PARCO EOLICO MONTE CERCHIO

Sede Legale:

Corso Vercelli n. 10 10152, Torino (TO) P.IVA e C.F. 12930940015

Oggetto:

RELAZIONE SPECIALISTICA

Titolo:

RELAZIONE TECNICA ELETTRICA

Ing. Silvio Mario Bauducco

Data	Emis.	Aggiornamento	Data	Contr.	Data	Autor.
07/2023	MP	Emissione	07/2023	MP	07/2023	SMB

SCALA: N.A.

FORMATO: A4

LUGLIO 2023

Commessa

Tip. impianto

Fase Progetto

Disciplina

Tip. Doc

Titolo

N. Elab

REV

22102

EO

DE

EL

R

07

0001

Α

RICERCA, SVILUPPO E COORDINAMENTO IMPIANTI EOLICI E FOTOVOLTAICI A CURA DI:

Sede Amministrativa e Operativa via Benessia, 14 12100 Cuneo (CN) tel 335.6012098 e-mail: emmecsrls@gmail.com

Geom. Domenico Bresciano

PROGETTAZIONE EDILE, AMBIENTALE, STRUTTURALE ED IMPIANTISTICA A CURA DI:

I Tecnici:

Collaboratori

Sede Amministrativa via Maroncelli, 23 10024 Moncalieri (TO) tel 011.6052113 - 011.6059915 e-mail: amministrazione@bautel.it Sede Operativa Torino - via Maroncelli, 23 10024 Moncalieri (TO) Sede Operativa Genova - via Banderali, 2/4 16121 Genova (GE)

Coord. gruppo di progettazione Ing. Silvio Mario Bauducco Geom. Benzoni Manuel Per. Ind. Biasin Emanuele Ing. Occhiuto Felice Arch. Ostino Paolo Arch. Pelleri Martina

File: testalini relazioni.dwg

TUTTI I DIRITTI SONO RISERVATI - Questo documento è di proprietà esclusiva del progettista ivi indicato sul quale si riserva ogni diritto. Pertanto questo documento non può essere copiato, riprodotto, comunicato o divulgato ad altri o usato in qualsiasi maniera, nemmeno per fini sperimentali, senza autorizzazione scritta dallo stesso progettista.

Sommario

1.	S	COPO DEL DOCUMENTO4
2.	DI	ESCRIZIONE DELL'IMPIANTO EOLICO
	2.1	DESCRIZIONE GENERALE
	2.2	OPERE ELETTRICHE
	2.3	AEROGENERATORI8
	2.4	NORME TECNICHE E LEGGI DI RIFERIMENTO
3.	DI	ESCRIZIONE CABINE DI RAGGRUPPAMENTO 36 KV
	3.1	SISTEMA A 36 KV
4.	C	ONDIZIONI AMBIENTALI DI RIFERIMENTO
	4.1	TEMPERATURE AMBIENTALI
	4.2	ATTIVITÀ SISMICA
	4.3	RUMORE
	4.4	EFFETTO CORONA E COMPATIBILITÀ ELETTROMAGNETICA
	4.5	CAMPI ELETTRICI E MAGNETICI
	4.6	CRITERI DI COORDINAMENTO DELL'ISOLAMENTO
	4.7	LIVELLO DI CORTOCIRCUITO E CORRENTI DI GUASTO A TERRA
	5.1	SISTEMA DI PROTEZIONE A CELLE
	5.2	CAVO MT
7.	SI	ERVIZI AUSILIARI
	7.2	SERVIZI AUSILIARI IN C.C
8.	0	PERE CIVILI
	8.1	APPIANAMENTO DEL TERRENO
	8.2	FONDAZIONI
	8.3	BASAMENTO E DEPOSITO DI OLIO PER IL TRASFORMATORE
	8.4	DRENAGGIO DI ACQUA PLUVIALE
	8.5	CANALIZZAZIONI ELETTRICHE
	8.6	ACCESO E VIALI INTERNI 23
	8.7	CHIUSURA PERIMETRALE
9.	SI	STEMA DI CONTROLLO
	10.1.	SISTEMI COMPLEMENTARI NEGLI EDIFICI
	10.2.	SISTEMA DI RIFASAMENTO
1	1.	MESSA A TERRA

11.1.	DESCRIZIONE	. 24
11.2	MESSA A TERRA DI SERVIZIO	. 25
11.3	MESSA A TERRA DI PROTEZIONE	. 25
12	MISURA	. 26
12 1	MISURE DI ENERGIA (FISCALE)	26
	ULTERIORI APPARATI DI MISURA	

Vindtek

1. SCOPO DEL DOCUMENTO

Il presente documento costituisce progetto elettrico, finalizzato allo studio iniziale ed alla richiesta

autorizzativa agli enti preposti secondo vigente Norma di Legge, per l'impianto eolico "Monte

Cerchio" previsto al di sotto dei crinali montani afferenti alle montagne presenti a Cario

Montenotte, Cengio e Saliceto e collocati nei territori comunali degli stessi Comuni.

L'impianto sarà costituito da una sezione a 36 kV comprendente le dorsali dagli aerogeneratori

divisi a gruppi, la stazione concentramento ed il cavidotto per la connessione alla RTN.

La centrale eolica in oggetto sarà collegata in antenna a 36 kV su un nuovo stallo della Stazione

Elettrica (SE) di Trasformazione a 380/220/132 kV della RTN che verrà realizzata da Terna sulla

linea da 380Kv Vado – Magliano Alpi e di cui tuttavia non si è ancora a conoscenza dell'esatta

ubicazione.

Ai sensi dell'art. 21 dell'allegato A alla deliberazione Arg/elt/99/08 e s.m.i. dell'ARERA,

l'elettrodotto in antenna a 36 kV per il collegamento della centrale alla citata Stazione RTN

costituisce impianto di utenza per la connessione, mentre lo stallo arrivo produttore a 36 kV nella

medesima Stazione costituisce impianto di rete per la connessione e non è valutato nell'ambito

del presente documento.

Il presente documento dovrà essere seguito da progettazione esecutiva e di approfondimento

prima dell'opera.

PARCO EOLICO MONTE CERCHIO RELAZIONE TECNICA PROGETTO ELETTRICO

2. DESCRIZIONE DELL'IMPIANTO EOLICO

2.1 **DESCRIZIONE GENERALE**

Il parco eolico "Monte Cerchio" sarà costituito da 7 aerogeneratori ciascuno avente potenza

unitaria pari a 6200 kW, per una potenza nominale complessiva di 43.4 MW.

Gli aerogeneratori saranno disposti secondo un layout di impianto che per le caratteristiche

orografiche del terreno e per la direzione del vento dominante risulta essere quello ottimale, in

grado quindi di massimizzare la producibilità energetica e minimizzando le opere civili da

effettuare.

Gli aerogeneratori saranno collocati ad un'interdistanza non inferiore a 5 diametri del rotore se

disposti nella direzione del vento dominante e ad una distanza non inferiore a 3 volte il diametro

se gli stessi sono disposti perpendicolarmente rispetto alla direzione del vento dominante.

La scelta progettuale è stata concepita nel rispetto di criteri ambientali, tecnici ed economici, in

particolare sono stati rispettati ove fruibili i seguenti requisiti:

utilizzo di viabilità esistente e minimizzazione dell'apertura di nuovi tracciati;

ottimizzazione dell'inserimento paesaggistico dell'impianto;

rispetto dell'orografia e copertura vegetale della zona;

rispetto della distanza dai recettori più prossimi;

installazione di aerogeneratori tali da massimizzare la produzione energetica a parità di

spazio occupato, condizione che si traduce, di fatto, nella mitizzazione delle unità da

installare e nella razionalizzazione di un impianto che, di per sé, intende raggiungere di fatto

capacità produttive prossime ai più alti livelli di settore e di limitare l'impatto sull'ambiente e

sul paesaggio entro i limiti più serrati;

ottimizzazione dello sfruttamento della risorsa eolica dell'area a disposizione, attraverso

l'utilizzo di aerogeneratori di ultima generazione e studiati per superare i migliori standard di

settore.

VIA IVIAI ONGO......
Tel./fax. 011.6052113 Via Maroncelli n. 23 -10024 Moncalieri (TO)

e-mail: amministrazione@bautel.it

2.2 **OPERE ELETTRICHE**

L'energia viene prodotta da ciascun aerogeneratore in bassa tensione; questa viene

successivamente elevata a 36 kV in un centro di trasformazione ubicato nella navicella della

macchina (parte quindi del complesso dell'aerogeneratore) e viene evacuata tramite cavi elettrici

interrati fino all'aerogeneratore successivo per ogni gruppo di generatori.

Dall'ultimo generatore di gruppo i cavi vengono direttamente connessi alla sezione 36 kV della

area cabine di raggruppamento utente.

La configurazione dei vari circuiti AT 36kV (in sostanziale struttura MT per tecnologia in uso e

per prossimità a tale classificazione in base al livello di tensione, e per questo citata come MT

nel documento) è ricavabile dagli elaborati unifilari allegati.

Si tratta di più dorsali raggruppate con sistema di celle MT in locali dedicati e confluenti in un

unico tracciato MT diretto allo stallo di connessione.

L'allacciamento del parco eolico alla RTN è previsto, come accennato in precedenza, con

connessione in MT su nuovo stallo da realizzare a cura del gestore di rete in stazione AT Terna

predisposta allo scopo.

Lo stallo di nuova realizzazione viene previsto da Terna come predisposto alla condivisione tra

più utenze.

L'impianto nel suo complesso sarà costituito dalle seguenti parti principali:

Aerogeneratori completi di sistema di protezione e controllo;

Linee elettriche per il collegamento degli aerogeneratori, suddivisi in gruppi, alla area

cabine di raggruppamento;

Edificio di controllo;

Cabine elettriche di raggruppamento MT;

Elettrodotto in MT per collegamento al nuovo stallo previsto nella stazione RTN di

proprietà Terna;

e-mail: amministrazione@bautel.it

I Gruppi generatori nel loro esercizio soddisferanno le seguenti condizioni:

- 1) Le variazioni di Tensione sulla rete MT saranno contenute nel campo + / 2 %,
- 2) Le variazioni di Frequenza sulla rete MT saranno contenute nel campo +/- 2%,
- 3) L'eliminazione dei guasti sulla rete MT di Proprietà sarà tale da non procurare disservizi sulla rete (TERNA),
- 4) Le protezioni MT saranno coordinate con quelle impostate sulla Rete MT e AT.
- 5) L'Interruttore MT di Interfaccia, oltre ad essere abilitato al Parallelo, garantirà, anche la separazione della rete di trasmissione nazionale dalla linea utente.
- 6) Gli interruttori MT di parallelo dei generatori saranno corredati delle protezioni previste dalla Norma CEI 0-16;
- 7) L'interruttore generale MT, sarà corredato delle protezioni previste dalla Norma vigente.
- Si prevede anche l'installazione di un Relè per la richiusura automatica degli Interruttori MT:
- 8) Ogni Trasformatore MT di impianto (trasformatore servizi) sarà protetto con le seguenti protezioni: Massima Corrente a due soglie (Sovraccarico e Corto Circuito), Protezione Termica a due soglie (allarme e scatto), Relè Buchholz a unica soglia di scatto dell'interruttore MT ed BT di Macchina.

2.3 **AEROGENERATORI**

Ciascun aerogeneratore è dotato di un generatore sincrono ed ha una potenza nominale pari a 6200kW.

Ogni aerogeneratore è equipaggiato con un trasformatore BT/AT (MT) per elevare la tensione a 36 kV già in navicella, nonché di tutti gli organi di protezione ed interruzione atti a proteggere la macchina e la linea elettrica in partenza da essa.

Gli aerogeneratori sono in numero di 7 e sono suddivisi nei seguenti sottoimpianti (gruppi) circuitalmente interconnessi:

GRUPPO 1: Pn1 12.4 MW

> Generatore 1 Pg 6.2 MW Generatore 2 Pg 6.2 MW

GRUPPO 2: Pn2 18.6 MW

> Generatore 3 Pg 6.2 MW Generatore 4 Pg 6.2 MW Generatore 5 Pg 6.2 MW

GRUPPO 3: Pn3 12.4 MW

> Generatore 6 Pg 6.2 MW Generatore 7 Pg 6.2 MW

Il numero assegnato ai generatori in elenco e negli elaborati grafici deriva dalla nomenclatura di dimensionamento preliminare in base all'ubicazione.

La potenza di generazione complessiva dell'impianto, costituita dalla somma delle potenze degli aerogeneratori individuati, è pari a 43.4 MW

Le caratteristiche di progetto degli aerogeneratori sono individuate nella scheda riportata alla pagina seguente.

V162-6.2 MW™ IEC S

Facts & figures

POWER Pitch regulated with REGULATION Pitch regulated with variable speed

OPERATING DATA

 Rated power
 6,200kW

 Cut-in wind speed
 3m/s

 Cut-out wind speed'
 25m/s

 Wind class
 IEC S

Standard operating temperature range from -20°C to +45°C 'High Wind Operation available as standard

SOUND POWER

Maximum 104.8dB(A)*

*Sound Optimised Modes available dependent on site and country

ROTOR

Rotor diameter 162m
Swept area 20,612m²
Aerodynamic brake full blade feathering with 3 pitch cylinders

ELECTRICAL
Frequency 50/60Hz
Converter full scale

GEARBOX
Type two planetary stages

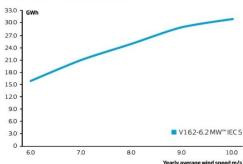
 TOWER

 Hub height
 119m (IEC S/DIBt S)

 125m (IEC S)
 166m (IEC S/DiBt S)

169m (DIBt S)

TURBINE OPTIONS


- Condition Monitoring System
- Oil Debris Monitoring System
- · Service Personnel Lift
- Low Temperature Operation to -30°C
- Vestas Ice Detection™
- Vestas Anti-Icing System™
- · Vestas Shadow Flicker Control System
- Aviation Lights
- Aviation Markings
- Fire Suppression System
- Vestas Bat Protection System
- Lightning Detection System
- · Power Optimised Modes

SUSTAINABILITY

 $\begin{array}{lll} \text{Carbon Footprint} & 6.1 \text{g CO}_2 \text{e/kWh} \\ \text{Return on energy break-even} & 6 \text{ months} \\ \text{Lifetime return on energy} & 39 \text{ times} \\ \text{Recyclability rate} & 88\% \\ \end{array}$

Configuration: HH=166m, Vavg=8.5m/s, k=2.48. Depending on site-specific conditions. Metrics are based on a preliminary stream-lined analysis, An externally-verified Lifecycle Assessment will be made publicly available on vestas.com once finalised.

ANNUAL ENERGY PRODUCTION

One wind turbine, 100% availability, 0% losses, k factor =2, Standard air density = 1.225, wind speed at hub height

e-mail: amministrazione@bautel.it

2.4 NORME TECNICHE E LEGGI DI RIFERIMENTO

CEI 0-16 Ed. III, dicembre 2012: Regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti AT e MT delle imprese distributrici di energia elettrica

- CEI 11-1 Impianti di produzione, trasporto e distribuzione di energia elettrica. Norma Generale. Fasc. 1003 CEI 11-17 Impianti di produzione, trasmissione e distribuzione di energia elettrica. Linee in cavo. Fasc. 8408 ed 2006 CEI 11-48 Esercizio degli impianti elettrici CEI 14-4 Trasformatori di potenza Fasc. 609 Variante n. 1 Fasc. 696S CEI 14-4V1 CEI 14-4 V2 Variante n. 2 Fasc. 1057V CEI 14-4 V3 Variante n. 3 Fasc. 1144V CEI 14-4 V4 Variante n. 4 Fasc. 1294V CEI 14-8 Trasformatori di potenza a secco Fasc. 1768 CEI 17-1 Interruttori a corrente alternata a tensione superiore a 1000V Fasc. 1375 CEI 17-1 V1 Variante n. 1 Fasc. 1807V CEI 17-4 Sezionatori e sezionatori di terra a corrente alternata a tensione superiore a 1000V Fasc. 1343 CEI 17-4 EC Errata corrige Fasc. 1832V CEI 17-4 V1 Variante n. 1 Fasc. 2345V CEI 17-4 V2 Variante n. 2 Fasc. 2656V CEI 17-6 Apparecchiatura prefabbricata con involucro metallico per tensioni da 1 a 52kV Fasc. 2056
- CEI 17-13/1 Apparecchiature assiemate di protezione e manovra per bassa tensione (quadri BT) parte I: Apparecchiature di serie soggette a prove di tipo (AS) e apparecchiature non di serie parzialmente soggette a prove di tipo (ANS) Fasc. 2463E
- CEI 17-13/2 Apparecchiatura assiemate di protezione e manovra per bassa tensione (quadri BT) parte II: Prescrizioni particolari per i condotti sbarre Fasc. 2190
- CEI 17-43 Metodo per la determinazione della sovratemperatura mediante estrapolazione per le apparecchiature assiemate di protezione e di manovra per bassa tensione (quadri BT) ANS Fasc. 1873

Metodo per la determinazione della tenuta al corto circuito delle apparecchiature CEI 17-52 non di serie (ANS) Fasc. 2252 CEI 20-13 Cavi con isolamento estruso in gomma per tensioni nom. da 1 a 30kV Fasc. 1843 CEI 20-13 V1 Variante n. 1 Fasc. 2357V CEI 20-13 V2 Variante n. 2 Fasc. 2434V CEI 20-22II Prova d'incendio su cavi elettrici. Parte 2: Prova di non propagazione ell'incendio Fasc. 2662 CEI 20-22III Prova d'incendio su cavi elettrici. Parte 3: Prove su fili o cavi disposti a fascio Fasc. 2663 CEI 20-35 Prove sui cavi elettrici sottoposti a fuoco. Parte 1: Prova di non propagazione della fiamma sul singolo cavo verticale. Fasc. 688 CEI 20-35V1 Variante n. 1 Fasc. 2051V CEI 20-37/1 Cavi elettrici – Prove sui gas emessi durante la combustione Fasc. 739 CEI 20-37/2 Prove sui gas emessi durante la combustione dei cavi – Determinazione dell'indice di acidità (corrosività) dei gas mediante la misurazione del pH e della conduttività Fasc. 2127 CEI 20-37/3 Misura della densità del fumo emesso dai cavi elettrici sottoposti e combustione in condizioni definite. Parte 1: Apparecchiature di prova Fasc. 2191 CEI 20-38 Cavi isolati con gomma non propaganti l'incendio e a basso sviluppo di fumi e gas tossici e corrosivi. Parte 1: Tensioni nominali Uo/U non superiore a 0.6/1kV Fasc. 2312 CEI UNEL35024/1 Portata dei cavi in regime permanente Fasc. 3516 Per impianti elettrici utilizzatori Impianti elettrici utilizzatori a tensione nominale non superiore a 1000V in corrente CEI 64-8/1 alternata e a 1500V in corrente continua Fasc. 4131 CEI 70-1 Grado di protezione degli involucri (codice IP) Fasc. 3227C Per impianti elettrici ad alta tensione e di distribuzione pubblica di bassa tensione: CEI 11-1 Impianti elettrici con tensione superiore a 1kV in corrente alternata Fasc. 5025 CEI 11-18 Impianti di produzione, trasporto e distribuzione di energia elettrica. Dimensionamento degli impianti in relazione alle tensioni Fasc. 3703R

L'impianto dovrà essere conforme inoltre alle prescrizioni contenute nella Specifica Tecnica Terna "requisiti e caratteristiche di riferimento delle stazioni elettriche della RTN" e del codice di rete.

3. DESCRIZIONE CABINE DI RAGGRUPPAMENTO 36 KV

3.1 SISTEMA A 36 KV

L'area cabine elettriche utente di raggruppamento dorsali dagli aerogeneratori ai fini della

connessione alla RTN sarà costituita da una sezione celle a 36 kV a raccogliere 3 dorsali di

collegamento dei gruppi di generatori (aerogeneratori eolici suddivisi per gruppi) con montanti di

collegamento e risalite cavi, dalle protezioni: generale (DG) avente anche funzione di rincalzo, di

interfaccia (DDI) e servizi ausiliari (SA), nonché dai necessari alloggiamenti misure e

sezionamento.

Lo schema unifilare di massima della sottostazione è integrato al progetto e sarà oggetto della

progettazione esecutiva per il dettaglio.

Nel sistema a 36 kV posto all'interno dei fabbricati dell'area cabine di raggruppamento si

utilizzeranno cavi isolati e celle prefabbricate certificati dal fabbricante, avendo superato le prove

di tipo corrispondenti ed essendo sottoposti a prove specifiche ad ogni fornitura per assicurare

che si il livello di isolamento sia assicurato.

Il Quadro MT nel suo complesso sarà formato da più scomparti MT affiancati a ciascuno dei

quali avrà la chiusura laterale in comune con lo scomparto attiguo.

Ogni scomparto è suddiviso in due Celle. La Cella Superiore contenente il sistema di Sbarra

Principale (Cella Sbarra), esso è di tipo segregabile dalla cella apparecchiature, mediante

l'interposizione di un setto separatore metallico mobile. La Cella Inferiore contenente i dispositivi

tecnologici di impianto.

Le apparecchiature all'interno sono conformi alle norme CEI 17-6 e 17-9/1, sono previste per il

funzionamento da + 35° C a - 5° C e hanno le sequenti caratteristiche nominali:

Oltre agli apparati principali visionabili da schema unifilare allegato, si prevedono i corrispondenti

apparati di misura, comando, controllo e protezione necessari per la corretta funzionalità

dell'impianto.

VIA IVIAI ONGO......
Tel./fax. 011.6052113 Via Maroncelli n. 23 -10024 Moncalieri (TO)

e-mail: amministrazione@bautel.it

PARCO EOLICO MONTE CERCHIO RELAZIONE TECNICA PROGETTO ELETTRICO

Come dati di progetto si adottano in prima istanza i seguenti valori:

36 kV Tensione di esercizio del sistema: Frequenza nominale: 50 Hz Tensione di tenuta ad impulso atmosferico: 750 kV Corrente nominale di corto circuito 25 kA 0.5 sTempo di estinzione del guasto:

4. CONDIZIONI AMBIENTALI DI RIFERIMENTO

4.1 TEMPERATURE AMBIENTALI

Viste le condizioni climatiche ed ambientali del sito ed in conformità a quanto prescritto dalla

Norma CEI 11-1 le temperature massima e minima di riferimento saranno +40°C e -25°C. Dette

temperature saranno prese in considerazione nelle specifiche delle apparecchiature previste in

progetto.

4.2 ATTIVITÀ SISMICA

Le prove sismiche, le modalità di prova, la scelta delle assegnate severità dei componenti e del

macchinario di stazione devono essere rispondenti alla Norma CEI EN 60068-3-3 "Prove

climatiche e meccaniche fondamentali Parte 3: Guida-Metodi di prova sismica per

apparecchiature".

4.3 **RUMORE**

In merito alla emissione di rumore, vanno rispettati i limiti più severi tra quelli riportati al DPCM

del 1 marzo 1991, al DPCM del 14.11.1997 e secondo le indicazioni della legge quadro

sull'inquinamento acustico (legge n.447 del 26/10/1995).

EFFETTO CORONA E COMPATIBILITÀ ELETTROMAGNETICA 4.4

Si applicano il par. 3.1.6. ed il par. 8.5 della Norma CEI 11-1, nonché gli ulteriori suggerimenti

illustrati all'art. 13.6 della Guida CEI 11-37.

4.5 CAMPI ELETTRICI E MAGNETICI

In merito ai limiti dei campi elettrici e magnetici, a livello nazionale, saranno rispettati quelli

indicati dal D.P.C.M. 8 Luglio 2003 - "Fissazione dei limiti di esposizione, dei valori di attenzione

e degli obiettivi di qualità per la protezione della popolazione dalle esposizione ai campi elettrici e

magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti". Maggiori dettagli saranno

esposti nella specifica relazione allegata.

RAMTEL_{sa}

Via Maroncelli n. 23 -10024 Moncalieri (TO)

PARCO EOLICO MONTE CERCHIO RELAZIONE TECNICA PROGETTO ELETTRICO

4.6 CRITERI DI COORDINAMENTO DELL'ISOLAMENTO

Le apparecchiature AT (tecnologia MT 36 kV) di stazione saranno progettate per sopportare la tensione massima nominale a frequenza industriale della rete a cui si collegano.

Le sovratensioni temporanee di prova sono:

sovratensione ad impulso atmosferico (1.2/50µs);

sovratensione ad impulso di manovra (250/2500µs);

sovratensione di breve durata a frequenza industriale (a secco o sotto pioggia).

4.7 LIVELLO DI CORTOCIRCUITO E CORRENTI DI GUASTO A TERRA

Gli impianti saranno progettati, costruiti ed installati in modo da sopportare in sicurezza le sollecitazioni meccaniche e termiche derivanti da correnti di corto circuito in conformità a quanto indicato nei paragrafi 3.1.4 e 3.2.6 della Norma CEI 11-1.

In prima istanza, per una prima calcolazione di massima, Si adottano detti parametri (da verificare e confermare/aggiornare nella documentazione progettuale esecutiva)

La durata nominale di corto circuito trifase prevista, è di 1 s.

Per il dimensionamento degli isolatori passanti, si terrà presente che la durata nominale di corto circuito prevista è di 2 s. (ved. tabelle allegate e art. 4.3 Norma CEI EN 60137).

Di seguito si riportano il valore previsto della corrente nominale di corto circuito trifase, in base ai quali saranno dimensionati i componenti. In aggiunta, in considerazione delle definizioni della Norma CEI 11-1 e considerando il tempo di eliminazione del quasto a terra pari a 0,5 s, si riportano di seguito i valori previsti per la corrente di guasto a terra.

Sono valori suscettibili di verifica e modifica in fase esecutiva.

Valore efficace della corrente di corto circuito	lcc	25 kA
Valore efficace della corrente di guasto a terra	lg	25 kA

5. CARATTERISTICHE PRINCIPALI APPARATI 36 KV

5.1 SISTEMA DI PROTEZIONE A CELLE

Da punto di vista della struttura, le celle saranno del tipo incapsulato metallico, isolamento in SF6, per installazione all'interno.

Le caratteristiche strutturali di ogni cella sono analoghe, variando unicamente la apparecchiatura installata, compatibilmente alle necessità relative ad ogni servizio.

Oltre alle apparecchiature di potenza individuabili dallo schema elettrico allegato si dispone di 3 trasformatori di tensione nelle sbarre per poter realizzare misure di tensione e potenza.

Le caratteristiche elettriche dell'apparecchiatura descritta per ciascuna cella sono, secondo ipotesi di prima istanza, le seguenti:

INTERRUTTORI

Tensione massima 45 kV Tensione a impulso atmosferico 170 kV

Intensità massime:

Intensità di cortocircuito:

Cella del trasformatore 25 kA Celle di linea 25 kA

Isolamento in SF6

TRASFORMATORI DI CORRENTE

Tensione massima 45 kV

Rapporti di trasformazione:

Cella di linea (linee L1, L2, L3) 250-500 / 5-5 A

Potenza e classi di precisione:

Cella del trasformatore:

Primo nucleo (misura) 15 VA; 0,5

Secondo nucleo (protezioni) 5 VA; 5P20 Terzo nucleo (protezioni) 15VA; 5P20

Celle di linea:

Primo nucleo (misura) 15 VA; 0.5 Secondo nucleo (protezioni) 5 VA; 5P20

TRASFORMATORI DI TENSIONE DELLE SBARRE

45 kV Tensione massima

36.000: 3/100: 3/100:3 V Rapporto di trasformazione

Potenza e classe di precisione:

Primo nucleo (misura) 100 VA; 0,5

Secondo nucleo (protezioni) 50 VA; 3P

SEZIONATORI TRIPOLARI

I sezionatori delle celle saranno tripolari con tre posizioni (sbarre, disinserito, messa a terra) con azionamento manuale e incastro meccanico ed elettrico con interruttore.

Tensione massima 45 kV Tensione a impulso atmosferico (1.2/50 □s) 170 kV Corrente di cortocircuito 25 kA

Isolamento in SF6

5.2 **CAVO MT**

Gli aerogeneratori di ogni gruppo sono interconnessi tra loro con dorsali tripolari a tensione 36 kV con posa interrata.

Ognuna delle 3 dorsali generate da questa composizione viene direttamente connessa ad una cella predisposta del sistema in cabina di raggruppamento MT.

Il carico massimo sulla dorsale ovviamente si ha solo nel tratto che collega tutti i generatori di gruppo alla sottostazione di elevazione.

Tale carico corrisponde ad una corrente massima di circa 350 A per i gruppi più grandi di aerogeneratori.

Allo scopo per i circuiti citati, in via preliminare uniformando tutti i tratti, è stato dimensionato un cavo tipo:

RG7H1M1 – 18/30kV 1x240 mmg

- Cavo MT 36 kV
- Unipolare
- Sezione di fase: 240mmq

Il cavo individuato è adatto per il trasporto di energia tra le cabine di trasformazione e le grandi utenze;

Particolarmente indicati nei luoghi con pericolo d'incendio, nei locali dove si concentrano apparecchiature, quadri e strumentazioni dove è fondamentale la loro salvaguardia.

Ammessa la posa interrata, in conformità all'art. 4.3.11 della norma CEI 11-17.

Anima in conduttore a corda rotonda compatta di rame rosso

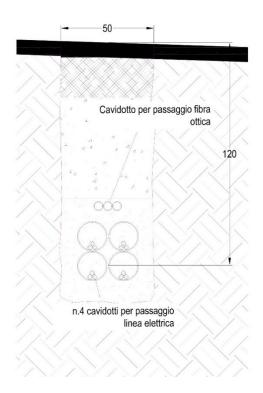
Semiconduttivo interno elastomerico estruso

Isolante in mescola speciale di gomma ad alto modulo

Semiconduttivo esterno elastomerico estruso pelabile a freddo

Schermatura a filo di rame rosso

Guaina AFUMEX, colore rosso


Temperatura di sovraccarico massima 140 °C

Coefficiente K per temperature di corto circuito di 300 °C: K=152

Il cavo rispetta le prescrizioni della norma HD 620 per quanto riguarda l'isolante, per tutte le altre caratteristiche rispetta le prescrizioni della CEI 20-13

Particolari di posa cavo MT

7. SERVIZI AUSILIARI

I servizi ausiliari (SS.AA.) dell'impianto verranno alimentati da un trasformatore servizi ausiliari previsto in box grigliato apposito nell'ambito dei locali celle dell'area di raggruppamento.

I servizi ausiliari, per ogni sezione di impianto, sono costituiti da due sistemi di tensione (c.a. e c.c.) necessari per il funzionamento della sottostazione.

Si installeranno sistemi di alimentazione in corrente alternata (e in corrente continua alimentato in cascata a quello generale in corrente alternata) per alimentare i distinti componenti di controllo, protezione e misura.

I servizi di corrente alternata e continua saranno alloggiati in diversi armadi destinati a realizzare le rispettive distribuzioni.

7.1 SERVIZI AUSILIARI IN C.A.

Per disporre di questi servizi, è prevista l'installazione, per ognuna delle 2 sezioni di impianto, di un trasformatore dedicato connesso al sistema MT della sottostazione con cella di protezione specifica le cui caratteristiche indicative sono le seguenti:

Trifase isolato in olio

Potenza nominale 100 kVA

Tensioni primaria 36±2,5±5+7,5% kV

Tensione secondaria (trifase con neutro) 0.23/0.4 kV

Connessioni Triangolo/ Stella

Gruppo di connessione Dyn 11

Le principali utenze in corrente alternata sono:

- Raddrizzatori;
- Illuminazione e f.m. privilegiata;
- Motori di manovra dei sezionatori;
- Motori per il comando degli interruttori:
- Raddrizzatori delle teletrasmissioni.

La sottostazione sarà inoltre predisposta per facilitare la connessione rapida di un gruppo elettrogeno in caso di guasto del trasformatore servizi ausiliari o fuori servizio.

Ciò sarà previsto per mezzo di un quadro di connessione rapida posto all'esterno dell'edificio servizi specifico, sotto tettoia protettiva predisposta.

Il gruppo elettrogeno potrà anche essere presente in modo permanente con installazione in loco e dovrà garantire la piena potenza servizi, con una potenza nominale guindi pari a 100 kVA.

L'inserzione del gruppo dovrà essere del tipo ad isola con quadro di commutazione automatica. La continuità di servizio delle apparecchiature sensibili dovrà essere garantita con idonei gruppi UPS on line locali.

7.2 SERVIZI AUSILIARI IN C.C.

L'alimentazione dei servizi in corrente continua, per ognuna delle due sezioni di impianto, sarà assicurata da un idoneo sistema raddrizzatore/batterie a 110 Vcc che sarà alimentato e mantenuto da un circuito dedicato del sistema ausiliari in CA.

Le caratteristiche del raddrizzatore e delle batterie verranno scelte durante la fase esecutiva.

Le apparecchiature alimentate alla tensione di 110 Vcc funzioneranno ininterrottamente. Il

processo di carica delle batterie sarà gestito automaticamente, senza la necessità di alcun tipo di

vigilanza o controllo, quindi più sicuro per il mantenimento di un servizio permanente.

Le apparecchiature saranno idonee a funzionare con temperature interne all'edificio comprese

tra 10°C e 40°C.

In condizioni di normale funzionamento (corrente alternata dai servizi CA presente), il

raddrizzatore fornirà sia la corrente di funzionamento degli ausiliari in corrente continua, sia la

corrente di mantenimento o di carica necessaria per la batteria.

In assenza di corrente alternata di alimentazione, la batteria deve essere in grado di alimentare i

circuiti ausiliari in corrente continua utilizzatori per il tempo prefissato.

8. OPERE CIVILI

Le opere civili previste in prima istanza per la costruzione della Sottostazione sono di seguito

descritte.

8.1 APPIANAMENTO DEL TERRENO

I lavori riguardano l'intera area della sottostazione e consisteranno nell'eliminazione del mantello

vegetale, scavo, riempimento e compattamento fino ad arrivare alla quota di appianamento

prevista.

8.2 FONDAZIONI

Si realizzeranno le fondazioni necessarie alla stabilità delle apparecchiature esterne a

132 e 36 kV.

8.3 BASAMENTO E DEPOSITO DI OLIO PER IL TRASFORMATORE

Per l'istallazione dei trasformatori di potenza si costruiranno idonei basamenti, ciascuno formato

da fondazioni di appoggio, una vasca intorno alle fondazioni per la raccolta di olio che, durante

un'eventuale fuoriuscita, canalizzerà l'olio in un deposito isolandolo.

BAUTELsa

Via Maroncelli n. 23 -10024 Moncalieri (TO) Tel./fax. 011.6052113 22

PARCO EOLICO MONTE CERCHIO RELAZIONE TECNICA PROGETTO ELETTRICO

e-mail: amministrazione@bautel.it

DRENAGGIO DI ACQUA PLUVIALE 8.4

Il drenaggio di acqua pluviale sarà realizzato tramite una rete di raccolta formata da tubature

drenanti che canalizzeranno l'acqua attraverso un collettore verso l'esterno, orientandosi verso le

cunette vicine alla sottostazione.

8.5 **CANALIZZAZIONI ELETTRICHE**

Si costruiranno le canalizzazioni elettriche necessarie alla posa dei cavi di potenza e controllo.

Queste canalizzazioni saranno formate da solchi, archetti o tubi, per i quali passeranno i cavi di

controllo necessari al corretto controllo e funzionamento dei distinti elementi dell'impianto.

8.6 ACCESO E VIALI INTERNI

Sarà progettato l'accesso alla Sottostazione dalla strada di accesso alla nuova sottostazione

RTN.

Si costruiranno i viali interni necessari a permettere l'accesso dei mezzi di trasporto e

manutenzione richiesti per il montaggio e la manutenzione degli apparati della sottostazione.

8.7 CHIUSURA PERIMETRALE

La recinzione dell'area della sottostazione sarà indicativamente di tipo ventilato costituita da

moduli di cemento prefabbricato alti 2,50 con aste superiori di altezza 1,70 m equispaziate ogni

0,20 - 0,25 m. L'altezza totale prevista della recinzione è di metri 2,50. Lo spessore della base

dei moduli sarà di cm. 30.

L'accesso alla Sottostazione sarà costituito da cancelli completi di cerniere, serratura, ferramenta

di manovra e chiusura e di cuscinetti a sfera da applicare su telai bassi per lo scorrimento del

cancello su guide in ferro murate nel pavimento, i cancelli saranno zincato a caldo.

VIA IVIAI OTICO......
Tel./fax. 011.6052113 Via Maroncelli n. 23 -10024 Moncalieri (TO)

e-mail: amministrazione@bautel.it

PARCO EOLICO MONTE CERCHIO RELAZIONE TECNICA PROGETTO ELETTRICO

9. SISTEMA DI CONTROLLO

Il Sistema di controllo della Sottostazione sarà indicativamente di tipo digitale e sarà costituito da una Unità di Controllo di Sottostazione disposta in un armadio chiamato di telecontrollo Avremo tra l'altro:

- Unità di Controllo di Montante per le celle a 36 kV
- Unità di Controllo pe l'acquisizione di dati dei servizi ausiliari.

Da ciascuna unità di controllo di montante e dei SSAA si potrà controllare e eventualmente agire localmente sugli apparati associati, e dalla unità di controllo di sottostazione si potrà appunto controllare tutta la sottostazione (tramite un PC standard connesso a tale unità), e disporre di informazioni relative a misure, allarmi e stato della sottostazione in generale.

Il sistema sarà compatibile con quanto previsto dalla Norma CEI 0-16 per il monitoraggio da remoto anche a cura del gestore di rete (CCI)

10.1. SISTEMI COMPLEMENTARI NEGLI EDIFICI

L'edificio di controllo della sottostazione sarà anche fornito dei seguenti impianti complementari:

- Sistema di allarme anti-fuoco.
- Sistema anti-incendio con mezzi manuali.
- Sistema di accolta dell'olio dei trasformatori, per la raccolta e successivo ritiro da parte di personale autorizzato).

10.2. SISTEMA DI RIFASAMENTO

In sede di progetto esecutivo si dovrà prevedere un sistema di rifasamento a compensazione dell'energia reattiva assorbita dall'impianto.

11. **MESSA A TERRA**

11.1. DESCRIZIONE

L'impianto di terra sarà rispondente alle prescrizioni della Norma vigente e in particolare alle prescrizioni della Guida CEI 11-37.

La maglia di terra sarà realizzata con conduttori di rame nudi di adeguata sezione, interrati ad una profondità di almeno 0,70 metri e comunque ad una profondità superiore a quella di riempimento previsto per la realizzazione della stazione.

L'impianto di terra sarà unico per tutta la sottostazione intendendo con ciò che l'impianto di terra dell'impianto per la connessione lato TERNA sarà collegato elettricamente all'impianto di terra dell'impianto di utenza.

MESSA A TERRA DI SERVIZIO 11.2

Si connetteranno direttamente a terra i sequenti elementi, che si considerano messa a terra di servizio:

- I neutri dei trasformatori di potenza e misura
- Le prese di terra dei sezionatori di messa a terra
- Le prese di terra degli scaricatori di sovratensione

11.3 MESSA A TERRA DI PROTEZIONE

Tutti gli elementi metallici dell'impianto saranno connessi alla rete di terra, rispettando le prescrizioni nella CEI 11-1 (paragrafo 9).

Si connetteranno a terra (protezione delle persone contro contatto diretto) tutte le parti metalliche normalmente non sottoposte a tensione, ma che possano esserlo in conseguenza di avaria, incidenti, sovratensione o tensione indotta.

Per questo motivo si connetteranno alla rete di terra, tra gli altri:

- Le carcasse di trasformatori, motori e altre macchine
- Le carpenterie degli armadi metallici (controllo e celle MT)
- Gli schermi metallici dei cavi MT
- Le tubature ed i conduttori metallici
- Le porte metalliche esterne dell'edificio
- Le sbarre anti-intruso delle finestre
- Le griglie esterne di ventilazione.

I cavi di messa a terra si fisseranno alla struttura e carcasse delle attrezzature con viti e graffe speciali di lega di rame.

Si utilizzeranno saldature ad alto potere di fusione per l'unione sotterranea, per resistere alla corrosione galvanica.

12 MISURA

12.1 MISURE DI ENERGIA (FISCALE)

L'energia esportata e importata del parco si misurerà nel punto di connessione con la rete del gestore. Si installerà inoltre un contatore ulteriore nella posizione di uscita della linea 36 kV dalla area edifici di raggruppamento.

La misura sarà effettuata tramite tre trasformatori di tensione esclusivamente dedicati e tre trasformatori di corrente (i secondari impiegati esclusivamente per la misura di fatturazione saranno di classe di precisione 0,2).

12.2 ULTERIORI APPARATI DI MISURA

Si disporrà delle seguenti misure nelle unità di controllo di montante, per ogni sezione di impianto e nel complessivo.

Celle 36 kV

Tensione (V), Corrente (A), Potenza attiva (W), Potenza reattiva (VAr), Frequenza (Hz), Fattore di potenza (cos φ).