Impianto eolico "Monte Pranu"

Progetto definitivo

Oggetto:

Relazione di calcolo preliminare delle fondazioni degli aerogeneratori

Proponente:

Sardeolica SrI Sesta Strada Ovest 09068 Uta; ZI Macchiareddu Italy Progettista:

Stantec S.p.A. Centro Direzionale Milano 2, Palazzo Canova Segrate (Milano)

Rev. N.	Data	Descrizione modifiche	Redatto da	Rivisto da	Approvato da
01	28/10/2023	Integrati commenti	A. Filiberti	D. Mansi	P. Polinelli
00	04/08/2023	Prima Emissione	A. Filiberti	A. Piazza	P. Polinelli

Fase progetto: Definitivo Formato elaborato: A4

Nome File: VIL.003.01 - Relazione di calcolo preliminare delle fondazioni degli aerogeneratori.docx

1	PREM	MESSA	. 5
	1.1	DESCRIZIONE DEL PROPONENTE	. 5
	1.2	CONTENUTI DELLA RELAZIONE	. 6
2	INQL	JADRAMENTO TERRITORIALE	. 7
3	NOR	MATIVA DI RIFERIMENTO E FONTI CONSULTATE	. 9
4	DIME	NSIONAMENTO FONDAZIONI AEROGENERATORI	10
	4.1	DESCRIZIONE DELLE OPERE	10
	4.2	PARAMETRI GEOTECNICI DI PROGETTO	11
	4.3	CARICHI DI PROGETTO	12
		4.3.1 Carichi permanenti	12
		4.3.2 Sovraccarichi (Q)	12
		4.3.3 Azione sismica (E)	14
	4.4	MATERIALI	18
		4.4.1 Calcestruzzo armato	18
		4.4.2 Acciaio di armatura	19
	4.5	SOFTWARE IMPIEGATO PER LE ANALISI FEM	20
		4.5.1 Sistemi di riferimento	20
		4.5.2 Elementi beam	20
		4.5.3 Output delle azioni interne	21
		4.5.4 Elementi plate	21
		4.5.5 Gradi di libertà degli elementi e ECS	22
		4.5.6 Output delle azioni interne	23
	4.6	ANALISI STRUTTURALE	27
		4.6.1 Analisi strutturale tramite modello FEM	27
		4.6.2 Geometria del modello	27
		4.6.3 Vincoli 29	
		4.6.4 Casi di di carico	30
		4.6.5 Combinazioni di carico	33
		4.6.6 Giudizio motivato accettabilità dei risultati	35
	4.7	RISULTATI DEL MODELLO FEM E VERIFICHE	38
		4.7.1 Direzioni fissate per gli assi locali degli elementi	38

5	CONCUISIONI GENERALI	92
	4.7.10 Verifica rigidezza del basamento	80
	4.7.9 Verifiche allo Stato Limite di Esercizio	70
	4.7.8 Verifica a punzonamento platea	69
	4.7.7 Verifica a taglio platea	66
	4.7.6 Verifica a flessione platea	57
	4.7.5 Verifica strutturale del palo	53
	4.7.4 Verifica degli elementi strutturali	53
	4.7.3 Azioni sul basamento	42
	4.7.2 Azioni assiali sui pali	40

Indice delle figure

gura 2-1: Inquadramento territoriale dell'impianto eolico Monte Pranu	7
gura 2-2: Inquadramento su ortofoto dell'area dell'impianto eolico Monte Pranu	8
gura 4-1: Sezione opere in progetto	. 10
gura 4-2: Definizione degli elementi beam e rispettivi ECS	. 21
gura 4-3: Definizione degli elementi plate e rispettivi ECS	. 23
gura 4-4: Convenzione dei segni per le forze nodali degli elementi plate	. 24
gura 4-5: Convenzione dei segni per l'output delle forze per unità di lunghezza	. 24
gura 4-6: Convenzione dei segni per le azioni flessionali fuori dal piano	. 25
gura 4-7: Convenzione dei segni per le tensioni agenti	. 25
gura 4-8: Determinazione delle principali componenti di tensione	. 26
gura 4-9: Nodo per l'applicazione dei carichi provenienti dalla torre	. 28
gura 4-10: Modello FEM, vista prospettica	. 28
gura 4-11: Modelli FEM, vista dall'alto	. 29
gura 4-12: Caso di carico G2_terreno	. 30
gura 4-13: Caso di carico G2_WGT	. 30
gura 4-14: Caso di carico W_Characteristic	. 31
gura 4-15: Caso di carico W_QP	. 31
gura 4-16: Caso di carico W_Extreme	. 31
gura 4-17: Caso di carico W_frequent	. 32
gura 4-18: Caso di carico E	. 32
gura 4-19: Reazioni verticali su modello FEM	. 35
gura 4-20: Reazioni verticali foglio di calcolo Excel	. 37
gura 4-21: Assi di riferimento locali su elementi plate	. 38
gura 4-22: Assi di riferimento delle armature	. 39
gura 4-23: Reazioni verticali massime riportate alla punta del palo	. 40
gura 4-24: SLUenv: Momento direzione radiale, Bottom	. 42
gura 4-25: SLUenv: Momento direzione circonferenziale, Bottom	. 43
gura 4-26: SLUenv: Momento direzione radiale, Top	. 43
gura 4-27: SLUenv: Momento direzione Circonferenziale, Top	. 44

Figura 4-28: SLUenv: Taglio Vxx	44
Figura 4-29: SLUenv: Taglio Vyy	45
Figura 4-30: SLV2: Momento direzione radiale, Bottom	46
Figura 4-31: SLV2: Momento direzione circonferenziale, Bottom	46
Figura 4-32: SLV2: Momento direzione radiale, Top	47
Figura 4-33: SLV2: Momento direzione circonferenziale, Top	47
Figura 4-34: SLV2: Taglio Vxx	48
Figura 4-35: SLV2: Taglio Vyy	48
Figura 4-36: SLEr: Momento direzione radiale, Bottom	49
Figura 4-37: SLEr: Momento direzione circonferenziale, Bottom	49
Figura 4-38: SLEr: Momento direzione radiale, Top	50
Figura 4-39: SLEr: Momento direzione circonferenziale, Top	50
Figura 4-40: SLEqp: Momento direzione radiale, Bottom	51
Figura 4-41: SLEqp: Momento direzione circonferenziale, Bottom	51
Figura 4-42: SLEqp: Momento direzione radiale, Top	52
Figura 4-43: SLEqp: Momento direzione circonferenziale, Top	52
Figura 4-44: Sezione rettangolare equivalente	54
Figura 4-45: Identificazione nodi	80

1 PREMESSA

La società Sardeolica S.r.I, d'ora in avanti il proponente, intende realizzare un impianto di produzione di energia elettrica da fonte eolica nella provincia del Sud Sardegna, in agro del comune di Villaperuccio.

L'impianto in questione comprende 10 aerogeneratori, tutti situati nel comune di Villaperuccio. Ogni aerogeneratore è caratterizzato da un'altezza all'hub di 119 m ed un diametro fino a 162 m, arrivando a raggiungere un'altezza massima pari a 200 m. Gli aerogeneratori hanno potenza unitaria fino a 7,2 MW, per 72 MW di potenza totale. L'impianto verrà connesso alla RTN a 150 KV mediante cavidotto a 36 kV, il punto di connessione è ubicato lungo la linea RTN esistente S. Giovanni Suergiu - Villaperuccio.

I progetti del tipo in esame rispondono a finalità di interesse pubblico (riduzione dei gas ad effetto serra, risparmio di fonti fossili scarse ed importate) ed in quanto tali sono indifferibili ed urgenti, come stabilito dalla legge 1° giugno 2002, n. 120, concernente "Ratifica ed esecuzione del Protocollo di Kyoto alla Convenzione quadro delle Nazioni Unite sui cambiamenti climatici, fatto a Kyoto l'11 dicembre 1997" e dal D.Lgs. 29 dicembre 2003, n.387 "Attuazione della direttiva 2001/77/CE relativa alla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabili nel mercato interno dell'elettricità" e s.m.i..

L'utilizzo di fonti rinnovabili comporta infatti beneficio a livello ambientale, in termini di tonnellate equivalenti di petrolio (TEP) risparmiate e mancate emissioni di gas serra, polveri e inquinanti. Per il progetto in esame si stima una producibilità del parco eolico superiore a 145 GWh/anno (Produzione Media Annuale P50), che consente di risparmiare almeno 27.000 TEP/anno (fonte ARERA: 0,187 TEP/MWh) e di evitare almeno 57.700 ton/anno di emissioni di CO_2(fonte ISPRA, 2022: 397,6 gCO2/kWh).

1.1 DESCRIZIONE DEL PROPONENTE

La Società che presenta il progetto è la Sardeolica S.r.l., con sede legale in VI strada Ovest, Z. I. Macchiareddu 09068 Uta (Cagliari) e sede amministrativa in Milano, c/o Saras S.p.A., Galleria Passarella 2, 20122 – Milano.

La Sardeolica S.r.l., costituita nel 2001, fa parte del Gruppo Saras ed ha come scopo la produzione di energia elettrica, lo studio e la ricerca sulle fonti di energia rinnovabili, la realizzazione e la gestione di impianti atti a struttare l'energia proveniente da fonti alternative.

È operativa dal 2005 con un Parco eolico composto da 57 aerogeneratori per una potenza totale installata di 128,4MW limitata a 126 MW, nei comuni di Ulassai e Perdasdefogu. La produzione a

regime è di circa 250 GWh/anno, corrispondenti al fabbisogno annuale di circa 85.000 famiglie e a 162.000 tonnellate di emissioni di CO2 evitate all'anno.

A giugno 2021 è stata completata l'acquisizione del parco eolico di Macchiareddu, battezzato "Amalteja", attraverso la formalizzazione dell'acquisto da parte di Sardeolica delle 2 società proprietarie, Energia Verde S.r.l. ed Energia Alternativa S.r.l. Il parco "Amalteja" ha una potenza complessiva di 45 MW ed è suddiviso nei due impianti di Energia Verde 21 MW (14 turbine) in esercizio dal 2008, e di Energia Alternativa da 24 MW (16 turbine) in esercizio dal 2012.

La produzione dei due parchi eolici è pari a circa 56 GWh/anno e consente di evitare emissioni di CO2 per circa 36.000 ton/anno, provvedendo al fabbisogno elettrico annuo di circa 40.000 persone.

Sardeolica gestisce direttamente l'esercizio e la manutenzione dei Parchi eolici e assicura i massimi livelli produttivi di energia elettrica, adottando le migliori soluzioni del settore in cui opera, garantendo la salvaguardia della Salute e della Sicurezza sul Lavoro, dell'Ambiente, nonché della Qualità dei propri processi produttivi.

La società ha certificato il proprio Sistema di Gestione secondo gli standard ISO 45001 (Salute e Sicurezza sul Lavoro), ISO 14001 (Ambiente) e ISO 9001 (Qualità) e ISO 50001 (Energia). Inoltre è accreditata EMAS.

1.2 CONTENUTI DELLA RELAZIONE

La presente relazione ha l'obiettivo di illustrare lo studio delle strutture necessarie a garantire i requisiti di sicurezza e di funzionalità dell'opera. In particolare, il presente elaborato contiene i calcoli di stabilità e resistenza del basamento di innesto della struttura metallica.

Nella valutazione dell'apparato fondale si è fatto riferimento allo studio preliminare geologico e geotecnico, le assunzioni fatte dovranno essere verificate ed aggiornate nella progettazione esecutiva.

Per i particolari costruttivi e maggiori dettagli dimensionali sulle strutture progettate si faccia riferimento agli elaborati grafici oggetto del presente progetto ("VIL.025 - Pianta e sezioni fondazione delle WTG (tipologico)").

2 INQUADRAMENTO TERRITORIALE

Il sito in cui sarà ubicato il parco eolico di nuova costruzione è collocato nel comune di Villaperuccio, nella provincia del Sud Sardegna, in Sardegna.

L'impianto eolico denominato "Monte Pranu" è localizzato a circa 45 km dal capoluogo, a circa 4 km dal centro urbano del comune di Villaperuccio, ed a circa 4 km in direzione ovest e sud rispettivamente dai centri abitati dei comuni di Tratalias e Giba.

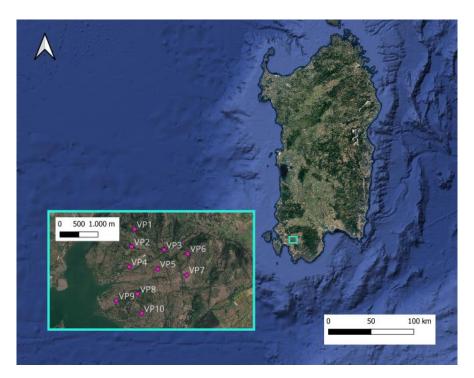


Figura 2-1: Inquadramento territoriale dell'impianto eolico Monte Pranu

L'impianto eolico denominato "Monte Pranu" è situato in una zona prevalentemente collinare non boschiva caratterizzata da un'altitudine media pari a circa 100 m s.l.m., con sporadiche formazioni di arbusti e la presenza di terreni seminativi/incolti.

Il parco eolico ricade all' interno dei seguenti fogli catastali:

• Fogli 3,4,6,7 nel comune di Villaperuccio

In Figura 2-2 è riportato l'inquadramento territoriale dell'area nel suo stato di fatto e nel suo stato di progetto, con la posizione degli aerogeneratori su ortofoto.

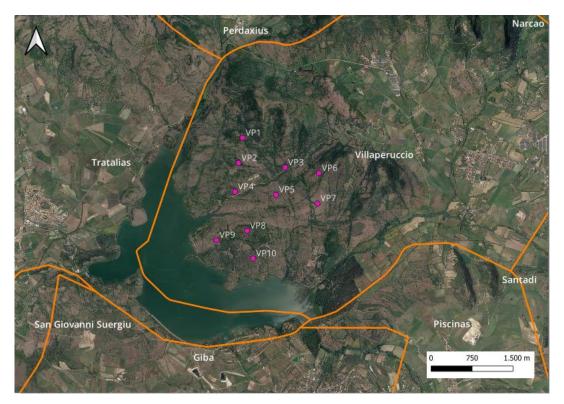


Figura 2-2: Inquadramento su ortofoto dell'area dell'impianto eolico Monte Pranu

Si riporta in formato tabellare un dettaglio sulla localizzazione delle turbine eoliche di nuova costruzione, in coordinate Gauss-Boaga (EPSG 3003):

Tabella 1: Localizzazione geografica degli aerogeneratori di nuova costruzione

ID	Comune	Est	Nord	Quota (slm)
VP1	Villaperuccio	1467281,72	4329642,03	128
VP2	Villaperuccio	1467206,57	4329183,01	103
VP3	Villaperuccio	1468058,81	4329100,03	78
VP4	Villaperuccio	1467142,90	4328657,79	54
VP5	Villaperuccio	1467892,66	4328599,64	79
VP6	Villaperuccio	1468676,6	4328997,54	145
VP7	Villaperuccio	1468651,37	4328441,09	139
VP8	Villaperuccio	1467363,36	4327944,06	115
VP9	Villaperuccio	1466803,48	4327769,96	70
VP10	Villaperuccio	1467473,24	4327437,77	76

3 NORMATIVA DI RIFERIMENTO E FONTI CONSULTATE

Di seguito sono elencati i principali riferimenti Normativi a cui si farà riferimento nella presente relazione.

- [1] D.M. 17/01/2018 "Aggiornamento delle «Norme tecniche per le costruzioni»"
- [2] Circolare n.7 Reg. Atti Int. CONSUP del 21.01.2019 "Istruzioni per l'applicazione dello "Aggiornamento delle «Norme tecniche per le costruzioni»" di cui al decreto ministeriale 17 gennaio 2018
- [3] CNR-DT 207 R1/2018: "Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni"
- [4] UNI EN 1990. Criteri generali di progettazione strutturale.
- [5] UNI EN 1991-1-1 Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici
- [6] UNI EN 1992-1-1 Parte 1-1: Progettazione delle strutture di calcestruzzo. Regole generali e regole per gli edifici
- [7] UNI EN 1993-1-1 Parte 1-1: Progettazione delle strutture in acciaio. Regole generali e regole per gli edifici
- [8] UNI EN 1993-1-8 Parte 1-8: Progettazione delle strutture in acciaio. Progettazione dei collegamenti
- [9] UNI EN 1997-1 Parte 1: Progettazione geotecnica. Regole generali
- [10] IEC 61400-1: Wind turbines Part:1 Design requirements (per le parti di pertinenza)
- [11] Scheda tecnica del produttore delle turbine "Combine Foundation loads EV162-6.5/6.8/7.2 MW, Mk1B, IECS, 119 m"
- [12] UNI EN 206-1. Calcestruzzo Parte 1: Specificazione, prestazione, produzione e conformità
- [13] UNI 11104 Calcestruzzo Specificazione, prestazione, produzione e conformità Specificazioni complementari per l'applicazione della EN 206

4 DIMENSIONAMENTO FONDAZIONI AEROGENERATORI

4.1 DESCRIZIONE DELLE OPERE

Le opere in progetto sono costituite da un basamento di fondazione per una turbina eolica di capacità 7.2 MW, diametro delle pale 162 m e altezza al mozzo 119 m. La turbina è sostenuta da una torre costituita da un tubolare in acciaio a sezione variabile innestato alla struttura di base in calcestruzzo armato.

Si ipotizza come tipologia di opera fondazionale, una fondazione di tipo indiretto, costituita da un plinto su pali. Nelle successive fasi progettuali, in seguito all'aggiornamento del modello geotecnico di calcolo, si procederà al dimensionamento definitivo della fondazione delle WTG.

Come illustrato in seguito, il basamento è costituito da un plinto, a base circolare su pali, di diametro 25 m. L'altezza dell'elemento è variabile, da un minimo 1.5 m sul perimetro esterno del plinto a un massimo di 3.75 metri nella porzione centrale. In corrispondenza della sezione di innesto della torre di sostegno è realizzato un colletto aggiuntivo di altezza 0.5 m. I pali sono di diametro 1.2 m e lunghezza 15 m.

Il calcestruzzo selezionato per le strutture è di classe di resistenza C25/30 per i pali e C32/40 per il basamento, il colletto dovrà invece essere realizzato con un successivo getto con classe di resistenza C45/55. In ogni caso, all'interfaccia tra il calcestruzzo del colletto e le strutture metalliche, dovrà essere interposta un'idonea malta ad alta resistenza per permettere un livellamento ottimale e garantire la perfetta verticalità delle strutture e permettere un'idonea distribuzione degli sforzi di contatto.

Si allega sezione delle opere estratta dagli elaborati grafici allegati:

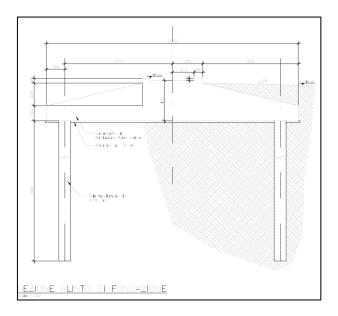


Figura 4-1: Sezione opere in progetto

4.2 PARAMETRI GEOTECNICI DI PROGETTO

Sulla base delle proprietà dei terreni forniti dalla relazione geologica e geotecnica (elaborato "VIL.039 – Relazione geologica e geotecnica") è possibile individuare la seguente stratigrafia di progetto:

• 0 - 30 m da p.c.: litologie andesitico – basaltiche con differente grado di fratturazione

I relativi parametri geotecnici sono sintetizzati nella sottostante tabella 2:

Tabella 2: Sintesi dei parametri geotecnici di progetto

Strato	Peso di volume saturo (γ sat)	ф (°)	c' (KPa)
	(kN/m³)		
Andesiti alterate	21	35	0

In cui:

γ: peso di volume saturo

φ': angolo di resistenza al taglio efficace

c': coesione efficace

Il grado di fratturazione dei litotipi è molto variabile in sito, con un RDQ (Rock Quality Designation) variabile tra 30% e 90%.

Infine, la falda di progetto è individuata entro la profondità di 10 m da p.c. per la turbina VP4; per le altre turbine di impianto si prevede che la soggiacenza della falda possa collocarsi a profondità maggiori di 30 m da p.c. Per il dimensionamento delle opere si assumerà la condizione più cautelativa, ovvero falda con soggiacenza a 10 m da p.c.

Nella progettazione esecutiva si valuterà se sarà necessario effettuare ulteriori indagini per poter verificare ed eventualmente aggiornare la successione stratigrafica nell'area di progetto ed i relativi parametri meccanici per procedere al dimensionamento definitivo delle fondazioni.

4.3 CARICHI DI PROGETTO

Per il dimensionamento preliminare delle fondazioni degli aerogeneratori si considerano i carichi della turbina Vestas EV162-7.2 MW, altezza al mozzo pari a 119 m e riportati nel documento [11] Scheda tecnica del produttore delle turbine "Combine Foundation loads EV162-6.5/6.8/7.2 MW, Mk1B, IECS, 119 m. In fase esecutiva si verificherà se occorrerà eventualmente aggiornare il dimensionamento effettuato.

4.3.1 Carichi permanenti

4.3.1.1 Pesi permanenti strutturali (G1)

Il peso proprio delle strutture è calcolato in automatico dal software a elementi finiti, tenuto conto dei volumi degli elementi strutturali e del peso specifico dei materiali assegnati agli elementi. Per gli elementi in calcestruzzo armato si è considerato un peso specifico pari a 25 kN/m³.

4.3.1.2 Pesi permanenti non strutturali (G2)

I carichi permanenti non strutturali sono rappresentati dal peso del terreno sovrastante il basamento (G2_terreno) e quello imputabile al peso della torre e delle macchine installate sul basamento (G2_wtg). Quest'ultimo viene considerato nelle combinazioni di carico diverse da quelle che utilizzano il carico da vento (W), in cui il peso di torre e macchine è già stato considerato.

4.3.2 Sovraccarichi (Q)

4.3.2.1 Carichi indotti dal vento (W)

Il carichi da vento per una turbina con le caratteristiche precedentemente descritte, relativi alle diverse situazioni previste, sono riportati nelle tabelle seguenti estratte dal documento [11] Scheda tecnica del produttore delle turbine "Combine Foundation loads EV162-6.5/6.8/7.2 MW, Mk1B, IECS, 119 m.

Carichi da vento caratteristici (W_Characteristic):

Produ	Production loads						
		Char. load	Prob.:1e-2	Prob.:1e-4		Ref	
Mres	[kNm]	138700.00	120754.06	129313.97	[2]	[2]	[2]
Mz	[kNm]	-15953.45	-4664.98	-6959.79	[3]	[3]	[2]
Fres	[kN]	1322.49	977.00	1086.16	[3]	[2]	[3]
Fz	[kN]	-7043.74	-6898.90	-6935.19	[3]	[2]	[3]
Table 3-1	Production	loads			•		

Carichi da vento in condizione extreme (W_Extreme), relativi a situazioni eccezionali:

Characteristic Extreme								
Lead	LC/Family	PLF	Туре	Mbt	Mzt	FndFr	Fzt	Ref
Sensor	[-]	[-]	[-]	[kNm]	[kNm]	[kN]	[kN]	[-]
Mbt	62E50b04000(fam352)	1.10	Abs	167200	5836	1500	-6572	[1]
Mzt	22REYHWO1b00(fam169)	1.10	Abs	55460	-12270	448.9	-6667	[1]
FndFr	62E50b04000(fam352)	1.10	Abs	165500	5858	1516	-6563	[1]
Fzt	22REYHWO1a00(fam168)	1.10	Abs	83630	1769	725.7	-6942	[3]
Table 2-3 C	haracteristic Extreme (excl. PLF). On	ly load case	es with PLF	= 1.10.				

Carichi da vento in condizione quasi permanente (W_QP) e relativi alle normali condizioni di esercizio della turbina:

Production loads									
		Char. load	Prob.:1e-2	Prob.:1e-4	Ref				
Mres	[kNm]	138700.00	120754.06	129313.97	[2]	[2]	[2]		
Mz	[kNm]	-15953.45	-4664.98	-6959.79	[3]	[3]	[2]		
Fres	[kN]	1322.49	977.00	1086.16	[3]	[2]	[3]		
Fz	[kN]	-7043.74	-6898.90	-6935.19	[3]	[2]	[3]		
Table 3-1	Production	loads			•				

Carichi da vento in condizione frequente (W_Frequent):

Production loads									
		Char. load	Prob.:1e-2	Prob.:1e-4	Ref				
Mres	[kNm]	138700.00	120754.06	129313.97	[2]	[2]	[2]		
Mz	[kNm]	-15953.45	-4664.98	-6959.79	[3]	[3]	[2]		
Fres	[kN]	1322.49	977.00	1086.16	[3]	[2]	[3]		
Fz	[kN]	-7043.74	-6898.90	-6935.19	[3]	[2]	[3]		
Table 3-1	Production	loads			•				

Dove:

M_{res} e M_{bt} rappresentano il carico espresso come risultante delle azioni in direzione X ed Y globale.

Mz e Mzt rappresentano il carico espresso come risultante dell'azione in direzione Z (torcente).

Fres e FndFr rappresentano l'azione di taglio risultante delle direzioni X e Y globale.

 F_z e F_{zt} rappresentano l'azione di compressione dell'aerogeneratore.

4.3.3 Azione sismica (E)

L'azione sismica agente sull'elemento viene determinata in maniera semplificata rilevando l'accelerazione sismica ottenuta in corrispondenza del periodo proprio della struttura. Quest'ultimo è ottenuto ricorrendo al metodo di Rayleigh, nel quale si applica una distribuzione di forze pari alla forza peso pensata come distribuita in maniera discreta su un'asta di rigidezza pari alla rigidezza traslazionale del sistema in esame.

$$T = 2 \pi \sqrt{\frac{\sum W_i \, \delta_i^2}{g \, \sum W_i \, \delta_i}}$$

In cui:

- Wi è il peso delle masse strutturali, pensate come distribuite in punti discreti
- δi è lo spostamento misurato in corrispondenza del punto di applicazione della forza
- g è l'accelerazione di gravità

I pesi dei vari tronchi della torre e degli altri componenti sono stati direttamente forniti dal produttore.

4.3.3.1 Spettri di progetto

L'azione sismica è tradotta da spettri in accelerazione. Vista la complessità della struttura si persegue l'obiettivo di una progettazione non dissipativa, le valutazioni sismiche verranno quindi eseguite su spettri di progetto elastici, adottando un fattore di comportamento q=1.

Si definisce una vita nominale per la struttura $V_N = 50$ anni e una classe d'uso IV. In queste condizioni si ottiene un periodo di riferimento per la costruzione pari a:

$$V_R = V_R \cdot C_U = 50 \cdot 2 = 100$$
 anni

Da cui ne deriveranno i periodi di ritorno determinati nella seguente figura.

Per la determinazione dell'azione sismica di progetto sono stati considerati i parametri di azione sismica della regione Sardegna, uniformi su tutto il territorio regionale:

Stato Limite	Tr [anni]	a _g [g]	Fo	Tc* [s]
Operatività (SLO)	60	0.025	2.685	0.299
Danno (SLD)	101	0.031	2.730	0.307
Salvaguardia vita (SLV)	949	0.060	2.976	0.371
Prevenzione collasso (SLC)	1950	0.071	3.061	0.393

Dalle relazioni geologica e geotecnica è stato rilevato che la Categoria di Sottosuolo che interessa il sito di progetto è la **B** mentre la Categoria Topografica è **T2**.

Si assume, a favore di sicurezza, un valore del coefficiente di smorzamento pari all'1%.

Si riportano di seguito le espressioni ed i parametri caratterizzanti lo spettro di risposta orizzontale allo SLV:

Espressioni dei parametri dipendenti

$$\begin{split} &S = S_S \cdot S_T & \text{(NTC-08 Eq. 3.2.5)} \\ &\eta = \sqrt{10/(5+\xi)} \ge 0,55; \; \eta = 1/q & \text{(NTC-08 Eq. 3.2.6; §. 3.2.3.5)} \\ &T_B = T_C \cdot /3 & \text{(NTC-07 Eq. 3.2.8)} \\ &T_C = C_C \cdot T_C' & \text{(NTC-07 Eq. 3.2.7)} \\ &T_D = 4,0 \cdot a_g / g + 1,6 & \text{(NTC-07 Eq. 3.2.9)} \end{split}$$

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_B & S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C \leq T < T_D & S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_c}{T} \right) \\ T_D \leq T & S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_c T_D}{T^2} \right) \end{split}$$

Accelerazione al suolo		a _g =	0.060	[g]
Fattore di amplificazione dello spettro		F ₀ =	2.976	[-]
		T*c =	0.371	[s]
		g	9.81	m/s ²
Categoria di sottosuolo			В	
Categoria topografica			T2	
Coefficiente amplificazione stratigrafica		S _S =	1.2	
Coefficiente di amplificazione topografica		S _T =	1.2	
Coefficiente S	$S = S_s \cdot S_T$	S	1.4	
Coefficiente C _C		Cc	1.3	
Smorzamento Convenzionale			NO	
Coefficiente di smorzamento viscoso non convenzionale		ζ	1.00	
Fattore che altera lo spettro	$\eta = \operatorname{sqrt}(\mathbf{10/5} + \zeta)$	η	1.3	
T _C	$T_C = C_C \cdot T_C^*$	Tc	0.498	[s]
T _B	$T_B = T_C/3$	T _B	0.166	[s]
T _D	$T_D = 4.0 \cdot a_g/g + 1.6$	T _D	1.840	[s]

Si riporta l'andamento dello spettro di risposta orizzontale SLV:

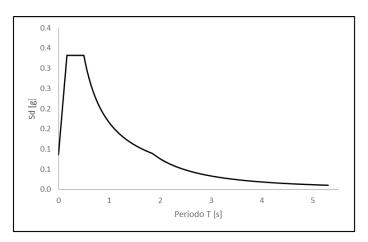


Figura 4-1 Spettro di risposta SLV

4.3.3.2 Determinazione della forzante sismica

Per quanto riguarda l'accelerazione sismica da adottare nei calcoli strutturali, si ipotizza che lo spettro di risposta oltre i 4s sia caratterizzato dal medesimo andamento avente per $T_D \le T \le 4s$. Come illustrato in tabella sottostante, il periodo proprio della struttura viene determinato pensando la torre incastrata alla base, e risulta pari a 5.88 s. A tale valore del periodo di vibrazione fondamentale, corrisponde una frequenza pari a 0.170 Hz, che ricade nell'intervallo riportato al capitolo 5 del [11] Scheda tecnica del produttore delle turbine "Combine Foundation loads EV162-6.5/6.8/7.2 MW, Mk1B, IECS, 119 m", affinchè i carichi indicati risultino validi.

Height [m]	Node ID	d _i	Wi	d _i ²	$W_i d_i^2$	$\mathbf{W_i} \mathbf{d_i}$	Т	f
m		m	kN	m^2	kN m²	kN m	S	Hz
119.00	7	9.577	3196.8	91.725	293230	30617	5.88	0.170
101.96	12	7.244	775.4	52.479	40693	5617		
70.56	11	3.521	778.2	12.4005	9650	2740		
42.61	10	1.276	784.4	1.628186	1277	1001		
20.18	9	0.266	710.0	0.07077	50	189		
5.46	8	0.020	616.5	0.000381	0	12		
				Σ	344901	40177		

Si precisa che gli spostamenti ottenuti sono conseguenti all'applicazione del sistema di forze assunto per la determinazione del periodo di vibrazione fondamentale attraverso il metodo di Rayleigh e non sono quindi quelli reali a cui è soggetta la turbina.

Per il valore del periodo di vibrazione fondamentale sopra calcolato, si ottiene S_e =0.0088g, da cui ne seguono le forze statiche equivalenti all'azione sismica riportate in seguito.

Se (T ₁)	0.0088	g						
Elemento	Z min	Z max	z	Δz	m	N	V	М
	m	m	m	m	kg	kN	kN	kN m
Navicella+rotore+pale	119.00	119.00	119.00	-	326007	3196.8	28.7	3414
Concio fusto 1/5	0.00	11.41	5.46	11.41	79077	775.4	7.0	38
Concio fusto 2/5	11.41	30.17	20.18	18.76	79359	778.2	7.0	141
Concio fusto 3/5	30.17	56.21	42.61	26.04	79988	784.4	7.0	300
Concio fusto 4/5	56.21	86.17	70.56	29.96	72402	710.0	6.4	450
Concio fusto 5/5	86.17	119.00	101.96	30.00	62866	616.5	5.5	564
		•				6861.2	61.6	4906.4

Per tenere conto della variabilità spaziale del moto sismico e di incertezze nella localizzazione delle masse, come indicato al paragrafo 7.2.6 delle NTC2018 si attribuisce un'eccentricità accidentale pari al 5% del diametro del basamento. Inoltre, per tenere conto della contemporaneità dell'azione sismica nelle due direzioni ortogonali si considera applicato in direzione Y il 30% dell'azione sismica applicata lungo X. Nella tabella sottostante vengono riassunte le forze sismiche risultanti:

eccentricità	0.05*D	1.25	m			
	N	Fx	Fy	Му	Mx	Mz
	kN	kN	kN	kN m	kN m	kN m
SISMA X + 0.3 Y	6861.25	61.57	18.47	4906.4	1471.9	77.0

4.4 MATERIALI

4.4.1 Calcestruzzo armato

4.4.1.1 Magrone

Il getto di magrone posto al fine di realizzare il piano di posa dei plinti è realizzato con calcestruzzo di classe di resistenza C12/15 che presenta le seguenti caratteristiche meccaniche:

```
E_{cm} = 27000 \text{ MPa};

v = 0.20;

\gamma = 25 \text{ kN/m3};

f_{ck} = 12 \text{ MPa};

f_{cd} = 6.8 \text{ MPa} (0.85 f_{ck}/1.5)
```

4.4.1.2 Pali

Il calcestruzzo previsto per la realizzazione dei pali di fondazione è di classe di resistenza C25/30 che presenta le seguenti caratteristiche meccaniche:

```
E_{cm} = 31500 \text{ MPa;}
v = 0.20;
\gamma = 25 \text{ kN/m3;}
f_{ck} = 25 \text{ MPa;}
f_{cd} = 14.17 \text{ MPa (=0.85fck/1.5)}
Classe di consistenza: S4 (slump tra 16 e 21 cm)
```

Classe di esposizione: XC2 (Bagnato, raramente asciutto)

Dimensione massima aggregato: 25 mm

4.4.1.3 Basamento

Il calcestruzzo previsto per la realizzazione del basamento di fondazione è di classe di resistenza C32/40 che presenta le seguenti caratteristiche meccaniche:

```
Ecm = 33300 MPa;

v = 0.20;

\gamma = 25 \text{ kN/m3};
```


fck = 32 MPa;

fcd = 18.13 MPa (=0.85fck/1.5)

Classe di consistenza: S4 (slump tra 16 e 21 cm)

Classe di esposizione: XC4 (Bagnato, raramente asciutto)

Dimensione massima aggregato: 25 mm

4.4.1.4 Colletto di innesto

Il calcestruzzo previsto per la realizzazione del colletto del plinto di fondazione è di classe di resistenza C45/55 che presenta le seguenti caratteristiche meccaniche:

 $E_{cm} = 36200 \text{ MPa};$

v = 0.20;

 $\gamma = 25 \text{ kN/m3}$;

 $f_{ck} = 45 MPa;$

 $f_{cd} = 25.5 \text{ MPa} (=0.85 \text{fck/1.5})$

Classe di consistenza: S4 (slump tra 16 e 21 cm)

Classe di esposizione: XC4 (Bagnato, raramente asciutto)

Dimensione massima aggregato: 25 mm

4.4.2 Acciaio di armatura

L'acciaio impiegato per le armature di strutture in CA deve essere di tipo B450C e presentare le seguenti caratteristiche:

E = 200000 MPa;

v = 0.30;

 $a = 12 \cdot 10 - 6;$

 $\gamma = 78.50 \text{ kN/m3};$

 $f_{yk} = 450 \text{ MPa};$

 $f_{Uk} = 540 \text{ Mpa}.$

4.5 SOFTWARE IMPIEGATO PER LE ANALISI FEM

Le sollecitazioni di progetto utili per la verifica delle strutture sono state desunte da un modello agli elementi finiti tridimensionale elaborato con il codice di calcolo Midas Gen di Midas Information Tecnology di estesa commercializzazione.

I modelli strutturali sono stati realizzati congruentemente alle geometrie strutturali e alle caratteristiche dei materiali rappresentate negli elaborati strutturali di progetto.

4.5.1 Sistemi di riferimento

In Midas Gen sono definiti i seguenti sistemi di coordinate

- Global Coordinate System (GCS)
- Element Coordinate System (ECS)
- Node local Coordinate System (NCS)

Il GCS usa le lettere maiuscole X, Y e Z per definire un sistema di coordinate cartesiale globale, che segue la regola della mano destra. È utilizzato per la maggior parte della definizione degli input, compreso ad esempio la definizione dei nodi e la restituzione di risultati globali ad essi associati, quali spostamenti e reazioni vincolari.

Il GCS definisce la posizione geometrica della struttura da analizzare e il suo punto di riferimento (l'origine) è automaticamente fissata al set di coordinate (0,0,0). Dal momento che la direzione verticale è rappresentata dall'asse Z è convenzionale modellare le strutture nel loro sviluppo verticale lungo questo asse.

L'ECS usa le lettere minuscole x,y e z per definire un sistema di riferimento cartesiano, che segue la regola della mano destra, associati a un elemento. I risultati delle analisi in termini di forze interne e tensioni e la maggior parte degli input associati al singolo elemento sono espressi in questo sistema di coordinate locali.

4.5.2 Elementi beam

Gli elementi a due nodi assimilabili a elementi strutturali monodimensionali, quali travi e pilatri, sono stati modellati come elementi beam. La formulazione di tali elementi è basata sulla teoria della trave di Timoshenko, considerando le capacità di rigidezza in tensione e compressione, taglio e le capacità deformative in condizione di flessione e torsione. La definizione delle caratteristiche della sezione trasversale, caratterizzanti la meccanica dell'elemento, sono definite da apposite finestre di dialogo all'interno del software.

4.5.3 Output delle azioni interne

Per gli elementi beam la convenzione dei segni è quella riportata nella figura seguente, le frecce indicano i versi delle sollecitazioni considerate come positive.

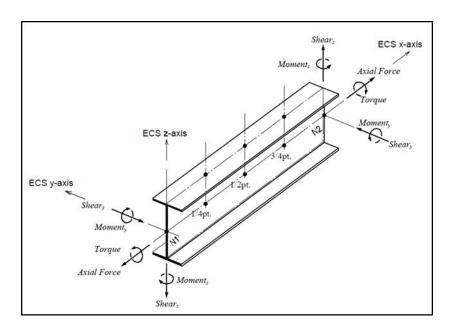


Figura 4-2: Definizione degli elementi beam e rispettivi ECS

4.5.4 Elementi plate

Gli elementi planari a 3 o 4 nodi sono definiti come elementi plate (i nodi che definiscono l'elemento saranno chiamati N1. N2. N3 e, nel caso di elemento a 4 nodi, N4). Questa tipologia di elemento è capace di tener conto di tensioni e compressioni nel piano, sforzi di taglio dento e fuori dal piano e sollecitazioni di momento flettente nel piano.

Questo elemento può essere utilizzato per modellare strutture in cui sono permette sia flessioni nel piano sia fuori dal piano, ad esempio per definire serbatoi in pressioni, muri di contenimento, impalcati da ponte, impalcati di edifici, fondazioni continue.

I carichi di pressione possono essere applicati sulle superfici degli elementi secondo i sistemi di riferimento GCS o ECS.

Un elemento plate può avere forma quadrilatera o triangolare, con rigidezza assiale e a taglio nel piano e rigidezza flessionale e a taglio fuori dal piano di riferimento.

Il comportamento flessionale degli elementi plate è descritto secondo due approcci: DKT/DKQ (Discrete Kirchhoff elements) e DKMT/DKMQ (Discrete Kirchhoff-Mindlin elements). DKT/DKQ è sviluppato sula base della teoria della teoria di Kirchhoff per elementi bidimensionali sottili,

DKMT/DKMQ è sviluppata sulla base della teoria Mindlin-Reissner per elementi bidimensionali moderatamente spessi.

Il comportamento nel piano è formulato in accordo alla teoria LST (Linear Strain Triangle) per gli elementi a 3 nodi e in accordo alla formulazione degli elementi isoparametrici a tensione piana con aggiunta di modi incompatibili per gli elementi a 4 nodi.

In generale, la rigidezza è valutata in maniera automatica dal software a partire dallo spessore e dai parametri meccanici definiti dall'utente per gil elementi; il peso proprio strutturale e la massa strutturale di un elemento plate sono valutati in maniera automatica dal software a partire dallo spessore assegnato all'elemento e da peso nell'unità di volume e densità di massa definita per il materiale assegnati all'elemento.

4.5.5 Gradi di libertà degli elementi e ECS

Il sistema di riferimento ECS di ogni elemento è utilizzato quando il programma calcola la matrice di rigidezza per l'elemento. Gli output grafici delle componenti di sollecitazione soono riportate anche nell'ECS nella fase di post-processing.

I gradi di liberà traslazionali esistono nell'ECS come direzioni XYZ e le rotazioni sono definite rispetto agli assi x e y dell'ECS. Le direzioni degli assi dell'ECS sono rappresentate nella Figura 4-3: Definizione degli elementi plate e rispettivi ECS. In caso di elementi quadrilateri, la direzione del pollice rispetto alla regola della mano destra definisce l'asse Z dell'ECS. La direzione di rotazione (N1, N2, N3, N4) segue la regola della mano destra e definisce la direzione del verso positivo. L'asse Z dell'ECS ha origine dal centro della superficie dell'elemento e ha direzione perpendicolare a essa. La linea che connette il punto medio tra N1 e N4 e il punto medio tra N2 e N3 definisce la direzione dell'asse x. La direzione perpendicolare all'asse x diventa la direzione dell'asse y dell'ECS con verso stabilito dalla regola della mano destra.

Per un elemento triangolare, la linea parallela alla direzione che va da N1 a N2, passante per il centro dell'elemento diventa l'asse X dell'ECS. Le direzioni y e z sono definite come per gli elementi a 4 lati prima descritti.

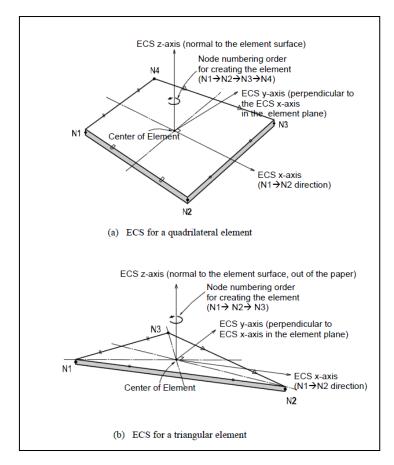


Figura 4-3: Definizione degli elementi plate e rispettivi ECS

4.5.6 Output delle azioni interne

La convenzione dei segni per le azioni interne di un elemento plate e per le sollecitazioni è definita sia dall'ECS che dal GCS.

I seguenti risultati di output sono definite con riferimento all'ECS:

- Azioni sui nodi di connessione
- Azioni per unità di lunghezza sui nodi di connessione e sul baricentro dell'elemento
- Tensioni sulla superficie superiore e inferiore in corrispondenza dei nodi di connessione

In ogni nodo, moltiplicando ogni componente di spostamento nodale per la corrispondente componenti di rigidezza viene determinata l'azione dell'elemento sul nodo.

Per calcolare le forze per unità di lunghezza in un nodo di connessione o nel baricentro di un elemento, le tensioni sono calcolate separatamente per il comportamento nel piano e quello fuori dal piano e integrate nella direzione dello spessore.

Nelle figure successive sono mostrate le convenzioni secondo le quali sono esplicitate le sollecitazioni sugli elementi plate. Le frecce indicano il verso positivo delle forze.

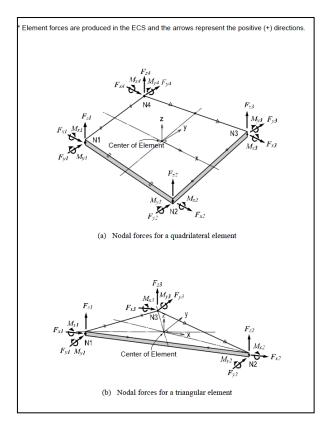


Figura 4-4: Convenzione dei segni per le forze nodali degli elementi plate

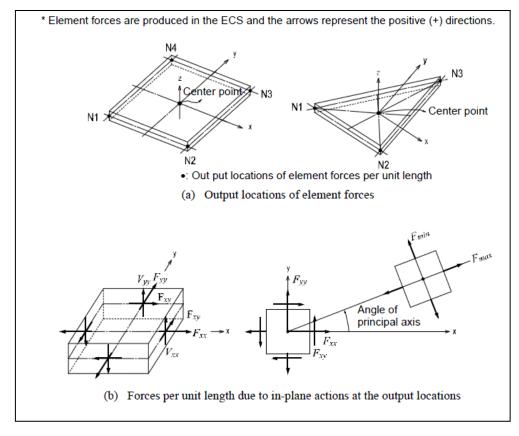


Figura 4-5: Convenzione dei segni per l'output delle forze per unità di lunghezza

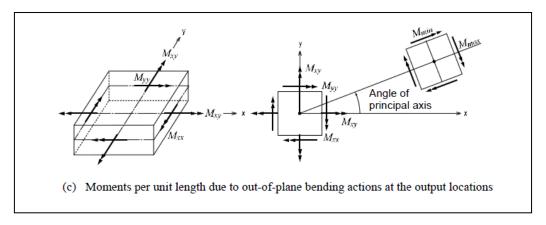


Figura 4-6: Convenzione dei segni per le azioni flessionali fuori dal piano

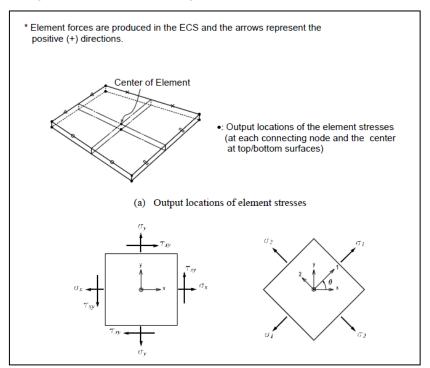


Figura 4-7: Convenzione dei segni per le tensioni agenti

 $\sigma_{_{x}}$: Axial stress in the ECS x - direction

 $\sigma_{_{_{\boldsymbol{x}}}}$: Axial stress in the ECS y - direction

 τ_{xy} : Shear stress in the ECS x - y plane

$$\sigma_{l}: \text{Maximum principal stress} = \frac{\sigma_{x} + \sigma_{y}}{2} + \sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}}$$

$$\sigma_2$$
: Minimum principal stress = $\frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$

$$\tau_{xy}: \text{Maximum shear stress} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

heta : Angle between the x - axis and the principal axis, 1

$$\sigma_{\it eff}$$
 : von - Mises Stress = $\sqrt{({\sigma_1}^2 - {\sigma_1}{\sigma_2} + {\sigma_2}^2)}$

(b) Sign convention for plate element stresses

Figura 4-8: Determinazione delle principali componenti di tensione

4.6 ANALISI STRUTTURALE

4.6.1 Analisi strutturale tramite modello FEM

L'analisi strutturale è stata effettuata utilizzando il softwarare MidasGen 2023, realizzando un modello ad elementi finiti tridimensionale. Gli elementi strutturali sono stati schematizzate mediante elementi finiti di tipo beam e plate, introducendo le condizioni di vincolo esterno e gli opportuni svincoli nei punti in cui il vincolo di collegamento è a cerniera.

Vista la condizione di simmetria dei carichi indotti e delle strutture, i carichi orizzontali verranno applicati in direzione radiale lungo un'unica direzione.

Le azioni di vento e sisma verranno applicate con approccio statico equivalente, secondo le determinazione dei loro effetti calcolati nei capitoli precedenti.

I quantitativi di armatura ottenuti nelle seguenti elaborazioni dovranno essere disposti nella piastra in maniera simmetrica rispetto all'asse verticale baricentrico della platea.

Nei successivi paragrafi vengono riportati con maggiore dettaglio le ipotesi poste alla base delle analisi.

4.6.2 Geometria del modello

Il basamento è stato discretizzato attraverso una mesh di elementi plate che simulano anche l'effetto della variazione della sezione in altezza. Il modello segue quindi con buona approssimazione la variazione di peso e rigidezza della sezione resistente e la forma circolare del basamento.

Sul perimetro di innesto della struttura metallica sono stati disposti una serie di nodi collegati mediante un link rigido a un nodo master, nel quali sono state applicate le componenti delle forze che derivano dalla turbina. Nel nodo vengono quindi applicate le seguenti forze:

- carichi gravitazionali delle strutture innestate
- azioni del vento sulla turbina, come definite in 4.3.2.1
- azioni sismiche, come definite in 0

I carichi presenti nel documento [11] Scheda tecnica del produttore delle turbine "Combine Foundation loads EV162-6.5/6.8/7.2 MW, Mk1B, IECS, 119 m" sono relativi ad un'altezza di 0.20 m rispetto all'estradosso della fondazione. Il nodo master è stato quindi posizionato a una quota di 4.70 m superiore rispetto alla quota di testa dei pali.

Tali carichi sono espressi come risultante delle azioni in direzione X ed Y globale e azione in direzione Z. Come già anticipato, tali carichi verranno applicati in direzione radiale lungo un'unica direzione

e l'armatura verrà disposta in direzione simmetrica rispetto all'asse verticale baricentrico della platea.

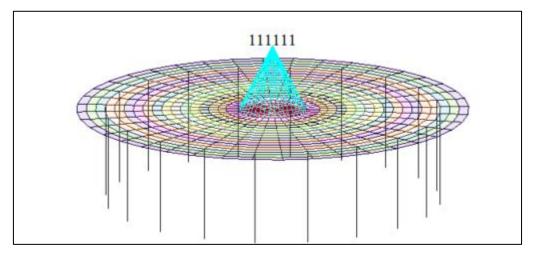


Figura 4-9: Nodo per l'applicazione dei carichi provenienti dalla torre

I pali sono stati modellati alla distanza esatta a cui verranno posti rispetto alla platea e modellati mediante elementi beam.

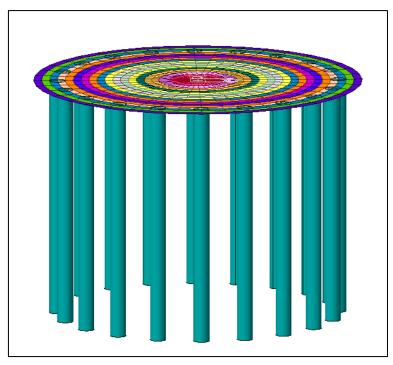


Figura 4-10: Modello FEM, vista prospettica

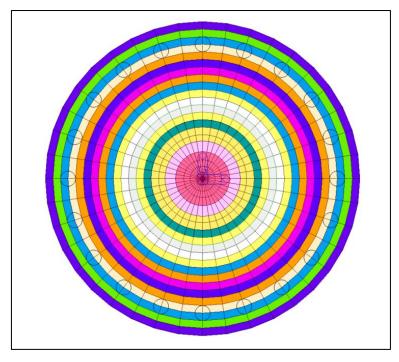


Figura 4-11: Modelli FEM, vista dall'alto

4.6.3 Vincoli

Essendo la struttura su pali, si immagina che l'intero carico venga ripartito su tali elementi. Lo spostamento orizzontale viene bloccato sulla testa del palo, mentre in punta si assume vincolato con vincolo a molla che simula il cedimento dovuto al carico subito.

La rigidezza della molla si calcola a partire da una stima della portata del singolo palo e del relativo cedimento utilizzando la formulazione di Viggiani:

k = 473588 kN/m

Q	carico in esercizio sul palo	3928.4 kN	Tipo di palo	Terreno	λ
Qlim	portata limite di calcolo	14207.6 kN	i ipo di paio		
λ	coefficiente relativo al tipo di palo	40	Battuto	Incoerente	60
w	cedimento stimato	0.008295 m		Coesivo	120
k	rigidezza verticale	473588 kN/m	Trivellato	Incoerente	40
				Coesivo	100
			Trivellato	Incoerente	50
			pressato	Coesivo	100

4.6.4 Casi di di carico

Si riportano nelle sottostanti figure le modalità di applicazione dei carichi descritti e riportati al paragrafo 4.3, a cui si rimanda per una migliore lettura dei valori di carico, condizionata nelle figure dalle modalità di rappresentazione del software di calcolo.

Il carico G2 rappresentante i pesi permanenti non strutturali viene diviso tra peso del terreno sovrastante il basamento (G2_terreno) e peso proprio della turbina e relative componenti (G2_WGT). Quest'ultimo viene applicato per tenere in considerazione l'effetto del peso sul basamento solamente nelle combinazioni dove non è presente l'azione del vento nella quale invece è già compreso nei carichi forniti dalle specifiche del produttore.

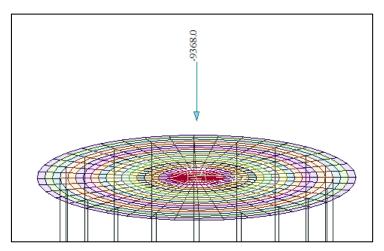


Figura 4-12: Caso di carico G2_terreno

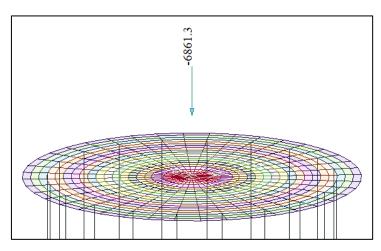


Figura 4-13: Caso di carico G2_WGT

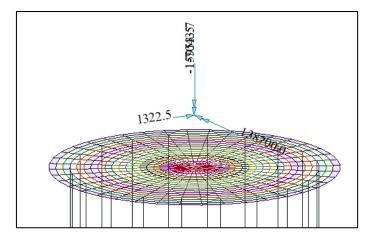


Figura 4-14: Caso di carico W_Characteristic

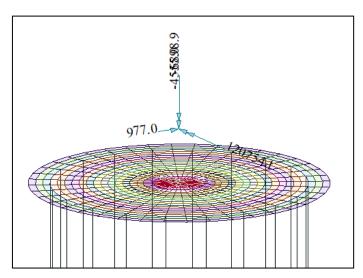


Figura 4-15: Caso di carico W_QP

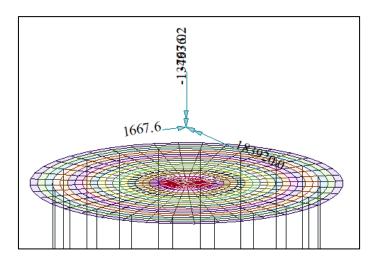


Figura 4-16: Caso di carico W_Extreme

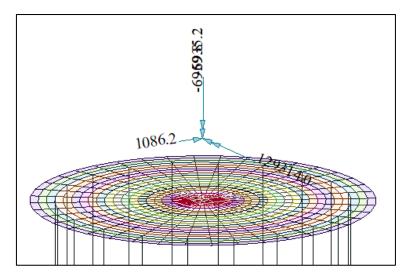


Figura 4-17: Caso di carico W_frequent

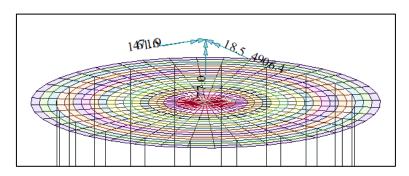


Figura 4-18: Caso di carico E

4.6.5 Combinazioni di carico

Le combinazioni di calcolo selezionate per le verifiche di tipo STR per le quali dovranno essere impiegati i coefficienti definiti nella colonna A1 della tabella Tab. 2.6.1 delle NTC2018.

Tab. 2.6.I – Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU							
	Coefficiente	EQU	A1	A2			
		$\gamma_{\mathtt{F}}$					
Conishi mamananti Ci	Favorevoli	3/	0,9	1,0	1,0		
Carichi permanenti Gı	Sfavorevoli	ΥG1	1,1	1,3	1,0		
Conidian and the state of the s	Favorevoli	24	0,8	0,8	0,8		
Carichi permanenti non strutturali G2 ⁽¹⁾	Sfavorevoli	γ _{G2}	1,5	1,5	1,3		
Animai maniabili O	Favorevoli	2/	0,0	0,0	0,0		
Azioni variabili Q	Sfavorevoli	Ϋ́Qi	1,5	1,5	1,3		

⁽ii) Nel caso in cui l'intensità dei carichi permanenti non strutturali o di una parte di essi (ad es. carichi permanenti portati) sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti parziali validi per le azioni permanenti.

Di seguito vengono elencati i carichi oggetto delle successive combinazioni, i valori sono indicati nelle rispettive tabelle al precedente paragrafo 0.

Casi di carico	
Cat.	
G1	pesi permanenti strutturali
G2_terreno	pesi permanenti non strutturali
G2_wtg	pesi permanenti non strutturali
W_Characteristic	carichi da vento caratteristici
W_QP	carichi da vento in condizione quasi permanente
W_Extreme	carichi da vento in condizione extreme
W_Frequent	carichi da vento in condizione frequente
E	sisma

La seguente tabella contiene le combinazioni di carico utilizzate nei calcoli.

СОМВО	ТҮРЕ		C2 ferrance	- /-	or octeristic	ng	W Extern	W fieduer		r
SLU1	Strength/Stress	Add	1.30	1.50	1.50					
SLU2	Strength/Stress	Add	1.30	1.50			1.35			
SLU3	Strength/Stress	Add	1.00	0.80			1.35			
SLUext	Strength/Stress	Add	1.00	1.00				1.00		
SLV1	Strength/Stress(Elastic	Add	1.00	1.00	1.00					1.00
SLV2	Strenght/Stress(Elastic	Add	1.00	1.00			1.00			1.00
SLEr	Serviceability	Add	1.00	1.00		1.00				
SLEf	Serviceability	Add	1.00	1.00					1.00	
SLEqp	Serviceability	Add	1.00	1.00			1.00			

Le combinazioni "SLU2" e "SLU3" si riferiscono alla combinazione fondamentale allo Stato Limite Ultimo. I carichi da vento in queste combinazioni sono i "Production Loads" con probabilità di

eccedenza di 1e-02, riportati al paragrafo 4.3.2.1. Viene attribuito il coefficiente amplificativo 1.35 in quanto si fa riferimento a carichi nella condizione "Normal", ovvero le normali condizioni di esercizio della turbina, come riportato nella sottostante tabella estratta da [10] IEC 61400-1: Wind turbines - Part:1 Design requirements. Tale documento viene considerato come "di comprovata validità" rispetto alle NTC2018.

La combinazione "SLUext" si riferisce alla combinazione allo Stato Limite Ultimo per azioni di tipo eccezionale. In questa combinazione i carichi da vento utilizzati sono gli "Extreme loads" (W_Extreme); tali carichi saranno amplificati con il coefficiente amplificativo 1.10 in quanto si fa riferimento a carichi in condizione "Abnormal", come riportato nella sottostante tabella estratta da [10] IEC 61400-1: Wind turbines - Part:1 Design requirements. Si precisa che i valori dei carichi inseriti nel modello ad Elementi Finiti sono già amplificati del fattore 1.10, quindi nella tabella delle combinazioni di carico non sono previsti ulteriori fattori amplificativi.

La combinazione "SLV1" rappresenta la combinazione allo Stato Limite Ultimo per sisma.

La combinazione "SLV2" rappresenta la combinazione allo Stato Limite Ultimo per sisma combinata con l'azione del vento nelle normali condizioni di esercizio della turbina (W_QP), come indicato al paragrafo 11.1 delle [10] IEC 61400-1: Wind turbines - Part:1 Design requirements.

La combinazione "SLEr" contiene i carichi da vento caratteristici (W_Characteristic).

La combinazione "SLEf" contiene i carichi da vento in condizione frequente (W_Frequent), ovvero i "Production loads" con probabilità di eccedenza 1e-04.

La combinazione "SLEqp" contiene i carichi da vento in condizione quasi-permanente (W_QP), ovvero i "Production Loads" con probabilità di eccedenza di 1e-02.

	Unfavourable loads						
	Type of design situation (see Table 2)						
Normal (N)	Abnormal (A)	All design situations					
1,35*	1,1	1,5	0,9				
for the design situa	tion in question, and grav y and other sources may i	stic value of the load response F _{gravity} (fity is an unfavourable load, the partial have the value					

Oltre ai casi di carico sopra elencati sono state introdotte anche delle combinazioni di inviluppo delle combinazioni di stato limite ultimo ("SLUenv").

4.6.6 Giudizio motivato accettabilità dei risultati

Al fine di validare il modello di calcolo vengono confrontati i risultati ottenuti da:

- Modello di calcolo FEM;
- Calcolo manuale su piastra rigida delle reazioni alla testa dei pali con foglio excel.

Visti gli spessori degli elementi assunti i due risultati portano a valori di reazione verticale simile.

Le valutazioni vengono eseguite sulla combinazione di carico "SLEr".

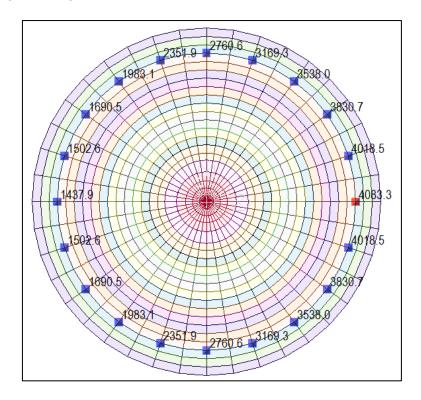


Figura 4-19: Reazioni verticali su modello FEM

Di seguito, elaborazione con foglio di calcolo Excel e relative reazioni sui pali ottenute:

	UT								
Raggio del bas	amento				Rb	12.5	m		
Raggio colletto					Rc		m		
Diametro del ba					Rb		m		
Diametro collet					Dc	6	m		
Altezza minima	a basamento				hmin	1.5	m		
Altezza massir					hmax	3.75			
Altezza colletto					hc	0.5			
Diametro del pa					Øp	1.2			
Raggio d'asse i					Rp	10.7			
Lunghezza palo					Lp	15			
Peso specifico					γ		kN/mc		
Altezza massir					ht	2.25			
Larghezza porz	rione terreno				Lt	9.5	m		
PESO DEL I	BASAMENTO								
Volume cilindro					Vinf	736.3			
Volume tronco					Vsup	477.7	-		
Volume colletto					Vcol	14.1			
Volume basam					V	1228.2			
Volume terreno Peso basamen					Vt G1 b	520.4 -30704.15945			
Peso basamen Peso palo	ıo				G1,b G1,p	-30704.15945 -423.9			
Peso terreno						-9367.640244			
FORZE ALL	'INNESTO DELI	A TURBINA							
	combinazione pe		i		γG1	1			
	combinazione so				γQ	1			
Forza verticale					Fz	-7043.74	kN		
Forza orizzonta	ale direzione X				Fx	1322.49	kN		
Forza orizzonta	ale direzione Y				Fy	0	kN		
Quota di applic	azione delle forz	ze			zF	4.7	m		
Momento attorr					My	138700			
Momento attorr					Mx		kN m		
Torsione alla ba	ase				Mz	-15953	kN m		
CARICHI SL	E								
Forza verticale					Fz	-55593.54		Contributo taglio	su palo
Forza orizzonta					Fx	1322.49		66.1245	
Forza orizzonta					Fy	0.00		0	
Momento attorr Momento attorr					My	144915.70			
Torsione alla ba					Mx Mz	-15953.00	kN m	-74.547	
TOISIONE ANA DA	356				IVIZ	-10900.00	KIVIII	-74.547	
Numero pali					np	20			
Distanza angol	are pali				α	18	0		
n _{Pi}	αί	Xi	Yi	X _i ²	Y _i ²	Fz/n _P	My*Xy/Jy	Mx*Yi/Jx	N _P
1	0	10.70	0.00	114.49	0.00	-2779.68		0.00	-4134.03
2	18	10.18	3.31	103.56	10.93	-2779.68		0.00	-4067.74
3	36	8.66	6.29	74.93	39.56	-2779.68		0.00	-3875.37
4	54	6.29	8.66	39.56	74.93	-2779.68		0.00	-3575.75
5 6	72 90	3.31 0.00	10.18 10.70	10.93 0.00	103.56 114.49	-2779.68		0.00	-3198.19 -2779.68
							0.00		-2779.68
						-2779.68 -2779.68		() ()()	
7	108	-3.31	10.18	10.93	103.56	-2779.68	418.52	0.00	
7 8	108 126	-3.31 -6.29	10.18 8.66	10.93 39.56	103.56 74.93	-2779.68 -2779.68	418.52 796.07	0.00	-1983.61
7 8 9	108 126 144	-3.31 -6.29 -8.66	10.18 8.66 6.29	10.93 39.56 74.93	103.56 74.93 39.56	-2779.68 -2779.68 -2779.68	418.52 796.07 1095.69	0.00 0.00	-1983.61 -1683.98
7 8	108 126	-3.31 -6.29	10.18 8.66	10.93 39.56	103.56 74.93	-2779.68 -2779.68	418.52 796.07 1095.69 1288.07	0.00	-1983.61 -1683.98 -1491.61
7 8 9 10	108 126 144 162	-3.31 -6.29 -8.66 -10.18	10.18 8.66 6.29 3.31	10.93 39.56 74.93 103.56	103.56 74.93 39.56 10.93	-2779.68 -2779.68 -2779.68 -2779.68	418.52 796.07 1095.69 1288.07 1354.35	0.00 0.00 0.00	-1983.61 -1683.98 -1491.61 -1425.32
7 8 9 10	108 126 144 162 180	-3.31 -6.29 -8.66 -10.18 -10.70	10.18 8.66 6.29 3.31 0.00	10.93 39.56 74.93 103.56 114.49	103.56 74.93 39.56 10.93 0.00	-2779.68 -2779.68 -2779.68 -2779.68 -2779.68	418.52 796.07 1095.69 1288.07 1354.35 1288.07	0.00 0.00 0.00 0.00	-1983.6° -1683.98 -1491.6° -1425.32 -1491.6°
7 8 9 10 11 12 13	108 126 144 162 180 198 216 234	-3.31 -6.29 -8.66 -10.18 -10.70 -10.18 -8.66 -6.29	10.18 8.66 6.29 3.31 0.00 -3.31 -6.29 -8.66	10.93 39.56 74.93 103.56 114.49 103.56 74.93 39.56	103.56 74.93 39.56 10.93 0.00 10.93 39.56 74.93	-2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68	418.52 796.07 1095.69 1288.07 1354.35 1288.07 1095.69 796.07	0.00 0.00 0.00 0.00 0.00 0.00 0.00	-1983.6 -1683.98 -1491.6 -1425.32 -1491.6 -1683.98 -1983.6
7 8 9 10 11 12 13	108 126 144 162 180 198 216	-3.31 -6.29 -8.66 -10.18 -10.70 -10.18 -8.66 -6.29 -3.31	10.18 8.66 6.29 3.31 0.00 -3.31 -6.29 -8.66 -10.18	10.93 39.56 74.93 103.56 114.49 103.56 74.93 39.56 10.93	103.56 74.93 39.56 10.93 0.00 10.93 39.56 74.93 103.56	-2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68	418.52 796.07 1095.69 1288.07 1354.35 1288.07 1095.69 796.07 418.52	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	-1983.6 -1683.98 -1491.6 -1425.32 -1491.6 -1683.98 -1983.6 -2361.16
7 8 9 10 11 12 13 14 15	108 126 144 162 180 198 216 234 252 270	-3.31 -6.29 -8.66 -10.18 -10.70 -10.18 -8.66 -6.29 -3.31 0.00	10.18 8.66 6.29 3.31 0.00 -3.31 -6.29 -8.66 -10.18	10.93 39.56 74.93 103.56 114.49 103.56 74.93 39.56 10.93 0.00	103.56 74.93 39.56 10.93 0.00 10.93 39.56 74.93 103.56 114.49	-2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68	418.52 796.07 1095.69 1288.07 1354.35 1288.07 1095.69 796.07 418.52 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-1983.6' -1683.9k -1491.6' -1425.3; -1491.6' -1683.9k -1983.6' -2361.1k
7 8 9 10 11 12 13 14 15 16	108 126 144 162 180 198 216 234 252 270 288	-3.31 -6.29 -8.66 -10.18 -10.70 -10.18 -8.66 -6.29 -3.31 0.00 3.31	10.18 8.66 6.29 3.31 0.00 -3.31 -6.29 -8.66 -10.18 -10.70 -10.18	10.93 39.56 74.93 103.56 114.49 103.56 74.93 39.56 10.93 0.00 10.93	103.56 74.93 39.56 10.93 0.00 10.93 39.56 74.93 103.56 114.49	-2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68	418.52 796.07 1095.69 1288.07 1354.35 1288.07 1095.69 796.07 418.52 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	-1983.6' -1683.98' -1491.6' -1425.32' -1491.6' -1683.98' -1983.6' -2361.16' -2779.66' -3198.18'
7 8 9 10 11 12 13 14 15 16 17 18	108 126 144 162 180 198 216 234 252 270 288 306	-3.31 -6.29 -8.66 -10.18 -10.70 -10.18 -8.66 -6.29 -3.31 0.00 3.31 6.29	10.18 8.66 6.29 3.31 0.00 -3.31 -6.29 -8.66 -10.18 -10.70 -10.18 -8.66	10.93 39.56 74.93 103.56 114.49 103.56 74.93 39.56 10.93 0.00 10.93 39.56	103.56 74.93 39.56 10.93 0.00 10.93 39.56 74.93 103.56 74.93	-2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68	418.52 796.07 1095.69 1288.07 1354.35 1288.07 1095.69 796.07 418.52 0.00 -418.52	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	-1983.6' -1683.98' -1491.6' -1425.32' -1491.6' -1683.98' -1983.6' -2361.16' -2779.68' -3198.15'
7 8 9 10 11 12 13 14 15 16 17 18	108 126 144 162 180 198 216 234 252 270 288 306 324	-3.31 -6.29 -8.66 -10.18 -10.70 -10.18 -8.66 -6.29 -3.31 0.00 3.31 6.29 8.66	10.18 8.66 6.29 3.31 0.00 -3.31 -6.29 -8.66 -10.18 -10.70 -10.18 -8.66 -6.29	10.93 39.56 74.93 103.56 114.49 103.56 74.93 39.56 10.93 0.00 10.93 39.56 74.93	103.56 74.93 39.56 10.93 0.00 10.93 39.56 74.93 103.56 114.49 103.56 74.93	-2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68	418.52 796.07 1095.69 1288.07 1354.35 1288.07 1095.69 796.07 418.52 0.00 -418.52 -796.07 -1095.69	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	-1983.6 -1683.98 -1491.6 -1425.3 -1491.6 -1683.98 -1983.6 -2361.16 -2779.6 -3198.1 -3575.7 -3875.3
7 8 9 10 11 12 13 14 15 16 17 18 19	108 126 144 162 180 198 216 234 252 270 288 306	-3.31 -6.29 -8.66 -10.18 -10.70 -10.18 -8.66 -6.29 -3.31 0.00 3.31 6.29 8.66 10.18	10.18 8.66 6.29 3.31 0.00 -3.31 -6.29 -8.66 -10.18 -10.70 -10.18 -8.66 -6.29 -3.31	10.93 39.56 74.93 103.56 114.49 103.56 74.93 39.56 10.93 0.00 10.93 39.56	103.56 74.93 39.56 10.93 0.00 10.93 39.56 74.93 103.56 74.93	-2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68	418.52 796.07 1095.69 1288.07 1354.35 1288.07 1095.69 796.07 418.52 0.00 -418.52 -796.07 -1095.69	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	-1983.6 -1683.98 -1491.6 -1425.3 -1491.6 -1683.98 -1983.6 -2361.16 -2779.6 -3198.1 -3575.7 -3875.3
7 8 9 10 11 12 13 14 15 16 17 18 19 20 G	108 126 144 162 180 198 216 234 252 270 288 306 324	-3.31 -6.29 -8.66 -10.18 -10.70 -10.18 -8.66 -6.29 -3.31 0.00 3.31 6.29 8.66	10.18 8.66 6.29 3.31 0.00 -3.31 -6.29 -8.66 -10.18 -10.70 -10.18 -8.66 -6.29	10.93 39.56 74.93 103.56 114.49 103.56 74.93 39.56 10.93 0.00 10.93 39.56 74.93 103.56	103.56 74.93 39.56 10.93 0.00 10.93 39.56 74.93 103.56 114.49 103.56 74.93 39.56	-2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68	418.52 796.07 1095.69 1288.07 1354.35 1288.07 1095.69 796.07 418.52 0.00 -418.52 -796.07 -1095.69	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	-1983.6 -1683.98 -1491.6 -1425.3 -1491.6 -1683.98 -1983.6 -2361.16 -2779.6 -3198.1 -3575.7 -3875.3
7 8 9 10 11 12 13 14 15 16 17 18 19	108 126 144 162 180 198 216 234 252 270 288 306 324	-3.31 -6.29 -8.66 -10.18 -10.70 -10.18 -8.66 -6.29 -3.31 0.00 3.31 6.29 8.66 10.18	10.18 8.66 6.29 3.31 0.00 -3.31 -6.29 -8.66 -10.18 -10.70 -10.18 -8.66 -6.29 -3.31	10.93 39.56 74.93 103.56 114.49 103.56 74.93 39.56 10.93 0.00 10.93 39.56 74.93	103.56 74.93 39.56 10.93 0.00 10.93 39.56 74.93 103.56 114.49 103.56 74.93	-2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68	418.52 796.07 1095.69 1288.07 1354.35 1288.07 1095.69 796.07 418.52 0.00 -418.52 -796.07 -1095.69	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	-1983.6' -1683.98 -1491.6' -1425.32 -1491.6' -1683.98 -1983.6' -2361.16' -2779.66' -3198.15' -3575.75' -3875.37
7 8 9 10 11 12 13 14 15 16 17 18 19 20 G	108 126 144 162 180 198 216 234 252 270 288 306 324 342	-3.31 -6.29 -8.66 -10.18 -10.70 -10.18 -8.66 -6.29 -3.31 0.00 3.31 6.29 8.66 10.18	10.18 8.66 6.29 3.31 0.00 -3.31 -6.29 -8.66 -10.18 -10.70 -10.18 -8.66 -6.29 -3.31	10.93 39.56 74.93 103.56 114.49 103.56 74.93 39.56 10.93 0.00 10.93 39.56 74.93 103.56	103.56 74.93 39.56 10.93 0.00 10.93 39.56 74.93 103.56 114.49 103.56 74.93 39.56	-2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68	418.52 796.07 1095.69 1288.07 1354.35 1288.07 1095.69 796.07 418.52 0.00 -418.52 -796.07 -1095.69 -1288.07	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	-1983.6' -1683.98 -1491.6' -1425.32 -1491.6' -1683.98 -1983.6' -2361.16' -2779.66' -3198.15' -3575.75' -3875.37
7 8 9 10 11 12 13 14 15 16 17 18 19 20 G	108 126 144 162 180 198 216 234 252 270 288 306 324 342	-3.31 -6.29 -8.66 -10.18 -10.70 -10.18 -8.66 -6.29 -3.31 0.00 3.31 6.29 8.66 10.18	10.18 8.66 6.29 3.31 0.00 -3.31 -6.29 -8.66 -10.18 -10.70 -10.18 -8.66 -6.29 -3.31	10.93 39.56 74.93 103.56 114.49 103.56 74.93 39.56 10.93 0.00 10.93 39.56 74.93 103.56	103.56 74.93 39.56 10.93 0.00 10.93 39.56 74.93 103.56 114.49 103.56 74.93 39.56	-2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68 -2779.68	418.52 796.07 1095.69 1288.07 1354.35 1288.07 1095.69 796.07 418.52 0.00 -418.52 -796.07 -1095.69 -1288.07	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	-1983.61

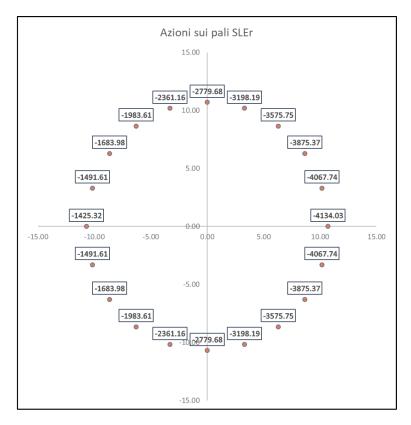


Figura 4-20: Reazioni verticali foglio di calcolo Excel

Lo scarto tra i risultati forniti dai due modelli è trascurabile; il modello FEM risponde in maniera efficace agli input dati.

4.7 RISULTATI DEL MODELLO FEM E VERIFICHE

4.7.1 Direzioni fissate per gli assi locali degli elementi

L'analisi strutturale è stata eseguita facendo riferimento al sistema di riferimento globale per la definizione delle azioni agenti.

Per migliorare la lettura delle sollecitazioni sono stati orientati gli assi di riferimento locale degli elementi in direzione radiale (assi x) e circonferenziale (assi y).

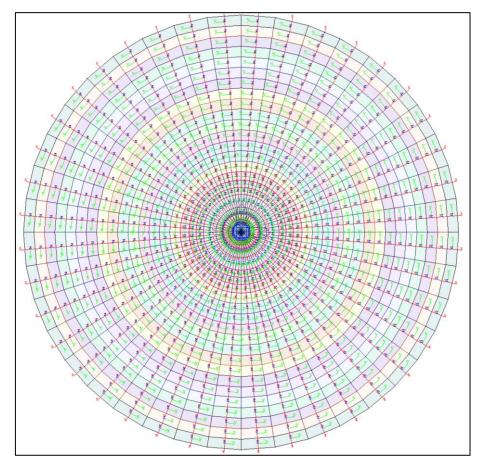


Figura 4-21: Assi di riferimento locali su elementi plate

Le armature che verranno assegnate agli elementi plate vengono definite in direzione circonferenziale e radiale per gli elementi posti esternamente al nucleo di innesto della torre della turbina eolica, la porzione centrale ha armature definite in direzione X e Y.

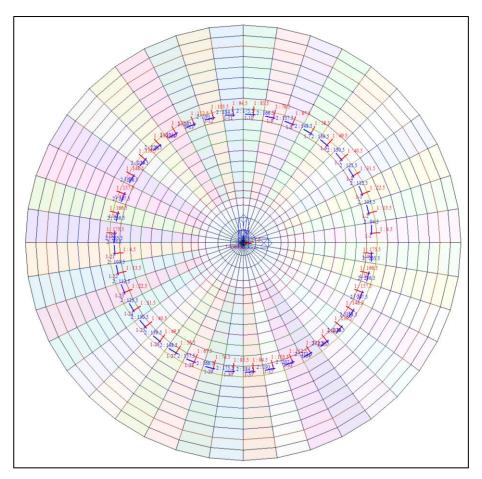


Figura 4-22: Assi di riferimento delle armature

4.7.2 Azioni assiali sui pali

Nell'immagine sottostante si riportano le reazioni massime misurate alla base dei pali per l'inviluppo delle combinazioni SLU e SLV. Le forze sono indicate in kN ed il software indica con il segno (+) azioni assiali di compressione.

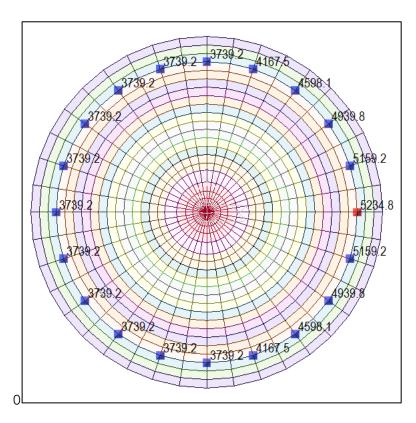


Figura 4-23: Reazioni verticali massime riportate alla punta del palo

Si è provveduto a stimare la portata verticale limite mediante metodi statici considerando la stratigrafia ed i relativi parametri di progetto riportata al paragrafo 4.2, se ne riportano i risultati, che prevedono l'impiego di pali di diametro 1.2 m e lunghezza 15 m per poter fornire una portata compatibile con le reazioni risultate dal calcolo. La verifica di capacità portante è stata condotta mediante l'Approccio 2 e la combinazione A1+M1+R3 come riportato al paragrafo 6.4.3.1. della Normativa. Nell'inserimento dei parametri geotecnici relativi alla stratigrafia di progetto si è tenuto in conto della profondità dello scavo di sbancamento per la realizzazione del plinto, assunta preliminarmente pari a 4 m da p.c.

L w cd	diametro del palo lunghezza massin profondità della fa resistenza di calci tipo terreno Andesiti Andesiti	lda dal p.c.	Н, [m] 6.00	7 n [kN/m³]	γ'	1.20 15.00 10.00 14.17	[m] [m] [m] [Mpa]		FS			sistenza alla	base	γь	1.35	[-]
ov od 1° strato	lunghezza massim profondità della fa resistenza di calci tipo terreno Andesiti	da dal p.c. blo del c.l.s. DH; [m] 6.00	[m]		r '	15.00 10.00	[m] [m]		FS				base	γь	1.35	[-]
z _w fod n° strato 1a	lunghezza massim profondità della fa resistenza di calci tipo terreno Andesiti	da dal p.c. blo del c.l.s. DH; [m] 6.00	[m]		"	10.00	[m] [m]									
n° strato	resistenza di calco tipo terreno Andesiti	DH (m) 6.00	[m]		ν'					Coefficient	e parziale re	sistenza later	ale	Yı	1.15	[-]
n° strato 1a	tipo terreno Andesiti	DH _i [m] 6.00	[m]		γ'	14.17	[Mpa]			Fattori di c	orrelazione ξ			ξ	1.70	[-]
1a	terreno Andesiti	[m] 6.00	[m]		γ'						-			-		
	terreno Andesiti	[m] 6.00	[m]		ν'											
	Andesiti	6.00		[kNl/m ³]		N _{SPT}	f	Κ	C _u	α	C _a					
			6.00		[kN/m ³]	[-]	[°]	[-]	[kPa]	[-]	[kPa]				NDA	
1b	Andesiti	9.00		21.00	21.00	-	35.00	0.40		0.00	0.00)H;	spessore d		
			15.00	21.00	11.00	-	35.00	0.40		0.00	0.00		1,		dello strato d	
					0.00					0.00	0.00	γ			fico del terre	
					0.00					0.00	0.00	7			ico efficace	
					0.00					0.00	0.00		SPT			solo granulari)
					0.00					0.00	0.00	ø K		rapporto tra	ttrito (solo gr	anulari)
					0.00					0.00	0.00	c			on drenata (:	solo coesivi)
					0.00					0.00	0.00				solo coesivi)	SOIO COCSIVI)
					0.00				1	0.00	0.00	·	a – u O	aucsionic (olo cocsivi)	
PORTATA	ALLA BASE - prot	ocollo di Be	renzantzev													
n° strato	tipo	DH;	H _f	γn	γ'	N _{SPT}	f	Κ	C _u	α	C _a					
	terreno	[m]	[m]	[kN/m ³]	[kN/m ³]	[-]	[°]	[-]	[kPa]	[-]	[kPa]					
0		9.00	15.00	21.00	11.00	0.00	35.00	0.40	0.00	0.00	0.00					
-	Area della base de	•		1.13	[m²]	ø	26	30	34	37	40					
	Pressione geostat			225	[kPa]	B _k	20.00	33.00	63.00	104.00	186.00	Т	abella pe	r il calcolo d	i B _k	
-	Coeff. di pression			42.84												
	Coesione alla bas			0.00	[kPa]	H/D	26	30	34	37	40	T	abella pe	r il calcolo d	υ	
N _c	Coeff. di coesione			9.00		5	0.75	0.77	0.81	0.83	0.85					
_	Portata limite di ba			6412.62	[kN]	10 15	0.62 0.55	0.67	0.73	0.76 0.73	0.79 0.77	Н	/D	12.5		
	Portata amm. di b			4750.09	[KN]	20	0.55	0.61	0.65	0.73	0.77					
Q _{b,amm}	FUITALA AITIII. UI D	350		4730.09	[KIN]	25	0.49	0.57	0.63	0.70	0.73					
						25	0.44	0.53	0.03	0.70	0.74					
PORTATA	LATERALE - proto	collo di Via	niani													
	D 1.12.10.122 p. 0.10	50.10 ti. 1195	J													
				$\sigma_{v,i}$	σ _{v.(i+1)}	$\sigma_{v.med}$	$\sigma_{\text{h.med}}$		C _a		σ			$\sigma = c_{a,i} + \sigma$	_{h.med.i} tan 🛊	
σ _{h.1}	tensione laterale s	trato 1°		0.00	126.00	63.00	25.20	[kPa]	0.00		17.65	105.8714				
	tensione laterale s	trato 2°		126.00	225.00	175.50	70.20	[kPa]	0.00		49.15	442.3911				
	tensione laterale s	trato 3°		0.00	0.00	0.00	0.00	[kPa]	0.00		0.00	0				
	tensione laterale s	trato 4°		0.00	0.00	0.00	0.00	[kPa]	0.00		0.00					
o _{h.5}	tensione laterale s	trato 5°		0.00	0.00	0.00	0.00	[kPa]	0.00		0.00					
5 _{h.6}	tensione laterale s	trato 6°		0.00	0.00	0.00	0.00	[kPa]	0.00		0.00					
5 _{h.7}	tensione laterale s	trato 7°		0.00	0.00	0.00	0.00	[kPa]	0.00		0.00					
- 11.0	tensione laterale s			0.00	0.00	0.00	0.00	[kPa]	0.00		0.00					
5 _{h.9}	tensione laterale s	trato 9°		0.00	0.00	0.00	0.00	[kPa]	0.00		0.00					
						_										
	Portata limite later			2066.90	[kN]	Peso propr	io palo	424.12	[kN]	•		nto nel calco				
Q _{I,amm}	Portata amm. later	ale		1057.24	[kN]					0	non tenere i	n conto nel c	aicolo de	iia portata		
ORTATA F	RAIO															
OKIAIA I	FALO															
ODTATA	TOTALE LIMITE			5383.21	[kN]											

4.7.3 Azioni sul basamento

Si riportano di seguito le sollecitazioni flettenti e taglianti sul basamento, calcolate secondo la teoria Wood Armer, in direzione radiale e circonferenziale per le diverse combinazioni indicate.

Inviluppo delle combinazioni SLU: "SLUenv"

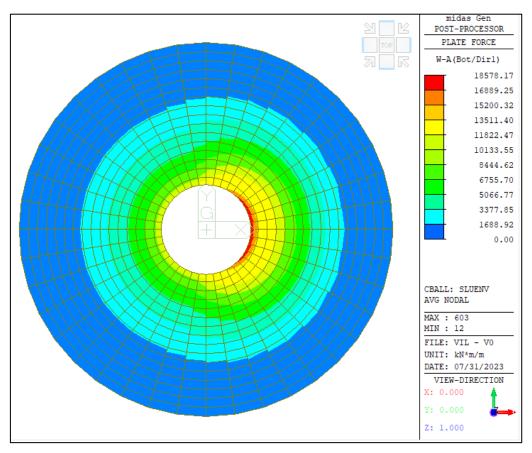


Figura 4-24: SLUenv: Momento direzione radiale, Bottom

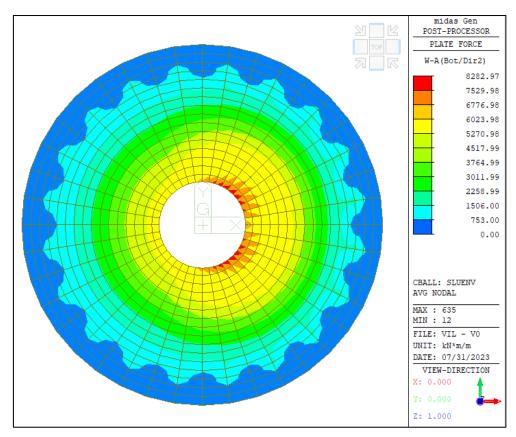


Figura 4-25: SLUenv: Momento direzione circonferenziale, Bottom

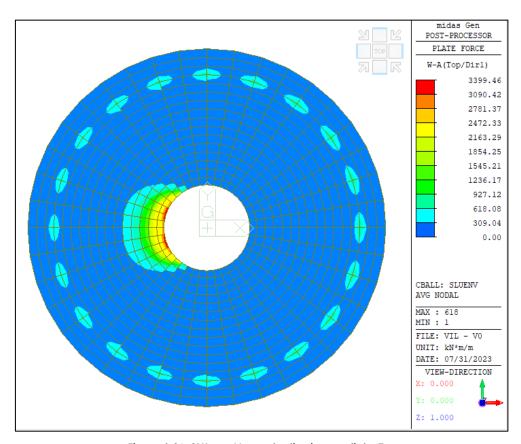


Figura 4-26: SLUenv: Momento direzione radiale, Top

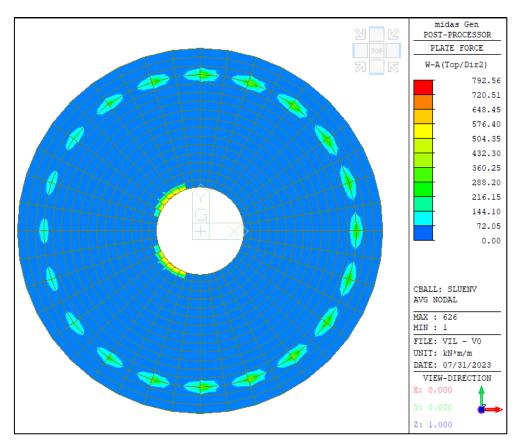


Figura 4-27: SLUenv: Momento direzione Circonferenziale, Top

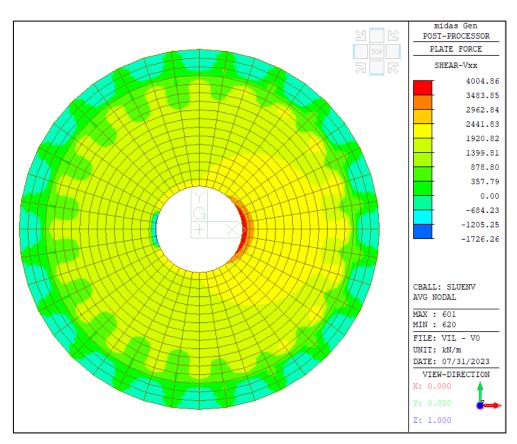


Figura 4-28: SLUenv: Taglio Vxx

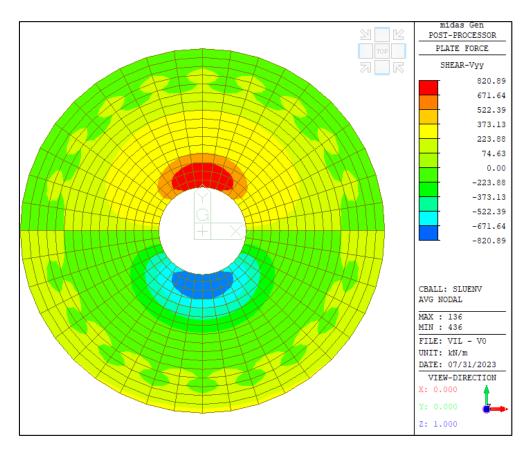


Figura 4-29: SLUenv: Taglio Vyy

Combinazione "SLV2":

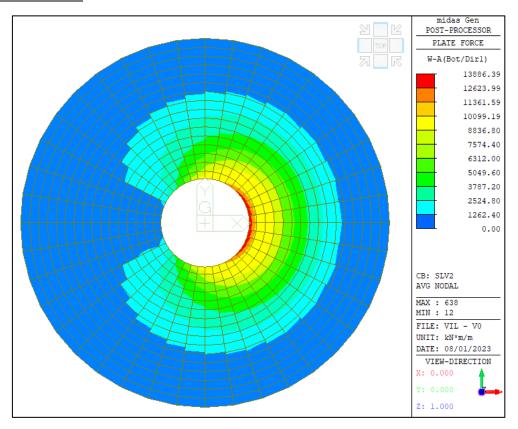


Figura 4-30: SLV2: Momento direzione radiale, Bottom

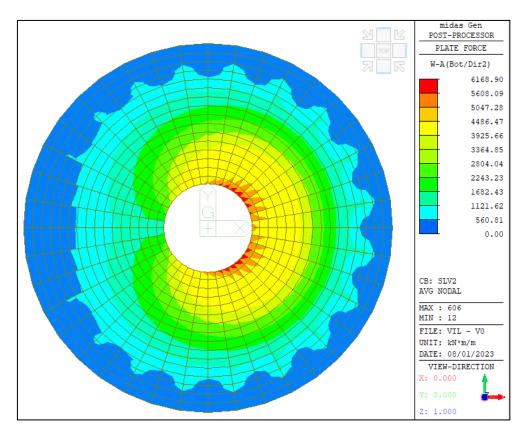


Figura 4-31: SLV2: Momento direzione circonferenziale, Bottom

Figura 4-32: SLV2: Momento direzione radiale, Top

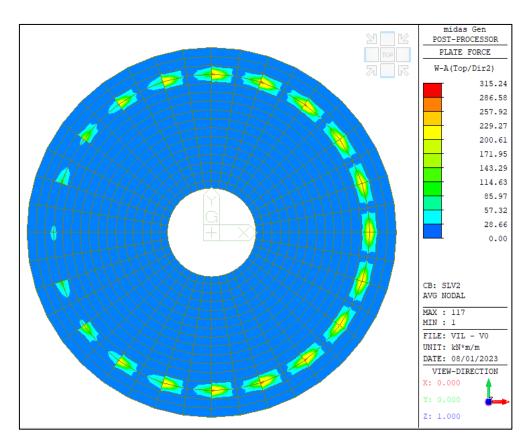


Figura 4-33: SLV2: Momento direzione circonferenziale, Top

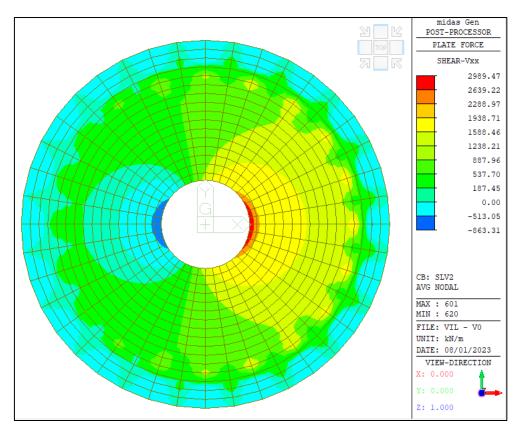


Figura 4-34: SLV2: Taglio Vxx

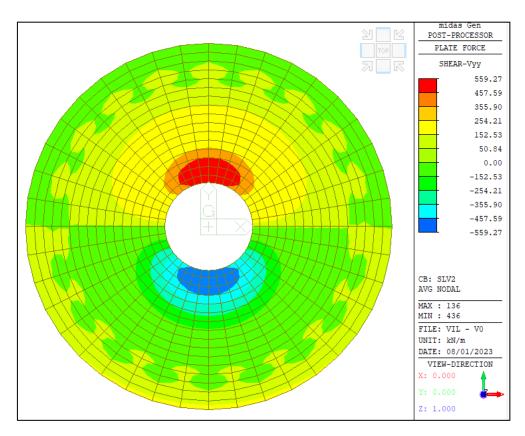


Figura 4-35: SLV2: Taglio Vyy

Combinazione "SLEr":

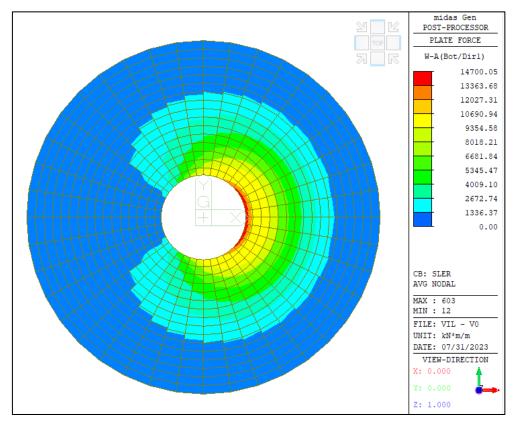


Figura 4-36: SLEr: Momento direzione radiale, Bottom

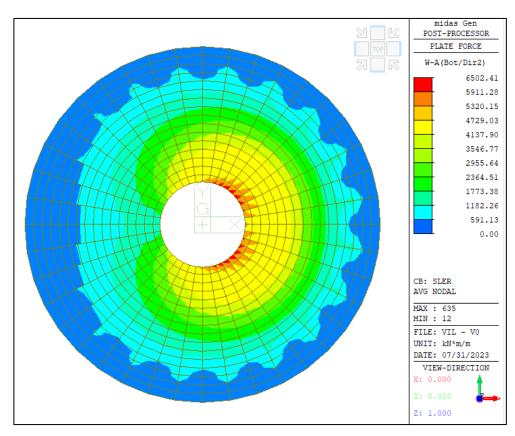


Figura 4-37: SLEr: Momento direzione circonferenziale, Bottom

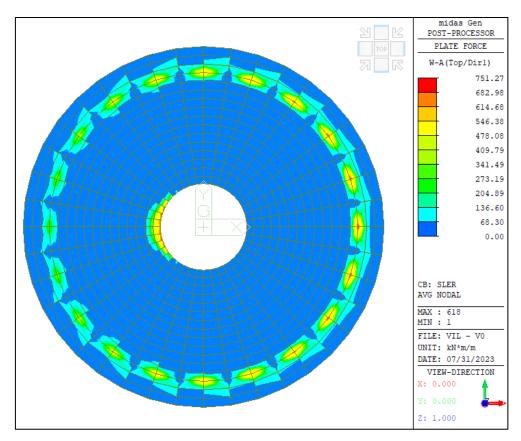


Figura 4-38: SLEr: Momento direzione radiale, Top

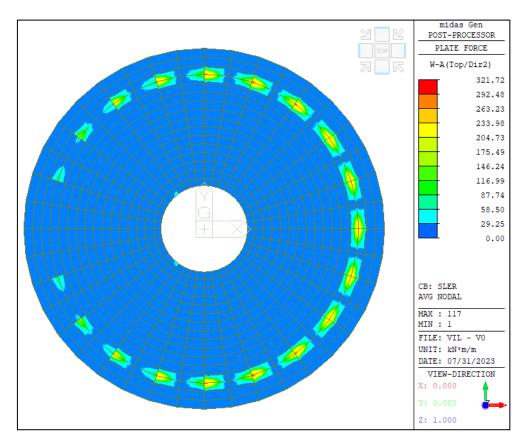


Figura 4-39: SLEr: Momento direzione circonferenziale, Top

Combinazione "SLEap":

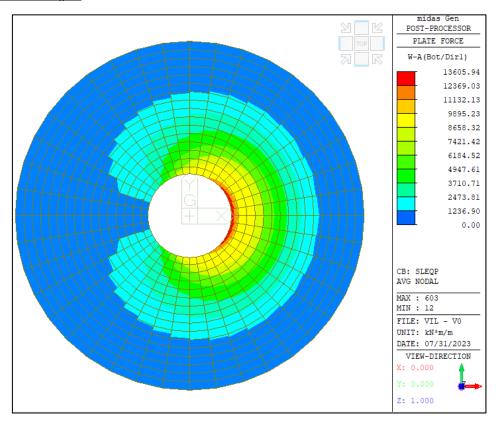


Figura 4-40: SLEqp: Momento direzione radiale, Bottom

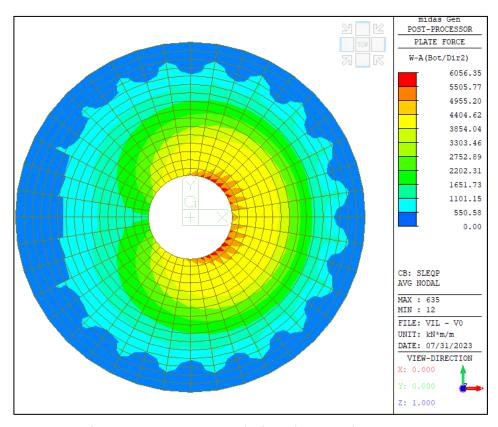


Figura 4-41: SLEqp: Momento direzione circonferenziale, Bottom

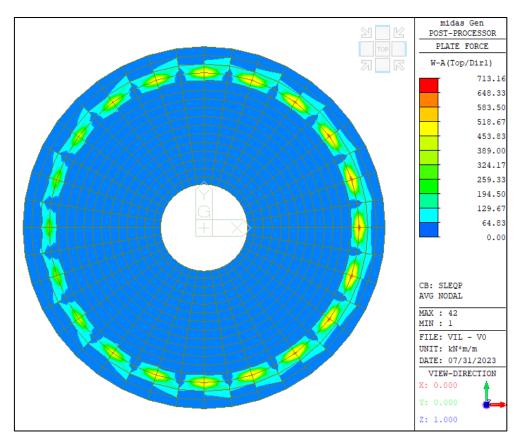


Figura 4-42: SLEqp: Momento direzione radiale, Top

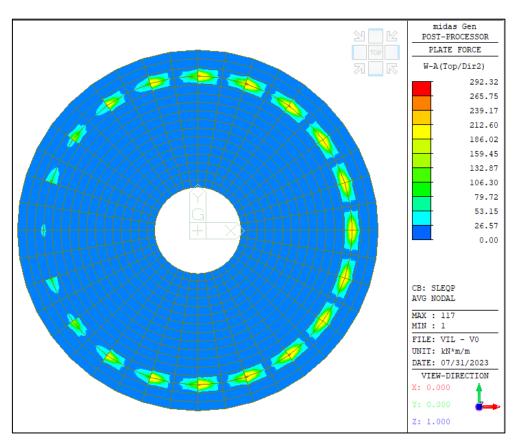
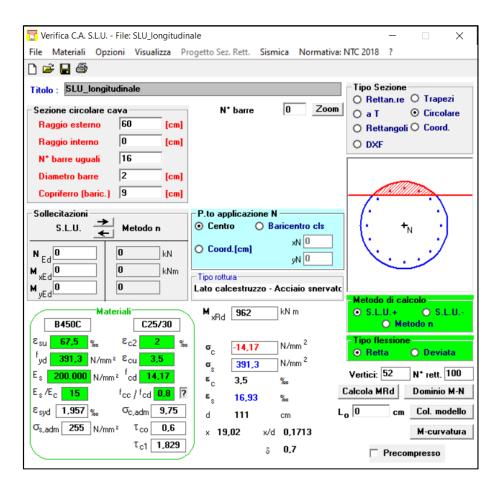


Figura 4-43: SLEqp: Momento direzione circonferenziale, Top


4.7.4 Verifica degli elementi strutturali

Le verifiche sugli elementi strutturali vengono eseguite come segue:

- SLU: Verifica con acciaio snervato e calcestruzzo con deformazione allo 0.35%
- SLV: Verifica con acciaio snervato e calcestruzzo in campo elastico
- SLE caratteristica (rara): verifica tensionale sulla massima tensione delle fibre d'acciaio $\sigma_s \le 0.8 * f_{vk}$ e sulla massima tensione di compressione del calcestruzzo $\sigma_c \le 0.6 * f_{ck}$
- SLE frequente: verifica che la massima apertura di fessura sia inferiore al valore w₃≤0.3mm.
- SLE quasi permanente: verifica sulla massima tensione di compressione del calcestruzzo $\sigma_c \le 0.45 * f_{ck}$ e che la massima apertura di fessura risulti inferiore al limite $w_2 \le 0.2$ mm.

4.7.5 Verifica strutturale del palo

Sul palo sono state disposti 16Ø20 longitudinali e un'armatura a spirale Ø10/25 su tutta la sua lunghezza per garantire adeguato confinamento. Tale armatura è maggiore del minimo indicato ai paragrafi 4.1.6.1.2 delle NTC2018.

Le sollecitazioni di taglio vengono estratte dalle reazioni orizzontali globali e ripartite sui 20 pali presenti.

Load	F _x (kN)	F _Y (kN)	F _z (kN)	V _{TOT} (kN)	V _{PALO} (kN)
SLU1	0	0	75518.94	0.00	0.00
SLU2	-1318.95	0	74540.58	1318.95	65.95
SLU3	-1318.95	0	56173.35	1318.95	65.95
SLUext	-1667.6	0	56369.63	1667.60	83.38
SLV1	-61.57	-18.47	55594.68	64.28	3.21
SLV2	-1038.57	-18.47	55632.33	1038.73	51.94

Si considera il valore di azione sollecitante tagliante derivante dalla combinazione "SLUext", più gravosa.

La resistenza a taglio viene calcolata su una sezione rettangolare equivalente attraverso il Metodo di Clarke & Birjandi.

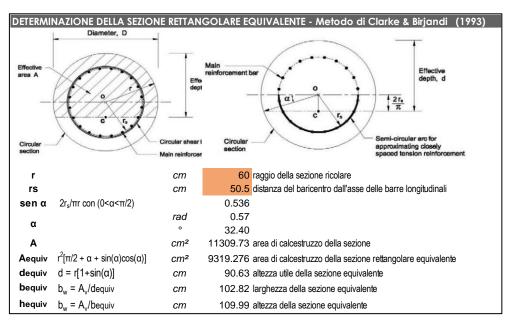


Figura 4-44: Sezione rettangolare equivalente

Verifica a taglio:

DETERMINA	ZIONE DELLA RESISTENZA A TAGLIO DI SEZIONI IN C.	A N	TC2018						
	che dei materiali								
f _{ck}		MPa	25						
α _{cc}			0.85						
γc			1.5						
f _{cd}	resistenza di calcolo a compressione del calcestruzzo	MPa	14.17		$a_{cc} \cdot f_{cd} / g_c$				
γs	·		1.15						
f _{y,wd}		MPa	391.30		f_{yd} / g_s				
	che della sezione resistente				yu. Us				
V _{Ed}	taglio sollecitante di progetto	kN	83.4						
	larghezza della sezione		102.82						
b _w h	altezza totale della sezione	cm cm	102.82						
c	distanza asse barre dal lembo teso	ст	9.5						
d	altezza utile della sezione	ст	100.49		h - c				
d*		ст	90.441		0.9 d				
k			1.446		min[1.0+√(20/d) , 2.0]				
A _{sl}	area di armatura longitudinale tesa	cm ²	40.82		. , , , ,				
ρΪ	rapporto geometrico di armatura longitudinale tesa		0.0036						
A _{sw}	area di armatura a taglio disposta	cm ²	1.571						
S	spaziatura staffe	ст	25						
Controllo necessità di armatura a taglio									
V _{Rdc1}	eccisiia ai ai maiora a lagilo	kN	373.29	Γ	[0.18 · k · (100 · ρl · fck)^(1/3)] / γc · bw · d				
V _{Rdc2}		kN	314.45		$[0.035 \cdot k^{\prime}(3/2) \cdot \sqrt{(fck)}] \cdot bw \cdot d$				
V _{Rdc}	resistenza della sezione non armata a taglio	kN	373.29		$\max[V_{Rdc1}, V_{Rdc2}]$				
V _{Ed} / V _{Rdc}	non è necessario prevedere l'armatura a taglio VRdo				IIIax[VRdc1, VRdc2]				
		,	u						
	apacità massima della sezione a taglio		0.5						
V	coefficiente di riduzione della resistenza del cls fessurato per taglio		0.5						
α_{c}	coefficiente per effetti dello sforzo assiale di compressione		1		00				
α	inclinazione armature a taglio	rad	1.571	gradi	90				
V _{Rd,max}	massima resistenza a taglio-compressione della sezione	kN	3293.45		$1.0 \cdot v \cdot f_{cd} / \{\cot(45) + \tan(45)\} \cdot bw \cdot 0.9 \cdot d^*$				
,	sezione sufficiente per la resistenza taglio		0.025						
Calcolo de	lla resistenza della sezione con armatura a taglio								
ω_{sw}	percentuale meccanica di armatura trasversale (per alfa=90°)		0.02		$(A_{sw} \cdot f_{yd})/(b \cdot s \cdot f_{cd})$				
₿,calc	valore di teta calcolato	rad	0.185	= 10.58°	$\cot (9_{,calc}) = 5.35$				
₿ _{,min}	valore minimo di teta	rad	0.785	= 45°	$\cot (\theta_{,min}) = 1.00$				
9, _{max}	valore massimo di teta	rad	0.381	= 21.8°	$\cot (\theta_{,max}) = 2.50$				
9	valore di calcolo di teta	rad	0.381	= 21.8°	$\cot (9) = 2.50$				
V_{Rsd}	resistenza a taglio trazione	kΝ	555.98		$A_{sw} \cdot f_{yd} \cdot d^{\star} / s \cdot (cot(\alpha) + cot(\vartheta)) \cdot sen(\alpha)$				
V _{Rcd}	resistenza a taglio compressione	kΝ	2271.34	b·0	$d^* \ a_c \cdot n \cdot f_cd \cdot \ (cot(\alpha) + cot(9)) \ / \ (1 + cot^2(\alpha))$				
V_{Rd}	resistenza a taglio della sezione	kΝ	555.98						
V _{Ed} /V _{Rd}	coefficiente di sfruttamento della capacità di resistenza a taglio		0.150						
V _{Ed} /V _{Rd}	coefficiente di sfruttamento della capacità di resistenza a taglio		0.150						

Si ottiene che non è necessario prevedere armatura a taglio, la resistenza del calcestruzzo è sufficiente a garantire adeguata resistenza all'elemento, tuttavia si dispone comunque un'armatura a spirale (staffe) Ø10/25 (leggermente maggiore del minimo Normativo richiesto di 3 staffe al metro) lungo tutta la lunghezza dei pali, al fine di evitare fenomeni di instabilizzazione delle barre longitudinali e fornire confinamento al calcestruzzo.

Verifica di resistenza a forze orizzontali:

Utilizzando la teoria di Broms, si deduce che i valori di resistenza geotecnica e strutturale del palo sono sufficienti a garantirne la stabilità, la resistenza del palo a forze orizzontali risulta pari a 302.02 kN, maggiore della massima sollecitazione tagliante sul palo (83.4 kN). Di seguito la verifica effettuata:

INPUTS					
Geometria					
Dimensione sezionale del palo		d =	1.20 m		
Lunghezza palo		L =	15.00 m		
Momento di plasticizzazione della sezione		$M_y =$	962.00 kN m		
Parametri geotecnici					
Peso specifico terreno		γ =	21.50 kN/m^2		
Angolo di resistenza al taglio terrreno	$\phi =$	35.00 °	=	0.61 rad	
Coefficienti parziali					
Coefficiente parziale SLU per pali soggetti a ca	$\gamma_T =$	1.30		¹ Tab.6.4.VI	
Fattore di correlazione	ζ =	1.70		¹ Tab.6.4.IV	
CALCOLO PER PALI IN CD					
Coefficiente di spinta passiva	$K_P = (1+sen\phi)/(1-sen\phi)$	K _P =	3.69		
Pressione in testa	p=3*Kp*γ*D*z	p(z=0) =	0.00 kN/m^2		
Pressione in punta	p=3*Kp*γ*D*z	p(z=L) =	4,284.29 kN/m ²		
Meccanismo di palo corto					
Resistenza alla traslazione orizzontale	$H_C = f(KP_d, L)$	H _C =	8,351.83 kN		
Momento massimo M _{max} =2/3	HL	Mmax =	37,635.47 kN m		
Meccanismo di palo lungo					
Resistenza alla traslazione orizzontale	$H_L = f(C_u, d, M_y)$	$H_L =$	667.47 kN		
Meccanismo di rottura		Meccanismo d	di palo lungo		
Resistenza di calcolo del palo a forze orizzonta	ali	$H_D =$	302.02 kN		

4.7.6 Verifica a flessione platea

Il quantitativo di armatura è stato calcolato in termini di sezione trasversale per metro. Se ne riportano i risultati nelle tabelle sottostanti.

ARMATURA	A RADIALE	BOTTOM				
r	s	layer	n	fi	As	Note
cm	mm			mm	cm ²	
300	105	2	19.05	30	134.6	
350	122	2	16.39	30	115.8	
470	164	2	12.20	30	86.2	
890	310	2	6.45	30	45.6	
1070	373	2	5.36	30	37.9	
775	270	2	7.41	30	52.3	Mezzeria Basamento

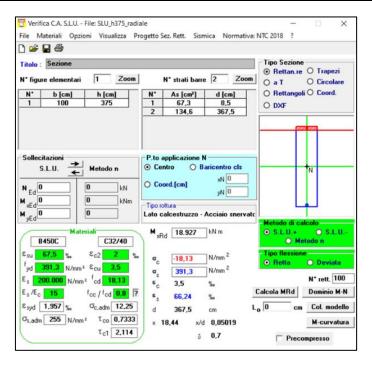
ARMATURA	A CIRCON	IFERENZIALI	E BOTTOM			
r	s	layer	n	fi	As	Note
cm	mm			mm	cm ²	
175	100	2	20.00	20	62.8	
890	100	2	20.00	20	62.8	
890	100	1	10.00	20	31.4	
1200	100	1	10.00	20	31.4	
1200	200	1	5.00	20	15.7	
1250	200	1	5.00	20	15.7	
775	100	2	20.00	20	62.8	Mezzeria Basamento

ARMATUR	ARMATURA RADIALE TOP									
r	s	layer	n	fi	As	Note				
cm	mm			mm	cm ²					
300	105	1	9.52	30	67.3					
470	164	1	6.10	30	43.1					
775	270	1	3.70	30	26.2	Mezzeria Basamento				

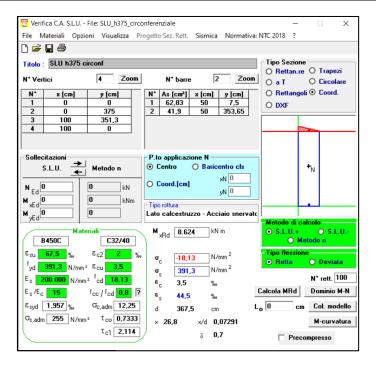
ARMATURA	A CIRCON	IFERENZIALI	E TOP			
r	s	layer	n	fi	As	Note
cm	mm			mm	cm ²	
215	150	2	13.33	20	41.9	
470	150	2	13.33	20	41.9	
470	100	1	10.00	20	31.4	
1200	100	1	10.00	20	31.4	
1200	200	1	5.00	20	15.7	
1250	200	1	5.00	20	15.7	
775	100	1	10.00	20	31.4	Mezzeria Basamento
1070	100	1	10.00	20	31.4	Centro palo

La verifica a flessione della platea è stata eseguita in tre sezioni significative, in entrambe le direzioni (radiale e circonferenziale), confrontando il momento resistente con quello sollecitante di Wood Armer riportato al paragrafo 4.7.3. Sono state svolte le verifiche considerando l'inviluppo delle combinazioni stato limite ultimo "SLUenv" e la combinazione "SLV2", con differenti parametri dei materiali per soddisfare le condizioni al paragrafo 4.7.4.

La verifica lato Top (cioè le sezioni sopra la mezzeria del basamento) è stata eseguita solamente sulla sezione del colletto, più sollecitata.



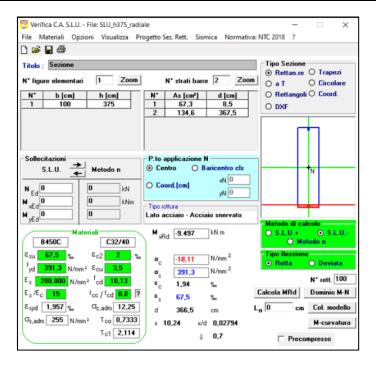
Verifiche allo Stato Limite Ultimo: inviluppo combinazioni SLU

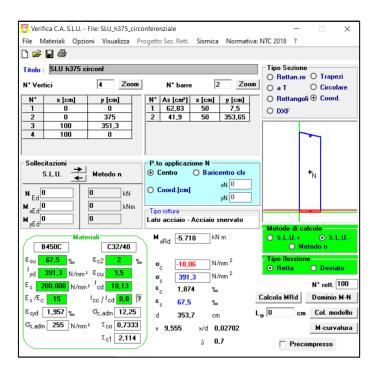

Sezione Colletto: Verifica direzione radiale, Bottom

 $M_{Ed} = 18578.17 \text{ kNm}$ $M_{Rd} = 18927 \text{ kNm}$ $C.S = M_{Ed}/M_{Rd} = 0.982$

Sezione Colletto: Verifica direzione circonferenziale, Bottom

 $M_{Ed} = 8282.97 \text{ kNm}$ $M_{Rd} = 8624 \text{ kNm}$ $C.S = M_{Ed}/M_{Rd} = 0.960$

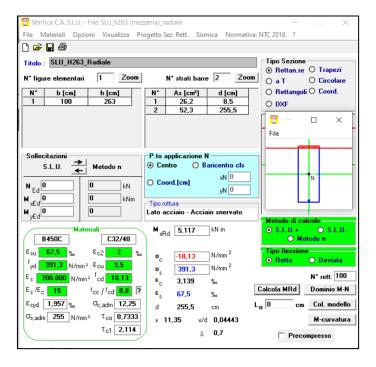


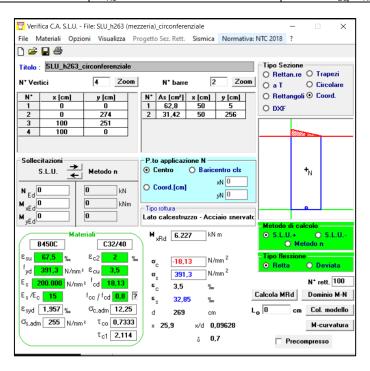

Sezione Colletto: Verifica direzione radiale, Top

 $M_{Ed} = 3399.46 \text{ kNm}$ $M_{Rd} = 9497 \text{ kNm}$ $C.S = M_{Ed}/M_{Rd} = 0.358$

Sezione Colletto: Verifica direzione circonferenziale, Top

M 700 FC LM	M 5740 LN	0.0 14 /14 0.100
$M_{Ed} = 792.56 \text{ kNm}$	$M_{Rd} = 5718 \text{ kNm}$	$ C.S = M_{Ed}/M_{Rd} = 0.139$
I TIEG — / JZIJU KINITI	1 1 1 Kg — 37 10 KINIII	

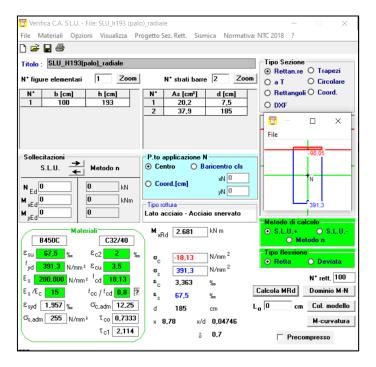


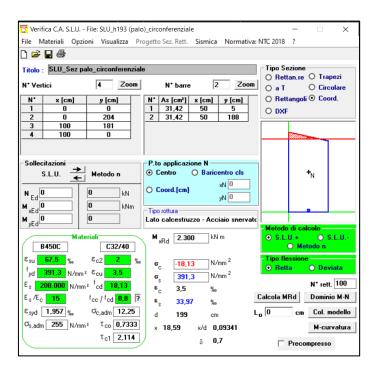

Sezione in mezzeria del basamento: Verifica direzione radiale

 $M_{Ed} = 4824.22 \text{ kNm}$ $M_{Rd} = 5117 \text{ kNm}$ $C.S = M_{Ed}/M_{Rd} = 0.943$

Sezione in mezzeria del basamento: Verifica direzione circonferenziale

 $M_{Ed} = 3755.71 \text{ kNm}$ $M_{Rd} = 6227 \text{ kNm}$ $C.S = M_{Ed}/M_{Rd} = 0.603$

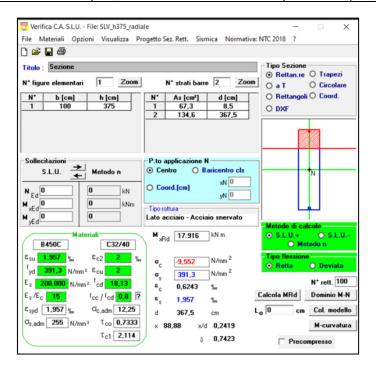



Sezione perimetrale del basamento, asse palo: Verifica direzione radiale

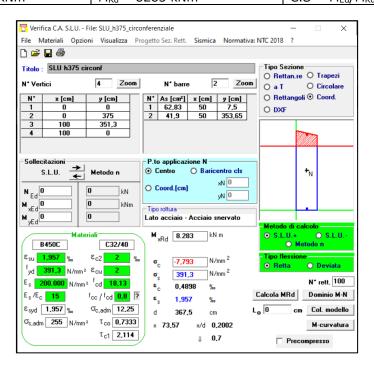
 $M_{Ed} = 669.49 \text{ kNm}$ $M_{Rd} = 2681 \text{ kNm}$ $C.S = M_{Ed}/M_{Rd} = 0.250$

Sezione perimetrale del basamento, asse palo: Verifica direzione circonferenziale

 $M_{Ed} = 1005.71 \text{ kNm}$ $M_{Rd} = 2300 \text{ kNm}$ $C.S = M_{Ed}/M_{Rd} = 0.437$



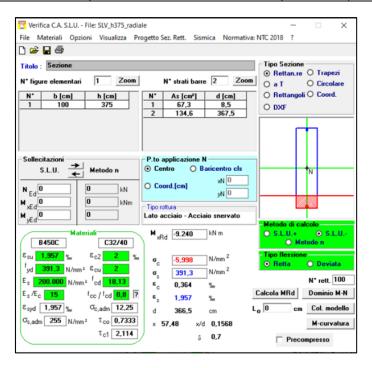
Verifica Stato Limite di Vita: combinazione SLV2

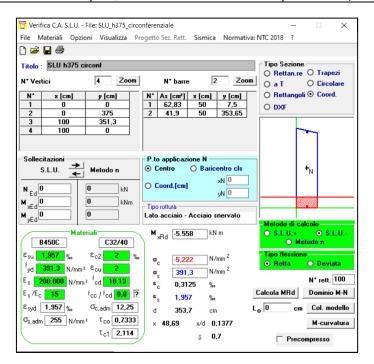

Sezione Colletto: Verifica direzione radiale, Bottom

 $M_{Ed} = 13886.39 \text{ kNm}$ $M_{Rd} = 17916 \text{ kNm}$ $C.S = M_{Ed}/M_{Rd} = 0.775$

Sezione Colletto: Verifica direzione circonferenziale, Bottom

 $M_{Ed} = 6168.90 \text{ kNm}$ $M_{Rd} = 8283 \text{ kNm}$ $C.S = M_{Ed}/M_{Rd} = 0.745$

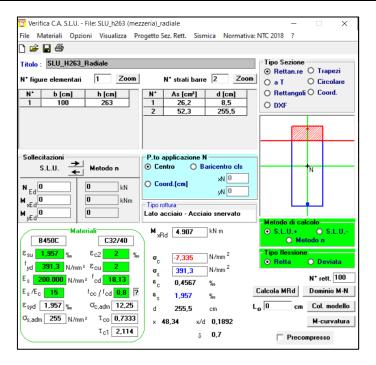


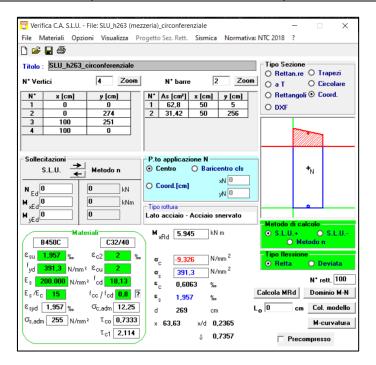

Sezione Colletto: Verifica direzione radiale, Top

 $M_{Ed} = 722 \text{ kNm}$ $M_{Rd} = 9240 \text{ kNm}$ $C.S = M_{Ed}/M_{Rd} = 0.078$

Sezione Colletto: Verifica direzione circonferenziale, Top

 $M_{Ed} = 315 \text{ kNm}$ $M_{Rd} = 5558 \text{ kNm}$ $C.S = M_{Ed}/M_{Rd} = 0.057$

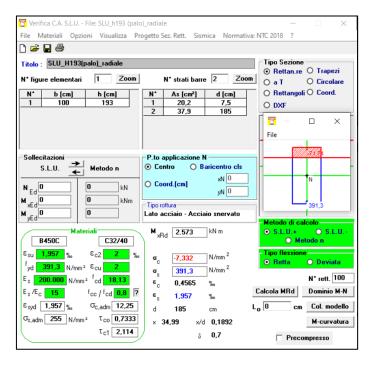


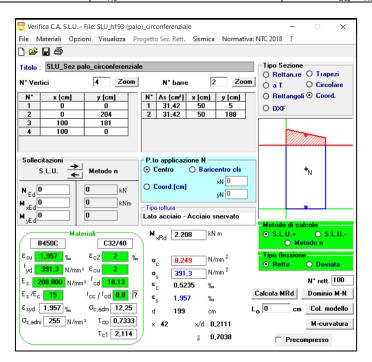

Sezione mezzeria basamento: Verifica direzione radiale

 $M_{Ed} = 3619.21 \text{ kNm}$ $M_{Rd} = 4907 \text{ kNm}$ $C.S = M_{Ed}/M_{Rd} = 0.738$

Sezione mezzeria basamento: Verifica direzione circonferenziale

 $M_{Ed} = 2797.06 \text{ kNm}$ $M_{Rd} = 5945 \text{ kNm}$ $C.S = M_{Ed}/M_{Rd} = 0.470$




Sezione perimetrale del basamento, asse palo: Verifica direzione radiale

 $M_{Ed} = 511 \text{ kNm}$ $M_{Rd} = 2573 \text{ kNm}$ $C.S = M_{Ed}/M_{Rd} = 0.199$

Sezione perimetrale del basamento, asse palo: Verifica direzione circonferenziale

 $M_{Ed} = 750.13 \text{ kNm}$ $M_{Rd} = 2208 \text{ kNm}$ $C.S = M_{Ed}/M_{Rd} = 0.340$

4.7.7 Verifica a taglio platea

Si considerano i valori di taglio massimo V_{xx} in combinazione "SLUenv", come riportati al paragrafo 4.7.3, essendo in questa direzione le azioni più gravose.

Sezione Colletto:

Nelle zone di maggior sollecitazione, riscontrabili nel perimetro prossimo al colletto di innesto della torre dovrà essere disposto un opportuno quantitativo di armatura trasversale in modo da incrementare la resistenza a taglio della piastra.

Saranno disposti nella zona prossima al colletto a passo 25 cm almeno 6.28 cm² di armatura (2Ø20) per metro trasversale, come mostrato nella verifica sottostante.

DETERMINAZ	ZIONE DELLA RESISTENZA A TAGLIO DI SEZIONI IN C	.A N	ITC2018	
	he dei materiali			
$\mathbf{f}_{\mathbf{ck}}$		MPa	32	
α_{cc}			0.85	
γ _c			1.5	
f _{cd}	resistenza di calcolo a compressione del calcestruzzo	MPa	18.13	$a_{cc} \cdot f_{cd} / g_c$
γs			1.15	
$f_{y,wd}$		MPa	391.30	f_{yd}/g_s
Caratteristic	he della sezione resistente			
V _{Ed}	taglio sollecitante di progetto	kΝ	4005	
b _w	larghezza della sezione	ст	100	
h	altezza totale della sezione	ст	375	
С	distanza asse barre dal lembo teso	cm	8.5	
d	altezza utile della sezione	cm	366.5	h-c
d*		cm	329.85	0.9 d
k			1.234	min[1.0+ $\sqrt{(20/d)}$, 2.0]
A _{sl}	area di armatura longitudinale tesa	cm ²	134.6	
ρΙ	rapporto geometrico di armatura longitudinale tesa		0.0036	
\mathbf{A}_{sw}	area di armatura a taglio disposta	cm ²	6.28	
s	spaziatura staffe	cm	25	
Controllo ne	ecessità di armatura a taglio			
V _{Rdc1}		kΝ	1224.10	[$0.18 \cdot k \cdot (100 \cdot \rho l \cdot fck)^{(1/3)}$] / $\gamma c \cdot bw \cdot d$
V _{Rdc2}		kΝ	994.21	$[\ 0.035 \cdot k^{\wedge}(3/2) \cdot \sqrt{(\text{fck})}\] \cdot \text{bw} \cdot \text{d}$
V _{Rdc}	resistenza della sezione non armata a taglio	kΝ	1224.10	max[V _{Rdc1} , V _{Rdc2}]
V _{Ed} / V _{Rdc}	è necessario prevedere l'armatura a taglio VRdc < V	⁄Ed		
Controllo co	apacità massima della sezione a taglio			
ν	coefficiente di riduzione della resistenza del cls fessurato per taglio		0.5	
α_{c}	coefficiente per effetti dello sforzo assiale di compressione		1	
α	inclinazione armature a taglio	rad	1.571	gradi 90
$V_{Rd,max}$	massima resistenza a taglio-compressione della sezione	kΝ	14953	$1.0 \cdot v \cdot f_{cd}/\{cot(45)+tan(45)\} \cdot bw \cdot 0.9 \cdot d^*$
	sezione sufficiente per la resistenza taglio		0.268	
Calcolo del	lla resistenza della sezione con armatura a taglio			
ω _{sw}	percentuale meccanica di armatura trasversale (per alfa=90°)		0.05	$(A_{sw} \cdot f_{vd})/(b \cdot s \cdot f_{cd})$
9,calc	valore di teta calcolato	rad	0.336	= 19.22° $\cot (\theta_{,calc}) = 2.87$
9 _{.min}	valore minimo di teta	rad	0.785	= 45° $\cot (\theta_{,min}) = 1.00$
9 _{.max}	valore massimo di teta	rad	0.381	= 21.8° $\cot (\theta_{max}) = 2.50$
9ax	valore di calcolo di teta	rad	0.381	= 21.8° $\cot(\theta) = 2.50$
V_{Rsd}	resistenza a taglio trazione	kΝ	8106	$A_{sw} \cdot f_{vd} \cdot d^* / s \cdot (cot(\alpha) + cot(\beta)) \cdot sen(\alpha)$
V _{Rcd}	resistenza a taglio compressione	kN	10313	$b \cdot d^* = a_c \cdot n \cdot f_{cd} \cdot (\cot(\alpha) + \cot(\beta)) / (1 + \cot^2(\alpha))$
V _{Rd}	resistenza a taglio della sezione	kN	8106	. 2 50 60 (5545) 5545)// (1 600 (60))
V _{Ed} /V _{Rd}	coefficiente di sfruttamento della capacità di resistenza a taglio		0.494	
▼ Ed/ ▼ Rd	occinionità di siruttamento della capacita di resistenza a taglio		- 0.734	

Nelle altre zone è sufficiente una spaziatura superiore dell'armatura trasversale.

Nel tratto centrale del basamento è possibile aumentare il passo a 50 cm, mantenendo almeno 6.28 cm² di armatura (2Ø20) per metro trasversale, come mostrato nella verifica sottostante, nella sezione posta a 470 cm dal centro del basamento.

DETERMINA	ZIONE DELLA RESISTENZA A TAGLIO DI SEZIONI IN C.	Δ . Ν	JTC2018	
	che dei materiali	Д I	1102010	
f _{ck}		MPa	32	
αςς			0.85	
γς			1.5	
f _{cd}	resistenza di calcolo a compressione del calcestruzzo	MPa		$a_{cc} \cdot f_{cd} / g_c$
γs	•		1.15	30
f _{y,wd}		MPa	391.30	f_{yd}/g_s
	the della sezione resistente			yu · Us
V _{Ed}	taglio sollecitante di progetto	kN	1617	
b _w	larghezza della sezione	ст	100	
h	altezza totale della sezione	ст	335	
C	distanza asse barre dal lembo teso	ст	8.5	
d	altezza utile della sezione	ст	326.5	h - c
d*		ст	293.85	0.9 d
k			1.247	min[1.0+√(20/d) , 2.0]
A _{sl}	area di armatura longitudinale tesa	cm ²	86.2	
ρΙ	rapporto geometrico di armatura longitudinale tesa		0.0026	
A _{sw}	area di armatura a taglio disposta	cm ²	6.28	
s	spaziatura staffe	ст	50	
Controllo ne	ecessità di armatura a taglio			
V _{Rdc1}		kΝ	986.98	[0.18 · k · (100 · ρl · fck)^(1/3)] / γc · bw · d
V _{Rdc2}		kΝ	900.71	[0.035 · k^(3/2) · √(fck)] · bw · d
V _{Rdc}	resistenza della sezione non armata a taglio	kΝ	986.98	max[V _{Rdc1} , V _{Rdc2}]
V _{Ed} / V _{Rdc}	è necessario prevedere l'armatura a taglio VRdc < V	'Ed		
Controllo co	apacità massima della sezione a taglio			
v	coefficiente di riduzione della resistenza del cls fessurato per taglio		0.5	
α_{c}	coefficiente per effetti dello sforzo assiale di compressione		1	
α	inclinazione armature a taglio	rad	1.571	gradi 90
$V_{Rd,max}$	massima resistenza a taglio-compressione della sezione	kΝ	13321	1.0 ⋅ v ⋅ f _{cd} /{cot(45)+tan(45)} ⋅ bw ⋅ 0.9 ⋅ d*
	sezione sufficiente per la resistenza taglio		0.121	
Calcolo de	lla resistenza della sezione con armatura a taglio			
ω _{sw}	percentuale meccanica di armatura trasversale (per alfa=90°)		0.03	$(A_{sw} \cdot f_{vd})/(b \cdot s \cdot f_{cd})$
9,calc	valore di teta calcolato	rad	0.235	= 13.46° $\cot (9_{\text{calc}}) = 4.18$
9,min	valore minimo di teta	rad	0.785	$= 45^{\circ} \qquad \cot (\theta_{,min}) = 1.00$
9 _{,max}	valore massimo di teta	rad	0.381	= 21.8° $\cot (\theta_{,min}) = 1.60$
S max	valore di calcolo di teta	rad	0.381	= 21.8° $\cot (\theta) = 2.50$
V _{Rsd}	resistenza a taglio trazione	kN	3611	$A_{sw} \cdot f_{vd} \cdot d^* / s \cdot (\cot(\alpha) + \cot(\beta)) \cdot sen(\alpha)$
V _{Rcd}	resistenza a taglio compressione	kN	9187	b · d* $a_c \cdot n \cdot f_{cd} \cdot (\cot(\alpha) + \cot(9)) / (1 + \cot^2(\alpha))$
V _{Rd}	resistenza a taglio della sezione	kN	3611	2 2 20 w (3540) · 5540) / (1 · 561 (w))
V _{Ed} /V _{Rd}	coefficiente di sfruttamento della capacità di resistenza a taglio	, , , v	0.448	
▼ Ear ▼ Rd	occinioratio di siruttamento della capacita di resistenza a taglio		U.770	

Nella zona più periferica è possibile aumentare il passo fino a 1 m, mantenendo almeno 6.28 cm² di armatura (2Ø20) per metro trasversale, come evidenziato nella verifica sottostante, per una sezione a 1130 cm dal centro del basamento.

DETERMINA	ZIONE DELLA RESISTENZA A TAGLIO DI SEZIONI IN C	A 1	TC2018	
Caratteristic	che dei materiali			
f _{ck}		MPa	32	
α _{cc}			0.85	
γ _c			1.5	
f _{cd}	resistenza di calcolo a compressione del calcestruzzo	MPa	18.13	$a_{cc} \cdot f_{cd} / g_c$
γs			1.15	
$f_{y,wd}$		MPa	391.30	f_{yd} / g_s
Caratteristic	che della sezione resistente			
V _{Ed}	taglio sollecitante di progetto	kΝ	623	
b _w	larghezza della sezione	ст	100	
h	altezza totale della sezione	ст	175	
С	distanza asse barre dal lembo teso	ст	8.5	
d	altezza utile della sezione	ст	166.5	h - c
d*		ст	149.85	0.9 d
k			1.347	min[1.0+√(20/d) , 2.0]
A _{sl}	area di armatura longitudinale tesa	cm ²	35.9	
ρΙ	rapporto geometrico di armatura longitudinale tesa		0.0021	
A _{sw}	area di armatura a taglio disposta	cm ²	6.28	
s	spaziatura staffe	ст	100	
Controllo n	ecessità di armatura a taglio			
V _{Rdc1}		kΝ	503.77	[$0.18 \cdot k \cdot (100 \cdot \rho l \cdot fck)^{(1/3)}$] / $\gamma c \cdot bw \cdot d$
V _{Rdc2}		kΝ	515.12	[0.035 · k^(3/2) · √(fck)] · bw · d
V _{Rdc}	resistenza della sezione non armata a taglio	kΝ	515.12	max[V _{Rdc1} , V _{Rdc2}]
V _{Ed} / V _{Rdc}	è necessario prevedere l'armatura a taglio VRdc < V	′Ed		
	apacità massima della sezione a taglio			
v	coefficiente di riduzione della resistenza del cls fessurato per taglio		0.5	
$ _{\alpha_c}$	coefficiente per effetti dello sforzo assiale di compressione		1	
α	inclinazione armature a taglio	rad	1.571	gradi 90
V _{Rd,max}	massima resistenza a taglio-compressione della sezione	kΝ	6793	1.0 · v · f _{cd} /{cot(45)+tan(45)} · bw · 0.9 · d*
1	sezione sufficiente per la resistenza taglio		0.092	
,	lla resistenza della sezione con armatura a taglio			
ω _{sw}	percentuale meccanica di armatura trasversale (per alfa=90°)		0.01	$(A_{sw} \cdot f_{vd})/(b \cdot s \cdot f_{cd})$
9,calc	valore di teta calcolato	rad	0.165	= 9.47° $\cot (9_{calc}) = 5.99$
9 _{,min}	valore minimo di teta	rad	0.785	= 45° $\cot (\theta_{,min}) = 1.00$
9,max	valore massimo di teta	rad	0.381	= 21.8° $\cot (\theta_{,max}) = 2.50$
9. max	valore di calcolo di teta	rad	0.381	= 21.8° $\cot (\theta_{,max}) = 2.50$
V _{Rsd}	resistenza a taglio trazione	kN	921	$A_{sw} \cdot f_{vd} \cdot d^* / s \cdot (cot(\alpha) + cot(\beta)) \cdot sen(\alpha)$
V _{Rcd}	resistenza a taglio compressione	kN	4685	b · d* $a_c \cdot n \cdot f_{cd} \cdot (\cot(\alpha) + \cot(\beta)) / (1 + \cot^2(\alpha))$
V _{Rd}	resistenza a taglio della sezione	kN	921	_
V _{Ed} /V _{Rd}	coefficiente di sfruttamento della capacità di resistenza a taglio	•	0.677	
▼ Ed/ ▼ Rd	occincionio di oli dilamonio della capacita di resistenza a taglio		0.011	

4.7.8 Verifica a punzonamento platea

La verifica di punzonamento viene eseguita considerando la reazione massima (combinazione "SLUenv") misurata alla base del palo meno il peso proprio del palo, sulla base delle indicazioni dell'EC2. Cautelativamente il coefficiente β viene adottato pari a 1.5, come per il caso di elementi posti all'angolo di piastre.

 $V_{Ed} = 5351.4 - 452.2 = 4899.2 \text{ kN}$

V _{Ed,g} ΔV _{Ed} β H	daN daN	489,920	o pala eolic Forza globale di tag		to di progetto	
ΔV _{Ed} β Η	daN	409,920	r orza grobare di tag	Jiio-purizonament	io di Diddello	
β H		^	Forza globale di taglio-punzonamento di progetto Forza contraria a V _{Ed,q} (eventuale, nel caso di fondazioni)			ai\
H		1.50	coefficiente amplificativo della forza, in caso di eccentricità di ca			
	n.o puro	1.50	·		iii caso di eccenti	ина инсапсо
	cm	177.00	Altezze totale della		مالد مناه مالمسطة	tananal:
\mathbf{d}_{y} cm		168.00	altezze utili relative			•
d _z cm		165.00	altezze utili relative	•		=
$oldsymbol{ ho}$ ly	%	0.21%	Rapporto % dell'arr			
ρlz	%	0.09%	Rapporto % dell'arr		•	
R ck	daN/cm ²	400.0	Resistenza caratter			lastra
Pilastro		b) Circolare		C	simbolo	
Pilastro	•	d) di Bordo co	on sporto	BS	simbolo	
Fori	Vicinanza			N	simbolo	
Φ	cm	120.00	diametro pilastro ci	rcolare		
Dati dedotti dai materiali e dai						
f _{ck}	daN/cm ²	332.0	Resistenza caratter			
f _{cd}	daN/cm ²	188.1	Resistenza di calco)
$\mathbf{f} = \mathbf{f_{ck}}^{1/2} / \mathbf{f_{vk}}$	cm/daN ^{1/2}	0.004049	Parte dipendente d		formula (9.11)	
$d = d_{eff}$	cm	166.50	Altezza utile della se			
$\rho_{\text{lyz}} = \text{RADQ}(\rho_{\text{ly}} \times \rho_{\text{lz}})$	n.o puro	0.00140	Radice quadrata de			
$\rho_I = \min (0.02 ; \rho lyz)$	n.o puro	0.00140	Coefficiente della fo	, ,	ve essere comunq	ue <= 0.02
$\mathbf{d}_{u1} = 2 \times \mathbf{d}$ cm		333.00	Distanza di u ₁ dal filo pilastro			
$\mathbf{d}_{\text{est}} = \mathbf{k}_{\text{out}} \times \mathbf{d}$	cm	249.75	Distanza da u _{out} de			
$d_{min} = 0.3 \times d$	cm	49.95	Distanza dal filo pila			ıre verticali)
$\mathbf{d}_{\text{rad,max}} = 0.75 \times \mathbf{d}$	cm	124.88	Distanza radiale ma	assima fra cucitur	re	
$\mathbf{d}_{cir,max,i} = 1.5 \times \mathbf{d}$	cm	249.75	Distanza circonfere	nziale massima p	per cuciture interne	e a u out
$\mathbf{d}_{cir,max,e} = 2.0 \times \mathbf{d}$	cm	333.00	Distanza circonfere	nziale massima p	per cuciture estern	e a u _{out}
Dati dedotti: forze, tensioni, p	erimetro di	verifica				
$V_{Ed} = \beta \times (V_{Ed,q} - \Delta V_{Ed})$	daN	734,880	Forza effettiva di tag	glio-punzonament	to di progetto	
$\tau_{Rd,max} = \mathbf{v}_{V} \times \mathbf{v} \times \mathbf{f}_{Cd}$	daN/cm ²	37.63	Tensione di taglio-			
$\mathbf{k} = \min (2 ; 1 + (20/\mathbf{d})^{1/2})$	n.o puro	1.347	Coefficiente della fo			ue <= 2.00
$\tau_a = \mathbf{C}_{Rd,c} \times \mathbf{k} \times (100 \times \rho_l \times \mathbf{f}_{ck})^{1/3}$	daN/cm ²	2.698	Tensione massima	, ,		
$\tau_{min} = 0.1107 \times k^{3/2} \times fck^{1/2}$	daN/cm ²	3.152	Tensione massima			
$\tau_{Rd,c} = \max (\tau_a; \tau_{min})$	daN/cm ²	3.152	Tensione massima			
$\mathbf{u}_{\text{out}} = \mathbf{V}_{\text{Ed}} / (\mathbf{\tau}_{\text{Rd,c}} \times \mathbf{d})$	cm	1,400.3	Perimetro di verifica			11111 114,67
B 1 4 11511 11 4			م			
Perimetro di filo pilastro: u ₀	cm	377.0	Perimetro di verifica			
Perimetro di verifica di base: u ₁	cm	1,554.6	Perimetro di verifica	a di base		
Verifica alla faccia del pilastro	; controllo	della corrett	ezza di materi	ali e dimensi	ioni	
$\tau_{\text{Ed}} = \beta \times V_{\text{Ed,g}} / (u_0 x d)$	daN/cm ²	11.71	Tensione di proget	to in corrisponder	nza della faccia de	l pilastro
$r = \tau_{\text{Rd,max}} / \tau_{\text{Ed}}$	n.o puro	3.214	materiali e geor	netria idonei		
Verifica al perimetro di base; o	controllo de	ella necessita	à di armatura			
$ au_{Ed,1} = \mathbf{V}_{Ed} / (\mathbf{u}_1 \mathbf{x} \mathbf{d})$	daN/cm ²	2.839	Tensione di proget	to in corrisponder	nza della sezione d	li base
$\mathbf{r} = \mathbf{\tau}_{Rd,c} / \mathbf{\tau}_{Ed,1}$	n.o puro	1.110	non è necessar	ia l'armatura		

4.7.9 Verifiche allo Stato Limite di Esercizio

4.7.9.1 Verifiche tensionali

Si esegue il controllo delle tensioni sulla sezione del colletto, la più sollecitata, e si verifica che siano compatibili con i seguenti limiti imposti dalle NTC2018.

Sono stati ottenuti i seguenti risultati, che verificano le sezioni analizzate.

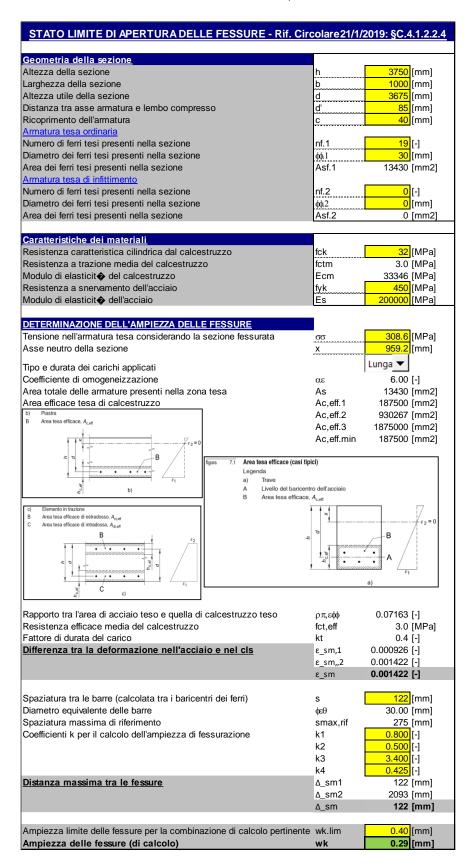
			Valore progetto			
Combinazione	Normativa	Valore limite	Direzione radiale	Direzione circonferenziale		
			Bottom			
	$\sigma_s \le 0.8 * f_{yk}$	$\sigma_s \leq 360 \text{ MPa}$	321.9 MPa	309.2 MPa		
	$\sigma_c \le 0.6 * f_{ck}$	$\sigma_c \leq 19.2 \text{ MPa}$	7.6 MPa	4.9 MPa		
SLEr				Тор		
	$\sigma_s \le 0.8 * f_{yk}$	$\sigma_s \leq 360 \text{ MPa}$	31.8 MPa	22.6 MPa		
	$\sigma_c \le 0.6 * f_{ck}$	$\sigma_c \leq 19.2 \text{ MPa}$	0.4 MPa	0.3 MPa		
				Bottom		
	$\sigma_c \le 0.45 * f_{ck}$	$\sigma_c \leq 14.4 \text{ MPa}$	7.1 MPa	4.5 MPa		
SLEqp				Тор		
	$\sigma_c \le 0.45 * f_{ck}$	$\sigma_c \leq 14.4 \text{ MPa}$	0.4 MPa	0.3 MPa		

4.7.9.2 Verifiche di fessurazione

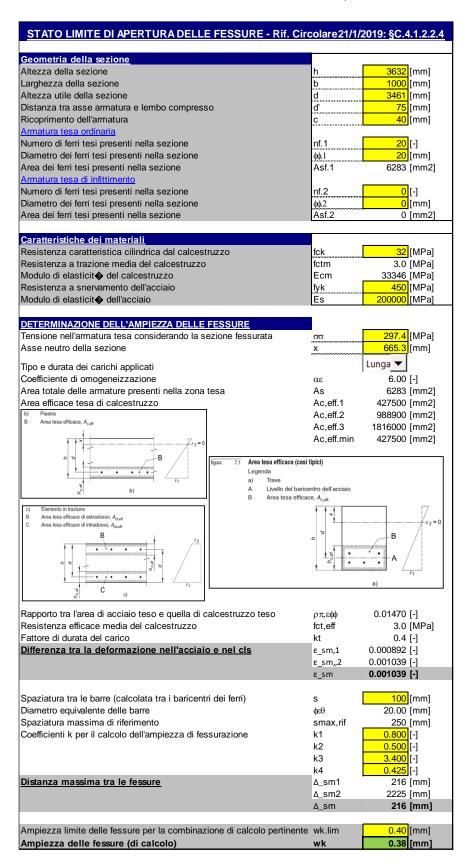
Si esegue il controllo dell'apertura delle fessure sulla sezione del colletto, la più sollecitata, e si verifica che siano compatibile con i limiti imposti dalle NTC2018 al paragrafo 4.1.2.2.4.

Dall'analisi delle condizione ambientali di sito, si ritiene che la porzione superiore del plinto, a contatto con il terreno di ricoprimento, sia soggetta a rischio di fenomeni di degrado da carbonatazione, dovuta all'alternanza di condizioni di asciutto ed umido. Di conseguenza, ai fini della determinazione del valore limite di apertura delle fessure per le verifiche condotte sul lato "Bottom", si ipotizzano condizioni ambientali aggressive (XC4 secondo UNI 11104 - Calcestruzzo - Specificazione, prestazione, produzione e conformità - Specificazioni complementari per l'applicazione della EN 206). Viceversa, la porzione inferiore del plinto, interrata di circa 4 m in corrispondenza del colletto, risulta immersa in terreno considerato, sulla base dei dati tuttora disponibili, come non aggressivo (XC2 secondo UNI 11104 - Calcestruzzo - Specificazione, prestazione, produzione e conformità - Specificazioni complementari per l'applicazione della EN 206). Il rischio di corrosione da carbonatazione è inferiore, assimilabile, ai fini della determinazione del valore limite di apertura delle fessure per le verifiche condotte sul lato "Top", a quello in condizioni ambientali ordinarie.

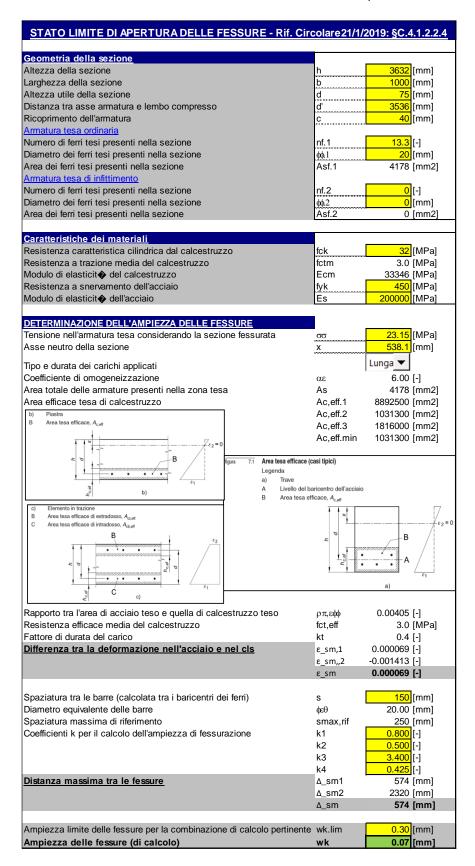
Si riporta di seguito tabella riassuntiva delle verifiche effettuate:


		Valore progetto			
Combinazione	Valore limite	Direzione radiale	Direzione circonferenziale		
		Bottom			
	$w_k \leq w_3 = 0.4 mm$	0.29 mm	0.38 mm		
SLEf		Тор			
	$w_k \le w_2 = 0.3 \ mm$	0.09 mm	0.07 mm		
			Bottom		
	$w_k \le w_2 = 0.3 \ mm$	0.28 mm	0.30 mm		
SLEqp		Тор			
	$w_k \le w_1 = 0.2 \ mm$	0.08 mm	0.06 mm		

Combinazione: SLEf

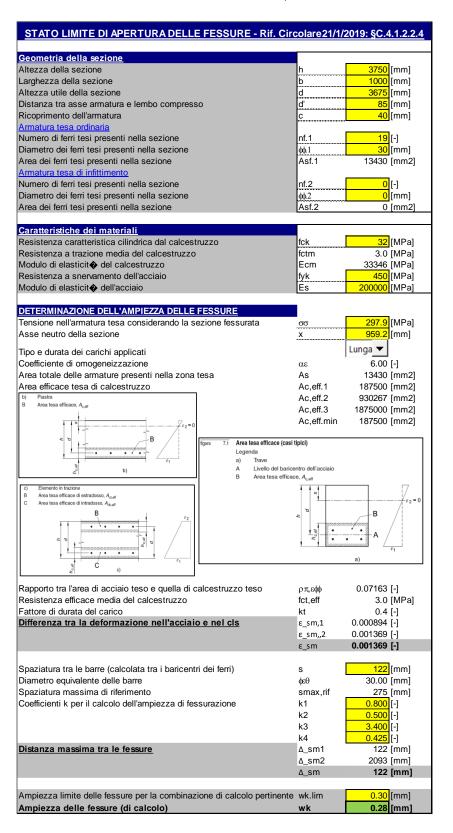

Sezione colletto: verifica direzione radiale, bottom

Sezione colletto: verifica direzione circonferenziale, bottom

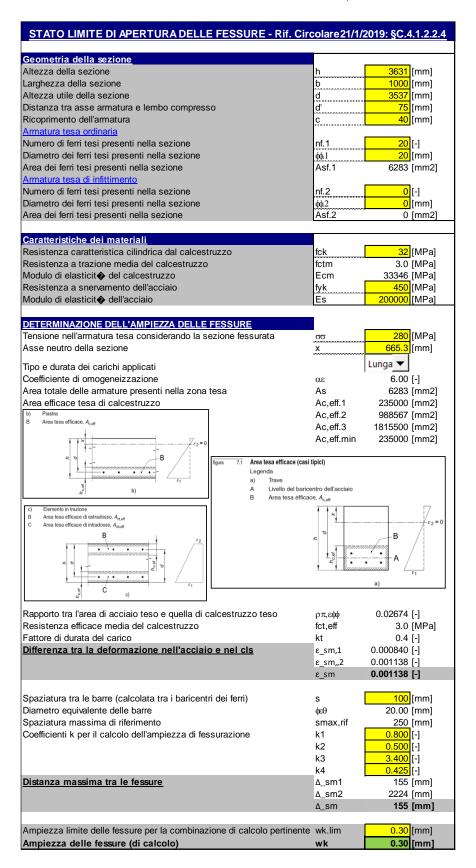

Sezione colletto: verifica direzione radiale, top

STATO LIMITE DI APERTURA DELLE FESSURE - Rif. Circ	colare21/1/	2019: §C.4.1.	2.2.4
Geometria della sezione	L	2750	aa 1
Altezza della sezione	h	3750 [mr	•
Larghezza della sezione	b	1000 [mi	•
Altezza utile della sezione	d	85 [mi	
Distanza tra asse armatura e lembo compresso	<u>d'</u>	3675 [mr	-
Ricoprimento dell'armatura	<u>C</u>	40 [mr	mJ
Armatura tesa ordinaria			
Numero di ferri tesi presenti nella sezione	nf.1	9.52 [-]	
Diametro dei ferri tesi presenti nella sezione	фф.1	30 [mr	
Area dei ferri tesi presenti nella sezione	Asf.1	6729 [mr	m2]
Armatura tesa di infittimento			
Numero di ferri tesi presenti nella sezione	nf.2	0 [-]	
Diametro dei ferri tesi presenti nella sezione	<u>\$\phi.2</u>	0 [mr	-
Area dei ferri tesi presenti nella sezione	Asf.2	0 [mr	m2]
Caratteristiche dei materiali			
Resistenza caratteristica cilindrica dal calcestruzzo	fck	32 [MI	Pa]
Resistenza a trazione media del calcestruzzo	fctm	3.0 [MI	Pa]
Modulo di elasticit� del calcestruzzo	Ecm	33346 [MI	Pa]
Resistenza a snervamento dell'acciaio	fyk	450 [MI	-
Modulo di elasticit� dell'acciaio	És	200000 [MI	
DETERMINAZIONE DELL'AMPIEZZA DELLE FESSURE			
Tensione nell'armatura tesa considerando la sezione fessurata	σσ	30.95 [MI	Pal
Asse neutro della sezione	X	625.6 [mr	
7.000 1.04.10 40.14 502.01.0			
Tipo e durata dei carichi applicati		Lunga 🔻	
Coefficiente di omogeneizzazione	αε	6.00 [-]	
Area totale delle armature presenti nella zona tesa	As	6729 [mr	m2]
Area efficace tesa di calcestruzzo	Ac,eff.1	9162500 [mr	m2]
b) Piastra	Ac,eff.2	1041467 [mr	m2]
B Area tesa efficace, A _{c.eff}		-	
II I	Ac,eff.3	1875000 [mr	m2]
	Ac,eff.3 Ac,eff.min	-	
	,	1875000 [mr 1041467 [mr	
	Ac,eff.min	-	
B B Isgura 7.1 Area lesa efficace (ci	Ac,eff.min	-	
B B Egenda a) Trave	Ac, eff.min	-	
B B Egenda a) Trave	Ac, eff.min asi tipici)	-	
B B Egenda a) Trave A Livello del ba	Ac, eff.min asi tipici)	-	
Elemento in trazione A Livello del ba B Area tesa efficace (ci	Ac, eff.min asi tipici)	-	m2]
Elemento in trazione B Area tesa efficace (ci Legenda a) Trave A Livello del ba B Area tesa efficace di estradosso, A _{st.eff} C Area tesa efficace di intradosso, A _{st.eff}	Ac,eff.min asi tipici) ricentro dell'acciaio icace, A _{c,eff}	1041467 [mr	
Elemento in trazione B Area tesa efficace (ci Legenda a) Trave A Livelio del ba B Area tesa efficace di estradosso, A _{duet} C Area tesa efficace di intradosso, A _{duet} B	Ac,eff.min asi tipici) aricentro dell'acciaio icace, A _{c.eff}	-	m2]
c) Elemento in trazicne B Area tesa efficace (instradosso, A _{duet} C Area tesa efficace (instradosso, A _{duet} B	Ac,eff.min asi tipici) ricentro dell'acciaio icace, A _{c,eff}	1041467 [mr	m2]
Elemento in trazione B Area tesa efficace (ci. Logenda A Livello del ba B Area tesa efficace di intradosso, A _{duet} C Area tesa efficace di intradosso, A _{duet} B Area tesa efficace (ci. Logenda A Livello del ba B Area tesa efficace (ci. Logenda A Livello del ba B Area tesa efficace (ci. Logenda A Livello del ba B Area tesa efficace (ci. Logenda A Livello del ba B Area tesa efficace (ci. Logenda A Livello del ba B Area tesa efficace (ci. Logenda A Livello del ba B Area tesa efficace (ci. Logenda A Livello del ba B Area tesa efficace (ci. Logenda A Livello del ba B Area tesa efficace (ci. Logenda A Livello del ba B Area tesa efficace (ci. Logenda A Livello del ba B Area tesa efficace (ci. Logenda A Livello del ba Livel	Ac,eff.min asi tipici) ricentro dell'acciaio icace, A _{c,eff}	1041467 [mr	m2]
tigura 7.1 Area tesa efficace (ct. Legenda a) Trave Logenda a) Trave A Livelio del ba B Area tesa efficace di estradosso, A _{duell} C Area tesa efficace di intradosso, A _{duell} B	Ac,eff.min asi tipici) ricentro dell'acciaio icace, A _{c,eff}	1041467 [mr	m2]
Elemento in trazione A rea tesa efficace di estradosso, A _{deeff} C Area tesa efficace di estradosso, A _{deeff} C Area tesa efficace di estradosso, A _{deeff} Elemento in trazione A Livello del ba B Area tesa efficace di estradosso, A _{deeff} C Area tesa efficace di estradosso, A _{deeff}	Ac,eff.min asi tipici) ricentro dell'acciaio icace, A _{c,eff}	1041467 [mr	m2]
Sigura 7.1 Area tesa efficace (ct. Legenda a) Trave	Ac,eff.min asi tipici) ricentro dell'acciaio icace, A _{c,eff}	1041467 [mr	m2]
Elemento in trazione A rea tesa efficace di estradosso, A _{deeff} C Area tesa efficace di estradosso, A _{deeff} C Area tesa efficace di estradosso, A _{deeff} Elemento in trazione A Livello del ba B Area tesa efficace di estradosso, A _{deeff} C Area tesa efficace di estradosso, A _{deeff}	Ac,eff.min asi tipici) ricentro dell'acciaio icace, A _{c,eff}	1041467 [mr	m2]
c) Elemento in trazione B Area tesa efficace di estradosso, A _{ta,et} C Area tesa efficace di estradosso, A _{ta,et} C C c) Elemento in trazione C C Area tesa efficace di intradosso, A _{ta,et} C C c)	Ac, eff.min asl tipici) ricentro dell'acciaio icace, A _{c.eff}	1041467 [mr	m2]
Elemento in trazione B Area tesa efficace (ci Legenda a) Trave A Livello del ba B Area tesa efficace di estradosso, A _{duell} C Area tesa efficace di estradosso, A _{duell} Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso	Ac, eff.min ast tipici) ricentro dell'acciaio icace, A _{c.eff} ρπ,εφφ	1041467 [mr	m2]
C Area tesa efficace de estradosso, A _{duet} C Area tesa efficace de estradosso, A _{duet} Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico	Ac, eff.min asi tipici) asi tipici) asi tipici) pπ,εφφ fct, eff kt	1041467 [mr B B 0.00646 [-] 3.0 [MI 0.4 [-]	m2]
C Area tesa efficace di intradosso, A _{duell} Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo	Ac, eff.min asi tipici) aricentro dell'acciaio icaco. $A_{c,eff}$ $\rho\pi, \epsilon \phi \phi$ fct, eff kt ϵ_{-} sm,1	1041467 [mr B B 0.00646 [-] 3.0 [MI 0.4 [-] 0.000093 [-]	m2]
C Area tesa efficace de estradosso, A _{duet} C Area tesa efficace de estradosso, A _{duet} Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico	Ac, eff.min asi tipici) asi tipici) $\rho\pi.\epsilon \phi \phi$ fct, eff kt $\epsilon sm.1$ $\epsilon sm.,2$	1041467 [mr B 0.00646 [-] 3.0 [Ml 0.4 [-] 0.00093 [-] -0.000817 [-]	m2]
C Area tesa efficace de estradosso, A _{duet} C Area tesa efficace de estradosso, A _{duet} Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico	Ac, eff.min asi tipici) aricentro dell'acciaio icaco. $A_{c,eff}$ $\rho\pi, \epsilon \phi \phi$ fct, eff kt ϵ_{-} sm,1	1041467 [mr B B 0.00646 [-] 3.0 [MI 0.4 [-] 0.000093 [-]	m2]
C Area tesa efficace de intradosso, A _{duste} C Area tesa efficace de intradosso, A _{duste} C Repporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls	Ac, eff.min asl tipici) pricentro dell'acciaio icace, $A_{c,eff}$ $\rho \pi, \epsilon \phi \phi$ kt $\epsilon_{-} s m, 1$ $\epsilon_{-} s m, 2$ $\epsilon_{-} s m$	1041467 [mi	m2]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri)	Ac, eff.min asl tipici) pricentro dell'accialo icace, $A_{c,eff}$ $\rho \pi, \epsilon \phi \phi$ fct, eff kt $\epsilon s m, 1$ $\epsilon s m, 2$ $\epsilon s m$ S	0.00646 [-] 3.0 [MI 0.4 [-] -0.00093 [-] 0.000093 [-]	m2] ε ₂ =0 Pa]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre	Ac, eff.min asl tipici) pricentro dell'acciaio icace, $A_{c,eff}$	1041467 [mr B 0.00646 [-] 3.0 [MI 0.4 [-] 0.000817 [-] 0.000093 [-] 122 [mr 30.00 [mr	m2] ε ₂ =0 Pa] m] m]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre Spaziatura massima di riferimento	Ac, eff.min asl tipici) pricentro dell'accialo iciaco, $A_{c,eff}$ pricentro dell'accialo iciaco, A_{c,eff	0.00646 [-] 3.0 [Mi 0.4 [-] 0.00093 [-] 0.000093 [-] 122 [mi 30.00 [mi 275 [mi	m2] ε ₂ =0 Pa] m] m]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre	Ac, eff.min asi tipici) pricentro dell'accialo icace, $A_{c,eff}$	0.00646 [-] 3.0 [MI 0.4 [-] 0.00093 [-] 0.00093 [-] 122 [mI 30.00 [mI 275 [mI	m2] ε ₂ =0 Pa] m] m]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre Spaziatura massima di riferimento	Ac, eff.min asi tipici) $\rho\pi.\epsilon\phi\phi$ fct, eff kt $\epsilonsm,1$ $\epsilonsm,2$ ϵsm s $\phi\epsilon\theta$ smax, rif k1 k2	0.00646 [-] 3.0 [MI 0.4 [-] 0.00093 [-] -0.000817 [-] 0.000093 [-] 122 [mi 30.00 [mi 275 [mi 0.800 [-] 0.500 [-]	m2] ε ₂ =0 Pa] m] m]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre Spaziatura massima di riferimento	Ac, eff.min asl tipici) pricentro dell'acciaio icace, $A_{c,eff}$ pr. e,	1041467 [mr B 0.00646 [-] 3.0 [Ml 0.4 [-] 0.00093 [-] -0.000817 [-] 0.000093 [-] 122 [mr 30.00 [mr 275 [mr 0.800 [-] 0.500 [-] 3.400 [-]	m2] ε ₂ =0 Pa] m] m]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre Spaziatura massima di riferimento Coefficienti k per il calcolo dell'ampiezza di fessurazione	Ac, eff.min asl tipici) pricentro dell'accialo icace, $A_{c,eff}$ pricept d	1041467 [mr B 0.00646 [-] 3.0 [Ml 0.4 [-] 0.00093 [-] -0.000817 [-] 0.00093 [-] 122 [mr 275 [mr 0.800 [-] 0.500 [-] 3.400 [-] 0.425 [-]	m2] ε ₂ =0 m] m] m]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre Spaziatura massima di riferimento	Ac, eff.min asl tipici) particentro dell'accialo icace, $A_{c,eff}$ particentro dell'accialo icace, A_{c,ef	1041467 [min B 0.00646 [-] 3.0 [Min 0.4 [-] 0.000093 [-] -0.000093 [-] 122 [min 30.00 [min 275 [min 0.800] 0.500 [-] 0.500 [-] 0.425 [-] 544 [min	m2] Pa] m] m] m]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre Spaziatura massima di riferimento Coefficienti k per il calcolo dell'ampiezza di fessurazione	Ac, eff.min asl tipici) $\rho\pi, \epsilon \phi \phi$ fct, eff kt $\epsilon_s m, 1$ $\epsilon_s m, 2$ $\epsilon_s m$ S $\phi \epsilon \theta$ smax, rif k1 k2 k3 k4 $\Delta_s m1$ $\Delta_s m2$	0.00646 [-] 3.0 [MI 0.4 [-] 0.00093 [-] 0.000093 [-] 122 [mi 30.00 [mi 275 [mi 0.800 [-] 0.500 [-] 0.425 [-] 544 [mi 2343 [mi	m2] Pa] m] m] m] m]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre Spaziatura massima di riferimento Coefficienti k per il calcolo dell'ampiezza di fessurazione	Ac, eff.min asl tipici) particentro dell'accialo icace, $A_{c,eff}$ particentro dell'accialo icace, A_{c,ef	1041467 [min B 0.00646 [-] 3.0 [Min 0.4 [-] 0.000093 [-] -0.000093 [-] 122 [min 30.00 [min 275 [min 0.800] 0.500 [-] 0.500 [-] 0.425 [-] 544 [min	m2] Pa] m] m] m] m]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre Spaziatura massima di riferimento Coefficienti k per il calcolo dell'ampiezza di fessurazione Distanza massima tra le fessure	Ac, eff.min asl tipici) $\rho\pi.\epsilon \varphi \varphi$ in cicace, $A_{e,eff}$ $\rho\pi.\epsilon \varphi \varphi$ fct, eff kt $\epsilonsm,1$ $\epsilonsm,2$ ϵsm s $\varphi \epsilon \theta$ $smax,rif$ $k1$ $k2$ $k3$ $k4$ $\Deltasm1$ $\Deltasm2$ Δsm	0.00646 [-] 3.0 [Mi 0.4 [-] 0.000817 [-] 0.000093 [-] 122 [mr 30.00 [mr 275 [mr 0.800 [-] 0.500 [-] 3.400 [-] 0.425 [-] 544 [mr 544 [mr	m2] Fa] m] m] m] m] m]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre Spaziatura massima di riferimento Coefficienti k per il calcolo dell'ampiezza di fessurazione	Ac, eff.min asl tipici) $\rho\pi.\epsilon \varphi \varphi$ in cicace, $A_{e,eff}$ $\rho\pi.\epsilon \varphi \varphi$ fct, eff kt $\epsilonsm,1$ $\epsilonsm,2$ ϵsm s $\varphi \epsilon \theta$ $smax,rif$ $k1$ $k2$ $k3$ $k4$ $\Deltasm1$ $\Deltasm2$ Δsm	0.00646 [-] 3.0 [Mi 0.4 [-] 0.00093 [-] -0.000817 [-] 0.00093 [-] -0.500 [-] 3.400 [-] 0.425 [-] 544 [mi 544 [mi	m2] Pa] m] m] m] m] m] m]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre Spaziatura massima di riferimento Coefficienti k per il calcolo dell'ampiezza di fessurazione Distanza massima tra le fessure	Ac, eff.min asl tipici) $\rho\pi.\epsilon \varphi \varphi$ in cicace, $A_{e,eff}$ $\rho\pi.\epsilon \varphi \varphi$ fct, eff kt $\epsilonsm,1$ $\epsilonsm,2$ ϵsm s $\varphi \epsilon \theta$ $smax,rif$ $k1$ $k2$ $k3$ $k4$ $\Deltasm1$ $\Deltasm2$ Δsm	0.00646 [-] 3.0 [Mi 0.4 [-] 0.000817 [-] 0.000093 [-] 122 [mr 30.00 [mr 275 [mr 0.800 [-] 0.500 [-] 3.400 [-] 0.425 [-] 544 [mr 544 [mr	m2] Pa] m] m] m] m] m]

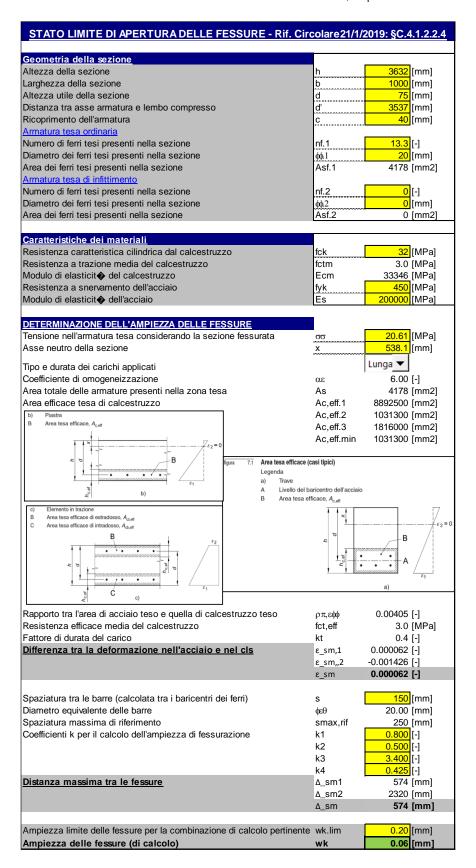
Sezione colletto: verifica direzione circonferenziale, top



Combinazione: SLEap


Sezione colletto: verifica direzione radiale, bottom

Sezione colletto: verifica direzione circonferenziale, bottom


Sezione colletto: verifica direzione radiale, top

STATO LIMITE DI APERTURA DELLE FESSURE - Rif. Circ	colare21/1/	2019: §C.4.	1.2.2.4
Geometria della sezione	L	2750	1
Altezza della sezione	h	3750 [-
Larghezza della sezione	b	1000 [-
Altezza utile della sezione	<u>d</u>		mm]
Distanza tra asse armatura e lembo compresso	<u>d'</u>	3665	-
Ricoprimento dell'armatura	C	40	mm]
Armatura tesa ordinaria			_
Numero di ferri tesi presenti nella sezione	nf.1	9.52	
Diametro dei ferri tesi presenti nella sezione	ф.1		mm]
Area dei ferri tesi presenti nella sezione	Asf.1	6729 [mm2]
<u>Armatura tesa di infittimento</u>			
Numero di ferri tesi presenti nella sezione	nf.2	0	-
Diametro dei ferri tesi presenti nella sezione	<u>\$4.2</u>		mm]
Area dei ferri tesi presenti nella sezione	Asf.2] 0	mm2]
Caratteristiche dei materiali			
Resistenza caratteristica cilindrica dal calcestruzzo	fck	32	MPa]
Resistenza a trazione media del calcestruzzo	fctm		MPa]
Modulo di elasticit♦ del calcestruzzo	Ecm	33346 [
Resistenza a snervamento dell'acciaio	fyk		MPa]
Modulo di elasticit♦ dell'acciaio	Es		MPa]
• • • • • • • • • • • • • • • • • • • •			
DETERMINAZIONE DELL'AMPIEZZA DELLE FESSURE	1		
Tensione nell'armatura tesa considerando la sezione fessurata	σσ	30.23	MPal
Asse neutro della sezione		625.6	
7.030 ficulto della 30210fic	X		
Tipo e durata dei carichi applicati		Lunga 🔻	
Coefficiente di omogeneizzazione	αε	6.00 [-]
Area totale delle armature presenti nella zona tesa	As	6729 [mm2]
Area efficace tesa di calcestruzzo	Ac,eff.1	9162500 [mm2]
b) Piastra	Ac,eff.2	1041467 [-
B Area tesa efficace, A _{c,eff}	A = =# 2	-	-
ii I	Ac.ell.3	18750001	11111121 1
	Ac,eff.3 Ac eff min	1875000 [1041467 [
×	Ac,eff.min	1041467 [-
	Ac,eff.min	-	-
ingura 7.1 Area tesa efficace (cz	Ac,eff.min	-	-
B figura 7.1 Area tesa efficace (cc Legenda a) Trave	Ac,eff.min	-	-
B B I I I I I I I I I I I I I I I I I I	Ac,eff.min asi tipici)	-	-
B B I I I I I I I I I I I I I I I I I I	Ac,eff.min asi tipici)	-	-
b) Semento in trazione Area tesa efficace de estradosso, A _{ct,eff}	Ac,eff.min asi tipici)	-	[mm2]
b) Column	Ac,eff.min asi tipici)	1041467	-
b) Column	Ac,eff.min asi tipici) ricentro dell'acciaio cace, A _{c,eff}	-	[mm2]
b) Second Sec	Ac, eff.min asi tipici) ricentro dell'acciaio cace, A _{c,eff}	1041467	[mm2]
b) c) Elemento in trazione B Area tesa efficace (con trazione C Area tesa efficace di estradosso, A _{duell} B Area tesa efficace di estradosso, A _{duell} C Area tesa efficace di estradosso, A _{duell}	Ac, eff.min asi tipici) ricentro dell'acciaio cace, A _{c,eff}	1041467	[mm2]
b) Column	Ac, eff.min asi tipici) ricentro dell'acciaio cace, A _{c,eff}	1041467	[mm2]
c) Elemento in trazione B Area tesa efficace di estradosso, A _{due} C Area tesa efficace di intradosso, A _{due} B Area tesa efficace di estradosso, A _{due} C Area tesa efficace di estradosso, A _{due} B C Area tesa efficace di estradosso, A _{due} C Area tesa efficace di estradosso, A _{due} B C C Area tesa efficace di estradosso, A _{due} B C C Area tesa efficace di estradosso, A _{due} C Area tesa efficace di estradosso, A _{due} B C C Area tesa efficace di estradosso, A _{due} C Area tesa efficace di estradosso, A _{due} B C C Area tesa efficace di estradosso, A _{due} C Area tesa efficace di estradosso, A _{due} B C C Area tesa efficace di estradosso, A _{due} C Area tesa efficac	Ac, eff.min asi tipici) ricentro dell'acciaio cace, A _{c,eff}	1041467	[mm2]
b) c) Elemento in trazione B Area tesa efficace (con trazione C Area tesa efficace di estradosso, A _{duell} B Area tesa efficace di estradosso, A _{duell} C Area tesa efficace di estradosso, A _{duell}	Ac, eff.min asi tipici) ricentro dell'acciaio cace, A _{c,eff}	1041467 [[mm2]
c) Elemento in trazione B Area tesa efficace di estradosso, A _{duell} C Area tesa efficace di intradosso, A _{duell} B Area tesa efficace di intradosso, A _{duell} C C c)	Ac,eff.min asi tipici) ricentro dell'acciaio cace, A _{c,eff}	1041467 [mm2]
c) Elemento in trazione B Area tesa efficace (cr. Legenda a) Trave A Livello del ba B Area tesa efficace di intradosso, A _{due} C Area tesa efficace di intradosso, A _{due} Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso	Ac, eff.min asi tipici) ricentro dell'acciaio cace, A _{c,eff}	1041467 [B 0.00646 [mm2]
c) Elemento in trazicne B Area tesa efficace di estradosso, A _{duet} C Area tesa efficace di intradosso, A _{duet} B Area tesa efficace di intradosso, A _{duet} C Area tesa efficace di intradosso, A _{duet} Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo	Ac, eff.min asi tipici) ricentro dell'acciaio cace, A _{c,eff}	1041467 [B 0.00646 [3.0 [mm2]
c) Elemento in trazicne B Area tesa efficace di estradosso, A _{due} C Area tesa efficace di intradosso, A _{due} Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico	Ac, eff.min asi tipici) ricentro dell'acciaio cace, A _{c.eff} ρτ, εφφ fct, eff kt	1041467 [B 0.00646 [3.0 [0.4 [mm2]
c) Elemento in trazione B Area tesa efficace di intradosso, A _{duet} C Area tesa efficace di intradosso, A _{duet} B Area tesa efficace di intradosso, A _{duet} C Area tesa efficace di intradosso, A _{duet} C Repporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo	Ac,eff.min asi tipici) ricentro dell'acciaio cace, $A_{c,eff}$ $\rho\pi$, $\epsilon\phi\phi$ fct, eff kt ϵ_{-} sm,1	0.00646 [3.0 [0.4 [0.000091 [mm2]
c) Elemento in trazicne B Area tesa efficace di estradosso, A _{due} C Area tesa efficace di intradosso, A _{due} Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico	Ac,eff.min asi tipici) ricentro dell'acciaio cace, $A_{\rm c,eff}$ $\rho\pi$. Edph fct,eff kt $\epsilon_{\rm s}$ sm,1 $\epsilon_{\rm s}$ sm,2	0.00646 [0.00091 [-0.000821 [-] MPa] -]
c) Elemento in trazicne B Area tesa efficace di estradosso, A _{due} C Area tesa efficace di intradosso, A _{due} Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico	Ac,eff.min asi tipici) ricentro dell'acciaio cace, $A_{c,eff}$ $\rho\pi$, $\epsilon\phi\phi$ fct, eff kt ϵ_{-} sm,1	0.00646 [3.0 [0.4 [0.000091 [-] MPa] -]
c) Elemento in trazione A rea tesa efficace di intradosso, A _{t.el} C Area tesa efficace di intradosso, A _{t.el} Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls	Ac,eff.min asi tipici) ricentro dell'acciaio cace, $A_{c,eff}$ $\rho \pi, \epsilon \phi \phi$ fc, $\epsilon \phi f$ kt $\epsilon_c s m, 1$ $\epsilon_c s m, 2$ $\epsilon_c s m$	0.00646 [3.0 [0.00091 [0.00091 [mm2]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri)	Ac,eff.min asi tipici) ricentro dell'acciaio cace, $A_{c,eff}$ $\rho\pi,\epsilon \phi \phi$ fct,eff kt $\epsilon_{-} sm,1$ $\epsilon_{-} sm,2$ $\epsilon_{-} sm$ S	0.00646 [3.0 [0.00091 [0.000091 [mm2] -] -] MPa] -] -] -] -] -] -]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre	Ac,eff.min asi tipici) ricentro dell'acciaio cace, $A_{c,eff}$ $\rho\pi,\epsilon \phi \phi$ fct,eff kt $\epsilonsm,1$ $\epsilonsm,2$ ϵsm S $\phi c\theta$	0.00646 [3.0 [0.00091 [0.000091 [122 [30.00 [-] MPa] -] -] -] -] -] -] -] -] -] -] -] -] -]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre Spaziatura massima di riferimento	Ac,eff.min asi tipici) ricentro dell'acciaio cace, A _{c.eff} ρπ,εφφ fct,eff kt ε_sm,1 ε_sm,2 ε_sm s φεθ smax,rif	0.00646 [3.0 [0.00091 [0.000091 [122 [30.00 [275 [-] MPa] -] -] -] -] -] -] -] -] -] -] -] -] -]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre	Ac,eff.min asitipici) pπ.εφφ fct,eff kt ε_sm,1 ε_sm,2 ε_sm sφεθ smax,rif k1	0.00646 [3.0 [0.00091 [0.00091 [275 [0.800]	-] MPa] -] [mm] mm] mm] -] -]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre Spaziatura massima di riferimento	Ac,eff.min asi tipici) pricentro dell'accialo cace, $A_{e,eff}$ price	0.00646 [3.0 [0.00091 [0.00091 [275 [0.800 [0.500 [-]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre Spaziatura massima di riferimento	Ac,eff.min asitipici) pπ.εφφ fct,eff kt ε_sm,1 ε_sm,2 ε_sm sφεθ smax,rif k1	0.00646 [3.0 [0.00091 [0.00091 [275 [0.800]	-]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre Spaziatura massima di riferimento	Ac,eff.min asi tipici) pricentro dell'acciaio cace, $A_{e,eff}$ price	0.00646 [3.0 [0.00091 [0.00091 [275 [0.800 [0.500 [-] MPa] -] -] -] -] -] -] -] -] -]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre Spaziatura massima di riferimento	Ac,eff.min asi tipici) pricentro dell'acciaio cace, $A_{c,eff}$ pricet dell'acciaio cace, $A_{c,eff}$ pricet dell'acciaio cace, $A_{c,eff}$ pricet dell'acciaio cace, $A_{c,eff}$ kt ϵ_{s} $\epsilon_{$	0.00646 [3.0 [0.00091 [0.00091 [0.00091 [275 [0.800 [0.500 [3.400 [mm2]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre Spaziatura massima di riferimento Coefficienti k per il calcolo dell'ampiezza di fessurazione	Ac,eff.min asi tipici) ricentro dell'accialo cace, $A_{c,eff}$ $\rho\pi,\epsilon \phi \phi$ fct,eff kt $\epsilon sm, 2$ ϵsm s $\phi\epsilon \theta$ $smax,rif$ k1 k2 k3 k4	0.00646 [3.0 [0.00091 [0.00091 [0.00091] 275 [0.800] 0.500 [3.400 [0.425 [mm2]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre Spaziatura massima di riferimento Coefficienti k per il calcolo dell'ampiezza di fessurazione	Ac,eff.min asi tipici) ricentro dell'acciaio cace, $A_{c,eff}$ $\rho\pi.\epsilon \phi\phi$ fct,eff kt $\epsilonsm,1$ $\epsilonsm,2$ ϵsm s $\phi\epsilon\theta$ $smax,rif$ k1 k2 k3 k4 $\Deltasm1$	0.00646 [3.0 [0.00091 [0.00091 [0.00091] 275 [0.800] 0.500[3.400 [0.425] 544 [mm2] -] -[-] -[-] -] -[-] -] -[-
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre Spaziatura massima di riferimento Coefficienti k per il calcolo dell'ampiezza di fessurazione	Ac,eff.min asi tipici) p. π . Eddy fct,eff kt E_sm,1 E_sm,2 E_sm s ϕ :0 smax,rif k1 k2 k3 k4 Δ _sm1 Δ _sm2	0.00646 [3.0 [0.00091 [0.00091 [275 [0.800] 0.500] 0.425 [544 [2343 [mm2] -] -[-] -[-] -] -[-] -] -[-
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre Spaziatura massima di riferimento Coefficienti k per il calcolo dell'ampiezza di fessurazione Distanza massima tra le fessure	Ac, eff.min asi tipici) ρπ, εφφ fct, eff kt ε_sm,1 ε_sm,2 ε_sm s φεθ smax, rif k1 k2 k3 k4 Δ_sm1 Δ_sm2 Δ_sm	0.00646 [3.0 [0.00091 [0.00091 [0.00091 [0.500 [3.400 [0.425 [544 [2343 [-] MPa] -] -[-] -] -[-] -] -[-] -[-] -[-] -[-
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre Spaziatura massima di riferimento Coefficienti k per il calcolo dell'ampiezza di fessurazione	Ac, eff.min asi tipici) ρπ, εφφ fct, eff kt ε_sm,1 ε_sm,2 ε_sm s φεθ smax, rif k1 k2 k3 k4 Δ_sm1 Δ_sm2 Δ_sm	0.00646 [3.0 [0.00091 [0.00091 [275 [0.800] 0.500] 0.425 [544 [2343 [-] MPa] -] -] -] -] -] -] -] -] -] -] -] -] -]

Sezione colletto: verifica direzione circonferenziale, top

4.7.10 Verifica rigidezza del basamento

Si riporta la verifica di compatibilità della minima rigidezza rotazionale e laterale della fondazione allo Stato Limite di Esercizio. Ai fini del calcolo della rigidezza alla rotazione si sono presi in considerazione i nodi agli estremi della fondazione (16 e 336) indicati nell'immagine seguente e distanti 2500 cm. Ai fini del calcolo della rigidezza laterale sono stati presi in considerazione tutti i nodi appartenenti al basamento.

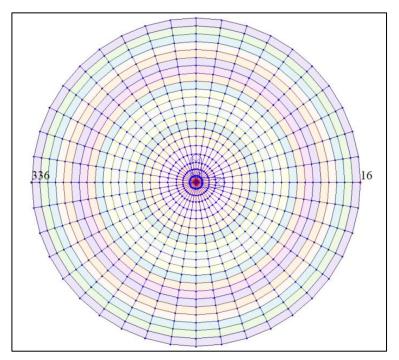


Figura 4-45: Identificazione nodi

Si considerano quindi gli spostamenti dei nodi precedentemente indicati, nelle combinazioni "SLEr" e "SLEqp".

La rigidezza alla rotazione, calcolata come (M/σ) deve essere superiore, per entrambe le combinazioni di calcolo, al valore minimo indicato nella specifica fornita dal produttore della turbina (168 GNm/rad) e riportata nell'immagine sottostante.

La rigidezza laterale, calcolata come (F/s) deve essere superiore, per entrambe le combinazioni di calcolo, al valore minimo indicato nella specifica fornita dal produttore della turbina (6.0 MN/m) e riportata nell'immagine sottostante.

Concurrent values for rotational- and lateral stiffness										
Rotational stiffness	[GNm/rad]	168	196	229	268	313	366	428	458	500
Lateral stiffness	[MN/m]	6.0	6.3	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Table 5-1 Minim	um lateral stiffne	SS.				•				

Verifica rigidezza rotazionale del basamento:

RIGIDEZZA	ROTAZIONALE DEL BASAMENTO		
	Combinazione di calcolo	SLEr	
S _{max}	spostamento massimo	1.030 cm	
S _{min}	spostamento minimo	0.277 cm	
S _{max} - S _{min}	differenza tra i due spostamenti	0.75 cm	
d	distanza tra i nodi	2500.00 cm	
α	angolo di rotazione	0.00030 rad	
М	Momento flettente agente	1.39E+08 Nm	
ð	rigidezza rotazionale	4.60E+11 Nm/ra	d
ð lim	rigidezza rotazionale minima	1.68E+11 Nm/ra	d
	Verifica soddisfatta	ОК	
	Combinazione di calcolo	SLEqp	
S _{max}	spostamento massimo	0.9774 cm	
S _{min}	spostamento minimo	0.3261 cm	
S _{max} - S _{min}	differenza tra i due spostamenti	0.65 cm	
d	distanza tra i nodi	2500 cm	
α	angolo di rotazione	0.000261 rad	
М	Momento flettente agente	1.21E+08 Nm	
ð	rigidezza rotazionale	4.63E+11 Nm/ra	d
ð lim	rigidezza rotazionale minima	1.68E+11 Nm/ra	d
	Verifica soddisfatta	OK	

Verifica rigidezza laterale del basamento:

RIGIDEZ	ZA LATERALE DEL BASAMENTO	
	Combinazione di calcolo	SLEr
S _{max}	spostamento laterale	1.68E-05 cm
F_{Ed}	Forza orizzontale agente	1322490 N
k	rigidezza laterale	7.86E+10
k lim	rigidezza laterale minima	6.00E+06 N/m
	Verifica soddisfatta	ОК
	Combinazione di calcolo	SLEqp
S _{max}	spostamento laterale	7.29E-06 cm
F _{Ed}	Forza orizzontale agente	977000 N
k	rigidezza laterale	1.34E+11
k lim	rigidezza laterale minima	6.00E+06 N/m
	Verifica soddisfatta	OK

5 CONCLUSIONI GENERALI

Il presente elaborato riporta i calcoli preliminari delle fondazioni degli aereogeneratori. Il predimensionamento delle opere è stato effettuato considerando carichi preliminarmente forniti dal produttore della turbina e i parametri geotecnici più conservativi presenti nel documento "VIL.039 – Relazione geologica e geotecnica".

I valori dei cedimenti calcolati preliminarmente, sono risultati tali da non compromettere la funzionalità dell'impianto durante la sua fase operativa.

Nella fase di progettazione esecutiva si valuteranno i reali carichi e parametri geotecnici di progetto si procederà ad una verifica del predimensionamento effettuato.