie di progetto (Doc. Rif. [5] e [2]).

3.2 CANALETTE

3.2.1 Caratteristiche

La canaletta in calcestruzzo prefabbricata è caratterizzata da un basso tempo di posa ed ha come vantaggio unacerta flessibilità che, ragionevolmente, si potrà adattare ai limitati cedimenti che potranno avvenire sul corpo del riempimento e che potranno anche essere di diversa entità a seconda delle zone. Si tratta in generale di canalette che necessitano di limitati interventi di manutenzione e si dimostrano estremamente durevoli.

APPALTATORE: PROGETTAZIONE: webuild reperts CONSORZIODOLOMITI Mandataria: Mandanti:	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"								
SWS Engineering S.p.A. PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO								
Depositi definitivi E – Deposito principale Relazione idraulica	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO RI0350003	REV.	FOGLIO. 6 di 22			

Le caratteristiche geometriche di tale manufatto sono riportate nella tavola di progetto (Doc. Rif. [4]). La distribuzione planimetrica degli interventi è indicata nelle planimetrie di progetto (Doc. Rif. [5] e [2]).

3.2.2 Descrizione delle lavorazioni

Per la realizzazione di questo tipo di opera di drenaggio si prevede di scavare una trincea in terra di forma trapezia, poi posare la canaletta prefabbricata in calcestruzzo (con $R_{ck} \ge 350 \text{ kg/cm}^2$).

Laddove siano previste le scalettature lo scavo della trincea ed in particolare del fondo della canaletta dovrà essere eseguito in modo da realizzare le gradonature richieste con le dimensioni indicate nella tavola di progetto dedicata alle sistemazioni idrauliche.

3.3 POZZETTI

3.3.1 Caratteristiche

Nei punti in cui confluiscono due o più rami di canalette o tubi si provvederà ad inserire dei pozzetti prefabbricati realizzati in conglomerato cementizio vibrato ($R_{ck} \ge 350 \text{ kg/cm}^2$) convenientemente armati con acciaio B450C controllato in stabilimento. I pozzetti saranno completati da un grigliato metallico che permetterà al pozzetto di essere ispezionato e manutenuto.

Le caratteristiche geometriche di tale manufatto sono riportate nella tavola di progetto (Doc. Rif. [4]). La distribuzione planimetrica degli interventi è indicata nelle planimetrie di progetto (Doc. Rif. [5] e [2]).

3.3.2 Descrizione delle lavorazioni

Per la messa in opera dei pozzetti prefabbricati si prevede di scavare uno scavo, sul fondo del quale, opportunamente compattato e preparato con uno strato in calcestruzzo magro, verrà posizionato il pozzetto. Successivamente si procederà al riempimento laterale con materiale di riporto opportunamente compattato e, alle diverse quote previste in progetto, alla realizzazione delle canalette e delle tubazioni che confluiscono nel pozzetto, fino al completo riempimento fino a piano campagna.

4. IDROLOGIA

Le portate di acque meteoriche conseguenti ad eventi di pioggia sono definite in base al metodo cinematico o dellacorrivazione.

Le linee segnalatrici di possibilità pluviometrica traducono il legame esistente tra altezza - o intensità - delle precipitazioni verificatesi in una data stazione pluviometrografica, durata e probabilità di accadimento. L'espressione analitica delle curve di possibilità pluviometrica è:

$$h = ad^n$$

In cui h rappresenta l'altezza di pioggia in millimetri, d è la corrispondente durata in ore, a ed n sono i parametri che caratterizzano la curva. L'individuazione di tali parametri richiede l'applicazione di metodologie statistiche relative agli eventi estremi.

APPALTATORE: PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA PROGETTAZIONE: TRATTA "FORTEZZA - PONTE GARDENA" Mandataria: Mandanti: SWS Engineering S.p.A. PINI ITALIA GDP **PROGETTO ESECUTIVO** GEOMIN SIFEL SIST M Ingegneria Depositi definitivi E – Deposito principale COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO. Relazione idraulica 7 di 22 IB0U 1BEZZ CL RI0350003 c

A tale scopo, i parametri *a* ed *n* della curva di possibilità pluviometrica utilizzati in riferimento al tempo di ritorno ed al tempo di corrivazione della rete di progetto sono riportati in Tabella 4-1 in accordo a quanto riportato nel Doc. Rif. [7].

Si riportano i parametri della curva di possibilità climatica adottata (a favore di sicurezza rispetto il PD) per differenti tempi di ritorno.

		PRE	CIPIT	AZION	- NIEI	DERSC	HLÄG	E	
Durata -			Tem	po di l	Ritorn	o - Wie	derke	hrzeit	
Dauer (h)	2	5	10	20	30	50	100	200	300
0.25	10.0	14.0	16.7	19.2	20.7	22.5	25.0	27.4	28.8
0.50	12.9	18.1	21.5	24.8	26.6	29.0	32.2	35.3	37.2
0.75	15.0	21.0	24.9	28.7	30.9	33.6	37.3	41.0	43.1
1.00	16.7	23.3	27.7	31.9	34.3	37.4	41.4	45.5	47.9
2.00	20.7	29.0	34.4	39.7	42.7	46.4	51.5	56.6	59.5
3.00	23.5	32.9	39.1	45.0	48.5	52.7	58.5	64.3	67.6
4.00	25.8	36.0	42.8	49.3	53.0	57.7	64.0	70.3	74.0
5.00	27.6	38.6	45.9	52.9	56.9	61.9	68.7	75.4	79.4
6.00	29.2	40.9	48.6	56.0	60.2	65.6	72.7	79.9	84.0
7.00	30.7	42.9	51.0	58.8	63.2	68.8	76.3	83.8	88.2
8.00	32.0	44.7	53.2	61.3	65.9	71.7	79.6	87.4	92.0
9.00	33.2	46.4	55.2	63.6	68.4	74.5	82.6	90.7	95.4
10.00	34.3	48.0	57.0	65.7	70.7	77.0	85.4	93.8	98.7
11.00	35.4	49.5	58.8	67.7	72.9	79.3	88.0	96.6	101.7
12.00	36.4	50.8	60.4	69.6	74.9	81.5	90.4	99.3	104.5
13.00	37.3	52.1	61.9	71.4	76.8	83.6	92.7	101.8	107.1
14.00	38.2	53.3	63.4	73.0	78.6	85.5	94.9	104.2	109.6
15.00	39.0	54.5	64.8	74.6	80.3	87.4	97.0	106.5	112.0
16.00	39.8	55.6	66.1	76.2	82.0	89.2	98.9	108.7	114.3
17.00	40.6	56.7	67.4	77.6	83.5	90.9	100.8	110.7	116.5
18.00	41.3	57.7	68.6	79.0	85.0	92.5	102.7	112.8	118.6
19.00	42.0	58.7	69.8	80.4	86.5	94.1	104.4	114.7	120.7
20.00	42.7	59.7	70.9	81.7	87.9	95.7	106.1	116.5	122.6
21.00	43.3	60.6	72.0	83.0	89.3	97.1	107.8	118.3	124.5
22.00	44.0	61.5	73.1	84.2	90.6	98.6	109.3	120.1	126.4
23.00	44.6	62.3	74.1	85.4	91.8	99.9	110.9	121.8	128.1
24.00	45.2	63.2	75.1	86.5	93.1	101.3	112.4	123.4	129.9

	LSPP											
a								<u>0.366</u>				
	Tempo di Ritorno - Wiederkehrzeit							Durata Precipitazione - Dauer Niederschläge				
2	5	10	20	30	50	100	200	300	< 1h	> 1h		
16.7	23.3	27.7	31.9	34.3	37.4	41.4	45.5	47.9	0.37	0.35		

Tabella 4-1 Parametri per la stima dell'altezza di pioggia in funzione del Tempo di Ritorno

PROGETTAZIONE: PROGETTAZIONE: Mandataria: SWS Engineering S.p.A. PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria		CAMENTO	O DELLA PONTE (LINEA FERRO		VORI DI REALIZZAZIONE DEL LOTTO 1 DEL ORTEZZA-VERONA
Depositi definitivi E – Deposito principale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
Relazione idraulica	IBOU	1BEZZ	CL	RI0350003		8 di 22

Parametri di progetto

TENADO DI DITORNO	Tempo di corrivazione							
TEMPO DI RITORNO	> 1	ora	< 1ora					
anni	а	n	а	n				
30	34.33	0.35	34.33	0.37				

Tabella 4-2 Parametri a ed n di progetto

Per il dimensionamento delle reti acque bianche si è considerato cautelativamente un Tempo di Ritorno pari a 30 anni, in accordo a quanto riportato nel manuale di progettazione ferroviaria (Doc. Rif. [11]).

5. COMPATIBILITA' IDRAULICA

5.1 PIANO GESTIONE RISCHIO ALLUVIONI (PGRA)

La posizione del sito non interferisce con le aree a rischio di allagamento censite dalle mappe PGRA 2015-2021(Direttiva Alluvioni 2007/60/CE) pubblicate dal Distretto Idrografico delle Alpi Orientali.

Di seguito si riporta uno stralcio planimetrico delle mappe del rischio (tavola D06-HLP-R, Tr = 300 anni) e l'ingombro in pianta del deposito.

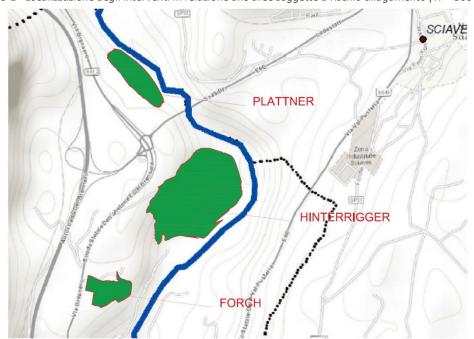


Figure 5-1 - Localizzazione degli interventi in relazione alle aree soggette a rischio allagamento (Tr = 300 anni)

PROGETTAZIONE: PROGETTAZIONE: Mandataria: SWS Engineering S.p.A. PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria		CAMENTO	O DELLA - PONTE (LINEA FERRO		VORI DI REALIZZAZIONE DEL LOTTO 1 DEL FORTEZZA-VERONA
Depositi definitivi E – Deposito principale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
Relazione idraulica	IBOU	1BEZZ	CL	RI0350003		9 di 22

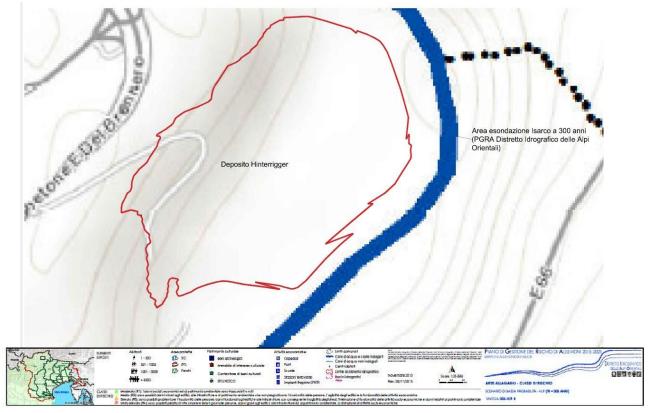


Figure 5-2 - Localizzazione dell'intervento di Hinterrigger in relazione alle aree soggette a rischio allagamento (Tr = 300 anni)

5.2 PIANI DELLE ZONE DI PERICOLO (PZP)

Il Regolamento di Esecuzione dei Piani delle Zone di Pericolo (di seguito PZP) in Provincia di Bolzano è dettato dal Decreto del Presidente della Provincia Nr. 23 del 10 ottobre 2019 ad oggi in vigore.

In Alto Adige le superfici edificabili sono molto ridotte e spesso minacciate da alluvioni, frane e valanghe. La pianificazione territoriale e l'attività edilizia devono quindi procedere nel rispetto dei fenomeni naturali, così da contribuire alla riduzione del rischio idrogeologico.

Sulla base di questo principio la Provincia di Bolzano ha previsto nel 2007 che i Comuni elaborino dei Piani delle Zone di Pericolo (PZP). Questo strumento di pianificazione individua le aree soggette ai pericoli idrogeologici (frane, alluvioni, colate detritiche e valanghe), che incombono su insediamenti e infrastrutture, individuandone l'entità e l'estensione geografica.

Alle zone di pericolo si applicano le norme di uso del suolo contenute nel "Regolamento di esecuzione".

Nell'area di intervento intesa complessivamente per i tre depositi di Forch, Plattner e Hinterrigger è possibile riscontrare da apposito GeoBrowser quale livello di pericolo insiste sull'area di intervento.

Il deposito di Forch non è interessato da pericoli idrogeologici; il deposito di Plattner è confinate nella sua interezza, al piede del perimetro di intervento, con l'area a rischio idrogeologico di tipo idraulico. Il livello di pericolosià è di grado molto elevato (H4). Anche il deposito di Hinterrigger è esposto a rischio idrogeologico di tipo idraulico di grado molto elevato (H4) per la parte a Nord del perimetro di intervento.

PROGETTAZIONE: PROGETTAZIONE: Mandataria: SWS Engineering S.p.A. PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria		CAMENTO	O DELLA PONTE (LINEA FERRO		AVORI DI REALIZZAZIONE DEL LOTTO 1 DEL FORTEZZA-VERONA
Depositi definitivi E – Deposito principale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
Relazione idraulica	IBOU	1BEZZ	CL	RI0350003		10 di 22

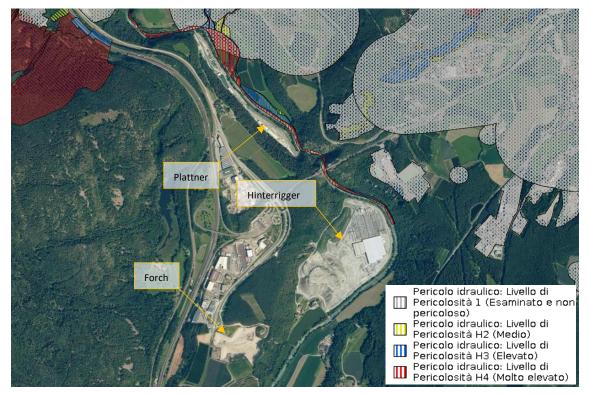


Figure 5-3 - Localizzazione degli interventi Forch, Plattner e Hinterrigger rispetto alla cartografia PZP (da GeoBrowser)

Nelle zone interessate da fenomeni alluvionali che presentino livelli di pericolo molto elevato, elevato o intermedio tutti gli interventi devono essere tali da:

- Migliorare o almeno non peggiorare le condizioni di stabilità del suolo, l'equilibrio idrogeologico dei versanti, la funzionalità idraulica e la sicurezza del territorio;
- Non compromettere la sistemazione definitiva di zone soggette a pericolo e nemmeno i provvedimenti previsti dagli strumenti di programmazione e pianificazione di protezione civile.

Il "Regolamento di esecuzione" riporta all'Art. 7 "Interventi su infrastrutture di viabilità e infrastrutture tecniche consentiti nelle zone che presentano un pericolo idrogeologico (H4, H3 e H2))":

- 1) In tutte le zone perimetrate in cui sussiste un pericolo idrogeologico molto elevato, elevato e medio, sulle infrastrutture di viabilità e sulle infrastrutture tecniche sono consentiti i seguenti interventi:
 - a. manutenzione ordinaria e straordinaria;
 - b. adeguamenti necessari per ragioni di sicurezza di esercizio o in base a norme provinciali o statali;
 - c. adeguamenti finalizzati all'introduzione di innovazioni tecnologiche;
 - d. nelle zone che presentano un pericolo idrogeologico molto elevato, ampliamenti, ristrutturazioni e nuove costruzioni, relativi a servizi pubblici essenziali che non possono

APPALTATORE: PROGETTAZIONE: webuild reperts CONSORZIODOLOMITI Mandataria: Mandanti:	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"											
SWS Engineering S.p.A. PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO											
Depositi definitivi E – Deposito principale Relazione idraulica	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO. 1BOU 1BEZZ CL RI0350003 C 11 di 22											

essere altrimenti localizzati, né delocalizzati, quando non vi siano alternative tecnicamente ed economicamente sostenibili, purché gli interventi risultino coerenti con la pianificazione di protezione civile e, preventivamente o contestualmente, siano realizzate idonee misure, anche temporanee, di riduzione del danno potenziale;

- e. nelle zone che presentano un pericolo idrogeologico elevato e medio, ampliamenti, ristrutturazioni e nuove costruzioni, purché gli interventi risultino coerenti con la pianificazione di protezione civile e, preventivamente o contestualmente, siano realizzate idonee misure, anche temporanee, di riduzione del danno potenziale.
- 2) Nelle sole zone che presentano un pericolo idrogeologico molto elevato ed elevato prima dell'esecuzione degli interventi elencati al comma 1, lettere b), d) ed e), deve essere verificata la compatibilità idrogeologica di cui all'articolo 11. La verifica deve essere approvata dagli uffici provinciali competenti.
- 3) La realizzazione degli interventi elencati al comma 1, lettera c), è subordinata alla verifica di compatibilità idrogeologica solo se le innovazioni tecnologiche introdotte comportano un aumento della capacità di servizio dell'infrastruttura stessa.

È altresì prescritta una verifica di compatibilità idraulica ai sensi dell'Art.11 "Verifica di compatibilità idrogeologica".

Risulta necessario che ogni intervento realizzato e/o in progetto non vada ad incrementare il pericolo, il danno potenziale ed il rischio specifico per le aree di valle e per terzi. Si è pertanto provveduto ad analizzare le modifiche indotte sulle dinamiche alluvionali e sui parametri idraulici nelle aree di esondazione dalla realizzazione dei depositi Plattner e Hinterrigger, nello stato post-opera (stato di progetto). L'analisi è limitata alla piena TR300 anni ai sensi della normativa vigente in Provincia di Bolzano, perla quale eventi marcati da tempi di ritorno maggiori di 300 anni ricadono sempre nella sfera del pericolo residuo.

APPALTATORE: PROGETTAZIONE: webuild property consorziopolomiti Mandanti:	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"											
SWS Engineering S.p.A. PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO											
Depositi definitivi E – Deposito principale Relazione idraulica	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO RI0350003	REV.	FOGLIO. 12 di 22						

6. DIMENSIONAMENTO DEGLI ELEMENTI IDRAULICI

Al fine di captare e convogliare le acque di precipitazione meteorica corrivanti sulle scarpate in fase di scavo e sulla copertura in fase definitiva di progetto dei depositi, è stato dimensionato una rete di smaltimento costituita dai seguenti elementi:

- Canalette trapezoidali in calcestruzzo per i fossi di guardia perimetrali;
- Canalette trapezoidali in calcestruzzo per la raccolta delle acque interne nei tratti in piano o lungo le banche in ragione della portata da smaltire;
- Canalette in cls trapezoidali lungo la linea di massima pendenza delle scapate;
- Tubazioni in PVC su banca, drenaggio e attraversamento per la strada campestre esistente

La distribuzione planimetrica dell'intervento, in figura 6-1, è indicata nella planimetria Doc. Rif. [5], mentre si rimanda all'elaborato Doc. Rif. [4] per i dettagli costruttivi.

Nell'ultima revisione al progetto del deposito è stata progettata una strada di accesso che raccorda la strada esistente situata a nord ovest del deposito alla sommità dello stesso. Le opere di drenaggio di tale nuova porzione di strada sono costituite da caditoie laterali 80x80x90/h cm con griglia carrabile 50x50 cm classe di carico C250 collegate tra di loro da tubazione in linea in PVC SN8 di diametro DN250 mm. La tubazione di raccolta acque di tale strada si connette alla rete di canalette e pozzetti in cls progettata per il drenaggio del deposito e afferente allo scarico denominato S1.

PROGETTAZIONE: PROGETTAZIONE: Mandataria: SWS Engineering S.p.A. PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria		CAMENTO	O DELLA PONTE (LINEA FERRO		AVORI DI REALIZZAZIONE DEL LOTTO 1 DEL FORTEZZA-VERONA
Depositi definitivi E – Deposito principale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
Relazione idraulica	IBOU	1BEZZ	CL	RI0350003	C	13 di 22



Figure 6-1 - Localizzazione degli interventi in relazione

7. METODO DI CALCOLO

Il dimensionamento della rete è stato effettuato con il metodo cinematico seguendo un processo iterativo che può essere suddiviso nei seguenti passi:

PROGETTAZIONE: PROGETTAZIONE: Mandataria: SWS Engineering S.p.A. PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria		CAMENTO	O DELLA PONTE (LINEA FERRO		VORI DI REALIZZAZIONE DEL LOTTO 1 DEL FORTEZZA-VERONA				
Depositi definitivi E – Deposito principale Relazione idraulica	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO. 1BOU 1BEZZ CL RI0350003 C 14 di 22									

- Fissato il punto d'uscita dell'acqua dall'i-esimo sottobacino si è valutata l'area S del sottobacino contribuente a monte di esso e la corrispondente area ridotta dal coefficiente di deflusso medio pesato;
- Si è stimato il tempo di accesso alla rete relativo all'i-esimo sottobacino drenato, pari a 5 min.

Si è ipotizzato un valore del diametro commerciale del collettore nel tratto immediatamente a monte esaminato;

Si è determinata la velocità di primo tentativo con la formula di Chezy:

$$V_u = \chi \cdot \sqrt{R \cdot i} \quad \text{(m/s)}$$

dove:

R è il raggio idraulico (m)

i è la pendenza del collettore (m/m)

χ è il coefficiente di resistenza

e la corrispondente portata di primo tentativo:

$$Q_u = V_u \cdot A \quad \text{(m3/s)}$$

Nello studio in esame si sono utilizzati collettori a sezione circolare il cui raggio idraulico è, quindi, pari a $\emptyset/4$ e un coefficiente di resistenza valutato secondo la formula di Gauckler-Strickler con χ = Ks *R1/6, in cui il coefficiente Ks di Stickler corrisponde all'inverso del coefficiente n di Manning. Si è considerato ragionevole, e sufficientemente cautelativo, visto il tipo di tubazioni previste in materiale plastico, assumere n = 0,0125 m-1/3 s. Si è poi calcolato il tempo di rete tr come somma dei tempi di percorrenza di ogni singola canalizzazione seguendo il percorso più lungo della rete fognaria, facendo riferimento alle velocità di moto uniforme Vu che assume la portata di piena nelle singole canalizzazioni:

$$t_r = \sum_{i} \frac{L_i}{V_{ui}}$$

nella quale la sommatoria va estesa a tutti i rami che costituiscono il percorso più lungo della rete fognaria.

Si sottolinea come questi parametri siano stati valutati, per la sezione di chiusura considerata, riferendosi al tratto a monte di essa in cui si è realizzato il percorso idraulico più lungo, quindi la durata critica maggiore.

A partire dalle formule prima introdotte si sono valutate infine la durata tc come somma di ta e del tempo di rete tr di primo tentativo. Noto tc si è determinata l'intensità media della pioggia di durata pari al tempo di corrivazione e quindi la portata al colmo di piena in funzione della quale è stato

APPALTATORE: PROGETTAZIONE: webuild programmer consortion in Mandanti: Mandataria: Mandanti:	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"											
SWS Engineering S.p.A. PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO											
Depositi definitivi E – Deposito principale Relazione idraulica	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO. IBOU 1BEZZ CL RI0350003 C 15 di 22											

proporzionato lo speco e calcolata la velocità di moto uniforme corrispondente, procedendo, iterativamente, fino a quando la velocità calcolata non coincide con quella stimata al passo precedente.

Il rapporto tra il tirante d'acqua relativo alla portata critica Qc ed l'altezza del fosso, fornisce il grado di riempimento h/H.

Nel dimensionamento delle condotte si è considerato un massimo grado di riempimento (rapporto tra l'altezza del pelo liquido e l'altezza) pari a 0,70 per le tubazioni con ϕ > 400 mm e pari a 0,50 per le tubazioni con ϕ < 400 mm, per le canalette e i fossi si è considerato un riempimento massimo di 0,70.

Per il sito di interesse si è fatto riferimento ai diversi sottobacini individuati (Figura 6-1) tenendo conto, a favore di sicurezza, delle pendenze minime. Per i tratti in banca con drenaggio alternato tra tubazione e fosso si è scelto di verificare un unico tratto rappresentativo di tutta l'area confluente con lunghezza minima (pù sfavorevole). Nel caso dei tubi la lunghezza è pari a quella in una singola banca e per i fossi è la lunghezza minima del fosso nel settore considerato.

Inoltre sono state assunte le seguenti ipotesi:

- Data la tipologia del sito i coefficienti di deflusso sono stati assunti pari a $\phi = 0.4$ per le superfici permeabili e $\phi = 0.7$ per le superfici semipermeabili, in accordo a quanto riportato negli studi idraulici del progetto generale.
- Il valore del tempo di accesso è stato assunto con un valore minimo di 5 minuti, data la natura delle superfici prevalentemente permeabili.
- Il Tempo di Ritorno assunto nel calcolo per la stima dell'intensità di pioggia, e, quindi, della portata al picco Q_p è pari a 30 anni, in accordo a quanto riportato nel manuale di progettazione ferroviaria (Doc. Rif. [11]).
- Il coefficiente di Manning utilizzato nei calcoli per il dimensionamento dei fossi e delle canalette è pari a 0.016 per le sezioni in cls e 0.0125 per le tubazioni in PVC SN8.

7.1 RISULTATI

Con riferimento a quanto riportato per quanto concerne il calcolo della portata di progetto e in accordo con le ipotesi progettuali fin qui presentate, nella Tabella 7-1 sono riportati il valori di portata massimi e i livelli di riempimento calcolati per il dimensionamento della rete di drenaggio. I codici identificativi dei vari tratti sono quelli indicati nella Figura 6-1 e nell'elaborato di riferimento (Doc. Rif. [5]).

APPALTATORE: PROGETTAZIONE: webuild progen more consortion mandataria: Mandanti: SWS Engineering S.p.A. PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria		CAMENT RTEZZA –	O DELLA PONTE (LINEA FERRO		AVORI DI REALIZZAZIONE DEL LOTTO 1 DEL FORTEZZA-VERONA				
Depositi definitivi E – Deposito principale Relazione idraulica	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO. IBOU 1BEZZ CL RI0350003 C 1 di 22									

												Caratteristiche tratto							Calcolo p		
Descrizione	Progr. Iniziale	Progr. Finale	Tratti confluenti	L tratto	i minima tratto	A permeabile tot	Coeff. Afflusso	A ridotta	T accesso (5 min)	T rete	T corrivazione	tipo di elemento adottato (TIPO 1: canaletta trapezia con b minore 0.5 m; TIPO 2: canaletta trapezia con b minore 0.6 m, TIPO 3: canaletta trapezia con b minore 0.3 m; DNxxx: collettore PVC circolare)	scabrezza Ks	Raggio idraulico max riempimento		Portata max riempimento	Grado riempimento max	Portata 70%	Intensità di pioggia	Portata di pioggia	Verifica grado di riempimento < 70%
				(m)	(%)	(m ²)	(-)	(m ²)	(s)	(s)	(s)		m ^{1/3} /s	m	m/s	m³/s	%	m ³ /s	(mm/h)	m³/s	
RETE CONFLUENTE ALLO SO	ARICO 1					•					•					•	•				•
Drenaggio strada accesso deposito	inizio strada	fine strada		97	9.5	763	0.9	687	300	25	325	DN250	80	0.06	3.88	0.19	70	0.16	160.7	0.0306	ok
Collegameno drenaggio strada - canaletta testa deposito	fine strada	1a	Drenaggio strada accesso deposito	55.3	0.5	763	0.9	687	300	62	362	DN250	80	0.06	0.89	0.04	70	0.04	150.1	0.0286	ok
Canaletta sommità	1	pozzetto strada accesso (monte)		220	0.1	6175	0.4	2470	300	295	595	TIPO 1	63	0.23	0.75	0.28	70	0.15	109.8	0.0753	ok
Tubo sottopasso strada accesso	pozzetto strada accesso (monte)	pozzetto strada accesso (valle)	Canaletta sommità 1	15.7	0.6	6175	0.4	2470	300	14	609	DN315	80	0.08	1.14	0.09	70	0.07	108.2	0.0742	ok
Canaletta sommità	pozzetto strada accesso (valle)	1a	Tubo sottopasso strada accesso	81	0.1	12675	0.4	5070	300	109	717	TIPO 1	63	0.23	0.75	0.28	70	0.15	97.6	0.1374	ok
Tubo banca 2			canaletta scarpata 2 + canaletta longitudinale banca 2	3	0.5	7783	0.4	3113	300	25	743	DN500	80	0.13	1.41	0.28	70	0.23	95.4	0.0825	ok
Canaletta scarpata 3		3	tubo banca 2	5	70	7783	0.4	3113	300	2	745	TIPO 1	63	0.23	19.88	7.45	70	4.03	95.3	0.0824	ok
Canaletta piede 1d	1d	3		98	12.5	601	0.4	240	300	12	312	TIPO 1	63	0.23	8.40	3.15	70	1.70	164.9	0.0110	ok
Canaletta sommità	1a	2		53	0.1	5495	0.4	2198	300	71	371	TIPO 1	63	0.23	0.75	0.28	70	0.15	147.8	0.0902	ok
Canaletta sommità	4	2		31	0.1	7576	0.4	3030	300	42	342	TIPO 1	63	0.23	0.75	0.28	70	0.15	155.7	0.1311	ok
Tubo banca 6			canaletta scarpata 6 + canaletta longitudinale banca 6 sx e dx	3	0.5	21031	0.4	8412	300	96	467	DN630	80	0.16	1.65	0.51	70	0.43	127.9	0.2988	ok
Canaletta scarpata 7		5	tubo banca 6	16	40.5	21031	0.4	8412	300	8	475	TIPO 1	63	0.23	15.13	5.67	70	3.07	126.5	0.2956	ok
Canaletta piede 2	3	5	tubi/canalette tratto 1a- 3 + canaletta piede 1	186	11.0	9179	0.4	3672	300	36	336	TIPO 1	63	0.23	7.88	2.96	70	1.60	157.3	0.1604	ok
Canaletta piede 3	5	6	canaletta scarpata 7 + canaletta piede 2	33	1.25	30210	0.4	12084	300	119	419	TIPO 1	63	0.23	2.66	1.00	70	0.54	136.8	0.4593	ok
Tubo attraversamento strad	6	6a	canaletta piede 3	6	0.6	30210	0.4	12084	300	106	526	DN630	80	0.16	1.81	0.56	70	0.47	118.7	0.3984	ok
Canaletta lato strada	6a	8	Tubo attraversamento strada	89	1.3	30210	0.4	12084	300	33	558	TIPO 1	63	0.23	2.71	1.02	70	0.55	114.2	0.3835	ok
Tubo verso scarico S1	8	8a	Canaletta lato strada	8	0.6	30210	0.4	12084	300	8	533	DN630	80	0.16	1.81	0.56	70	0.47	117.6	0.3947	ok
Canaletta scarico S1	8a	S1	Tubo verso scarico S1	96	0.540	30210	0.4	12084	300	49	582	TIPO 2	63	0.28	1.97	1.07	70	0.57	111.3	0.3736	ok

Tabella 7-1 Verifica canalette e tubazioni (Parte 1)

APPALTATORE: PROGETTAZIONE: webuild process CONSORZIDOLOMITI Mandataria: Mandanti: SWS Engineering S.p.A. PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria		AMENTO	O DELLA PONTE (LINEA FERRO		VORI DI REALIZZAZIONE DEL LOTTO 1 DEL FORTEZZA-VERONA				
Depositi definitivi E – Deposito principale Relazione idraulica	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO. 1BOU 1BEZZ CL RI0350003 C 2 di 22									

												Caratteristiche tratto							Calcolo p		
Descrizione	Progr. Iniziale	Progr. Finale	Tratti confluenti	L tratto	i minima tratto	A permeabile tot	Coeff. Afflusso	A ridotta	T accesso (5 min)	T rete	T corrivazione	tipo di elemento adottato (TIPO 1: canaletta trapezia con b minore 0.5 m; TIPO 2: canaletta trapezia con b minore 0.6 m, TIPO 3: canaletta trapezia con b minore 0.3 m; DNxxx: collettore PVC circolare)	scabrezza Ks	Raggio idraulico max riempimento		Portata max riempimento	Grado riempimento max	Portata 70%	Intensità di pioggia	Portata di pioggia	Verifica grado di riempimento < 70%
				(m)	(%)	(m ²)	(-)	(m ²)	(s)	(s)	(s)		m ^{1/3} /s	m	m/s	m³/s	%	m³/s	(mm/h)	m³/s	
RETE CONFLUENTE ALLO SO	ARICO 2										•				•						
Canaletta sommità	1	9		170	0.1	6745	0.4	2698	300	228	528	TIPO 1	63	0.23	0.75	0.28	70	0.15	118.3	0.0887	ok
Canaletta sommità	13	9		107	0.1	7752	0.4	3101	300	143	443	TIPO 1	63	0.23	0.75	0.28	70	0.15	132.1	0.1138	ok
Tubo banca 6			canaletta scarpata 6 + canaletta longitudinale banca 6 sx e dx	3	0.8	48904	0.4	19562	300	160	688	DN630	80	0.16	2.09	0.65	70	0.54	100.2	0.5442	ok
Canaletta scarpata 7		12	tubo banca 6	10	70	48904	0.4	19562	300	17	705	TIPO 1	63	0.23	19.88	7.45	70	4.03	98.6	0.5357	ok
Canaletta piede 6	12a	12		563	3.5	6736	0.4	2694	300	204	910	TIPO 1	63	0.23	4.45	1.67	70	0.90	84.0	0.0629	ok
Tubo attraversamento strada versco scarico S2	12	\$2	canaletta scarpata 7 + canaletta piede 6	23.7	4	55640	0.4	22256	300	126	1036	DN630	80	0.16	4.67	1.45	70	1.22	77.4	0.4786	ok
RETE CONFLUENTE ALLO SO	ARICO 3										•					•	•				
Canaletta sommità	17	18		78	0.1	4745	0.4	1898	300	105	405	TIPO 1	63	0.23	0.75	0.28	70	0.15	139.9	0.0738	ok
Canaletta sommità	14	18		67	0.1	3945	0.4	1578	300	90	390	TIPO 1	63	0.23	0.75	0.28	70	0.15	143.3	0.0628	ok
Tubo banca 6			canaletta scarpata 6 + canaletta longitudinale banca 6 sx e dx	3	0.5	22915	0.4	9166	300	128	532	DN630	80	0.16	1.65	0.51	70	0.43	117.7	0.2998	ok
Canaletta scarpata 7		21	tubo banca 6	13	70	22915	0.4	9166	300	11	543	TIPO 1	63	0.23	19.88	7.45	70	4.03	116.2	0.2959	ok
Canaletta piede 4	21	15		168	0.1	25005	0.4	10002	300	460	1004	TIPO 2	63	0.28	0.85	0.46	70	0.25	79.0	0.2194	ok
Canaletta sommità	13	14		98	0.1	7175	0.4	2870	300	131	431	TIPO 1	63	0.23	0.75	0.28	70	0.15	134.4	0.1071	ok
Tubo banca 6			canaletta scarpata 6 + canaletta longitudinale banca 6 dx	3	0.5	23790	0.4	9516	300	123	554	DN630	80	0.16	1.65	0.51	70	0.43	114.7	0.3033	ok
Canaletta scarpata 7		5	tubo banca 6	12	70	23790	0.4	9516	300	11	565	TIPO 1	63	0.23	19.88	7.45	70	4.03	113.3	0.2996	ok
Canaletta piede 5	12	15		414	2.5	4725	0.4	1890	300	110	410	TIPO 1	63	0.23	3.76	1.41	70	0.76	138.7	0.0728	ok
Tubo attraversamento strada versco scarico S3	15	S3	canaletta scarpata 7 + canaletta piede 4+ canaletta piede 5	110	5	53520	0.4	21408	300	100	511	DN630	80	0.16	5.22	1.63	70	1.36	120.9	0.7187	ok

Tabella 7-2 Verifica canalette e tubazioni (Parte 2)

PROGETTAZIONE: PROGETTAZIONE: Mandataria: SWS Engineering S.p.A. PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	i	AMENTO	DELLA PONTE (LINEA FERRO		VORI DI REALIZZAZIONE DEL LOTTO 1 DEL ORTEZZA-VERONA
Depositi definitivi E – Deposito principale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
Relazione idraulica	IBOU	1BEZZ	CL	RI0350003		1 di 22

8. OPERA DI SCARICO

Le linee di drenaggio hanno tutte confluenza in tre scarichi principali "S1", "S2" e "S3".

Il primo scarico "S1" all'estremo sud del deposito è costituito da un fosso rivestito in cls (dim 60/120 h60cm) che, dal pozzetto "8A" si sviluppa sino alla confluenza con l'Isarco, lungo la sua sponda desta. La sezione terminale, di raccordo alla sponda, è rivestita in massi cementati.

Per maggiori dettagli si fa riferimento alle tavole dei singoli scarichi: "IBOU1BEZZBZRI0350003A-Scarico1", "IBOU1BEZZBZRI0350004A-Scarico2" e ""IBOU1BEZZBZRI0350004A-Scarico3".

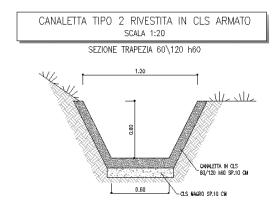


Figure 8-1 – Sezione tipologica fosso di scarico

I due scarichi RESTANTI "S2" a nord e "S3" centrale al deposito, hanno inizio al pozzetto che raccoglie i fossi al piede del deposito. Lo scarico è garantito in entrambi i casi tramite tubazione in PVC SN8 φ630 e portale

PROGETTAZIONE: PROGETTAZIONE: Mandataria: SWS Engineering S.p.A. PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria		CAMENTO	DELLA PONTE (LINEA FERRO		VORI DI REALIZZAZIONE DEL LOTTO 1 DEL CORTEZZA-VERONA
Depositi definitivi E – Deposito principale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
Relazione idraulica	IBOU	1BEZZ	CL	RI0350003		2 di 22

di scarico protetto dal possibile scalzamento della corrente dell'isarco damassi con diametro 1m. la tubazione è protetta da eventuali piene tramite valvola di ritegno a Clapet.

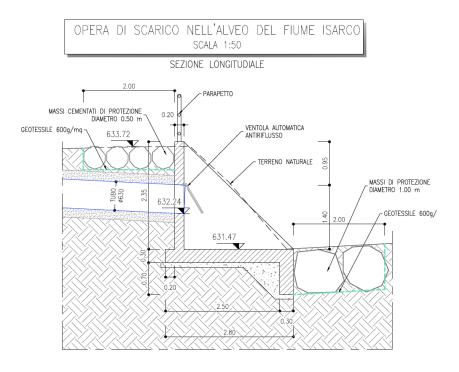


Figure 8-2 – Dettaglio opera di scarico "S2"

APPALTATORE: PROGETTAZIONE: webuild ** Imposite CONSORZIODOLOMITI Mandantia: SWS Engineering S.p.A. PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria		CAMENTO	O DELLA - PONTE (LINEA FERRO		VORI DI REALIZZAZIONE DEL LOTTO 1 DEL FORTEZZA-VERONA
Depositi definitivi E – Deposito principale Relazione idraulica	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO RI0350003	REV.	FOGLIO. 3 di 22

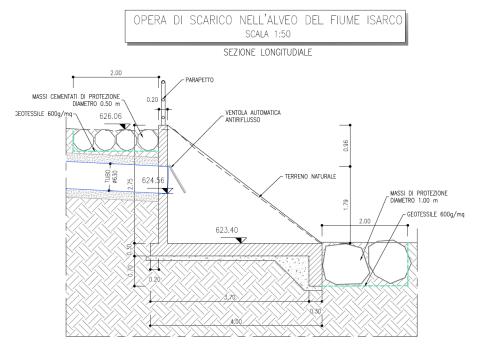


Figure 8-3 – Dettaglio opera di scarico "S3"

8.1 VERIFICA A TRASCINAMENTO

8.1.1 Metodo di verifica

La verifica delle opere di protezione spondale è stata condotta applicando al fondo dell'alveo il metodo delle tensioni di trascinamento secondo la trattazione di *A. Shields* (1936) ¹ che ha investigato sperimentalmente il caso di un letto formato da particelle uniforme non coesive, quindi valida per formazioni incoerenti di materiali.

Il valore medio della tensione tangenziale sul contorno bagnato può ottenersi esprimendo la condizione di equilibrio alla traslazione, scritta nel senso del moto, tra la componente del peso di un tratto del corso d'acqua e l'azione resistente che si sviluppa lungo il contorno della sezione, da cui risulta:

$$\tau_0 = \gamma R_H i$$

dove:

 γ peso specifico dell'acqua;

R_H raggio idraulico;

i pendenza motrice.

Al fine di stimare le dimensioni caratteristiche del materiale, si calcola la tensione critica al fondo oltre la quale inizia il movimento incipiente.

¹ Da Deppo, Datei, Salandin – "Sistemazione dei corsi d'acqua" - Ed. Cortina- Padova.

PROGETTAZIONE: webuild projects CONSORZIODOLOMITI Mandataria: Mandanti:	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"							
SWS Engineering S.p.A. PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO							
Depositi definitivi E – Deposito principale Relazione idraulica	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO RI0350003	REV.	FOGLIO. 4 di 22		

Dalla condizione di equilibrio tra la forza di trascinamento e la forza resistente applicate ad un granulo di diametro d di peso specifico γ_s , Shields ha fornito la relazione:

$$\frac{\tau_{cr}}{(\gamma_s - \gamma)d} = \Phi(\mathrm{Re}^*)$$

In condizione di regime turbolento (Re* > 2000), Shields fornisce $\Phi(Re*)$ = 0,06.

In regime di moto assolutamente turbolento e per miscugli omogenei (pietrame sciolto), sono stati ottenuti da altri ricercatori valori limite di Φ inferiori a quelli ottenuti da Shields: in particolare J. Zeller (1963) ha determinato Φ = 0,047. Va anche segnalatocome questo valore sia stato ulteriormente ridotto da altri autori ponendo Φ = 0,03.

La relazione di *Shields* è da ritenersi valida per dimensioni del materiale piccole rispetto al tirante idraulico (d < h).

Quando d è comparabile con il tirante idraulico h, la relazione diventa (A. Armanini):

$$\frac{\tau_{cr}}{(\gamma_s - \gamma)d} = \Phi(\text{Re}^*) \left[1 + 0.67 \left(\frac{d}{h} \right)^{0.5} \right]$$

Ciò determina, a parità di condizioni, una tensione critica superiore e, quindi, una diminuzione del diametro minimo del materiale d'alveo che non viene mobilitato sul fondo.

Le relazioni indicate valgono nel caso di fondo piano o quasi, con le forze resistenti proporzionali al peso immerso e forze destabilizzanti dovute allo sforzo tangenziale.

Sulla sponda di un corso d'acqua vanno considerate anche altre forze. *E. Lane* (1953), ha fornito una relazione di τ_{cr} che modifica quella di *Shields* per porre in conto l'inclinazione α della sponda e l'angolo d'attrito φ del materiale.

$$\tau_{cr}(\alpha) = \tau_{cr}(0) \left(\cos \alpha \sqrt{1 - \frac{tg^2 \alpha}{tg^2 \varphi}} \right)$$

La tensione critica sulla sponda, superata la quale prende origine il moto delle particelle, è sempre minore di quella $\tau_{cr}(0)$ sul fondo.

In corrispondenza di protezioni spondali si è utilizzata la relazione secondo $Armanini \tau_{cr}(\alpha)$, mentre per le protezioni del fondo alveo si considera la relazione di $Shields \tau_{cr}(0)$. A favore di sicurezza, si procede alla verifica delle protezioni spondali, considerando per la protezione del fondo alveo le stesse dimensioni di massi adottate per la protezione delle sponde.

8.1.2 Verifiche al trascinamento

Le protezioni sono realizzate mediante posa di geotessuto pesante (600 g/m²) e massi naturali in pietrame calcareo cementati per lo scarico 1 mentre i massi a protezione del portale agli scarichi 2 e 3 sono massi naturali sciolti in pietrame calcareo.

L'applicazione delle precedenti formule è attuata considerando diametri d comparabili con il tirante idrico h, e considerando i coefficienti Φ =0.06 per i massi cementati e, a favore di sicurezza, Φ = 0,03 per massi sciolti;

APPALTATORE: PROGETTAZIONE: webuild process ONSORZIODOLOMITI Mandataria: Mandanti: SWS Engineering S.p.A. PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria		CAMENTO	DELLA PONTE (LINEA FERRO		VORI DI REALIZZAZIONE DEL LOTTO 1 DEL ORTEZZA-VERONA
Depositi definitivi E – Deposito principale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO.
Relazione idraulica	IBOU	1BEZZ	CL	RI0350003		5 di 22

 α = 8° per il primo scarico mentre gli altri, essendo sul fondale, non risentono della componente obiqua delle forze; φ = 50° e un peso specifico per massi ciclopici minimo γ_s = 23 KN/m³.

I dati di pensenza media dell'alveo e sezione di riferimento, così come la tensione di trascinamento, fanno riferimento agli elaborati di modellazione idraulica.

Lo scarico 1 si trova in corrispondenza della sezione n°33 mentre la tensione tangenziale è nota alla sezione n°32. Si assume il valore noto corrispondente alla quota di scarico. La tensione di trascinamento corrispondente alla piena con tempo di ritorno 500 anni e da verificare è pari a 502.8 N/m2. Il tirante è di 1.93m.

Lo scarico 2 si trova in corrispondenza della sezione n°17 mentre la tensione tangenziale è nota alla sezione n°16. Si assume il valore noto corrispondente alla quota di scarico. La tensione di trascinamento corrispondente alla piena con tempo di ritorno 500 anni e da verificare è pari a 502.7 N/m2. Il tirante è di 3.03m.

Lo scarico 2 si trova in corrispondenza della sezione n°26 mentre la tensione tangenziale è nota alla sezione n°27. Si assume il valore noto corrispondente alla quota di scarico. La tensione di trascinamento corrispondente alla piena con tempo di ritorno 500 anni e da verificare è pari a 468.6 N/m2. Il tirante è di 2.68m.

In ogni scarico la dimensione del materiale di protezione d è comparabile a quella del tirante h. è quindi urilizzata la formula di Armanini.

Una volta ricavato il diametro nominale D_{50} della protezione, volendo esprimere l'ordine di grandezza dei massi tramite il loro peso, si può considerare che il volume di elementi di forma abbastanza regolare è compreso tra quello di un cubo di lato pari alla dimensione caratteristica calcolata D_{50} e quello di una sfera di tale diametro. Il rapporto tra questi due volumi è 0.52, mentre il volume del masso caratteristico sarà circa pari a 0.75 volte il volume del cubo.

Quindi, per calcolare il volume del masso caratteristico si può utilizzare la seguente semplice formula:

$$V = 0.75 \cdot (D_{50})^3$$

Il volume per il peso specifico del materiale utilizzato fornisce il peso corrispondente del materiale impiegato.

Di seguito verranno riportate le tabelle di verifica in corrispondenza della scogliera. Contengono le caratteristiche della corrente, il confronto delle tensioni di trascinamento derivate dalla modellazione Hec-Ras con le critiche. Si riporta anche una seconda tabella riassuntiva dei rivestimenti previsti con diametro nominale (D_{50}), volume dei massi associato (V), infine il peso (M) e lo stesso arrotondato (M*).

Tratto	т,тах	Sez critica	h	α	φ	D50	τcr,0	τετ,α
	(N/m2)		(m)	(°)	(°)	(m)	(N/m3)	(N/m3)
Scarico 1	502.8	32	1.93	8.5	50	0.5	530.6	520.7
Scarico 2	502.7	16	3.03	-	-	1	548.0	-
Scarico 3	468.6	27	2.68	-	-	1	557.7	-

APPALTATORE: PROGETTAZIONE: webuild promote CONSORZIODOLOMITI Mandataria: Mandanti:	PROGETTAZIONE ESECUTIVA ED ESECUZIONE DEI LAVORI DI REALIZZAZIONE DEL LOTTO 1 DEL QUADRUPLICAMENTO DELLA LINEA FERROVIARIA FORTEZZA-VERONA TRATTA "FORTEZZA – PONTE GARDENA"							
SWS Engineering S.p.A. PINI ITALIA GDP GEOMIN SIFEL SIST M Ingegneria	PROGETTO ESECUTIVO							
Depositi definitivi E – Deposito principale Relazione idraulica	COMMESSA IBOU	LOTTO 1BEZZ	CODIFICA CL	DOCUMENTO RI0350003	REV.	FOGLIO. 6 di 22		

Le protezioni sulle sponde adottate con massi sciolti di pezzatura D_{50} in tabella risultano, quindi, verificate ed idonee. Si riporta infine M^* come l'arrotondamento del peso M ricavato dalle formulazioni.

Opera	Tipologia	D50	V	М	М*
		(m)	(m³)	(kg)	(kg)
Scarico 1	Massi cementati	0.5	0.10	244	250
Scarico 2	Massi cementati	1	0.75	1950	2000
Scarico 3	Massi cementati	1	0.75	1950	2000