REGIONE **PUGLIA**

COMUNE DI LUCERA

COMUNE DI TROIA

PROVINCIA DI

FOGGIA

PROGETTO DEFINITIVO RELATIVO ALLA REALIZZAZIONE DI UN IMPIANTO EOLICO COSTITUITO DA 18 AEROGENERATORI E RELATIVE OPERE DI CONNESSIONE ALLA R.T.N. RICADENTI NEI COMUNI DI FOGGIA, LUCERA (FG) E TROIA (FG)

INDAGINI CONSULTATE

ELABORATO

TAV103A

E DEGLI ING **INGEGNERE** Alessandro

Antezza Sez. A - 10743

PROPONENTE:

SKI 05 s.r.l.

via Caradosso n.9 Milano 20123 P.Iva 11412940964

PROGETTO E SIA:

ATECH srl

Via Caduti di Nassiryia, 55 70124- Bari (BA) pec: atechsrl@legalmail.it

Ing. Alessandro Antezza

II DIRETTORE TECNICO Ing. Orazio Tricarico

SOLARITES s.r.l.

piazza V.Emanuele II n.14 Ceva (CN) 12073

1	Dicembre 2023	GA GA GA		GA	Progetto Definitivo	
0	Luglio 2023				Progetto Definitivo	
EM./REV.	DATA	REDATTO	VERIFICATO	APPROVATO	DESCRIZIONE	

Committente		SONDAGGIO	FOGLIO
Cantiere	PROGETTO CELONE	S 1	
Località	TROIA -LUCERA - FOGGIA		
Data Inizio	Data Fine	II geol	ogo

Scala 1:200	Foto	Stratigrafia	Descrizione	Profondita'	Falda	Campioni	Carotaggio	Pozzo	S.P.T.
2 4 6 8 10 12 14 16 18 20 22 24 26 28			terreno vegetale e li- mi scuri Limo sabbioso gial- lastro con livelli di ghiaie eterometriche Alternanze di ghiaie in matrice sabbiso li- mosa e limi sabbiosi	- 0.50 - - 7.50 -	16.00	4.00			4.00 9.00 9.45 15.00 35 R ⁸

Committente		SONDAGGIO	FOGLIO
Cantiere	PROGETTO CELONE	S 2	
Località	TROIA -LUCERA - FOGGIA		
Data Inizio	Data Fine	ll geold	ogo

Scala 1:200	Foto	Stratigrafia	Descrizione	Profondita'	Falda	Campioni	Carotaggio	Pozzo	S.P.T.
2 4 6 8 10 12 14 16 18 20 22 24 26 28			terreno vegetale e li- mi scuri Limo sabbioso gial- lastro con trovanti lapidei Alternanze di ghiaie in matrice sabbiso li- mosa e limi sabbiosi	- 0.60	18.50	5.00	20 40 60 80		5.50 5.95 10.00 16.00

Comr	mittente		SONDAGGIO	FOGLIO
Canti	ere PROGETTO CELO	DNE	S 3	
Local	ità TROIA -LUCERA -	FOGGIA		
Data	Inizio	Data Fine	 II geold	ogo

Scala 1:200	Stratigrafia	Descrizione	Profondita'	Falda	Campioni	Carotaggio	Pozzo	S.P.T.
2 4 6 8 10 10 12 14 16 18 20 22 24 24 26 28 30	* (terreno vegetale e li- mi scuri Limo sabbioso gial- lastro con ghiaia limo sabbioso Altenanze di sabbie limose con ghiaia e- terometrica	- 0.50		5.00 - c1 - 5.50 -			5.50 10.00 10.00 16.00

Committente		SONDAGGIO	FOGLIO
Cantiere	PROGETTO CELONE	S 4	
Località	TROIA -LUCERA - FOGGIA		
Data Inizio	Data Fine	II geolo	ogo

Scala 1:200	Foto	Stratigrafia	Descrizione	Profondita'	Falda	Campioni	Carotaggio	Pozzo	S.P.T.
2		500	terreno vegetale e li- mi scuri	0.80			20 40 60 80		10 20 30 40
4			Limo sabbioso gial- lastro con ghiaia grossolana	3.50					4.00
6		1010	Altenanze di ghaie e- terometriche e sab- bie limose						4.45
8		7070							
1	1	1919							
1:		7878							14.00
1		986							14.45
1	3	999							
2)	686		20.00					
2	2								
2	1								
2	3								
3	1								

REGIONE PUGLIA

COMUNI DI TROIA - LUCERA

Provincia di FOGGIA

OGGETTO:

ANALISI GEOTECNICHE DI LABORATORIO

VERBALE n°

1581

28/07/2022

LOCALITA' : Progetto Celone

CANTIERE : Progetto Celone

COMMITTENTE: dott. geologo Bacchelli

Campioni analizzati:

1 1581 S1 C1 m 04.00-04.50

1581 S2 C1 m 05.00-05.50 2

1581 S4 C1 m 03.50-04.00

Copia conforme alloridinale

PRSE

569

DATA **ACCETTAZIONE**

28/07/2022

DATA DI **EMISSIONE**

05/08/2022

Contraction of Contraction of the Contraction of Co

www.geosyevalit geosyevalaporatoritys-

Pag 1/1

Certificato nº:	27980 emesso il		05/08/22	INIZIO PROVA	FINE PROVA	
VERBALE DI ACCETTAZIONE	1581	del	28/07/22	30/07/22	30/07/22	
COMMITTENTE:	dott. geologo Bacchelli					
SITO:	Progetto Celone					
LOCALITA':	Progetto Celone					
SONDAGGIO :	S1		DATA PRELIEVO	27/07/22	Qualità	
CAMPIONE :	C1		TIPO DI FUSTELLA	(Metallo)	Qualita	
PROFONDITA':	04.00-04.50	(m)	TIPO DI CAMPIONE	Indisturbat	o Q5	

APERTURA CAMPIONI

Modalità di prova: UNI EN ISO 14688-1

Diametro : 8.4 (cm) Consistenza : Alta Lunghezza : 26.5 (cm) Plasticità : Bassa Umidità : Media

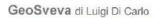
Colore : 10YR - 5/3

Pocket : (KPa) Vane test : (KPa)

Descrizione

Ghiaia eterodimensionale in matrice sabbiosa limosa

Analisi effettuate certificati :


- n°27981 Determinazione del peso specifico assoluto dei grani - n°27982 Peso di volume allo stato naturale - n°27983 Determinazione del contenuto naturale d'acqua - n°27984 Analisi Granulometrie per sedimentazione e setacciatura - n°27985 Limite di Liquidità e di Plasticità - n°27986 Prova di compressione non confinata ELL

Autorizzazione n 02610 - - 1

(m)

Pag 1/1

Certificato nº:	27981	emesso	il	05/08/22	INIZIO PROVA	FINE PROVA
VERBALE DI ACCE	TTAZIONE	1581	del	28/07/22	30/07/22	03/08/22

COMMITTENTE: dott. geologo Bacchelli

SITO:

Progetto Celone Progetto Celone

LOCALITA': SONDAGGIO : S1

C1

CAMPIONE PROFONDITA': 04.00-04.50

DATA PRELIEVO TIPO DI FUSTELLA

TIPO DI CAMPIONE

27/07/22

(Metallo) Indisturbato Qualità

Q5

PESO SPECIFICO DEI GRANI

Modalità di prova: UNI EN ISO 17892-2

Temperatura di prova:

25

°C

Capacità del picnometro:

100

ml

Disaerazione eseguita sotto vuoto e per bollitura

Peso specifico dei grani

(media delle due misure)

26.428 KN/m³

LO SPERIMENTATORE Geom. Giovanni Turco IL DIRETTORE DEL LABORATORIO Dott.Ing.Luigi Di Carlo

Documento n° 0943 stampato il 05/08/2022 composto da 23 pagine : pag.3

Autorizzazione n 03510

mod.PQ 75-03 Rev.01 del 01/2021

Pag 1/1

Certificato nº:	27982	emesso	il	05/08/22	INIZIO PROVA	FINE PROVA
VERBALE DI ACCETTA	ZIONE 1581		del	28/07/22	30/07/22	30/07/22
COMMITTENTE:	dott. ge	ologo Ba	cchelli			
SITO:	Progetto	o Celone				
LOCALITA':	Progetto	o Celone				
SONDAGGIO :	S1			DATA PRELIEVO	27/07/22	Qualità
	1200				48.4 . L - 11 - A	Qualita

www.gadayaya.it

CAMPIONE : C1 TIPO DI FUSTELLA (Metallo)

PROFONDITA' : 04.00-04.50 (m) TIPO DI CAMPIONE Indisturbato Q5

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: UNI EN ISO 17892-1

Determinazione mediante fustella tarata

Fustella n°		<i>γ</i> =	18.67	KN/m ³
-------------	---------	------------	-------	-------------------


Fustella n°
$$V = 18.82$$
 KN/m³

Peso volume allo stato naturale	$\gamma =$	18.72	KN/m ³
(media delle tre misure)		10.12	

Copia conforme alloridinale

LO SPERIMENTATORE Geom. Giovanni Turco

www.gedaveva.it geos vava apprator @allce.it

T+39 6681 31 81 66

Pag 1/1

Numero certificato:	27983	emesso	il	05/08/22	INIZIO PROVA	FINE PROVA
VERBALE DI ACCETTAZ	ZIONE	1581	del	28/07/22	30/07/22	31/07/22
COMMITTENTE:	dott. ged	ologo Bad	chelli			
SITO :	Progetto	Celone				
LOCALITA':	Progetto	Celone				
SONDAGGIO :	S1			DATA PRELIEVO	27/07/22	Qualità
CAMPIONE :	C1			TIPO DI FUSTELLA	(Metallo)	Quante
PROFONDITA':	04.00-04	.50	(m)	TIPO DI CAMPIONE	Indisturbato	Q5

CONTENUTO D'ACQUA ALLO STATO NATURALE

Modalità di prova: ASTM D 2216 / 2005

Temperatura di essiccazione: 110 °C

 Contenitore N°
 8
 ►
 Wn =
 13.2
 %

 Contenitore N°
 72
 ►
 Wn =
 13.3
 %

 Contenitore N°
 19
 ►
 Wn =
 13.8
 %

Contenuto d'acqua allo stato naturale wn = 13.39 %

Copia conforme alloridinale

LO SPERIMENTATORE Geom. Giovanni Turco

(m)

valappraren gial takin Pag 1/2

Numero certificato:	27984	ta di emis	sione:	05/08/22	INIZIO PROVA	FINE PROVA
VERBALE DI ACCETTA	AZIONE	1581	del	28/07/22	30/07/22	04/08/22

COMMITTENTE: dott. geologo Bacchelli

SITO:

Progetto Celone

LOCALITA': SONDAGGIO :

Progetto Celone

CAMPIONE : C1 PROFONDITA' : 04

C1

04.00-04.50

DATA PRELIEVO

Www.gegsyevaid

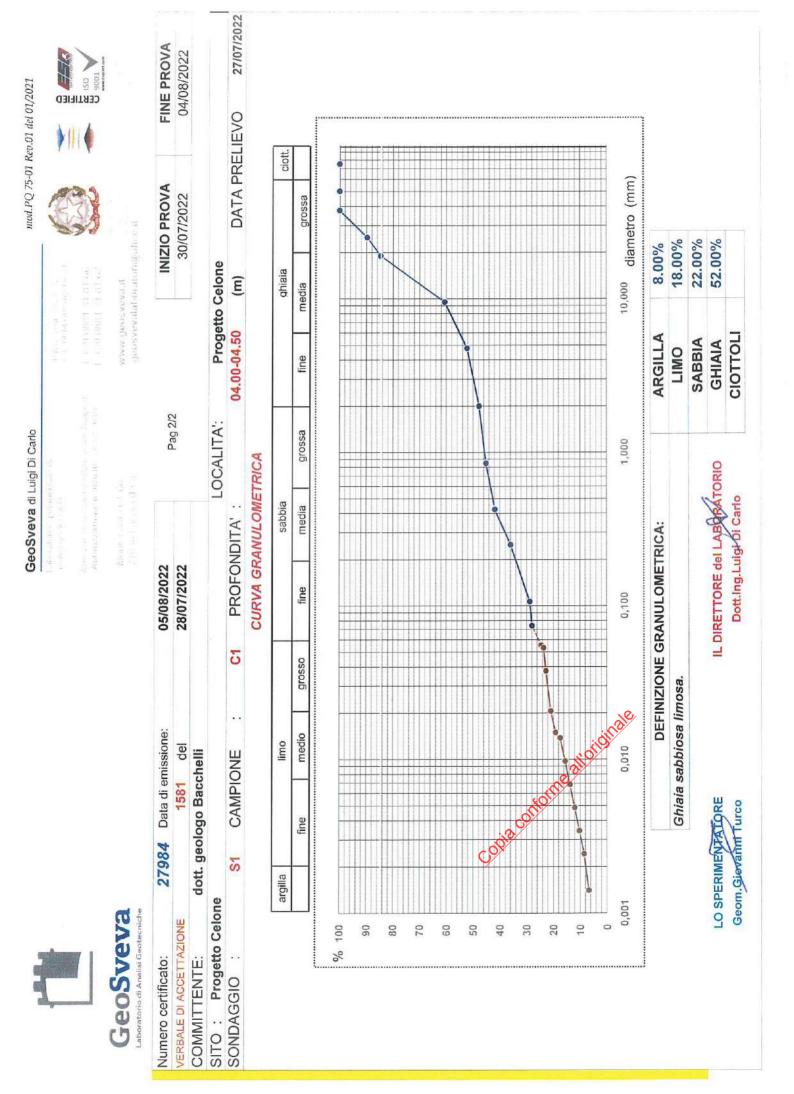
TIPO DI FUSTELLA
TIPO DI CAMPIONE

Qualità

ANALISI GRANULOMETRICA

Modalità di prova: ASTM D 422 / 2007

	Aı	nalisi con va	gli		
Setaccio	diametro (mm)	peso grani (g)	trattenuto (%)	passante (%)	diametro grani (mm)
4"	101.60			100.00	101.60
3	75.00			100.00	75.00
2	50.00			100.00	50.00
1.5	37.50			100.00	37.50
1"	25.00	60.36	10.30	89.70	25.00
0.75	19.00	29.34	15.31	84.69	19.00
0.375	9.50	140.80	39.34	60.66	9.50
4	4.75	49.28	47.75	52.25	4.75
10	2.00	26.18	52.22	47.78	2.00
18	0.85	15.44	54.85	45.15	0.850
40	0.43	19.68	58.21	41.79	0.425
60	0.25	34.09	64.03	35.97	0.250
140	0.11	41.85	71.17	28.83	0.106
200	0.07	4.90	72.01	27.99	0.074
0.45	< 0.074	164.00	27.99	ssante al 2	200
Somma (g)		585.92			
Peso iniziale	(g)	586.28			
Perdita (g)		0.36			


		Analsi con c	lensimetro		
Tempo	Tempe_ ratura	Lettura	Lettura + C _M	Correzione temperatura	Percentuale parziale
min	°C	R	R'		%
0.50	20.00	30.00	30.50		87.45
1.00	20.00	29.00	29.50		84.27
2.00	20.00	28.00	28.50		81.09
4.00	20.00	26.00	26.50		74.73
8.00	20.00	24.00	24.50		68.37
15.00	20.00	22.00	22.50		62.01
30.00	20.00	20.00	20.50		55.65
60.00	20.00	18.00	18.50		49.29
120.00	20.00	16.00	16.50		42.93
240.00	20.00	14.00	14.50		36.57
480.00	20.00	12.00	12.50		30.21
1440.00	20.00	10.00	10.50		23.85

LO SPERIMENTATIORE Geom. Giovanni Turco

Analisi	con	densimetro	,

dispersivo	Cd	-3.00
menisco	Cm	0.50
temperatura	intercetta	-5.00
temperatura	pendenza	0.25
caratteristich	e fisiche	
peso campior	e secco g	50.00
peso specific	KN/m ³	26.428
taratura dens	imetro	
intercetta		15.573
pendenza		-0.235

	Percentuale totale %	Diametro
-	24.48	0.0552
Ī	23,59	0.0531
	22.70	0.0376
ċ	20.92	0.0206
-9	19.14	0.0149
9	17.36	0.0137
	15.58	0.0097
	13.80	0.0069
	12.02	0.0048
	10.24	0.0034
	8.46	0.0024
	6.68	0.0014

Pag 1/1

Numero certificato:	27985	emesso	il	05/08/22	INIZIO PROVA	FINE PROVA
VERBALE DI ACCETTA	AZIONE	1581	del	28/07/22	30/07/22	04/08/22

COMMITTENTE: dott. geologo Bacchelli

SITO: **Progetto Celone**

LOCALITA': **Progetto Celone**

SONDAGGIO CAMPIONE C1

PROFONDITA': 04.00-04.50 **DATA PRELIEVO** TIPO DI FUSTELLA

TIPO DI CAMPIONE

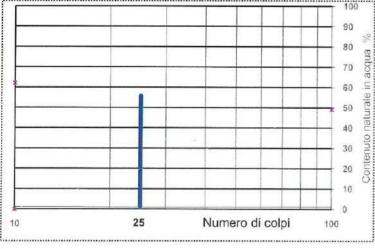
27/07/22 (Metallo)

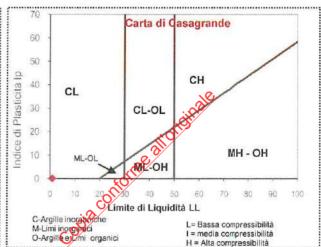
Qualità

(m) Indisturbato Q5

LIMITI DI CONSISTENZA LIQUIDO E PLASTICO

Modalità di prova: UNI EN ISO 17892-2


LA PROVA E' STATA ESEGUITA SULLA FRAZIONE GRANULOMETRICA PASSANTE AL SETACCIO Nº 40 (0,425 mm)


	LIN	/IITE LIQUI	IDO
PROVINO n.	1	2	3
NUMERO CONTENITORE	0	0	0
NUMERO DI COLPI	0	0	0
TARA(g)	0	0	0
PESO UMIDO + TARA (g)	0	0	0
PESO SECCO + TARA (g)	0	0	0
CONTENUTO IN ACQUA (g)	0	0	0
PESO SECCO (g)	0	0	0
CONTENUTO IN ACQUA (%)	0.000	0.000	0.000

LIMITE PLASTICO					
1	2				
0	0				
-	-				
0	0				
0	0				
0	0				
0.000	0.000				
0.000	0.000				
0.000	0.000				

CONTENUTO NATURALE IN ACQUA =

13.39

RISULTATI

% LIMITE LIQUIDO (LL) =N.D. LIMITE PLASTICO (LP) =N.D. INDICE DI PLASTICITA' (IP) =N.D. INDICE DI CONSISTENZA (IC) =N.D.

> LO SPERIMENTATORE Geom. Giovanni Turco

Pag 1/1

Numero certificato:	27986	emesso	il	05/08/22	INIZIO PROVA	FINE PROVA
VERBALE DI ACCETTA	AZIONE	1581	del	28/07/22	30/07/22	01/08/22

COMMITTENTE: dott. geologo Bacchelli

SITO: **Progetto Celone**

LOCALITA': **Progetto Celone** SONDAGGIO : 51

CAMPIONE C1

PROFONDITA':

(m)

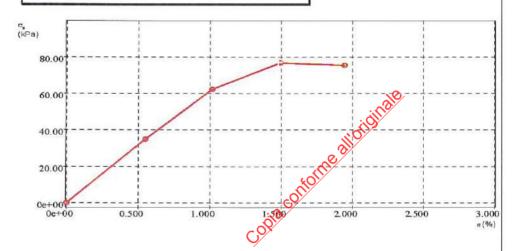
04.00-04.50

DATA PRELIEVO TIPO DI FUSTELLA

TIPO DI CAMPIONE

27/07/22 (Metallo)

Qualità


Indisturbato Q5

PROVA DI COMPRESSIONE SEMPLICE

Modalità di prova: ASTM D 2166 / 2006

e(%)	s (KPa)	
0,00	0,00	
0,55	34,83	
1,02	62,28	
1,50	76,71	
1,95	75,38	
2,41	34,18	

Dati del provino		1581-1	1L
Sezione provino Altezza iniziale		11,330 76,000	
Altezza finale		74,700	mm
Densità umida iniziale	γ,	17,884	KN/m 3
Densità umida finale	γ,	18,406 K	N/m 3
Densità secca	γ	15,888	KN/m 3
Densità secca finale	y "	16,165	KN/m 3
Umidità iniziale	W "	12,561	%
Umidità finale	w.°	13,866	%
Peso specifico dei grani	1000	26,427	KMM ³
Saturazione iniziale	s.	51,0	34 %
Saturazione finale	Si	58,8	58 %
Indice dei vuoti iniziale	e o	0,6	63
Indice dei vuoti finale	e r	0,6	35
Peso volume	γ	17,884	KN/m³

Maximum strength

kPa

Strain

1,49

%

LO SPERIMENTATORE Geom. Giovanni Turco

Monatero de le infrastrutture e sa Toagan. Autorizzazione n. 02610 T +39 0381 31 81 66 F +39 0381 31 81 67

www.geosveva.it geosvevalaboratori@alice.it

Pag 1/1

Certificato nº:	27987 emesso il		05/08/22	INIZIO PROVA	FINE PROVA
VERBALE DI ACCETTAZIONE	1581	del	28/07/22	30/07/22	30/07/22
COMMITTENTE:	dott. geologo Bacchelli				
SITO :	Progetto Celone				
LOCALITA':	Progetto Celone				
SONDAGGIO :	S2		DATA PRELIEVO	27/07/22	Qualità
CAMPIONE :	C1		TIPO DI FUSTELLA	(Metallo)	Qualita
PROFONDITA':	05.00-05.50	(m)	TIPO DI CAMPIONE	Indisturbate	o Q5

APERTURA CAMPIONI

Modalità di prova: UNI EN ISO 14688-1

Diametro : 8.4 (cm) Consistenza : Alta Lunghezza : 25.5 (cm) Plasticità : Bassa Umidità : Media

Colore : 10YR - 6/4

Pocket : (KPa) Vane test : (KPa)

Descrizione Limo sabbioso.

Analisi effettuate certificati:

- n°27988 Determinazione del peso specifico assoluto dei grani - n°27989 Peso di volume allo stato naturale - n°27990 Determinazione del contenuto naturale d'acqua - n°27991 Analisi Granulometrie per sedimentazione e setacciatura - n°27992 Limite di Liquidità e di Plasticità

LO SPERIMENTATORE
Geom. Giovanni Turco

Autorizzazione n. 02610 - 26 03 2010

(m)

mod.PQ 75-05 Rev.01 del 01/2021

www.geosveva.it

F +39 0881 31 31 67

Pag 1/1

Certificato n°:	27988	emesso	il	05/08/22	INIZIO PROVA	FINE PROVA
VERBALE DI ACCE	TTAZIONE	1581	del	28/07/22	30/07/22	03/08/22

COMMITTENTE: dott. geologo Bacchelli

SITO:

Progetto Celone Progetto Celone

LOCALITA': SONDAGGIO : S2

CAMPIONE C1 PROFONDITA': 05.00-05.50

DATA PRELIEVO TIPO DI FUSTELLA

TIPO DI CAMPIONE

27/07/22

(Metallo) Indisturbato

Qualità

Q5

PESO SPECIFICO DEI GRANI

Modalità di prova: UNI EN ISO 17892-2

Temperatura di prova:

25

°C

Capacità del picnometro:

100

ml

Disaerazione eseguita sotto vuoto e per bollitura

Peso specifico dei grani

(media delle due misure)

26.363 KN/m3

LO SPERIMENTATORE Geom. Gjovanni Turco IL DIRETTORE DEL LABORATORIO Dott.Ing.Luigi Di Carlo

Documento nº 0943 stampato il 05/08/2022 composto da 23 pagine : pag.11

Wintstern delle Intrastrutture a ser Trasac Autorizzazione ni 02610 - 2613 2010

geosvevaraboratori@alica.it

mod.PQ 75-03 Rev.01 del 01/2021

Pag 1/1

Certificato n°:	27989	emesso	emesso il 05/08/22		INIZIO PROVA	FINE PROVA
VERBALE DI ACCE	TTAZIONE	1581	del	28/07/22	30/07/22	30/07/22

COMMITTENTE: dott. geologo Bacchelli

SITO:

Progetto Celone

LOCALITA':

Progetto Celone

SONDAGGIO: CAMPIONE

C1

PROFONDITA':

05.00-05.50

(m)

DATA PRELIEVO TIPO DI FUSTELLA

TIPO DI CAMPIONE

27/07/22 (Metallo)

Indisturbato

Qualità

Q5

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: UNI EN ISO 17892-1

Determinazione mediante fustella tarata

Fustella n°

18.44

KN/m3

Fustella n°

18.48

KN/m3

Fustella n°

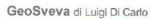
18.55

Copia conforme altoridinale

KN/m³

Peso volume allo stato naturale

(media delle tre misure)


 $\gamma =$

18.49

KN/m³

ENTATORE LO SPERM Geom. Giovanni Turco

Autorizzazione n. 02610 - E.

mod.PQ 75-04 Rev.01 del 01/2021

www.geoszeva.it geoszevalaboratori@alice.it

Pag 1/1

%

Numero certificato:	27990	emesso	il	05/08/22	INIZIO PROVA	FINE PROVA
VERBALE DI ACCETTA	ZIONE	1581	del	28/07/22	30/07/22	31/07/22
COMMITTENTE:	dott. ged	ologo Bad	chelli			
SITO:	Progetto	Celone				
LOCALITA':	Progetto	Celone				
SONDAGGIO :	S2			DATA PRELIEVO	27/07/22	Ovolità
CAMPIONE :	C1			TIPO DI FUSTELLA	(Metallo)	Qualità
PROFONDITA':	05.00-05	.50	(m)	TIPO DI CAMPIONE	Indisturbato	Q5

CONTENUTO D'ACQUA ALLO STATO NATURALE

Modalità di prova: ASTM D 2216 / 2005

Temperatura di essiccazione : 110 °C

Contenitore N°	57		Wn =	15.2	%
Contenitore N°	41	ightharpoons	Wn =	15.0	%
Contenitore N°	273		Wn =	15.2	%

Contenuto d'acqua allo stato naturale (media delle tre misure) Wn = 15.16

Codia contorna all'originale

LO SPERIMENTATORE Geom.Giovanni Turco

Ministero de a infrastrutti, e a de Trasporti Autorizzazione n. 02810 - 26 (1.17)

T +39 0881 31 81 86 F +39 0881 31 81 87

www.geosyeva.it geosvevalaboratori@alice.it

Pag 1/2

Numero certificato:	27991	ta di emis	sione:	05/08/22	INIZIO PROVA	FINE PROVA	
VERBALE DI ACCETTA	ZIONE	1581	del	28/07/22	30/07/22	04/08/22	

COMMITTENTE: dott. geologo Bacchelli

SITO: LOCALITA':

CAMPIONE

Perdita (g)

Progetto Celone Progetto Celone

SONDAGGIO

S2

C1 PROFONDITA':

05.00-05.50

DATA PRELIEVO

TIPO DI FUSTELLA

TIPO DI CAMPIONE

Qualità

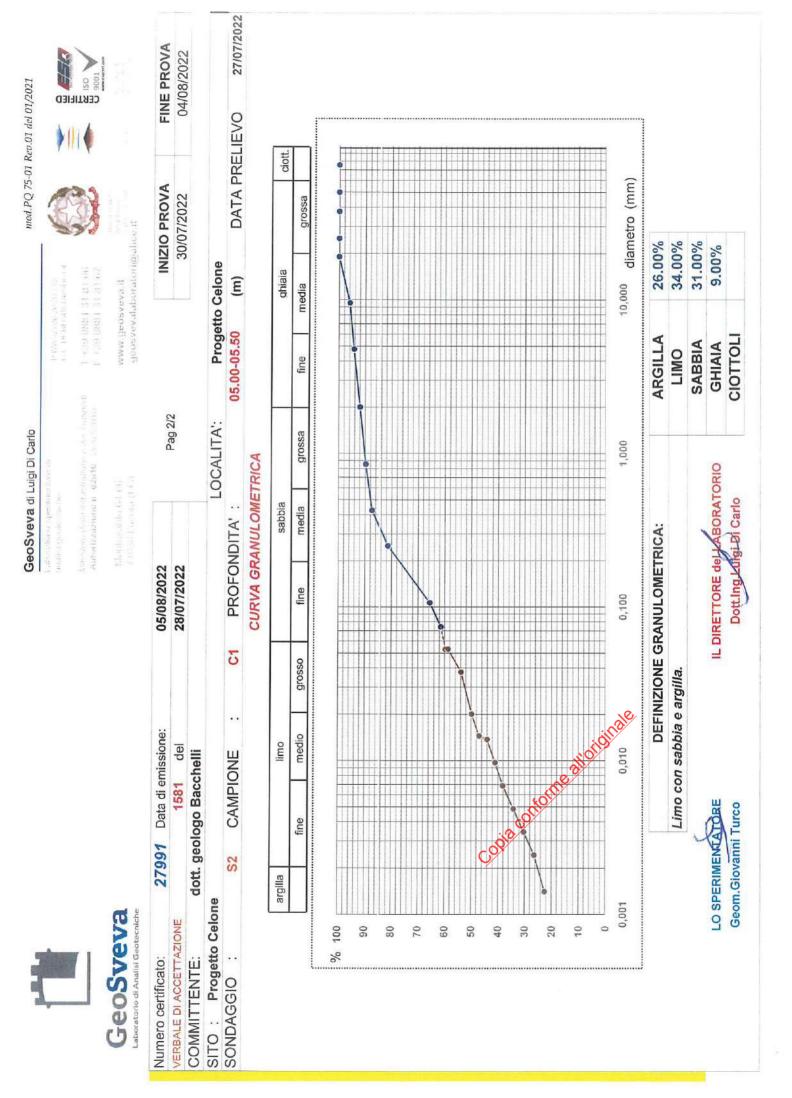
ANALISI GRANULOMETRICA

(m)

Modalità di prova: ASTM D 422 / 2007

	Α	nalisi con va	gli		
Setaccio	diametro (mm)	peso grani (g)	trattenuto (%)	passante (%)	diametro grani (mm)
4"	101.60		X X	100.00	101.60
3	75.00			100.00	75.00
2	50.00			100.00	50.00
1.5	37.50			100.00	37.50
1"	25.00			100.00	25.00
0.75	19.00			100.00	19.00
0.375	9.50	16.54	4.05	95.95	9.50
4	4.75	6.79	5.72	94.28	4.75
10	2.00	9.57	8.06	91.94	2.00
18	0.85	8.91	10.24	89.76	0.850
40	0.43	9.92	12.68	87.32	0.425
60	0.25	24.25	18.62	81.38	0.250
140	0.11	64.33	34.38	65.62	0.106
200	0.07	16.87	38.51	61.49	0.074
0.45	< 0.074	251.00	61.49	ssante al 2	00
Somma (g)		408.20		di constanti di co	7775
eso iniziale	(g)	408.77			

		Analsi con c	lensimetro		
Tempo	Tempe_ ratura	Lettura	Lettura + C _M	Correzione temperatura	Percentuale parziale
min	°C	R	R'		%
0.50	20.00	33.00	33.50		97.13
1.00	20.00	32.50	33.00		95.53
2.00	20.00	30.00	30.50		87.57
4.00	20.00	28.00	28.50		81.20
8.00	20.00	26.50	27.00		76.43
15.00	20.00	25.00	25.50		71.65
30.00	20.00	23.50	24.00		66.87
60.00	20.00	22.00	22.50		62.10
120.00	20.00	20.00	20.50		55.73
240.00	20.00	18.00	18.50		49.36
480.00	20.00	16.00	16.50		42.99
1440.00	20.00	14.00	14.50		36.62


0.57

LO SPERIMENTATORE
Geom. Giovanni Turco

Analisi con densimetro

dispersivo	Cd	-3.00
menisco	Cm	0.50
temperatura	intercetta	-5.00
temperatura	pendenza	0.25
caratteristich	e fisiche	
peso campion	ie secco g	50.00
peso specific	KN/m ³	26.363
taratura dens	simetro	
intercetta		15.573
pendenza		-0.235

P	ercentuale totale	Diamero Grani
	%	mm
	59.72	0.0529
	58.74	0.0532
	53.85	0.0376
0/5	49.93	0.0201
-,00	47.00	0.0145
7	44.06	0.0137
	41.12	0.0097
	38.18	0.0069
	34.27	0.0049
	30.35	0.0034
	26.43	0.0024
	22.52	0.0014

Autorizzazione n. 02610 - 28 00 .uril

mod.PQ 75-06/a Rev.01 del 01/2021

Pag 1/1

27992	emesso	il	05/08/22	INIZIO PROVA	FINE PROVA
ONE	1581	del	28/07/22	30/07/22	04/08/22

SITO : LOCALITA':

Progetto Celone Progetto Celone

SONDAGGIO S2 CAMPIONE C1

PROFONDITA': 05.00-05.50 **DATA PRELIEVO** TIPO DI FUSTELLA

TIPO DI CAMPIONE

27/07/22 (Metallo)

Qualità

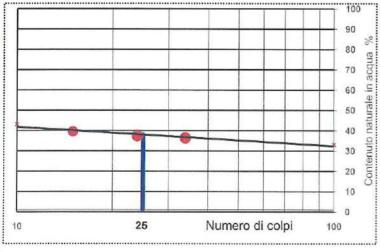
Indisturbato Q5

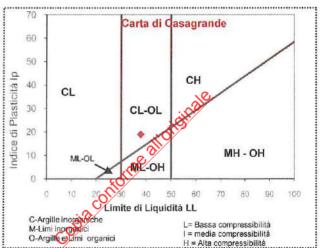
LIMITI DI CONSISTENZA LIQUIDO E PLASTICO

Modalità di prova: UNI EN ISO 17892-2

LA PROVA E' STATA ESEGUITA SULLA FRAZIONE GRANULOMETRICA PASSANTE AL SETACCIO Nº 40 (0,425 mm)

(m)


LIMITE LIQUIDO


LIMITEP	LASTIC
1	2
8	19
•	
20.348	21.04
29.318	33.039
27.874	31.113
1.444	1.926
7.526	10.073
19.187	19.120

	LIMITE LIQUIDO					
PROVINO n.	1	2	3			
NUMERO CONTENITORE	11	13	6			
NUMERO DI COLPI	15	24	34			
TARA(g)	17.3	16.342	17.149			
PESO UMIDO + TARA (g)	26.706	26.284	27.406			
PESO SECCO + TARA (g)	24.045	23.578	24.674			
CONTENUTO IN ACQUA (g)	2.661	2.706	2.732			
PESO SECCO (g)	6.745	7.236	7.525			
CONTENUTO IN ACQUA (%)	39.451	37.396	36.306			

CONTENUTO NATURALE IN ACQUA =

15.16 %

RISULTATI

LIMITE LIQUIDO	(LL) =	38	- %
LIMITE PLASTICO	(LP)=	19	%
INDICE DI PLASTICITA'	(IP)=	19	
INDICE DI CONSISTENZA	(IC)=	1.212	

LO SPERIMENTATORE Geom. Giovanni Turco

Autorizzazione n 02510

GeoSveva

Ministera delle intresnottare e se Trescon

- Montesanto 8 1-06 71038 Lucero Fits

Pag 1/1

- 71038 Lucera (AG	geosvevalaboratori@alice.it		

www.geosyeva.it

Certificato nº:	27	7993	emesso il		05/08/22	INIZIO PROVA	FINE PROVA
VERBALE DI ACCET	TAZIONE	1	581	del	28/07/22	30/07/22	30/07/22
COMMITTENTE	E: d	ott. ge	ologo Bacchel	li			
SITO:	P	rogett	o Celone				
LOCALITA':	P	rogett	o Celone				
SONDAGGIO	: S	4			DATA PRELIEVO	28/07/22	Ouglità
CAMPIONE	: C	1			TIPO DI FUSTELLA	(Metallo)	Qualità
PROFONDITA'	: 03	3.50-04	4.00	(m)	TIPO DI CAMPIONE	Indisturba	to Q5

APERTURA CAMPIONI

Modalità di prova: UNI EN ISO 14688-1

Diametro : 8.4 (cm) Consistenza : Alta Lunghezza : 22 (cm) Plasticità : Bassa Umidità : Media

Colore : 10YR - 7/4

Pocket : (KPa) Vane test : (KPa)

Descrizione

Ghiaia in matrice sabbiosa.

Analisi effettuate certificati:

- n°27994 Determinazione del peso specifico assoluto dei grani - n°27995 Peso di volume allo stato naturale - n°27996 Determinazione del contenuto naturale d'acqua - n°27997 Analisi Granulometrie per sedimentazione e setacciatura - n°27998 Limite di Liquidità e di Plasticità - n°27999 Prova di compressione non confinata ELL

Autorizzazione ni 92610 - 26.03 2010

T +39 0881 31 81 66

mod.PQ 75-05 Rev.01 del 01/2021

www.geosveva.it geosvevalaboratori@alice.it

Pag 1/1

Certificato nº:	27994	emesso	il	05/08/22	INIZIO PROVA	FINE PROVA
VERBALE DI ACCET	TAZIONE	1581	del	28/07/22	30/07/22	03/08/22
COMMITTENTE	: dott. ge	eologo Bad	chelli			
SITO :	Progett	o Celone				
LOCALITA':	Progett	o Celone				
SONDAGGIO	. C1			DATA DDELIEVO	00/07/00	

SONDAGGIO 28/07/22 DATA PRELIEVO Qualità CAMPIONE C1 TIPO DI FUSTELLA (Metallo) PROFONDITA': 03.50-04.00 (m) TIPO DI CAMPIONE Indisturbato Q5

PESO SPECIFICO DEI GRANI

Modalità di prova: UNI EN ISO 17892-2

Temperatura di prova: 25 °C

Capacità del picnometro: 100 m

Disaerazione eseguita sotto vuoto e per bollitura

Peso specifico dei grani

(media delle due misure)

26.341 KN/m³

RIMENTATORE Geom. Giovanni Turco

E DEL LABORATORIO IL DIRETTOR Dott.Ing.Luigi Di Carlo

Documento nº 0943 stampato il 05/08/2022 composto da 23 pagine : pag.18

www.geosyeva.it

geosvevalaboratori@alice.it

mod.PQ 75-03 Rev.01 del 01/2021

Pag 1/1

Certificato nº:	27995	emesso	il	05/08/22	INIZIO PROVA	FINE PROVA
VERBALE DI ACCE	TTAZIONE	1581	del	28/07/22	30/07/22	30/07/22

COMMITTENTE: dott. geologo Bacchelli

SITO: Progetto Celone

LOCALITA': **Progetto Celone** SONDAGGIO: \$4

CAMPIONE : C1

PROFONDITA': 03.50-04.00 DATA PRELIEVO TIPO DI FUSTELLA

TIPO DI CAMPIONE

28/07/22 (Metallo)

Indisturbato

Qualità

Q5

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: UNI EN ISO 17892-1

Determinazione mediante fustella tarata

(m)

Fustella nº

17.91

KN/m3

Fustella nº

18.01

KN/m³

Fustella nº

34.13

Copia conforme altoridinale

KN/m3

Peso volume allo stato naturale

(media delle tre misure)

 $\gamma =$

23,35

KN/m³

LO SPERIMEN ATORE Geom. Gióvanni Turco

IL DIRETTORE DEL LABORATORIO Dott.Ing. Luigi Di Carlo

Documento nº 0943 stampato il 05/08/2022 composto da 23 pagine : pag.19

an water or sper markers .

Vinistero delle Infrastrutture e dei Trasson. Autorizzazione n. 02610 - 26/03/2013

mod.PQ 75-04 Rev.01 del 01/2021

Pag 1/1

- Montasanto 64-66 - 71036 Lucera IFG mww.geosveva.it

certificato:	27996	emesso il	05/08/22	INIZIO PROVA
out Atlansi Georg	CHICHE	Laga Caccia in G		ror atom wance. it

Numero certificato:	27996	emesso	il	05/08/22	INIZIO PROVA	FINE PROVA	
VERBALE DI ACCETTAZIONE		ONE 1581 d		28/07/22	30/07/22	31/07/22	
COMMITTENTE:	dott. ged	ologo Bad	chelli				
SITO:	Progetto	Celone					
LOCALITA':	Progetto	Celone					
SONDAGGIO :	S4			DATA PRELIEVO	28/07/22	0	
CAMPIONE :	C1			TIPO DI FUSTELLA	(Metallo)	Qualità	
PROFONDITA':	03.50-04	.00	(m)	TIPO DI CAMPIONE	Indisturbat	o Q5	

CONTENUTO D'ACQUA ALLO STATO NATURALE

Modalità di prova: ASTM D 2216 / 2005

Temperatura di essiccazione :

110 °C

Contenitore N°	15		Wn =	6.6	%
Contenitore N°	10	ightharpoons	Wn =	6.6	%
Contenitore N°	9		Wn =	7.2	%

Contenuto	d'acqua	allo	stato	naturale
(media delle tre mi	sure)			

Wn =

6.80

%

Codia conforme alloridinale

LO SPERIMENTATORE Geom. Giovanni Turco

Ministero delle infrattizzore e del Prasport Autorizzazione ni 02619 i 31.012010

- Montasano 84-88 - 71038 Lucera FS

www.geosveva.it geosvevalaboratori@alice.it Pag 1/2

Numero certificato:	27997	ta di emis	sione:	05/08/22	INIZIO PROVA	FINE PROVA
VERBALE DI ACCETTA	AZIONE	1581	del	28/07/22	30/07/22	04/08/22

COMMITTENTE: dott. geologo Bacchelli

SITO : LOCALITA': Progetto Celone Progetto Celone

SONDAGGIO :

S4

CAMPIONE : PROFONDITA' :

C1 03.50-04.00

DA

(m)

TIPO DI CAMPIONE

DATA PRELIEVO
TIPO DI FUSTELLA
Qualità

ANALISI GRANULOMETRICA

Modalità di prova: ASTM D 422 / 2007

	Α	nalisi con va	gli		
Setaccio	diametro (mm)	peso grani (g)	trattenuto (%)	passante (%)	diametro grani (mm)
4"	101.60			100.00	101.60
3	75.00			100.00	75.00
2	50.00			100.00	50.00
1.5	37.50			100.00	37.50
1"	25.00			100.00	25.00
0.75	19.00	13.15	2.94	97.06	19.00
0.375	9.50	48.87	13.85	86.15	9.50
4	4.75	41.94	23.22	76.78	4.75
10	2.00	76.84	40.38	59.62	2.00
18	0.85	61.77	54.18	45.82	0.850
40	0.43	21.83	59.05	40.95	0.425
60	0.25	14.56	62.31	37.69	0.250
140	0.11	31.83	69.42	30.58	0.106
200	0.07	13.92	72.53	27.47	0.074
0.45	< 0.074	123.00	27.47	ssante al 2	00
Somma (g)		447.70			
Peso iniziale	(g)	448.05			-
Perdita (g)		0.35			

		Analsi con o	lensimetro		
Tempo	Tempe_ ratura	Lettura	Lettura + C _M	Correzione temperatura	Percentuale parziale
min	°C	R	R'		%
0.50	20.00	28.00	28.50		81.25
1.00	20.00	27.00	27.50		78.06
2.00	20.00	25.50	26.00		73.28
4.00	20.00	23.50	24.00		66.91
8.00	20.00	21.00	21.50		58.94
15.00	20.00	19.50	20.00		54.16
30.00	20.00	18.00	18.50		49.38
60.00	20.00	16.00	16.50		43.01
120.00	20.00	14.00	14.50		36.64
240.00	20.00	13.00	13.50		33.45
480.00	20.00	11.50	12.00		28.67
1440.00	20.00	10.00	10.50		23.90

LO SPERIMENTATORE
Geom. Giovanni Turco

Analisi con densimetro

dispersivo	Cd	-3.00
menisco	Cm	0.50
temperatura	intercetta	-5.00
temperatura	pendenza	0.25
caratteristich	e fisiche	
peso campion	e secco g	50.00
peso specific	KN/m ³	26.341
taratura dens	simetro	
intercetta		15.573
pendenza		-0.235

grani mm
mm
0.0569
0.0533
0.0377
0.0213
0.0155
0.0138
0.0097
0.0069
0.0049
0.0034
0.0024
0.0014

GeoSveva

Numero certificato:

Pag 2/2

GeoSveva di Luigi Di Carlo

Autorizzazione n. 02610 (26/03/016)

F 639 0881 31 81 67

mod.PQ 75-01 Rev.01 del 01/2021

04/08/2022

www.geosveva.it

geosvevalaboratori@alice.it INIZIO PROVA FINE PROVA

30/07/2022

VERBALE DI ACCETTAZIONE 1581 del COMMITTENTE: dott. geologo Bacchelli

27997

SITO: Progetto Celone

SONDAGGIO :

CAMPIONE

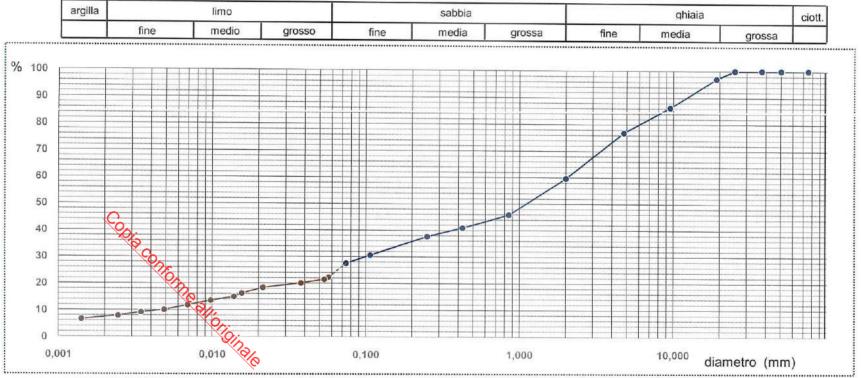
Data di emissione:

C1

PROFONDITA':

05/08/2022

28/07/2022


LOCALITA': **Progetto Celone** 03.50-04.00

(m)

DATA PRELIEVO

28/07/2022

CURVA GRANULOMETRICA

DEFINIZIONE GRANULOMETRICA: ARGILLA 8.00% Ghiaia con sabbia limosa. LIMO 18.00% SABBIA 34.00% LO SPERIMENTATORE **GHIAIA** IL DIRETTORE del LABORATORIO 40.00% Dott.Ing.Luigi Di Carlo Geom. Giovanni Turco CIOTTOLI

PROFONDITA': 03.50-04.00

GeoSveva di Luigi Di Carlo

Autorizzazione n. 02610 - 26/03/2010

T+39 0881 31 31 86 F+39 0881 31 31 67

Indisturbato

mod.PQ 75-06/a Rev.01 del 01/2021

Pag 1/1

Q5

www.geosveva.it geosvevalaboratori@alice it

Numero certificato:	27998	emesso	il	05/08/22	INIZIO PROVA	FINE PROVA
VERBALE DI ACCETTA	AZIONE	1581	del	28/07/22	30/07/22	04/08/22
COMMITTENTE:	dott. ge	ologo Bad	chelli			
SITO :	Progetto	o Celone				
LOCALITA':	Progetto	o Celone				
SONDAGGIO :	S4			DATA PRELIEVO	28/07/22	
CAMPIONE :	C1			TIPO DI FUSTELLA	(Metallo)	Qualità

LIMITI DI CONSISTENZA LIQUIDO E PLASTICO

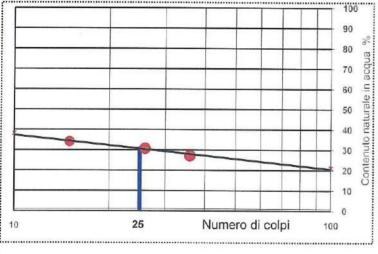
Modalità di prova: UNI EN ISO 17892-2

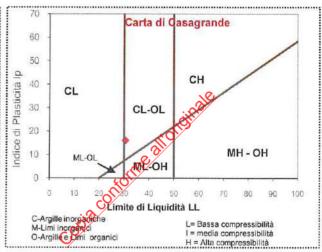
TIPO DI CAMPIONE

LA PROVA E' STATA ESEGUITA SULLA FRAZIONE GRANULOMETRICA PASSANTE AL SETACCIO Nº 40 (0,425 mm)

(m)

LIMITE LIQUIDO


00	LIMITE P	LASTICO
3	1	2
69	16	273
36	823	-
9.82	20.933	17.889
20.999	38.433	33.196
18.621	36.218	31.219
2.378	2.215	1.977
8.801	15.285	13.330
27.020	14.491	14.831


PROVINO n.	1	2	3
NUMERO CONTENITORE	6	10	69
NUMERO DI COLPI	15	26	36
TARA (g)	15.676	9.795	9.82
PESO UMIDO + TARA (g)	29.448	23.235	20.999
PESO SECCO + TARA (g)	25.957	20.089	18.621
CONTENUTO IN ACQUA (g)	3.491	3.146	2.378
PESO SECCO (g)	10.281	10.294	8.801
CONTENUTO IN ACQUA (%)	33.956	30.561	27.020

CONTENUTO NATURALE IN ACQUA =

6.80

RISULTATI

LIMITE LIQUIDO	(LL) =	31	- %
LIMITE PLASTICO	(LP)=	15	%
INDICE DI PLASTICITA'	(IP)=	16	J)(5)
INDICE DI CONSISTENZA	(IC)=	1.492	

LO SPERIMENTATORE Geom. Giovanni Turco

REGIONE PUGLIA

COMUNI DI TROIA - LUCERA

Provincia di FOGGIA

OGGETTO:

ANALISI GEOTECNICHE DI LABORATORIO

VERBALE n°

1581

28/07/2022

LOCALITA' : Progetto Celone

CANTIERE : Progetto Celone

QUADRO RIASSUNTIVO

COMMITTENTE: dott. geologo Bacchelli

Campioni analizzati:

1 1581 \$1 C1 m 04.00-04.50

2 1581 S2 C1 m 05.00-05.50

3 1581 S4 C1 m 03.50-04.00

PRSE

569

DATA ACCETTAZIONE

28/07/2022

DATA DI EMISSIONE

05/08/2022

RQ

-

COMMITTENTE: dott. geologo Bacchelli
DATA 28/07/2022
LOCALITA': Progetto Celone
CANTIERE: Progetto Celone

QUADRO SINOTTICO Prove di laboratorio

Ефот	Ed**	Мра										
-												
四四	Ed *	Мра										
	щů	Mpa										
Triass. CID	Ö	КРа										
	.d											
	щ	Mpa										
Triass. [][]	n.o	KPa										
Tria	n.a											
=	no o	KPa										
Page 2	ŏ	KPa										
Taglio Residuo												
jej	ф					-						
Taglio Diretto	O	KPa										
Tag	0	ò										
EL	³ C	KPa	38.50									
berg	Ш		a z	20	16.0							
LIMITI di Atterberg	LP	%	ND	2	40							
M	TI	%	N.D	38	3							
	Potenz.	Liquefaz.										
	A	%	8.00%	%00 92	8.00°,							
Granulometrie	_	%		31.00% 34.00% 26.00%								
Gran	S	%	2.00% 1	3,600.1	4.00%							
	O	%	52.00% 22.00% 18.00%	9.00%	40.00% 34.00% 18.00%							
	Sr	%	60.076 5	63,487 9	89.202 44							
		%	37.527 64	39 095 60	16.996 88							
	a		0.501 37	0.642 36	0.205 16							
	γd	KN/m ³	16.510 0	16.057 0.	21.864 0.							
Generali	y sat	KN/m³ KN	20,190 16	19.890	23.531 21							
	3	" " "	73.391	91 15.159	51 6.800							
	7	n³ KN/m³	18.721	18,491	11 23.351							
	S /	KN/m³	50 26.428	50 26.363	00 26.3				-			
VERBALE n"	1581	Campione	1581 S1 C1 m 04,00-04.50	1581 S2 C1 m 05.00-05.50	1581 S4 C1 m 03.50-04.00 26:341							
			~	7	m							

Cu = Coesione non drenate - TRX CU (KPa) $E_{\mu} = \text{Modulo elastico secante al } 50 \ \% \ \text{del canco a rottun}$

φr = Angolo di attrito residuo (*) Ed* = Modulo edometrico alla pressione di 200 KPa Ed* = Modulo edometrico alla pressione di 400 KPa οu = Angolo di attrito non drenato -TRX CU (*)

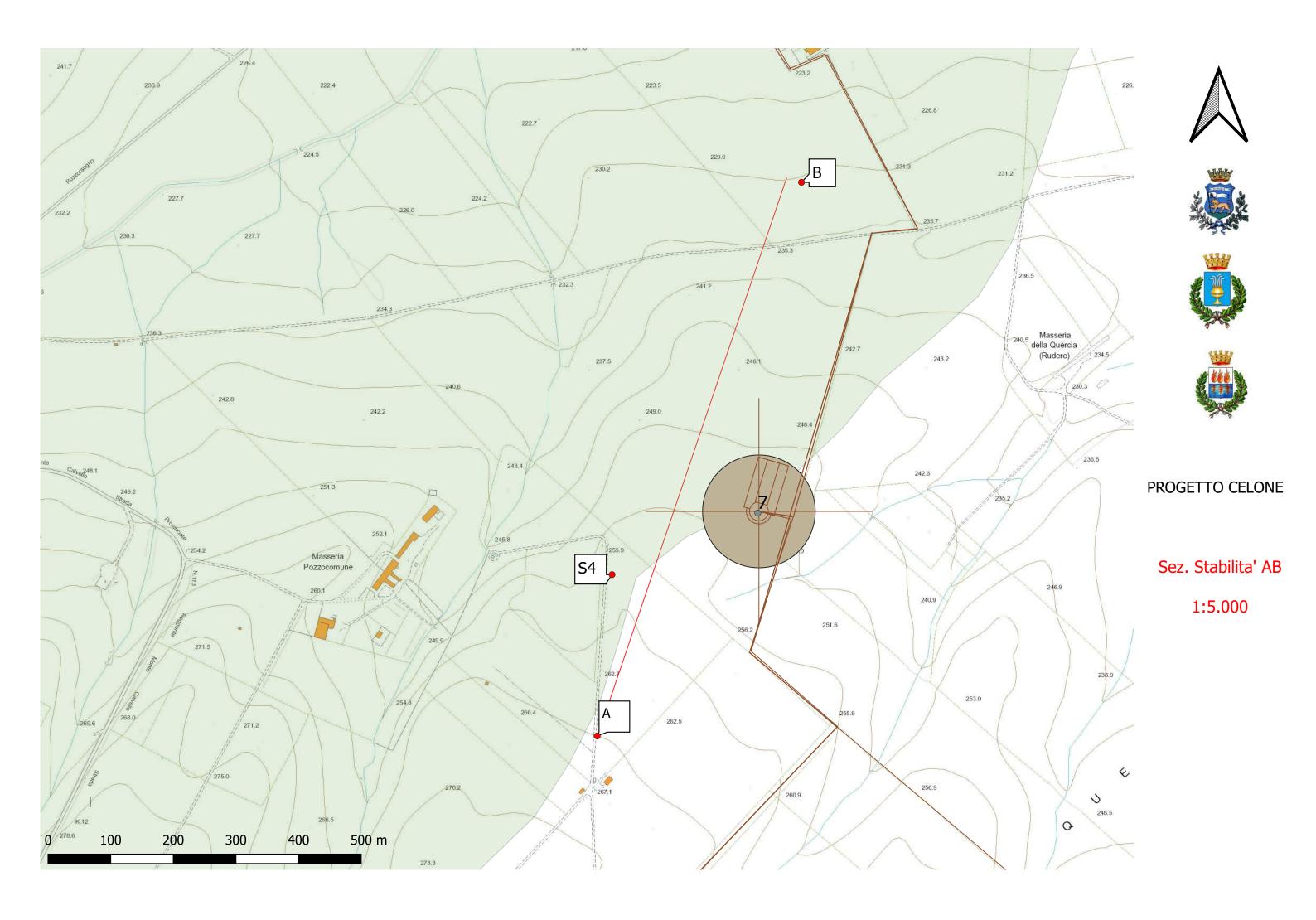
> (c = Indice di consistenza Cu = Coesione non drenata (KPa) c = Coesione drenata (KPa)

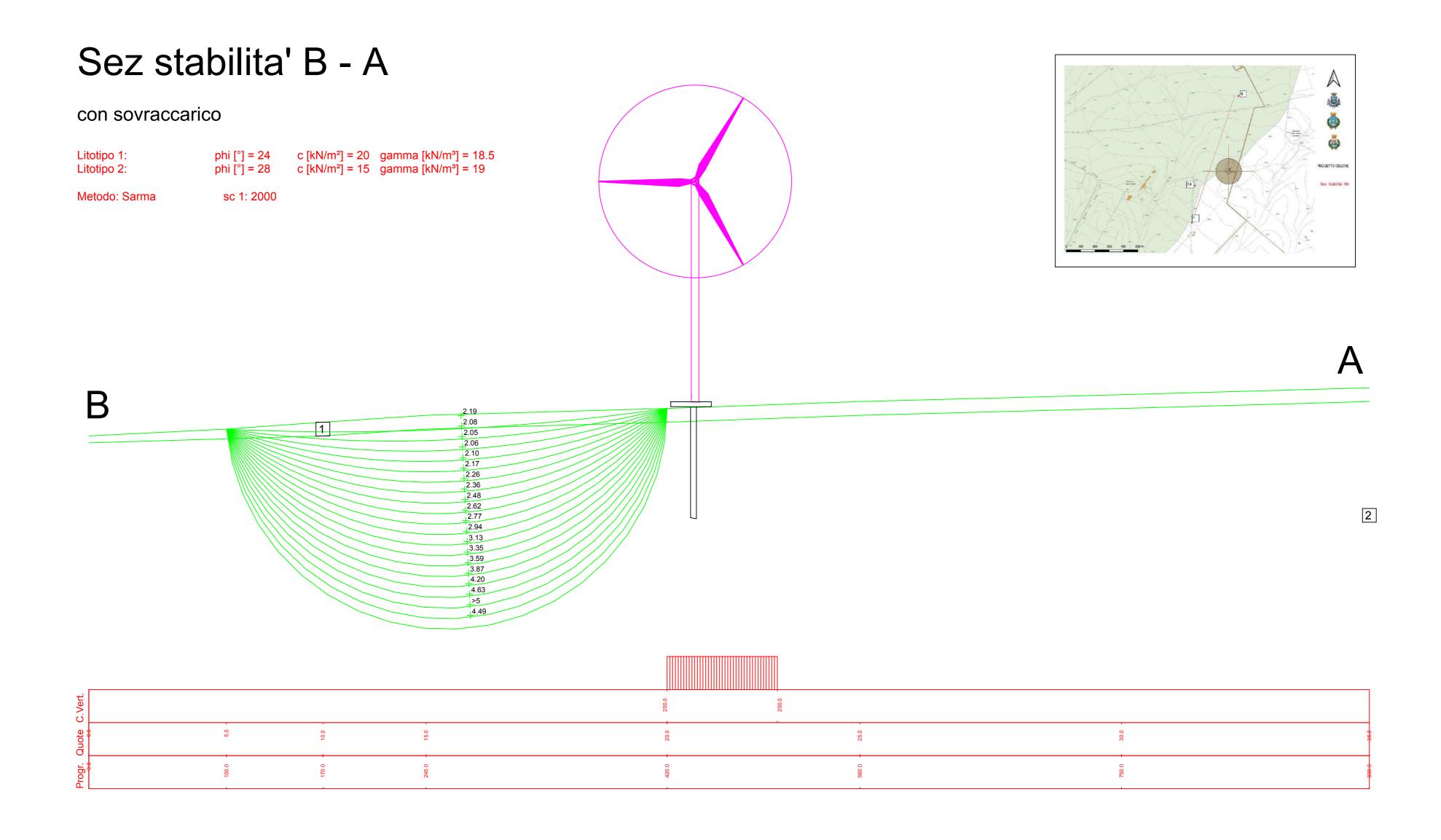
Sr = Grado di saturazione (%)
G = Ghiaia (%)
S = Sabbia (%)
L = Limo (%)
A = Argilla (%)

γ_b = Peso specifico dei grani (KNIm²) W = Contenuto in acqua naturala (%) γ_{can} = Peso di volume saturo (KNIm³) γd = Peso di volume saturo (KNIm³)

e = Indice del pori n = Porosità (%)

LL = Limite LIQUIDO (%) LP = Limite Plastico (%) Cu = Coesione non drenata - TRX CU (KPs) # = Materiale insufficiente

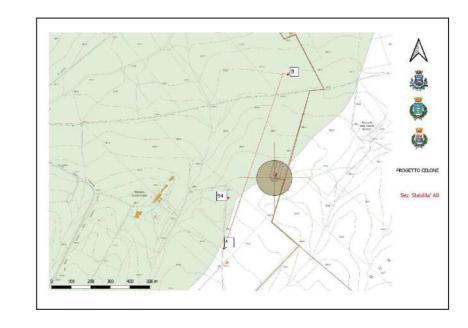

= Mater

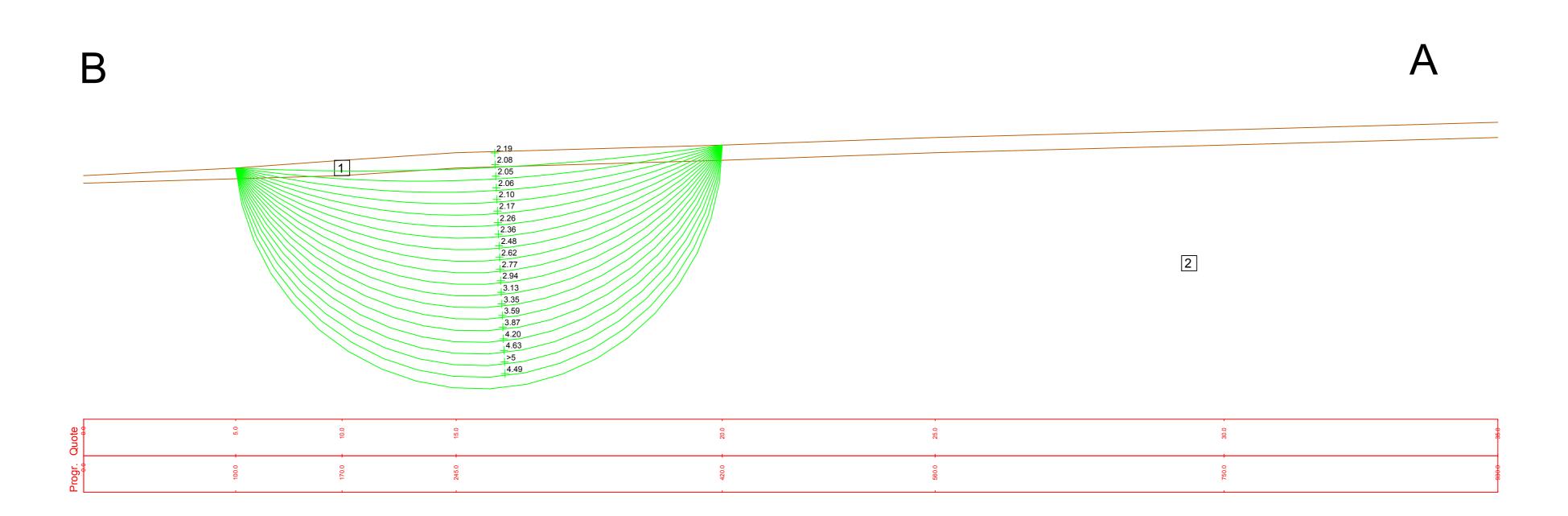

φ = Angolo di attrito (*)

VERBALE DI	ACCETTA	ZIONE	1581	del	28	3/07/22			Pag 1/1
COMMITT	ENTE:	dott. geole	ogo Bacc	helli					
SITO:		Progetto (Celone						
LOCALITA		Progetto (Celone						
SONDAG		S1				PRELIEVO		27/07/22	Qualita
CAMPION		C1				FUSTELLA		(Metallo)	
PROFONE	DITA' :	04.00-04.5	0	(m)	TIPO DI	CAMPION	E	Indisturbato	Q5
	(QUADR	ORIA	SSUN	TIVO	ANALIS	SI EFFE	TTUATE	
Ca	ratteristi	che Genera	li	_		FOTOGRA	4 <i>FIA</i>		
γ_s	=	26.428	KN/m ³				A POLICE		
γ	=	18.721	KN/m ³			11			
Wn	=	13.391	%		1		N more bin tuenos	- TV 4	
γ _{sat}	=	20.19	KN/m ³				VERBALE x':	1586	
Yd	=	16.510	KN/m ³				CAMPIONE:	0(00-0190	
			INIMATA				PUTLEVATO IL 1	27/42/1472	
е	=	0.601	04				THE PARTY OF		
n	=	37.527	%				2		
Sr	=	60.076	%				5 10 15	20 25 30 35 40 45	
L	imiti di c	onsistenza						Caratteristiche Mecca	niche
IMITE LIQU	IDO		(LL) =	N.D.	%		Espans	ione laterale libera	
IMITE PLAS	STICO		(LP)=	N.D.	%		σ=	77 kPa	
NDICE DI PI	ASTICITA	۹'	(IP)=	N.D.			Cu=	38.5 kPa	
NDICE DI C	ONSISTE	NZA	(IC)=	N.D.			Taglio I	Diretto	
IMITE RITIF	RO		(LR)=		%		c' =	kPa	
							Φ'=	٥	
Caratte	ristiche	granulomet	riche	Sos	tanze org	aniche	Taglio I	Residuo	
ARGILLA		8.00%		S.O.		%	c' =	kPa	
_IMO		18.00%		Conte	nuto di c	arbonati	i Φ'=	o	
SABBIA		22.00%		CaCo ₃		%	7		kPa
							Torsiona	ale	0
GHIAIA	IE CDAN	52.00% IULOMETR	ICA:		Compre	ssione tria	ccialo		
DEFINIZION	AL GIVAN	OLOWILIK	IOA.	3	Cu=	SSIONE UIA	kPa		
Gh	niaia sabb	oiosa limosa	•		-				
				_	c _{cu} =		kPa	c' _{cu} =	kPa
Compressi	one Edoi	metrica		3	$\Phi_{cu} =$		0	$\Phi'_{cu} =$	0
σν	e	M	Cv					ou .	
kPa		Mpa	cm²/s	G	C'd=		kPa	Φ' _{cd} =	0
IXI XI		три	VIII 10	-			S2522 535	00	
					Permea	bilità		Proctor	
					k=		m/s	Caratteristiche	All'ottimo
					i		11113		(KN/m ³
								Y = Yd=	(KN/m ⁻)
								W=	(KN/m ⁻)

VERBALE D	ACCETTA	ZIONE	1581	del	28	/07/22				Pag 1/1	
COMMIT	TENTE:	dott. geol	ogo Bacc	helli			112				
SITO :		Progetto (
LOCALIT		Progetto (Celone								
SONDAG		S2				PRELIEVO		27/07		Qualit	
CAMPION		C1			TIPO DI	FUSTELLA	A	(Metal	lo)	Quant	
PROFON	DITA':	05.00-05.5	0	(m)	TIPO DI	CAMPION	E	Indistu	rbato	Q5	
		QUADR	ORIA	SSUN	TIVO	ANALIS	SI EFF	ETTUATE			
Cá	aratterist	iche Genera	li	-	_	FOTOGR	AFIA				
γ_s	=	26.363	KN/m ³		A		Brighten.				
γ	=	18.491	KN/m ³								
Wn	=	15.159	%		8		VERSALE n	1511			
Ysat	=	19.89	KN/m ³			TT .	SONDAGGIO				
γa	=	16.057	KN/m ³				PROFONDITA! (m)	1: (05.09-05.10			
			KIN/III				PRELEVATO IL	1 27/07/2722			
е	=	0.642	20								
n	=	39.095	%					1917 / 188			
Sr	=	63.487	%				0 5 10	15 20 25 30	35 40		
L	_imiti di c	consistenza				-		Caratteristiche	Meccani	che	
LIMITE LIQUIDO (LL) =				38	%		Espar	nsione laterale l	ibera		
IMITE PLASTICO (LP) = 19 % σ =				k	:Pa						
NDICE DI P	PLASTICIT	Α'	(IP)=	18.9			Cu= kPa			~~~	
NDICE DI C	CONSISTE	NZA	(IC)=	1.21			Taglio	Diretto			
IMITE RITII	RO		(LR)=		%	-	c' =	k	Pa		
							Φ'=	٥			
		granulomet	riche	Sos	tanze orga	aniche %	Taglio	Residuo			
RGILLA		26.00%		: 0.0.		%		k	Pa		
.IMO		34.00%		Conte	enuto di ca	arbonati	Φ'=	•			
SABBIA		31.00%		CaCo ₃		%				kPa	
SHIAIA		9.00%					Torsion	naie		0	
	NE GRAN	NULOMETR	ICA:	_	Compres	ssione tria	ssiale				
ramario				77	Cu=		kPa				
Lin	no con sa	ibbia e argilla	а.		c =		LD o	c'cu =		kDe.	
				n	c _{cu} =		kPa			kPa	
compressi	ione Edo				$\Phi_{cu} =$		o	$\Phi'_{cu} =$		0	
$\sigma_{\rm v}$	е	M	Cv	0							
kPa		Mpa	cm²/s	3	C'd=		kPa	Φ' _{cd} =		0	
					Permeab	ilità		Proctor			
					k=		m/s			stiche All'ottimo	
					i			Y =		(KN/m ³	
								Yd=		(KN/m ³	
								W=		%	

VERBALE DI	ACCETTA.	ZIONE	1581	del	2	8/07/22			Pag 1/1
COMMITT	TENTE:	dott. geol	ogo Baco	helli					
SITO :		Progetto							
LOCALITA		Progetto	Celone				LI.		
SONDAG		S4			Discount (Order to the St.	PRELIEVO		28/07/22	Qualità
CAMPION		C1		V		I FUSTELLA		(Metallo)	122
PROFONI		03.50-04.0		(m)	100000 0000 000	CAMPION		Indisturbato	Q5
				ISSUN	TIVO	D. Albadar Caraba San San	AND SHIPS	TTUATE	
10000		che Genera	1011		ı	FOTOGR	AFIA		1
γs	=	26.341	KN/m ³					4 4 4 4 4 4	
γ	=	23.351	KN/m ³						
Wn	=	6.800	%			III .	VERBALE n':	581	
γ_{sat}	=	23.531	KN/m ³				SONDAGGIO:		
γd	=	21.864	KN/m ³				PRELEVATO IL: 2	8/07/2022	
е	=	0.205					Carrie auto		
n	=	16.996	%						
Sr	=	89.202	%				5 10 15	20 25 30 35 40	
1920423		onsistenza	70	_	Į.			Caratteristiche Meco	anioho
LIMITE LIQU		Olisisteliza	/11.>-	31	%				amene
			(LL)=				77	sione laterale libera	
	IMITE PLASTICO (LP)= 15 % $\sigma = kPa$				推				
INDICE DI P			(IP)=	16.0			Cu=	kPa	
INDICE DI C		NZA	(IC)=	1.49	0.1		Taglio Diretto		
LIMITE RITIF	२०		(LR)=		%		c' =	kPa	
Caratta	rictioho.	aranulama	riaha	Coo			Φ'=	o Donistas	
ARGILLA	i isticiie (granulomet 8.00%	ricrie	S.O.	anze org	ganiche o/		Residuo	
				i		%	c' =	kPa	
LIMO		18.00%		,	nuto di d	carbonati	Φ'=	٥	
SABBIA		34.00%		CaCo ₃		%	Torsiona	ale	kPa
GHIAIA		40.00%							0
DEFINIZION	NE GRAN	IULOMETR	ICA:	2	Compre	essione tria			
Ghi	iaia con s	abbia limosa	9	2	Cu=		kPa		
011	1010 0011 0	abbia iiiiiosi	4.		c _{cu} =		kPa	c'cu =	kPa
				CO	$\phi_{cu} =$			Φ' _{cu} =	0
Compressi σ _v	e e	metrica M	Cv	1	+ cu		•	♥ cu −	
	G	1000	cm²/s	9	C'd=		kPa	Φ' _{cd} =	0
kPa		Мра	cm ⁻ /s	0	Cu-		KFd	Ψ _{cd} –	***
					Permea	bilità		Proctor	
					k=		m/s	Caratteristiche	All'ottimo
				4	İ			Y =	(KN/m ³)
								Yd=	(KN/m³)
								W=	%

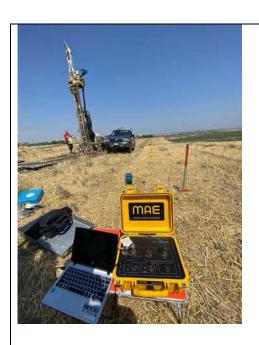



Sez stabilita' B - A

senza sovraccarico

Litotipo 1: phi [°] = 24 c $[kN/m^2]$ = 20 gamma $[kN/m^3]$ = 18.5 Litotipo 2: phi [°] = 28 c $[kN/m^2]$ = 15 gamma $[kN/m^3]$ = 19

Metodo: Sarma sc 1: 2000



MASW S1 SEGEZIA (WTG03)

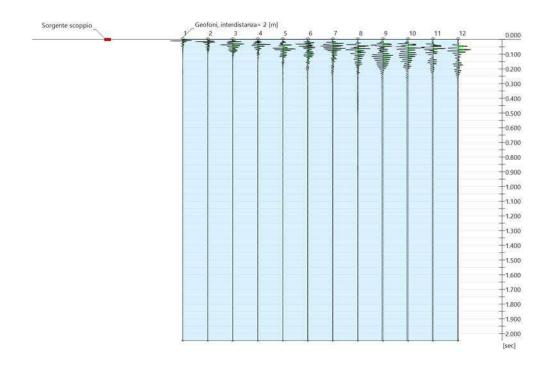
LAT: 41°24'33.2"N

LONG: 15°24'16.3"E

QUOTA: 212 m slm

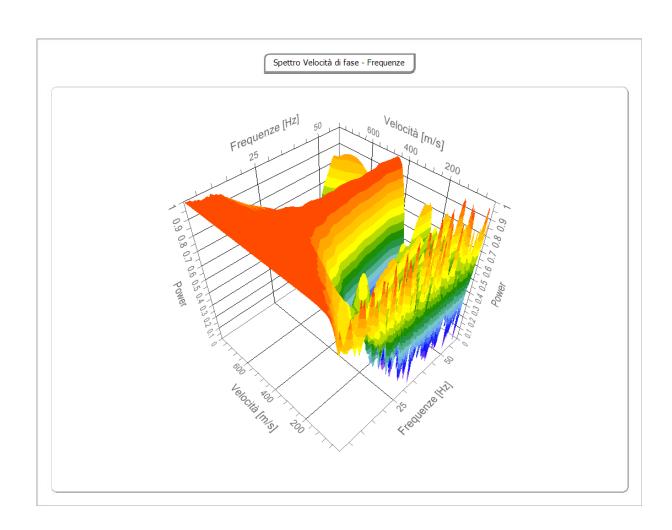
Data: agosto 2022

Il committente

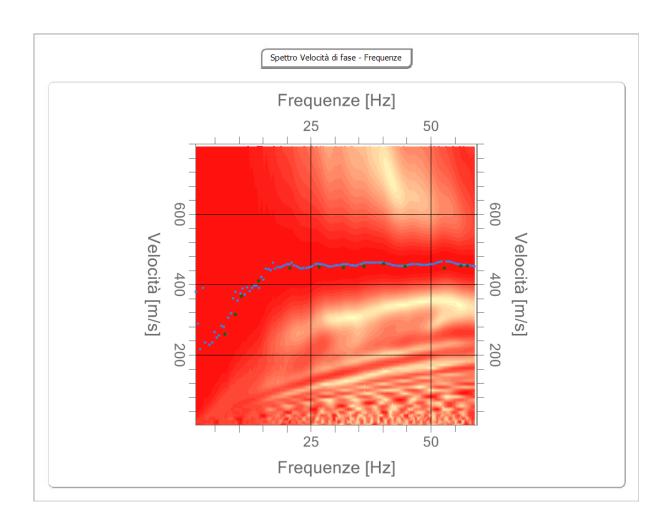

IL Tecnico

Il Progettista

Indagine geofisica tramite tecnica MASW


Tracce

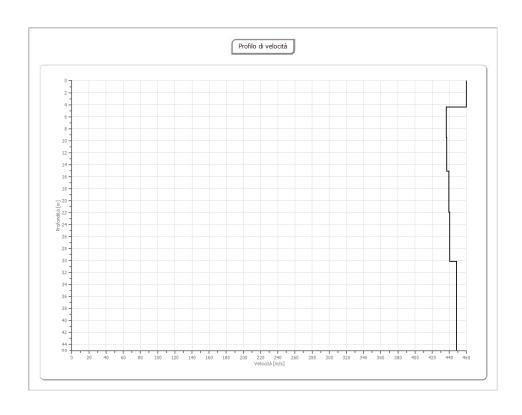
N. tracce	12
Durata acquisizione [msec]	2048.0
Interdistanza geofoni [m]	2.0
Periodo di campionamento [msec]	0.50

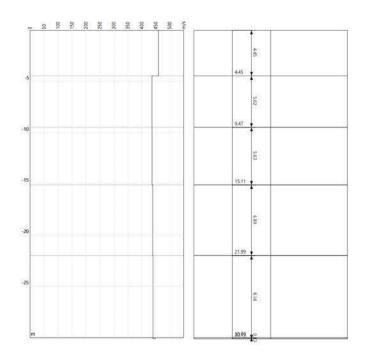

Analisi spettrale

Frequenza minima di elaborazione [Hz]	1
Frequenza massima di elaborazione [Hz]	60
Velocità minima di elaborazione [m/sec]	1
Velocità massima di elaborazione [m/sec]	800
Intervallo velocità [m/sec]	1

Curva di dispersione

n.	Frequenza	Velocità	Modo
	[Hz]	[m/sec]	
1	7.1	259.2	0
2	9.3	314.7	0
3	10.5	367.0	0
4	14.1	411.1	0
5	20.7	447.1	0
6	26.7	450.3	0
7	31.7	448.7	0
8	36.1	452.0	0
9	40.1	458.5	0
10	44.7	452.0	0
11	52.9	447.1	0
12	56.2	453.6	0
13	57.7	453.6	0


Inversione


n.	Descrizio	Profondit	Spessore	Peso	Coefficie	Falda	Vp	Vs
	ne	à [m]	[m]	unità volume	nte Poisson		[m/sec]	[m/sec]
				[kg/mc]				
1		4.45	4.45	1800.0	0.20	No	751.1	460.0
2		9.47	5.02	1800.0	0.20	No	712.8	436.5
3		15.11	5.63	1800.0	0.20	No	713.1	436.7
4		21.99	6.89	1800.0	0.20	No	717.1	439.1
5		30.13	8.14	1800.0	0.20	No	719.0	440.3
6		00	00	1800.0	0.20	No	732.1	448.3

Percentuale di errore 0.10 %

Fattore di disadattamento della soluzione

0.192

Risultati

Profondità piano di posa [m]

Vs eq [m/sec] 441.50

Categoria del suolo B

Suolo di tipo B: Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.

Altri parametri geotecnici

n.	Profo	Spess	Vs	Vp		Coeffi	G0	Ed	M0	Ey	NSPT	Qc
	ndità [m]	ore [m]	[m/s]	[m/s]	tà [kg/m c]	Poiss on	[MPa]	[MPa]	[MPa]	[MPa]		[kPa]
1	4.45	4.45	459.9 7	751.1 3	1800. 00	0.20	380.8	1015. 55	507.7 8	914.0 0	N/A	N/A
2	9.47	5.02	436.5	712.8	1800. 00	0.20	342.9 7	914.6	457.3 0	823.1 4	N/A	N/A
3	15.11	5.63	436.6	713.0 6	1800. 00	0.20	343.2	915.2	457.6 1	823.7 0	N/A	N/A
4	21.99	6.89	439.1	717.1	1800. 00	0.20	347.1	925.6 7	462.8	833.1	N/A	N/A
5	30.13	8.14	440.2	718.9 9	1800. 00	0.20	348.9 4	930.5	465.2	837.4 5	N/A	N/A
6	00	00	448.3	732.1	1800. 00	0.20	361.8 0	964.8 0	482.4	868.3	0	N/A

G0: Modulo di deformazione al taglio;

Ed: Modulo edometrico;

M0: Modulo di compressibilità volumetrica;

Ey: Modulo di Young;

MASW S2 SEGEZIA (WTG 11)

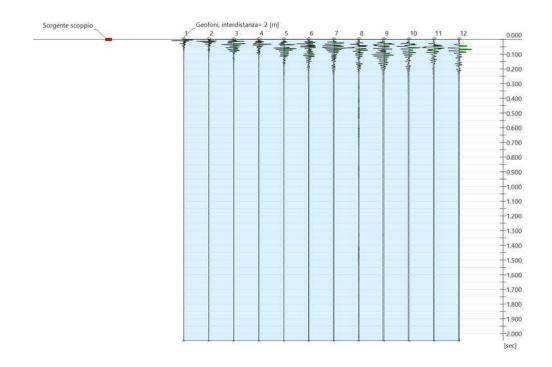
LAT: 41°21'07.5"N

LONG: 15°25'38.9"E

QUOTA: 270 MSLM

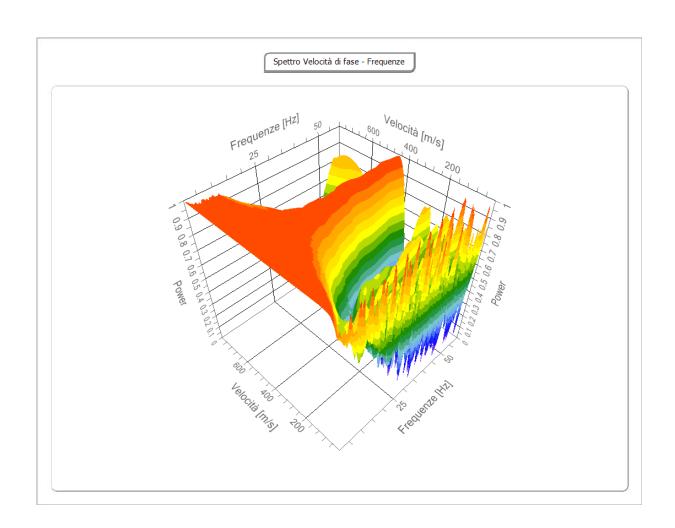
Data: agosto 2022

Il committente

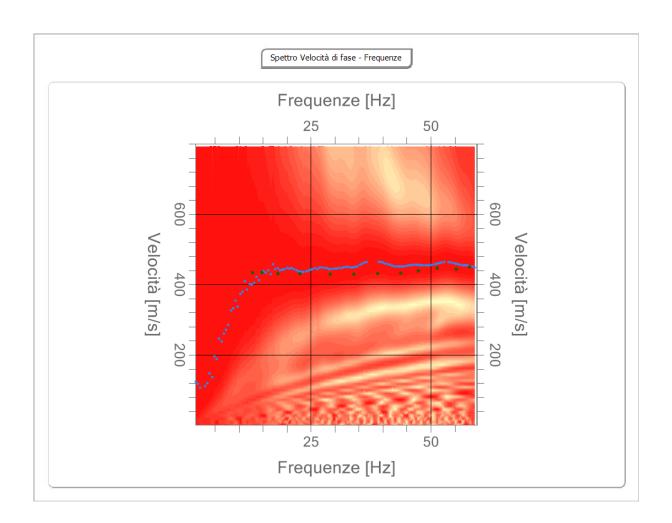

IL Tecnico

Il Progettista

Indagine geofisica tramite tecnica MASW


Tracce

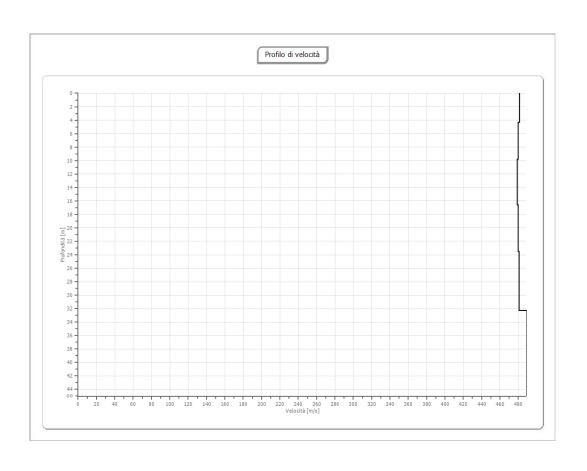
N. tracce	12
Durata acquisizione [msec]	2048.0
Interdistanza geofoni [m]	2.0
Periodo di campionamento [msec]	0.50


Analisi spettrale

Frequenza minima di elaborazione [Hz]	1
Frequenza massima di elaborazione [Hz]	60
Velocità minima di elaborazione [m/sec]	1
Velocità massima di elaborazione [m/sec]	800
Intervallo velocità [m/sec]	1

Curva di dispersione

n.	Frequenza	Velocità	Modo
	[Hz]	[m/sec]	
1	12.9	434.0	0
2	14.8	434.0	0
3	18.2	430.7	0
4	22.7	430.7	0
5	29.0	429.1	0
6	34.0	429.1	0
7	38.9	430.7	0
8	43.7	432.4	0
9	47.5	438.9	0
10	51.3	447.1	0
11	55.4	443.8	0
12	58.2	450.3	0


Inversione

n.	Descrizio	Profondit	Spessore	Peso	Coefficie	Falda	Vp	Vs
	ne	à [m]	[m]	unità volume	nte Poisson		[m/sec]	[m/sec]
				[kg/mc]				
1		4.33	4.33	1800.0	0.20	No	786.0	481.3
2		9.83	5.50	1800.0	0.20	No	783.6	479.9
3		16.64	6.81	1800.0	0.20	No	782.3	479.0
4		23.51	6.87	1800.0	0.20	No	783.2	479.6
5		32.27	8.76	1800.0	0.20	No	785.6	481.1
6		00	00	1800.0	0.20	No	799.2	489.4

Percentuale di errore 0.026 %

Fattore di disadattamento della soluzione

0.016

Risultati

Profondità piano di posa [m]

Vs eq [m/sec] 480.10

Categoria del suolo B

Suolo di tipo B: Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s. **Altri parametri geotecnici**

n.	Profo ndità [m]	Spess ore [m]	Vs [m/s]	Vp [m/s]	Densi tà [kg/m c]	ciente Poiss on			M0 [MPa]			Qc [kPa]
1	4.33	4.33	481.3	785.9 6	1800. 00	0.20	416.9 7	1111. 93	555.9 7	1000. 74	N/A	N/A
2	9.83	5.50	479.8 5	783.5 9	1800. 00	0.20	414.4 6	1105. 23	552.6 2	994.7 1	N/A	N/A
3	16.64	6.81	479.0 4	782.2 7	1800. 00	0.20	413.0 6	1101. 49	550.7 5	991.3 4	N/A	N/A
4	23.51	6.87	479.6 4	783.2 5	1800. 00	0.20	414.1	1104. 26	552.1 3	993.8	N/A	N/A
5	32.27	8.76	481.1	785.6 4	1800. 00	0.20	416.6	1111. 02	555.5 1	999.9	N/A	N/A
6	00	00	489.4	799.2 3	1800. 00	0.20	431.1 7	1149. 80	574.9 0	1034. 82	0	N/A

G0: Modulo di deformazione al taglio;

Ed: Modulo edometrico;

M0: Modulo di compressibilità volumetrica;

Ey: Modulo di Young;

MASW S3 SEGEZIA (WTG14)

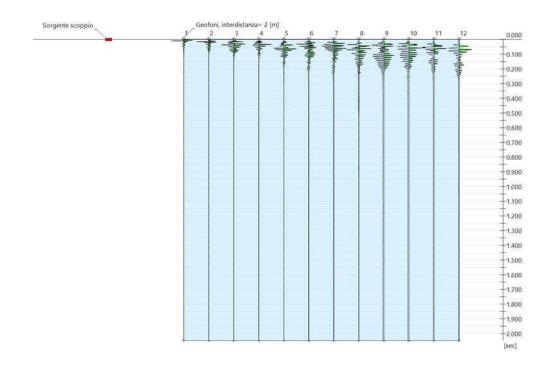
LAT: 41°21'23.57"N

LONG: 15°26'50.54"E

QUOTA: 234 MSLM

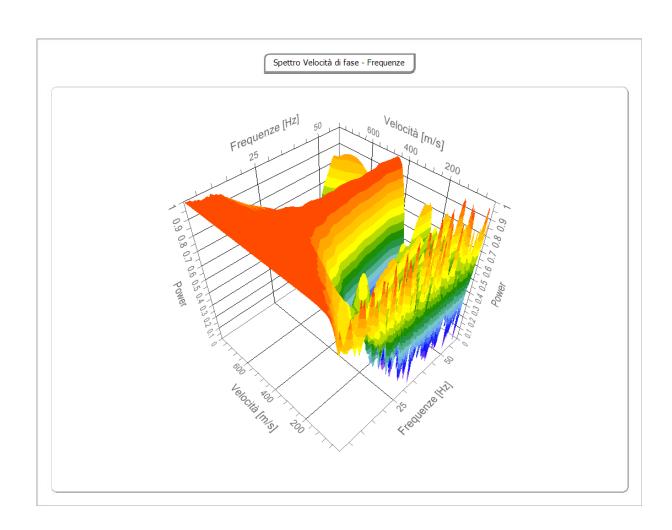
Data: agosto 2022

Il committente


IL Tecnico

Il Progettista

Indagine geofisica tramite tecnica MASW


Tracce

N. tracce	12
Durata acquisizione [msec]	2048.0
Interdistanza geofoni [m]	2.0
Periodo di campionamento [msec]	0.50

Analisi spettrale

Frequenza minima di elaborazione [Hz]	1
Frequenza massima di elaborazione [Hz]	60
Velocità minima di elaborazione [m/sec]	1
Velocità massima di elaborazione [m/sec]	800
Intervallo velocità [m/sec]	1

Curva di dispersione

n.	Frequenza	Velocità	Modo
	[Hz]	[m/sec]	
1	7.2	406.2	0
2	13.2	424.2	0
3	17.6	440.5	0
4	21.2	445.4	0
5	26.2	445.4	0
6	29.3	450.3	0
7	31.0	450.3	0
8	41.1	443.8	0
9	46.3	447.1	0
10	49.4	445.4	0
11	54.4	442.2	0
12	59.6	447.1	0

Inversione

n.	Descrizio ne	Profondit à [m]	Spessore [m]	Peso unità volume [kg/mc]	Coefficie nte Poisson	Falda	Vp [m/sec]	Vs [m/sec]
1		4.95	4.95	1800.0	0.20	No	791.5	484.7
2		10.94	5.99	1800.0	0.20	No	810.0	496.0
3		17.83	6.89	1800.0	0.20	No	801.2	490.6
4		25.63	7.80	1800.0	0.20	No	802.1	491.2
5		34.35	8.72	1800.0	0.20	No	801.6	490.9
6		00	00	1800.0	0.20	No	887.4	543.4

Percentuale di errore 0.137 %

Fattore di disadattamento della soluzione 0.040

Risultati

Profondità piano di posa [m]

Vs eq [m/sec] 490.87

Categoria del suolo B

Suolo di tipo B: Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.

Altri parametri geotecnici

n.	Profo ndità	Spess	Vs	Vp	Densi tà	Coeffi ciente	G0	Ed	M0	Ey	NSPT	Qc
	[m]	ore [m]	[m/s]	[m/s]	[kg/m c]	Poiss on	[MPa]	[MPa]	[MPa]	[MPa]		[kPa]
1	4.95	4.95	484.6 9	791.4 9	1800. 00	0.20	422.8 6	1127. 63	563.8 2	1014. 87	N/A	N/A
2	10.94	5.99	496.0	810.0	1800. 00	0.20	442.8	1180. 97	590.4 8	1062. 87	N/A	N/A
3	17.83	6.89	490.6	801.1	1800. 00	0.20	433.2	1155. 43	577.7 2	1039. 89	N/A	N/A
4	25.63	7.80	491.1 6	802.0	1800. 00	0.20	434.2	1157. 94	578.9 7	1042. 15	N/A	N/A
5	34.35	8.72	490.8	801.5	1800. 00	0.20	433.6	1156. 51	578.2 5	1040. 86	N/A	N/A
6	00	00	543.4	887.3 9	1800. 00	0.20	531.5	1417. 42	708.7 1	1275. 67	0	N/A

G0: Modulo di deformazione al taglio;

Ed: Modulo edometrico;

M0: Modulo di compressibilità volumetrica;

Ey: Modulo di Young;

MASW S4 SEGEZIA

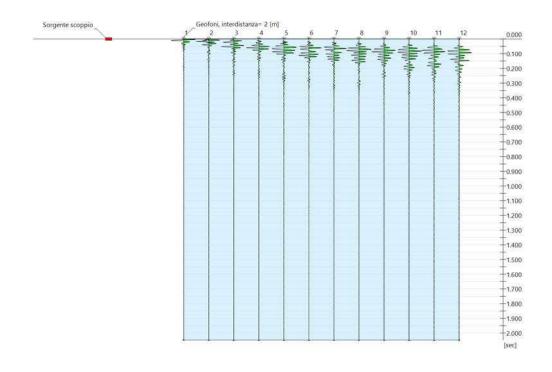
LAT: 41°22'48.2"N

LONG: 15°26'04.3"E

QUOTA: 196 MSLM

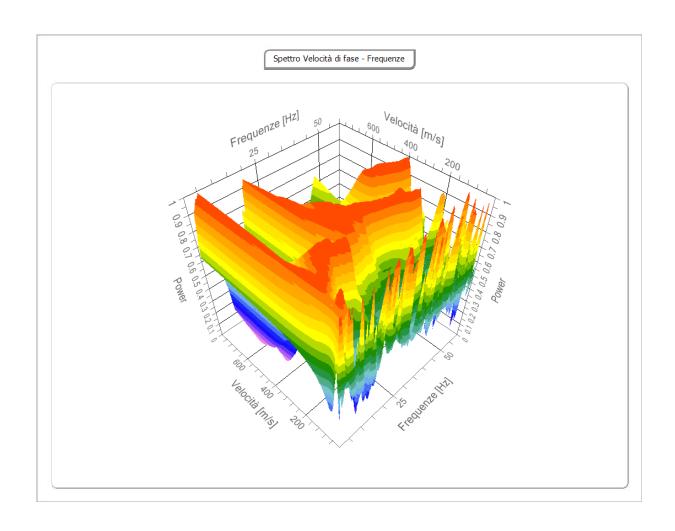
Data: agosto 2022

Il committente


IL Tecnico

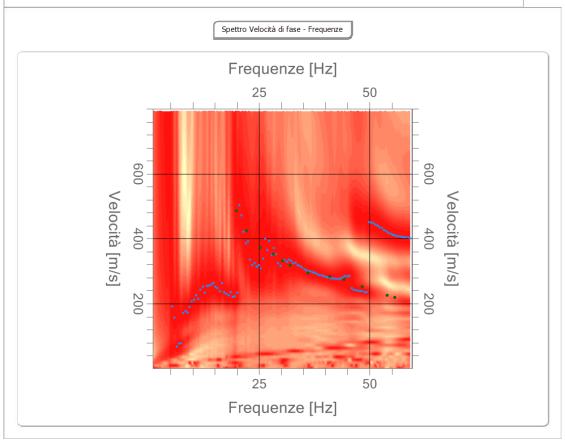
Il Progettista

Indagine geofisica tramite tecnica MASW


Tracce

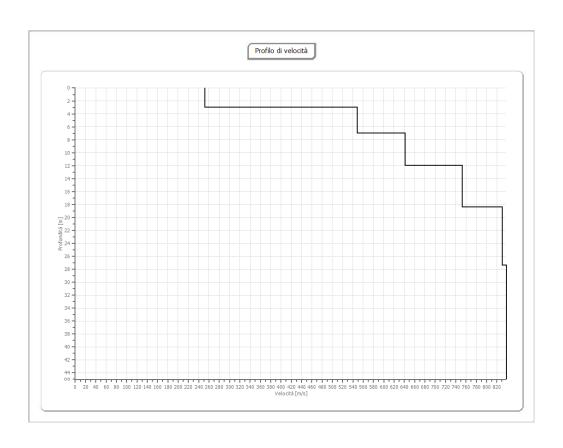
N. tracce	12
Durata acquisizione [msec]	2048.0
Interdistanza geofoni [m]	2.0
Periodo di campionamento [msec]	0.50
	ļ

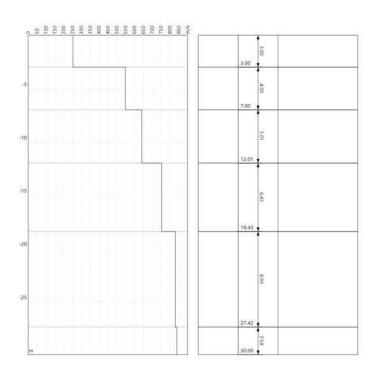
Analisi spettrale


Frequenza minima di elaborazione [Hz]	1
Frequenza massima di elaborazione [Hz]	60
Velocità minima di elaborazione [m/sec]	1
Velocità massima di elaborazione [m/sec]	800
Intervallo velocità [m/sec]	1

Curva di dispersione

n.	Frequenza	Velocità	Modo
	[Hz]	[m/sec]	
1	19.9	486.3	0
2	22.1	424.2	0
3	25.3	373.5	0
4	28.3	352.3	0
5	30.3	332.7	0
6	32.0	318.0	0
7	36.1	295.1	0
8	41.0	283.7	0
9	44.2	273.9	0
10	48.3	252.6	0
11	54.0	226.5	0
12	55.6	219.9	0


Inversione


n.	Descrizio ne	Profondit à [m]	Spessore [m]	Peso unità volume	Coefficie nte Poisson	Falda	Vp [m/sec]	Vs [m/sec]
		[]		[kg/mc]				
1		3.00	3.00	1800.0	0.20	No	412.2	252.4
2		7.00	4.00	1800.0	0.20	No	895.9	548.6
3		12.01	5.01	1800.0	0.20	No	1047.2	641.3
4		18.43	6.43	1800.0	0.20	No	1229.2	752.7
5		27.42	8.99	1800.0	0.20	No	1356.5	830.7
6		00	00	1800.0	0.20	No	1370.0	839.0

Percentuale di errore 0.007 %

Fattore di disadattamento della soluzione

0.050

Risultati

Profondità piano di posa [m]

Vs eq [m/sec] 518.94

Categoria del suolo B

Suolo di tipo B: Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.

Altri parametri geotecnici

n.	Profo	Spess	Vs	Vp	Densi	Coeffi	G0	Ed	M0	Ey	NSPT	Qc
	ndità [m]	ore [m]	[m/s]	[m/s]	tà [kg/m c]	ciente Poiss on	[MPa]	[MPa]	[MPa]	[MPa]		[kPa]
1	3.00	3.00	252.4 2	412.1 9	1800. 00	0.20	114.6 8	305.8	152.9 1	275.2 4	N/A	2449. 36
2	7.00	4.00	548.6	895.8 7	1800. 00	0.20	541.7 4	1444. 64	722.3 2	1300. 17	N/A	N/A
3	12.01	5.01	641.2	1047. 20	1800. 00	0.20	740.2	1973. 92	986.9 6	1776. 53	N/A	N/A
4	18.43	6.43	752.7 4	1229. 22	1800. 00	0.20	1019. 91	2719. 77	1359. 88	2447. 79	N/A	N/A
5	27.42	8.99	830.6 8	1356. 49	1800. 00	0.20	1242. 05	3312. 14	1656. 07	2980. 92	N/A	N/A
6	00	00	838.9	1370. 01	1800. 00	0.20	1266. 93	3378. 47	1689. 24	3040. 63	0	N/A

G0: Modulo di deformazione al taglio;

Ed: Modulo edometrico;

M0: Modulo di compressibilità volumetrica;

Ey: Modulo di Young;