COMMITTENTE:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

DIREZIONE TECNICA - U.O. URBANISTICA, ARCHITETTURA E DESIGN

PROGETTO DEFINITIVO PER APPALTO INTEGRATO

POTENZIAMENTO DELLA LINEA RHO-ARONA. TRATTA RHO GALLARATE QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

FV02 – FERMATA DI VANZAGO RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO

										SCALA:
										-
СОМ	MESSA	LOTTO	FASE	ENTE	TIPO D	oc. opera ,	/ DISCIP	lina pro	GR.	REV.
MD) L 1	1 2	D	4 4	С	- FV	0 2 0	00	1 1	Antoinzada a antoi
Rev.	Des	crizione	R	ledatto	Data	Verificato	Data	Approvato	Data	Autorizzato Bata
А	EMISSION	NE ESECUTIVA	1	ngletti	Он. ′10	F. Matera C. Francisci	Он. '10	S.Borelli	O#. '10	A PERR U.O. Urbani Ingegneri della provinci
					-			7		en della
										lingegn in the state of the sta
File: M	File: MDL112D44CLFV0200011A n. Elab.:									
										0

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO **PROGETTO** MDL1

LOTTO CODIFICA 12 D 44 CL

DOCUMENTO REV. FV0200011

A

FOGLIO 2/57

INDICE

DOCUMENTI CORRELATI	1	PRI	EME	SSA	4
3.1 DOCUMENTI REFERENZIATI DOCUMENTI CORRELATI	2	SC	OPO	DEL DOCUMENTO	5
DOCUMENTI CORRELATI	3	DO	CUIV	IENTI DI RIFERIMENTO	5
4 ALLEGATI	3	3.1	Dog	CUMENTI REFERENZIATI	5
5 MATERIALI		ocu	MENT	TI CORRELATI	6
6 CARATTERIZZAZIONE STRATIGRAFICA 7 MODELLAZIONE ADOTTATA 8 RAMPE DI ACCESSO ALLA BANCHINA 8.1 ANALISI DEI CARICHI 8.1.1 Dati di base 8.1.2 Spinta del terreno (SPT) 8.1.3 Carichi permanenti dovuti alla pensilina in CA - (PPperm) 8.1.4 Spinta del terreno dovuta ai carichi accidentali (SPACC) 8.1.5 Azioni sismiche (SPS) 8.1.6 Inerzia sui piedritti (IN) 8.2 COMBINAZIONI DI CALCOLO 8.3 CALCOLO DELLE SOLLECITAZIONI 8.4 VERIFICHE DI RESISTENZA 8.5 VERIFICA A FESSURAZIONE 8.6 VERIFICA PLINTO FONDAZIONE PENSILINA SOLETTA DEL SOTTOPASSO 8.6.1 Schema di calcolo 8.6.2 Analisi dei carichi 8.6.3 Condizioni di carico e combinazioni	4	ALL	_EG/	ATI	7
7 MODELLAZIONE ADOTTATA 8 RAMPE DI ACCESSO ALLA BANCHINA 8.1 ANALISI DEI CARICHI 8.1.1 Dati di base	5	MA	TER	IALI	8
8.1 ANALISI DEI CARICHI 8.1.1 Dati di base	6	CAI	RAT	TERIZZAZIONE STRATIGRAFICA	9
8.1.1 Dati di base	7	MO	DEL	LAZIONE ADOTTATA	10
8.1.1 Dati di base 8.1.2 Spinta del terreno (SPT) 8.1.3 Carichi permanenti dovuti alla pensilina in CA - (PPperm) 8.1.4 Spinta del terreno dovuta ai carichi accidentali (SPACC) 8.1.5 Azioni sismiche (SPS) 8.1.6 Inerzia sui piedritti (IN) 8.2 COMBINAZIONI DI CALCOLO 8.3 CALCOLO DELLE SOLLECITAZIONI 8.4 VERIFICHE DI RESISTENZA 8.5 VERIFICA A FESSURAZIONE 8.6 VERIFICA PLINTO FONDAZIONE PENSILINA SOLETTA DEL SOTTOPASSO 8.6.1 Schema di calcolo 8.6.2 Analisi dei carichi 8.6.3 Condizioni di carico e combinazioni	8	RAI	MPE	DI ACCESSO ALLA BANCHINA	11
8.1.2 Spinta del terreno (SPT) 8.1.3 Carichi permanenti dovuti alla pensilina in CA - (PPperm) 8.1.4 Spinta del terreno dovuta ai carichi accidentali (SPACC) 8.1.5 Azioni sismiche (SPS) 8.1.6 Inerzia sui piedritti (IN) 8.2 COMBINAZIONI DI CALCOLO 8.3 CALCOLO DELLE SOLLECITAZIONI 8.4 VERIFICHE DI RESISTENZA 8.5 VERIFICA A FESSURAZIONE 8.6 VERIFICA PLINTO FONDAZIONE PENSILINA SOLETTA DEL SOTTOPASSO 8.6.1 Schema di calcolo 8.6.2 Analisi dei carichi 8.6.3 Condizioni di carico e combinazioni	8	3.1	ANA	ALISI DEI CARICHI	11
8.1.3 Carichi permanenti dovuti alla pensilina in CA - (PPperm) 8.1.4 Spinta del terreno dovuta ai carichi accidentali (SPACC) 8.1.5 Azioni sismiche (SPS) 8.1.6 Inerzia sui piedritti (IN) 8.2 COMBINAZIONI DI CALCOLO 8.3 CALCOLO DELLE SOLLECITAZIONI 8.4 VERIFICHE DI RESISTENZA 8.5 VERIFICA A FESSURAZIONE 8.6 VERIFICA PLINTO FONDAZIONE PENSILINA SOLETTA DEL SOTTOPASSO 8.6.1 Schema di calcolo 8.6.2 Analisi dei carichi 8.6.3 Condizioni di carico e combinazioni		8.1.	1	Dati di base	11
8.1.4 Spinta del terreno dovuta ai carichi accidentali (SPACC)		8.1	2	Spinta del terreno (SPT)	12
8.1.5 Azioni sismiche (SPS) 8.1.6 Inerzia sui piedritti (IN) 8.2 COMBINAZIONI DI CALCOLO 8.3 CALCOLO DELLE SOLLECITAZIONI 8.4 VERIFICHE DI RESISTENZA 8.5 VERIFICA A FESSURAZIONE 8.6 VERIFICA PLINTO FONDAZIONE PENSILINA SOLETTA DEL SOTTOPASSO 8.6.1 Schema di calcolo 8.6.2 Analisi dei carichi 8.6.3 Condizioni di carico e combinazioni		8.1	3	Carichi permanenti dovuti alla pensilina in CA - (PPperm)	12
8.1.6 Inerzia sui piedritti (IN)		8.1.	4	Spinta del terreno dovuta ai carichi accidentali (SPACC)	14
 8.2 COMBINAZIONI DI CALCOLO 8.3 CALCOLO DELLE SOLLECITAZIONI 8.4 VERIFICHE DI RESISTENZA 8.5 VERIFICA A FESSURAZIONE 8.6 VERIFICA PLINTO FONDAZIONE PENSILINA SOLETTA DEL SOTTOPASSO 8.6.1 Schema di calcolo 8.6.2 Analisi dei carichi 8.6.3 Condizioni di carico e combinazioni 		8.1	5	Azioni sismiche (SPS)	15
 8.3 CALCOLO DELLE SOLLECITAZIONI 8.4 VERIFICHE DI RESISTENZA 8.5 VERIFICA A FESSURAZIONE 8.6 VERIFICA PLINTO FONDAZIONE PENSILINA SOLETTA DEL SOTTOPASSO 8.6.1 Schema di calcolo 8.6.2 Analisi dei carichi 8.6.3 Condizioni di carico e combinazioni 		8.1.	6	Inerzia sui piedritti (IN)	16
 8.4 VERIFICHE DI RESISTENZA 8.5 VERIFICA A FESSURAZIONE 8.6 VERIFICA PLINTO FONDAZIONE PENSILINA SOLETTA DEL SOTTOPASSO 8.6.1 Schema di calcolo 8.6.2 Analisi dei carichi 8.6.3 Condizioni di carico e combinazioni 	8	3.2	Cor	MBINAZIONI DI CALCOLO	17
8.5 VERIFICA A FESSURAZIONE 8.6 VERIFICA PLINTO FONDAZIONE PENSILINA SOLETTA DEL SOTTOPASSO 8.6.1 Schema di calcolo 8.6.2 Analisi dei carichi 8.6.3 Condizioni di carico e combinazioni	8	3.3	CAL	COLO DELLE SOLLECITAZIONI	18
8.6.1 Schema di calcolo	8	3.4	VEF	RIFICHE DI RESISTENZA	23
8.6.1 Schema di calcolo	8	3.5	VEF	RIFICA A FESSURAZIONE	30
8.6.2 Analisi dei carichi	8	3.6	VEF	RIFICA PLINTO FONDAZIONE PENSILINA SOLETTA DEL SOTTOPASSO	36
8.6.3 Condizioni di carico e combinazioni		8.6.	1	Schema di calcolo	37
		8.6.	2	Analisi dei carichi	38
8.6.4 Calcolo delle sollecitazioni		8.6	3	Condizioni di carico e combinazioni	41
		8.6.	4	Calcolo delle sollecitazioni	43

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

MDL1 12 D 44 CL FV0200011 A 3/57

	8.6.5	Verifiche	46					
9	INCIDENZE ARMATURE49							
10	ALLI	EGATI	50					
1	0.1	FILE INPUT SAP 2000 PLINTO SU TRAVE SOLETTA	50					
1	0.2	FILE OUTPUT SAP 2000 PLINTO SU TRAVE SOLETTA	52					

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

MDL1 12 D 44 CL FV0200011 A 4/57

1 Premessa

Nella presente relazione vengono riportate il dimensionamento e le verifiche relative alle strutture di accesso alla banchina (scale e ascensore) attraverso il passaggio dal sottopasso scatolare ferroviario previsto alla fermata di Vanzago. La fermata di Vanzago è ubicata alla progressiva chilometrica 2+861.55 della linea ferroviaria Rho – Gallarate.

Le opere di accesso alla banchina consistono in muri ad "U" a una luce per contenere le scale d'accesso al sottopasso. Per la completa geometria delle strutture si rimanda agli elaborati grafici.

Le opere si trovano in zona sismica di 4a categoria (comune Vanzago) però, in fase di calcolo, verrà considerata assimilata alla terza categoria. Il calcolo viene effettuato in conformità al D.M. 16/01/1996, con il metodo delle tensioni ammissibili.

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
MDL1 12 D 44 CL FV0200011 A 5/57

2 Scopo del documento

Lo scopo del presente documento è quello di analizzare le strutture delle rampe di accesso al sottopasso ferroviario della fermata di Vanzago.

Le rampe sono costituite di muri ad U avente una altezza massima di 5.90m, mentre per il vano dell'ascensore si tiene conto sempre di un muro ad U a sezione variabile (altezza complessiva del muro pari a 6.90 m.)

3 Documenti di riferimento

3.1 Documenti Referenziati

La progettazione è conforme alle normative vigenti nonché alle istruzioni dell'Ente FF.SS.

Legge n° 1086 del 5 Novembre 1971

"Norme per la disciplina delle Opere di conglomerato cementizio armato normale e precompresso e a struttura metallica";

D.M. 9 Gennaio 1996

"Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle opere in cemento armato normale e precompresso e per le strutture metalliche":

D.M. 16 Gennaio 1996

"Norme tecniche relative ai criteri per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi";

D.M. 16 Gennaio 1996

"Norme tecniche per le costruzioni in zone sismiche";

D.M. 11 Marzo 1988:

"Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione ed il collaudo delle opere di sostegno delle terre e delle opere di fondazione";

Min. LL.PP. Circolare 15/10/1996 n. 252/AA.GG./S.T.C.

Istruzioni per l'applicazione delle "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato normale, precompresso e per le strutture metalliche" di cui al D.M. 9.1.1996;

Min. LL.PP. Circolare 04/07/1996 n.156 AA.GG./STC

Istruzioni per l'applicazione delle "Norme tecniche relativi ai criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi" di cui al D.M. 16.1.1996;

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

MDL1 12 D 44 CL FV0200011 A 6/57

Min. LL.PP. Circolare 10/04/1997 n. 65/AA.GG

Istruzioni per l'applicazione delle "Norme tecniche relative alle costruzioni sismiche" di cui al D.M. 16.1.1996;

Min. LL.PP. Circolare 24/09/1988 n.30483:

Istruzioni per l'applicazione delle "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione ed il collaudo delle opere di sostegno delle terre e delle opere di fondazione";

Istruzioni FS. del 2 Giugno 1995 I/SC/PS-OM/2298

"Sovraccarichi per il calcolo dei ponti ferroviari. Istruzioni per la progettazione, l'esecuzione e il collaudo". Testo aggiornato della istruzione n° I/SC/PS-OM/2298 del 2 Giugno 1995 completo delle relative integrazioni - 13 Gennaio 1997;

Istruzione FF.SS. n° 44b del 14/04/1998

"Istruzioni tecniche per manufatti sottobinario da costruire in zona sismica". Testo aggiornato dell' istruzione 44/b del 14/11/1996, approvato dal Consiglio Superiore dei Lavori Pubblici con voto dell'Assemblea Generale del 16/12/1997;

Documenti correlati

I documenti correlati sono:

MDL112D44BAFV0200006A – Carpenteria e sezione scale e ascensore banchina – Sottopasso ferroviario

MDL1 00 D 26 RG GE0001 001 A. - Potenziamento della linea Rho-Arona tratta Rho-Gallarate – Progetto Definitivo – Relazione geologica, geomorfologica, idrogeologica.

MDL1 00 D 26 F5 GE0001 001 A. - Potenziamento della linea Rho-Arona tratta Rho-Gallarate – Progetto Definitivo – Profilo geologico-tecnico binario pari linea storica – tav. 1/3.

MDL1 00 D 26 F5 GE0001 002 A. - Potenziamento della linea Rho-Arona tratta Rho-Gallarate – Progetto Definitivo – Profilo geologico-tecnico binario pari linea storica – tav. 2/3.

MDL1 00 D 26 F5 GE0001 003 A. - Potenziamento della linea Rho-Arona tratta Rho-Gallarate – Progetto Definitivo – Profilo geologico-tecnico binario pari linea storica – tav. 3/3.

MDL1 00 D 26 RB GE0005 001 A. - Potenziamento della linea Rho-Arona tratta Rho-Gallarate – Relazione geotecnica generale.

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
MDL1 12 D 44 CL FV0200011 A 7/57

MDL1 00 D 26 F5 GE0005 001 A. - Potenziamento della linea Rho-Arona tratta Rho-Gallarate – Profilo geotecnico – tav. 1/6.

MDL1 00 D 26 F5 GE0005 002 A. - Potenziamento della linea Rho-Arona tratta Rho-Gallarate – Profilo geotecnico – tav. 2/6.

MDL1 00 D 26 F5 GE0005 003 A. - Potenziamento della linea Rho-Arona tratta Rho-Gallarate – Profilo geotecnico – tav. 3/6.

MDL1 00 D 26 F5 GE0005 004 A. - Potenziamento della linea Rho-Arona tratta Rho-Gallarate – Profilo geotecnico – tav. 4/6.

MDL1 00 D 26 F5 GE0005 005 A. - Potenziamento della linea Rho-Arona tratta Rho-Gallarate – Profilo geotecnico – tav. 5/6.

MDL1 00 D 26 F5 GE0005 006 A. - Potenziamento della linea Rho-Arona tratta Rho-Gallarate – Profilo geotecnico – tav. 6/6.

4 Allegati

Il documento è corredato da allegati :

- Input Sap 2000 non linear plinto su trave soletta
- Output Sap 2000 non linear plinto su trave soletta

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO **PROGETTO** MDL1

LOTTO CODIFICA 12 D 44 CL

DOCUMENTO FV0200011

FOGLIO 8/57

REV.

Α

Materiali 5

I calcoli statici sono stati eseguiti prevedendo l'impiego dei seguenti materiali.

CALCESTRUZZO

Si assumono le seguenti caratteristiche cubiche minime a compressione:

Magrone

 $R_{ck} = 15 \text{ N/mm}^2$

Fondazione

 $R_{ck} = 35 \text{ N/mm}^2$

Elevazione

 $R_{ck} = 35 \text{ N/mm}^2$

In conformità alla normativa vigente e delle citate Istruzioni, i massimi valori unitari di tensione da prendere in conto nelle verifiche con il metodo delle tensioni ammissibili sono:

 $R_{ck} = 35 \text{ N/mm}^2$

Tensione di compressione $\sigma_c = 11.00 \text{ N/mm}^2$

Tensioni tangenziali $\tau_{c0} = 0.67 \text{ N/mm}^2$

 $\tau_{c1} = 1.97 \text{ N/mm}^2$

ACCIAIO

per tondi di diametro ≤26 mm

FeB 44k

per tondi di diametro ≥28 mm

FeB 38k

In conformità alla normativa vigente e delle citate Istruzioni, i massimi valori unitari di tensione da prendere in conto nelle verifiche con il metodo delle tensioni ammissibili sono:

Acciaio tipo FeB 44k

 $\sigma s = 255 \text{ N/mm2}$

Acciaio tipo FeB 38k

 $\sigma s = 215 \text{ N/mm2}$

In accordo alla Tab. 2.2.2.4 delle istruzioni F.S., la tensione dell'acciaio (per le combinazioni TA1 e TA2), i diametri e le distanze tra le barre di acciaio, per limitare gli effetti della

fessurazione, risultano:

σs ≤220 N/mm2

diametro ≤20 mm (massimo interasse barre 200mm)

σs ≤190 N/mm2

diametro ≤24 mm (massimo interasse barre 250mm)

σs ≤160 N/mm2

diametro ≤30 mm (massimo interasse barre 300mm)

COPRIFERRO

Soletta:

4 cm

Struttura controterra:

4 cm

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO MDL1

LOTTO 12 D 44 CL

CODIFICA DOCUMENTO REV. FV0200011

FOGLIO 9/57

Caratterizzazione stratigrafica

Per la caratterizzazione stratigrafica, si riportano quanto segue :

Tipologia	Caratterizzazione	Profondità (m)
R	Materiale di riporto costituito da ghiaiea sabbiosa di colore grigio	0 – 1.20
	con frammenti di laterizi e calcinacci	
SL	Depoisiti del ciclo wurmiano a prevalente facies sabbiosa-	1.20 – 2.35
	limosa (sabbia a granulometria medio-fine, limosa)	
GS	Deposito del ciclo wurmiano a prevalente facies ghiaioso-	2.35 – 33.54 m
	sabbiosa /ghiaie con sabbie da debolmente limose a limose)	
	ricoperti da suoli lacustri	
SG	Deposito del ciclo wurmiano a prevalente facies sabbiosa –	33.54
	ghiaiosa (sabbie con ghiaie limose)	

Per il rinterro così come per la fondazione, si considera un terreno avente le seguenti caratteristiche:

 $\gamma (kN/m^3) = 19$

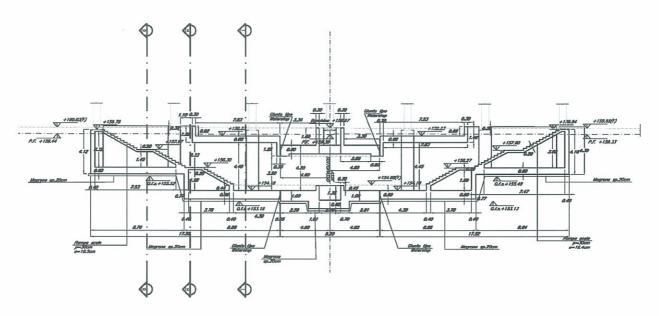
 $\varphi'(\circ) = 35^{\circ}$

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO
 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12 D 44
 CL
 FV0200011
 A
 10/57

7 Modellazione adottata

Per il calcolo delle pareti esterne del muro ad U, si è adottata una schematizzazione semplificata a mensola di altezza pari al massimo dislivello piano di campagna e fondo del muro ad U. Si considera la mensola incastrata in corrispondenza dell'asse della soletta di fondo. Lo spessore della soletta di fondo è pari a 80 cm. A favore di sicurezza, non si è tenuto conto del peso proprio delle scale. Il terreno è considerato spingente per tutta l'altezza delle pareti.


L'armatura di seguito calcolata, verrà utilizzata, per i muri di altezze inferiori.

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
MDL1 12 D 44 CL FV0200011 A 11/57

8 Rampe di accesso alla banchina

Questa tipologia è valida per le pareti dei muri ad "U" di banchina che permettono l'accesso ai treni. L'altezza massima del muro, h, è pari a 5.90 m. questo tipologia di muro ad U è sottoposta all'azione di passaggio dei treni.

Sezione trasversale

8.1 Analisi dei carichi

8.1.1 Dati di base

I pesi dei materiali da costruzione e del terreno sono indicati nella tabella seguente:

PESI	kN/m³			
	γ	Φ		
calcestruzzo armato	25	-		
Rinterro	19	35		

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO **PROGETTO** MDL1

LOTTO CODIFICA 12 D 44 CL

DOCUMENTO FV0200011

REV.

FOGLIO 12/57

8.1.2 Spinta del terreno (SPT)

Per il rinterro si prevede un angolo di attrito $\phi = 35^{\circ}$ ed un peso di volume $\gamma = 19$ KN/m³, lungo tutta l'altezza dei muri. Il coefficiente di spinta viene calcolato utilizzando la formula Ka = $(1-\sin \phi)/(1+\sin \phi)$, per cui si ottiene il valore $K_a = 0.271$.

Si considera un'altezza h pari a 5.90 m. La pressione sul muro dovuta alla spinta del terreno è quindi pari a:

Qspt = γ x h x K_a = 19,00 x (5.90) x 0,271 = 30,40 kN/m²

8.1.3 Carichi permanenti dovuti alla pensilina in CA - (PPperm)

Analisi dei carichi pensilina CA

L'interasse tra due pilastrate è di 7.20 m, l'impronta della pensilina trasversalmente alla marcia dei treni è di 8.80 m.

Sovraccarichi elementari sul tegolo

Massetto pendenze in cls alleggerito $\gamma = 400 \text{ kg/m}^3$, spessore medio 5cm:

 $p = 0.20 \text{ kN/m}^2$

Impermeabilizzazione in fibra di vetro impregnata con resine:

 $p = 0.03 \text{ kN/m}^2$

Impianti:

 $p = 0.20 \text{ kN/m}^2$

Eventuali pannelli fotovoltaici:

 $p = 0.20 \text{ kN/m}^2$

Totale

P = 0.63

kN/m²

Il peso risultante su un singolo pilastro è di (0.63*7.20*8.26)/2= 18.73 kN.

Tegolo

Peso proprio tegolo

Tenendo conto della conformazione geometrica reale del tegolo si hanno quanto segue:

Peso specifico calcestruzzo (kN/m3)

= 25.00

Peso proprio tegolo centrale

Area (m2)

= 0.7069

Peso lineare (kN/m)

= 0.71*25.00 = 17.75

Peso (kN)

= 17.75*1.80 = 31.95

Peso proprio tegolo laterale

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO MDL1

CODIFICA

LOTTO

12 D 44

DOCUMENTO FV0200011 REV.

FOGLIO 13/57

Area (m2)

= 0.6148

Peso lineare (kN/m)

= 0.62*25 = 15.50

Peso (kN)

= 15.50*1.80 = 27.90

Il peso totale dei tegoli scaricato su un singolo pilastro è quindi pari a 4*(2*27.90 + 31.95)/2 = 175.50 kN.

Trave

Peso proprio trave

assumendo una larghezza di 0.45 m, un'altezza di 0.65 m ed un peso di volume di 25 kN/m³ (pp = 7.31 kN/m), il peso totale dovuto alla trave è pari a 7.31 *7.20 = 52.63 kN

Pilastro

Peso proprio pilastro

Il pilastro ha sezione ellittica con assi pari a 0.45 m e 0.65 m, con un foro circolare Ø110 mm al centro per il pluviale.

Assumendo un'area di 0.2208 m² ed un peso di volume di 25 kN/m³ (pp = 5.52 kN/m) con un altezza totale del pilastro è pari a 4.45 m, il peso del pilastro è quindi pari a 5.52*4.45 = **24.56 kN**.

Riassunto peso della pensilina

Il peso totale della pensilina è pari a :

Peso pilasto 24.56 kN
Peso trave 52.63 kN
Peso tegolo 175.50 kN
Peso permanente portato dal tegolo 18.73 kN

Totale peso pensilina che grava su una singola mensola del muro ad U

271.42 kN

La pensilina è fissata alla rampa mediante un collegamento con dei tirafondi piastra (per maggiori dettagli, vedi relazione pensilina in ca).

Si riportano le sollecitazioni al piede del pilastro, sul piano orizzontale a quota estradosso della mensola della rampa. Si distinguono 3 casi :

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
MDL1 12 D 44 CL FV0200011 A 14/57

Caso 1: Mx max, Np, Tx, Ty e My corrispondenti.

Caso 2: My max, Np, Tx, Ty e Mx corrispondenti.

Caso 3: Npmax, Tx, Ty, Mx e My corrispondenti.

Lo sforzo normale è secondo la direzione del pilastro ovvero inclinato di 2° sulla verticale.

Si riportano le sollecitazioni con la scomposizione dello sforzo normale secondo la verticale e la sua componente secondo l'asse y ortogonale alla marcia dei treni.

Nz = Np*cos2° =

Tyf = Ty + Np*sin2° =

Comb. Corr.		Nz (kN)	Tx (kN)	Tyf (kN)	Mx (kNm)	My (kNm)
Co243	Caso 1	-242.31	-20.18	-14.952	-76.64	-26.68
Co83	Caso 2	-294.7	-2.55	-30.05	-8.76	-81.12
Co155	Caso 3	-374.05	-1.45	-21.568	-1.38	34.95

Si riportano le eccentricità relative ai casi di studio.

Comb corr + peso		N (kN)	Mx (kNm)	My (kNm)	ex (m) =	ey (m) =
proprio					My/N	Mx/N
Co243	Caso 1	-242.31	-76.64	-26.68	0.11	0.32
Co83	Caso 2	-294.7	-8.76	-81.12	0.28	0.03
Co155	Caso 3	-374.05	-1.38	34.95	-0.09	0.00

8.1.4 Spinta del terreno dovuta ai carichi accidentali (SPACC)

Si considera sul terrapieno la presenza di un sovraccarico accidentale pari a q = 20.00 kN/m² (passaggio del treno) invece del solito carico da 40.00 kN/m². Tale carico, in via del tutto conservativo, si ritiene adossato al muro in modo tale da poterlo applicare su tutta l'altezza del muro.

La pressione corrispondente sui piedritti risulta:

 $Q_{SPACC} = q \times K_a = 20.00 \times 0.271 = 5.42 \text{ kN/m}^2$

che si applica su tutta l'altezza del piedritto.

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO MDL1 12 D 44 CL FV0200011 A 15/57

8.1.5 Azioni sismiche (SPS)

La spinta del terreno F_s, viene così calcolata:

$$F_s = A*F'$$

$$A = \frac{\cos^2(\beta + \theta)}{\cos^2 \beta * \cos \theta}$$

 θ = artan C con C = coefficiente di intensità sismica

F' = spinta del terreno calcolata per $\alpha' = \alpha + \theta$

$$\beta' = \beta + \theta$$

 β , α indicano, rispettivamente, l'angolo di inclinazione del terreno rispetto all'orizzontale e l'angolo di inclinazione del paramento interno rispetto alla verticale, come da normativa sismica, in questo caso sono entrambi pari a zero.

La sovraspinta sismica viene quindi calcolata considerando un coefficiente di spinta sismico incrementato rispetto a quello statico.

Dati generali

ф	35
α'	2.3
β'	2.3
δ	0
θ	2.3
Α	0.999
<as=< td=""><td>0.293</td></as=<>	0.293

Ove:

φ Angolo di attrito interno

α' Inclinazione del paramento di monte

β' Inclinazione del terreno sull'orizzontale

δ Inclinazione della spinta

K_{as} = coefficiente di spinta attivo in condizioni sismiche =

$$\frac{sen(\alpha'+\Phi)^{2}}{sen^{2}(\alpha')\cdot sen(\alpha'-\delta)\cdot \left[1+\sqrt{\frac{sen(\Phi+\delta)\cdot sen(\Phi-\beta')}{sen(\beta'-\delta)\cdot sen(\alpha'+\beta')}}\right]^{2}}=0.296$$

La spinta statica F, viene così calcolata:

 $F = 1/2 \times \gamma \times h^2 \times K_a = 1/2 \times 19,00 \times 5.90^2 \times 0,271 = 89,62 \text{ kN/m}^2$

La spinta F', viene così calcolata:

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
MDL1 12 D 44 CL FV0200011 A 16/57

 $F = 1/2 \times \gamma \times h^2 \times K_{as} = 1/2 \times 19,00 \times 5,90^2 \times 0,293 = 96,90 \text{ kN/m}^2$

INCREMENTO DI SPINTA DEL TERRENO $\Delta F = Fs - F$

Spinta in condizioni sismiche Fs = A F' (DM 5-2-96) Fs 89,62 kN/m Spinta statica F 96,90 kN/m Incremento di spinta Δ F 7,28 kN

Tale azione, si applica ai 2/3 dell'altezza del muro ovvero a 3.93 m dalla base.

8.1.6 Inerzia sui piedritti (IN)

Si considera un'azione di inerzia orizzontale sui piedritti pari a:

IN = C Wp

In cui:

C = 0.04

 $Wp = (0.75 \times 5.90) \times 25 = 110.62 \text{ kN/m}$

quindi $IN = 0.04 \times 110,62 = 4.43 \text{ kN/m}.$

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
MDL1 12 D 44 CL FV0200011 A 17/57

8.2 Combinazioni di calcolo

Le condizioni e le combinazioni di carico considerate sono le seguenti:

	SPT	SPperm	SPACC	SPS	IN
COMB 1a	1	1	1	0	0
COMB 1b	1	1	• 1	0	0
COMB 1c	1	1	1	0	0
COMB 2a	1	1	0.5	1	1
COMB 2b	1	1	0.5	1	1
COMB 2c	1	1	0.5	1	1
COMB 1Fa	1	1	0.8	0	0
COMB 1Fb	1	1	0.8	0	0
COMB 1Fc	1	1	0.8	0	0

Le combinazioni comb 1F sono per la verifica a fessurazione.

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO CODIFICA DOCU

MDL1 12 D 44 CL FV02

DOCUMENTO REV. FV0200011 A

FOGLIO 18/57

8.3 Calcolo delle sollecitazioni

Per le verifiche a pressoflessione si considerano le sollecitazioni a piede muro. Le sollecitazioni massime risultano:

COMB 1a

$$Mx_{max} = \frac{q_{SPT} \cdot h^2}{6} + Ty(a)_{PPperm} \cdot h + Mx(a)_{PPperm} + \frac{q_{SPACC} \cdot h^2}{2} = 435.55 \text{ kNm}$$

$$My_{max} = Tx(a)_{PPnerm} h + My(a)_{PPnerm} =$$
 145.74 kNm

$$Ty_{\text{max}} = \frac{q_{SPT} \cdot h}{2} + Ty(a)_{PPperm} + q_{SPACC} \cdot h =$$
 136.61 kN

$$Tx_{max} = Tx(a)_{PPperm} = 20.18 \text{ kN}$$

$$N = N(a)_{PPperm} + h \cdot s \cdot \gamma_{cls} = 352.94 \text{ kN}$$

COMB 1b

$$Mx_{max} = \frac{q_{SPT} \cdot h^2}{6} + Ty(b)_{PPperm} \cdot h + Mx(b)_{PPperm} + \frac{q_{SPACC} \cdot h^2}{2} = 456.76 \text{ kNm}$$

$$My_{max} = Tx(b)_{PPperm} . h + My(b)_{PPperm} = 96.17 \text{ kNm}$$

$$\mathsf{Ty}_{\mathsf{max}} = \frac{q_{\mathit{SPT}} \cdot h}{2} + Ty(b)_{\mathit{PPperm}} + q_{\mathit{SPACC}} \cdot h =$$
 151.71 kN

$$\mathsf{Tx}_{\mathsf{max}} = Tx(b)_{PP_{nerm}} = 2.55 \,\mathsf{kN}$$

$$N = N(b)_{PPperm} + h \cdot s \cdot \gamma_{cls} = 405.33 \text{ kN}$$

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO MDL1 LOTTO 12 D 44 CODIFICA CL DOCUMENTO FV0200011 REV.

FOGLIO 19/57

COMB 1c

$$Mx_{max} = \frac{q_{SPT} \cdot h^2}{6} + Ty(c)_{PPperm} \cdot h + Mx(c)_{PPperm} + \frac{q_{SPACC} \cdot h^2}{2} = 399.35 \text{ kNm}$$

$$My_{max} = Tx(c)_{PPperm} . h + My(c)_{PPperm} =$$

43.51 kNm

$$\mathsf{Ty}_{\mathsf{max}} = \frac{q_{\mathit{SPT}} \cdot h}{2} + Ty(c)_{\mathit{PPperm}} + q_{\mathit{SPACC}} \cdot h =$$

143.23 kN

$$Tx_{max} = Tx(c)_{PPperm} =$$

1.45 kN

$$N = N(c)_{PPperm} + h \cdot s \cdot \gamma_{cls} =$$

484.68 kN

COMB 2a

$$\text{Mx}_{\text{max}} = \frac{q_{SPT} \cdot h^2}{6} + Ty(a)_{PPperm} + Mx(a)_{PPperm} + 0.5 \cdot \frac{q_{SPACC} \cdot h^2}{2} + 1 \cdot \frac{\Lambda F \cdot 2 \cdot h}{3} + 1 \cdot \frac{IN \cdot h}{2} =$$

$$\text{Mx}_{\text{max}} = \frac{430.97 \text{ kNm}}{2}$$

$$Ty_{max} = 1 \cdot \frac{q_{SPT} \cdot h}{2} + Ty(a)_{PPperm} + 0.5 \cdot q_{SPACC} \cdot h + 1 \cdot \Lambda F + 1 \cdot IN = 132.33 \text{ kN}$$

$$Tx_{max} = Tx(a)_{PPperm} =$$

20.18 kN

$$N = N(a)_{PPperm} + h \cdot s \cdot \gamma_{cls} =$$

352.94 kN

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO MDL1 LOTTO CODIFICA

12 D 44 CL

DOCUMENTO FV0200011 REV.

FOGLIO 20/57

COMB 2b

$$\text{Mx}_{\text{max}} = \frac{q_{SPT} \cdot h^2}{6} + Ty(b)_{PPperm} + Mx(b)_{PPperm} + 0.5 \cdot \frac{q_{SPACC} \cdot h^2}{2} + 1 \cdot \frac{\Lambda F \cdot 2 \cdot h}{3} + 1 \cdot \frac{IN \cdot h}{2} =$$

$$\text{Mx}_{\text{max}} =$$

$$451.30 \text{ kNm}$$

$$Ty_{max} = 1 \cdot \frac{q_{SPT} \cdot h}{2} + Ty(b)_{PPperm} + 0.5 \cdot q_{SPACC} \cdot h + 1 \cdot \Lambda F + 1 \cdot IN = 147.43 \text{ kN}$$

$$Tx_{max} = Tx(b)_{PPperm} =$$

2.55 kN

$$N = N(b)_{PPperm} + h \cdot s \cdot \gamma_{cls} =$$

405.33 kN

COMB 2c

$$\text{Mx}_{\text{max}} = \frac{q_{SPT} \cdot h^2}{6} + Ty(c)_{PPperm} + Mx(c)_{PPperm} + 0.5 \cdot \frac{q_{SPACC} \cdot h^2}{2} + 1 \cdot \frac{\Lambda F \cdot 2 \cdot h}{3} + 1 \cdot \frac{IN \cdot h}{2} =$$

$$\text{Mx}_{\text{max}} = 393.88 \text{ kNm}$$

$$\mathsf{Ty}_{\mathsf{max}} = 1 \cdot \frac{q_{\mathit{SPT}} \cdot h}{2} + Ty(c)_{\mathit{PPperm}} + 0.5 \cdot q_{\mathit{SPACC}} \cdot h + 1 \cdot \Lambda F + 1 \cdot \mathit{IN} = 138.95 \; \mathsf{kN}$$

$$Tx_{max} = Tx(c)_{PPperm} =$$

1.45 kN

$$N = N(c)_{PPperm} + h \cdot s \cdot \gamma_{cls} =$$

484.68 kN

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO MDL1

LOTTO CODIFICA

12 D 44 CL

DOCUMENTO FV0200011

REV.

FOGLIO 21/57

COMB 1Fa

$$\mathsf{Mx}_{\mathsf{max}} = \frac{q_{SPT} \cdot h^2}{6} + Ty(a)_{PPperm} + Mx(a)_{PPperm} + 0.8 \cdot \frac{q_{SPACC} \cdot h^2}{2} + 0 \cdot \frac{q_{SPS} \cdot h^2}{3} + 0 \cdot \frac{q_{IN} \cdot h^2}{2} = 0$$

 Mx_{max}

416.68 KNm

$$\mathsf{My}_{\mathsf{max}} = \frac{q_{\mathit{SPT}} \cdot h^2}{6} + Tx(a)_{\mathit{PPperm}} + My(a)_{\mathit{PPperm}} + 0.8 \cdot \frac{q_{\mathit{SPACC}} \cdot h^2}{2} + 0 \cdot \frac{q_{\mathit{SPS}} \cdot h^2}{3} + 0 \cdot \frac{q_{\mathit{IN}} \cdot h^2}{2} = \mathsf{My}_{\mathsf{max}}$$

$$\mathsf{145.74} \; \mathsf{KNm}$$

$$N = N(a)_{PPperm} + h \cdot s \cdot \gamma_{cls} =$$

352.94 KN

COMB 1Fb

$$\mathsf{Mx}_{\mathsf{max}} = \frac{q_{\mathit{SPT}} \cdot h^2}{6} + Ty(b)_{\mathit{PPperm}} + Mx(b)_{\mathit{PPperm}} + 0.8 \cdot \frac{q_{\mathit{SPACC}} \cdot h^2}{2} + 0 \cdot \frac{q_{\mathit{SPS}} \cdot h^2}{3} + 0 \cdot \frac{q_{\mathit{IN}} \cdot h^2}{2} = \mathsf{Mx}_{\mathsf{max}} = 437.89 \; \mathsf{KNm}$$

$$\mathsf{My}_{\mathsf{max}} = \frac{q_{\mathit{SPT}} \cdot h^2}{6} + Tx(b)_{\mathit{PPperm}} + My(b)_{\mathit{PPperm}} + 0.8 \cdot \frac{q_{\mathit{SPACC}} \cdot h^2}{2} + 0 \cdot \frac{q_{\mathit{SPS}} \cdot h^2}{3} + 0 \cdot \frac{q_{\mathit{IN}} \cdot h^2}{2} = \mathsf{My}_{\mathsf{max}} = 96.17 \; \mathsf{KNm}$$

$$N = N(b)_{PPperm} + h \cdot s \cdot \gamma_{cls} =$$

405.33 KN

COMB 1Fc

$$\mathsf{Mx}_{\mathsf{max}} = \frac{q_{\mathit{SPT}} \cdot h^2}{6} + Ty(c)_{\mathit{PPperm}} + \mathit{Mx}(c)_{\mathit{PPperm}} + 0.8 \cdot \frac{q_{\mathit{SPACC}} \cdot h^2}{2} + 0 \cdot \frac{q_{\mathit{SPS}} \cdot h^2}{3} + 0 \cdot \frac{q_{\mathit{IN}} \cdot h^2}{2} = \mathsf{Mx}_{\mathsf{max}} = 380.48 \; \mathsf{KNm}$$

$$\mathsf{My}_{\mathsf{max}} = \frac{q_{\mathit{SPT}} \cdot h^2}{6} + Tx(c)_{\mathit{PPperm}} + My(c)_{\mathit{PPperm}} + 0.8 \cdot \frac{q_{\mathit{SPACC}} \cdot h^2}{2} + 0 \cdot \frac{q_{\mathit{SPS}} \cdot h^2}{3} + 0 \cdot \frac{q_{\mathit{IN}} \cdot h^2}{2} = \mathsf{My}_{\mathsf{max}} = 43.51 \; \mathsf{KNm}$$

$$N = N(c)_{PPperm} + h \cdot s \cdot \gamma_{cls} =$$

484.68 KN

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO MDL1

LOTTO

12 D 44

CODIFICA CL

DOCUMENTO REV. FV0200011

Α

FOGLIO 22/57

Tabella riassuntiva delle sollecitazioni al piede della mensola

	Comb1a	Comb1b	Comb1c	Comb2a	Comb2b	Comb2c	Comb1Fa	Comb1Fb	Comb1Fc
Mx (kNm)	435.55	456.76	399.35	430.97	451.30	393.88	416.68	437.89	380.48
My (kNm)	145.74	96.17	43.51	145.74	96.17	43.51	145.74	96.17	43.51
Ty (kN)	136.61	151.71	143.23	132.33	147.43	138.95	130.21	145.31	136.83
Tx (kN)	20.18	2.55	1.45	20.18	2.55	1.45	20.18	2.55	1.45
N (kN)	352.94	405.33	484.68	352.94	405.33	484.68	352.94	405.33	484.68

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
MDL1 12 D 44 CL FV0200011 A 23/57

8.4 Verifiche di resistenza

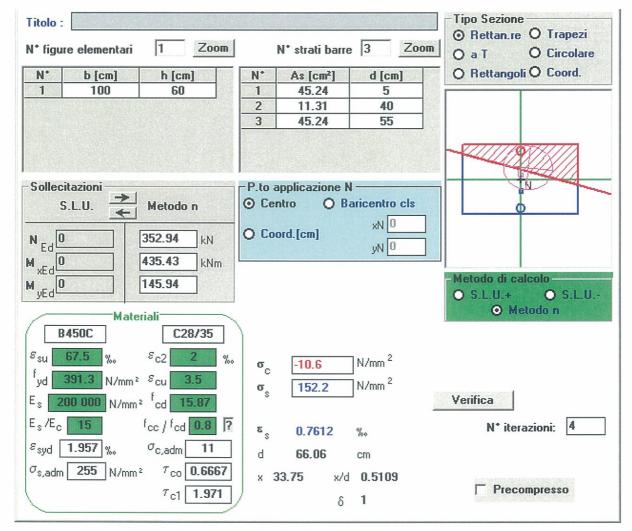
Si effettuano le verifiche a pressoflessione e taglio della mensola e della soletta di fondo :

Mensola

Verifica a flessione composta

Per le combinazioni di esercizio, la Comb 1a risulta essere la più sfavorevole :

Mx (kNm)


435.55

My (kNm)

145.74

N (kN)

352.94

Verifica a taglio

Per le combinazioni di esercizio, la Comb 1b risulta essere la più sfavorevole per la Ty:

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
MDL1 12 D 44 CL FV0200011 A 24/57

Ty = 151.71 kN

Per le combinazioni di esercizio, la Comb 1a risulta essere la più sfavorevole per la Tx:

Tx = 20.18 kN

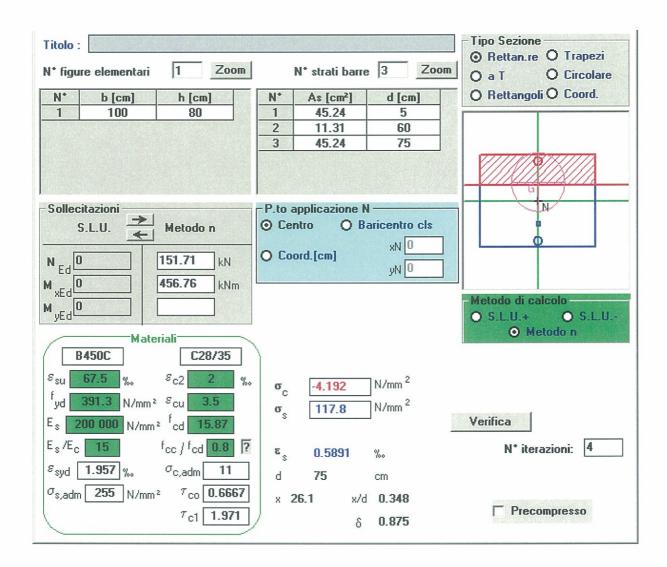
 $\tau = 0.31 \text{ N/mm}^2 < \tau_{c0} = 0.67 \text{ N/mm}^2$

Non occorre predisporre armatura a taglio.

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
MDL1 12 D 44 CL FV0200011 A 25/57

Fondazione

Verifica a flessione composta


Per le combinazioni di esercizio, la Comb 1a risulta essere la più sfavorevole :

Mx (kNm)

456.76

N (kN)

151.71

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO MDL1

LOTTO 12 D 44 CODIFICA DO

DOCUMENTO FV0200011

REV. I

FOGLIO 26/57

Verifica a torsione e a Taglio

Per le combinazioni di esercizio, si effettua le verifiche rispetto alle combinazioni seguenti. Si riporta di seguito i valori delle sollecitazioni risultanti per le combinazioni 1a, 1b, 1.c.

	Comb1a	Comb1b	Comb1c
My = Mt (kNm)	145.74	96.17	43.51
Ty (kN)	352.94	405.33	484.68

Verifica Comb 1.a

Taglio	35294	kg	
Torsione	14574	kg m	
Rck	350		
Sa		kg/cm ²	
t _{c0}	6.67	kg/cm ²	
t _{el}	19.71	kg/cm ²	
H	80	cm	a
Ъ	100	cm	ъ
copriferro	4	cm	
W	5778	cm ²	
р	306.7	cm	
а	4.53		
t _{taglio}	5.16	kg/cm ²	
t _{torsione}	10.31	kg/cm ²	
t _{tot}	15.47	kg/cm ²	
Al _{torsione}	14.88	cm ²	
Ast _{taglio}	19.85	cm ² /m	
Ast torsione	4.85	cm ² /m	

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO

CODIFICA DOCUMENTO REV.

FOGLIO 27/57

LOTTO MDL1 12 D 44 CL FV0200011 Α

Verifica Comb 1.b

Taglio	40533	kg	
Torsione	9617	kg m	
Rck	350		
Sa		kg/cm ²	
t _{c0}	6.67	kg/cm ²	
t _{cl}	19.71	kg/cm ²	
H	20	cm	a
ь	100		b
			D
copriferro		cm	
W	5778	cm ²	
p	306.7	cm	
а	4.53		
t _{taglio}		kg/cm ²	
t _{torsione}	6.81	kg/cm ²	
t _{tot}	12.73	kg/cm ²	
Al torsione	9.82	cm ²	
Ast _{taglio}	22.79	cm ² /m	
Ast torsione	3.20	cm ² /m	

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO MDL1

LOTTO CODIFICA 12 D 44 CL

DOCUMENTO REV. FV0200011

Α

FOGLIO 28/57

Verifica Comb 1.c

Taglio	48468	kg	
Torsione	4351	kg m	
Rck	350		
Sa	2600	kg/cm ²	
t _{c0}	6.67	kg/cm ²	
t _{cl}	19.71	kg/cm ²	
H	80	cm	a
ь	100	cm	ъ
copriferro	4	cm	
W	5778	cm ²	
p	306.7	cm	
а	4.53		
t _{taglio}	7.09	kg/cm ²	
t _{torsione}	3.08	kg/cm ²	
t _{tot}	10.17	kg/cm ²	
Al _{torsione}	4.44	cm ²	
Ast _{taglio}	27.25	cm ² /m	
Ast torsione	1.45	cm ² /m	

La Comb la risulta essere la più sfavorevole per la sollecitazione di torsione, mentre la Comb to risulta essere la più sfavorevole per la sollecitazione di taglio.

Si definisce quindi per l'armatura longitudinale a torsione il valore seguente :

Armatura longitudinale per la torsione pari a $10 \, \varnothing 14 = 15.39 \, \text{cm}^2$.

E per l'armatura trasversale si predispone Ø12 passo 15, 4 braccia, pari a 37.7 cm²/m.

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO **PROGETTO** MDL1

LOTTO CODIFICA 12 D 44 CL

DOCUMENTO REV. FV0200011

FOGLIO 29/57

E necessario predisporre una armatura a taglio pari a 30.2 cm²/m ovvero staffe a 4 braccia Ø 12/15.

Tabella riassuntiva armatura muro ad U

Armatura muro:

φ 24/10 (esterno)

Armatura muro

 ϕ 12/10 (Terzo strato distanza dal bordo esterno superiore 40 cm)

Armatura muro:

 ϕ 24/10 (interno)

Armatura ripartizione muro:

 ϕ 12/20

Armatura solettone sp 80 cm:

 ϕ 24/10 (superiori)

Armatura solettone sp 80 cm : ϕ 12/10(Terzo strato distanza dal bordo superiore 40 cm)

Armatura solettone sp 80 cm :

 ϕ 24/10 (inferiori)

Armatura longitudinale torsione

10 ø 14

Armatura trasversale sp. 80 cm:

staffe 4 braccia ϕ 12/12

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO MDL1 12 D 44

CL

CODIFICA DOCUMENTO REV. FV0200011

A

FOGLIO 30/57

8.5 Verifica a fessurazione

L'apertura massima ammissibile delle fissure, wk, è pari a 0.15 mm.

Mensola

Per le combinazioni per il calcolo delle aperture delle fessure, si considerano le combinazioni seguenti

Comb 1fb

Comb 1fa

Mx = 437.89 kNm;

Mx = 416.68 kNm

 $N = 405.33 \, kN$

N = 352.94 kN

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO MDL1 12 D 44 CL FV0200011 A 31/57

Sollecitazioni				-
Momento flettente	M	437.89	kN m	
Sforzo normale	N	405.33	kN	
Materiali				_
Res. caratterística cls	Rck	35	N/mm²	
Tensione ammissibile cls	σc _{amm}	11.0	N/mm ²	
Res. media a trazione cls	f_{ctm}	2.9	N/mm ²	
Res, caratteristica a trazione cls	f _{ctk}	2.0	N/mm²	
Tensione ammissibile acciaio	ØS _{amm}	260	N/mm²	
Coefficiente omog. acciaio-cls	n	15		
Caratteristiche geometriche				
Altezza sezione	Н	60	cm	
Larghezza sezione	В	100	cm	
Armatura compressa (1º strato)	As ₁ '	31.42	cm ²	10 Ø 20 c _{s1} = 4 cm
Armatura compressa (2º strato)	As2'	0.00	cm ²	Ø c _{s2} = cm
Armatura tesa (2º strato)	As ₂	0.00	cm²	Ø c _{i2} = cm
Armatura tesa (1º strato)	As ₁	45,24	cm ²	10 Ø 24 c _{i1} = 4 cm
	•			
Tensioni nei materiali				
Compressione max nel cls.	σc	7.2	N/mm²	< oc _{amm}
Trazione nell'acciaio (1º strato)	σs	154.2	N/mm²	< σa _{amm}
Eccentricità	e (M)	108.0	cm	> H/6 Sez. parzializzata
	u (M)	78.0	cm	
Posizione asse neutro	y (M)	23.0	cm	
Area ideale (sez. int. reagente)	A_{id}	7073	cm ²	
Mom. di inerzia ideale (sez. int. reag.)	J_{id}	2577280	cm ⁴	
Mom. di inerzia ideale (sez. parz. N=0)	J _{id*}	1314677	cm ⁴	
Verifica a fessurazione				
Momento di fessurazione (f _{ctk})	M _{fess} *	223	kN m	La sezione è fessurata
Momento di fessurazione (f _{ctm})	M _{fess}	297	kN m	Ed Scelone e ressar da
Eccentricità per M=M _{fess}	e (M _{fess})	73.4	cm	
Eccellatica bei M-Mess	u (M _{fess})	43.4		
Compressions may not also nor M-M-		5.0	cm	
Compressione max nel cls. per M=M _{fess}	ocr		h I (no no 2	
Traz, nell'acciaio (1º str.) per M=M _{fess}	osr	93.2	N/mm²	
Posizione asse neutro per M=M _{fess}	y (M _{fess})	25.0	cm	
	β_1	1		
	β_2	0.5		4
Deform. unitaria media dell'arm.	Esm	0.0006		
Copriferro netto	c'	2.8 0	m	
Altezza efficace	d_{eff}	20.8	m	
Area efficace	Aceff	2080	cm ²	
Armatura nell'area efficace	Aseff	45.2	cm ²	
	ρr	0.02175		
Distanza tra le barre	s	10.0	cm	
	K ₂	0.4		
	K ₃	0.125		
Distanza media tra le fessure	S _{rm}	13.1	cm	
Valore medio dell'ap. delle fessure	wm	0.08	mm	
Valore caratter, dell'ap, delle fessure	wk	0.13	mm	1

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
MDL1 12 D 44 CL FV0200011 A 32/57

Momento flettente	М	416.68	kN m						
Sforzo normale	N	352.94	kN						
Materiali									
Res, caratteristica cls	R _{ck}	35	N/mm²	1					
Tensione ammissibile cls	OC _{amm}	11.0	N/mm²	1					
Res. media a trazione cls	f _{ctm}	2.9	N/mm²	1					
Res, caratterística a trazione cls	f _{ctk}	2.0	N/mm²	1					
Tensione ammissibile acciaio	OSamm	260	N/mm²	1					
Coefficiente omog. acciaio-cls	n	15	,						
Caratteristiche geometriche									
Altezza sezione	Н	60	cm						
Larghezza sezione	В	100	cm						
Armatura compressa (1º strato)	As ₁ '	31.42	cm ²		10	Ø 20	$c_{s1} =$	4	cm
Armatura compressa (2º strato)	As21	0.00	cm ²			Ø	c _{s2} =		cm
Armatura tesa (2º strato)	As ₂	0.00	cm²			Ø	c _{i2} =		cm
Armatura tesa (1º strato)	As ₁	45.24	cm²		10	Ø 24	c _{i1} =	4	cm
Tensioni nei materiali									
Compressione max nel cls.	σε	6.8	N/mm²	<	σc _{an}	nnn	7		
Trazione nell'acciaio (1º strato)	σs	149.7	N/mm²	<	σa _{ar}				
				151	2000000		-		
Eccentricità	e (M)	118.1	cm	>	H/6	Sez. pa	arzializza	ata	
B-11	u (M)	88.1	cm						
Posizione asse neutro	y (M)	22.6	cm						
Area ideale (sez. int. reagente)	Aid	7073	cm²						
Mom. di inerzia ideale (sez. int. reag.)	J_{id}	2577280	cm ⁴						
Mom. di inerzia ideale (sez. parz. N=0)	J _{id*}	1305886	cm ⁴						
Verifica a fessurazione									
Momento di fessurazione (f _{ctk})	M _{fess} *	217	kN m	Las	ezion	e è fess	urata		
Momento di fessurazione (f _{ctm})	M _{fess}	291	kN m						
Eccentricità per M=M _{fess}	e (M _{fess})	82.5	cm						
	u (M _{fess})	52.5	cm						
Compressione max nel cls. per M=M _{fess}	ocr	4.9							
Traz. nell'acciaio (1º str.) per M=M _{fess}	osr	95.0	N/mm²						
Posizione asse neutro per M=M _{fess}	y (M _{fess})	24.3	cm						
	β_1	1							2.
	β ₂	0.5							
Deform, unitaria media dell'arm,	Esm	0.00057							
Copriferro netto	C,	2.8 c	m						
Altezza efficace	d _{eff}	20.8 c							
Area efficace	ACeff	2080	cm²						
Armatura nell'area efficace	Aseff	45.2	cm ²						
	ρr	0.02175							
	S	10.0	cm						
Distanza tra le barre	-	_							
Distanza tra le barre	K ₂	0.4							
Distanza tra le barre	К2	4							
Distanza tra le barre Distanza media tra le fessure	K ₂ K ₃	0.125	cm						
	К2	4	cm mm						

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO

PROGETTO MDL1

LOTTO 12 D 44 CL

CODIFICA DOCUMENTO REV.

FV0200011

33/57

Fondazione

Per le combinazioni per il calcolo delle aperture delle fessure, si considerano le combinazioni seguenti

Comb 1fb

Comb 1fa

Mx = 437.89 kNm;

Mx = 416.68 kNm

 $N = 145.31 \, kN$

N = 130.21 kN

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO MDL1

LOTTO 12 D 44

CODIFICA CL

DOCUMENTO REV. FV0200011

Α

FOGLIO 34/57

Sollecitazioni		407.00	Latina	7
Momento flettente	M N	437.89	kN m	
Sforzo normale	IA	145.31	kN	J
Materiali				-
Res, caratteristica cls	R _{ck}	35	N/mm²	
Tensione ammissibile cls	σc _{amm}	11.0	N/mm²	
Res. media a trazione cls	f_{ctm}	2.9	N/mm²	
Res, caratteristica a trazione cls	f_{ctk}	2.0	N/mm ²	
Tensione ammissibile acciaio	ØS _{amm}	260	N/mm²	
Coefficiente omog. acciaio-cls	n	15		
Caratteristiche geometriche				
Altezza sezione	Н	80	cm	
Larghezza sezione	В	100	cm	
Armatura compressa (1º strato)	As ₁ '	45.24	cm²	10 Ø 24 c _{s1} = 4 cr
Armatura compressa (2º strato)	As ₂ '	0.00	cm²	Ø c _{s2} = cr
Armatura tesa (2º strato)	As ₂	11.31	cm ²	10 Ø 12 c _{i2} = 20 cr
Armatura tesa (1º strato)	As ₁	45.24	cm²	10 Ø 24 c _{i1} = 4 cr
Tensioni nei materiali				
Compressione max nel cls.	σε	3.9	N/mm²	< ocamm
Trazione nell'acciaio (1º strato)	σs	111.1	N/mm²	< σa _{amm}
	14004			
Eccentricità	e (M)	301.3	cm	> H/6 Sez. parzializzata
	u (M)	261.3	cm	
Posizione asse neutro	y (M)	26.2	cm	
Area ideale (sez. int. reagente)	A_{id}	9425	cm²	
Mom. di inerzia ideale (sez. int. reag.)	J_{id}	6093415	cm ⁴	
Mom. di inerzia ideale (sez. parz. N=0)	J _{id} *	2810247	cm ⁴	
Verifica a fessurazione				
Momento di fessurazione (f _{ctk})	M _{fess} *	332	kN m	La sezione è fessurata
Momento di fessurazione (f _{ctm})	M _{fess}	464	kN m	
Eccentricità per M=M _{fess}	e (M _{fess})	319.0	cm	
	u (M _{fess})	279.0	cm	
Compressione max nel cls. per M=M _{fess}	ocr (**less)	4.1		
Traz. nell'acciaio (1º str.) per M=M _{fess}	osr .	118.3	N/mm²	
Posizione asse neutro per M=M _{fess}	y (M _{fess})	26.0	cm	
r doleter dood fredd o per m-m _{ess}		4	CIII	
	β1	1		
	β_2	0.5		
Deform, unitaria media dell'arm.	Esm	0.00023		
Copriferro netto	c'	2.8 (
Altezza efficace	deff	28.4 (m	
Area efficace	Aceff	2840	cm²	
Armatura nell'area efficace	Aseff	56.5	cm²	
	ρr	0.01991		
Distanza tra le barre	S	10.0	cm	
	K ₂	0.4		
	К3	0.125		
Distanza media tra le fessure	Sm	13.6	cm	
Valore medio dell'ap. delle fessure	wm	0.03	mm	_
Valore caratter, dell'ap, delle fessure	wk	0.05	mm	

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO

Valore medio dell'ap. delle fessure

Valore caratter, dell'ap, delle fessure

wm

wk

0.03

0.05

mm

PROGETTO MDL1

LOTTO 12 D 44 CODIFICA CL DOCUMENTO FV0200011 REV.

FOGLIO 35/57

Sollecitazioni Momento flettente	М	416.68	kN m	ĺ				
Sforzo normale	N	130.21	kN					
na - ti-li								
Materiali Res. caratteristica cls	р.	35	N/mm²	l				
Tensione ammissibile cls	R _{ck}		N/mm²					
	σc _{amm}	11.0						
Res, media a trazione cls	f _{ctm}	2.9	N/mm²					
Res, caratterística a trazione cls	f _{ctk}	2.0	N/mm²					
Tensione ammissibile acciaio Coefficiente omog. acciaio-cls	os _{amm} n	260 15	N/mm²					
				'				
Caratteristiche geometriche			A 0.000 Tab.					
Altezza sezione	Н	80	cm					
Larghezza sezione	B	100	cm		10	Ø 04	T 1	
Armatura compressa (1º strato)	As ₁ '	45.24	cm²		TO	Ø 24	$c_{s1} = 4$	cr
Armatura compressa (2º strato)	As ₂ '	0.00	cm²			Ø	C _{s2} =	cr
Armatura tesa (2º strato)	As ₂	11.31	cm²			Ø 12	c _{i2} = 20	cr
Armatura tesa (1º strato)	As ₁	45.24	cm ²		10	Ø 24	c _{i1} = 4	cr
Tensioni nei materiali				-			_	
Compressione max nel cls.	σε	3.7	N/mm²	<	σcan	nm		
Trazione nell'acciaio (1º strato)	σs	106.4	N/mm²	<	σa _{ar}	nm		
Eccentricità	e (M)	320.0	cm	>	H/6	Sez. p	arzializzata	
	u (M)	280.0	cm					
Posizione asse neutro	y (M)	26.0	cm					
Area ideale (sez. int. reagente)	Aid	9425	cm²					
Mom. di inerzia ideale (sez. int. reaq.)	J _{id}	6093415	cm ⁴					
Mom. di inerzia ideale (sez. parz. N=0)	J _{id} *	2807498	cm ⁴					
Verifica a fessurazione	na sk	220	Lab Lane	1		e è fes:		7
Momento di fessurazione (f _{ctk})	M _{fess} *	329	kN m	Ld S	ezion	e e ies	Surata	
Momento di fessurazione (f _{ctm})	M _{fess}	461	kN m					
Eccentricità per M=M _{fess}	e (M _{fess})	354.1	cm					
0	u (M _{fess})	314.1	cm					
Compressione max nel cls. per M=M _{Fess}	ocr	4.1	61 /w- · *					
Traz. nell'acciaio (1º str.) per M=M _{fess} Posizione asse neutro per M=M _{fess}	osr y (M _{fess})	118.9 25.8	N/mm² cm					
1 0015101 to 9000 1 tond 0 hat 1x1—1x1/622		25.8	CIII					
	β1	■						
Deferm unitaria media dallama	β2	0.5						
Deform. unitaria media dell'arm. Copriferro netto	Esm C'	0.0002 2.8 d	-m					
Altezza efficace	d _{eff}	28.4 0						
Area efficace	AC _{eff}	2840	cm²					
Armatura nell'area efficace	ACeff ASeff	56.5	cm ²					
AI Mawi a Heli al ca cilicace	Pr Dr	0.01991	CIII-					
Distanza tra le barre	pr s	10.0	cm					
and the second s	K ₂	0.4						
	K ₃	0.125						
Distanza media tra le fessure		13.6	cm					
Distance distribute della C	S _{rm}	13.0	CIII					

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO
 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12 D 44
 CL
 FV0200011
 A
 36/57

8.6 Verifica Plinto fondazione pensilina soletta del sottopasso

Si tratta di definire la natura del collegamento del pilastro della pensilina alla soletta del sottopasso nella zona antistante al foro per il vano ascensore.

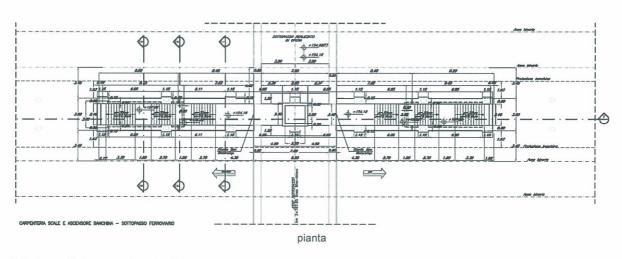
La pensilina, è caratterizzata da pilastri posti, longitudinalmente, ad un interasse tra due pilastrate (la singola pilastrata è costituita da due pilastra, di cui chiameremo per convenienza – longitudinalmente da destra verso sinistra – pilastro dx quello interno e pilastro sx quello esterno) di 7.20 m. il caso sotto analisi corrisponde all'ubicazione del pilastro dx sull'estradosso della soletta del sottopasso e del pilastro sx sul setto del muro del vano ascensore.

Le fondazioni sono quindi separate e non collegate direttamente (l'irrigidimento è comunque garantito dalla soletta del sottopasso che è collegata ad ambedue le fondazioni), si tratta quindi :

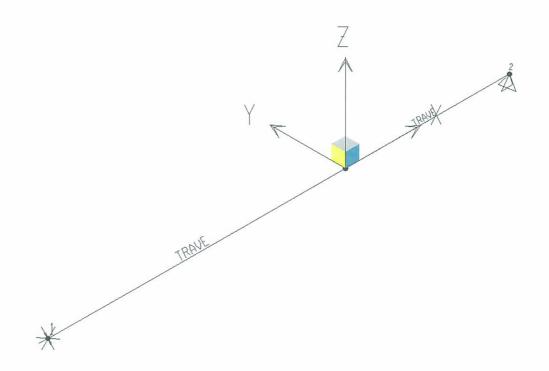
- per il pilastro dx di un plinto posto all'estradosso della soletta che è stata preventivamente rinforzata con un'inalzamento locale (1.20 m di larghezza) del suo piano medio;
- per il pilastro sx di un ringrosso del setto del muro ad U a sostegno della scala.

Si riporta di seguito diverse rappresentazioni (pianta, sezione longitudinale della rampa di scala e sezione longitudinale del sottopasso).

Si considera per la soletta, uno schema semplificato di trave appoggiato ai piedritti del sottopasso (uno schema più esatto sarebbe quello di considerare un portale costutito dai due montanti – piedritti del sottopasso – e da una trave orizzontale rappresentata dalla soletta del sottopasso.)


Si considera una trave con una larghezza pari a 1.20 m e uno spessore di 1.20 m.

Si riportano di seguito la pianta e le sezioni trasversali e longitudinali delle rampe scale e del sottopasso in modo da evidenziare l'interfernza tra pensilina in c.a. – fondazione e solettone sottopasso.


RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO
 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12 D 44
 CL
 FV0200011
 A
 37/57

8.6.1 Schema di calcolo

Si riporta di seguito lo schema di calcolo adottato:

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO MDL1 12 D 44 CL FV0200011 A 38/57

8.6.2 Analisi dei carichi

Si considera una trave alta 1.20m, larga 1.20 e lunga 8.40 m (considerando il vincolo di appoggio in corrispondenza dell'asse dei piedritti) semplicemente appoggiata ai piedritti del sottopasso.

La trave è sottoposto ai carichi seguenti :

Peso proprio della solletta del sottopasso:

Spessore della soletta pari a 0.80 m;

ly, larghezza in direzione y dell'area d'influenza della soletta sulla trave = 2.00 m m - si trascura, in via conservativa, la parte forata per il vano ascensore ;

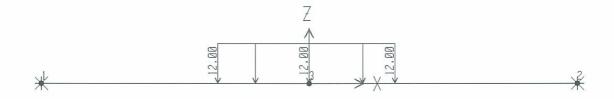
lx, larghezza in direzione x dell'area d'influenza della soletta sulla trave = 9.20 m;

 $P_{sol} = 0.80*1.20*25 = 20 \text{ kN/m}$

Peso del riempimento

Si considera un peso specifico del riempimento pari a 19 kN/m³.

L'altezza del riempimento è pari a 1.50 m.


La larghezza in direzione y dell'area d'influenza del riempimento è pari a 1.20 m – in via conservativa, si trascurano di detrarre l'area del foro e del muretto.

 $P_{riemp} = 1.50*1.20*19 = 34.20 \text{ kN/m}$

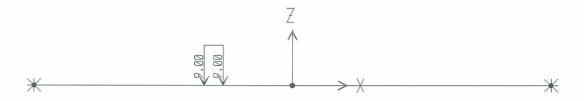
Peso del muretto

Il muretto del vano ascensore ha una larghezza pari a 0.30 m e un'altezza di 1.60 m. Il peso distribuito è pari a :

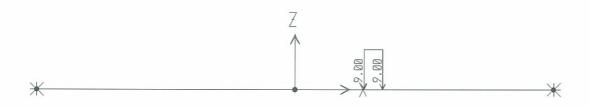
 $P_{1 \text{ mur}} = 0.30 *1.60*25 = 12 \text{ kN/m}$ Tale peso è considerato distribuito su un impronta centrato rispetto all'asse verticale di simmetria della trava per una lunghezza pari a 2.25 m.

Peso P1MUR muro di cinta vano ascensore

A questo peso bisogno aggiungere il peso dovuto al contributo delle parete secondo y del muretto :


RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO MDL1 12 D 44 CL FV0200011 A 39/57

ly muretto = 1.20 m


larghezza del muretto secondo x pari a 0.30 m;

$$P_{2 \text{ mur}} = 1.20 \cdot 0.30 \cdot 25 = 9.00 \text{ kN/m}$$

Il $P_{2 \text{ mur}}$ è considerato distribuito su una impronta di 0.30 m. l'asse verticale di tale carico é distante di 1.275 m dell'asse verticale centrale della trave e va considerato sia a destra che a sinistra.

Peso P22MUR muro di cinta vano ascensore

Peso P22MUR muro di cinta vano ascensore

Carico accidentale

Si considera un carico accidentale pari a 10 kN/m².

L'area d'influenza del carico accidentale sulla trave è pari a :

lx = lunghezza totale trave = 9.20 m.

ly = larghezza della trave + meta larghezza della soletta tra la trave e il setto esterno della scala = 1.20 + 2.40/2 = 2.40

Il carico sulla trave è pari a.

Pacc = 10 * 2.40 = 24 kN/m.

Sollecitazioni trasmessi dalla pensilina

La pensilina è fissata alla rampa mediante un collegamento con dei tirafondi piastra (per maggiori dettagli, vedi relazione pensilina in ca).

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
MDL1 12 D 44 CL FV0200011 A 40/57

Si riportano le sollecitazioni al piede del pilastro, sul piano orizzontale a quota estradosso della mensola della rampa. Si distinguono 3 casi :

Caso 1: Mx max, Np, Tx, Ty e My corrispondenti.

Caso 2: My max, Np, Tx, Ty e Mx corrispondenti.

Caso 3: Npmax, Tx, Ty, Mx e My corrispondenti.

Lo sforzo normale è secondo la direzione del pilastro ovvero inclinato di 2° sulla verticale.

Si riportano le sollecitazioni con la scomposizione dello sforzo normale secondo la verticale e la sua componente secondo l'asse y ortogonale alla marcia dei treni.

$$Nz = Np*cos2° =$$

$$Tyf = Ty + Np*sin2° =$$

Comb. Corr.		Nz (kN)	Tx (kN)	Tyf (kN)	Mx (kNm)	My (kNm)
Co243	Caso 1	-242.31	-20.18	-14.952	-76.64	-26.68
Co83	Caso 2	-294.7	-2.55	-30.05	-8.76	-81.12
Co155	Caso 3	-374.05	-1.45	-21.568	-1.38	34.95

Tenendo conto del peso del plinto di collegamento del pilastro alla soletta del sottopasso con,

h, l'altezza plinto = 1.20 m;

lx, larghezza in direzione x plinto = 1.15 m;

ly, larghezza in direzione y plinto = 0.90 m;

si hanno:

$$P_{plinto} = 1.20*1.15*0.90*25 = 31.05 \text{ kN}$$

Tenendo conto del momento di trasporto – ht è la distanza dal estradosso del plinto del pilastro all'asse della soletta, ht = 2.00 m -. si hanno le sollecitazioni finali trasmessi dalla pensilina come segue :

$$M_{x pens-f} = M_{xpens} + T_{yf} *ht$$

$$M_{v pens f} = M_{vpens} + T_{x} *ht$$

$$T_{y pens-f} = Tyf$$

$$T_{x pens-f} = T_{X}$$

$$N_{pens} = Nz + P_{plinto}$$

Per i casi considerati, si hanno le sollecitazioni seguenti :

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
MDL1 12 D 44 CL FV0200011 A 41/57

	Npens (kN)	Txpens-f (kN)	Typens-f (kN)	Mx pens-f (kNm)	My pens-f (kNm)
Ppens 1	-273.36	-20.18	-14.952	-106.54	-67.04
Ppens2	-325.75	-2.55	-30.05	-68.86	-86.22
Ppens3	-405.10	-1.45	-21.568	-44.52	32.05

8.6.3 Condizioni di carico e combinazioni

Le condizioni di carico considerati sono come segue :

P_{sol} peso proprio della soletta ;

P_{riemp} peso del riempimento ;

P_{1mur} peso 1 del muretto ;

P_{2mur} peso 2 del muretto ;

Pacc carico accidentale;

P_{pens1} Carichi trasmessi dalla pensilina caso 1;

P_{pens2} Carichi trasmessi dalla pensilina caso 2;

P_{pens3} Carichi trasmessi dalla pensilina caso 3.

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO

PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12 D 44	CL	FV0200011	Α	42/57

Le combinazioni di carico considerate sono le seguenti:

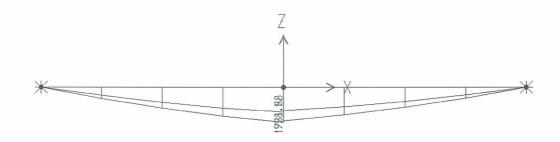
	Psol	Priemp	P1mur	P2mur	Pacc	Ppens1	Ppens2	Ppens3
COMB 1	1	1	1	1	1	1	0	0
COMB 2	1	1	1	1	1	0	1	0
COMB 3	1	1	1	1	1	0	0	1
COMB 4	1	1	1	1	0.5	1	0	0
COMB 5	1	1	1	1	0.5	0	1	0
COMB 6	1	1	1	1	0.5	0	0	1
COMB 1Fa	1	1	1	1	0.8	1	0	0
COMB 1Fb	1	1	1	1	0.8	0	1	0
COMB 1Fc	1	1	1	1	0.8	0	0	1

La combinazione comb 1F è per la verifica a fessurazione.

Si definiscono anche due combinazioni inviluppo:

ENVE – inviluppo per le combinazioni di esercizio;

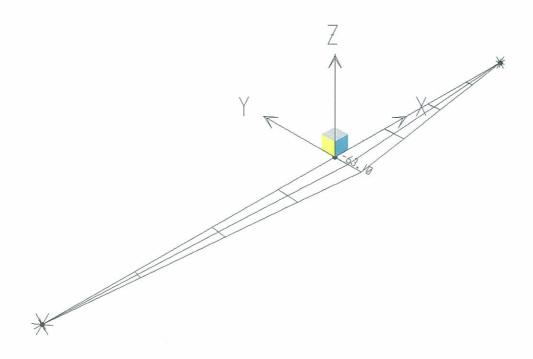
ENVEF – inviluppo per le combinazioni per la verifica a fessurazione

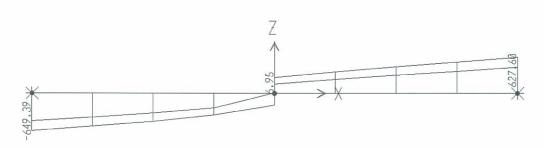

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO MDL1 12 D 44 CL FV0200011 A 43/57

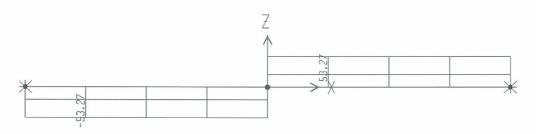
8.6.4 Calcolo delle sollecitazioni

Si riportano di seguito l'output per le combinazioni inviluppo ENVE e ENVEF :

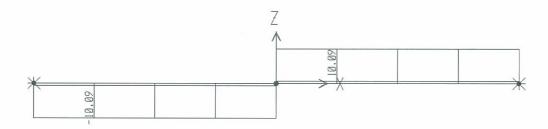
ENVE


FRAME	LOAD	LOC	P	V2	V3	T	M2	M3
2	ENVE	MAX						
		0.00	-7.250E-01	-482.47	15.02	-22.26	0.00	0.00
		1.05	-7.250E-01	-412.96	15.02	-22.26	-7.85	638.75
		2.10	-7.250E-01	-343.45	15.02	-22.26	-15.70	1191.28
		3.15	-7.250E-01	-248.64	15.02	-22.26	-23.55	1651.99
		4.20	-7.250E-01	6.95	15.02	-22.26	-31.40	1998.92
2	ENVE	MIN						
		0.00	-10.09	-649.39	7.47	-53.27	0.00	0.00
		1.05	-10.09	-567.28	7.47	-53.27	-15.78	470.10
		2.10	-10.09	-485.17	7.47	-53.27	-31.55	867.21
		3.15	-10.09	-377.76	7.47	-53.27	-47.33	1185.73
		4.20	-10.09	-199.76	7.47	-53.27	-63.10	1403.69

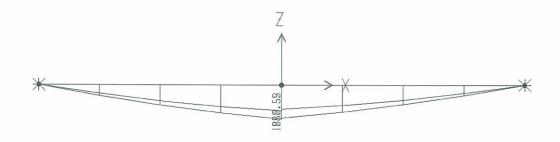

Inviluppo momento Mx di esercizio


RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
MDL1 12 D 44 CL FV0200011 A 44/57

Inviluppo momento My di esercizio


Inviluppo taglio di esercizio

Inviluppo torsione esercizio


RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
MDL1 12 D 44 CL FV0200011 A 45/57

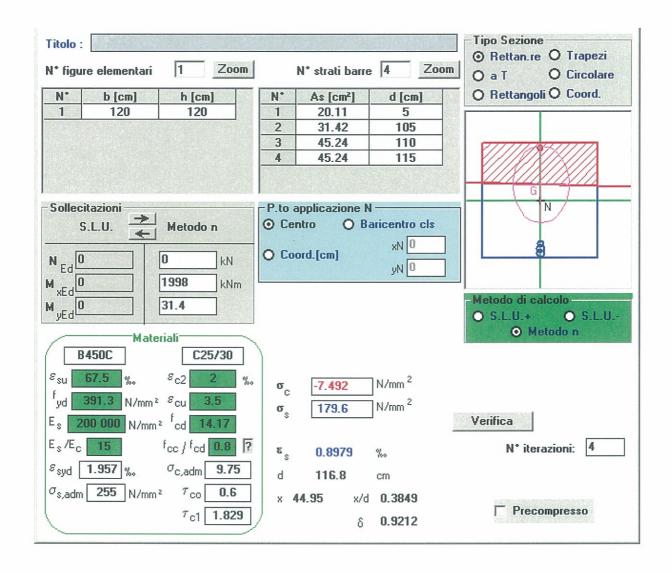
Inviluppo sforzo normale esercizio

ENVEF

FRAME	LOAD	LOC	P	V2	V3	T	M2	М3
2	ENVEF	MAX						
		0.00	-7.250E-01	-512.71	15.02	-22.26	0.00	0.00
		1.05	-7.250E-01	-435.64	15.02	-22.26	-7.85	620.23
		2.10	-7.250E-01	-358.57	15.02	-22.26	-15.70	1159.53
		3.15	-7.250E-01	-256.20	15.02	-22.26	-23.55	1612.30
and the second		4.20	-7.250E-01	6.95	15.02	-22.26	-31.40	1956.59
2	ENVEF	MIIN						
		0.00	-10.09	-629.23	7.47	-53.27	0.00	0.00
		1.05	-10.09	-552.16	7.47	-53.27	-15.78	497.88
		2.10	-10.09	-475.09	7.47	-53.27	-31.55	914.84
		3.15	-10.09	-372.72	7.47	-53.27	-47.33	1245.26
		4.20	-10.09	-199.76	7.47	-53.27	-63.10	1467.19

Inviluppo momento Mx fessurazione

RELAZIONE DI CALCOLO SCALE E ASCENSORE **BANCHINA - LATO SOTTOPASSO FERROVIARIO** **PROGETTO** LOTTO MDL1 12 D 44


CODIFICA DOCUMENTO CL FV0200011

REV. Α

FOGLIO 46/57

8.6.5 Verifiche

Verifiche flessione

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO MDL1

LOTTO 12 D 44

CODIFICA DOCUMENTO REV. CL FV0200011

Α

FOGLIO 47/57

Verifica taglio e torsione

Taglio	51271	kg
Torsione	2226	kg m
Rck	350	
Sa	2600	kg/cm ²
t _{c0}	6.67	kg/cm ²
t _{el}	19.71	kg/cm ²
H	120	cm
ь	120	cm
copriferro	4	cm
W	10000	cm ²
р	400	cm
а	4.79	
t _{taglio}	4.09	kg/cm ²
t _{torsione}	0.62	kg/cm ²
t _{tot}	4.71	kg/cm ²
A1 torsione	1.71	cm ²
Ast _{taglio}	18.89	cm ² /m
Ast torsione	0.43	cm ² /m

Si predispone una armatura longitudinale a torsione pari a 10 Ø 10 pari a 7.85 cm².

Si predispone una armatura trasversale formata di staffe 4 braccia Ø 10 passo 20 4 braccia con un area pari a 15.7 cm².

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO

PROGETTO MDL1

LOTTO 12 D 44 CODIFICA CL

DOCUMENTO REV. FV0200011

FOGLIO Α

48/57

Verifiche fessurazione

Sollecitazioni								
Momento flettente	М	1956	kN m					
Sforzo normale	N	0	kN]				
Materiali								
Res, caratteristica cls	R _{ck}	35	N/mm²	1				
Tensione ammissibile cls	OC _{amm}	11.0	N/mm²					
Res. media a trazione cls	f _{ctm}	2.9	N/mm²					
Res, caratteristica a trazione cls	f _{ctk}	2.0	N/mm²					
Tensione ammissibile acciaio	OS _{amm}	260	N/mm²	1				
Coefficiente omog. acciaio-cls	n	15	.,,					
Caratteristiche geometriche								
Altezza sezione	Н	120	cm					
Larqhezza sezione	В	120	cm					
Armatura compressa (1º strato)	As ₁ '	20.11	cm ²		10	Ø 16	$c_{s1} = 4$	cm
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²			Ø	c ₅₂ =	cm
Armatura tesa (2º strato)	As ₂	31.42	cm²		10	Ø 20	c _{i2} = 12	cm
Armatura tesa (1º strato)	As ₁	90.48	cm ²			Ø 24	c _{i1} = 5.5	
Tauraland wall as about all								
Tensioni nei materiali Compressione max nel cls.	σc	6.8	N/mm²	<	σcar	0.00	1	
Trazione nell'acciaio (1º strato)	os	165.4	N/mm²		-			
Trazione rienacciaio (1 stato)	03	103.4	14/111111-	_	σa _{ar}	nm	J	
Eccentricità	e (M)	∞	cm	>	H/6	Sez. pa	arzializzata	
	u (M)	00	cm					
Posizione asse neutro	y (M)	43.7	cm					
Area ideale (sez. int. reagente)	Aid	16388	cm ²					
Mom. di inerzia ideale (sez. int. reaq.)	J _{id}	2.3E+07	cm ⁴					
Mom. di inerzia ideale (sez. parz. N=0)	J _{id*}	1.3E+07	cm ⁴					
Verifica a fessurazione								
Momento di fessurazione (f _{ctk})	M _{fess} *	787	kN m	Lac	ozion	e è fess	urata	1
Momento di fessurazione (f _{ctm})		1124	kN m	Las	621011	e e 1653	urata	
Eccentricità per M=M _{fess}	M _{fess} e (M _{fess})	00	cm					
Eccello icità per 141-14lfess								
Compressions may policle nor M=M.	u (M _{fess})	00	cm					
Compressione max nel cls. per M=M _{fess} Traz. nell'acciaio (1º str.) per M=M _{fess}	ocr	3.9	NI for on 2					
	osr	95.0	N/mm²					201
Posizione asse neutro per M=M _{fess}	y (M _{fess})	43.7	cm					
	β1	1						
	β_2	0.5						
Deform. unitaria media dell'arm.	Esm	0.00066						
Copriferro netto	c'	4.3 0	m					
Altezza efficace	d_{eff}	26.0 0	m					
Area efficace	Aceff	3120	cm²					
Armatura nell'area efficace	Aseff	121.9	cm ²					
	pr	0.03907						
Distanza tra le barre	S	6.0	cm					
	K ₂	0.4						
	K ₃	0.125						
Distanza media tra le fessure	s _{rm}	12.9	cm					
Valore medio dell'ap, delle fessure	wm	0.08	mm					
Valore caratter, dell'ap, delle fessure	wk	0.14	mm	1				

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO

PROGETTO LOTTO MDL1

12 D 44

CODIFICA CL

DOCUMENTO REV. FV0200011

Α

FOGLIO 49/57

9 Incidenze armature

Si riportano di seguito le incidenze delle armature [kg / m³]:

Rampe di accesso alle banchine

MENSOLA

 $125 \text{ kg} / \text{m}^3$

FONDAZIONE

 $135 \text{ kg} / \text{m}^3$

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO MDL1 12 D 44 CL

CODIFICA DOCUMENTO REV. FV0200011

Α

50/57

10 Allegati

10.1 File input sap 2000 plinto su trave soletta

SAP2000 v7 S T A T I	.10 File: TR1T C L O A D		its				
STAT CA	CASE TYPE						
PS PRIE P1M PA PPEN PPEN PPEN P21M P22M	IUR DEAD ICC DEAD IS1 DEAD IS2 DEAD IS3 DEAD IUR DEAD	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0 0 0 0 0 0 0 0				
JOINT	DATA						
JOINT ANGLE-C	GLOBAL-X	GLOBA	L-Y	GLOBAL-Z	RESTRAINTS	ANGLE-A	ANGLE-B
0.000	-4.20000	0.000	000	0.00000	1 1 1 1 0 0	0.000	0.000
0.000	4.20000	0.000	000	0.00000	1 1 1 1 0 0	0.000	0.000
0.000	0.00000	0.000	000	0.00000	0 0 0 0 0 0	0.000	0.000
FRAME	ELEMEN	T DATA					
FRAME FACTOR	JNT-1 JNT-2 LENGTH	SECTION	ANGLE	RELEASES	SEGMENTS	R1	R2
1.000	1 3 4.200	TRAVE	0.000	000000	4	0.000	0.000
1.000	3 4.200	TRAVE	0.000	000000	4	0.000	0.000
JOINT	FORCES	Load Case	PPENS1				
JOINT	GLOBAL-X	GLOBAL-Y	GLOBAL-Z	GLOBAL-XX	GLOBAL-YY	GLOBAL-Z	Z
3	-20.180	-14.950	-273.360	-106.540	-67.040	0.00	0
JOINT	FORCES	Load Case	PPENS2				
JOINT	GLOBAL-X	GLOBAL-Y	GLOBAL-Z	GLOBAL-XX	GLOBAL-YY	GLOBAL-Z	Z
3	-2.550	-30.050	-325.750	-68.860	-86.220	0.00	0
JOINT	FORCES	Load Case	PPENS3				
	GLOBAL-X						
	-1.450						0
FRAME	S P A N D	ISTRIB	UTED	LOADS	Load Case	PSOL	

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO
 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12 D 44
 CL
 FV0200011
 A
 51/57

FRAME	TYPE	DIRECTION	DISTANCE-A	VALUE-A	DISTANCE-B	VALUE-B
2 3	FORCE FORCE		0.0000	-20.0000 -20.0000		
FRAME	SPAN	DISTRI	BUTED	LOADS	Load Case	PRIEMP
FRAME	TYPE	DIRECTION	DISTANCE-A	VALUE-A	DISTANCE-B	VALUE-B
2 3	FORCE FORCE	GLOBAL-Z GLOBAL-Z				-34.2000 -34.2000
FRAME	SPAN	DISTRI	BUTED	LOADS	Load Case	P1MUR
FRAME	TYPE	DIRECTION	DISTANCE-A	VALUE-A	DISTANCE-B	VALUE-B
2 3		GLOBAL-Z GLOBAL-Z				
FRAME	SPAN	DISTRI	BUTED	LOADS	Load Case	PACC
FRAME	TYPE	DIRECTION	DISTANCE-A	VALUE-A	DISTANCE-B	VALUE-B
2 3	FORCE FORCE	GLOBAL-Z GLOBAL-Z				
FRAME	SPAN	POINT	L O A D S	Load Case	PPENS1	
FRAME	TYPE	DIRECTION	DISTANCE	VALUE		
2	FORCE	GLOBAL-Z	1.0000	-290.0000		
FRAME	SPAN	DISTRI	BUTED	LOADS	Load Case	P21MUR
FRAME	TYPE	DIRECTION	DISTANCE-A	VALUE-A	DISTANCE-B	VALUE-B
2	FORCE	GLOBAL-Z	0.6590	-9.0000	0.7320	-9.0000
FRAME	SPAN	DISTRI	BUTED	L O A D S	Load Case	P22MUR
FRAME	TYPE	DIRECTION	DISTANCE-A	VALUE-A	DISTANCE-B	VALUE-B
3	FORCE	GLOBAL-Z	0.2670	-9.0000	0.3390	-9.0000

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO PROGETTO LOTTO MDL1

12 D 44 CL

CODIFICA DOCUMENTO REV. FV0200011 A

FOGLIO 52/57

10.2 File output sap 2000 plinto su trave soletta

SAP2000 v7.10 File: TR1TVZ KN-m Units PAGE 1 11/16/10 15.56.05

LOAD	C O M	BINAT:	ONM	ULTIPLI	ERS
COMBO	TYPE	CASE	FACTOR	TYPE	TITLE
COMB1	ADD	PSOL PRIEMP P1MUR PACC P21MUR PPENS1 P22MUR	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	STATIC (DEAD)	COMB1
COMB2	ADD	PSOL PRIEMP P1MUR PACC P21MUR PPENS2 P22MUR	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	STATIC (DEAD)	COMB2
COMB3	ADD	PSOL PRIEMP P1MUR PACC P21MUR PPENS3 P22MUR	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	STATIC (DEAD)	COMB3
COMB4	ADD	PSOL PRIEMP P1MUR PACC P21MUR PPENS1 P22MUR	1.0000 1.0000 1.0000 0.5000 1.0000 1.0000	STATIC (DEAD) STATIC (DEAD) STATIC (DEAD) STATIC (DEAD) STATIC (DEAD) STATIC (DEAD) STATIC (DEAD)	COMB4
COMB5	ADD	PSOL PRIEMP P1MUR PACC P21MUR PPENS2 P22MUR	1.0000 1.0000 1.0000 0.5000 1.0000 1.0000	STATIC (DEAD)	COMB5
COMB6	ADD	PSOL PRIEMP P1MUR PACC P21MUR PPENS3 P22MUR	1.0000 1.0000 1.0000 0.5000 1.0000 1.0000	STATIC (DEAD)	COMB6

RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO
 PROGETTO
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12 D 44
 CL
 FV0200011
 A
 53/57

COMB1FA	ADD				COMP 7			
COMBIFA	ADD	PSOL	1.0000	STATIC (DEAD)	COMB7			
		PRIEMP	1.0000					
		P1MUR	1.0000	전경 전쟁 중인 이 경영 전에 가장 전쟁이 되었다.				
		PACC	0.8000	STATIC (DEAD)				
		P21MUR	1.0000	STATIC (DEAD)				
		PPENS1	1.0000	STATIC (DEAD)				
		P22MUR	1.0000	STATIC (DEAD)				
COMB1FB	ADD				COMB7			
COMBILD	ADD	PSOL	1.0000	STATIC (DEAD)	COMB /			
		PRIEMP	1.0000	STATIC (DEAD)				
		P1MUR	1.0000	STATIC (DEAD)				
		PACC	0.8000	STATIC (DEAD)				
		P21MUR	1.0000	STATIC (DEAD)				
		PPENS2	1.0000	STATIC (DEAD)				
		P22MUR	1.0000	STATIC (DEAD)				
COMB1FC	ADD				COMB7			
OULDITO	1100	PSOL	1.0000	STATIC (DEAD)	COMB			
		PRIEMP	1.0000	STATIC (DEAD)				
		P1MUR	1.0000	STATIC (DEAD)				
		PACC	0.8000	STATIC (DEAD)				
		P21MUR	1.0000	STATIC (DEAD)				
		PPENS3	1.0000	STATIC (DEAD)				
		P22MUR	1.0000	STATIC (DEAD)				
ENVE	ENVE				COMB7			
21112	LIVVL	COMB1	1.0000	COMBO	COLID			
		COMB2	1.0000	COMBO				
		COMB3	1.0000	COMBO				
		COMB4	1.0000	COMBO				
		COMB5	1.0000	COMBO				
		COMB6	1.0000	COMBO				
ENVEF	ENVE				COMP.7			
ENVE	ENVE	COMB1FA	1.0000	COMBO	COMB7			
		COMB1FB	1.0000	COMBO				
		COMB1FC	1.0000	COMBO				
~~~~~~								
SAPZUUU V		7		its PAGE 2				
		le: TR1TVZ	KN-m Un					
11/16/10			KN-M ON					
	15.56.0			ES				
11/16/10	15.56.0	5	FORC	ES				
11/16/10 : F R A M E	15.56.0	5		E S	V3	T	M2	мз
11/16/10 : F R A M E FRAME	15.56.0 E L LOAD	5 EMENT	FORC		V3	Т	M2	МЗ
11/16/10 : F R A M E	15.56.0 E L	5 EMENT LOC	F O R C	V2				
11/16/10 : F R A M E FRAME	15.56.0 E L LOAD	5 EMENT LOC 0.00	F O R C	V2 -84.00	0.00	0.00	0.00	0.00
11/16/10 : F R A M E FRAME	15.56.0 E L LOAD	5 E M E N T LOC 0.00 1.05	F O R C	V2 -84.00 -63.00	0.00	0.00	0.00	0.00 77.18
11/16/10 : F R A M E FRAME	15.56.0 E L LOAD	5 E M E N T LOC 0.00 1.05 2.10	F O R C	V2 -84.00 -63.00 -42.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 77.18 132.30
11/16/10 : F R A M E FRAME	15.56.0 E L LOAD	5 E M E N T LOC 0.00 1.05	F O R C	V2 -84.00 -63.00	0.00	0.00	0.00	0.00 77.18 132.30 165.38
11/16/10 : F R A M E FRAME	15.56.0 E L LOAD	5 E M E N T LOC 0.00 1.05 2.10 3.15	F O R C	V2 -84.00 -63.00 -42.00 -21.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 77.18 132.30
11/16/10 : F R A M E FRAME 2	E L LOAD PSOL	5 E M E N T LOC 0.00 1.05 2.10 3.15	F O R C	V2 -84.00 -63.00 -42.00 -21.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 77.18 132.30 165.38
11/16/10 : F R A M E FRAME 2	E L LOAD PSOL	5 E M E N T LOC 0.00 1.05 2.10 3.15 4.20 0.00 1.05	F O R C P 0.00 0.00 0.00 0.00 0.00 0.00	V2  -84.00 -63.00 -42.00 -21.00 0.00  -143.64 -107.73	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 77.18 132.30 165.38 176.40 0.00 131.97
11/16/10 : F R A M E FRAME 2	E L LOAD PSOL	5 E M E N T  LOC  0.00 1.05 2.10 3.15 4.20 0.00 1.05 2.10	F O R C P 0.00 0.00 0.00 0.00 0.00 0.00 0.00	V2  -84.00 -63.00 -42.00 -21.00 0.00  -143.64 -107.73 -71.82	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 77.18 132.30 165.38 176.40 0.00 131.97 226.23
11/16/10 : F R A M E FRAME 2	E L LOAD PSOL	5 E M E N T LOC 0.00 1.05 2.10 3.15 4.20 0.00 1.05 2.10 3.15	FORC  P  0.00 0.00 0.00 0.00 0.00 0.00 0.00	V2  -84.00 -63.00 -42.00 -21.00 0.00  -143.64 -107.73 -71.82 -35.91	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 77.18 132.30 165.38 176.40 0.00 131.97 226.23 282.79
11/16/10 : F R A M E FRAME 2	E L LOAD PSOL PRIEMP	5 E M E N T  LOC  0.00 1.05 2.10 3.15 4.20 0.00 1.05 2.10	F O R C P 0.00 0.00 0.00 0.00 0.00 0.00 0.00	V2  -84.00 -63.00 -42.00 -21.00 0.00  -143.64 -107.73 -71.82	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 77.18 132.30 165.38 176.40 0.00 131.97 226.23
11/16/10 : F R A M E FRAME 2	E L LOAD PSOL	5 E M E N T LOC  0.00 1.05 2.10 3.15 4.20  0.00 1.05 2.10 3.15 4.20	F O R C P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	V2  -84.00 -63.00 -42.00 -21.00 0.00  -143.64 -107.73 -71.82 -35.91 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 77.18 132.30 165.38 176.40 0.00 131.97 226.23 282.79 301.64
11/16/10 : F R A M E FRAME 2	E L LOAD PSOL PRIEMP	5 E M E N T LOC 0.00 1.05 2.10 3.15 4.20 0.00 1.05 2.10 3.15	FORC  P  0.00 0.00 0.00 0.00 0.00 0.00 0.00	V2  -84.00 -63.00 -42.00 -21.00 0.00  -143.64 -107.73 -71.82 -35.91	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 77.18 132.30 165.38 176.40 0.00 131.97 226.23 282.79 301.64
11/16/10 : F R A M E FRAME 2	E L LOAD PSOL PRIEMP	5 E M E N T  LOC  0.00 1.05 2.10 3.15 4.20  0.00 1.05 2.10 3.15 4.20  0.00 0.00	F O R C P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	V2  -84.00 -63.00 -42.00 -21.00 0.00  -143.64 -107.73 -71.82 -35.91 0.00  -16.80	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 77.18 132.30 165.38 176.40 0.00 131.97 226.23 282.79 301.64
11/16/10 : F R A M E FRAME 2	E L LOAD PSOL PRIEMP	5 E M E N T  LOC  0.00 1.05 2.10 3.15 4.20  0.00 1.05 2.10 3.15 4.20  0.00 1.05 2.10 3.15 4.20	F O R C P  0.00 0.00 0.00 0.00 0.00 0.00 0.00	V2  -84.00 -63.00 -42.00 -21.00 0.00  -143.64 -107.73 -71.82 -35.91 0.00  -16.80 -16.80 -16.80 -12.26	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 77.18 132.30 165.38 176.40 0.00 131.97 226.23 282.79 301.64 0.00 17.64 35.28 52.06
11/16/10 : F R A M E FRAME 2 2	E L LOAD PSOL PRIEMP	5 E M E N T  LOC  0.00 1.05 2.10 3.15 4.20  0.00 1.05 2.10 3.15 4.20  0.00 1.05 2.10 3.15	F O R C P  0.00 0.00 0.00 0.00 0.00 0.00 0.00	V2  -84.00 -63.00 -42.00 -21.00 0.00  -143.64 -107.73 -71.82 -35.91 0.00  -16.80 -16.80 -16.80	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 77.18 132.30 165.38 176.40 0.00 131.97 226.23 282.79 301.64 0.00 17.64 35.28
11/16/10 : F R A M E FRAME 2	E L LOAD PSOL PRIEMP	5 E M E N T  LOC  0.00 1.05 2.10 3.15 4.20  0.00 1.05 2.10 3.15 4.20  0.00 1.05 2.10 3.15 4.20	F O R C  P  0.00 0.00 0.00 0.00 0.00 0.00 0.00	V2  -84.00 -63.00 -42.00 -21.00 0.00  -143.64 -107.73 -71.82 -35.91 0.00  -16.80 -16.80 -16.80 -12.26	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 77.18 132.30 165.38 176.40 0.00 131.97 226.23 282.79 301.64 0.00 17.64 35.28 52.06



RELAZIONE DI CALCOLO SCALE E ASCENSORE BANCHINA - LATO SOTTOPASSO FERROVIARIO						GETTO	LOTTO 12 D 44	CODIFICA	DOCUMENT FV0200011		. FOGLIO 54/57
		1.05	0.00	-75	.60	(	0.00	0.00	0.00		92.61
		2.10	0.00		.40		0.00	0.00	0.00		58.76
		3.15	0.00		.20		0.00	0.00	0.00		98.45
	DDENG1	4.20	0.00	C	.00	(	0.00	0.00	0.00	2	11.68
2	PPENS1	0.00	-10.09	-289	66		7.47	-53.27	0.00		0.00
		1.05	-10.09	-289			7.47	-53.27	-7.85	3	04.14
		2.10	-10.09	-289			7.47	-53.27	-15.70		08.29
		3.15	-10.09	-289			7.47	-53.27	-23.55		12.43
		4.20	-10.09	3.390E			7.47	-53.27	-31.40		16.58
2	PPENS2										
		0.00	-1.27	-173			5.02	-34.43	0.00		0.00
		1.05	-1.27	-173			5.02	-34.43	-15.78		81.80
		2.10	-1.27 -1.27	-173			5.02	-34.43	-31.55		63.59
		4.20	-1.27	-173 -173			5.02	-34.43 -34.43	-47.33 -63.10		45.39 27.18
2	PPENS3		1.27	1/3	.14	1.	0.02	54.45	03.10	1	27.10
		0.00	-7.250E-01	-206	.37	10	.78	-22.26	0.00		0.00
		1.05	-7.250E-01	-206	.37	10	.78	-22.26	-11.32	2	16.68
		2.10	-7.250E-01	-206	.37		.78	-22.26	-22.65	4	33.37
		3.15	-7.250E-01	-206			.78	-22.26	-33.97		50.05
	D011411D	4.20	-7.250E-01	-206	.37	10	.78	-22.26	-45.30	8	66.73
2	P21MUR		0.00	1	0.0	(	0.00	0 00	0.00		0 00
		0.00	0.00		.80		0.00	0.00	0.00		0.00
		2.10	0.00		.80		0.00	0.00	0.00		3.78
		3.15	0.00	9.596E			0.00	0.00	0.00		5.04
		4.20	0.00	9.596E			0.00	0.00	0.00		4.03
2	P22MUR	Į.									
		0.00	0.00	-9.485E			0.00	0.00	0.00		0.00
		1.05	0.00	-9.485E			0.00	0.00	0.00	9.95	9E-01
		2.10	0.00	-9.485E			0.00	0.00	0.00		1.99
		4.20	0.00	-9.485E			0.00	0.00	0.00		3.98
2	COMB1	1.20	0.00	J. 100L	01			0.00	0.00		3.30
		0.00	-10.09	-637	.65	-	7.47	-53.27	0.00		0.00
		1.05	-10.09	-555		-	7.47	-53.27	-7.85	6	26.42
		2.10	-10.09	-473			7.47	-53.27	-15.70		66.63
		3.15	-10.09	-384			7.47	-53.27	-23.55		19.13
2	COMB2	4.20	-10.09	6.878E	-01		7.47	-53.27	-31.40	19	72.63
2	COMBZ	0.00	-1.27	-521	13	1 5	5.02	-34.43	0.00		0.00
		1.05	-1.27	-439			5.02	-34.43	-15.78	5	04.07
		2.10						-34.43			21.93
		3.15	-1.27	-267			5.02	-34.43	-47.33	12	52.09
		4.20	-1.27	-172	.79	15	5.02	-34.43	-63.10	14	83.24
2	COMB3	0 00	7 0507 01		2.5			00.06	0.00		0.00
			-7.250E-01 -7.250E-01	-554			).78	-22.26	0.00	_	0.00 38.96
			-7.250E-01	-472 -390			).78 ).78	-22.26 -22.26	-11.32 -22.65		91.71
			-7.250E-01	-300			).78	-22.26	-33.97		56.75
			-7.250E-01	-206			.78	-22.26	-45.30		22.79
2	COMB4										
		0.00		-587	.25	7	7.47	-53.27	0.00		0.00
		1.05	-10.09	-517			7.47	-53.27	-7.85		80.12
		2.10	-10.09	-448			7.47	-53.27	-15.70		87.25
		3.15	-10.09	-371			7.47	-53.27	-23.55		19.91
2	COMB5	4.20	-10.09	6.878E	-UI		7.47	-53.27	-31.40	TR	66.79
2	301103	0.00	-1.27	-470	.73	1 -	5.02	-34.43	0.00		0.00
		1.05	-1.27	-401			5.02	-34.43	-15.78		57.77
		2.10	-1.27	-331 -254			5.02	-34.43	-31.55		42.55
		3.15	-1.27				5.02	-34.43	-47.33		52.86
_	00: 5	4.20	-1.27	-172	.79	15	5.02	-34.43	-63.10	13	77.40
2	COMB6	0 00	7 0500 01	F00	0.5	4.04	7.0	20 20	0.00		0.00
			-7.250E-01 -7.250E-01	-503 -434			).78 ).78	-22.26 -22.26	0.00 -11.32		0.00 92.66
			-7.250E-01	-364				-22.26	-22.65		12.33
			2002 01	204		Δ.(		22.20	22.03	9	



RELAZIONE DI CALCOLO SCALE E ASCENSORE
BANCHINA - LATO SOTTOPASSO FERROVIARIO

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
12 D 44 CL FV0200011 A 55/57

	3.15	-7.250E-01	-288.13	10.78	-22.26	-33.97	1257.53
	4.20	-7.250E-01	-206.02	10.78	-22.26	-45.30	1516.95
2	COMB1FA					10.00	1010.00
_	0.00	-10.09	-617.49	7.47	-53.27	0.00	0.00
	1.05	-10.09	-540.42	7.47	-53.27	-7.85	607.90
	2.10						
		-10.09	-463.35	7.47	-53.27	-15.70	1134.88
	3.15	-10.09	-378.98	7.47	-53.27	-23.55	1579.44
	4.20	-10.09	6.878E-01	7.47	-53.27	-31.40	1930.30
2	COMB1FB						
	0.00	-1.27	-500.97	15.02	-34.43	0.00	0.00
	1.05	-1.27	-423.90	15.02	-34.43	-15.78	485.55
	2.10	-1.27	-346.83	15.02	-34.43	-31.55	890.18
	3.15	-1.27	-262.46	15.02	-34.43	-47.33	1212.40
	4.20	-1.27	-172.79	15.02	-34.43	-63.10	1440.90
2	COMB1FC	1 . 2 /	112.13	13.02	54.45	03.10	1440.00
2		7 2505 01	E24 10	10 70	22 26	0 00	0 00
	0.00	-7.250E-01	-534.19	10.78	-22.26	0.00	0.00
	1.05	-7.250E-01	-457.12	10.78	-22.26	-11.32	520.44
	2.10	-7.250E-01	-380.05	10.78	-22.26	-22.65	959.96
	3.15	-7.250E-01	-295.69	10.78	-22.26	-33.97	1317.06
	4.20	-7.250E-01	-206.02	10.78	-22.26	-45.30	1580.45
2	ENVE MAX						
	0.00	-7.250E-01	-470.73	15.02	-22.26	0.00	0.00
	1.05	-7.250E-01	-401.22	15.02	-22.26	-7.85	626.42
	2.10	-7.250E-01	-331.71	15.02	-22.26	-15.70	1166.63
	3.15	-7.250E-01				-23.55	
			-254.90	15.02	-22.26		1619.13
	4.20	-7.250E-01	6.878E-01	15.02	-22.26	-31.40	1972.63
2	ENVE MIN						
	0.00	-10.09	-637.65	7.47	-53.27	0.00	0.00
	1.05	-10.09	-555.54	7.47	-53.27	-15.78	457.77
	2.10	-10.09	-473.43	7.47	-53.27	-31.55	842.55
	3.15	-10.09	-384.02	7.47	-53.27	-47.33	1152.86
	4.20	-10.09	-206.02	7.47	-53.27	-63.10	1377.40
2	ENVEF MAX	10.05	200.02	7.47	33.27	03.10	13//.40
2	0.00	-7.250E-01	-500.97	15.02	-22.26	0 00	0 00
						0.00	0.00
	1.05	-7.250E-01	-423.90	15.02	-22.26	-7.85	607.90
	2.10	-7.250E-01	-346.83	15.02	-22.26	-15.70	1134.88
	3.15	-7.250E-01	-262.46	15.02	-22.26	-23.55	1579.44
	4.20	-7.250E-01	6.878E-01	15.02	-22.26	-31.40	1930.30
2	ENVEF MIN						
	0.00	-10.09	-617.49	7.47	-53.27	0.00	0.00
	1.05	-10.09	-540.42	7.47	-53.27	-15.78	485.55
	2.10	-10.09	-463.35	7.47	-53.27	-31.55	890.18
	3.15	-10.09	-378.98	7.47	-53.27	-47.33	1212.40
	4.20	-10.09	-206.02	7.47	-53.27	-63.10	
	4.20	-10.09	-200.02	1.41	-33.21	-63.10	1440.90
2	DOOT						
3	PSOL				20172020		
	0.00	0.00	0.00	0.00	0.00	0.00	176.40
	1.05	0.00	21.00	0.00	0.00	0.00	165.38
	2.10	0.00	42.00	0.00	0.00	0.00	132.30
	3.15	0.00	63.00	0.00	0.00	0.00	77.18
	4.20	0.00	84.00	0.00	0.00	0.00	0.00
3	PRIEMP						
	0.00	0.00	0.00	0.00	0.00	0.00	301.64
	1.05	0.00	35.91	0.00	0.00	0.00	282.79
	2.10	0.00	71.82				
				0.00	0.00	0.00	226.23
	3.15	0.00	107.73	0.00	0.00	0.00	131.97
200	4.20	0.00	143.64	0.00	0.00	0.00	0.00
3	P1MUR						
	0.00	0.00	3.377E-01	0.00	0.00	0.00	58.32
	1.05	0.00	12.94	0.00	0.00	0.00	51.35
	2.10	0.00	16.47	0.00	0.00	0.00	34.58
	3.15	0.00	16.47	0.00	0.00	0.00	17.29
	4.20	0.00	16.47	0.00	0.00	0.00	0.00
3	PACC	0.00	TO:41	0.00	0.00	0.00	0.00
J		0 00	0 00	0 00	0 00	0 00	211 60
	0.00	0.00	0.00	0.00	0.00	0.00	211.68
	1.05	0.00	25.20	0.00	0.00	0.00	198.45
	2.10	0.00	50.40	0.00	0.00	0.00	158.76
	3.15	0.00	75.60	0.00	0.00	0.00	92.61



FV0200011 A

CL

**FOGLIO** 

56/57

PROGETTO LOTTO CODIFICA DOCUMENTO REV. RELAZIONE DI CALCOLO SCALE E ASCENSORE MDL1 12 D 44 BANCHINA - LATO SOTTOPASSO FERROVIARIO

_	L/\	10 30110	JFA3.	30 FERROV	ANIO	5-00 C-00 - 00 - 00 - 00 - 00 - 00 - 00	Comment of the Commen			
			.20	0.00	100.8	0.00	0.00	0.00	0.00	
	3	PPENS1	0.0	10.00				2022 0707		
			.00	10.09	273.7			-31.40	1149.54	
			.05	10.09	273.7			-23.55	862.15	
			.10	10.09	273.7			-15.70	574.77	
			.15	10.09	273.7			-7.85	287.38	
			.20	10.09	273.7	0 -7.47	53.27	0.00	0.00	
	3	PPENS2								
			.00	1.27	152.6			-63.10	640.97	
			.05	1.27	152.6		34.43	-47.33	480.72	
		2	.10	1.27	152.6	1 -15.02	34.43	-31.55	320.48	
		3	.15	1.27	152.6	1 -15.02	34.43	-15.78	160.24	
		4	.20	1.27	152.6	1 -15.02	34.43	0.00	0.00	
	3	PPENS3								
		0	.00	7.250E-01	198.7	3 -10.78	22.26	-45.30	834.68	
		1	.05	7.250E-01	198.7	3 -10.78		-33.97	626.01	
		2	.10	7.250E-01	198.7	3 -10.78	22.26	-22.65	417.34	
		3	.15	7.250E-01	198.7	3 -10.78	22.26	-11.32	208.67	
		4	.20	7.250E-01	198.7	3 -10.78	22.26	0.00	0.00	
	3	P21MUR								
		0	.00	0.00	9.596E-0	1 0.00	0.00	0.00	4.03	
		1	.05	0.00	9.596E-0	1 0.00	0.00	0.00	3.02	
		2	.10	0.00	9.596E-0	1 0.00	0.00	0.00	2.02	
		3	.15	0.00	9.596E-0	1 0.00	0.00	0.00	1.01	
		4	.20	0.00	9.596E-0			0.00	0.00	
	3	P22MUR								
		0	.00	0.00	-9.485E-0	1 0.00	0.00	0.00	3.98	
		1	.05	0.00	-9.485E-0			0.00	4.98	
			.10	0.00	1.7			0.00	3.72	
			.15	0.00	1.7			0.00	1.86	
			.20	0.00	1.7			0.00	0.00	
	3	COMB1		7.7.70			0.00	0.00	0.00	
			.00	10.09	274.0	5 -7.47	53.27	-31.40	1905.59	
			.05	10.09	368.7			-23.55	1568.12	
			.10	10.09	457.1			-15.70	1132.38	
			.15	10.09	539.2			-7.85	609.30	
			.20	10.09	621.3			0.00	0.00	
	3	COMB2	.20	10.03	021.3	1 / . 1/	55.21	0.00	0.00	
			.00	1.27	152.9	6 -15.02	34.43	-63.10	1397.02	
			.05	1.27	247.6			-47.33	1186.69	
			.10	1.27	336.0			-31.55	878.09	
			.15	1.27	418.1			-15.78	482.15	
			.20	1.27	500.2			0.00	0.00	
	3	COMB3	.20	1.21	300.2	5 15.02	54.45	0.00	0.00	
	_	DEVICE AND AND	.00	7.250E-01	199.0	8 -10.78	22.26	-45.30	1590.74	
			.05	7.250E-01	293.7			-33.97	1331.98	
			.10	7.250E-01	382.1					
				7.250E-01	464.2			-11.32	530.58	
				7.250E-01	546.3			0.00	0.00	
	3	COMB4	.20	7.2300 01	310.3	10.70	22.20	0.00	0.00	
	_		.00	10.09	274.0	5 -7.47	53.27	-31.40	1799.75	
			.05	10.09	356.1			-23.55	1468.89	
			.10	10.09	431.9			-15.70	1053.00	
			.15	10.09	501.4			-7.85	562.99	
			.20	10.09	570.9			0.00	0.00	
	3	COMB5	.20	10.03	370.9	7.4/	33.21	0.00	0.00	
	J		.00	1.27	152.9	6 -15.02	34.43	-63.10	1291.18	
			.05	1.27	235.0			-47.33	1087.47	
			.10	1.27				-31.55		
			.15	1.27	310.8 380.3			-15.78	798.71 435.85	
			.20	1.27	449.8			0.00		
	3	COMB6	. 20	1.2/	447.0	-15.02	34.43	0.00	0.00	
	J		.00	7.250E-01	199.0	0 10 70	22 26	_45 20	1404 00	
								-45.30	1484.90	
				7.250E-01	281.1			-33.97	1232.76	
				7.250E-01	356.9			-22.65	895.57	
			.15	7.250E-01	426.4			-11.32	484.28	
	3	COMB1FA	.20	7.250E-01	495.9	7 -10.78	22.26	0.00	0.00	
	J	COMDIFA								



			_						
RELAZIONE DI	CALCOLO SCA	LE E ASCENSORE	PR(	OGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
		SO FERROVIARIO	- 1	MDL1	12 D 44	CL	FV0200011	Α	57/57
DANOTHINA - LA	ATO COTTOT AC	OO I LINIOVIANIC							
	0.00	10 00	274 05	7	47	F2 27	21 40	1000	26
	1.05	10.09	274.05		. 47	53.27	-31.40	1863.	
		10.09	363.72		. 47	53.27	-23.55	1528.	
	2.10	10.09	447.04		. 47	53.27	-15.70	1100.	
	3.15	10.09	524.11		. 47	53.27	-7.85	590.	
2	4.20	10.09	601.18	- /	. 47	53.27	0.00	0.	.00
3		4 05							-
	0.00	1.27	152.96	-15		34.43	-63.10	1354.	
	1.05	1.27	242.63	-15		34.43	-47.33	1147.	
	2.10	1.27	325.95	-15		34.43	-31.55	846.	
	3.15	1.27	403.02	-15		34.43	-15.78	463.	
	4.20	1.27	480.09	-15	.02	34.43	0.00	0.	.00
3									
	0.00	7.250E-01	199.08	-10		22.26	-45.30	1548.	
	1.05	7.250E-01	288.75	-10		22.26	-33.97	1292.	.29
	2.10	7.250E-01	372.07	-10	.78	22.26	-22.65	943.	.20
	3.15	7.250E-01	449.14	-10	.78	22.26	-11.32	512.	06
	4.20	7.250E-01	526.21	-10	.78	22.26	0.00	0.	.00
3	ENVE MAX								
	0.00	10.09	274.05	-7	. 47	53.27	-31.40	1905.	.59
	1.05	10.09	368.76	-7	. 47	53.27	-23.55	1568.	12
	2.10	10.09	457.12	-7	. 47	53.27	-15.70	1132.	38
	3.15	10.09	539.23	-7	. 47	53.27	-7.85	609.	30
	4.20	10.09	621.34	-7	. 47	53.27	0.00	0.	00
3	ENVE MIN								
	0.00	7.250E-01	152.96	-15	.02	22.26	-63.10	1291.	18
	1.05	7.250E-01	235.07	-15	.02	22.26	-47.33	1087.	47
	2.10	7.250E-01	310.83	-15	.02	22.26	-31.55	798.	
	3.15	7.250E-01	380.34	-15	.02	22.26	-15.78	435.	85
	4.20	7.250E-01	449.85	-15	.02	22.26	0.00	0.	00
3	ENVEF MAX								
	0.00	10.09	274.05	-7	. 47	53.27	-31.40	1863.	26
	1.05	10.09	363.72	-7	. 47	53.27	-23.55	1528.	43
	2.10	10.09	447.04	-7	. 47	53.27	-15.70	1100.	63
	3.15	10.09	524.11		.47	53.27	-7.85	590.	
	4.20	10.09	601.18		.47	53.27	0.00		00
3	ENVEF MIN	17.74 TV			4	,,,,,,	0.00	0.	V.30.70
	0.00	7.250E-01	152.96	-15	.02	22.26	-63.10	1354.	68
	1.05	7.250E-01	242.63	-15		22.26	-47.33	1147.	
	2.10	7.250E-01	325.95	-15		22.26	-31.55	846.	
	3.15	7.250E-01	403.02	-15		22.26	-15.78	463.	
	4.20	7.250E-01 7.250E-01	480.09	-15		22.26	0.00		00
	4.20	/ • 200E-01	-00.03	-12	. UZ	22.20	0.00	0.	00