COMMITTENTE: Z W Z RETE FERROVIARIA ITALIANA GRUPPO FERROVIE DELLO STATO PROGETTAZIONE: TALFERR GRUPPO FERROVIE DELLO STATO INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N.443/01 DIREZIONE TECNICA - CENTRO DI PRODUZIONE MILANO PROGETTO DEFINITIVO PER APPALTO INTEGRATO POTENZIAMENTO DELLA LINEA RHO-ARONA. TRATTA RHO-GALLARATE QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y OPERE DI SOSTEGNO SEDE FERROVIARIA E STRADALE Relazione di calcolo muri di sostegno sede ferroviaria SCALA: COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. MDL 2 D 2 6 CL 0 0 0 | 5 0 0 В Rev. Verificato Descrizione Redatto Data Data Approvato Data Autorizzato Data Α E.Bartesaghi Dic.2010 S. Borelli Emissione Esecutiva Recepimento Osservazioni R.Biasino Apr.2011 S. Borelli B Validazione 24

n. Elab.: X

File: MDL112D26CLRI0005001B.doc

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 2 di 155

INDICE

1	PRE	EMESSA	5
2	SCO	OPO DEL DOCUMENTO	6
3	DO	CUMENTI DI RIFERIMENTO	7
	3.1	DOCUMENTI REFERENZIATI	7
	3.2	DOCUMENTI CORRELATI	7
	3.3	DOCUMENTI SUPERATI	7
4	CAI	RATTERISTICHE DEI MATERIALI	8
	4.1	CALCESTRUZZO MURI	8
	4.2	ACCIAO PER ARMATURE ORDINARIE	8
5	CAI	RATTERISTICHE GEOTECNICHE	9
6	MU	IRI DI SOSTEGNO IN C.A	10
	6.1	Analisi dei Carichi	10
	6.1.	I Pesi propri strutturali	10
	6.1.	2 Sovraccarichi permanenti portati	10
	6.1.	3 Azioni da traffico ferroviario	11
	6.1.	4 Azioni sismiche	11
	6.1.	5 Azioni provenienti dalla spinta del terreno	11
	6.1.	6 Azioni provenienti dalle barriere antirumore	11
7	SCF	HEMA DI CALCOLO, SOLLECITAZIONI E VERIFICHE	13
8	C2 -	- MURO 1.0 <h≤2.0 antirumore<="" barriera="" con="" futura="" m="" predisposizione="" td=""><td>13</td></h≤2.0>	13
	8.1	VERIFICHE STRUTTURALI	22
	8.1.	I Muro frontale	22
	8.1.	2 Plinto lato monte	25

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 3 di 155

8.1.3 Plinto lato valle	27
9 B2 – MURO 2.0 <h≤3.0 antirumore<="" barriera="" con="" futura="" m="" predisposizione="" td=""><td>29</td></h≤3.0>	29
9.1 VERIFICHE STRUTTURALI	38
9.1.1 Muro frontale	38
9.1.2 Plinto lato monte	41
9.1.3 Plinto lato valle	43
10 A2 – MURO 3.0 <h≤4.0 antirumore<="" barriera="" con="" m="" predisposizione="" td=""><td>45</td></h≤4.0>	45
10.1 VERIFICA STATICA	45
10.1.1 Verifiche strutturali	54
10.2 VERIFICA SISMICA	61
10.2.1 Verifiche strutturali	70
11 D2 - MURO 4.0 <h≤5.0 antirumore<="" barriera="" con="" futura="" m="" predisposizione="" td=""><td>72</td></h≤5.0>	72
11.1 VERIFICA STATICA	72
11.1.1 Verifiche strutturali	82
11.2 VERIFICA SISMICA	89
11.2.1 Verifiche strutturali	98
12 B1 – MURO 2.0 <h≤3.0 antirumore<="" barriera="" con="" m="" td=""><td>100</td></h≤3.0>	100
12.1.1 Verifiche strutturali	109
12.1.2 Plinto lato monte	111
12.1.3 Plinto lato valle	113
13 A1 – MURO 3.0 <h≤4.0 antirumore="" barriera="" con="" h1<="" m="" td=""><td>115</td></h≤4.0>	115
13.1 VERIFICA STATICA	115
13.2 VERIFICA SISMICA	131
13.2.1 Muro frontale	140
13.2.2. Plinto lato monta	1.4.1

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 4 di 155

13.2.3 Plinto lato monte	141
14 A1 – MURO 3.0 <h<4.0 antirumore="" barriera="" con="" h4<="" m="" td=""><td>142</td></h<4.0>	142
14.1 VERIFICA STATICA	142
14.2 VERIFICHE STRUTTURALI	149
14.2.1 Muro frontale	149
14.2.2 Plinto lato monte	
14.2.3 Plinto lato valle	

GRUPPO FERROVIE DELLO STATO	POTENZIAMENTO DELLA LINEA RHO-ARONA PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y
Relazione di calcolo muri di sostegno sede ferroviaria	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO MDL1 12 D 26 XX XX 00 00 000 X 5 di 155

1 PREMESSA

Nella presente relazione si analizzano le opere di sostegno di linea presenti all'interno dell'intervento in oggetto, distinguendo tra le varie tipologie:

- A1 Muro 4.0<H≤3.0 m con barriera antirumore tipo H1 e H4;
- B1 Muro 3.0<H≤2.0 m con barriera antirumore tipo H1;
- C2 Muro 1<H≤2 m con predisposizione per futura barriera antirumore;
- B2 Muro 2<H≤3 m con predisposizione per futura barriera antirumore;
- A2 Muro 3<H≤4 m con predisposizione per futura barriera antirumore;
- D2 Muro 4<H≤5 m con predisposizione per futura barriera antirumore;

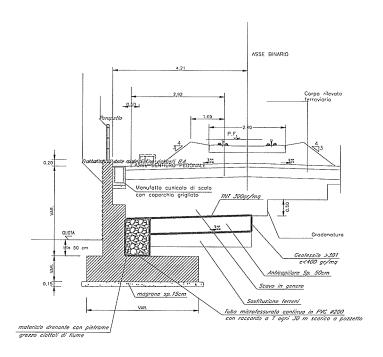
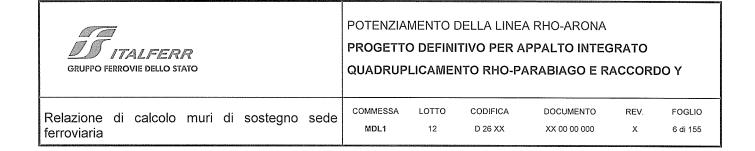
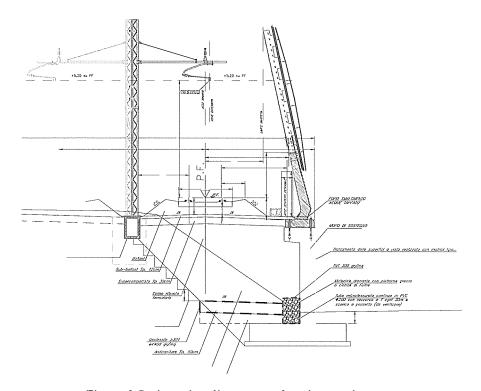
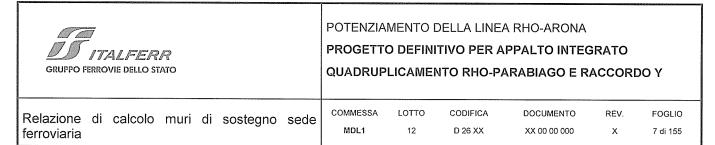



Figura 1 Sezione tipo di muro senza barriera antirumore




Figura 2 Sezione tipo di muro con barriera antirumore

2 SCOPO DEL DOCUMENTO

Lo scopo del presente documento è di riportare i risultati relativi alle verifiche geotecniche e strutturali effettuate per i muri di sostegno presenti dal Km 0+400 al Km9+450 e per quelli del raccordo Y.

Si riportano di seguito:

- Descrizioni delle geometrie e delle condizioni al contorno dei muri in esame;
- Descrizione delle analisi condotte;
- Caratteristiche geotecniche dei terreni interessate dall'opera;
- Caratteristiche dei materiali utilizzati;
- Sintesi delle verifiche;
- Tabulati di calcolo.

3 DOCUMENTI DI RIFERIMENTO

3.1 Documenti Referenziati

La presente relazione è stata redatta nel rispetto dei documenti referenziati costituiti dai principali riferimenti normativi e raccomandazioni di seguito riportati:

- Rif. [1] L. 05/11/1971 n. 1086: "Norme per la disciplina delle opere in conglomerato cementizio armato normale e precompresso ed a struttura metallica";
- Rif. [2] **D.M. 14/02/1992**: "Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche" (valido per il metodo alle tensioni ammissibili);
- Rif. [3] Circ. Min. 24/06/1993 n. 37406: "Istruzioni relative alle Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche" (valido per il metodo alle tensioni ammissibili);
- Rif. [4] **D.M.** 09/01/1996: "Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche";
- Rif. [5] DM 16/01/96: "Norme tecniche relative ai "Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi".
- Rif. [6] DM 16/01/96 "Norme tecniche per le costruzioni in zone sismiche".
- Rif. [7] Istruzione FF.SS. 44/b aggiornamento 16 dicembre 1997 Istruzioni tecniche per manufatti sotto binario da costruire in zona sismica
- Rif. [8] Istruzione FF.SS. I/SC/PS-OM/2298 aggiornamento 13 gennaio 1997: Sovraccarichi per il calcolo dei ponti ferroviari. Istruzioni per la progettazione, l'esecuzione ed il collaudo.

3.2 Documenti Correlati

I documenti correlati sono:

Rif. [9] Profilo geotecnico

Rif. [10] Relazione geotecnica

3.3 Documenti Superati

Non sono presenti documenti annullati o superati.

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 8 di 155

4 CARATTERISTICHE DEI MATERIALI

4.1 Calcestruzzo muri

TIPO C25/30 per opere in fondazione

Rck 30 N/mm2

Ec = 31220 MPa

 $\sigma'_{c} = 9.75 \text{ MPa}$

TIPO C30/35 per opere in elevazione

Rck 35 N/mm2

Ec = 33721 MPa

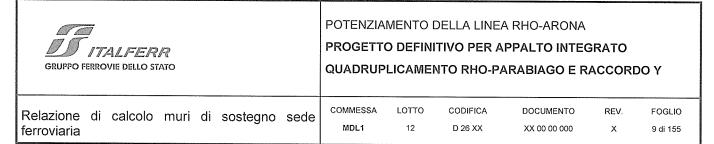
 $\sigma'_c = 11 \text{ MPa}$

4.2 Acciao per armature ordinarie

Feb44 k

fyk = 430 N/mm2

Es = 206000 N/mm2


 $\sigma s = 255 \text{ MPa}$

in aggiunta e in accordo con [7] p.to 2.2.2.g, si adottano le seguenti limitazioni sui tassi di lavoro in funzione del diametro delle barre:

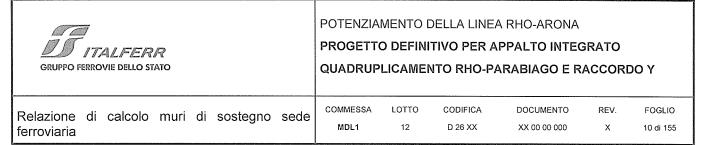
φmax 20 ⇒ σsmax 220 MPa

 ϕ max 24 \Rightarrow σ smax 190 MPa

 ϕ max 30 \Rightarrow σ smax 160 MPa

5 CARATTERISTICHE GEOTECNICHE

Le verifiche sono state condotte facendo riferimento ai parametri geotecnici relativi ai terreni di fondazione ed ai rilevati, desunti dalla Relazione Geotecnica Generale. Di seguito si riportano i valori considerati per le grandezze di interesse ai fini del calcolo.


Parametri geotecnici del rilevato ferroviario:

 $\gamma t = 20 \text{ kN/m}^3$ Peso di volume;

φ' = 35° Angolo di resistenza al taglio nella valutazione delle spinte delle terre a tergo del muro e nella valutazione della stabilità globale dell'opera.

				TERRENI	. 2012 1100 100 PML ()	TOTAL SOUND	
Parametri	G	GS'	GS"	SG	SL	LS	S/R
Profondità dal p.c. [m]	intercalate a GS	0 ÷ 5	5 ÷ 25	20 ÷ 25	20 ÷ 25	6 ÷ 12	0 ÷ 5
Peso di volume γ [kN/m³]	20	19 ÷ 20.5	19 ÷ 20.5	20 ÷ 21	20 ÷ 21.5	20	18
Densità relativa D _r [%]	30 ÷ 80	40 ÷ 80	40 ÷ 80	40 ÷ 65	30 ÷ 60		
Angolo d'attrito operativo φ' [°]	38	35 ÷ 37	36 ÷ 38	32 ÷ 35	30 ÷32	25 ÷ 30	30
Coesione efficace c' [kPa]			***************************************		***************************************	10 ÷ 30	
Coesione non drenata c _U [kPa]						30 ÷ 100	
Velocità delle onde di taglio V _s [m/s]		200 ÷ 350	250 ÷ 450	300 ÷ 400			
Modulo di taglio a piccole deformazioni G ₀ [MPa]		70 ÷ 250	150 ÷ 400	200 ÷ 350			
Modulo di Young operativo per fondazioni [MPa]	40 ÷ 50	15 ÷ 40	30 ÷ 50	20 ÷ 40	18 ÷ 20	10 ÷ 20	
Modulo di Young operativi per opere di sostegno flessibili [MPa]	40 ÷ 50	15 ÷ 40	30 ÷ 50	20 ÷ 40	18 ÷ 20	10 ÷ 20	
Modulo di Young operativo per il calcolo dei cedimenti di fondazioni di rilevati [MPa]	30 ÷ 40	10 ÷ 30	20 ÷ 40	15 ÷ 35	10 ÷ 15	10 ÷ 15	10 ÷ 20
Modulo edometrico [MPa]		15 ÷ 40	20 ÷ 50	20 ÷ 40	10 ÷ 30	10 ÷ 15	
Valore di N _{SPT} di riferimento nel calcolo dei pali di fondazione [colpi/30cm]		4 ÷ 35	25 ÷ 60	30 ÷ 60			
Coefficiente di consolidazione primaria C _V [cm²/s]						3×10 ^{-3 (1)} 5×10 ^{-3 (2)}	
Coefficiente di consolidazione secondaria $c_{\alpha}\left[\%\right]$						-	
Coefficiente di permeabilità k [cm/s]			10 ⁻³	10-4	10-3	10-5	

Tabella 1 - Parametri geotecnici di riferimento

G = Ghiaia intercalata ai terreni GS

GS' = Ghiaia sabbiosa - livelli superficiali $(0 \div 5)$

GS'' = Ghiaia sabbiosa - livelli profondi $(5 \div 25)$

SG = Sabbia ghiaiosa

SL = Sabbia limosa

LS = Limo sabbioso

S = Sabbia limosa ghiaiosa superficiale

 $\mathbf{R} = \text{Riporto}$

- (1) Valore valido per lo strato di limo più superficiale
- (2) Valore valido per gli altri strati di limo mediamente profondi o profondi.

6 MURI DI SOSTEGNO IN C.A.

Di seguito si riporta l'analisi dei carichi agenti globalmente sulla struttura. Il calcolo è stato effettuato su una striscia di larghezza unitaria di muro.

6.1 Analisi dei carichi

6.1.1 Pesi propri strutturali

I pesi sono stati valutati considerando un peso specifico del cls pari a 25 kN/mc.

6.1.2 Sovraccarichi permanenti portati

Il peso specifico del terreno è preso pari a 19 kN/mc.

Il peso del ballast e dell'armamento è stato considerato pari a 14.40 kN/m² ottenuto considerando un sovraccarico di 18 kN/m² per un altezza pari a 0.8 m.

6.1.3 Azioni da traffico ferroviario

E' stato applicato il contributo alla spinta sul paramento dovuto al sovraccarico ferroviario posto pari a 40 kN/mq. In fase statica e 20 kN/mq in fase sismica. Si precisa che la verifica sismica per muri che presentano altezze del paramento inferiori a tre metri non viene effettuata in accordo a quanto proposto dal D.M. 1996.

6.1.4 Azioni sismiche

Il calcolo viene effettuato considerando la struttura ubicata in zona sismica di III categoria secondo le indicazione della istruzione FS44/B.

6.1.5 Azioni provenienti dalla spinta del terreno

Per la determinazione delle azioni applicate alle spalle dal rinterro si assumo i seguenti parametri geotecnici :

Peso di volume del rinterro $\gamma = 20 \text{kN/m}^3$,

Angolo di attrito interno $\phi = 35$ °

Coefficiente di spinta attiva ka = 0.271

Tale terreno viene esteso anche come terreno di fondazione.

N.B. nelle verifiche a slittamento è stato considerato un attrito tra terreno e fondazione calcolato come tang $(0.85 \, \varphi)$.

6.1.6 Azioni provenienti dalle barriere antirumore

Nel caso di muri predisposti per barriere antirumore si considera il caso di barriere con pannelli fonoassorbenti del peso a metro quadro pari a 2 KN/m² e dell'altezza pari a 4.0 m dal piano della soletta sulle quali si considera che agisca una forza orizzontale data dal vento di 2.5 KN/m².

Le azioni dovute alla presenza delle barriere antirumore sono state riprese dalle relazioni di calcolo tipologiche delle barriere il cui utilizzo è previsto nella tratta in esame. Da tali relazioni di calcolo si ricavano le azioni all'interfaccia fra basamento della barriera e muro. Le azioni sono riferite ad un tratto di lunghezza l=1.5m, che vengono applicate a 70cm da filo anteriore esterno del paramento.

Pertanto sul metro lineare di muro si applicano nei due casi di vento diretto da esterno verso l'interno e viceversa, scegliendo caso per caso a condizione più sfavorevole per il muro.

Per le barriere di tipo H1si ha:

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 12 di 155

SOLLECITAZIONI LIVELLO TIRAFONDI - VERIFICA DI RESISTENZA									
Joint	OutputCase	CaseType	StepType	N	V	M			
Text	Text	Text	Text	N	N	N-m			
15	PPPBVPSP_V300	Combination	Max	-62782	9463	33112			
15	PPPBVPSP_V300	Combination	Min	-61304	17772	55482			
15	PPPAVNSN_V300	Combination	Max	-54736	-19177	-45288			
15	PPPAVNSN_V300	Combination	Min	-53258	-10868	-22919			
15	PPPBVPSP_S300	Combination	0	-63013	19163	59073			
15	PPPAVNSN_S300	Combination	0	-53265	-19163	-45252			

15	PPPBVPSP_V300	Combination	max	-41.85	6.3	22.07	vento est-int
15	PPPBVPSP_V300	Combination	min	-40.87	11.84	36.99	vento est-int
15	PPPBVPSP_V300	Combination	max	-36.49	-12.78	-30.192	vento int-est
15	PPPBVPSP_V300	Combination	max	-35.5	-7.24	-15.28	vento int-est

Per le barriere di tipo H4 si ha:

SOLLECITAZIONI LIVELLO TIRAFONDI - VERIFICA DI RESISTENZA									
Joint	OutputCase	CaseType	StepType	N	V	M			
Text	Text	Text	Text	N	N	N-m			
15	PPPBVPSP_V200	Combination	Max	-90191	23944	116937			
15	PPPBVPSP_V200	Combination	Min	-86228	39586	193377			
15	PPPAVNSN_V200	Combination	Max	-62198	-37549	-165399			
15	PPPAVNSN_V200	Combination	Min	-58236	-21908	-88958			
15	PPPBVPSP_S200	Combination		-90842	41770	197921			
15	PPPAVNSN_S200	Combination		-57121	-41770	-182238			

GRUPPO FERROVIE DELLO STATO	PROGETTO	POTENZIAMENTO DELLA LINEA RHO-ARONA PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y					
Relazione di calcolo muri di sostegno sede	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
ferroviaria	MDL1	12	D 26 XX	XX 00 00 000		13 di 155	

15	PPPBVPSP_V200	Combination	max	-60.12	15.96	77.96	vento est-int
15	PPPBVPSP_V200	Combination	min	-57.48	26.39	128.91	vento est-int
15	PPPBVPSN_V200	Combination	max	-41.46	-25.03	-110.26	vento int-est
15	PPPBVPSN_V201	Combination	max	-38.82	-14.6	-59.3	vento int-est

7 SCHEMA DI CALCOLO, SOLLECITAZIONI E VERIFICHE

Nelle paragrafi successivi si riporta il quadro riepilogativo di:

- azioni e sollecitazioni di verifica nelle sezioni caratteristiche del muro;
- verifiche di stabilità globale;
- pressioni di contatto sul terreno di fondazione.

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 14 di 155

<u> </u>			
Dati geometrici	H tot =2.70 [m]		
muro	altezza muro	2.00	m
	spessore muro superiore	0.45	m
	spessore muro inferiore	0.45	m
	inclinazione muro - lato monte	0.00	0
	inclinazione muro - lato valle	0.00	0
	spessore muro inferiore - lato monte	0.00	m
	spessore muro inferiore - lato valle	0.00	m
platea di fondazione	sbalzo platea - lato valle	0.50	m
	spessore sbalzo platea - lato valle	0.70	m
	spessore sbalzo platea filo muro - lato valle	0.70	m
	sbalzo platea - lato monte	2.00	m
	spessore sbalzo platea - lato monte	0.70	m
	spessore sbalzo platea filo muro - lato monte	0.70	m
	inclinazione magrone sottofondo	0.00	0
	lunghezza platea	2.95	m
terrapieno	inclinazione terrapieno	0.00	0
τοπαριοπο	lunghezza terrapieno superiore	2.00	m
	lunghezza terrapieno inferiore	2.00	m
	altezza totale terrapieno a monte	2.70	m

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 15 di 155

Dati geotecnici

terrapieno	angolo di attrito	35.0	0
	angolo di attrito muro-terrapieno	0.6	0
	coefficiente di spinta attiva - formula generale: $ka(\alpha,\delta,\phi,\iota)$	0.27099	
	coesione	0.0	kN/m²
	peso di volume	20.0	kN/m³
terreno di fondazione	angolo di attrito	35.0	٥
	coefficiente di attrito f= tan (KTF x AATF)	0.5715	
	fattore di riduzione angolo di attrito	0.9	
	coesione	0.0	kN/m²
	peso di volume	19.00	MPa
	tensione ammissibile sul terreno (calcolo reazioni terreno)	0.15	MPa

POTENZIAMENTO DELLA LINEA RHO-ARONA

PROGETTO DEFINITIVO PER APPALTO INTEGRATO

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione	di	calcolo	muri	di	sostegno	sede	
ferroviaria							

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	Х	16 di 155

Dati di carico

azione sismica	grado di sismicità (categoria zona sismica: I, II, III)	2	(2-6-9-12)
	coefficiente di intensità sismica	0.00	
	angolo di attrito muro-terrapieno in fase di sisma	0.0	٥
	coefficiente di spinta attiva in presenza di sisma = A x KAS*	-	
	coefficiente di incremento di spinta attiva in presenza di sisma = KAS-KA	-	
calcestruzzo	peso di volume	25.00	kN/m ³
sovraccarico	Sovraccarico a monte in sommità del muro	54.40	kN/m²
uniforme	Percentuale sovraccarico su platea	100.00	(0-100 %)
	Sovraccarico a valle	0.00	kN/m²
	Percentuale sovraccarico su platea	100.00	(0-100 %)
falda	livello acqua falda da intradosso platea	0.00	m
	peso di volume	10.00	kN/m³
	pressione idrostatica a monte	0	(1= si; 0= no)
	sottospinta idraulica sotto platea di fondazione	0	(1= si; 0= no)
carichi applicati	Sovraccarico aggiuntivo laterale - lato monte	0.00	kN/m²
- uniforme	distanza di applicazione da filo posteriore platea di fondazione (+ verso monte)	0.00	m
	distanza di applicazione da intradosso platea di fondazione (+ verso alto)	2.40	m
	angolo di diffusione nel terreno	35.00	0
- forze concentrate	forza verticale (+ verso l'alto)	-8.00	kN/m
	braccio orizzontale x forza verticale (+ verso monte)	0.23	m
	forza orizzontale (+ verso valle)	10.00	kN/m
	braccio verticale x forza orizzontale (+ verso l'alto)	0.00	m
	coppia (+ oraria)	18.00	kNm/m

Riepilogo delle sollec. riferite al baricentro della platea di fondaz. - lato intrad. (comb.: 2)

azione orizzontale	$F_x =$	69.56 kN/m
azione verticale	$F_z =$	-162.13 kN/m
momento flettente	$M_{p,G} =$	101.39 kNm/m

Riepilogo delle sollec. riferite al baricentro della platea di fondaz. - lato intrad. (comb.: 3)

azione orizzontale	$F_x =$	69.56 kN/m
azione verticale	$F_z =$	-270.93 kN/m
momento flettente	$M_{p,G} =$	49.71 kNm/m

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 17 di 155

Sollecitazioni s	u platea	di fondaz	zione	combo 2								
sezione	X (m)	DX (m)	qz,inf kN/m²	u,inf kN/m²	qz,sup kN/m²	V,inf kN/m	V,sup kN/m	M,inf kNm/m	M,sup kNm/m	V,tot kN/m	M,tot kNm/m	spessore (m)
sez 0 - (valle)	0.00	0.00	127.21	0.00	-17.50	0.00	0.00	0.00	0.00	0.00	0.00	0.70
sez 1 - (valle)	-0.13	0.13	120.97	0.00	-17.50	15.51	-2.19	0.98	-0.14	13.32	0.84	0.70
sez 2 - (valle)	-0.25	0.25	114.74	0.00	-17.50	30.24	-4.38	3.85	-0.55	25.87	3.30	0.70
sez 3 - (valle)	-0.38	0.38	108.50	0.00	-17.50	44.20	-6.56	8.51	-1.23	37.63	7.28	0.70
sez 4 - (valle)	-0.50	0.50	102.26	0.00	-17.50	57.37	-8.75	14.86	-2.19	48.62	12.67	0.70
					parame	nto mur	0			***************************************		
sez 5 - (monte)	-0.95	2.00	79.80	0.00	-111.90	77.23	-223.80	59.75	-223.80	-146.57	-164.05	0.70
sez 6 - (monte)	-1.35	1.60	59.84	0.00	-111.90	49.31	-179.04	34.70	-143.23	-129.73	-108.53	0.70
sez 7 - (monte)	-1.75	1.20	39.87	0.00	-111.90	29.36	-134.28	19.24	-80.57	-104.92	-61.33	0.70
sez 8 - (monte)	-2.15	0.80	19.91	0.00	-111.90	17.41	-89.52	10.15	-35.81	-72.11	-25.66	0.70
sez 9 - (monte)	-2.55	0.40	0.00	0.00	-111.90	0.00	-44.76	0.00	-8.95	-44.76	-8.95	0.70
sez 10 - (monte)	-2.95	0.00	0.00	0.00	-111.90	0.00	0.00	0.00	0.00	0.00	0.00	0.70

LEGENDA:

X= ascissa sezione platea

DX= distanza sezione da lembo estremo

qz,inf= carico distribuito dovuto alla reazione di sottofondo del terreno

u,inf= pressione idrostatica sotto platea di fondazione

qz,sup= carico distribuito verso il basso

V= sforzo di taglio (+: verso l'alto)

M= momento flettente (+: tese le fibre di intradosso platea)

Sollecitazioni s	u platea	di fondaz	zione	<u>combo 3</u>								
sezione	X (m)	DX (m)	qz,inf kN/m²	u,inf kN/m²	qz,sup kN/m²	V,inf kN/m	V,sup kN/m	M,inf kNm/m	M,sup kNm/m	V,tot kN/m	M,tot kNm/m	spessore (m)
sez 0 - (valle)	0.00	0.00	126.11	0.00	-17.50	0.00	0.00	0.00	0.00	0.00	0.00	0.70
sez 1 - (valle)	-0.13	0.13	123.21	0.00	-17.50	15.58	-2.19	0.98	-0.14	13.39	0.84	0.70
sez 2 - (valle)	-0.25	0.25	120.30	0.00	-17.50	30.80	-4.38	3.88	-0.55	26.43	3.33	0.70
sez 3 - (valle)	-0.38	0.38	117.40	0.00	-17.50	45.66	-6.56	8.66	-1.23	39.10	7.43	0.70
sez 4 - (valle)	-0.50	0.50	114.49	0.00	-17.50	60.15	-8.75	15.28	-2.19	51.40	13.09	0.70
					parame	nto mur	0					
sez 5 - (monte)	-0.95	2.00	104.04	0.00	-111.90	161.60	-223.80	146.11	-223.80	-62.20	-77.69	0.70
sez 6 - (monte)	-1.35	1.60	94.74	0.00	-111.90	121.85	-179.04	89.55	-143.23	-57.19	-53.68	0.70
sez 7 - (monte)	-1.75	1.20	85.45	0.00	-111.90	85.81	-134.28	48.14	-80.57	-48.47	-32.43	0.70
sez 8 - (monte)	-2.15	0.80	76.16	0.00	-111.90	53.49	-89.52	20.40	-35.81	-36.03	-15.40	0.70
sez 9 - (monte)	-2.55	0.40	66.86	0.00	-111.90	24.89	-44.76	4.85	-8.95	-19.87	-4.10	0.70
sez 10 - (monte)	-2.95	0.00	57.57	0.00	-111.90	0.00	0.00	0.00	0.00	0.00	0.00	0.70

LEGENDA:

X= ascissa sezione platea

DX= distanza sezione da lembo estremo

qz,inf= carico distribuito dovuto alla reazione di sottofondo del terreno

u,inf= pressione idrostatica sotto platea di fondazione

qz,sup= carico distribuito verso il basso

V= sforzo di taglio (+: verso l'alto)

M= momento flettente (+: tese le fibre di intradosso platea)

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO

 MDL1
 12
 D 26 XX
 XX 00 00 000

REV. FOGLIOX 18 di 155

Verifica a ribaltamento				Mstab	Mrib
Azioni (comb.:1)				kNm/m	kNm/m
Muro + platea di fondazione				92.46	0.00
Terrapieno				156.00	0.00
Spinta terreno a monte				0.00	17.78
			Σ=	248.46	17.78
Coefficiente di sicurezza	$\eta_r =$	13.97		>= 1.5	
				Mstab	Mrib
Azioni (comb.:2)				kNm/m	kNm/m
Tunothi (Oothoa.)				TO VIII	KINITITI
Muro + platea di fondazione				92.46	0.00
Terrapieno				156.00	0.00
Spinta terreno a monte				0.00	17.78
Spinta sovraccarico a monte				0.00	53.73
Forze applicate in sommità del m	nuro			5.80	45.00
Spinta dell'acqua				0.00	0.00
Sovraccarico a valle				0.00	0.00
Incremento di spinta terreno a me	onte in fase	di sisma		0.00	0.00
Sovraccarico aggiuntivo laterale	- lato monte	•		0.00	0.00
Sottospinta idraulica sotto platea	di fondazioi	ne		0.00	0.00
			Σ=	254.26	116.51
Coefficiente di sicurezza	$\eta_r =$	2.18		>= 1.5	

Coefficiente di sicurezza

 $\eta_t =$

POTENZIAMENTO DELLA LINEA RHO-ARONA

>= 1.3

I I Ford has I Than I NOT	MDL1 12 D 26 XX XX 00 00 000 X 19 di 155 Tone piano di slittamento = 0 °) FX FZ Ft Fn kN/m kN/m kN/m kN/m kN/m kN/m 0.00 -74.13 0.00 -74.1 0.00 -80.00 0.00 -80.00							
Relazione di calcolo muri di sostegno sede ferroviaria							FOGLIO 19 di 155	
Verifica allo scorrimento								
(verifica alla traslazione magrone terreno - inclinazione pia	ano di slittam	ento = 0	°)	Fx	Fz	Ft	Fn	
Azioni (comb.:1)				kN/m	kN/m	kN/m	kN/m	
Muro + platea di fondazione				0.00	-74.13	0.00	-74.13	
Terrapieno				0.00	-80.00	0.00	-80.00	
Spinta terreno a monte				19.76	0.00	19.76	0.00	
			Σ=	19.76	-154.13	19.76	-154.13	
Coefficiente di sicurezza $\eta_t =$	4.46			>= 1.3				
Azioni (comb.:2)				Fx kN/m	Fz kN/m	Ft kN/m	Fn k N /m	
Muro + platea di fondazione				0.00	-74.13	0.00	-74.13	
Terrapieno				0.00	-80.00	0.00	-80.00	
Spinta terreno a monte				19.76	0.00	19.76	0.00	
Spinta sovraccarico a monte				39.80	0.00	39.80	0.00	
Forze applicate in sommità del muro				10.00	-8.00	10.00	-8.00	
Spinta dell'acqua				0.00	0.00	0.00	0.00	
Sovraccarico a valle				0.00	0.00	0.00	0.00	
Incremento di spinta terreno a monte in fase di sisma				0.00	0.00	0.00	0.00	
Sovraccarico aggiuntivo laterale - lato monte				0.00	0.00	0.00	0.00	
Sottospinta idraulica sotto platea di fondazione				0.00	0.00	0.00	0.00	
			Σ=	69.56	-162.13	69.56	-162.13	

1.33

Relazione di calcolo muri di sostegno sede MDL1

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	X	20 di 155

Riepilogo delle sollecitazioni (comb.: 2 e 3)	spessore (m)	N kN/m	T kN/m	M kNm/m
Paramento verticale - sezione di spiccato	0.45	-30.50	50.32	74.71
Riepilogo delle sollecitazioni (comb.: 2)	spessore (m)	N kN/m	T kN/m	M kNm/m
Mensola lato valle - sezione filo paramento verticale	0.70	0.00	48.62	12.67
Mensola lato monte - sezione filo paramento verticale	0.70	0.00	-146.57	-164.05
Riepilogo delle sollecitazioni (comb.: 3)	spessore (m)	N kN/m	T kN/m	M kNm/m
Mensola lato valle - sezione filo paramento verticale	0.70	0.00	51.40	13.09
Mensola lato monte - sezione filo paramento verticale	0.70	0.00	-62.20	-77.69

N (-) : sforzo normale di compressione

M (+) : momento flettente che tende le fibre lato terreno - paramento verticale

: momento flettente che tende le fibre lato intradosso - <u>platea di fondazione</u>

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO CODIFICA MDL1 12 D 26 XX

DOCUMENTO XX 00 00 000

REV. FOGLIO

Х 21 di 155

Muri di sostegno con fondazioni superficiali

Verifica al carico limite dell'insieme fondazione-terreno (Meyerhof)

F = 2.00

Parametri geotecnici terreno di fondazione

KN/m³ 19.00 peso specifico terreno di fondazione φ' = 35.00

angolo di attrito interno

φ'= 0.61087 rad

C' = KN/m² 0.00

20.00

peso specifico terreno di riempimento (laterale)

Caratteristiche geometriche della fondazione

KN/m³

B = 3.00 m

larghezza della fondazione

L= 1.00 m

Azioni esterne e pressione applicata

lunghezza della fondazione

D= 0.85 m approfondimento della fondazione

comb.

1 H = 69.56 kΝ

azione orizzontale e = M/V =

azione verticale

0.63 B* = B-2e =

eccentricità del carico verticale V (in direzione trasversale --> B) 1.75 m < 3 m $\,$ larghezza ridotta in relazione alla eccentricità del carico verticale

V = 162.13 101.39 kNm

momento flettente

D/B* = 0.49

92.68 KN/m²

pressione media di esercizio applicata sull'area ridotta angolo di inclinazione della risultante misurata dalla verticale

0 = 0.41 rad

 $q_{es}^* = V/(B^*L) =$

23.22°

Valutazione del carico limite dell'insieme fondazione-terreno e del coefficiente di sicurezza

 $q_{lim} = c' N_c s_c d_c i_c + \gamma_r D N_q s_q d_q i_q + 1/2 B^* \gamma N_\gamma s_\gamma d_\gamma i_\gamma$ $q_{lim} = 0.00 + 340.71 + 76.45 = 417.16$ KN/m²

KN/m² q*_{es}= 92.68

 $F = q_{lim}/q_{es}^* = 417.16/92.68 = 4.50 > 2.00$

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 22 di 155

Muri di sostegno con fondazioni superficiali

Verifica al carico limite dell'insieme fondazione-terreno (Meyerhof)

F = 2.00

Parametri geotecnici terreno di fondazione

 γ = 19.00 KN/m³ peso specifico terreno di fondazione

 $\phi' = 35.00$ ° angolo di attrito interno $\phi' = 0.61087$ rad

c' = 0.00 KN/m² coesione

 γ_r = 20.00 KN/m³ peso specifico terreno di riempimento (laterale)

Caratteristiche geometriche della fondazione

B = 3.00 m larghezza della fondazione L = 1.00 m lunghezza della fondazione D = 0.85 m approfondimento della fondazione

Azioni esterne e pressione applicata

49.71

comb. 2

H =69.56kNazione orizzontalee = M/V =0.18eccentricità del caV =270.93kNazione verticale $B^* = B-2e =$ 2.63 m < 3 m</td>larghezza ridotta i

kNm momento flettente D/B* = 0.32

 $q_{es}^* = V/(B^*L) = 102.89 \text{ KN/m}^2$

 $\theta = 0.25 \text{ rad}$ $\theta = 14.40 ^{\circ}$ eccentricità del carico verticale V (in direzione trasversale --> B)

larghezza ridotta in relazione alla eccentricità del carico verticale

pressione media di esercizio applicata sull'area ridotta angolo di inclinazione della risultante misurata dalla verticale

Valutazione del carico limite dell'insieme fondazione-terreno e del coefficiente di sicurezza

$$\begin{split} q_{lim} &= c^t \, N_c \, s_c \, d_c \, i_c + \gamma_r \, D \, N_q \, s_q \, d_q \, i_q + 1/2 \, B^\star \gamma \, N_\gamma \, s_\gamma \, d_\gamma \, i_\gamma \\ q_{lim} &= 0.00 + 424.17 + 341.92 = 766.09 \, KN/m^2 \\ q^\star_{es} &= 102.89 \qquad KN/m^2 \end{split}$$

 $F = q_{lim}/q_{es}^* = 766.09/102.89 = 7.45 > 2.00$

Le verifiche risultano soddisfatte.

8.1 Verifiche strutturali

8.1.1 Muro frontale

Le massime sollecitazioni agenti nella sezione di spiccato del muro frontale sono:

M = 76.71 kNm

T = 50.32 kNm

N = -30.50 kNm

La sezione è armata con $\phi 14/20$ lato interno e $\phi 12/20$ lato esterno. Vengono riportate le verifiche tensionali e di fessurazione.

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 23 di 155

Sollec	itazioni	Carpe	enteria	Armatura			Verifiche tensionali		
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]
-30.50	76.71	100	50	1	5 ¢ 12 (5.65)	5.8	7.95	-4.84	219.81
				2	5 \(\phi\) 14 (7.70)	44.1	(dal bordo sup	eriore)	

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni					
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm ²]> T/ σ
50.32	100.0	44.1	0.13	0.67 (Rck 35)	7.70 > 1.97

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO MDL1 12 D 26 XX XX 00 00 000 Х 24 di 155

Verifica a formazione fessure - Sezione: Spiccato muro frontale

CALL	ecitazi	iani d	ivaris	inn

-30.50 [KN] N = sforzo assiale (+ trazione) M = 76.71 [KNm] momento flettente (+ tende le fibre inferiori)

Materiali

cls Rck = 35.00 [MPa] $f_{ctk} = 0.7 \times [0.27 \times (Rck)^{2/3}] =$ 2.02 [MPa] resistenza caratteristica a trazione per sforzo normale $f_{cfk} = 0.7 \times 1.2 \times [0.27 \times (Rck)^{2/3}] =$ 2.43 [MPa] resistenza caratteristica a trazione per flessione

hi_sup [cm]

Caratteristiche geometriche sezione rettangolare (solo cls)

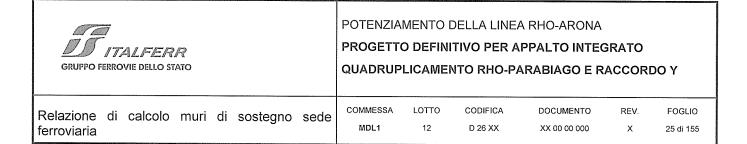
armatura superiore

B = 100.00 [cm] base H = 50.00 [cm] altezza $y_{G,cls} = H/2 =$ 25.00 [cm] posizione baricentro 5000.0 [cm²] A_{cls} = $J_{cls} = 1/12 B H^3 =$ 1041666.7 [cm⁴] momento di inerzia 41666.7 [cm3] $W_{cls} = J_{cls} / (H/2) =$ modulo resistente ai lembi

Caratteristiche geometriche (I° stadio)

10.00

As [cm²]


5 \(\phi \) 12 (5.65)	5.8	5.2
	_	-
-	-	-
As [cm ²] 5 φ 14 (7.70)	hi_inf [cm] 5.9	copriferro [cm] 5.2 -
	5 φ 12 (5.65) - -	5 φ 12 (5.65) 5.8

$y_{G_sup} = S_{xi} / A_i =$ $A_i = BH + n\Sigma As =$ $J_i = J_i' - A_i y_{G_sup}^2 =$ $y_s = y_{G_sup} =$ $W_{i,s} = J_i / y_s =$ $y_i = H - y_{G_sup} =$	25.07 [cm] 5133.5 [cm²] 1090563.1 [cm²] 25.07 [cm] 43492.3 [cm³] 24.93 [cm]	posizione baricentro sezione omogeneizzata area sezione omogeneizzata momento di inerzia sezione omogeneizzata distanza dal baricentro del lembo superiore modulo resistente al lembo superiore sezione omogeneizzata distanza dal baricentro del lembo inferiore - trazione
$W_{i,i} = J_i / y_i =$	43753.6 [cm³]	modulo resistente al lembo inferiore sezione omogeneizzata - trazione

copriferro [cm]

Trazione nel calcestruzzo

 $\sigma_{c(N)} = N / Ai =$ [MPa] $\sigma_{c(M)} = M / Wt =$ [MPa] [MPa] < 2.43

8.1.2 Plinto lato monte

La zattera di fondazione è armata con ϕ 18/20 superiormente e ϕ 14/20 inferiormente.

I tassi di lavoro risultano:

Sollecitazioni		Carpenteria		Armatura			Verifiche tensionali		
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]
-	-167.43	100	70	1	5 \(\phi \) 18 (12.72)	6.1	11.22	-4.67	219.22
				2	5 ¢ 14 (7.70)	64.1	(dal bordo infe		

Verifica delle tensioni tangenziali - sezione solo cls

	Sollecitazioni			Í		
L	T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm ²]> T/ σ
	148.56	100.0	63.9	0.26	0.60 (Rck 30)	7.70 > 5.83

POTENZIAMENTO DELLA LINEA RHO-ARONA PROGETTO DEFINITIVO PER APPALTO INTEGRATO

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione	di	calcolo	muri	di	sostegno	sede
ferroviaria						

CODIFICA COMMESSA LOTTO MDL1 12

DOCUMENTO

REV. **FOGLIO**

D 26 XX XX 00 00 000 Х 26 di 155

Verifica a formazione fessure - Sezione: plinto lato monte

Sollecitazioni di verifica

N = 0.00 [KN] M = -167.43 [KNm] sforzo assiale (+ trazione)

momento flettente (+ tende le fibre inferiori)

Materiali

cls Rck = 30.00 [MPa]

 $f_{ctk} = 0.7 \times [0.27 \times (Rck)^{2/3}] =$ 1.82 [MPa] $f_{cfk} = 0.7 \times 1.2 \times [0.27 \times (Rck)^{2/3}] =$ 2.19 [MPa]

resistenza caratteristica a trazione per sforzo normale resistenza caratteristica a trazione per flessione

Caratteristiche geometriche sezione rettangolare (solo cls)

100.00 [cm] B = H = 70.00 [cm]

base altezza 35.00 [cm]

 $y_{G.cls} = H/2 =$ A_{cls} = 7000.0 [cm²] $J_{cls} = 1/12 B H^3 =$

posizione baricentro

2858333.3 [cm⁴] 81666.7 [cm3] $W_{cls} = J_{cls} / (H/2) =$

momento di inerzia modulo resistente ai lembi

Caratteristiche geometriche (I° stadio)

10.00

As [cm²] armatura superiore 1° livello 5 \$ 18 (12.72) 2° livello

3° livello

 $W_{i,i} = J_i / y_i =$

hi_sup [cm] copriferro [cm] 6.1 5.2

As [cm²] armatura inferiore 5 \(\phi \) 14 (7.70) 1° livello 2° livello 3° livello

hi inf [cm] copriferro [cm] 5.9 5.2

 $y_{G_sup} = S_{xi} / A_i =$ 34.80 [cm] A_i = BH+n Σ As = 7204.2 [cm²] $J_i = J_i' - A_i y_{G_sup}^2 =$ 3029492.3 [cm⁴] y_s= y_{G_sup}= 34.80 [cm] $W_{i,s} = J_i / y_s =$ 87053.1 [cm³] $y_i = H - y_{G_sup} =$ 35.20 [cm]

86066.3 [cm3]

posizione baricentro sezione omogeneizzata

area sezione omogeneizzata momento di inerzia sezione omogeneizzata

distanza dal baricentro del lembo superiore - trazione modulo resistente al lembo superiore sezione omogeneizzata - trazione

distanza dal baricentro del lembo inferiore modulo resistente al lembo inferiore sezione omogeneizzata

Trazione nel calcestruzzo

 $\sigma_{c(N)} = N / Ai =$ [MPa] $\sigma_{c(M)} = M / Wt =$ [MPa] [MPa]

< 2.19

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 27 di 155

8.1.3 Plinto lato valle

La zattera di fondazione è armata con \$\phi14/20\$ superiormente e \$\phi18/20\$ inferiormente.

I tassi di lavoro risultano:

Sollecitazioni		Carpenteria			Armatura			Verifiche tension	nali
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]
-	13.25	100	70	1	5 \(\phi \) 14 (7.70)	5.9	11.22	-0.37	17.35
				2	5 \phi 18 (12.72)	63.9	(dal bordo sup	eriore)	

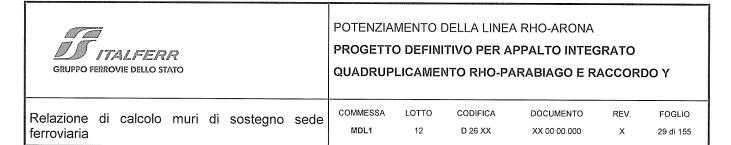
Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni					
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf $[cm^2] > T/\sigma$
51.97	100.0	63.9	0.09	0.60 (Rck 30)	12.72 > 2.04

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 28 di 155


Verifica a formazione fessure - Sezione: PLINTO LATO VALLE

Sollecitazioni di verifica			
N =	0.00	[KN]	sforzo assiale (+ trazione)
M =		[KNm]	momento flettente (+ tende le fibre inferiori)
Wateriali			
cls Rck =	30.00	[MPa]	
$f_{ctk} = 0.7 \times [0.27 \times (Rck)^{2/3}] =$	1.82	[MPa]	resistenza caratteristica a trazione per sforzo normale
$f_{cfk} = 0.7 \times 1.2 \times [0.27 \times (Rck)^{2/3}] =$	2.19	[MPa]	resistenza caratteristica a trazione per flessione
Caratteristiche geometriche sezione re	ttangolare (solo	cls)	
B =	100.00	[cm]	base
H =	70.00		altezza
$y_{G,cls} = H/2 =$	35.00	[cm]	posizione baricentro
A _{cls} =	7000.0		area
$J_{cls} = 1/12 B H^3 =$	2858333.3	[cm⁴]	momento di inerzia
$W_{cls} = J_{cls} / (H/2) =$	81666.7	[cm³]	modulo resistente ai lembi
Caratteristiche geometriche (I° stadio)			
n=	10.00		
	2		
armatura superiore	As [cm ²]	hi_sup [cm]	copriferro [cm]
1° livello 2° livello	5 φ 14 (7.70) –	5.9	5.2
3° livello	_	_	<u>.</u> -
armatura inferiore	As [cm ²]	hi_inf [cm]	copriferro [cm]
1° livello	5 \phi 18 (12.72)	6.1	5.2
2° livello	_	-	-
3° livello	_	-	•
$y_{G_sup} = S_{xi} / A_i =$	35.20	[cm]	posizione baricentro sezione omogeneizzata
$A_i = BH + n\Sigma As =$	7204.2	[cm ²]	area sezione omogeneizzata
$J_i = J_i' - A_i y_{G_{\underline{sup}}}^2 =$	3029492.3	[cm ⁴]	momento di inerzia sezione omogeneizzata
y _s = y _{G_sup} =	35.20	[cm]	distanza dal baricentro del lembo superiore
$W_{i,s} = J_i / y_s =$	86066.3	[cm³]	modulo resistente al lembo superiore sezione omogeneizzata
y _i = H - y _{G_sup} =	34.80	[cm]	distanza dal baricentro del lembo inferiore - trazione
$W_{i,i} = J_i / y_i =$	87053.1		modulo resistente al lembo inferiore sezione omogeneizzata - trazione
7			
Trazione nel calcestruzzo $\sigma_{c(N)} = N / Ai =$		[MPa]	
$o_{c(N)} = N / M =$		[MPa]	

[MPa] [MPa]

< 2.19

 $\sigma_{c(M)} = M / Wt =$

9 B2 – MURO 2.0<H<3.0 M CON PREDISPOSIZIONE FUTURA BARRIERA ANTIRUMORE

<u>Dati geometrici</u>	H tot =3.80 [m]		
muro	altezza muro	3.00	m
	spessore muro superiore	0.50	m
	spessore muro inferiore	0.50	m
	inclinazione muro - lato monte	0.00	0
	inclinazione muro - lato valle	0.00	0
	spessore muro inferiore - lato monte	0.00	m
	spessore muro inferiore - lato valle	0.00	m
platea di fondazione	sbalzo platea - lato valle	0.50	m
	spessore sbalzo platea - lato valle	0.80	m
	spessore sbalzo platea filo muro - lato valle	0.80	m
	sbalzo platea - lato monte	2.60	m
	spessore sbalzo platea - lato monte	0.80	m
	spessore sbalzo platea filo muro - lato monte	0.80	m
	inclinazione magrone sottofondo	0.00	0
	lunghezza platea	3.60	m
terrapieno	inclinazione terrapieno	0.00	0
	lunghezza terrapieno superiore	2.60	m
	lunghezza terrapieno inferiore	2.60	m
	altezza totale terrapieno a monte	3.80	m

POTENZIAMENTO DELLA LINEA RHO-ARONA

PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	Х	30 di 155

Dati geotecnici

terrapieno	angolo di attrito	35.0	0
	angolo di attrito muro-terrapieno	0.6	0
	coefficiente di spinta attiva - formula generale: ka $(\alpha,\delta,\phi,\iota)$	0.27099	
	coesione	0.0	kN/m²
	peso di volume	20.0	kN/m³
terreno di fondazione	angolo di attrito	35.0	o
	coefficiente di attrito f= tan (KTF x AATF)	0.5715	
	fattore di riduzione angolo di attrito	0.9	
	coesione	0.0	kN/m ²
	peso di volume	19.00	MPa
	tensione ammissibile sul terreno (calcolo reazioni terreno)	0.15	MPa

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 31 di 155

Dati di carico

azione sismica	grado di sismicità (categoria zona sismica: I, II, III)	2	(2-6-9-12)
	coefficiente di intensità sismica	0.00	
	angolo di attrito muro-terrapieno in fase di sisma	0.0	0
	coefficiente di spinta attiva in presenza di sisma = A x KAS*	-	
	coefficiente di incremento di spinta attiva in presenza di sisma = KAS-KA	-	
calcestruzzo	peso di volume	25.00	kN/m³
sovraccarico	Sovraccarico a monte in sommità del muro	54.40	kN/m²
uniforme	Percentuale sovraccarico su platea	100.00	(0-100 %)
	Sovraccarico a valle	0.00	kN/m²
	Percentuale sovraccarico su platea	100.00	(0-100 %)
falda	livello acqua falda da intradosso platea	0.00	m
	peso di volume	10.00	kN/m³
	pressione idrostatica a monte	0	(1= si; 0= no)
	sottospinta idraulica sotto platea di fondazione	0	(1= si; 0= no)
carichi applicati	Sovraccarico aggiuntivo laterale - lato monte	0.00	kN/m²
- uniforme	distanza di applicazione da filo posteriore platea di fondazione (+ verso monte)	0.00	m
	distanza di applicazione da intradosso platea di fondazione (+ verso alto)	2.40	m
	angolo di diffusione nel terreno	35.00	•
- forze concentrate	forza verticale (+ verso l'alto)	-8.00	kN/m
	braccio orizzontale x forza verticale (+ verso monte)	0.25	m
	forza orizzontale (+ verso valle)	10.00	kN/m
	braccio verticale x forza orizzontale (+ verso l'alto)	0.00	m
	,,	0.00	•••
	coppia (+ oraria)	20.00	kNm/m

POTENZIAMENTO DELLA LINEA RHO-ARONA PROGETTO DEFINITIVO PER APPALTO INTEGRATO

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	Х	32 di 155

Sollecitazioni su paramento muro riferite al baricentro della sezione

sezione	z (m)	s _M (z) (m)	Xo (m)	σ _v kN/m²	σ _h kN/m²	u kN/m²	N kN/m	T kN/m	M kNm/m
10 9	3.00 2.70	0.50 0.50	-0.75 -0.75	-54.40 -60.40	14.74 16.37	0.00 0.00	-8.00 -11.75	10.00 14.67	20.00 23.69
8	2.40	0.50	-0.75	-66.40	17.99	0.00	-15.50	19.82	28.85
7	2.10	0.50	-0.75	-72.40	19.62	0.00	-19.25	25.46	35.63
6	1.80	0.50	-0.75	-78.40	21.25	0.00	-23.00	31.59	44.18
5	1.50	0.50	-0.75	-84.40	22.87	0.00	-26.75	38.21	54.63
4	1.20	0.50	-0.75	-90.40	24.50	0.00	-30.50	45.32	67.15
3	0.90	0.50	-0.75	-96.40	26.12	0.00	-34.25	52.91	81.87
2	0.60	0.50	-0.75	-102.40	27.75	0.00	-38.00	60.99	98.94
1	0.30	0.50	-0.75	-108.40	29.38	0.00	-41.75	69.56	118.51
0	0.00	0.50	-0.75	-114.40	31.00	0.00	-45.50	78.61	140.73

LEGENDA:

 $s_M(z)$ = spessore sezione muro

z = quota sezione da estradosso platea lato monte (+ verso l'alto)

Xo= distanza baricentro sezione da spigolo inferiore sbalzo platea lato valle (s.d.r.)

 σ_v = tensione verticale dietro al muro (+ verso l'alto)

 σ_h = tensione orizzontale dietro al muro (+ verso valle)

u= pressione idrostatica dietro al muro

N= sforzo normale (-: compressioni)

T= sforzo di taglio (+: verso valle)

M= momento flettente (+: tese le fibre lato monte)

Riepilogo delle sollec. riferite al baricentro della platea di fondaz. - lato intrad. (comb.: 2)

azione orizzontale $F_x = 105.15 \text{ kN/m}$ azione verticale $F_z = -273.50 \text{ kN/m}$ momento flettente $M_{p,G} = 183.78 \text{ kNm/m}$

Riepilogo delle sollec. riferite al baricentro della platea di fondaz. - lato intrad. (comb.: 3)

azione orizzontale $F_x = 105.15 \text{ kN/m}$ azione verticale $F_z = -414.94 \text{ kN/m}$ momento flettente $M_{p,G} = 113.06 \text{ kNm/m}$

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	х	33 di 155

Sollecitazioni s	su platea	di fondaz	zione	combo 2								
sezione	X (m)	DX (m)	qz,inf kN/m²	u,inf kN/m²	qz,sup kN/m²	V,inf kN/m	V,sup kN/m	M,inf kNm/m	M,sup kNm/m	V,tot kN/m	M,tot kNm/m	spessore (m)
sez 0 - (valle)	0.00	0.00	161.64	0.00	-20.00	0.00	0.00	0.00	0.00	0.00	0.00	0.80
sez 1 - (valle)	-0.13	0.13	155.66	0.00	-20.00	19.83	-2.50	1.25	-0.16	17.33	1.09	0.80
sez 2 - (valle)	-0.25	0.25	149.69	0.00	-20.00	38.92	-5.00	4.93	-0.63	33.92	4.30	0.80
sez 3 - (valle)	-0.38	0.38	143.72	0.00	-20.00	57.25	-7.50	10.95	-1.41	49.75	9.54	0.80
sez 4 - (valle)	-0.50	0.50	137.75	0.00	-20.00	74.85	-10.00	19.21	-2.50	64.85	16.71	0.80
	*******				parame	nto mur	0					
sez 5 - (monte)	-1.00	2.60	113.87	0.00	-134.40	154.34	-349.44	166.20	-454.27	-195.10	-288.08	0.80
sez 6 - (monte)	-1.52	2.08	89.04	0.00	-134.40	101.58	-279.55	100.22	-290.73	-177.97	-190.52	0.80
sez 7 - (monte)	-2.04	1.56	64.20	0.00	-134.40	61.74	-209.66	58.31	-163.54	-147.92	-105.23	0.80
sez 8 - (monte)	-2.56	1.04	39.36	0.00	-134.40	34.82	-139.78	33.76	-72.68	-104.96	-38.92	0.80
sez 9 - (monte)	-3.08	0.52	14.53	0.00	-134.40	20.80	-69.89	19.86	-18.17	-49.08	1.69	0.80
sez 10 - (monte)	-3.60	0.00	0.00	0.00	-134.40	0.00	0.00	0.00	0.00	0.00	0.00	0.80

LEGENDA:

X= ascissa sezione platea

DX= distanza sezione da lembo estremo

qz,inf= carico distribuito dovuto alla reazione di sottofondo del terreno

u,inf= pressione idrostatica sotto platea di fondazione

qz,sup= carico distribuito verso il basso

V= sforzo di taglio (+: verso l'alto)

M= momento flettente (+: tese le fibre di intradosso platea)

Sollecitazioni s	u platea	di fondaz	zione	<u>combo 3</u>								
sezione	X (m)	DX (m)	qz,inf kN/m⁴	u,inf kN/m²	qz,sup kN/m²	V,inf k N/ m	V,sup kN/m	M,inf kNm/m	M,sup kNm/m	V,tot kN/m	M,tot kNm/m	spessore (m)
sez 0 - (valle)	0.00	0.00	167.60	0.00	-20.00	0.00	0.00	0.00	0.00	0.00	0.00	0.80
sez 1 - (valle)	-0.13	0.13	163.97	0.00	-20.00	20.72	-2.50	1.30	-0.16	18.22	1.14	0.80
sez 2 - (valle)	-0.25	0.25	160.33	0.00	-20.00	40.99	-5.00	5.16	-0.63	35.99	4.54	0.80
sez 3 - (valle)	-0.38	0.38	156.70	0.00	-20.00	60.81	-7.50	11.53	-1.41	53.31	10.12	0.80
sez 4 - (valle)	-0.50	0.50	153.06	0.00	-20.00	80.17	-10.00	20.34	-2.50	70.17	17.84	0.80
					parame	nto mur	0					
sez 5 - (monte)	-1.00	2.60	138.52	0.00	-134.40	261.88	-349.44	297.85	-454.27	-87.56	-156.42	0.80
sez 6 - (monte)	-1.52	2.08	123.40	0.00	-134.40	193.78	-279.55	179.72	-290.73	-85.78	-111.01	0.80
sez 7 - (monte)	-2.04	1.56	108.28	0.00	-134.40	133.54	-209.66	94.96	-163.54	-76.13	-68.58	0.80
sez 8 - (monte)	-2.56	1.04	93.16	0.00	-134.40	81.16	-139.78	39.48	-72.68	-58.61	-33.20	0.80
sez 9 - (monte)	-3.08	0.52	78.04	0.00	-134.40	36.65	-69.89	9.19	-18.17	-33.24	-8.98	0.80
sez 10 - (monte)	-3.60	0.00	62.92	0.00	-134.40	0.00	0.00	0.00	0.00	0.00	0.00	0.80

LEGENDA:

X= ascissa sezione platea

DX= distanza sezione da lembo estremo

qz,inf= carico distribuito dovuto alla reazione di sottofondo del terreno

u,inf= pressione idrostatica sotto platea di fondazione

qz,sup= carico distribuito verso il basso

V= sforzo di taglio (+: verso l'alto)

M= momento flettente (+: tese le fibre di intradosso platea)

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 34 di 155

Verifica a ribaltamento Azioni (comb.:1)				Mstab kNm/m	Mrib kNm/m
Muro + platea di fondazione Terrapieno Spinta terreno a monte				157.73 358.80 0.00	0.00 0.00 49.57
			Σ=	516.53	49.57
Coefficiente di sicurezza	$\eta_r =$	10.42		>= 1.5	
Azioni (comb.:2)				Mstab kNm/m	Mrib kNm/m
Muro + platea di fondazione Terrapieno Spinta terreno a monte Spinta sovraccarico a monte Forze applicate in sommità del n Spinta dell'acqua Sovraccarico a valle Incremento di spinta terreno a m Sovraccarico aggiuntivo laterale Sottospinta idraulica sotto platea	onte in fase - lato monte)		157.73 358.80 0.00 0.00 6.00 0.00 0.00 0.00 0.00	0.00 0.00 49.57 106.44 58.00 0.00 0.00 0.00 0.00
			Σ=	522.53	214.00
Coefficiente di sicurezza	$\eta_r =$	2.44		>= 1.5	

POTENZIAMENTO DELLA LINEA RHO-ARONA

JJ ITALFERR GRUPPO FERROVIE DELLO STATO	PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y								
Relazione di calcolo muri di sostegno sede ferroviaria	COMMESSA MDL1	LOTTO 12		IFICA 6 XX	DOCUMENTO XX 00 00 000	REV.	FOGLIO 35 di 155		
Verifica allo scorrimento		The state of the s							
(verifica alla traslazione magrone terreno - inclinazione p Azioni (comb.:1)	iano di slittan	nento = 0	°)	Fx kN/m	Fz kN/m	Ft k N /m	Fn kN/m		
Muro + platea di fondazione Terrapieno Spinta terreno a monte				0.00 0.00 39.13	-109.50 -156.00 0.00	0.00 0.00 39.13	-109.50 -156.00 0.00		
			Σ=	39.13	-265.50	39.13	-265.50		
Coefficiente di sicurezza $\eta_t =$	3.88			>= 1.3					
Azioni (comb.:2)				Fx kN/m	Fz kN/m	Ft kN/m	Fn kN/m		
Muro + platea di fondazione Terrapieno Spinta terreno a monte Spinta sovraccarico a monte Forze applicate in sommità del muro Spinta dell'acqua Sovraccarico a valle Incremento di spinta terreno a monte in fase di sisma Sovraccarico aggiuntivo laterale - lato monte Sottospinta idraulica sotto platea di fondazione				0.00 0.00 39.13 56.02 10.00 0.00 0.00 0.00 0.00	-109.50 -156.00 0.00 0.00 -8.00 0.00 0.00 0.00 0.00	0.00 0.00 39.13 56.02 10.00 0.00 0.00 0.00 0.00	-109.50 -156.00 0.00 0.00 -8.00 0.00 0.00 0.00 0.00		
			Σ=	105.15	-273.50	105.15	-273.50		

Coefficiente di sicurezza

 $\eta_t =$

1.49

>= 1.3

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 36 di 155

Riepilogo delle sollecitazioni (comb.: 2 e 3)	spessore (m)	N kN/m	T kN/m	M kNm/m
Paramento verticale - sezione di spiccato	0.50	-45.50	78.61	140.73
Riepilogo delle sollecitazioni (comb.: 2)	spessore (m)	N kN/m	T kN/m	M kNm/m
Mensola lato valle - sezione filo paramento verticale	0.80	0.00	64.85	16.71
Mensola lato monte - sezione filo paramento verticale	0.80	0.00	-195.10	-288.08
Riepilogo delle sollecitazioni (comb.: 3)	spessore (m)	N kN/m	T kN/m	M kNm/m
Mensola lato valle - sezione filo paramento verticale	0.80	0.00	70.17	17.84
Mensola lato monte - sezione filo paramento verticale	0.80	0.00	-87.56	-156.42

N (-) : sforzo normale di compressione

M (+) : momento flettente che tende le fibre lato terreno - paramento verticale

: momento flettente che tende le fibre lato intradosso - <u>platea di fondazione</u>

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO CODIFICA MDL1 12 D 26 XX

DOCUMENTO XX 00 00 000 REV. FOGLIO

Х 37 di 155

Muri di sostegno con fondazioni superficiali

Verifica al carico limite dell'insieme fondazione-terreno (Meyerhof)

2.00

Parametri geotecnici terreno di fondazione

KN/m³ γ= 19.00 peso specifico terreno di fondazione φ' =

35.00 angolo di attrito interno φ'= 0.61087 rad

c' = 0.00 KN/m²

20.00 KN/m³ peso specifico terreno di riempimento (laterale)

Caratteristiche geometriche della fondazione

B = 3.60 larghezza della fondazione L= 1.00 lunghezza della fondazione m 0.85 approfondimento della fondazione m

Azioni esterne e pressione applicata

comb. 1

H = 105.15 kΝ azione orizzontale e = M/V = 0.67 eccentricità del carico verticale V (in direzione trasversale --> B) V = 273.50 azione verticale B* = B-2e = 2.26 m < 3 m larghezza ridotta in relazione alla eccentricità del carico verticale

183.78 kNm momento flettente $D/B^* =$ 0.38

121.23 KN/m² $q_{es}^* = V/(B^*L) =$ pressione media di esercizio applicata sull'area ridotta θ = 0.37 rad angolo di inclinazione della risultante misurata dalla verticale

21.03°

Valutazione del carico limite dell'insieme fondazione-terreno e del coefficiente di sicurezza

 $q_{lim} = c' N_c s_c d_c i_c + \gamma_r D N_q s_q d_q i_q + 1/2 B^* \gamma N_\gamma s_\gamma d_\gamma i_\gamma$ $q_{lim} = 0.00 + 356.47 + 136.05 = 492.52 \text{ KN/m}^2$ KN/m² q*_{es}= 121.23

 $F = q_{lim} / q_{es}^* = 492.52/121.23 = 4.06 > 2.00$

POTENZIAMENTO DELLA LINEA RHO-ARONA PROGETTO DEFINITIVO PER APPALTO INTEGRATO

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO CODIFICA

MDL1 12 D 26 XX

DOCUMENTO XX 00 00 000 REV. FOGLIO
X 38 di 155

Muri di sostegno con fondazioni superficiali

Verifica al carico limite dell'insieme fondazione-terreno (Meyerhof)

F = 2.00

Parametri geotecnici terreno di fondazione

19.00 KN/m³ peso specifico terreno di fondazione

 ϕ' = 35.00 ° angolo di attrito interno ϕ' = 0.61087 rad

c' = 0.00 KN/m² coesione

 γ_r = 20.00 KN/m³ peso specifico terreno di riempimento (laterale)

Caratteristiche geometriche della fondazione

B = 3.60 m larghezza della fondazione L = 1.00 m lunghezza della fondazione D = 0.85 m approfondimento della fondazione

Azioni esterne e pressione applicata

comb. 2

 H =
 105.15
 kN
 azione orizzontale

 V =
 414.94
 kN
 azione verticale

e = M/V = 0.27 B* = B-2e = 3.06 m < 3 m

0.27 eccentricità del carico verticale V (in direzione trasversale --> B)
3.06 m < 3 m larghezza ridotta in relazione alla eccentricità del carico verticale

M = 113.06 kNm momento flettente

 $D/B^* = 0.28$ $q^*_{es} = V/(B^*L) = 135.82 \text{ KN/m}^2$

pressione media di esercizio applicata sull'area ridotta angolo di inclinazione della risultante misurata dalla verticale

 $\theta = 0.25 \text{ rad}$ $\theta = 14.22 ^{\circ}$

Valutazione del carico limite dell'insieme fondazione-terreno e del coefficiente di sicurezza

 $\begin{aligned} q_{lim} &= c' \ N_c \ s_c \ d_c \ i_c + \gamma_r \ D \ N_q \ s_q \ d_q \ i_q + 1/2 \ B^* \ \gamma \ N_\gamma \ s_\gamma \ d_\gamma \ i_\gamma \\ q_{lim} &= 0.00 + 422.75 + 400.40 = 823.15 \ KN/m^2 \end{aligned}$

 $q_{es}^* = 135.82$ KN/m²

 $F = q_{lim} / q_{es}^* = 823.15/135.82 = 6.06 > 2.00$

Le verifiche risultano soddisfatte.

9.1 Verifiche strutturali

9.1.1 Muro frontale

Le massime sollecitazioni agenti nella sezione di spiccato del muro frontale sono:

M = 140.73 kNm

T = 78.61 kN

N = -45.50 kN

La sezione è armata con ϕ 20/20 lato interno e ϕ 12/20 lato esterno. Vengono riportate le verifiche tensionali e di fessurazione.

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 39 di 155

Sollecitazioni		Carpenteria			Armatura			Verifiche tensio	nali
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]
-45.50	140.73	100	60	1	5 φ 12 (5.65)	5.8	12.11	-4.80	165.25
				2	5 ¢ 20 (15.71)	53.8	(dal bordo su	periore)	

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni			Verifiche tensiona	ali	
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	$A*I,inf [cm^2] > T/\sigma$
78.61	100.0	53.8	0.16	0.67 (Rck 35)	15.71 > 3.08

Relazione di calcolo muri di sostegno sede ferroviaria

LOTTO CODIFICA COMMESSA DOCUMENTO MDL1 12 D 26 XX XX 00 00 000

FOGLIO 40 di 155

REV.

Х

Verifica a formazione fessure - Sezione: Spiccato muro frontale

Solle	citaz	ioni	di	verifica

N = -45.50 [KN] sforzo assiale (+ trazione) M = 140.73 [KNm] momento flettente (+ tende le fibre inferiori)

Materiali

cls Rck = 35.00 [MPa] $f_{ctk} = 0.7 \times [0.27 \times (Rck)^{2/3}] =$ 2.02 [MPa] resistenza caratteristica a trazione per sforzo normale $f_{cfk} = 0.7 \times 1.2 \times [0.27 \times (Rck)^{2/3}] =$ 2.43 [MPa] resistenza caratteristica a trazione per flessione

hi_sup [cm]

[MPa] [MPa]

Caratteristiche geometriche sezione rettangolare (solo cls)

armatura superiore

σc.tot =

B = 100.00 [cm] base H = 60.00 [cm] altezza y_{G,cls} = H/2 = 30.00 [cm] posizione baricentro 6000.0 [cm²] A_{cls} = area $J_{cls} = 1/12 B H^3 =$ 1800000.0 [cm⁴] momento di inerzia 60000.0 [cm³] modulo resistente ai lembi $W_{cls} = J_{cls} / (H/2)=$

Caratteristiche geometriche (I° stadio)

10.00

As [cm²]

1° livello	5 \phi 12 (5.65)	5.8	5.2	
2° livello	****	-	-	
3° livello		-	-	
armatura inferiore	As [cm ²]	hi_inf [cm]	copriferro [cm]	
1° livello	5 \phi 20 (15.71)	6.2	5.2	
2° livello	-	-	•	
3° livello	***	-	-	
$y_{G_sup} = S_{xi} / A_i =$	30.38	[cm]	posizione baricentro sezione omogeneizzata	
A _i = BH+n∑ As =	6213.6	[cm ²]	area sezione omogeneizzata	
$J_i = J_i' - A_i y_{G_sup}^2 =$	1921189.4	[cm ⁴]	momento di inerzia sezione omogeneizzata	
y _s = y _{G_sup} =	30.38	[cm]	distanza dal baricentro del lembo superiore	
$W_{i,s} = J_i / y_s =$	63235.7	[cm ³]	modulo resistente al lembo superiore sezione omogeneizzata	
y _i = H - y _{G_sup} =	29.62	[cm]	distanza dal baricentro del lembo inferiore - trazione	
$W_{i,i} = J_i / y_i =$	64864.3	[cm ³]	modulo resistente al lembo inferiore sezione omogeneizzata - trazione	
Trazione nel calcestruzzo				
$\sigma_{c(N)} = N / Ai =$		[MPa]		
$\sigma_{c(M)} = M / Wt =$		[MPa]		
O c(M) = 101 / VVI -		[, a]		

< 2.43

copriferro [cm]

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	Х	41 di 155

9.1.2 Plinto lato monte

La zattera di fondazione è armata con $\phi 16/10$ superiormente e $\phi 16/20$ inferiormente.

I tassi di lavoro risultano:

Sollecitazioni		Carpenteria			Armatura			Verifiche tension	nali
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]
-	-288.08	100	80	1	10 φ 16 (20.11)	6	17.50	-4.34	210.24
				2	5 \$ 16 (10.05)	74	(dal bordo infe	riore)	

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni			Verifiche tension	ali	
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm ²]> T/ σ
195.10	100.0	74.0	0.29	0.60 (Rck 30)	10.05 > 7.65

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 0000
 X
 42 di 155

[mm]

[mm]

Sezione di ca	alcestruzzo [R]	Sezione interamente	reagente [I° stadio]	Armatura ordinaria			
dim. B [cm] x	H [cm]= 100 x 80			armatura - check	Asv1		
A tot cls $[cm^2]$ =	8000.00	A,1° [cm²] =	8452.39	As tot [cm²] =	30.16		
J tot cls [cm ⁴] =	4266666.67	J,1° [cm⁴] =	4786518.74	μ _{.tot} [%] =	0.38		
y_inf [cm] =	40.00	y_inf,I* [cm] =	40.61	n° livelli di armatura=	2		
y_sup [cm] =	40.00	y_sup,i° [cm] =	39.39	livello	As [cm²]	hi_sup [cm]	
W_inf [cm³] =	106666.67	W_inf,I° [cm³] =	117875.44	1	10 ¢ 16 (20.11)	6	
W_sup [cm³] =	106666.67	W_sup,l° [cm³] ≃	121505.55	2	5 ¢ 16 (10.05)	74	
					_		
					_		
					_		
					_		

Calcolo della distanza media tra le fessure

$s_{rm} = 2 (c+s/10) + k_2 k_3 \phi / \rho_r =$	16.37 [cm]
φ = diametro della barra	1.6 [cm]
c = ricoprimento dell'armatura	4.0 [cm]
s = distanza tra le barre; se s > 14 ϕ si adotterà s= 14 ϕ	10.0 [cm]
k ₂ = coefficiente di aderenza del cls alla barra	0.4
k ₃ = coefficiente di forma del diagramma delle tensioni	0.125
$\rho_r = A_s/A_{c eff}$	0.01256637
A _s = area della sezione di acciaio nell'area A _{c eff}	20.11 [cm²]
$A_{ceff} = b_{eff} d_{eff}$	1600.00 [cm ²]
b _ # = B	100 0 [cm]

 $\begin{array}{lll} A_s = \text{area della sezione di acciaio nell'area } A_{c\,\,\text{eff}} & 20.11\,\,\text{[cm^2]} \\ A_{c\,\,\text{eff}} = b_{eff}\,\,d_{eff} & 1600.00\,\,\text{[cm]} \\ b_{\,\,\text{eff}} = B & 100.0\,\,\text{[cm]} \\ d\,\,\text{eff} = & 16.0\,\,\text{[cm]} \\ d\,\,\text{eff} = c + s' + 7.5 \phi & 16.0\,\,\text{[cm]} \end{array}$

d eff < (H-xI)/2= 19.70 cm; xI= 40.61 cm s' = interasse verticale tra le file di barre= 0.0 cm

Calcolo della deformazione unitaria media dell'armatura

$\varepsilon_{sm} = \sigma_s / E_s \left[1 - \beta_1 \beta_2 \left(\sigma_{sr} / \sigma_s \right)^2 \right] \qquad (>= 0.4 \sigma_s / E_s)$	0.00040823	$0.4 \sigma_s / E_s =$	0.00040823
E _s = modulo di elasticità normale	206000 [MPa]		
$\sigma_{\rm s}$ = tensione nell'acciaio nella sezione fessurata	210.24 [MPa]		
σ_{sr} = tensione nell'acciaio nella sezione fessurata per la sollecitazione	276.58 [MPa]		
di fessurazione (M _{fess,} N _{fess})			
Nfess= N	0.00 [kN]		
Mfess = -[fcm]W_sup,I°	-378.98 [kNm]		
fcm= fcfm = resistenza a trazione media per flessione	3.12 [MPa]	cls Rck [MPa] =	30
fci= trazione iniziale nel cls	0.00 [MPa]		
β_1 = coefficiente aderenza acciaio cls	1.0		
β_2 = coefficiente di sollecitazione	0.5		

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	Х	43 di 155

9.1.3 Plinto lato valle

La zattera di fondazione è armata con $\phi 16/10$ superiormente e $\phi 16/20$ inferiormente.

I tassi di lavoro risultano:

Sollec	itazioni	Carpenteria			Armatura			Verifiche tensior	nali
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _ε [MPa]	σ _s [MPa]
	17.84	100	80	1	5 ¢ 16 (10.05)	6	17.50	-0.27	13.02
				2	10 \(\phi\) 16 (20.11)	74	(dal bordo sup	eriore)	

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni					
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm ²]> T/ σ
70.17	100.0	74.0	0.11	0.60 (Rck 30)	20.11 > 2.75

Sollecitazioni di verifica

POTENZIAMENTO DELLA LINEA RHO-ARONA PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	X	44 di 155

Verifica a formazione fessure - Sezione: PLINTO VALLE

	N =	0.00 [KN]	sforzo assiale (+ trazione)
	M =	17.84 [KNm]	momento flettente (+ tende le fibre inferiori)
Materiali			

Caratteristiche geometriche sezione rettangolare (solo cls)

B =	100.00 [cm]	base
H =	80.00 [cm]	altezza
$y_{G,cls} = H/2 =$	40.00 [cm]	posizione baricentro
A _{cls} =	8000.0 [cm²]	area
$J_{cls} = 1/12 B H^3 =$	4266666.7 [cm ⁴]	momento di inerzia
$W_{cls} = J_{cls} / (H/2) =$	106666,7 [cm³]	modulo resistente ai lembi

Caratteristiche geometriche (I° stadio)

15.00

armatura superiore	As [cm ²]	hi_sup [cm]	copriferro [cm]
1° livello	5 \(\phi \) 16 (10.05)	6.0	5.2
2° livello	-	-	-
3° livello	-	-	-
armatura inferiore	As [cm ²]	hi_inf [cm]	copriferro [cm]
1° livello	10 \(\phi \) 16 (20.11)	6.0	5.2
2° livello	_	-	•
3° livello	_	-	-
$y_{G_sup} = S_{xi} / A_i =$	40.61	[cm]	posizione baricentro sezione omogeneizzata
A_i = BH+n Σ As =	8452.4	[cm ²]	area sezione omogeneizzata
$J_i = J_i' - A_i y_{G_sup}^2 =$	4786518.7	[cm ⁴]	momento di inerzia sezione omogeneizzata
y _s = y _{G_sup} =	40.61	[cm]	distanza dal baricentro del lembo superiore
$W_{i,s} = J_i / y_s =$	117875.4	[cm ³]	modulo resistente al lembo superiore sezione omogeneizzata
y _i = H - y _{G_sup} =	39.39	[cm]	distanza dal baricentro del lembo inferiore - trazione
$W_{i,i} = J_i / y_i =$	121505.5	[cm³]	modulo resistente al lembo inferiore sezione omogeneizzata - trazione
estruzzo			

Trazione nel calcestruzzo

$\sigma_{c(N)} = N/Ai =$	0.00 [MPa]	
$\sigma_{c(M)} = M / Wt =$	0.15 [MPa]	
$\sigma_{c,tot} =$	0.15 [MPa]	< 2.19

Le verifiche risultano soddisfatte.

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 45 di 155

10 A2 – MURO 3.0<H≤4.0 M CON PREDISPOSIZIONE BARRIERA ANTIRUMORE

10.1 VERIFICA STATICA

<u>Dati geometrici</u>	H tot =4.80 [m]		
muro	altezza muro	4.00	m
	spessore muro superiore	0.55	m
	spessore muro inferiore	0.55	m
	inclinazione muro - lato monte	0.00	0
	inclinazione muro - lato valle	0.00	0
	spessore muro inferiore - lato monte	0.00	m
	spessore muro inferiore - lato valle	0.00	m
platea di fondazione	sbalzo platea - lato valle	0.50	m
	spessore sbalzo platea - lato valle	0.80	m
	spessore sbalzo platea filo muro - lato valle	0.80	m
	sbalzo platea - lato monte	2.95	m
	spessore sbalzo platea - lato monte	0.80	m
	spessore sbalzo platea filo muro - lato monte	0.80	m
	inclinazione magrone sottofondo	0.00	٥
	lunghezza platea	4.00	m
terrapieno	inclinazione terrapieno	0.00	٥
τοπαριοπο	lunghezza terrapieno superiore	2.95	m
	lunghezza terrapieno inferiore	2.95	m
	altezza totale terrapieno a monte	4.80	m

POTENZIAMENTO DELLA LINEA RHO-ARONA PROGETTO DEFINITIVO PER APPALTO INTEGRATO

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 46 di 155

Dati geotecnici

terrapieno	angolo di attrito	35.0	0
	angolo di attrito muro-terrapieno	0.6	0
	coefficiente di spinta attiva - formula generale: $ka(\alpha,\delta,\phi,\iota)$	0.27099	
	coesione	0.0	kN/m²
	peso di volume	20.0	kN/m³
terreno di fondazione	angolo di attrito	35.0	0
	coefficiente di attrito f= tan (KTF x AATF)	0.5715	
	fattore di riduzione angolo di attrito	0.9	
	coesione	0.0	kN/m²
	peso di volume	19.00	MPa
	tensione ammissibile sul terreno (calcolo reazioni terreno)	0.15	MPa

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 47 di 155

Dati di carico

azione sismica	grado di sismicità (categoria zona sismica: I, II, III)	2	(2-6-9-12)
	coefficiente di intensità sismica	0.00	
	angolo di attrito muro-terrapieno in fase di sisma	0.0	o
	coefficiente di spinta attiva in presenza di sisma = A x KAS*	-	
	coefficiente di incremento di spinta attiva in presenza di sisma = KAS-KA	-	
calcestruzzo	peso di volume	25.00	kN/m³
sovraccarico	Sovraccarico a monte in sommità del muro	54.40	kN/m²
uniforme	Percentuale sovraccarico su platea	100.00	(0-100 %)
	Sovraccarico a valle	0.00	kN/m²
	Percentuale sovraccarico su platea	100.00	(0-100 %)
falda	livello acqua falda da intradosso platea	0.00	m
	peso di volume	10.00	kN/m³
	pressione idrostatica a monte	0	(1= si; 0= no)
	sottospinta idraulica sotto platea di fondazione	0	(1= si; 0= no)
carichi applicati	Sovraccarico aggiuntivo laterale - lato monte	0.00	kN/m²
- uniforme	distanza di applicazione da filo posteriore platea di fondazione (+ verso monte)	0.00	m
	distanza di applicazione da intradosso platea di fondazione (+ verso alto)	2.40	m
	angolo di diffusione nel terreno	35.00	0
- forze concentrate	forza verticale (+ verso l'alto)	-8.00	kN/m
	braccio orizzontale x forza verticale (+ verso monte)	0.28	m
	forza orizzontale (+ verso valle)	10.00	kN/m
	braccio verticale x forza orizzontale (+ verso l'alto)	0.00	m
	•		
	coppia (+ oraria)	22.00	kNm/m

POTENZIAMENTO DELLA LINEA RHO-ARONA

PROGETTO DEFINITIVO PER APPALTO INTEGRATO

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

FOGLIO

48 di 155

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.
MDL1	12	D 26 XX	XX 00 00 000	Х

Sollecitazioni su paramento muro riferite al baricentro della sezione

sezione	z	s _M (z)	Xo	σ _v	σ _h	u	N	T	M
	(m)	(m)	(m)	kN/m²	kN/m²	kN/m²	kN/m	kN/m	kNm/m
10	4.00	0.55	-0.78	-54.40	14.74	0.00	-8.00	10.00	22.00
9	3.60	0.55	-0.78	-62.40	16.91	0.00	-13.50	16.33	27.24
8	3.20	0.55	-0.78	-70.40	19.08	0.00	-19.00	23.53	35.18
7 6	2.80	0.55 0.55	-0.78 -0.78	-78.40 -86.40	21.25 23.41	0.00	-24.50 -30.00	31.59 40.52	46.18 60.57
5	2.00	0.55	-0.78	-94.40	25.58	0.00	-35.50	50.32	78.71
4	1.60	0.55	-0.78	-102.40	27.75	0.00	-41.00	60.99	100.94
3	1.20	0.55	-0.78	-110.40	29.92	0.00	-46.50	72.52	127.62
2	0.80	0.55	-0.78	-118.40	32.09	0.00	-52.00	84.92	159.08
1	0.40	0.55	-0.78	-126.40	34.25	0.00	-57.50	98.19	195.67
0	0.00	0.55	-0.78	-134.40	36.42	0.00	-63.00	112.33	237.75

LEGENDA:

 $s_M(z)$ = spessore sezione muro

z = quota sezione da estradosso platea lato monte (+ verso l'alto)

Xo= distanza baricentro sezione da spigolo inferiore sbalzo platea lato valle (s.d.r.)

 σ_v = tensione verticale dietro al muro (+ verso l'alto)

 σ_h = tensione orizzontale dietro al muro (+ verso valle)

u= pressione idrostatica dietro al muro

N= sforzo normale (-: compressioni)

T= sforzo di taglio (+: verso valle)

M= momento flettente (+: tese le fibre lato monte)

Riepilogo delle sollec. riferite al baricentro della platea di fondaz. - lato intrad. (comb.: 2)

azione orizzontale 143.20 kN/m azione verticale $F_z =$ -379.00 kN/m momento flettente $M_{p,G} =$ 293.00 kNm/m

Riepilogo delle sollec. riferite al baricentro della platea di fondaz. - lato intrad. (comb.: 3)

azione orizzontale $F_x =$ 143.20 kN/m azione verticale $F_z =$ -539.48 kN/m momento flettente $M_{p,G} =$ 208.75 kNm/m

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 49 di 155

Sollecitazioni s	u platea	di fondaz	zione	combo 2								
sezione	X (m)	DX (m)	qz,inf kN/m²	u,inf kN/m²	qz,sup kN/m²	V,inf kN/m	V,sup kN/m	M,inf kNm/m	M,sup kNm/m	V,tot kN/m	M,tot kNm/m	spessore (m)
sez 0 - (valle)	0.00	0.00	205.94	0.00	-20.00	0.00	0.00	0.00	0.00	0.00	0.00	0.80
sez 1 - (valle)	-0.13	0.13	198.94	0.00	-20.00	25.30	-2.50	1.59	-0.16	22.80	1.43	0.80
sez 2 - (valle)	-0.25	0.25	191.95	0.00	-20.00	49.74	-5.00	6.29	-0.63	44.74	5.66	0.80
sez 3 - (valle)	-0.38	0.38	184.96	0.00	-20.00	73.29	-7.50	13.99	-1.41	65.79	12.58	0.80
sez 4 - (valle)	-0.50	0.50	177.96	0.00	-20.00	95.97	-10.00	24.58	-2.50	85.97	22.08	0.80
					parame	nto mur	0					
sez 5 - (monte)	-1.05	2.95	147.19	0.00	-154.40	214.97	-455.48	244.12	-671.83	-240.51	-427.71	0.80
sez 6 - (monte)	-1.64	2.36	114.18	0.00	-154.40	137.86	-364.38	140.99	-429.97	-226.52	-288.98	0.80
sez 7 - (monte)	-2.23	1.77	81.17	0.00	-154.40	80.24	-273.29	77.61	-241.86	-193.05	-164.25	0.80
sez 8 - (monte)	-2.82	1.18	48.16	0.00	-154.40	42.09	-182.19	42.48	-107.49	-140.11	-65.01	0.80
sez 9 - (monte)	-3.41	0.59	15.15	0.00	-154.40	23.41	-91.10	24.12	-26.87	-67.69	-2.76	0.80
sez 10 - (monte)	-4.00	0.00	0.00	0.00	-154.40	0.00	0.00	0.00	0.00	0.00	0.00	0.80

LEGENDA:

X= ascissa sezione platea

DX= distanza sezione da lembo estremo

qz,inf= carico distribuito dovuto alla reazione di sottofondo del terreno

u,inf= pressione idrostatica sotto platea di fondazione

qz,sup= carico distribuito verso il basso

V= sforzo di taglio (+: verso l'alto)

M= momento flettente (+: tese le fibre di intradosso platea)

Sollecitazioni s	su platea	di fondaz	zione	combo 3								
sezione	X (m)	DX (m)	qz,inf kN/m²	u,inf kN/m²	qz,sup kN/m²	V,inf kN/m	V,sup kN/m	M,inf kNm/m	M,sup kNm/m	V,tot k N /m	M,tot kNm/m	spessore (m)
sez 0 - (valle)	0.00	0.00	213,15	0.00	-20.00	0.00	0.00	0.00	0.00	0.00	0.00	0.80
sez 1 - (valle)	-0.13	0.13	208.26	0.00	-20.00	26.34	-2.50	1.65	-0.16	23.84	1.50	0.80
sez 2 - (valle)	-0.25	0.25	203.37	0.00	-20.00	52.06	-5.00	6.56	-0.63	47.06	5.93	0.80
sez 3 - (valle)	-0.38	0.38	198.47	0.00	-20.00	77.18	-7.50	14.64	-1.41	69.68	13.24	0.80
sez 4 - (valle)	-0.50	0.50	193.58	0.00	-20.00	101.68	-10.00	25.83	-2.50	91.68	23.33	0.80
	***				parame	nto mur	0					
sez 5 - (monte)	-1.05	2.95	172.05	0.00	-154.40	337.25	-455.48	413.71	-671.83	-118.23	-258.13	0.80
sez 6 - (monte)	-1.64	2.36	148.96	0.00	-154.40	242.55	-364.38	243.34	-429.97	-121.83	-186.64	0.80
sez 7 - (monte)	-2.23	1.77	125.87	0.00	-154.40	161.48	-273.29	124.82	-241.86	-111.81	-117.04	0.80
sez 8 - (monte)	-2.82	1.18	102.78	0.00	-154.40	94.03	-182.19	50.12	-107.49	-88.17	-57.38	0.80
sez 9 - (monte)	-3.41	0.59	79.68	0.00	-154.40	40.20	-91.10	11.19	-26.87	-50.90	-15.68	0.80
sez 10 - (monte)	-4.00	0.00	56.59	0.00	-154.40	0.00	0.00	0.00	0.00	0.00	0.00	0.80

LEGENDA:

X= ascissa sezione platea

DX= distanza sezione da lembo estremo

qz,inf= carico distribuito dovuto alla reazione di sottofondo del terreno

u,inf= pressione idrostatica sotto platea di fondazione

qz,sup= carico distribuito verso il basso

V= sforzo di taglio (+: verso l'alto)

M= momento flettente (+: tese le fibre di intradosso platea)

Relazione	di	calcolo	muri	di	sostegno	sede	l
ferroviaria							ı

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	X	50 di 155

		augustiinin kaleinin ka		
			Mstab kNm/m	Mrib kNm/m
			202.63 595.90	0.00
			0.00	99.90
		Σ=	798.53	99.90
η _r =	7.99		>= 1.5	
			Mstab	Mrib
			kNm/m	kNm/m
			202.63	0.00
			595.90	0.00
				99.90
				169.83
muro				70.00
				0.00
				0.00
nonte in fase	di sisma		0.00	0.00
- lato monte			0.00	0.00
a di fondazior	ne		0.00	0.00
		Σ=	804.73	339.72
$\eta_r =$	2.37		>= 1.5	
	e - lato monte a di fondazior	muro nonte in fase di sisma e - lato monte a di fondazione	$\eta_{\rm r}$ = 7.99 muro monte in fase di sisma e - lato monte a di fondazione	kNm/m $ 202.63 \\ 595.90 \\ 0.00 \\ \Sigma = 798.53 $ $ \gamma_r = 7.99 >= 1.5 $ $ Mstab \\ kNm/m \\ 202.63 \\ 595.90 \\ 0.00 \\ 0.$

GRUPPO FERROVIE DELLO STATO)	QUADRUP	LICAMEN	ITO RHO-PAI	RABIAGO E	RACCORI	DO Y	
Relazione di calcolo m	nuri di sostegno sed	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
ferroviaria	idii di sostegilo set	MDL1	12	D 26 XX	XX 00 00 000	Х	51 di 155	
Verifica allo scorrimen	to							
(verifica alla traslazione magre	one terreno - inclinazione	piano di slittam	ento = 0°) Fx	Fz	Ft	Fn	
Azioni (comb.:1)				kN/m	k N /m	kN/m	kN/m	
Muro + platea di fondazione				0.00	-135.00	0.00	-135.00	
Terrapieno				0.00	-236.00	0.00	-236.00	
Spinta terreno a monte				62.44	0.00	62.44	0.00	
				Σ= 62.44	-371.00	62.44	-371.00	
Coefficiente di sicurezza	$\eta_t =$	3.40		>= 1.3				
Aziani (aomb :2)				Fx	Fz	Ft	Fn	
Azioni (comb.:2)				kN/m	kN/m	kN/m	kN/m	
Muro + platea di fondazione				0.00	-135.00	0.00	-135.00	
Terrapieno Spinta terreno a monte				0.00	-236.00	0.00	-236.00	
Spinta sovraccarico a monte				62.44 70.76	0.00 0.00	62.44 70.76	0.00 0.00	
Forze applicate in sommità de	al muro							
Spinta dell'acqua	a muro			10.00 0.00	-8.00 0.00	10.00 0.00	-8.00 0.00	
Sovraccarico a valle				0.00	0.00	0.00	0.00	
Incremento di spinta terreno a	n monte in fase di sisma			0.00	0.00	0.00	0.00	
Sovraccarico aggiuntivo latera				0.00	0.00	0.00	0.00	
Sottospinta idraulica sotto plat				0.00	0.00	0.00	0.00	
				Σ= 143.20	-379.00	143.20	-379.00	
Coefficiente di sicurezza	$\eta_t =$	1.51		>= 1.3				

FOGLIO

52 di 155

Relazione di calcolo muri di sostegno sede ferroviaria

Riepilogo delle sollecitazioni (comb.: 2 e 3)	spessore (m)	N kN/m	T kN/m	M kNm/m
Paramento verticale - sezione di spiccato	0.55	-63.00	112.33	237.75
Riepilogo delle sollecitazioni (comb.: 2)	spessore (m)	N kN/m	T kN/m	M kNm/m
Mensola lato valle - sezione filo paramento verticale	0.80	0.00	85.97	22.08
Mensola lato monte - sezione filo paramento verticale	0.80	0.00	-240.51	-427.71
Riepilogo delle sollecitazioni (comb.: 3)	spessore (m)	N kN/m	T kN/m	M kNm/m
Mensola lato valle - sezione filo paramento verticale	0.80	0.00	91.68	23.33
Mensola lato monte - sezione filo paramento verticale	0.80	0.00	-118.23	-258.13

N (-) : sforzo normale di compressione

M (+) : momento flettente che tende le fibre lato terreno - paramento verticale

: momento flettente che tende le fibre lato intradosso - <u>platea di fondazione</u>

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO CODIFICA 12

DOCUMENTO

REV. FOGLIO

MDL1

D 26 XX

XX 00 00 000

53 di 155

Х

Muri di sostegno con fondazioni superficiali

Verifica al carico limite dell'insieme fondazione-terreno (Meyerhof)

F= 2.00

Parametri geotecnici terreno di fondazione

19.00 KN/m³ peso specifico terreno di fondazione

φ' = 35.00 angolo di attrito interno

φ'= 0.61087 rad

c' = 0.00 KN/m²

KN/m³ 20.00

peso specifico terreno di riempimento (laterale)

Caratteristiche geometriche della fondazione

B = 4.00 larghezza della fondazione

L = 1.00 m lunghezza della fondazione

0.85 approfondimento della fondazione m

Azioni esterne e pressione applicata

comb.

H = 143.20 kΝ azione orizzontale e = M/V = 0.77

eccentricità del carico verticale V (in direzione trasversale --> B) $2.45~\mathrm{m} < 3~\mathrm{m}$ larghezza ridotta in relazione alla eccentricità del carico verticale

V = 379.00 M = 293.00 kNm azione verticale momento flettente

B* = B-2e = D/B* = 0.35 $q_{es}^* = V/(B*L) =$

154.45 KN/m² 0.36 rad

θ= θ= 20.70° pressione media di esercizio applicata sull'area ridotta angolo di inclinazione della risultante misurata dalla verticale

Valutazione del carico limite dell'insieme fondazione-terreno e del coefficiente di sicurezza

 $q_{lim} = c' N_c s_c d_c i_c + \gamma_r D N_q s_q d_q i_q + 1/2 B^* \gamma N_\gamma s_\gamma d_\gamma i_\gamma$ $q_{lim} = 0.00 + 357.95 + 154.24 = 512.19 \text{ KN/m}^2$ KN/m² q*_{es}= 154.45

 $F = q_{lim}/q_{es}^* = 512.19/154.45 = 3.32 > 2.00$

POTENZIAMENTO DELLA LINEA RHO-ARONA

PROGETTO DEFINITIVO PER APPALTO INTEGRATO

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO CODIFICA MDL1 12 D 26 XX

DOCUMENTO XX 00 00 000

FOGLIO 54 di 155

REV.

Х

Muri di sostegno con fondazioni superficiali

Verifica al carico limite dell'insieme fondazione-terreno (Meyerhof)

2.00

Parametri geotecnici terreno di fondazione

19.00 KN/m³ peso specifico terreno di fondazione

δ' = $\phi' = 0.61087 \text{ rad}$ 35.00 angolo di attrito interno

KN/m² C, = 0.00

KN/m³ 20.00 peso specifico terreno di riempimento (laterale)

Caratteristiche geometriche della fondazione

R= 4.00 m larghezza della fondazione L= 1.00 m lunghezza della fondazione 0.85 approfondimento della fondazione

Azioni esterne e pressione applicata

comb.

143.20 H= kN azione orizzontale e = M/V =0.39 eccentricità del carico verticale V (in direzione trasversale --> B) V = 539.48 kΝ azione verticale B* = B-2e =

3.23 m < 3 m larghezza ridotta in relazione alla eccentricità del carico verticale $D/B^* =$ 0.26

208.75 kNm momento flettente $q_{es}^* = V/(B^*L) =$

167.22 KN/m² pressione media di esercizio applicata sull'area ridotta θ= 0.26 rad angolo di inclinazione della risultante misurata dalla verticale θ= 14.87

Valutazione del carico limite dell'insieme fondazione-terreno e del coefficiente di sicurezza

 $q_{lim} = c' N_c s_c d_c i_c + \gamma_r D N_q s_q d_q i_q + 1/2 B^* \gamma N_\gamma s_\gamma d_\gamma i_\gamma$ $q_{lim} = 0.00 + 414.46 + 395.89 = 810.35 \text{ KN/m}^2$ q*_{es}= 167.22 KN/m²

 $F = q_{lim}/q_{es}^* = 810.35/167.22 = 4.85 > 2.00$

Le verifiche risultano soddisfatte.

10.1.1 Verifiche strutturali

10.1.1.1 Muro frontale

Le massime sollecitazioni agenti nella sezione di spiccato del muro frontale sono:

M = 237.75 kNm

T = 112.33 kN

N = -63.00 kN

La sezione è armata con φ18/10 lato interno e φ18/20 lato esterno. Vengono riportate le verifiche tensionali e di fessurazione.

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 55 di 155

Sollec	itazioni	Carpe	enteria	Armatura		Verifiche tensionali			
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]
-63.00	237.75	100	70	1	5 \$ 18 (12.72)	6.1	18.79	-4.16	149.70
				2	10 ¢ 18 (25.45)	63.9	(dal bordo superiore)		

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni			Verifiche tensiona	ali	
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm ²]> T/ σ
112.33	100.0	63.9	0.20	0.67 (Rck 35)	25.45 > 4.41

Relazione di calcolo muri di sostegno sede ferroviaria

LOTTO COMMESSA CODIFICA DOCUMENTO RFV FOGLIO MDL1 12 D 26 XX XX 00 00 000 Х 56 di 155

Verifica a formazione fessure - Sezione: Spiccato muro frontale

Sollecitazioni di verifica

N= -63.00 [KN] sforzo assiale (+ trazione) M = 237.75 [KNm] momento flettente (+ tende le fibre inferiori)

Materiali

35.00 [MPa] cls Rck = $f_{ctk} = 0.7 \times [0.27 \times (Rck)^{2/3}] =$ 2.02 [MPa] resistenza caratteristica a trazione per sforzo normale $f_{cfk} = 0.7 \times 1.2 \times [0.27 \times (Rck)^{2/3}] =$ 2.43 [MPa] resistenza caratteristica a trazione per flessione

Caratteristiche geometriche sezione rettangolare (solo cls)

armatura superiore

1° livello

2° livello

100.00 [cm] base H = 70.00 [cm] altezza $y_{G,cls} = H/2 =$ 35.00 [cm] posizione baricentro A_{cls} = 7000.0 [cm²] $J_{cls} = 1/12 B H^3 =$ 2858333.3 [cm⁴] momento di inerzia 81666.7 [cm3] $W_{cls} = J_{cls} / (H/2) =$ modulo resistente ai lembi

hi_sup [cm]

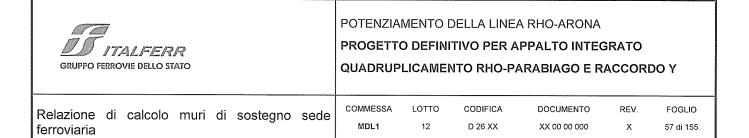
6.1

Caratteristiche geometriche (I° stadio)

15.00 As [cm²]

5 \phi 18 (12.72)

3° livello	-	-	-
<u>armatura inferiore</u> 1° livello 2° livello 3° livello	As [cm ²] 10 \(\phi\) 18 (25.45) - -	hi_inf [cm] 6.1 - -	copriferro [cm] 5.2 - -
$\begin{split} y_{G_sup} &= S_{xi} / A_i = \\ A_i &= BH + n \Sigma As = \\ J_i &= J_i^1 - A_i y_{G_sup}^2 = \\ y_s &= y_{G_sup} = \\ W_{i,s} &= J_i / y_s = \\ y_i &= H - y_{G_sup} = \\ W_{i,i} &= J_i / y_i = \end{split}$	35.73 7572.6 3332519.8 35.73 93273.8 34.27 97238.4	[cm²] [cm²] [cm] [cm³] [cm]	posizione baricentro sezione omogeneizzata area sezione omogeneizzata momento di inerzia sezione omogeneizzata distanza dal baricentro del lembo superiore modulo resistente al lembo superiore sezione omogeneizzata distanza dal baricentro del lembo inferiore - trazione modulo resistente al lembo inferiore sezione omogeneizzata - trazione


copriferro [cm]

5.2

Trazione nel calcestruzzo

-0.08 [MPa] $\sigma_{c(N)} = N / Ai =$ $\sigma_{c(M)} = M / Wt =$ 2.45 [MPa] 2.36 [MPa] $\sigma_{c,tot} =$

< 2.43

10.1.1.2 Plinto lato monte

La zattera di fondazione è armata con $\phi 20/10$ superiormente e $\phi 20/20$ inferiormente.

I tassi di lavoro risultano:

Solled	itazioni	Carpe	enteria	Armatura		Verifiche tensionali			
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]
-	-427.71	100	80	1	10 ¢ 20 (31.42)	6.2	20.77	-5.31	203.27
				2	5 \$ 20 (15.71)	73.8	(dal bordo inferiore)		

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazio	oni			Verifiche tensiona	li	
T [kN]		B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm²]> T/σ
240.51		100.0	73.8	0.36	0.60 (Rck 30)	15.71 > 9.43

POTENZIAMENTO DELLA LINEA RHO-ARONA

PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO CODIFICA

DOCUMENTO

FOGLIO

0.00039470

30

MDL1

12

D 26 XX

XX 00 00 000

58 di 155

REV.

Х

N = M =

0.00 -427.71 [kN] [kNm]

 w_k = 1.7 w_m = $w_m = \epsilon_{sm} s_{rm} =$ 0.149 0.088

[mm] [mm]

Sezione di ca	alcestruzzo [R]	Sezione interamente	reagente [l° stadio]	Α	Armatura ordinaria			
dim. B [cm] x	H [cm]= 100 x 80			armatura - check	Asv1			
A tot cis $[cm^2]$ =	8000.00	$A, I^{\circ} [cm^{2}] =$	8706.86	As tot [cm ²] =	47.12			
J tot cls [cm 4] =	4266666.67	J,1° [cm ⁴] =	5066925.51	μ _{tot} [%] =	0.59			
y_inf [cm] =	40.00	y_inf,I° [cm] =	40.91	n° livelli di armatura=	2			
y_sup [cm] =	40.00	y_sup,l° [cm] =	39.09	livello	As [cm ²]	hi_sup [cm]		
W_inf [cm ³] =	106666.67	W_inf,1° [cm ³] =	123841.28	1	10 ¢ 20 (31.42)	6.2		
W_sup [cm ³] =	106666.67	W_sup,1° [cm 3] =	129637.54	2	5 ¢ 20 (15.71)	73.8		
					_			
					_			
					_			

Calcolo della distanza media tra le fessure

 $s_{rm} = 2 (c+s/10) + k_2 k_3 \phi / \rho_r =$

16.05 [cm]

φ = diametro della barra

2.0 [cm]

c = ricoprimento dell'armatura

4.0 [cm]

s = distanza tra le barre; se s > 14 φ si adotterà s= 14 φ

10.0 [cm]

k₂ = coefficiente di aderenza del cls alla barra

0.4

k₃ = coefficiente di forma del diagramma delle tensioni

0.125

 $\rho_r = A_s/A_{c eff}$ A_s = area della sezione di acciaio nell'area A_{c eff} 0.01653470 31.42 [cm²]

 $A_{c eff} = b_{eff} d_{eff}$

1900.00 [cm²]

100.0 [cm]

 $b_{eff} = B$

d eff =

19.0 [cm]

 $d \, eff = c + s' + 7.5 \phi$

19.0 [cm]

d eff < (H-xI)/2= 19.54 cm; xI= 40.91 cm

s' = interasse verticale tra le file di barre= 0.0 cm

Calcolo della deformazione unitaria media dell'armatura

$\varepsilon_{sm} = \sigma_s / E_s [1 - \beta_1 \beta_2 (\sigma_{sr} / \sigma_s)^2]$ (>= 0.4 σ_s / E_s)	0.00054580	$0.4 \sigma_s / E_s =$
E _s = modulo di elasticità normale	206000 [MPa]	
σ_{s} = tensione nell'acciaio nella sezione fessurata	203.27 [MPa]	
σ_{sr} = tensione nell'acciaio nella sezione fessurata per la sollecitazione	192.17 [MPa]	
di fessurazione (M _{fess,} N _{fess})		
Nfess= N	0.00 [kN]	
Mfess = -[fcm]W_sup,I°	-404.35 [kNm]	
fcm= fcfm = resistenza a trazione media per flessione	3.12 [MPa]	cls Rck [MPa] =
fci= trazione iniziale nel cls	0.00 [MPa]	
β_1 = coefficiente aderenza acciaio cls	1.0	
β_2 = coefficiente di sollecitazione	0.5	

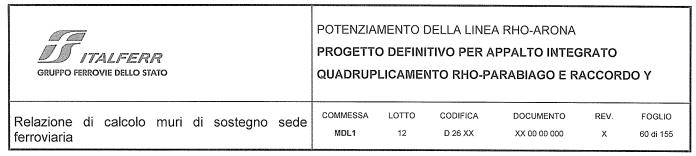
Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO CODIFICA

MDL1 12 D 26 XX

DOCUMENTO XX 00 00 000 REV. FOGLIO X 59 di 155

10.1.1.3 Plinto lato valle


La zattera di fondazione è armata con ϕ 20/20 superiormente e ϕ 20/10 inferiormente.

I tassi di lavoro risultano:

Solled	itazioni	Carpe	enteria	Armatura				Verifiche tension	nali
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]
-	24.18	100	80	1	5 \$\phi\$ 20 (15.71)	6.2	17.09	-0.35	17.63
				2	10 \$ 16 (20.11)	74	(dal bordo superiore)		

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazion	i		li		
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm ²]> T/ σ
94.85	100.0	74.0	0.14	0.60 (Rck 30)	20.11 > 3.72

Verifica a formazione fessure - Sezione: Plinto lato valle

Sollecitazioni di verifica			
N =	0.00	[KN]	sforzo assiale (+ trazione)
M =	24.18		momento flettente (+ tende le fibre inferiori)
Materiali			
Waterian			
cls Rck =	30.00	[MPa]	
$f_{ctk} = 0.7 \times [0.27 \times (Rck)^{2/3}] =$	1.82	[MPa]	resistenza caratteristica a trazione per sforzo normale
$f_{cfk} = 0.7 \times 1.2 \times [0.27 \times (Rck)^{2/3}] =$	2.19	[MPa]	resistenza caratteristica a trazione per flessione
Caratteristiche geometriche sezione re	ttangolare (solo	cls)	
B =	100.00	[cm]	base
H =	80.00	[cm]	altezza
$y_{G,cls} = H/2 =$	40.00	[cm]	posizione baricentro
A _{cls} =	8000.0		area
$J_{cis} = 1/12 B H^3 =$	4266666.7		momento di inerzia
$W_{cis} = J_{cis} / (H/2) =$	106666.7	[cm³]	modulo resistente ai lembi
Caratteristiche geometriche (I° stadio)			
n=	15.00		
armatura superiore	As [cm ²]	hi_sup [cm]	copriferro [cm]
1° livello	5 φ 20 (15.71)	6.2	5.2
2° livello 3° livello	nam .	-	-
3 livelio	-	-	-
armatura inferiore	As [cm ²]	hi inf [cm]	copriferro [cm]
1° livello	10 φ 16 (20.11)	6.0	5.2
2° livello	_	-	•
3° livello	_	-	-
$y_{G sup} = S_{xi} / A_i =$	40.27	[cm]	posizione baricentro sezione omogeneizzata
$A_i = BH + n\Sigma As =$	8537.2		area sezione omogeneizzata
$J_i = J_i' - A_i y_{G sup}^2 =$	4883874.8	-	momento di inerzia sezione omogeneizzata
y _s = y _{G_sup} =	40.27		distanza dal baricentro del lembo superiore
$W_{is} = J_i / y_s =$	121283.5	• •	modulo resistente al lembo superiore sezione omogeneizzata
y _i = H - y _{G sup} =	39.73	-	distanza dal baricentro del lembo inferiore - trazione
$W_{ii} = J_i / \gamma_i =$	122921.3		modulo resistente al lembo inferiore sezione omogeneizzata - trazione
VV _{i,i} - 3 _i / y _i -	122921.3	[Om]	modulo resistente ai lembo interiore sezione omogeneizzata - trazione
Trazione nel calcestruzzo			
$\sigma_{c(N)} = N / Ai =$	0.00	[MPa]	
$\sigma_{c(M)} = M / Wt =$		[MPa]	
$\sigma_{c,tot} =$	0.20	[MPa]	< 2.19

Le verifiche risultano soddisfatte.

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 61 di 155

10.2 VERIFICA SISMICA

<u>Dati geometrici</u>	H tot =4.80 [m]		
muro	altezza muro	4.00	m
	spessore muro superiore	0.55	m
	spessore muro inferiore	0.55	m
	inclinazione muro - lato monte	0.00	٥
	inclinazione muro - lato valle	0.00	0
	spessore muro inferiore - lato monte	0.00	m
	spessore muro inferiore - lato valle	0.00	m
platea di fondazione	sbalzo platea - lato valle	0.50	m
	spessore sbalzo platea - lato valle	0.80	m
	spessore sbalzo platea filo muro - lato valle	0.80	m
	sbalzo platea - lato monte	2.95	m
	spessore sbalzo platea - lato monte	0.80	m
	spessore sbalzo platea filo muro - lato monte	0.80	m
	inclinazione magrone sottofondo	0.00	0
	lunghezza platea	4.00	m
terrapieno	inclinazione terrapieno	0.00	0
	lunghezza terrapieno superiore	2.95	m
	lunghezza terrapieno inferiore	2.95	m
	altezza totale terrapieno a monte	4.80	m

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 62 di 155

Dati geotecnici

terrapieno	angolo di attrito	35.0	٥
	angolo di attrito muro-terrapieno	0.6	0
	coefficiente di spinta attiva - formula generale: $ka(\alpha,\delta,\phi,\iota)$	0.27099	
	coesione	0.0	kN/m²
	peso di volume	20.0	kN/m³
terreno di fondazione	angolo di attrito	35.0	٥
	coefficiente di attrito f= tan (KTF x AATF)	0.5715	
	fattore di riduzione angolo di attrito	0.9	
	coesione	0.0	kN/m²
	peso di volume	19.00	MPa
	tensione ammissibile sul terreno (calcolo reazioni terreno)	0.15	MPa

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 63 di 155

Dati di carico

azione sismica	grado di sismicità (categoria zona sismica: I, II, III)	6	(2-6-9-12)
	coefficiente di intensità sismica	0.04	
	angolo di attrito muro-terrapieno in fase di sisma	0.0	0
	coefficiente di spinta attiva in presenza di sisma = A x KAS*	0.2925	
	coefficiente di incremento di spinta attiva in presenza di sisma = KAS-KA	0.0215	
calcestruzzo	peso di volume	25.00	kN/m³
sovraccarico	Sovraccarico a monte in sommità del muro	34.40	kN/m²
uniforme	Percentuale sovraccarico su platea	100.00	(0-100 %)
	Sovraccarico a valle	0.00	kN/m²
	Percentuale sovraccarico su platea	100.00	(0-100 %)
falda	livello acqua falda da intradosso platea	0.00	m
	peso di volume	10.00	kN/m³
	pressione idrostatica a monte	0	(1= si; 0= no)
	sottospinta idraulica sotto platea di fondazione	0	(1= si; 0= no)
carichi applicati	Sovraccarico aggiuntivo laterale - lato monte	0.00	kN/m²
- uniforme	distanza di applicazione da filo posteriore platea di fondazione (+ verso monte)	0.00	m
	distanza di applicazione da intradosso platea di fondazione (+ verso alto)	2.40	m
	angolo di diffusione nel terreno	35.00	o
- forze concentrate	forza verticale (+ verso l'alto)	0.00	kN/m
	braccio orizzontale x forza verticale (+ verso monte)	0.00	m
	forza orizzontale (+ verso valle)	0.00	kN/m
	braccio verticale x forza orizzontale (+ verso l'alto)	0.00	m
	,,		
	coppia (+ oraria)	0.00	kNm/m

POTENZIAMENTO DELLA LINEA RHO-ARONA

PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 64 di 155

Sollecitazioni su paramento muro riferite al baricentro della sezione

sezione	z (m)	s _M (z) (m)	Xo (m)	σ _v kN/m²	σ _h kN/m²	u kN/m²	N kN/m	T kN/m	M kNm/m
10	4.00	0.55	-0.78	-34.40	12.13	0.00	0.00	0.00	0.00
9	3.60	0.55	-0.78	-42.40	14.13	0.00	-5.50	5.25	1.02
8	3.20	0.55	-0.78	-50.40	16.12	0.00	-11.00	11.30	4.31
7	2.80	0.55	-0.78	-58.40	18.12	0.00	-16.50	18.15	10.17
6	2.40	0.55	-0.78	-66.40	20.11	0.00	-22.00	25.80	18.93
5	2.00	0.55	-0.78	-74.40	22.11	0.00	-27.50	34.24	30.91
4	1.60	0.55	-0.78	-82.40	24.10	0.00	-33.00	43.48	46.43
3	1.20	0.55	-0.78	-90.40	26.10	0.00	-38.50	53.52	65.81
2	0.80	0.55	-0.78	-98.40	28.10	0.00	-44.00	64.36	89.36
1	0.40	0.55	-0.78	-106.40	30.09	0.00	-49.50	76.00	117.40
0	0.00	0.55	-0.78	-114.40	32.09	0.00	-55.00	88.44	150.26

LEGENDA:

 $s_M(z)$ = spessore sezione muro

z = quota sezione da estradosso platea lato monte (+ verso l'alto)

Xo= distanza baricentro sezione da spigolo inferiore sbalzo platea lato valle (s.d.r.)

 σ_v = tensione verticale dietro al muro (+ verso l'alto)

 σ_h = tensione orizzontale dietro al muro (+ verso valle)

u= pressione idrostatica dietro al muro

N= sforzo normale (-: compressioni)

T= sforzo di taglio (+: verso valle)

M= momento flettente (+: tese le fibre lato monte)

Riepilogo delle sollec. riferite al baricentro della platea di fondaz. - lato intrad. (comb.: 2)

azione orizzontale $F_{x} = 130.54 \text{ kN/m}$ azione verticale $F_{z} = -371.00 \text{ kN/m}$ momento flettente $M_{p,G} = 209.05 \text{ kNm/m}$

Riepilogo delle sollec. riferite al baricentro della platea di fondaz. - lato intrad. (comb.: 3)

azione orizzontale	$F_x =$	130.54 kN/m
azione verticale	$F_z =$	-472.48 kN/m
momento flettente	$M_{p,G} =$	155.78 kNm/m

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	Х	65 di 155

Sollecitazioni s	u platea	di fondaz	rione	combo 2								
sezione	X (m)	DX (m)	qz,inf kN/m²	u,inf kN/m²	qz,sup kN/m²	V,inf kN/m	V,sup kN/m	M,inf kNm/m	M,sup kNm/m	V,tot kN/m	M,tot kNm/m	spessore (m)
sez 0 - (valle)	0.00	0.00	171.14	0.00	-20.00	0.00	0.00	0.00	0.00	0.00	0.00	0.80
sez 1 - (valle)	-0.13	0.13	166.25	0.00	-20.00	21.09	-2.50	1.32	-0.16	18.59	1.17	0.80
sez 2 - (valle)	-0.25	0.25	161.35	0.00	-20.00	41.56	-5.00	5.25	-0.63	36.56	4.62	0.80
sez 3 - (valle)	-0.38	0.38	156.45	0.00	-20.00	61.42	-7.50	11.69	-1.41	53.92	10.28	0.80
sez 4 - (valle)	-0.50	0.50	151.55	0.00	-20.00	80.67	-10.00	20.58	-2.50	70.67	18.08	0.80
					parame	nto mur	0	***************************************				
sez 5 - (monte)	-1.05	2.95	129.99	0.00	-134.40	212.91	-396.48	230.18	-584.81	-183.57	-354.63	0.80
sez 6 - (monte)	-1.64	2.36	106.86	0.00	-134.40	143.04	-317.18	125.85	-374.28	-174.15	-248.43	0.80
sez 7 - (monte)	-2.23	1.77	83.73	0.00	-134.40	86.81	-237.89	58.71	-210.53	-151.08	-151.82	0.80
sez 8 - (monte)	-2.82	1.18	60.61	0.00	-134.40	44.23	-158.59	20.73	-93.57	-114.36	-72.84	0.80
sez 9 - (monte)	-3.41	0.59	37.48	0.00	-134.40	15.29	-79.30	3.84	-23.39	-64.00	-19.55	0.80
sez 10 - (monte)	-4.00	0.00	14.36	0.00	-134.40	0.00	0.00	0.00	0.00	0.00	0.00	0.80

LEGENDA:

X= ascissa sezione platea

DX= distanza sezione da lembo estremo

qz,inf= carico distribuito dovuto alla reazione di sottofondo del terreno

u,inf= pressione idrostatica sotto platea di fondazione

qz,sup= carico distribuito verso il basso V= sforzo di taglio (+: verso l'alto)

M= momento flettente (+: tese le fibre di intradosso platea)

Sollecitazioni s	u platea	di fondaz	zione	combo 3								
sezione	X (m)	DX (m)	qz,inf kN/m²	u,inf k N /m²	qz,sup kN/m²	V,inf kN/m	V,sup kN/m	M,inf kNm/m	M,sup kNm/m	V,tot kN/m	M,tot kNm/m	spessore (m)
sez 0 - (valle)	0.00	0.00	176.54	0.00	-20.00	0.00	0.00	0.00	0.00	0.00	0.00	0.80
sez 1 - (valle)	-0.13	0.13	172.88	0.00	-20.00	21.84	-2.50	1.37	-0.16	19.34	1.21	0.80
sez 2 - (valle)	-0.25	0.25	169.23	0.00	-20.00	43.22	-5.00	5.44	-0.63	38.22	4.82	0.80
sez 3 - (valle)	-0.38	0.38	165.58	0.00	-20.00	64.15	-7.50	12.16	-1.41	56.65	10.75	0.80
sez 4 - (valle)	-0.50	0.50	161.93	0.00	-20.00	84.62	-10.00	21.46	-2.50	74.62	18.96	0.80
					parame	nto mur	0					
sez 5 - (monte)	-1.05	2.95	145.87	0.00	-134.40	303.22	-396.48	384.76	-584.81	-93.26	-200.05	0.80
sez 6 - (monte)	-1.64	2.36	128.63	0.00	-134.40	222.24	-317.18	230.25	-374.28	-94.94	-144.03	0.80
sez 7 - (monte)	-2.23	1.77	111.40	0.00	-134.40	151.43	-237.89	120.52	-210.53	-86.46	-90.01	0.80
sez 8 - (monte)	-2.82	1.18	94.17	0.00	-134.40	90.79	-158.59	49.56	-93.57	-67.81	-44.01	0.80
sez 9 - (monte)	-3.41	0.59	76.94	0.00	-134.40	40.31	-79.30	11.39	-23.39	-38.99	-12.00	0.80
sez 10 - (monte)	-4.00	0.00	59.70	0.00	-134.40	0.00	0.00	0.00	0.00	0.00	0.00	0.80

LEGENDA:

X= ascissa sezione platea

DX= distanza sezione da lembo estremo

qz,inf= carico distribuito dovuto alla reazione di sottofondo del terreno

u,inf= pressione idrostatica sotto platea di fondazione

qz,sup= carico distribuito verso il basso

V= sforzo di taglio (+: verso l'alto)

M= momento flettente (+: tese le fibre di intradosso platea)

Relazione di calcolo muri di sostegno sede ferroviaria

Incremento di spinta terreno a monte in fase di sisma

Sovraccarico aggiuntivo laterale - lato monte

Sottospinta idraulica sotto platea di fondazione

COMMESSA LOTTO
MDL1 12

CODIFICA D 26 XX

DOCUMENTO XX 00 00 000 REV. FOGLIO X 66 di 155

		A CONTRACTOR OF THE CONTRACTOR	
Verifica a ribaltamento		Mstab Mrib	
Azioni (comb.:1)	k	Nm/m kNm/i	m
Muro + platea di fondazione + forze inerziali	2	202.63 7.44	ļ
Terrapieno + forze inerziali	5	95.90 26.4	3
Spinta terreno a monte		0.00 99.90	0
	Σ= 7	'98.53 133 <i>.</i> 7	7
Coefficiente di sicurezza $\eta_r = 5$.97 >=	: 1.5	
	ſ	Mstab Mrib	,
Azioni (comb.:2)	·	Nm/m kNm/	•
Muro + platea di fondazione + forze inerziali	2	.02.63 7.44	ļ.
Terrapieno + forze inerziali	5	95.90 26.43	3
Spinta terreno a monte		0.00 99.90	0
Spinta sovraccarico a monte		0.00 107.3	89
Forze applicate in sommità del muro		0.00 0.00)
Spinta dell'acqua		0.00 0.00)

Σ= 798.53 265.58

0.00

0.00

0.00

0.00

0.00

24.42

0.00

0.00

Coefficiente di sicurezza

Sovraccarico a valle

 $\eta_r = 3.01$

>= 1.5

Relazione di calcolo muri di sostegno sede MDL1 12 D 26 XX XX 00 0000 X 67									
		sostegno sede							FOGLIO 67 di 155
Azioni (comb.:1) kN/m kN/m kN/m kN/m Muro + platea di fondazione + forze inerziali 5.40 -135.00 5.40 -7 Terrapieno + forze inerziali 9.44 -236.00 9.44 -2 Spinta terreno a monte 62.44 0.00 62.44 Coefficiente di sicurezza $η_t$ = 2.74 >= 1.3 Fx Fz Ft Ft Azioni (comb.:2) kN/m kN/m kN/m Muro + platea di fondazione + forze inerziali 5.40 -135.00 5.40 -7 Terrapieno + forze inerziali 5.40 -135.00 5.40 -7 Spinta terreno a monte 62.44 0.00 5.40 -7 Spinta terreno a monte 44.75 0.00 44.75 Forze applicate in sommità del muro 0.00 0.00 0.00 Spinta dell'acqua 0.00 0.00 0.00 Sovraccarico a valle 0.00 0.00 0.00 Incremento di spinta terreno a monte in fase di sisma 8.52 0.00<	Verifica allo scorrimento								
Muro + platea di fondazione + forze inerziali 5.40 -135.00 5.40 -27.28 -236.00 9.44 -236.00 9.44 -236.00 9.44 -236.00 9.44 -236.00 9.44 -236.00 9.44 -236.00 9.44 -236.00 77.28 -371.00 77.28 -371.00 77.28 -371.00 77.28 -371.00 77.28 -371.00 77.28 -371.00 77.28 -371.00 77.28 -371.00 77.28 -371.00 77.28 -371.00 77.28 -371.00 77.28 -371.00 77.28 -371.00 77.28 -371.00 77.28 -371.00 77.28 -371.00 77.28 -371.00 77.28 -371.00 -371.00 77.28 -371.00	(verifica alla traslazione magrone ter	reno - inclinazione pia	ano di slittam	ento = 0°)	Fx	Fz	Ft	Fn
Terrapieno + forze inerziali 9.44 -236.00 9.44 -256.00 62.44 0.00	Azioni (comb.:1)					kN/m	kN/m	kN/m	k N /m
Spinta terreno a monte 62.44 0.00 62.44 Σ= 77.28 -371.00 77.28 -371.00 Coefficiente di sicurezza $η_t$ = 2.74 >= 1.3 Fx Fz Ft Azioni (comb.:2) kN/m kN/m kN/m Muro + platea di fondazione + forze inerziali 5.40 -135.00 5.40 -7.7.28 Terrapieno + forze inerziali 9.44 -236.00 9.44 -2.26.00	Muro + platea di fondazione + forze i	nerziali				5.40	-135.00	5.40	-135.00
Coefficiente di sicurezza η_t = 2.74 >= 1.3 FX FZ Ft KN/m kN/m kN/m kN/m kN/m kN/m kN/m kN/m k	•					9.44	-236.00	9.44	-236.00
Coefficiente di sicurezza $\eta_t =$ 2.74 $\Rightarrow = 1.3$ $\begin{array}{ccccccccccccccccccccccccccccccccccc$	Spinta terreno a monte					62.44	0.00	62.44	0.00
Azioni (comb.:2) Fx Fz Ft Muro + platea di fondazione + forze inerziali 5.40 -135.00 5.40 -72 Terrapieno + forze inerziali 9.44 -236.00 9.00					Σ=	77.28	-371.00	77.28	-371.00
Azioni (comb.:2) kN/m kN/m kN/m kN/m Muro + platea di fondazione + forze inerziali 5.40 -135.00 5.40 -70.00 5.40 -236.00 9.44 -236.00 -236.0	Coefficiente di sicurezza η	t =	2.74		:	>= 1.3			
Muro + platea di fondazione + forze inerziali 5.40 -135.00 5.40 -7 Terrapieno + forze inerziali 9.44 -236.00 9.44 -2 Spinta terreno a monte 62.44 0.00 62.44 Spinta sovraccarico a monte 44.75 0.00 44.75 Forze applicate in sommità del muro 0.00 0.00 0.00 Spinta dell'acqua 0.00 0.00 0.00 Sovraccarico a valle 0.00 0.00 0.00 Incremento di spinta terreno a monte in fase di sisma 8.52 0.00 8.52 Sovraccarico aggiuntivo laterale - lato monte 0.00 0.00 0.00 Sottospinta idraulica sotto platea di fondazione 0.00 0.00 0.00 Σ = 130.54 -371.00 130.54 -371.00						Fx	Fz	Ft	Fn
Terrapieno + forze inerziali 9.44 -236.00 -236.00 -236	Azioni (comb.:2)					kN/m	kN/m	kN/m	kN/m
Spinta terreno a monte 62.44 0.00 62.44 Spinta sovraccarico a monte 44.75 0.00 44.75 Forze applicate in sommità del muro 0.00 0.00 0.00 Spinta dell'acqua 0.00 0.00 0.00 Sovraccarico a valle 0.00 0.00 0.00 Incremento di spinta terreno a monte in fase di sisma 8.52 0.00 8.52 Sovraccarico aggiuntivo laterale - lato monte 0.00 0.00 0.00 Sottospinta idraulica sotto platea di fondazione 0.00 0.00 0.00	Muro + platea di fondazione + forze i	nerziali				5.40	-135.00	5.40	-135.00
Spinta sovraccarico a monte 44.75 0.00 44.75 Forze applicate in sommità del muro 0.00 0.00 0.00 Spinta dell'acqua 0.00 0.00 0.00 Sovraccarico a valle 0.00 0.00 0.00 Incremento di spinta terreno a monte in fase di sisma 8.52 0.00 8.52 Sovraccarico aggiuntivo laterale - lato monte 0.00 0.00 0.00 Sottospinta idraulica sotto platea di fondazione 0.00 0.00 0.00	•								-236.00
Forze applicate in sommità del muro 0.00 0.00 0.00 0.00 Spinta dell'acqua 0.00 0.00 0.00 0.00 Sovraccarico a valle 0.00 0.00 0.00 0.00 lncremento di spinta terreno a monte in fase di sisma 8.52 0.00 8.52 Sovraccarico aggiuntivo laterale - lato monte 0.00 0.00 0.00 0.00 Sottospinta idraulica sotto platea di fondazione Σ = 130.54 -371.00 130.54 -3	•								0.00
Spinta dell'acqua 0.00 0.00 0.00 0.00 Sovraccarico a valle 0.00 0.00 0.00 0.00 Incremento di spinta terreno a monte in fase di sisma 8.52 0.00 8.52 Sovraccarico aggiuntivo laterale - lato monte 0.00 0.00 0.00 Sottospinta idraulica sotto platea di fondazione 0.00 0.00 0.00							0.00	44.75	0.00
Sovraccarico a valle $0.00 - 0.00 - 0.00$ lncremento di spinta terreno a monte in fase di sisma $0.00 - 0.00 - 0.00$ 8.52 Sovraccarico aggiuntivo laterale - lato monte $0.00 - 0.00 - 0.00$ Sottospinta idraulica sotto platea di fondazione $0.00 - 0.00 - 0.00$ $0.00 - 0.00$ $0.00 - 0.00$ $0.00 - 0.00$ $0.00 - 0.00$									0.00
Incremento di spinta terreno a monte in fase di sisma 8.52 0.00 8.52 Sovraccarico aggiuntivo laterale - lato monte 0.00 0.00 0.00 Sottospinta idraulica sotto platea di fondazione Σ = 130.54 -371.00 130.54 -3	·								0.00
Sovraccarico aggiuntivo laterale - lato monte $0.00 0.00 0.00$ Sottospinta idraulica sotto platea di fondazione $0.00 0.00 0.00$ $\Sigma = 130.54 -371.00 -371.00 -37$									0.00
Sottospinta idraulica sotto platea di fondazione	•								0.00
Σ = 130.54 -371.00 130.54 -3	33								0.00
- 100.04 071.00 100.04 -C	Sottospinta idraulica sotto platea di fo	ondazione				0.00	0.00	0.00	0.00
Coefficiente di sicurezza $\eta_t = 1.62$ >= 1.3					Σ=	130.54	-371.00	130.54	-371.00
	Coefficiente di sicurezza η	t =	1.62		:	>= 1.3			

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 68 di 155

Riepilogo delle sollecitazioni (comb.: 2 e 3)	spessore (m)	N kN/m	T kN/m	M kNm/m
Paramento verticale - sezione di spiccato	0.55	-55.00	100.08	173.54
Riepilogo delle sollecitazioni (comb.: 2)	spessore (m)	N kN/m	T kN/m	M kNm/m
Mensola lato valle - sezione filo paramento verticale	0.80	0.00	70.67	18.08
Mensola lato monte - sezione filo paramento verticale	0.80	0.00	-183.57	-377.91
Riepilogo delle sollecitazioni (comb.: 3)	spessore (m)	N kN/m	T kN/m	M kNm/m
Mensola lato valle - sezione filo paramento verticale	0.80	0.00	74.62	18.96
Mensola lato monte - sezione filo paramento verticale	0.80	0.00	-93.26	-200.05

N (-) : sforzo normale di compressione

M (+) : momento flettente che tende le fibre lato terreno - paramento verticale

: momento flettente che tende le fibre lato intradosso - <u>platea di fondazione</u>

Relazione di calcolo muri di sostegno sede

COMMESSA LOTTO CODIFICA DOCUMENTO

REV. FOGLIO

ferroviaria

MDL1 12 D 26 XX

XX 00 00 000

69 di 155

Х

Muri di sostegno con fondazioni superficiali

Verifica al carico limite dell'insieme fondazione-terreno (Meyerhof)

F = 2.00

Parametri geotecnici terreno di fondazione

KN/m³ 19.00

peso specifico terreno di fondazione

φ' = 35.00

angolo di attrito interno

φ'= 0.61087 rad

c' = 0.00

KN/m²

20.00 KN/m³

peso specifico terreno di riempimento (laterale)

Caratteristiche geometriche della fondazione

B = 4.00 larghezza della fondazione

L= 1.00 m lunghezza della fondazione

D = 0.85 approfondimento della fondazione

Azioni esterne e pressione applicata

comb.

1 130.54 H =

azione orizzontale

e = M/V =

0.56

eccentricità del carico verticale V (in direzione trasversale --> B)

V = 371.00

kΝ kN

azione verticale

B* = B-2e =

 $2.87~\mathrm{m} < 3~\mathrm{m}$ larghezza ridotta in relazione alla eccentricità del carico verticale

M = 209.05 kNm

momento flettente

D/B* =

0.30 129.13 KN/m²

pressione media di esercizio applicata sull'area ridotta

 $q_{es}^* = V/(B^*L) =$

θ= 0.34 rad θ= 19.39

angolo di inclinazione della risultante misurata dalla verticale

Valutazione del carico limite dell'insieme fondazione-terreno e del coefficiente di sicurezza

 $q_{lim} = c' N_c s_c d_c i_c + \gamma_r D N_q s_q d_q i_q + 1/2 B^* \gamma N_y s_y d_y i_y$ $q_{lim} = 0.00 + 368.26 + 213.30 = 581.56 \text{ KN/m}^2$

KN/m² q*_{es}= 129.13

 $F = q_{lim} / q_{es}^* = 581.56/129.13 = 4.50 > 2.00$

POTENZIAMENTO DELLA LINEA RHO-ARONA

PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede

COMMESSA MDL1

CODIFICA D 26 XX

DOCUMENTO XX 00 00 000

REV. FOGLIO 70 di 155

Х

ferroviaria

Muri di sostegno con fondazioni superficiali Verifica al carico limite dell'insieme fondazione-terreno (Meyerhof)

2.00

LOTTO

12

Parametri geotecnici terreno di fondazione

19.00 KN/m3 peso specifico terreno di fondazione

φ' = 35.00 angolo di attrito interno

 $\phi' = 0.61087 \text{ rad}$

KN/m² c' = 0.00

KN/m³ 20.00

peso specifico terreno di riempimento (laterale)

Caratteristiche geometriche della fondazione

R= 4.00 L= 1.00 0.85

larghezza della fondazione lunghezza della fondazione

approfondimento della fondazione

Azioni esterne e pressione applicata

2 comb.

H = 130,54 kN V = 472.48 kN 155.78

kNm

azione orizzontale azione verticale momento flettente

e = M/V = B* = B-2e = $D/B^* =$

0.33 0.25

15.44°

eccentricità del carico verticale V (in direzione trasversale --> B) 3.34 m < 3 m larghezza ridotta in relazione alla eccentricità del carico verticale

 $q_{es}^* = V/(B^*L) =$ 141.44 KN/m² $\theta =$ 0.27 rad

θ=

pressione media di esercizio applicata sull'area ridotta angolo di inclinazione della risultante misurata dalla verticale

Valutazione del carico limite dell'insieme fondazione-terreno e del coefficiente di sicurezza

$$\begin{split} q_{lim} &= c^{t} \, N_{c} \, s_{c} \, d_{c} \, i_{c} + \gamma_{r} \, D \, N_{q} \, s_{q} \, d_{q} \, i_{q} + 1/2 \, B^{\star} \, \gamma \, N_{\gamma} \, s_{\gamma} \, d_{\gamma} \, i_{\gamma} \\ q_{lim} &= 0.000 + 407.41 + 386.05 = 793.46 \, KN/m^{2} \\ q^{\star}_{es} &= 141.44 \qquad KN/m^{2} \end{split}$$

 $F = q_{lim}/q_{es}^* = 793.46/141.44 = 5.61 > 2.00$

Le verifiche risultano soddisfatte.

10.2.1 Verifiche strutturali

10.2.1.1 Muro frontale

Le massime sollecitazioni agenti nella sezione di spiccato del muro frontale sono:

M = 173.54 kNm

T = 100.08 kN

N = -55 kN

La sezione è armata con φ18/10 lato interno e φ18/20 lato esterno. Vengono riportate le verifiche tensionali.

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO CODIFICA MDL1 12 D 26 XX

DOCUMENTO REV. XX 00 00 000

FOGLIO 71 di 155

Х

Sollec	Sollecitazioni Carpenteria			Armatura			Verifiche tension	nali	
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]
-55.00	173.54	100	70	1	5 \$ 18 (12.72)	6.1	19.03	-3.04	107.66
				2	10 \phi 18 (25.45)	63.9	(dal bordo superiore)		

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni			Verifiche tensiona	li	
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm²]> T/σ
100.08	100.0	63.9	0.17	0.67 (Rck 35)	25.45 > 3.92

10.2.1.2 Plinto lato monte

La zattera di fondazione è armata con $\phi 20/10$ superiormente e $\phi 20/20$ inferiormente.

I tassi di lavoro risultano:

Sollec	itazioni	Carpenteria		Armatura				Verifiche tension	nali
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]
-	-377.91	100	80	1	10 ¢ 20 (31.42)	6.2	20.77	-4.69	179.60
				2	5 \(\phi 20 (15.71)	73.8	(dal bordo inferiore)		

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni			Verifiche tensionali		
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm²]> T/σ
183.57	100.0	73.8	0.28	0.60 (Rck 30)	15.71 > 7.20

10.2.1.3 Plinto lato valle

La zattera di fondazione è armata con $\phi 20/20$ superiormente e $\phi 20/10$ inferiormente.

I tassi di lavoro risultano:

Sollecitazioni		Carpenteria		Armatura		Armatura			Verifiche tensio	nali
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _ε [MPa]	σ _s [MPa]	
-	18.96	100	80	1	5 ¢ 20 (15.71)	6.2	20.77	20.77 -0.24 9.01		
				2	10 ¢ 20 (31.42)	73.8	(dal bordo superiore)			

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni			Verifiche tension	ali	
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	$A*I,inf [cm^2] > T/\sigma$
74.62	100.0	73.8	0.11	0.60 (Rck 30)	31.42 > 2.93

Le verifiche risultano soddisfatte.

11 D2 - MURO 4.0<H≤5.0 M CON PREDISPOSIZIONE FUTURA BARRIERA ANTIRUMORE

11.1 VERIFICA STATICA

<u>Dati geometrici</u>	H tot =5.90 [m]		
muro	altezza muro	5.00	m
	spessore muro superiore	0.60	m
	spessore muro inferiore	0.60	m
	inclinazione muro - lato monte	0.00	٥
	inclinazione muro - lato valle	0.00	0
	spessore muro inferiore - lato monte	0.00	m
	spessore muro inferiore - lato valle	0.00	m
platea di fondazione	sbalzo platea - lato valle	0.60	m
	spessore sbalzo platea - lato valle	0.90	m
	spessore sbalzo platea filo muro - lato valle	0.90	m
	sbalzo platea - lato monte	3.25	m
	spessore sbalzo platea - lato monte	0.90	m
	spessore sbalzo platea filo muro - lato monte	0.90	m
	inclinazione magrone sottofondo	0.00	0
	lunghezza platea	4.45	m
terrapieno	inclinazione terrapieno	0.00	0
	lunghezza terrapieno superiore	3.25	m
	lunghezza terrapieno inferiore	3.25	m
	altezza totale terrapieno a monte	5.90	m

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 73 di 155

Dati geotecnici

terrapieno	angolo di attrito	35.0	0
1011 040110	angolo di attrito muro-terrapieno	0.6	٥
	coefficiente di spinta attiva - formula generale: $ka(\alpha, \delta, \phi, \iota)$	0.27099	
	coesione	0.0	kN/m²
	peso di volume	20.0	kN/m³
terreno di fondazione	angolo di attrito	35.0	٥
	coefficiente di attrito f= tan (KTF x AATF)	0.5715	
	fattore di riduzione angolo di attrito	0.9	
	coesione	0.0	kN/m ²
	peso di volume	19.00	MPa
	tensione ammissibile sul terreno (calcolo reazioni terreno)	0.15	MPa

POTENZIAMENTO DELLA LINEA RHO-ARONA PROGETTO DEFINITIVO PER APPALTO INTEGRATO

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione	di	calcolo	muri	di	sostegno	sede
ferroviaria						

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	Х	74 di 155

Dati di carico

azione sismica	grado di sismicità (categoria zona sismica: I, II, III)	2	(2-6-9-12)
	coefficiente di intensità sismica	0.00	
	angolo di attrito muro-terrapieno in fase di sisma	0.0	0
	coefficiente di spinta attiva in presenza di sisma = A x KAS*	-	
	coefficiente di incremento di spinta attiva in presenza di sisma = KAS-KA	_	
calcestruzzo	peso di volume	25.00	kN/m³
sovraccarico	Sovraccarico a monte in sommità del muro	54.40	kN/m²
uniforme	Percentuale sovraccarico su platea	100.00	(0-100 %)
	Sovraccarico a valle	0.00	kN/m²
	Percentuale sovraccarico su platea	100.00	(0-100 %)
falda	livello acqua falda da intradosso platea	0.00	m
	peso di volume	10.00	kN/m³
	pressione idrostatica a monte	0	(1= si; 0= no)
	sottospinta idraulica sotto platea di fondazione	0	(1= si; 0= no)
carichi applicati	Sovraccarico aggiuntivo laterale - lato monte	0.00	kN/m²
- uniforme	distanza di applicazione da filo posteriore platea di fondazione (+ verso monte)	0.00	m
	distanza di applicazione da intradosso platea di fondazione (+ verso alto)	2.40	m
	angolo di diffusione nel terreno	35.00	0
- forze concentrate	forza verticale (+ verso l'alto)	-8.00	kN/m
	braccio orizzontale x forza verticale (+ verso monte)	0.30	m
	forza orizzontale (+ verso valle)	10.00	kN/m
	braccio verticale x forza orizzontale (+ verso l'alto)	0.00	m
	coppia (+ oraria)	0.00	kNm/m

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 75 di 155

Sollecitazioni su paramento muro riferite al baricentro della sezione

sezione	z (m)	s _M (z) (m)	Xo (m)	σ _v kN/m²	σ _h kN/m²	u kN/m²	N kN/m	T kN/m	M kNm/m
10 9	5.00 4.50	0.60 0.60	-0.90 -0.90	-54.40 -64.40	14.74 17.45	0.00 0.00	-8.00 -15.50	10.00 18.05	0.00 6.96
8	4.00	0.60	-0.90	-74.40	20.16	0.00	-23.00	27.45	18.27
7	3.50	0.60	-0.90	-84.40	22.87	0.00	-30.50	38.21	34.63
6	3.00	0.60	-0.90	-94.40	25.58	0.00	-38.00	50.32	56.71
5 4	2.50 2.00	0.60 0.60	-0.90 -0.90	-104.40 -114.40	28.29 31.00	0.00 0.00	-45.50 -53.00	63.79 78.61	85.18 120.73
3	1.50	0.60	-0.90	-124.40	33.71	0.00	-60.50	94.79	164.02
2	1.00	0.60	-0.90	-134.40	36.42	0.00	-68.00	112.33	215.75
1 0	0.50 0.00	0.60 0.60	-0.90 -0.90	-144.40 -154.40	39.13 41.84	0.00 0.00	-75.50 -83.00	131.21 151.46	276.57 347.19

LEGENDA:

 $s_M(z)$ = spessore sezione muro

z = quota sezione da estradosso platea lato monte (+ verso l'alto)

Xo= distanza baricentro sezione da spigolo inferiore sbalzo platea lato valle (s.d.r.)

 σ_v = tensione verticale dietro al muro (+ verso l'alto)

 σ_h = tensione orizzontale dietro al muro (+ verso valle)

u= pressione idrostatica dietro al muro

N= sforzo normale (-: compressioni)

T= sforzo di taglio (+: verso valle)

M= momento flettente (+: tese le fibre lato monte)

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 76 di 155

Riepilogo delle sollec. riferite al baricentro della platea di fondaz. - lato intrad. (comb.: 2)

azione orizzontale

 $F_x = 191.31 \text{ kN/m}$

azione verticale

 $F_z = -508.13 \text{ kN/m}$

momento flettente

 $M_{p,G} = 416.08 \text{ kNm/m}$

Riepilogo delle sollec. riferite al baricentro della platea di fondaz. - lato intrad. (comb.: 3)

azione orizzontale azione verticale momento flettente $=_{x} = 191.31 \text{ kN/m}$

 $F_z = -684.93 \text{ kN/m}$

 $M_{p,G} =$

310.00 kNm/m

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	x	77 di 155

Sollecitazioni s	u platea	di fondaz	zione	combo 2								
sezione	X (m)	DX (m)	qz,inf kN/m²	u,inf kN/m²	qz,sup kN/m²	V,inf kN/m	V,sup kN/m	M,inf kNm/m	M,sup kNm/m	V,tot kN/m	M,tot kNm/m	spessore (m)
sez 0 - (valle)	0.00	0.00	240.91	0.00	-22.50	0.00	0.00	0.00	0.00	0.00	0.00	0.90
sez 1 - (valle)	-0.15	0.15	232.34	0.00	-22.50	35.49	-3.38	2.68	-0.25	32.12	2.42	0.90
sez 2 - (valle)	-0.30	0.30	223.77	0.00	-22.50	69.70	-6.75	10.58	-1.01	62.95	9.57	0.90
sez 3 - (valle)	-0.45	0.45	215.21	0.00	-22.50	102.63	-10.13	23.52	-2.28	92.50	21.25	0.90
sez 4 - (valle)	-0.60	0.60	206.64	0.00	-22.50	134.26	-13.50	41.31	-4.05	120.76	37.26	0.90
					parame	nto mur	0					
sez 5 - (monte)	-1.20	3.25	172.38	0.00	-176.90	297.79	-574.93	409.64	-934.25	-277.13	-524.62	0.90
sez 6 - (monte)	-1.85	2.60	135.26	0.00	-176.90	197.81	-459.94	249.87	-597.92	-262.13	-348.05	0.90
sez 7 - (monte)	-2.50	1.95	98.14	0.00	-176.90	121.96	-344.96	147.25	-336,33	-222.99	-189.08	0.90
sez 8 - (monte)	-3.15	1.30	61.02	0.00	-176.90	70.24	-229.97	86.09	-149.48	-159.73	-63.39	0.90
sez 9 - (monte)	-3.80	0.65	23.90	0.00	-176.90	42.64	-114.99	50.72	-37.37	-72.35	13.35	0.90
sez 10 - (monte)	-4.45	0.00	0.00	0.00	-176.90	0.00	0.00	0.00	0.00	0.00	0.00	0.90

LEGENDA:

X= ascissa sezione platea

DX= distanza sezione da lembo estremo

qz,inf= carico distribuito dovuto alla reazione di sottofondo del terreno

u,inf= pressione idrostatica sotto platea di fondazione

qz,sup= carico distribuito verso il basso

Sollecitazioni su platea di fondazione

V= sforzo di taglio (+: verso l'alto)

M= momento flettente (+: tese le fibre di intradosso platea)

combo 3

0.00

0.00

sezione	X (m)	DX (m)	qz,inf kN/m²	u,inf kN/m²	qz,sup kN/m²	V,inf kN/m	V,sup kN/m	M,inf kNm/m	M,sup kNm/m	V,tot k N /m	M,tot kNm/m	spessore (m)
sez 0 - (valle)	0.00	0.00	247.84	0.00	-22.50	0.00	0.00	0.00	0.00	0.00	0.00	0.90
sez 1 - (valle)	-0.15	0.15	241.51	0.00	-22.50	36.70	-3.38	2.76	-0.25	33.33	2.51	0.90
sez 2 - (valle)	-0.30	0.30	235.18	0.00	-22.50	72.45	-6.75	10.96	-1.01	65.70	9.95	0.90
sez 3 - (valle)	-0.45	0.45	228.85	0.00	-22.50	107.25	-10.13	24.45	-2.28	97.13	22.17	0.90
sez 4 - (valle)	-0.60	0.60	222.51	0.00	-22.50	141.11	-13.50	43.09	-4.05	127.61	39.04	0.90
					parame	nto mur	0					
sez 5 - (monte)	-1.20	3.25	197.19	0.00	-176.90	417.91	-574.93	558.34	-934.25	-157.02	-375.91	0.90
sez 6 - (monte)	-1.85	2.60	169.75	0.00	-176.90	298.66	-459.94	326.42	-597.92	-161.28	-271.50	0.90
sez 7 - (monte)	-2.50	1.95	142.31	0.00	-176.90	197.24	-344.96	166.22	-336.33	-147.72	-170.11	0.90
sez 8 - (monte)	-3.15	1.30	114.87	0.00	-176.90	113.66	-229.97	66.15	-149.48	-116.31	-83.33	0.90

47.91

0.00

-114.99

0.00

14.60

0.00

-37.37

0.00

-67.07

0.00

-22.77

0.00

0.90

0.90

-176.90

-176.90

LEGENDA:

sez 9 - (monte)

sez 10 - (monte)

X= ascissa sezione platea

-3.80

-4.45

DX= distanza sezione da lembo estremo

0.65

0.00

qz,inf= carico distribuito dovuto alla reazione di sottofondo del terreno

87.43

59.99

u,inf= pressione idrostatica sotto platea di fondazione

qz,sup= carico distribuito verso il basso

V= sforzo di taglio (+: verso l'alto)

M= momento flettente (+: tese le fibre di intradosso platea)

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 78 di 155

Verifica a ribaltamento Azioni (comb.:1)				Mstab kNm/m	Mrib kNm/m
Muro + platea di fondazione Terrapieno Spinta terreno a monte				290.28 918.13 0.00	0.00 0.00 185.52
			$\Sigma =$	1208.40	185.52
Coefficiente di sicurezza	$\eta_r =$	6.51		>= 1.5	
Azioni (comb.:2)				Mstab kNm/m	Mrib kNm/m
Muro + platea di fondazione Terrapieno Spinta terreno a monte Spinta sovraccarico a monte Forze applicate in sommità del m Spinta dell'acqua Sovraccarico a valle Incremento di spinta terreno a m Sovraccarico aggiuntivo laterale Sottospinta idraulica sotto platea	onte in fase - lato monte)	Σ	290.28 918.13 0.00 0.00 7.20 0.00 0.00 0.00 0.00 0.00	0.00 0.00 185.52 256.58 59.00 0.00 0.00 0.00 0.00
			Σ=	1215.60	501.10
Coefficiente di sicurezza	$\eta_r =$	2.43		>= 1.5	

Relazione di calcolo muri di sostegn ferroviaria	o sede	COMMESSA MDL1	LOTTO 12	CODI D 26		DOCUMENTO XX 00 00 000	REV.	FOGLIO 79 di 155
Verifica allo scorrimento								
(verifica alla traslazione magrone terreno - inclir Azioni (comb.:1)	azione p	iano di slittam	nento = 0	°)	Fx kN/m	Fz kN/m	Ft kN/m	Fn kN/m
Muro + platea di fondazione					0.00	-175.13	0.00	-175.13
Terrapieno					0.00	-325.00	0.00	-325.00
Spinta terreno a monte					94.33	0.00	94.33	0.00
				Σ=	94.33	-500.13	94.33	-500.13
Coefficiente di sicurezza $\eta_t =$		3.03		>	>= 1.3			
Azioni (comb.:2)					Fx kN/m	Fz k N /m	Ft kN/m	Fn kN/m
Muro + platea di fondazione Terrapieno Spinta terreno a monte Spinta sovraccarico a monte Forze applicate in sommità del muro Spinta dell'acqua Sovraccarico a valle Incremento di spinta terreno a monte in fase di s Sovraccarico aggiuntivo laterale - lato monte Sottospinta idraulica sotto platea di fondazione	sisma			Σ=	0.00 0.00 94.33 86.98 10.00 0.00 0.00 0.00 0.00	-175.13 -325.00 0.00 0.00 -8.00 0.00 0.00 0.00 0.00	0.00 0.00 94.33 86.98 10.00 0.00 0.00 0.00 0.00	-175.13 -325.00 0.00 0.00 -8.00 0.00 0.00 0.00 0.00
0						000.10	101.01	000.10
Coefficiente di sicurezza $\eta_t =$		1.52		>	>= 1.3			

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 80 di 155

Riepilogo delle sollecitazioni (comb.: 2 e 3)	spessore (m)	N kN/m	T kN/m	M kNm/m
Paramento verticale - sezione di spiccato	0.60	-83.00	151.46	347.19
Riepilogo delle sollecitazioni (comb.: 2)	spessore (m)	N kN/m	T kN/m	M kNm/m
Mensola lato valle - sezione filo paramento verticale	0.90	0.00	120.76	37.26
Mensola lato monte - sezione filo paramento verticale	0.90	0.00	-277.13	-524.62
Riepilogo delle sollecitazioni (comb.: 3)	spessore (m)	N kN/m	T kN/m	M kNm/m
Mensola lato valle - sezione filo paramento verticale	0.90	0.00	127.61	39.04
Mensola lato monte - sezione filo paramento verticale	0.90	0.00	-157.02	-375.91

N (-) : sforzo normale di compressione

M (+) : momento flettente che tende le fibre lato terreno - paramento verticale

: momento flettente che tende le fibre lato intradosso - <u>platea di fondazione</u>

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO CODIFICA DOCUMENTO

FOGLIO

MDL1

12

D 26 XX XX 00 00 000 Х 81 di 155

REV.

Muri di sostegno con fondazioni superficiali

Verifica al carico limite dell'insieme fondazione-terreno (Meyerhof)

F= 2.00

Parametri geotecnici terreno di fondazione

KN/m³ 19.00

peso specifico terreno di fondazione

ф' = 35.00

angolo di attrito interno

φ'= 0.61087 rad

c' = 0.00 KN/m²

20.00 KN/m³ peso specifico terreno di riempimento (laterale)

Caratteristiche geometriche della fondazione

B = 4.50 larghezza della fondazione

L = 1.00 m lunghezza della fondazione

D= 0.85 m approfondimento della fondazione

Azioni esterne e pressione applicata

comb.

1

H = 191.31 kN V = 508.13 kΝ azione orizzontale

e = M/V = azione verticale B* = B-2e = 0.82

eccentricità del carico verticale V (in direzione trasversale --> B) $2.86 \, \, \text{m} < 3 \, \, \text{m}$ larghezza ridotta in relazione alla eccentricità del carico verticale

416.08 kNm

momento flettente

Valutazione del carico limite dell'insieme fondazione-terreno e del coefficiente di sicurezza

 $D/B^* =$ 0.30 $q_{es}^* = V/(B^*L) =$ 177.52 KN/m²

pressione media di esercizio applicata sull'area ridotta angolo di inclinazione della risultante misurata dalla verticale

θ = 0.36 rad 20.63 °

 $q_{lim} = c' N_c s_c d_c i_c + \gamma_r D N_q s_q d_q i_q + 1/2 B^* \gamma N_\gamma s_\gamma d_\gamma i_\gamma$ $q_{lim} = 0.00 + 355.45 + 179.98 = 535.43 \text{ KN/m}^2$

q*_{es}= 177.52 KN/m²

 $F = q_{lim}/q_{es}^* = 535.43/177.52 = 3.02 > 2.00$

POTENZIAMENTO DELLA LINEA RHO-ARONA

PROGETTO DEFINITIVO PER APPALTO INTEGRATO

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO CODIFICA MDL1 12 D 26 XX

DOCUMENTO XX 00 00 000

FOGLIO 82 di 155

RFV

Х

Muri di sostegno con fondazioni superficiali

Verifica al carico limite dell'insieme fondazione-terreno (Meyerhof)

2.00

Parametri geotecnici terreno di fondazione

KN/m³ 19.00 peso specifico terreno di fondazione

φ' = 35.00 angolo di attrito interno φ'= 0.61087 rad

c' = 0.00 KN/m² coesione

KN/m³ 20.00 peso specifico terreno di riempimento (laterale)

Caratteristiche geometriche della fondazione

B = 4.50 larghezza della fondazione 1.00 m lunghezza della fondazione 0.85 approfondimento della fondazione m

Azioni esterne e pressione applicata

comb. 2

H = 191.31 kΝ azione orizzontale azione verticale V = 684.93 kΝ

e = M/V = 0.45 B* = B-2e =

eccentricità del carico verticale V (in direzione trasversale --> B) 3.59 m < 3 m larghezza ridotta in relazione alla eccentricità del carico verticale

310.00 kNm momento flettente

D/B* = 0.24 $q_{es}^* = V/(B^*L) =$ 190.53 KN/m²

 $\theta =$ 0.27 rad 15.61

pressione media di esercizio applicata sull'area ridotta angolo di inclinazione della risultante misurata dalla verticale

Valutazione del carico limite dell'insieme fondazione-terreno e del coefficiente di sicurezza

 $q_{lim} = c' N_c s_c d_c i_c + \gamma_r D N_q s_q d_q i_q + 1/2 B^* \gamma N_\gamma s_\gamma d_\gamma i_\gamma$ $q_{lim} = 0.00 + 404.32 + 407.27 = 811.60 \text{ KN/m}^2$ KN/m² q*_{es}= 190.53

 $F = q_{lim}/q_{es}^* = 811.60/190.53 = 4.26 > 2.00$

Le verifiche risultano soddisfatte.

11.1.1 Verifiche strutturali

11.1.1.1 Muro frontale

Le massime sollecitazioni agenti nella sezione di spiccato del muro frontale sono:

M = 347.19kNm

T = 151.46 kN

N = -83.00 kN

La sezione è armata con φ20/10 lato interno e φ20/20 lato esterno. Vengono riportate le verifiche tensionali e di fessurazione.

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 83 di 155

Sollec	itazioni	Carpe	enteria	Armatura Verifiche tensionali			nali		
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]
-	347.19	100	80	1	5 ¢ 20 (15.71)	6.2	20.77	-4.31	165.00
				2	10 ¢ 20 (31.42)	73.8	(dal bordo sup	eriore)	

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni	Verifiche tensionali				
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm ²]> T/ σ
83.00	100.0	73.8	0.12	0.67 (Rck 35)	31.42 > 3.25

POTENZIAMENTO DELLA LINEA RHO-ARONA

PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA MDL1 12

LOTTO CODIFICA

D 26 XX

DOCUMENTO XX 00 00 000

REV.

Х

FOGLIO 84 di 155

N = M =

0.00 347.19

[kN] [kNm]

 $w_k = 1.7 w_m =$ $w_m = \epsilon_{sm} s_{rm} =$ 0.087 0.051

[mm] [mm]

rdinaria	Armatu	Sezione interamente reagente [I° stadio]		lcestruzzo [R]	Sezione di ca
sv1	armatura - check	, ,		I [cm]= 100 x 80	dim. B [cm] x l
.12	As tot [cm²] =	8706.86	A,I° [cm ²] =	8000.00	A tot cls $[cm^2]$ =
59	μ _{.tot} [%] =	5066925.51	J,I° [cm⁴] =	4266666.67	J tot cls [cm 4] =
2	n° livelli di armatura=	39.09	y_inf,I° [cm] =	40.00	y_inf [cm] =
cm²] hi	livello	40.91	y_sup,I° [cm] =	40.00	y_sup [cm] =
(15.71)	1 5	129637.54	W_inf,I° [cm ³] =	106666.67	W_inf [cm ³] =
(31.42)	2 10	123841.28	W_sup,I° [cm ³] =	106666.67	W_sup [cm ³] =
_					
_					
_					
-					

Calcolo della distanza media tra le fessure

 s_{rm} = 2 (c+s/10) + $k_2 k_3 \phi / \rho_r$ =

16.05 [cm]

φ = diametro della barra

2.0 [cm]

c = ricoprimento dell'armatura

4.0 [cm]

s = distanza tra le barre; se s > 14 φ si adotterà s= 14 φ

10.0 [cm]

k₂ = coefficiente di aderenza del cls alla barra

0.4 0.125

k₃ = coefficiente di forma del diagramma delle tensioni $\rho_r = A_s/A_{c eff}$

0.01653470

A_s = area della sezione di acciaio nell'area A_{c eff}

31.42 [cm²]

 $A_{c eff} = b_{eff} d_{eff}$

1900.00 [cm²]

 $b_{eff} = B$

100.0 [cm]

d eff =

19.0 [cm]

 $d \, eff = c + s' + 7.5 \phi$

19.0 [cm]

d eff < (H-xI)/2= 19.54 cm; xI= 40.91 cm

s' = interasse verticale tra le file di barre= 0.0 cm

Calcolo della deformazione unitaria media dell'armatura

$\varepsilon_{sm} = \sigma_s / E_s [1 - \beta_1 \beta_2 (\sigma_{sr} / \sigma_s)^2]$ (>= 0.4 σ_s / E_s)	0.00032039
E _s = modulo di elasticità normale	206000 [MPa]
σ_{s} = tensione nell'acciaio nella sezione fessurata	165.00 [MPa]
σ_{sr} = tensione nell'acciaio nella sezione fessurata per la sollecitazione	212.96 [MPa]
di fessurazione (M_{fess} , N_{fess})	
Nfess= N	0.00 [kN]
Mfess = [fcm]W_inf,I°	448.11 [kNm]
fcm= fcfm = resistenza a trazione media per flessione	3.46 [MPa]
fci= trazione iniziale nel cls	0.00 [MPa]
β_1 = coefficiente aderenza acciaio cls	1.0
β_2 = coefficiente di sollecitazione	0.5

 $0.4 \sigma_{s} / E_{s} =$ 0.00032039

cls Rck [MPa] = 35

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	Х	85 di 155

11.1.1.2 Plinto lato monte

La zattera di fondazione è armata con $\phi 20/10$ superiormente e $\phi 20/20$ inferiormente.

I tassi di lavoro risultano:

Sollec	Sollecitazioni Carpenteria		Carpenteria		Armatura			Verifiche tension	nali
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]
-	-524.62	100	90	1	10 \(\phi \) 20 (31.42)	6.2	22.41	-5.31	218.30
				2	5 \$\phi\$ 20 (15.71)	83.8	(dal bordo infe	riore)	

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni					
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm ²]> T/ σ
316.51	100.0	83.6	0.42	0.60 (Rck 30)	22.62 > 12.41

POTENZIAMENTO DELLA LINEA RHO-ARONA

PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO MDL1 12

CODIFICA D 26 XX

DOCUMENTO XX 00 00 000

REV Х

FOGLIO 86 di 155

N = M =

0.00 -524.62 [kN] [kNm]

 $w_k = 1.7 w_m =$ $w_m = \epsilon_{sm} s_{rm} =$ 0.155 0.091

[mm] [mm]

Sezione di ca	alcestruzzo [R]	Sezione interamente	reagente [I° stadio]	Armatura ordinaria		
dim. B [cm] x	H [cm]= 100 x 90			armatura - check	Asv1	***************************************
A tot cls $[cm^2]$ =	9000.00	$A, I^{\circ} [cm^{2}] =$	9706.86	As tot [cm ²] =	47.12	
J tot cls [cm 4] =	6075000.00	J,1° [cm ⁴] =	7130522.75	μ _{.tot} [%] =	0.52	
y_inf [cm] =	45.00	y_inf,l° [cm] =	45.94	n° livelli di armatura=	2	
y_sup [cm] =	45.00	y_sup,i° [cm] =	44.06	livello	As [cm²]	hi_sup [cm]
$W_inf[cm^3] =$	135000.00	W_inf,I° [cm 3] =	155207.70	1	10 ¢ 20 (31.42)	6.2
W_sup [cm ³] =	135000.00	W_sup,i° [cm³] =	161843.30	2	5 ¢ 20 (15.71)	83.8
					_	
					-	
					-	
					_	

Calcolo della distanza media tra le fessure

 $s_{rm} = 2 (c+s/10) + k_2 k_3 \phi /\rho_r =$

φ = diametro della barra

c = ricoprimento dell'armatura s = distanza tra le barre; se s > 14 φ si adotterà s= 14 φ

k₂ = coefficiente di aderenza del cls alla barra

k₃ = coefficiente di forma del diagramma delle tensioni

 $\rho_r = A_s/A_{c eff}$

A_s = area della sezione di acciaio nell'area A_{c eff}

 $A_{c eff} = b_{eff} d_{eff}$

 $b_{eff} = B$

d eff =

 $d \, eff = c + s' + 7.5 \phi$

d eff < (H-xI)/2= 22.03 cm; xI= 45.94 cm

 β_2 = coefficiente di sollecitazione

s' = interasse verticale tra le file di barre= 0.0 cm

16.05 [cm]

2.0 [cm]

4.0 [cm]

10.0 [cm]

0.4

0.125

0.01653470

0.00056913

206000 [MPa]

218.30 [MPa]

210.05 [MPa]

0.00 [kN]

-504.80 [kNm]

1.0

0.5

3.12 [MPa]

0.00 [MPa]

1900.00 [cm²]

Calcolo della deformazione unitaria media dell'armatura

 $\varepsilon_{\rm sm} = \sigma_{\rm s}/E_{\rm s} [1 - \beta_1 \beta_2 (\sigma_{\rm sr}/\sigma_{\rm s})^2]$ E_s = modulo di elasticità normale σ_s = tensione nell'acciaio nella sezione fessurata $\sigma_{\text{sr}}\text{=}$ tensione nell'acciaio nella sezione fessurata per la sollecitazione di fessurazione (M_{fess} , N_{fess}) Nfess= N Mfess = -[fcm]W_sup,I°

 $(>= 0.4\sigma_{s}/E_{s})$

fcm= fcfm = resistenza a trazione media per flessione fci= trazione iniziale nel cls β_1 = coefficiente aderenza acciaio cls

31.42 [cm2]

100.0 [cm]

19.0 [cm]

19.0 [cm]

 $0.4 \sigma_{\rm s} / E_{\rm s} =$ 0.00042388

cls Rck [MPa] = 30

11.1.1.3 Plinto lato valle

La zattera di fondazione è armata con $\phi 20/20$ superiormente e $\phi 20/10$ inferiormente.

I tassi di lavoro risultano:

Solled	itazioni	Carpe	enteria		Armatura			Verifiche tension	nali
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]
-	41.61	100	90	1	5 \$\phi\$ 20 (15.71)	6.2	22.41	-0.42	17.31
				2	10 ¢ 20 (31.42)	83.8	(dal bordo sup	eriore)	

Verifica delle tensioni tangenziali - sezione solo cls

	Sollecitazioni					
	T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm ²]> T/ σ
Г	135.61	100.0	83.8	0.18	0.60 (Rck 30)	31.42 > 5.32

POTENZIAMENTO DELLA LINEA RHO-ARONA

PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	X	88 di 155

Verifica a formazione fessure - Sezione: Plinto lato valle

0.11					
201	lecita	zioi	าเ ตเ	verifica	

N =	0.00 [KN]	sforzo assiale (+ trazione)
M =	41.61 [KNm]	momento flettente (+ tende le fibre inferiori)
Materiali		
cls Rck =	30.00 [MPa]	
$f_{ctk} = 0.7 x[0.27 x (Rck)^{2/3}] =$	1.82 [MPa]	resistenza caratteristica a trazione per sforzo normale
$f_{cfk} = 0.7 \times 1.2 \times [0.27 \times (Rck)^{2/3}] =$	2.19 [MPa]	resistenza caratteristica a trazione per flessione

Caratteristiche geometriche sezione rettangolare (solo cls)

B =	100.00 [cm]	base
H =	90.00 [cm]	altezza
$y_{G,cls} = H/2 =$	45.00 [cm]	posizione baricentro
A _{cls} =	9000.0 [cm²]	area
J _{cls} = 1/12 B H ³ =	6075000.0 [cm ⁴]	momento di inerzia
$W_{cls} = J_{cls} / (H/2) =$	135000 o [cm³]	modulo resistente ai lembi

Caratteristiche geometriche (I° stadio)

15.00

armatura superiore	As [cm ²]	hi_sup [cm]	copriferro [cm]
1° livello	5 φ 20 (15.71)	6.2	5.2
2° livello	-	-	-
3° livello	_	-	-
armatura inferiore	As [cm ²]	hi_inf [cm]	copriferro [cm]
1° livello	10 \(\phi\) 20 (31.42)	6.2	5.2
2° livello	-	-	-
3° livello	-	-	-
$y_{G_sup} = S_{xi} / A_i =$	45.94	[cm]	posizione baricentro sezione omogeneizzata
A_i = BH+n Σ As =	9706.9	[cm²]	area sezione omogeneizzata
$J_i = J_i' - A_i y_{G_sup}^2 =$	7130522.8	[cm ⁴]	momento di inerzia sezione omogeneizzata
y _s = y _{G_sup} =	45.94	[cm]	distanza dal baricentro del lembo superiore
$W_{i,s} = J_i / y_s =$	155207.7	[cm³]	modulo resistente al lembo superiore sezione omogeneizzata
y _i = H - y _{G_sup} =	44.06	[cm]	distanza dal baricentro del lembo inferiore - trazione
$W_{i,i} = J_i / y_i =$	161843.3	[cm³]	modulo resistente al lembo inferiore sezione omogeneizzata - trazione
estruzzo			
$\sigma_{\text{con}} = N / \Delta i =$	0.00	[MPa]	

Trazione nel calces

$\sigma_{c(N)} = N/AI =$	0.00 [IVIPa]	
$\sigma_{c(M)} = M/Wt =$	0.26 [MPa]	
$\sigma_{c,tot} =$	0.26 [MPa]	< 2.19

Le verifiche risultano soddisfatte.

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 89 di 155

11.2 VERIFICA SISMICA

<u>Dati geometrici</u>	H tot =5.90 [m]		
muro	altezza muro	5.00	m
	spessore muro superiore	0.60	m
	spessore muro inferiore	0.60	m
	inclinazione muro - lato monte	0.00	0
	inclinazione muro - lato valle	0.00	0
	spessore muro inferiore - lato monte	0.00	m
	spessore muro inferiore - lato valle	0.00	m
platea di fondazione	sbalzo platea - lato valle	0.60	m
	spessore sbalzo platea - lato valle	0.90	m
	spessore sbalzo platea filo muro - lato valle	0.90	m
	sbalzo platea - lato monte	3.25	m
	spessore sbalzo platea - lato monte	0.90	m
	spessore sbalzo platea filo muro - lato monte	0.90	m
	inclinazione magrone sottofondo	0.00	0
	lunghezza platea	4.45	m
terrapieno	inclinazione terrapieno	0.00	0
	lunghezza terrapieno superiore	3.25	m
	lunghezza terrapieno inferiore	3.25	m
	altezza totale terrapieno a monte	5.90	m

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 90 di 155

Dati geotecnici

terrapieno	angolo di attrito	35.0	0
	angolo di attrito muro-terrapieno	0.6	0
	coefficiente di spinta attiva - formula generale: $ka(\alpha,\delta,\phi,\iota)$	0.27099	
	coesione	0.0	kN/m²
	peso di volume	20.0	kN/m³
terreno di fondazione	angolo di attrito	35.0	0
	coefficiente di attrito f= tan (KTF x AATF)	0.5715	
	fattore di riduzione angolo di attrito	0.9	
	coesione	0.0	kN/m²
	peso di volume	19.00	MPa
	tensione ammissibile sul terreno (calcolo reazioni terreno)	0.15	MPa

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	х	91 di 155

Dati di carico

azione sismica	grado di sismicità (categoria zona sismica: I, II, III) coefficiente di intensità sismica	6 0.04	(2-6-9-12)
	angolo di attrito muro-terrapieno in fase di sisma	0.04	۰
	coefficiente di spinta attiva in presenza di sisma = A x KAS*	0.0	
	coefficiente di incremento di spinta attiva in presenza di sisma = KAS-KA	0.0215	
	Total and the series of the se	0.02.13	
calcestruzzo	peso di volume	25.00	kN/m³
sovraccarico	Sovraccarico a monte in sommità del muro	34.40	kN/m²
uniforme	Percentuale sovraccarico su platea	100.00	(0-100 %)
	Sovraccarico a valle	0.00	kN/m²
	Percentuale sovraccarico su platea	100.00	(0-100 %)
falda	livello acqua falda da intradosso platea	0.00	
raida	peso di volume	0.00	m 3
	pressione idrostatica a monte	10.00	kN/m ³
		0	(1= si; 0= no)
	sottospinta idraulica sotto platea di fondazione	0	(1= si; 0= no)
carichi applicati	Sovraccarico aggiuntivo laterale - lato monte	0.00	kN/m²
- uniforme	distanza di applicazione da filo posteriore platea di fondazione (+ verso monte)	0.00	m
	distanza di applicazione da intradosso platea di fondazione (+ verso alto)	2.40	m
	angolo di diffusione nel terreno	35.00	0
 forze concentrate 	forza verticale (+ verso l'alto)	-8.00	kN/m
	braccio orizzontale x forza verticale (+ verso monte)	0.30	m
	forza orizzontale (+ verso valle)	0.00	kN/m
	braccio verticale x forza orizzontale (+ verso l'alto)	0.00	m
	coppia (+ oraria)	24.00	kNm/m

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	Х	92 di 155

Sollecitazioni su paramento muro riferite al baricentro della sezione

sezione	z (m)	s _M (z) (m)	Xo (m)	σ _v kN/m²	σ _h kN/m²	u kN/m²	N kN/m	T kN/m	M kNm/m
10	5.00	0.60	-0.90	-34.40	12.60	0.00	-8.00	0.00	24.00
9	4.50	0.60	-0.90	-44.40	15.10	0.00	-15.50	6.93	25.68
8	4.00	0.60	-0.90	-54.40	17.59	0.00	-23.00	15.10	31.13
7	3.50	0.60	-0.90	-64.40	20.09	0.00	-30.50	24.52	40.99
6	3.00	0.60	-0.90	-74.40	22.58	0.00	-38.00	35.19	55.86
5	2.50	0.60	-0.90	-84.40	25.08	0.00	-45.50	47.10	76.38
4	2.00	0.60	-0.90	-94.40	27.57	0.00	-53.00	60.27	103.17
3	1.50	0.60	-0.90	-104.40	30.07	0.00	-60.50	74.67	136.86
2	1.00	0.60	-0.90	-114.40	32.56	0.00	-68.00	90.33	178.05
1	0.50	0.60	-0.90	-124.40	35.06	0.00	-75.50	107.24	227.39
0	0.00	0.60	-0.90	-134.40	37.55	0.00	-83.00	125.39	285.50

LEGENDA:

 $s_M(z)$ = spessore sezione muro

z = quota sezione da estradosso platea lato monte (+ verso l'alto)

Xo= distanza baricentro sezione da spigolo inferiore sbalzo platea lato valle (s.d.r.)

 σ_v = tensione verticale dietro al muro (+ verso l'alto)

 σ_h = tensione orizzontale dietro al muro (+ verso valle)

u= pressione idrostatica dietro al muro

N= sforzo normale (-: compressioni)

T= sforzo di taglio (+: verso valle)

M= momento flettente (+: tese le fibre lato monte)

Riepilogo delle sollec. riferite al baricentro della platea di fondaz. - lato intrad. (comb.: 2)

azione orizzontale $F_{x} = 180.47 \text{ kN/m}$ azione verticale $F_{z} = -489.75 \text{ kN/m}$ momento flettente $M_{p,G} = 386.01 \text{ kNm/m}$

Riepilogo delle sollec. riferite al baricentro della platea di fondaz. - lato intrad. (comb.: 3)

azione orizzontale $F_{x} = 180.47 \text{ kN/m}$ azione verticale $F_{z} = -596.39 \text{ kN/m}$ momento flettente $M_{p,G} = 322.03 \text{ kNm/m}$

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 93 di 155

Sollecitazioni s	u platea	di fondaz	zione	combo 2								
sezione	X (m)	DX (m)	qz,inf k N /m²	u,inf kN/m²	qz,sup kN/m²	V,inf kN/m	V,sup kN/m	M,inf kNm/m	M,sup kNm/m	V,tot kN/m	M,tot kNm/m	spessore (m)
sez 0 - (valle)	0.00	0.00	239.75	0.00	-22.50	0.00	0.00	0.00	0.00	0.00	0.00	0.90
sez 1 - (valle)	-0.15	0.15	230.95	0.00	-22.50	35.30	-3.38	2.66	-0.25	31.93	2.41	0.90
sez 2 - (valle)	-0.30	0.30	222.15	0.00	-22.50	69.29	-6.75	10.52	-1.01	62.54	9.51	0.90
sez 3 - (valle)	-0.45	0.45	213.34	0.00	-22.50	101.95	-10.13	23.38	-2.28	91.82	21.11	0.90
sez 4 - (valle)	-0.60	0.60	204.54	0.00	-22.50	133.29	-13.50	41.04	-4.05	119.79	36.99	0.90
					parame	nto mur	0					
sez 5 - (monte)	-1.20	3.10	169.33	0.00	-156.90	280.70	-486.39	372.23	-753.90	-205.69	-381.67	0.90
sez 6 - (monte)	-1.82	2.48	132.95	0.00	-156.90	187.00	-389.11	228.41	-482.50	-202.11	-254.09	0.90
sez 7 - (monte)	-2.44	1.86	96.56	0.00	-156.90	115.85	-291.83	135.69	-271.41	-175.98	-135.72	0.90
sez 8 - (monte)	-3.06	1.24	60.18	0.00	-156.90	67.26	-194.56	80.09	-120.62	-127.30	-40.53	0.90
sez 9 - (monte)	-3.68	0.62	23.79	0.00	-156.90	41.23	-97.28	47.63	-30.16	-56.05	17.47	0.90
sez 10 - (monte)	-4.30	0.00	0.00	0.00	-156.90	0.00	0.00	0.00	0.00	0.00	0.00	0.90

LEGENDA:

X= ascissa sezione platea

DX= distanza sezione da lembo estremo

qz,inf= carico distribuito dovuto alla reazione di sottofondo del terreno

u,inf= pressione idrostatica sotto platea di fondazione

qz,sup= carico distribuito verso il basso

V= sforzo di taglio (+: verso l'alto)

M= momento flettente (+: tese le fibre di intradosso platea)

Sollecitazioni s	su platea	di fondaz	zione	combo 3								
sezione	X (m)	DX (m)	qz,inf k N/ m²	u,inf kN/m²	qz,sup kN/m²	V,inf kN/m	V,sup kN/m	M,inf kNm/m	M,sup kNm/m	V,tot k N/ m	M,tot kNm/m	spessore (m)
sez 0 - (valle)	0.00	0.00	243.19	0.00	-22.50	0.00	0.00	0.00	0.00	0.00	0.00	0.90
sez 1 - (valle)	-0.15	0.15	235.90	0.00	-22.50	35.93	-3.38	2.71	-0.25	32.56	2.46	0.90
sez 2 - (valle)	-0.30	0.30	228.61	0.00	-22.50	70.77	-6.75	10.72	-1.01	64.02	9.71	0.90
sez 3 - (valle)	-0.45	0.45	221.32	0.00	-22.50	104.52	-10.13	23.89	-2.28	94.39	21.61	0.90
sez 4 - (valle)	-0.60	0.60	214.03	0.00	-22.50	137.17	-13.50	42.03	-4.05	123.67	37.98	0.90
					parame	nto mur	0					
sez 5 - (monte)	-1.20	3.10	184.87	0.00	-156.90	339.55	-486.39	405.64	-753.90	-146.84	-348.26	0.90
sez 6 - (monte)	-1.82	2.48	154.73	0.00	-156.90	234.28	-389.11	228.72	-482.50	-154.84	-253.78	0.90
sez 7 - (monte)	-2.44	1.86	124.60	0.00	-156.90	147.68	-291.83	111.28	-271.41	-144.15	-160.12	0.90
sez 8 - (monte)	-3.06	1.24	94.47	0.00	-156.90	79.77	<i>-</i> 194.56	41.74	-120.62	-114.78	-78.89	0.90
sez 9 - (monte)	-3.68	0.62	64.33	0.00	-156.90	30.54	-97.28	8.50	-30.16	-66.73	-21.65	0.90
sez 10 - (monte)	-4.30	0.00	34.20	0.00	-156.90	0.00	0.00	0.00	0.00	0.00	0.00	0.90

LEGENDA

X= ascissa sezione platea

DX= distanza sezione da lembo estremo

qz,inf= carico distribuito dovuto alla reazione di sottofondo del terreno

u,inf= pressione idrostatica sotto platea di fondazione

qz,sup= carico distribuito verso il basso

V= sforzo di taglio (+: verso l'alto)

M= momento flettente (+: tese le fibre di intradosso platea)

Coefficiente di sicurezza

POTENZIAMENTO DELLA LINEA RHO-ARONA PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO CODIFICA

MDL1 12 D 26 XX

DOCUMENTO XX 00 00 000 FOGLIO 94 di 155

REV.

Χ

Verifica a ribaltamento Azioni (comb.:1)				Mstab kNm/m	Mrib kNm/m
Muro + platea di fondazione + forze i Terrapieno + forze inerziali	inerziali			275.51 852.50	11.94 42.16
Spinta terreno a monte				0.00	185.52
			Σ=	1128.01	239.62
Coefficiente di sicurezza	η _r =	4.71		>= 1.5	
Azioni (comb.:2)				Mstab kNm/m	Mrib kNm/m
Muro + platea di fondazione + forze	inerziali			275.51	11.94
Terrapieno + forze inerziali				852.50	42.16
Spinta terreno a monte				0.00	185.52
Spinta sovraccarico a monte Forze applicate in sommità del muro				0.00 7.20	162.25 24.00
Spinta dell'acqua	•			0.00	0.00
Sovraccarico a valle				0.00	0.00
Incremento di spinta terreno a monte	e in fase d	li sisma		0.00	42.39
Sovraccarico aggiuntivo laterale - lat				0.00	0.00
Sottospinta idraulica sotto platea di f		е		0.00	0.00
			Σ=	1135.21	468.26

 $\eta_r =$

2.42

>= 1.5

GRUPPO FERROVIE DELLO STATO	QUADRUP	LICAME	NTO RHO	-PAF	RABIAGO E I	RACCORI	00 Y
Relazione di calcolo muri di sostegno se ferroviaria	de commessa mdl1	LOTTO 12	CODIFICA D 26 XX	`	DOCUMENTO XX 00 00 000	REV.	FOGLIO 95 di 155
Verifica allo scorrimento							
(verifica alla traslazione magrone terreno - inclinazione <u>Azioni (comb.:1)</u>	e piano di slittan	nento = 0	•	=x √m	Fz k N /m	Ft kN/m	Fn kN/m
Muro + platea di fondazione + forze inerziali				.87	-171.75	6.87	-171.75
Terrapieno + forze inerziali				2.40	-310.00	12.40	-310.00
Spinta terreno a monte			94	1.33	0.00	94.33	0.00
			Σ= 11:	3.60	-481.75	113.60	-481.75
Coefficiente di sicurezza η_t =	2.42		>= 1	.3			
Azioni (comb.:2)				-x √m	Fz kN/m	Ft kN/m	Fn kN/m
Muro + platea di fondazione + forze inerziali			6.	.87	-171.75	6.87	-171.75
Terrapieno + forze inerziali			12	.40	-310.00	12.40	-310.00
Spinta terreno a monte				.33	0.00	94.33	0.00
Spinta sovraccarico a monte				.00	0.00	55.00	0.00
Forze applicate in sommità del muro				.00	-8.00	0.00	-8.00
Spinta dell'acqua Sovraccarico a valle				.00	0.00	0.00	0.00
Incremento di spinta terreno a monte in fase di sisma				.00 .87	0.00 0.00	0.00 11.87	0.00 0.00
Sovraccarico aggiuntivo laterale - lato monte				.00	0.00	0.00	0.00
Sottospinta idraulica sotto platea di fondazione				00	0.00	0.00	0.00
			Σ= 180	0.47	-489.75	180.47	-489.75
Coefficiente di sicurezza $\eta_t =$	1.55		>= 1	.3			

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 96 di 155

Riepilogo delle sollecitazioni (comb.: 2 e 3)	spessore (m)	N kN/m	T kN/m	M kNm/m
Paramento verticale - sezione di spiccato	0.60	-83.00	140.79	324.00
Riepilogo delle sollecitazioni (comb.: 2)	spessore (m)	N kN/m	T kN/m	M kNm/m
Mensola lato valle - sezione filo paramento verticale	0.90	0.00	119.79	36.99
Mensola lato monte - sezione filo paramento verticale	0.90	0.00	-205.69	-420.17
Riepilogo delle sollecitazioni (comb.: 3)	spessore (m)	N kN/m	T kN/m	M kNm/m
Mensola lato valle - sezione filo paramento verticale	0.90	0.00	123.67	37.98
Mensola lato monte - sezione filo paramento verticale	0.90	0.00	-146.84	-348.26

N (-) : sforzo normale di compressione

M (+) : momento flettente che tende le fibre lato terreno - paramento verticale

: momento flettente che tende le fibre lato intradosso - <u>platea di fondazione</u>

POTENZIAMENTO DELLA LINEA RHO-ARONA

PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO CODIFICA MDL1 12 D 26 XX

DOCUMENTO XX 00 00 000 REV. **FOGLIO**

Х

97 di 155

Muri di sostegno con fondazioni superficiali

Verifica al carico limite dell'insieme fondazione-terreno (Meyerhof)

2.00

Parametri geotecnici terreno di fondazione

19.00 KN/m³ peso specifico terreno di fondazione

φ' = 35.00 angolo di attrito interno KN/m² c' = 0.00 coesione

kN

φ'= 0.61087 rad

20.00 KN/m³ peso specifico terreno di riempimento (laterale)

Caratteristiche geometriche della fondazione

B = 4.50 m larghezza della fondazione

L = 1.00 m lunghezza della fondazione

D = 0.85 m approfondimento della fondazione

Azioni esterne e pressione applicata

comb 1

180.47 H = V =

azione orizzontale

e = M/V = B* = B-2e = 0.79

eccentricità del carico verticale V (in direzione trasversale --> B) 2.92 m < 3 m larghezza ridotta in relazione alla eccentricità del carico verticale

489.75 kN M = 386.01 kNm azione verticale momento flettente

D/B* = 0.29 $q_{es}^* = V/(B^*L) =$ A =

167.51 KN/m² 0.35 rad

pressione media di esercizio applicata sull'area ridotta angolo di inclinazione della risultante misurata dalla verticale

θ= 20.23°

Valutazione del carico limite dell'insieme fondazione-terreno e del coefficiente di sicurezza

 $q_{lim} = c' N_c s_c d_c i_c + \gamma_r D N_q s_q d_q i_q + 1/2 B^* \gamma N_\gamma s_\gamma d_\gamma i_\gamma$

 $q_{lim} = 0.00 + 359.18 + 194.06 = 553.24 \text{ KN/m}^2$ KN/m² q*_{es}= 167.51

 $F = q_{lim}/q_{es}^* = 553.24/167.51 = 3.30 > 2.00$

POTENZIAMENTO DELLA LINEA RHO-ARONA

PROGETTO DEFINITIVO PER APPALTO INTEGRATO

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO CODIFICA MDL1 12 D 26 XX

DOCUMENTO XX 00 00 000

FOGLIO 98 di 155

RFV

Χ

Muri di sostegno con fondazioni superficiali

Verifica al carico limite dell'insieme fondazione-terreno (Meyerhof)

F= 2.00

Parametri geotecnici terreno di fondazione

19.00 KN/m³ peso specifico terreno di fondazione

φ' = 35.00 angolo di attrito interno φ'= 0.61087 rad

c' = 0.00 KN/m² coesione

KN/m³ 20.00 peso specifico terreno di riempimento (laterale)

Caratteristiche geometriche della fondazione

B = 4.50 larghezza della fondazione 1.00 m lunghezza della fondazione 0.85 approfondimento della fondazione

Azioni esterne e pressione applicata

322.03

kNm

2 comb.

H= 180.47 kN azione orizzontale V = 596.39 kΝ azione verticale

e = M/V = 0.54 B* = B-2e =

eccentricità del carico verticale V (in direzione trasversale --> B) 3.42 m < 3 m larghezza ridotta in relazione alla eccentricità del carico verticale

D/B* = 0.25

174.38 KN/m² s= V/(B*L) = θ= 0.29 rad

pressione media di esercizio applicata sull'area ridotta angolo di inclinazione della risultante misurata dalla verticale

16.84°

Valutazione del carico limite dell'insieme fondazione-terreno e del coefficiente di sicurezza

momento flettente

 $q_{lim} = c' N_c s_c d_c i_c + \gamma_r D N_q s_q d_q i_q + 1/2 B^* \gamma N_\gamma s_\gamma d_\gamma i_\gamma$ $q_{lim} = 0.00 + 391.93 + 340.63 = 732.55 \text{ KN/m}^2$

KN/m² q*_{es}= 174.38

 $F = q_{lim}/q_{es}^* = 732.55/174.38 = 4.20 > 2.00$

Le verifiche risultano soddisfatte.

11.2.1 Verifiche strutturali

11.2.1.1 Muro frontale

Le massime sollecitazioni agenti nella sezione di spiccato del muro frontale sono:

M = 324.00 kNm

T = 140.79 kN

N = -83.00 kN

La sezione è armata con ϕ 20/10 lato interno e ϕ 20/20 lato esterno. Vengono riportate le verifiche tensionali.

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 0000
 X
 99 di 155

Sollec	itazioni	ioni Carpenteria		Armatura			Verifiche tensionali		
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]
-83.00	324.00	100	80	1	5 ¢ 20 (15.71)	6.2	22.34	-4.11	142.05
				2 10 \(\phi\) 20 (31.42) 73.8		(dal bordo sup	eriore)		

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni		Verifiche tensionali					
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm 2]> T/ σ		
140.79	100.0	73.8	0.21	0.67 (Rck 35)	31.42 > 5.52		

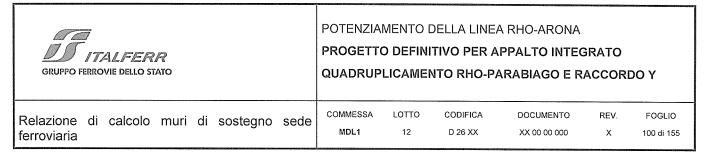
11.2.1.2 Plinto lato monte

La zattera di fondazione è armata con $\phi 20/10$ superiormente e $\phi 20/20$ inferiormente.

I tassi di lavoro risultano:

Sollec	Sollecitazioni Carpenteria		Armatura			Verifiche tensionali			
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]
-	-420.17	100	90	1	10 ¢ 20 (31.42)	6.2	22.41	-4.25	174.83
				2 5 φ 20 (15.71) 83.8		(dal bordo infe	riore)		

Verifica delle tensioni tangenziali - sezione solo cls


Sollecitazioni					
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm ²]> T/ σ
205.69	100.0	83.8	0.27	0.60 (Rck 30)	15.71 > 8.07

11.2.1.3 Plinto lato valle

La zattera di fondazione è armata con $\phi 20/20$ superiormente e $\phi 20/10$ inferiormente.

I tassi di lavoro risultano:

Solled	itazioni	Carpe	enteria		Armatura	atura Verifiche tensionali		Verifiche tensionali	
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]
_	37.98	100	90	1	5 \$ 20 (15.71)	6.2	22.41	-0.38	15.80
				2	10 \$\phi\$ 20 (31.42)	83.8	(dal bordo superiore)		

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni					
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm 2]> T/ σ
123.67	100.0	83.8	0.16	0.60 (Rck 30)	31.42 > 4.85

Le verifiche risultano soddisfatte.

12 B1 – MURO 2.0<H≤3.0 M CON BARRIERA ANTIRUMORE

Dati geometrici	H tot =3.80 [m]		
muro	altezza muro	3.00	m
	spessore muro superiore	0.60	m
	spessore muro inferiore	0.60	m
	inclinazione muro - lato monte	0.00	0
	inclinazione muro - lato valle	0.00	٥
	spessore muro inferiore - lato monte	0.00	m
	spessore muro inferiore - lato valle	0.00	m
	ababa white a data walla	0.50	
platea di fondazione	sbalzo platea - lato valle	0.50	m
	spessore sbalzo platea - lato valle	0.80	m
	spessore sbalzo platea filo muro - lato valle	0.80	m
	sbalzo platea - lato monte	2.40	m
	spessore sbalzo platea - lato monte	0.80	m
	spessore sbalzo platea filo muro - lato monte	0.80	m
	inclinazione magrone sottofondo	0.00	0
	lunghezza platea	3.50	m
terrapieno	inclinazione terrapieno	0.00	٥
ιοπαριοπο	lunghezza terrapieno superiore	2.40	m
	lunghezza terrapieno superiore	2.40	m
	altezza totale terrapieno a monte	3.80	m
	·		

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 101 di 155

Dati geotecnici

terrapieno	angolo di attrito	35.0	o
	angolo di attrito muro-terrapieno	0.6	o
	coefficiente di spinta attiva - formula generale: $ka(\alpha,\delta,\phi,\iota)$	0.27099	
	coesione	0.0	kN/m²
	peso di volume	20.0	kN/m³
terreno di fondazione	angolo di attrito	35.0	o
	coefficiente di attrito f= tan (KTF x AATF)	0.5715	
	fattore di riduzione angolo di attrito	0.9	
	coesione	0.0	kN/m²
	peso di volume	19.00	MPa
	tensione ammissibile sul terreno (calcolo reazioni terreno)	0.15	MPa

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	x	102 di 155

Dati di carico

azione sismica	grado di sismicità (categoria zona sismica: I, II, III)	2	(2-6-9-12)
	coefficiente di intensità sismica	0.00	(= 0 0 .=)
	angolo di attrito muro-terrapieno in fase di sisma	0.0	۰
	coefficiente di spinta attiva in presenza di sisma = A x KAS*	-	
	coefficiente di incremento di spinta attiva in presenza di sisma = KAS-KA		
calcestruzzo	peso di volume	25.00	kN/m³
sovraccarico	Sovraccarico a monte in sommità del muro	54.14	kN/m²
uniforme	Percentuale sovraccarico su platea	100.00	(0-100 %)
	Sovraccarico a valle	0.00	kN/m²
	Percentuale sovraccarico su platea	100.00	(0-100 %)
falda	livello acqua falda da intradosso platea	0.00	m
	peso di volume	10.00	kN/m³
	pressione idrostatica a monte	0	(1= si; 0= no)
	sottospinta idraulica sotto platea di fondazione	0	(1= si; 0= no)
carichi applicati	Sovraccarico aggiuntivo laterale - lato monte	0.00	kN/m²
- uniforme	distanza di applicazione da filo posteriore platea di fondazione (+ verso monte)	0.00	m
	distanza di applicazione da intradosso platea di fondazione (+ verso alto)	2.40	m
	angolo di diffusione nel terreno	35.00	0
- forze concentrate	forza verticale (+ verso l'alto)	-36.49	kN/m
	braccio orizzontale x forza verticale (+ verso monte)	0.30	m
	forza orizzontale (+ verso valle)	12.78	kN/m
	braccio verticale x forza orizzontale (+ verso l'alto)	0.00	m
	coppia (+ oraria)	19.24	kNm/m

Relazione ferroviaria	di calcolo	muri di	sostegno sede	COMMESSA MDL1	LOTTO 12	CODIFICA D 26 XX	DOCUMENTO XX 00 00 000	REV.	FOGLIO 103 di 155
sezione	z	s _M (z)	Xo	σ _v	σ _h	u	N	T	M
	(m)	(m)	(m)	kN/m²	kN/m²	kN/m²	kN/m	kN/m	kNm/m
10	3.00	0.60	-0.80	-54.14	14.67	0.00	-36.49	12.78	19.24
9	2.70	0.60	-0.80	-60.14	16.30	0.00	-40.99	17.43	23.76
8	2.40	0.60	-0.80	-66.14	17.92	0.00	-45.49	22.56	29.75
7	2.10 1.80	0.60 0.60	-0.80 -0.80	-72.14 -78.14	19.55 21.18	0.00	-49.99 -54.49	28.18 34.29	37.35 46.70
5	1.50	0.60	-0.80	-84.14	22.80	0.00	-58.99	40.88	57.97
4	1.20	0.60	-0.80	-90.14	24.43	0.00	-63.49	47.97	71.28
3	0.90	0.60	-0.80	-96.14	26.05	0.00	-67.99	55.54	86.80
2	0.60	0.60	-0.80	-102.14	27.68	0.00	-72.49	63.60	104.66
1	0.30	0.60	-0.80	-108.14	29.30	0.00	-76.99	72.15	125.01
0	0.00	0.60	-0.80	-114.14	30.93	0.00	-81.49	81.18	147.99

LEGENDA:

 $s_M(z)$ = spessore sezione muro

z = quota sezione da estradosso platea lato monte (+ verso l'alto)

Xo= distanza baricentro sezione da spigolo inferiore sbalzo platea lato valle (s.d.r.)

 σ_v = tensione verticale dietro al muro (+ verso l'alto)

 σ_h = tensione orizzontale dietro al muro (+ verso valle)

u= pressione idrostatica dietro al muro

N= sforzo normale (-: compressioni)

T= sforzo di taglio (+: verso valle)

M= momento flettente (+: tese le fibre lato monte)

Riepilogo delle sollec. riferite al baricentro della platea di fondaz. - lato intrad. (comb.: 2)

azione orizzontale $F_{x} = 107.66 \text{ kN/m}$ azione verticale $F_{z} = -295.49 \text{ kN/m}$ momento flettente $M_{p,G} = 221.52 \text{ kNm/m}$

Riepilogo delle sollec. riferite al baricentro della platea di fondaz. - lato intrad. (comb.: 3)

azione orizzontale $F_{x} = 107.66 \text{ kN/m}$ azione verticale $F_{z} = -425.43 \text{ kN/m}$ momento flettente $M_{p,G} = 150.05 \text{ kNm/m}$

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	х	104 di 155

Sollecitazioni s	u platea	di fondaz	zione	combo 2								
sezione	X (m)	DX (m)	qz,inf kN/m²	u,inf kN/m²	qz,sup kN/m²	V,inf kN/m	V,sup kN/m	M,inf kNm/m	M,sup kNm/m	V,tot k N /m	M,tot kNm/m	spessore (m)
sez 0 - (valle)	0.00	0.00	196.93	0.00	-20.00	0.00	0.00	0.00	0.00	0.00	0.00	0.80
sez 1 - (valle)	-0.13	0.13	188.72	0.00	-20.00	24.10	-2.50	1.52	-0.16	21.60	1.36	0.80
sez 2 - (valle)	-0.25	0.25	180.52	0.00	-20.00	47.18	-5.00	5.98	-0.63	42.18	5.36	0.80
sez 3 - (valle)	-0.38	0.38	172.32	0.00	-20.00	69.23	-7.50	13.27	-1.41	61.73	11.86	0.80
sez 4 - (valle)	-0.50	0.50	164.12	0.00	-20.00	90.26	-10.00	23.25	-2.50	80.26	20.75	0.80
					parame	nto mur	0					
sez 5 - (monte)	-1.10	2.40	124.74	0.00	-134.14	142.47	-321.94	129.48	-386.32	-179.46	-256.84	0.80
sez 6 - (monte)	-1.58	1.92	93.25	0.00	-134.14	90.15	-257.55	74.26	-247.25	-167.40	-172.99	0.80
sez 7 - (monte)	-2.06	1.44	61.75	0.00	-134.14	52.95	-193.16	40.52	-139.08	-140.21	-98.56	0.80
sez 8 - (monte)	-2.54	0.96	30.25	0.00	-134.14	30.87	-128.77	21.00	-61.81	-97.90	-40.81	0.80
sez 9 - (monte)	-3.02	0.48	0.00	0.00	-134.14	0.00	-64.39	0.00	-15.45	-64.39	-15.45	0.80
sez 10 - (monte)	-3.50	0.00	0.00	0.00	-134.14	0.00	0.00	0.00	0.00	0.00	0.00	0.80

LEGENDA:

X= ascissa sezione platea

DX= distanza sezione da lembo estremo

qz,inf= carico distribuito dovuto alla reazione di sottofondo del terreno

u,inf= pressione idrostatica sotto platea di fondazione

qz,sup= carico distribuito verso il basso

V= sforzo di taglio (+: verso l'alto)

M= momento flettente (+: tese le fibre di intradosso platea)

Sollecitazioni su	nlataa	di fondaziona	combo 3
SUIIECILAZIOI II SU	pialea	ui ionuazione	COITIDO S

sezione	X (m)	DX (m)	qz,inf kN/m²	u,inf kN/m²	qz,sup kN/m²	V,inf kN/m	V,sup k N /m	M,inf kNm/m	M,sup kNm/m	V,tot kN/m	M,tot kNm/m	spessore (m)
sez 0 - (valle)	0.00	0.00	195.04	0.00	-20.00	0.00	0.00	0.00	0.00	0.00	0.00	0.80
sez 1 - (valle)	-0.13	0.13	189.80	0.00	-20.00	24.05	-2.50	1.51	-0.16	21.55	1.35	0.80
sez 2 - (valle)	-0.25	0.25	184.55	0.00	-20.00	47.45	-5.00	5.99	-0.63	42.45	5.36	0.80
sez 3 - (valle)	-0.38	0.38	179.30	0.00	-20.00	70.19	-7.50	13.34	-1.41	62.69	11.94	0.80
sez 4 - (valle)	-0.50	0.50	174.05	0.00	-20.00	92.27	-10.00	23.51	-2.50	82.27	21.01	0.80
					paramei	nto mur	0					
sez 5 - (monte)	-1.10	2.40	148.85	0.00	-134.14	236.28	-321.94	235.16	-386.32	-85.65	-151.16	0.80
sez 6 - (monte)	-1.58	1.92	128.69	0.00	-134.14	169.68	-257.55	138.12	-247.25	-87.87	-109.13	0.80
sez 7 - (monte)	-2.06	1.44	108.53	0.00	-134.14	112.74	-193.16	70.72	-139.08	-80.42	-68.35	0.80
sez 8 - (monte)	-2.54	0.96	88.37	0.00	-134.14	65.49	-128.77	28.34	-61.81	-63.29	-33.47	0.80
sez 9 - (monte)	-3.02	0.48	68.21	0.00	-134.14	27.90	-64.39	6.31	-15.45	-36.48	-9.14	0.80
sez 10 - (monte)	-3.50	0.00	48.06	0.00	-134.14	0.00	0.00	0.00	0.00	0.00	0.00	0.80

LEGENDA:

X= ascissa sezione platea

DX= distanza sezione da lembo estremo

qz,inf= carico distribuito dovuto alla reazione di sottofondo del terreno

u,inf= pressione idrostatica sotto platea di fondazione

qz,sup= carico distribuito verso il basso

V= sforzo di taglio (+: verso l'alto)
M= momento flettente (+: tese le fibre di intradosso platea)

Relazione di calcolo muri di sostegno sede ferroviaria

Coefficiente di sicurezza $\eta_r =$

LOTTO COMMESSA CODIFICA MDL1 12 D 26 XX

DOCUMENTO XX 00 00 000

REV. FOGLIO 105 di 155

Х

Landard Commencer Commence	The second secon	<u> </u>			
Verifica a ribaltamento				Mstab	Mrib
Azioni (comb.:1)				kNm/m	kNm/m
Muro + platea di fondazione				158.50	0.00
·					
Terrapieno				331.20	0.00
Spinta terreno a monte				0.00	49.57
			Σ=	489.70	49.57
Coefficiente di sicurezza	$\eta_r =$	9.88		>= 1.5	
				Mstab	Mrib
Azioni (comb.:2)				kNm/m	kNm/m
Muro + platea di fondazione				158.50	0.00
Terrapieno				331.20	0.00
Spinta terreno a monte				0.00	49.57
Spinta sovraccarico a monte				0.00	105.93
Forze applicate in sommità del n	nuro			29.19	67.81
Spinta dell'acqua				0.00	0.00
Sovraccarico a valle				0.00	0.00
Incremento di spinta terreno a m	onte in fase	di sisma		0.00	0.00
Sovraccarico aggiuntivo laterale	- lato monte			0.00	0.00
Sottospinta idraulica sotto platea	di fondazioi	пе		0.00	0.00
			Σ=	518.89	223.30

2.32 >= 1.5

Coefficiente di sicurezza

 $\eta_t =$

POTENZIAMENTO DELLA LINEA RHO-ARONA PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPI ICAMENTO RHO-PARABIAGO E RACCORDO N

>= 1.3

GRUPPO FERROVIE DELLO STATO	QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y								
Relazione di calcolo muri di sostegno sede ferroviaria	COMMESSA MDL1				DOCUMENTO XX 00 00 000	REV.	FOGLIO 106 di 155		
Verifica allo scorrimento		t O	0)	-	_	- ,	_		
(verifica alla traslazione magrone terreno - inclinazione pia Azioni (comb.:1)	ano di silitami	ento = U)	Fx kN/m	Fz kN/m	Ft kN/m	Fn kN/m		
Muro + platea di fondazione				0.00	-115.00	0.00	-115.00		
Terrapieno				0.00	-144.00	0.00	-144.00		
Spinta terreno a monte				39.13	0.00	39.13	0.00		
			Σ=	39.13	-259.00	39.13	-259.00		
Coefficiente di sicurezza $\eta_t =$	3.78			>= 1.3					
				Fx	Fz	Ft	Fn		
Azioni (comb.:2)				kN/m	kN/m	kN/m	kN/m		
Muro + platea di fondazione				0.00	-115.00	0.00	-115.00		
Terrapieno				0.00	-144.00	0.00	-144.00		
Spinta terreno a monte Spinta sovraccarico a monte				39.13 55.75	0.00 0.00	39.13 55.75	0.00 0.00		
Forze applicate in sommità del muro				12.78	-36.49	12.78	-36.49		
Spinta dell'acqua				0.00	0.00	0.00	0.00		
Sovraccarico a valle				0.00	0.00	0.00	0.00		
Incremento di spinta terreno a monte in fase di sisma				0.00	0.00	0.00	0.00		
Sovraccarico aggiuntivo laterale - lato monte				0.00	0.00	0.00	0.00		
Sottospinta idraulica sotto platea di fondazione				0.00	0.00	0.00	0.00		
			Σ=	107.66	-295.49	107.66	-295.49		

1.57

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	х	107 di 155

	Z-DE-CRITERIA WARRENCE CONTROL			
Riepilogo delle sollecitazioni (comb.: 2 e 3)	spessore (m)	N kN/m	T kN/m	M kNm/m
	(111)	KIN/III	KIN/III	KINIII/III
Paramento verticale - sezione di spiccato	0.60	-81.49	81.18	147.99
Riepilogo delle sollecitazioni (comb.: 2)	spessore	N	T	M
	(m)	kN/m	kN/m	kNm/m
Mensola lato valle - sezione filo paramento verticale	0.80	0.00	80.26	20.75
Mensola lato monte - sezione filo paramento verticale	0.80	0.00	-179.46	-256.84
p =========	0.00	0.00	., 0. 10	200.01
Riepilogo delle sollecitazioni (comb.: 3)	spessore	N	Т	M
	(m)	kN/m	kN/m	kNm/m
Mensola lato valle - sezione filo paramento verticale	0.80	0.00	82.27	21.01
Maria de la la companya de la compa				
Mensola lato monte - sezione filo paramento verticale	0.80	0.00	-85.65	-151.16

N (-) : sforzo normale di compressione

M (+) : momento flettente che tende le fibre lato terreno - paramento verticale

: momento flettente che tende le fibre lato intradosso - platea di fondazione

POTENZIAMENTO DELLA LINEA RHO-ARONA

PROGETTO DEFINITIVO PER APPALTO INTEGRATO

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

LOTTO COMMESSA CODIFICA MDL1 12 D 26 XX

DOCUMENTO XX 00 00 000

RFV **EOGLIO** Х 108 di 155

Muri di sostegno con fondazioni superficiali

Verifica al carico limite dell'insieme fondazione-terreno (Meyerhof)

F= 2.00

Parametri geotecnici terreno di fondazione

19.00 KN/m³ peso specifico terreno di fondazione

φ'= 0.61087 rad φ' = 35.00 angolo di attrito interno

c' = 0.00 KN/m² coesione

KN/m³ 20.00 peso specifico terreno di riempimento (laterale)

Caratteristiche geometriche della fondazione

B = 3.70 larghezza della fondazione L= 1.00 m lunghezza della fondazione approfondimento della fondazione

Azioni esterne e pressione applicata

1 comb.

H = 83.31 kN azione orizzontale e = M/V =0.36 eccentricità del carico verticale V (in direzione trasversale --> B) V = 299.87 kΝ azione verticale B* = B-2e = 2.97 m < 3 m larghezza ridotta in relazione alla eccentricità del carico verticale

109.13 kNm momento flettente D/B* = 0.29 $q_{es}^* = V/(B^*L) =$ 100.89 KN/m²

 $\theta =$ 0.27 rad pressione media di esercizio applicata sull'area ridotta angolo di inclinazione della risultante misurata dalla verticale

15.53 °

Valutazione del carico limite dell'insieme fondazione-terreno e del coefficiente di sicurezza

 $q_{lim} = c' N_c s_c d_c i_c + \gamma_r D N_q s_q d_q i_q + 1/2 B^* \gamma N_\gamma s_\gamma d_\gamma i_\gamma$ $q_{lim} = 0.00 + 408.87 + 342.58 = 751.46 \text{ KN/m}^2$ KN/m² q*_{es}= 100.89

 $F = q_{lim}/q_{es}^* = 751.46/100.89 = 7.45 > 2.00$

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO CODIFICA

MDL1 12 D 26 XX

DOCUMENTO XX 00 00 000 REV. FOGLIO X 109 di 155

Muri di sostegno con fondazioni superficiali

Verifica al carico limite dell'insieme fondazione-terreno (Meyerhof)

F = 2.00

Parametri geotecnici terreno di fondazione

γ = 19.00 KN/m³ peso specifico terreno di fondazione

 $\phi' = 35.00$ ° angolo di attrito interno $\phi' = 0.61087$ rad

c' = 0.00 KN/m² coesions

 $\gamma_r =$ **20.00** KN/m³ peso specifico terreno di riempimento (laterale)

Caratteristiche geometriche della fondazione

 B =
 3.70 m
 larghezza della fondazione

 L =
 1.00 m
 lunghezza della fondazione

 D =
 0.85 m
 approfondimento della fondazione

Azioni esterne e pressione applicata

comb 2 H= 83.31 kN azione orizzontale e = M/V = 0.09 eccentricità del carico verticale V (in direzione trasversale --> B) V = 430.43 kN azione verticale B* = B-2e = 3.53 m < 3 m larghezza ridotta in relazione alla eccentricità del carico verticale M = 37.32 kNm momento flettente D/B* = 0.24

 $q^*_{es} = V/(B^*L) = 122.05 \text{ KN/m}^2 \text{ pres}$ $\theta = 0.19 \text{ rad ange}$ $\theta = 10.95 ^\circ$

pressione media di esercizio applicata sull'area ridotta angolo di inclinazione della risultante misurata dalla verticale

Valutazione del carico limite dell'insieme fondazione-terreno e del coefficiente di sicurezza

$$\begin{split} q_{lim} &= c' \; N_c \; s_c \; d_c \; i_c + \gamma_r \; D \; N_q \; s_q \; d_q \; i_q + 1/2 \; B^* \; \gamma \; N_\gamma \; s_\gamma \; d_\gamma \; i_\gamma \\ q_{lim} &= 0.00 + 456.85 + 614.70 = 1071.5 \; KN/m^2 \\ q^*_{es} &= 122.05 \qquad KN/m^2 \end{split}$$

 $F = q_{lim} / q_{es}^* = 1071.55/122.05 = 8.78 > 2.00$

Le verifiche risultano soddisfatte.

12.1.1 Verifiche strutturali

12.1.1.1 Muro frontale

Le massime sollecitazioni agenti nella sezione di spiccato del muro frontale sono:

M = 147.99 kNm

T = 81.18 kN

N = -81.49 kN

La sezione è armata con ϕ 20/20 lato interno e ϕ 14/20 lato esterno. Vengono riportate le verifiche tensionali.

POTENZIAMENTO DELLA LINEA RHO-ARONA

PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO MDL1 12

CODIFICA D 26 XX

DOCUMENTO XX 00 00 000

REV. FOGLIO Х 110 di 155

Solled	itazioni	Carpe	enteria		Armatura			Verifiche tensio	nali
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	ರ₀ [MPa]	σ₅ [MPa]
-81.49	147.99	100	60	1	5 ¢ 14 (7.70)	5.9	12.65	-5.02	163.47
				2	5 \$ 20 (15.71)	53.8	(dal bordo su	periore)	

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni					
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	$A*I,inf [cm^2] > T/\sigma$
81.18	100.0	53.8	0.17	0.67 (Rck 35)	15.71 > 3.18

Verifica a formazione fessure - Sezione: Spiccato muro frontale

Sollecitazioni di verifica

N= -81.49 [KN] M = 147.99 [KNm] sforzo assiale (+ trazione)

momento flettente (+ tende le fibre inferiori)

Materiali

cls Rck = 35.00 [MPa]

 $f_{ctk} = 0.7 x[0.27 x (Rck)^{2/3}] =$ 2.02 [MPa] $f_{cfk} = 0.7 \times 1.2 \times [0.27 \times (Rck)^{2/3}] =$ 2.43 [MPa]

resistenza caratteristica a trazione per sforzo normale resistenza caratteristica a trazione per flessione

Caratteristiche geometriche sezione rettangolare (solo cls)

R = 100.00 [cm] base H= 60.00 [cm] altezza y_{G,cls} = H/2 = 30.00 [cm]

6000.0 [cm²] A_{cls} =

As [cm²]

posizione baricentro

 $J_{cls} = 1/12 B H^3 =$ 1800000.0 [cm⁴] momento di inerzia 60000.0 [cm³] $W_{cls} = J_{cls} / (H/2)=$ modulo resistente ai lembi

hi_sup [cm]

Caratteristiche geometriche (l° stadio)

armatura superiore

yi= H - yG_sup=

 $W_{i,i} = J_i / y_i =$

10.00

1° livello	5 \ \ 14 (7.70)	5.9	5.2
2° livello	_	-	-
3° livello	-	-	-
armatura inferiore	As [cm ²]	hi_inf [cm]	copriferro [cm]
1° livello	5 \phi 20 (15.71)	6.2	5.2
2° livello	-	-	-
3° livello	_	-	-

29.70 [cm]

65092.6 [cm³]

 $y_{G_sup} = S_{xi} / A_i =$ 30.30 [cm] A_i = BH+n Σ As = 6234.0 [cm²] $J_i = J_i' - A_i y_{G_sup}^2 =$ 1933111.5 [cm4] y_s= y_{G_sup}= 30.30 [cm] $W_{i,s} = J_i / y_s =$ 63794.6 [cm³]

posizione baricentro sezione omogeneizzata

area sezione omogeneizzata

copriferro [cm]

momento di inerzia sezione omogeneizzata distanza dal baricentro del lembo superiore

modulo resistente al lembo superiore sezione omogeneizzata distanza dal baricentro del lembo inferiore - trazione

modulo resistente al lembo inferiore sezione omogeneizzata - trazione

Trazione nel calcestruzzo

[MPa] $\sigma_{c(N)} = N/Ai =$ $\sigma_{c(M)} = M / Wt =$ [MPa]

[MPa] $\sigma_{c.tot} =$

< 2.43

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 111 di 155

12.1.2 Plinto lato monte

La zattera di fondazione è armata con $\phi 16/10$ superiormente e $\phi 16/20$ inferiormente.

I tassi di lavoro risultano:

Sollec	itazioni	Carpenteria			Armatura Verifiche tensionali		Armatura		Verifiche tensionali		nali
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]		
_	-256.84	100	80	1	10 ф 16 (20.11)	6	17.50	-3.87	187.44		
				2	5 \(\phi \) 16 (10.05)	74	(dal bordo infe	riore)			

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni					
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm ²]> T/ σ
179.46	100.0	74.0	0.27	0.60 (Rck 30)	10.05 > 7.04

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 112 di 155

Verifica a formazione fessure - Sezione: Plinto monte

Sollecitazioni di verifica

N = 0.00 [KN] sforzo assiale (+ trazione) M = -256.84 [KNm] momento flettente (+ tende le fibre inferiori)

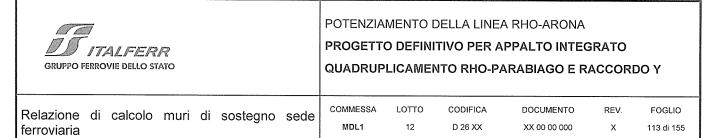
Materiali

cls Rck = 30.00 [MPa] $f_{ctk} = 0.7 \times [0.27 \times (Rck)^{2/3}] = 1.82 [MPa]$ resistenza caratteristica a trazione per sforzo normale $f_{cfk} = 0.7 \times 1.2 \times [0.27 \times (Rck)^{2/3}] = 2.19 [MPa]$ resistenza caratteristica a trazione per flessione

Caratteristiche geometriche sezione rettangolare (solo cls)

 $\sigma_{c(M)} = M / Wt =$

B = 100.00 [cm] base H = 80.00 [cm] altezza $y_{G,cls} = H/2 =$ 40.00 [cm] posizione baricentro A_{cls} = 8000.0 [cm²] $J_{cls} = 1/12 \text{ B H}^3 =$ 4266666.7 [cm⁴] momento di inerzia $W_{cis} = J_{cis} / (H/2) =$ 106666.7 [cm³] modulo resistente ai lembi


> 2.11 [MPa] 2.11 [MPa]

Caratteristiche geometriche (l° stadio)

= 15.00

<u>armatura superiore</u> 1° livello 2° livello 3° livello	As [cm ²] 10 \(\phi\) 16 (20.11) - -	hi_sup [cm] 6.0 - -	copriferro [cm] 5.2 - -	
<u>armatura inferiore</u> 1° livello 2° livello 3° livello	As [cm ²] 5 \(\phi \) 16 (10.05)	hi_inf [cm] 6.0 - -	copriferro [cm] 5.2 - -	
$y_{G_sup} = S_{xi} / A_i =$ $A_i = BH + n\Sigma As =$ $J_i = J_i' - A_i y_{G_sup}^2 =$ $y_s = y_{G_sup} =$ $W_{i,s} = J_i / y_s =$ $y_i = H - y_{G_sup} =$ $W_{i,i} = J_i / y_i =$	39.39 8452.4 4786518.7 39.39 121505.5 40.61 117875.4	[cm ²] [cm ⁴] [cm] [cm ³]	posizione baricentro sezione omogenei: area sezione omogeneizzata momento di inerzia sezione omogeneizi distanza dal baricentro del lembo super modulo resistente al lembo superiore se distanza dal baricentro del lembo inferior modulo resistente al lembo inferiore sezione.	zata iore - trazione ezione omogeneizzata - trazione ore
Trazione nel calcestruzzo $\sigma_{c(N)}\!=N/Ai=$	0.00	[MPa]		

< 2.19

12.1.3 Plinto lato valle


La zattera di fondazione è armata con $\phi 16/20$ superiormente e $\phi 16/10$ inferiormente.

I tassi di lavoro risultano:

Sollecitazioni		Carpe	enteria	Armatura			Verifiche tension	nali	
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]
-	21.01	100	80	1	5 ф 16 (10.05)	6	17.50	-0.32	15.33
				2	10 φ 16 (20.11)	74	(dal bordo sup	eriore)	

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni			Verifiche tensiona	lli	
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm ²]> T/σ
82.27	100.0	74.0	0.12	0.60 (Rck 30)	20.11 > 3.23

Verifica a formazione fessure - Sezione: Plinto valle

Sollecitazioni di verifica			
N =	0.00	[KN]	sforzo assiale (+ trazione)
M =	21.01	[KNm]	momento flettente (+ tende le fibre inferiori)
Materiali			
cls Rck =	30.00	[MPa]	
$f_{ctk} = 0.7 \times [0.27 \times (Rck)^{2/3}] =$	1.82	[MPa]	resistenza caratteristica a trazione per sforzo normale
$f_{efk} = 0.7 \times 1.2 \times [0.27 \times (Rck)^{2/3}] =$	2.19	[MPa]	resistenza caratteristica a trazione per flessione
Caratteristiche geometriche sezione re	ttangolare (solo	cls)	
B =	100.00	[cm]	base
H =	80.00		altezza
$y_{G,cls} = H/2 =$	40.00		posizione baricentro
A _{cls} =	0,0008	[cm ²]	area
$J_{cls} = 1/12 B H^3 =$	4266666.7	[cm ⁴]	momento di inerzia
$W_{cls} = J_{cls} / (H/2) =$	106666.7	[cm³]	modulo resistente ai lembi
Caratteristiche geometriche (I° stadio)			
n=	15.00		
armatura superiore	As [cm ²]	hi_sup [cm]	copriferro [cm]
1° livello	5 \(\phi \) 16 (10.05)	6.0	5.2
2° livello	-	-	•
3° livello	_	-	-
armatura inferiore	As [cm ²]	hi inf [cm]	copriferro [cm]
1° livello	10 \(\phi \) 16 (20.11)	6.0	5.2
2° livello	_	-	-
3° livello	_	-	-
$y_{G_sup} = S_{xi} / A_i =$	40.61	[cm]	posizione baricentro sezione omogeneizzata
$A_i=BH+n\Sigma As=$	8452.4	[cm²]	area sezione omogeneizzata
$J_i = J_i' - A_i y_{G sup}^2 =$	4786518.7	[cm ⁴]	momento di inerzia sezione omogeneizzata
y _s = y _{G_sup} =	40.61	[cm]	distanza dal baricentro del lembo superiore
$W_{i,s} = J_i / y_s =$	117875.4	[cm³]	modulo resistente al lembo superiore sezione omogeneizzata
y _i = H - y _{G sup} =	39,39	[cm]	distanza dal baricentro del lembo inferiore - trazione
$W_{i,i} = J_i / y_i =$	121505.5	• •	modulo resistente al lembo inferiore sezione omogeneizzata - trazione
Trazione nel calcestruzzo			
$\sigma_{c(N)} = N/Ai =$	0.00	[MPa]	
$\sigma_{c(M)} = M / Wt =$	0.17	[MPa]	
$\sigma_{c,tot} =$	0.17	[MPa]	< 2.19

Le verifiche risultano soddisfatte.

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 115 di 155

13 A1 – MURO 3.0<H<4.0 M CON BARRIERA ANTIRUMORE H1

13.1 VERIFICA STATICA

<u>Dati geometrici</u>	H tot =4.80 [m]		
muro	altezza muro	4.00	m
	spessore muro superiore	0.70	m
	spessore muro inferiore	0.70	m
	inclinazione muro - lato monte	0.00	٥
	inclinazione muro - lato valle	0.00	o
	spessore muro inferiore - lato monte	0.00	m
	spessore muro inferiore - lato valle	0.00	m
platea di fondazione	sbalzo platea - lato valle	0.50	m
	spessore sbalzo platea - lato valle	0.80	m
	spessore sbalzo platea filo muro - lato valle	0.80	m
	sbalzo platea - lato monte	2.60	m
	spessore sbalzo platea - lato monte	0.80	m
	spessore sbalzo platea filo muro - lato monte	0.80	m
	inclinazione magrone sottofondo	0.00	0
	lunghezza platea	3.80	m
	idiigiiezza piatea	3.00	m
terrapieno	inclinazione terrapieno	0.00	o
	lunghezza terrapieno superiore	2.60	m
	lunghezza terrapieno inferiore	2.60	m
	altezza totale terrapieno a monte	4.80	m

POTENZIAMENTO DELLA LINEA RHO-ARONA

PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 116 di 155

Dati geotecnici

terrapieno	angolo di attrito angolo di attrito muro-terrapieno	35.0 0.6	0
	coefficiente di spinta attiva - formula generale: ka $(\alpha,\delta,\phi,\iota)$ coesione	0.27099 0.0	kN/m²
	peso di volume	20.0	kN/m³
terreno di fondazione	angolo di attrito	35.0	0
	coefficiente di attrito f= tan (KTF x AATF)	0.5715	
	fattore di riduzione angolo di attrito	0.9	
	coesione	0.0	kN/m ²
	peso di volume	19.00	MPa
	tensione ammissibile sul terreno (calcolo reazioni terreno)	0.15	MPa

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 117 di 155

Dati di carico

azione sismica	grado di sismicità (categoria zona sismica: I, II, III)	2	(2-6-9-12)
	coefficiente di intensità sismica	0.00	
	angolo di attrito muro-terrapieno in fase di sisma	0.0	o
	coefficiente di spinta attiva in presenza di sisma = A x KAS*	-	
	coefficiente di incremento di spinta attiva in presenza di sisma = KAS-KA	-	
calcestruzzo	peso di volume	25.00	kN/m³
sovraccarico	Sovraccarico a monte in sommità del muro	54.40	kN/m²
uniforme	Percentuale sovraccarico su platea	100.00	(0-100 %)
	Sovraccarico a valle	0.00	kN/m²
	Percentuale sovraccarico su platea	100.00	(0-100 %)
falda	livello acqua falda da intradosso platea	0.00	m
	peso di volume	10.00	kN/m³
	pressione idrostatica a monte	0	(1= si; 0= no)
	sottospinta idraulica sotto platea di fondazione	0	(1= si; 0= no)
carichi applicati	Sovraccarico aggiuntivo laterale - lato monte	0.00	kN/m²
- uniforme	distanza di applicazione da filo posteriore platea di fondazione (+ verso monte)	0.00	m
	distanza di applicazione da intradosso platea di fondazione (+ verso alto)	2.40	m
	angolo di diffusione nel terreno	35.00	0
- forze concentrate	forza verticale (+ verso l'alto)	-36.49	kN/m
	braccio orizzontale x forza verticale (+ verso monte)	0.35	m
	forza orizzontale (+ verso valle)	12.78	kN/m
	braccio verticale x forza orizzontale (+ verso l'alto)	0.00	m
	coppia (+ oraria)	17.42	kNm/m

POTENZIAMENTO DELLA LINEA RHO-ARONA

PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione	di	calcolo	muri	di	sostegno	sede
ferroviaria					_	

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	Х	118 di 155

Sollecitazioni su paramento muro riferite al baricentro della sezione

sezione	z (m)	s _M (z) (m)	Xo (m)	σ _ν kN/m²	σ _h kN/m²	u kN/m²	N kN/m	T kN/m	M kNm/m
10	4.00	0.70	-0.85	-54.40	14.74	0.00	-36.49	12.78	17.42
9	3.60	0.70	-0.85	-62.40	16.91	0.00	-43.49	19.11	23.77
8	3.20	0.70	-0.85	-70.40	19.08	0.00	-50.49	26.31	32.82
7	2.80	0.70	-0.85	-78.40	21.25	0.00	-57.49	34.37	44.93
6	2.40	0.70	-0.85	-86.40	23.41	0.00	-64.49	43.30	60.44
5	2.00	0.70	-0.85	-94.40	25.58	0.00	-71.49	53.10	79.69
4	1.60	0.70	-0.85	-102.40	27.75	0.00	-78.49	63.77	103.04
3	1.20	0.70	-0.85	-110.40	29.92	0.00	-85.49	75.30	130.82
2	0.80	0.70	-0.85	-118.40	32.09	0.00	-92.49	87.70	163.39
1	0.40	0.70	-0.85	-126.40	34.25	0.00	-99.49	100.97	201.10
0	0.00	0.70	-0.85	-134.40	36.42	0.00	-106.49	115.11	244.29

LEGENDA:

 $s_M(z)$ = spessore sezione muro

z = quota sezione da estradosso platea lato monte (+ verso l'alto)

Xo= distanza baricentro sezione da spigolo inferiore sbalzo platea lato valle (s.d.r.)

 σ_v = tensione verticale dietro al muro (+ verso l'alto)

 σ_h = tensione orizzontale dietro al muro (+ verso valle)

u= pressione idrostatica dietro al muro

N= sforzo normale (-: compressioni)

T= sforzo di taglio (+: verso valle)

M= momento flettente (+: tese le fibre lato monte)

Riepilogo delle sollec. riferite al baricentro della platea di fondaz. - lato intrad. (comb.: 2)

azione orizzontale $F_x = 145.98 \text{ kN/m}$ azione verticale $F_z = -390.49 \text{ kN/m}$ momento flettente $M_{p,G} = 335.50 \text{ kNm/m}$

Riepilogo delle sollec. riferite al baricentro della platea di fondaz. - lato intrad. (comb.: 3)

azione orizzontale $F_x = 145.98 \text{ kN/m}$ azione verticale $F_z = -531.93 \text{ kN/m}$ momento flettente $M_{p,G} = 250.64 \text{ kNm/m}$

Relazione di calcolo muri di sostegno sede ferroviaria

Sollecitazioni s	u platea	di fondaz	zione	combo 2							
sezione	X (m)	DX (m)	qz,inf kN/m²	u,inf kN/m²	qz,sup kN/m²	V,inf kN/m	V,sup kN/m	M,inf kNm/m	M,sup kNm/m	V,tot kN/m	M,tot kNm/m
sez 0 - (valle)	0.00	0.00	250.12	0.00	-20.00	0.00	0.00	0.00	0.00	0.00	0.00
sez 1 - (valle)	-0.13	0.13	240.10	0.00	-20.00	30.64	-2.50	1.93	-0.16	28.14	1.77
sez 2 - (valle)	-0.25	0.25	230.09	0.00	-20.00	60.03	-5.00	7.61	-0.63	55.03	6.98
sez 3 - (valle)	-0.38	0.38	220.08	0.00	-20.00	88.16	-7.50	16.88	-1.41	80.66	15.48
sez 4 - (valle)	-0.50	0.50	210.07	0.00	-20.00	115.05	-10.00	29.60	-2.50	105.05	27.10
					parame	nto mur	0				
sez 5 - (monte)	-1.20	2.60	153.99	0.00	-154.40	172.99	-401.44	154.16	-521.87	-228.45	-367.72
sez 6 - (monte)	-1.72	2.08	112.34	0.00	-154.40	103.74	-321.15	83.14	-334.00	-217.41	-250.86
sez 7 - (monte)	-2.24	1.56	70.69	0.00	-154.40	56.16	-240.86	42.51	-187.87	-184.71	-145.37
sez 8 - (monte)	-2.76	1.04	29.03	0.00	-154.40	30.23	-160.58	20.98	-83.50	-130.35	-62.52
sez 9 - (monte)	-3.28	0.52	0.00	0.00	-154.40	0.00	-80.29	0.00	-20.87	-80.29	-20.87
sez 10 - (monte)	-3.80	0.00	0.00	0.00	-154.40	0.00	0.00	0.00	0.00	0.00	0.00

LEGENDA:

X= ascissa sezione platea

DX= distanza sezione da lembo estremo

qz,inf= carico distribuito dovuto alla reazione di sottofondo del terreno

u,inf= pressione idrostatica sotto platea di fondazione

qz,sup= carico distribuito verso il basso

Sollecitazioni su platea di fondazione

V= sforzo di taglio (+: verso l'alto)

M= momento flettente (+: tese le fibre di intradosso platea)

combo 3

0.00

sezione	X (m)	DX (m)	qz,inf kN/m²	u,inf kN/m²	qz,sup kN/m²	V,inf kN/m	V,sup kN/m	M,inf kNm/m	M,sup kNm/m	V,tot kN/m	M,tot kNm/m
sez 0 - (valle)	0.00	0.00	244.12	0.00	-20.00	0.00	0.00	0.00	0.00	0.00	0.00
sez 1 - (valle)	-0.13	0.13	237.27	0.00	-20.00	30.09	-2.50	1.89	-0.16	27.59	1.73
sez 2 - (valle)	-0.25	0.25	230.42	0.00	-20.00	59.32	-5.00	7.49	-0.63	54.32	6.86
sez 3 - (valle)	-0.38	0.38	223.57	0.00	-20.00	87.69	-7.50	16.68	-1.41	80.19	15.28
sez 4 - (valle)	-0.50	0.50	216.72	0.00	-20.00	115.21	-10.00	29.37	-2.50	105.21	26.87
					parame	nto mur	0				
sez 5 - (monte)	-1.20	2.60	178.35	0.00	-154.40	278.44	-401.44	281.70	-521.87	-123.00	-240.18
sez 6 - (monte)	-1.72	2.08	149.85	0.00	-154.40	193.11	-321.15	159.73	-334.00	-128.04	-174.26
sez 7 - (monte)	-2.24	1.56	121.35	0.00	-154.40	122.60	-240.86	78.29	-187.87	-118.26	-109.58
sez 8 - (monte)	-2.76	1.04	92.84	0.00	-154.40	66.91	-160.58	29.66	-83.50	-93.66	-53.84
sez 9 - (monte)	-3.28	0.52	64.34	0.00	-154.40	26.05	-80.29	6.13	-20.87	-54.24	-14.75

-154.40

0.00

0.00

0.00

0.00

0.00

0.00

LEGENDA:

sez 10 - (monte)

X= ascissa sezione platea

-3.80

DX= distanza sezione da lembo estremo

0.00

qz,inf= carico distribuito dovuto alla reazione di sottofondo del terreno

35.84

u,inf= pressione idrostatica sotto platea di fondazione

qz,sup= carico distribuito verso il basso

V= sforzo di taglio (+: verso l'alto)

M= momento flettente (+: tese le fibre di intradosso platea)

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 120 di 155

		73 T T T T T T T T T T T T T T T T T T T		
			Mstab	Mrib
			kNm/m	kNm/m
				0.00
				0.00
			0.00	99.90
		$\Sigma =$	723.90	99.90
$\eta_r =$	7.25		>= 1.5	
			Mstab	Mrib
			kNm/m	kNm/m
				0.00
				0.00 99.90
				169.83
muro				78.76
naro				0.00
				0.00
nonte in fase	di sisma			0.00
			0.00	0.00
			0.00	0.00
		Σ=	754.92	348.49
$\eta_r =$	2.17		>= 1.5	
	nuro nonte in fase - lato monte a di fondazio	nuro nonte in fase di sisma - lato monte a di fondazione	$\eta_{\rm r}$ = 7.25	kNm/m 203.90 520.00 0.00 $\Sigma = 723.90$ 723.90 520.00 0.00

Relazione di calcolo mu	ri di	sosteano	sede	COMMESSA	LOTTO	COI	DIFICA	DOCUMENTO	REV.	FOGLIO
ferroviaria		Costogno	JCGC	MDL1	12	D:	26 XX	XX 00 00 000	х	121 di 155
Verifica allo scorrimento)			The state of the s						
(verifica alla traslazione magror	ie terr	eno - inclinaz	zione pia	ano di slittam	nento = 0°)	Fx	Fz	Ft	Fn
Azioni (comb.:1)			•			•	kN/m	kN/m	kN/m	kN/m
Muro + platea di fondazione							0.00	-146.00	0.00	-146.00
Terrapieno							0.00	-208.00	0.00	-208.00
Spinta terreno a monte							62.44	0.00	62.44	0.00
						Σ=	62.44	-354.00	62.44	-354.00
Coefficiente di sicurezza	η_t	=		3.24			>= 1.3			
							Fx	Fz	Ft	Fn
Azioni (comb.:2)							kN/m	kN/m	kN/m	kN/m
Muro + platea di fondazione							0.00	-146.00	0.00	-146.00
Terrapieno							0.00	-208.00	0.00	-208.00
Spinta terreno a monte							62.44	0.00	62.44	0.00
Spinta sovraccarico a monte							70.76	0.00	70.76	0.00
Forze applicate in sommità del l	muro						12.78	-36.49	12.78	-36.49
Spinta dell'acqua							0.00	0.00	0.00	0.00
Sovraccarico a valle	20-1	in fore : "	ma -				0.00	0.00	0.00	0.00
Incremento di spinta terreno a r			ma				0.00	0.00	0.00	0.00
Sovraccarico aggiuntivo laterale							0.00	0.00	0.00	0.00
Sottospinta idraulica sotto plate	a ai tc	ırıaazione					0.00	0.00	0.00	0.00
						Σ=	145.98	-390.49	145.98	-390.49
Coefficiente di sicurezza	η_t	=		1.53			>= 1.3			

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 122 di 155

Riepilogo delle sollecitazioni (comb.: 2 e 3)	spessore (m)	N kN/m	T kN/m	M kNm/m
Paramento verticale - sezione di spiccato	0.70	-106.49	115.11	244.29
Riepilogo delle sollecitazioni (comb.: 2)	spessore (m)	N kN/m	T kN/m	M kNm/m
Mensola lato valle - sezione filo paramento verticale	0.80	0.00	105.05	27.10
Mensola lato monte - sezione filo paramento verticale	0.80	0.00	-228.45	-367.72
Riepilogo delle sollecitazioni (comb.: 3)	spessore (m)	N kN/m	T kN/m	M kNm/m
Mensola lato valle - sezione filo paramento verticale	0.80	0.00	105.21	26.87
Mensola lato monte - sezione filo paramento verticale	0.80	0.00	-123.00	-240.18

N (-) : sforzo normale di compressione

M (+) : momento flettente che tende le fibre lato terreno - paramento verticale

: momento flettente che tende le fibre lato intradosso - <u>platea di fondazione</u>

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO CODIFICA DOCUMENTO

REV. **FOGLIO**

Х

MDL1 12 D 26 XX

XX 00 00 000

123 di 155

Muri di sostegno con fondazioni superficiali

Verifica al carico limite dell'insieme fondazione-terreno (Meyerhof)

F = 2.00

Parametri geotecnici terreno di fondazione

KN/m³ 19.00

peso specifico terreno di fondazione

φ' = 35.00

angolo di attrito interno

φ'= 0.61087 rad

c' = 0.00

KN/m²

20.00 KN/m³

peso specifico terreno di riempimento (laterale)

Caratteristiche geometriche della fondazione

B = 4.00 larghezza della fondazione

L= 1.00 lunghezza della fondazione

m D= 0.85 m

approfondimento della fondazione

Azioni esterne e pressione applicata 1

comb.

H = 145.98

kΝ azione orizzontale

e = M/V =

0.86

eccentricità del carico verticale V (in direzione trasversale --> B)

V =

390.49 kN azione verticale

B* = B-2e =

2.28 m < 3 m larghezza ridotta in relazione alla eccentricità del carico verticale

M = 335.50 kNm momento flettente

D/B* = 0.37 171.14 KN/m² $q_{es}^* = V/(B^*L) =$

pressione media di esercizio applicata sull'area ridotta

θ= 0.36 rad θ= 20.50

angolo di inclinazione della risultante misurata dalla verticale

Valutazione del carico limite dell'insieme fondazione-terreno e del coefficiente di sicurezza

 $q_{lim} = c' N_c s_c d_c i_c + \gamma_r D N_q s_q d_q i_q + 1/2 B^* \gamma N_\gamma s_\gamma d_\gamma i_\gamma$ $q_{lim} = 0.00 + 361.73 + 148.16 = 509.89 \text{ KN/m}^2$

KN/m² q*_{es}= 171.14

 $F = q_{lim}/q_{es}^* = 509.89/171.14 = 2.98 > 2.00$

POTENZIAMENTO DELLA LINEA RHO-ARONA

PROGETTO DEFINITIVO PER APPALTO INTEGRATO

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO CODIFICA MDL1 D 26 XX

DOCUMENTO XX 00 00 000

RFV FOGLIO Х 124 di 155

Muri di sostegno con fondazioni superficiali

Verifica al carico limite dell'insieme fondazione-terreno (Meyerhof)

2.00

Parametri geotecnici terreno di fondazione

19.00 KN/m³ peso specifico terreno di fondazione

φ' = 35.00 angolo di attrito interno φ'= 0.61087 rad

c' = 0.00 KN/m² coesione

KN/m³ 20.00 peso specifico terreno di riempimento (laterale)

Caratteristiche geometriche della fondazione

B = 4.00 larghezza della fondazione 1.00 m lunghezza della fondazione 0.85 approfondimento della fondazione m

Azioni esterne e pressione applicata

2 comb.

H = 145.98 kN azione orizzontale V = 531.93 kΝ azione verticale

e = M/V = 0.47 B* = B-2e =

eccentricità del carico verticale V (in direzione trasversale --> B) 3.06 m < 3 m larghezza ridotta in relazione alla eccentricità del carico verticale

kNm

momento flettente

D/B* = 0.28 q*_{es}= V/(B*L) = 173.97 KN/m²

pressione media di esercizio applicata sull'area ridotta angolo di inclinazione della risultante misurata dalla verticale

 $\theta =$ 0.27 rad

15.35 °

Valutazione del carico limite dell'insieme fondazione-terreno e del coefficiente di sicurezza

 $q_{lim} = c' N_c s_c d_c i_c + \gamma_r D N_q s_q d_q i_q + 1/2 B^* \gamma N_\gamma s_\gamma d_\gamma i_\gamma$ $q_{lim} = 0.00 + 410.26 + 358.48 = 768.74 \text{ KN/m}^2$

KN/m² q*_{es}= 173.97

 $F = q_{lim}/q_{es}^* = 768.74/173.97 = 4.42 > 2.00$

Le verifiche risultano soddisfatte.

13.1.1.1 Muro frontale

Le massime sollecitazioni agenti nella sezione di spiccato del muro frontale sono:

M = 244.29 kNm

T = 115.11 kN

N = -106.49 kN

La sezione è armata con φ16/20 lato interno e φ14/20 lato esterno. Vengono riportate le verifiche tensionali

REV.

Х

FOGLIO

125 di 155

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO

 MDL1
 12
 D 26 XX
 XX 00 00 000

Solled	itazioni	Carpenteria			Armatura			Verifiche tension	nali
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]
-106.49	244.29	100	70	1	5 \(\phi \) 18 (12.72)	6.1	19.58	-4.31	146.40
				2	10 \(\phi\) 18 (25.45)	63.9	(dal bordo superiore)		

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni			Verifiche tensionali		
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm ²]> T/ σ
115.11	100.0	63.9	0.20	0.67 (Rck 35)	25.45 > 4.51

POTENZIAMENTO DELLA LINEA RHO-ARONA

PROGETTO DEFINITIVO PER APPALTO INTEGRATO

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO MDL1 12

CODIFICA D 26 XX

DOCUMENTO XX 00 00 000 REV. **FOGLIO** Х 126 di 155

Verifica a formazione fessure - Sezione: Spiccato muro frontale

Sollecitazioni di verifica

N = -106.49 [KN] M = 244.29 [KNm]

sforzo assiale (+ trazione)

momento flettente (+ tende le fibre inferiori)

Materiali

35.00 [MPa] cls Rck = $f_{ctk} = 0.7 \times [0.27 \times (Rck)^{2/3}] =$ 2.02 [MPa] $f_{cfk} = 0.7 \times 1.2 \times [0.27 \times (Rck)^{2/3}] =$ 2.43 [MPa]

resistenza caratteristica a trazione per sforzo normale resistenza caratteristica a trazione per flessione

Caratteristiche geometriche sezione rettangolare (solo cls)

B = 100.00 [cm] H = 70.00 [cm] $y_{G,cls} = H/2 =$ 35.00 [cm] base altezza

posizione baricentro area

A_{cls} = 7000.0 [cm²] $J_{cls} = 1/12 B H^3 =$ 2858333.3 [cm⁴]

momento di inerzia

 $W_{cls} = J_{cls} / (H/2) =$ 81666.7 [cm³] modulo resistente ai lembi

Caratteristiche geometriche (I° stadio)

15.00

armatura superiore As [cm²] 1° livello 5 \(18 \) (12.72) 2° livello 3° livello

copriferro [cm] 5.2

armatura inferiore As [cm²] 1° livello 10 \(\phi\) 18 (25.45) 2° livello 3° livello

hi_inf [cm] copriferro [cm] 6.1 5.2

hi_sup [cm]

6.1

 $y_{G_{sup}} = S_{xi} / A_i =$ 35.73 [cm] A_i = BH+n Σ As = 7572.6 [cm²] $J_i = J_i' - A_i y_{G_{sup}}^2 =$ 3332519.8 [cm⁴] y_s= y_{G_sup}= 35.73 [cm] $W_{i,s} = J_i / y_s =$ 93273.8 [cm³] yi= H - yG sup= 34.27 [cm] $W_{i,i} = J_i / y_i =$ 97238.4 [cm3] posizione baricentro sezione omogeneizzata area sezione omogeneizzata

momento di inerzia sezione omogeneizzata distanza dal baricentro del lembo superiore

modulo resistente al lembo superiore sezione omogeneizzata distanza dal baricentro del lembo inferiore - trazione

modulo resistente al lembo inferiore sezione omogeneizzata - trazione

Trazione nel calcestruzzo

 $\sigma_{c(N)} = N / Ai =$ -0.14 [MPa] 2.51 [MPa] $\sigma_{c(M)} = M / Wt =$ $\sigma_{c,tot} =$

2.37 [MPa] < 2.43

13.1.1.2 Plinto lato monte

La zattera di fondazione è armata con $\phi 20/10$ superiormente e $\phi 20/20$ inferiormente.

I tassi di lavoro risultano:

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO
MDL1 12

CODIFICA D 26 XX

DOCUMENTO XX 00 00 000 REV. FOGLIO

X 127 di 155

Solled	itazioni	Carpenteria		nteria Armatura				Verifiche tension	nali
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]
_	-367.72	100	80	1	10 ¢ 20 (31.42)	6.2	20.77	-4.56	174.76
				2	5 \phi 20 (15.71)	73.8	(dal bordo inferiore)		

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni			Verifiche tensionali		
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm²]> T/σ
228.45	100.0	73.8	0.34	0.60 (Rck 30)	15.71 > 8.96

POTENZIAMENTO DELLA LINEA RHO-ARONA

PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO MDL1

CODIFICA D 26 XX

DOCUMENTO XX 00 00 000

RFV **FOGLIO**

Х

128 di 155

N = M =

0.00 -367.72

[kN] [kNm]

 $w_k = 1.7 w_m =$ $W_m = \epsilon_{sm} s_{rm} =$

12

0.093 0.054

[mm] [mm]

Sezione di ca	alcestruzzo [R]	Sezione interamente	reagente [l° stadio]	Armatura ordinaria armatura - check Asv1		
dim. B [cm] x	H [cm]= 100 x 80					
A tot cls $[cm^2]$ =	8000.00	$A,I^{\circ} [cm^2] =$	8706.86	As tot [cm²] =	47.12	
J tot cls [cm ⁴] =	4266666.67	J,1° [cm ⁴] =	5066925.51	μ _{.tot} [%] =	0.59	
y_inf [cm] =	40.00	y_inf,1° [cm] =	40.91	n° livelli di armatura=	2	
y_sup [cm] =	40.00	y_sup,i° [cm] =	39.09	livello	As [cm²]	hi_sup [cm]
$W_{inf}[cm^3] =$	106666.67	W_inf,1° [cm³] =	123841.28	1	10 \$ 20 (31.42)	6.2
W_sup [cm ³] =	106666.67	W_sup,I° [cm ³] =	129637.54	2	5 ¢ 20 (15.71)	73.8
					-	
					-	
					_	

Calcolo della distanza media tra le fessure

 $s_{rm} = 2 (c+s/10) + k_2 k_3 \phi / \rho_r =$ φ = diametro della barra

c = ricoprimento dell'armatura

s = distanza tra le barre; se s > 14 φ si adotterà s= 14 φ k₂ = coefficiente di aderenza del cls alla barra

k₃ = coefficiente di forma del diagramma delle tensioni $\rho_r = A_s/A_{c eff}$

A_s = area della sezione di acciaio nell'area A_{c eff}

 $A_{ceff} = b_{eff} d_{eff}$ $b_{eff} = B$

d eff = $d \, eff = c + s' + 7.5 \phi$

d eff < (H-xI)/2= 19.54 cm; xI= 40.91 cm

s' = interasse verticale tra le file di barre= 0.0 cm

16.05 [cm]

2.0 [cm]

4.0 [cm]

10.0 [cm]

0.4

0.125

0.01653470 31.42 [cm²]

1900.00 [cm²]

100.0 [cm]

19.0 [cm] 19.0 [cm]

Calcolo della deformazione unitaria media dell'armatura $\varepsilon_{sm} = \sigma_s / E_s [1 - \beta_1 \beta_2 (\sigma_{sr} / \sigma_s)^2]$ (>= 0.4 σ_s / E_s)

E_s = modulo di elasticità normale

 σ_s = tensione nell'acciaio nella sezione fessurata σ_{sr} = tensione nell'acciaio nella sezione fessurata per la sollecitazione

di fessurazione (M_{fess} , N_{fess})

Nfess= N Mfess = -[fcm]W_sup,I°

fcm= fcfm = resistenza a trazione media per flessione fci= trazione iniziale nel cls

 β_1 = coefficiente aderenza acciaio cls β_2 = coefficiente di sollecitazione

0.00033934

206000 [MPa] 174.76 [MPa]

0.00033934

30

192.17 [MPa]

0.00 [kN] -404.35 [kNm]

3.12 [MPa] 0.00 [MPa]

1.0

0.5

cls Rck [MPa] =

 $0.4 \sigma_{\rm s} / E_{\rm s} =$

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	Х	129 di 155

13.1.1.3 Plinto lato valle

La zattera di fondazione è armata con $\phi 20/20$ superiormente e $\phi 20/10$ inferiormente.

I tassi di lavoro risultano:

Solled	itazioni	Carpe	Carpenteria Ai		Armatura	Armatura		Verifiche tensionali	
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]
-	26.87	100	80	1	5 ¢ 20 (15.71)	6.2	20.77	-0.33	12.77
				2	10 \(\phi \) 20 (31.42)	73.8	(dal bordo sup	eriore)	

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni					
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm ²]> T/σ
105.21	100,0	73.8	0.16	0.60 (Rck 30)	31.42 > 4.13

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione	di	calcolo	muri	di	sostegno	sede
ferroviaria						

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	X	130 di 155

Verifica a formazione fessure - Sezione: Plinto valle

Sollecitazioni di verifica

Materiali

N= 0.00 [KN] sforzo assiale (+ trazione) M = 26.87 [KNm] momento flettente (+ tende le fibre inferiori)

cls Rck = 30.00 [MPa] $f_{ctk} = 0.7 \times [0.27 \times (Rck)^{2/3}] =$

1.82 [MPa] resistenza caratteristica a trazione per sforzo normale $f_{cfk} = 0.7 \times 1.2 \times [0.27 \times (Rck)^{2/3}] =$ 2.19 [MPa] resistenza caratteristica a trazione per flessione

Caratteristiche geometriche sezione rettangolare (solo cls)

B = 100.00 [cm] base H = 80.00 [cm] altezza $y_{G,cls} = H/2 =$ 40.00 [cm] posizione baricentro A_{cls} = 8000.0 [cm²] area $J_{cls} = 1/12 B H^3 =$ 4266666.7 [cm⁴] momento di inerzia $W_{cls} = J_{cls} / (H/2) =$ 106666.7 [cm³] modulo resistente ai lembi

Caratteristiche geometriche (I° stadio) n=

15.00

armatura superiore 1° livello	As [cm ²] 5 φ 20 (15.71)	hi_sup [cm] 6.2	copriferro [cm] 5.2
2° livello	****	-	-
3° livello	-	-	-
armatura inferiore	As [cm ²]	hi_inf [cm]	copriferro [cm]
1° livello	10 \phi 20 (31.42)	6.2	5.2
2° livello	- ·	-	-
3° livello	_	-	-

$y_{G_{sup}} = S_{xi} / A_i =$	40.91 [cm]	posizione baricentro sezione omogeneizzata
$A_i = BH + n\Sigma As =$	8706.9 [cm²]	area sezione omogeneizzata
$J_i = J_i' - A_i y_{G_{sup}}^2 =$	5066925.5 [cm⁴]	momento di inerzia sezione omogeneizzata
y _s = y _{G_sup} =	40.91 [cm]	distanza dal baricentro del lembo superiore
$W_{i,s} = J_i / y_s =$	123841.3 [cm³]	modulo resistente al lembo superiore sezione omogeneizzata
y _i = H - y _{G_sup} =	39.09 [cm]	distanza dal baricentro del lembo inferiore - trazione
$W_{i,i} = J_i / y_i =$	129637.5 [cm³]	modulo resistente al lembo inferiore sezione omogeneizzata - trazione

Trazione nel calcestruzzo

 $\sigma_{c(N)} = N / Ai =$ 0.00 [MPa] 0.21 [MPa] $\sigma_{c(M)} = M / Wt =$ 0.21 [MPa] < 2.19 $\sigma_{c,tot} =$

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 131 di 155

13.2 VERIFICA SISMICA

Dati geometrici	H tot =4.80 [m]		
muro	altezza muro	4.00	m
	spessore muro superiore	0.70	m
	spessore muro inferiore	0.70	m
	inclinazione muro - lato monte	0.00	0
	inclinazione muro - lato valle	0.00	o
	spessore muro inferiore - lato monte	0.00	m
	spessore muro inferiore - lato valle	0.00	m
platea di fondazione	sbalzo platea - lato valle	0.50	m
	spessore sbalzo platea - lato valle	0.80	m
	spessore sbalzo platea filo muro - lato valle	0.80	m
	sbalzo platea - lato monte	2.80	m
	spessore sbalzo platea - lato monte	0.80	m
	spessore sbalzo platea filo muro - lato monte	0.80	m
	inclinazione magrone sottofondo	0.00	0
	lunghezza platea	4.00	m
terrapieno	inclinazione terrapieno	0.00	o
	lunghezza terrapieno superiore	2.80	m
	lunghezza terrapieno inferiore	2.80	m
	altezza totale terrapieno a monte	4.80	m

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione	di	calcolo	muri	di	sostegno	sede
ferroviaria						

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	Х	132 di 155

Dati geotecnici

terrapieno	angolo di attrito	35.0	0
	angolo di attrito muro-terrapieno	0.6	0
	coefficiente di spinta attiva - formula generale: $ka(\alpha,\delta,\phi,\iota)$	0.27099	
	coesione	0.0	kN/m²
	peso di volume	20.0	kN/m³
terreno di fondazione	angolo di attrito	35.0	o
	coefficiente di attrito f= tan (KTF x AATF)	0.5715	
	fattore di riduzione angolo di attrito	0.9	
	coesione	0.0	kN/m²
	peso di volume	19.00	MPa
	tensione ammissibile sul terreno (calcolo reazioni terreno)	0.15	MPa

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 133 di 155

Dati di carico

azione sismica	grado di sismicità (categoria zona sismica: I, II, III)	6	(2-6-9-12)
	coefficiente di intensità sismica	0.04	
	angolo di attrito muro-terrapieno in fase di sisma	0.0	•
	coefficiente di spinta attiva in presenza di sisma = A x KAS*	0.2925	
	coefficiente di incremento di spinta attiva in presenza di sisma = KAS-KA	0.0215	
calcestruzzo	peso di volume	25.00	kN/m³
sovraccarico	Sovraccarico a monte in sommità del muro	34.40	kN/m²
uniforme	Percentuale sovraccarico su platea	100.00	(0-100 %)
	Sovraccarico a valle	0.00	kN/m²
	Percentuale sovraccarico su platea	100.00	(0-100 %)
falda	livello acqua falda da intradosso platea	0.00	m
	peso di volume	10.00	kN/m³
	pressione idrostatica a monte	0	(1= si; 0= no)
	sottospinta idraulica sotto platea di fondazione	0	(1= si; 0= no)
carichi applicati	Sovraccarico aggiuntivo laterale - lato monte	0.00	kN/m²
- uniforme	distanza di applicazione da filo posteriore platea di fondazione (+ verso monte)	0.00	m
	distanza di applicazione da intradosso platea di fondazione (+ verso alto)	2.40	m
	angolo di diffusione nel terreno	35.00	0
- forze concentrate	forza verticale (+ verso l'alto)	0.00	kN/m
	braccio orizzontale x forza verticale (+ verso monte)	0.00	m
	forza orizzontale (+ verso valle)	0.00	kN/m
	braccio verticale x forza orizzontale (+ verso l'alto)	0.00	m
	coppia (+ oraria)	0.00	kNm/m

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

REV

Х

FOGLIO

134 di 155

Relazione	di	calcolo	muri	di	sostegno	sede
ferroviaria					_	

COMMESSA	LOTTO	CODIFICA	DOCUMENTO
MDL1	12	D 26 XX	XX 00 00 000

Sollecitazioni su paramento muro riferite al baricentro della sezione

sezione	z (m)	s _M (z) (m)	Xo (m)	σ _ν kN/m²	σ _h kN/m²	u kN/m²	N kN/m	T kN/m	M kNm/m
10 9	4.00 3.60	0.70 0.70	-0.85 -0.85	-34.40 -42.40	12.13 14.13	0.00 0.00	0.00 -7.00	0.00 5.25	0.00 1.02
8	3.20	0.70	-0.85	-50.40	16.12	0.00	-14.00	11.30	4.31
7	2.80	0.70	-0.85	-58.40	18.12	0.00	-21.00	18.15	10.17
6	2.40	0.70	-0.85	-66.40	20.11	0.00	-28.00	25.80	18.93
5	2.00	0.70	-0.85	-74.40	22.11	0.00	-35.00	34.24	30.91
4	1.60	0.70	-0.85	-82.40	24.10	0.00	-42.00	43.48	46.43
3	1.20	0.70	-0.85	-90.40	26.10	0.00	-49.00	53.52	65.81
2	0.80	0.70	-0.85	-98.40	28.10	0.00	-56.00	64.36	89.36
1	0.40	0.70	-0.85	-106.40	30.09	0.00	-63.00	76.00	117.40
0	0.00	0.70	-0.85	-114.40	32.09	0.00	-70.00	88.44	150.26

LEGENDA:

 $s_M(z)$ = spessore sezione muro

z = quota sezione da estradosso platea lato monte (+ verso l'alto)

Xo= distanza baricentro sezione da spigolo inferiore sbalzo platea lato valle (s.d.r.)

 σ_v = tensione verticale dietro al muro (+ verso l'alto)

 σ_h = tensione orizzontale dietro al muro (+ verso valle)

u= pressione idrostatica dietro al muro

N= sforzo normale (-: compressioni)

T= sforzo di taglio (+: verso valle)

M= momento flettente (+: tese le fibre lato monte)

Riepilogo delle sollec. riferite al baricentro della platea di fondaz. - lato intrad. (comb.: 2)

azione orizzontale $F_{x} = 130.66 \text{ kN/m}$ azione verticale $F_{z} = -374.00 \text{ kN/m}$ momento flettente $M_{p,G} = 212.01 \text{ kNm/m}$

Riepilogo delle sollec. riferite al baricentro della platea di fondaz. - lato intrad. (comb.: 3)

azione orizzontale	F _x =	130.66 kN/m
azione verticale	$F_z =$	-470.32 kN/m
momento flettente	$M_{p,G} =$	154.22 kNm/m

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 135 di 155

Sollecitazioni s	u platea	di fondaz	zione	combo 2								
sezione	X (m)	DX (m)	qz,inf kN/m²	u,inf kN/m²	qz,sup kN/m²	V,inf kN/m	V,sup kN/m	M,inf kNm/m	M,sup kNm/m	V,tot kN/m	M,tot kNm/m	spessore (m)
sez 0 - (valle)	0.00	0.00	173.01	0.00	-20.00	0.00	0.00	0.00	0.00	0.00	0.00	0.80
sez 1 - (valle)	-0.13	0.13	168.04	0.00	-20.00	21.32	-2.50	1.34	-0.16	18.82	1.18	0.80
sez 2 - (valle)	-0.25	0.25	163.07	0.00	-20.00	42.01	-5.00	5.30	-0.63	37.01	4.68	0.80
sez 3 - (valle)	-0.38	0.38	158.10	0.00	-20.00	62.08	-7.50	11.82	-1.41	54.58	10.41	0.80
sez 4 - (valle)	-0.50	0.50	153.13	0.00	-20.00	81.53	-10.00	20.80	-2.50	71.53	18.30	0.80
					parame	nto mur	0					
sez 5 - (monte)	-1.20	2.80	125.30	0.00	-134.40	195.02	-376.32	200.30	-526.85	-181.30	-326.55	0.80
sez 6 - (monte)	-1.76	2.24	103.04	0.00	-134.40	131.08	-301.06	109.58	-337.18	-169.98	-227.61	0.80
sez 7 - (monte)	-2.32	1.68	80.78	0.00	-134.40	79.61	-225.79	51.16	-189.67	-146.18	-138.50	0.80
sez 8 - (monte)	-2.88	1.12	58.52	0.00	-134.40	40.61	-150.53	18.09	-84.30	-109.92	-66.21	0.80
sez 9 - (monte)	-3.44	0.56	36.26	0.00	-134.40	14.07	-75.26	3.36	-21.07	-61.19	-17.72	0.80
sez 10 - (monte)	-4.00	0.00	13.99	0.00	-134.40	0.00	0.00	0.00	0.00	0.00	0.00	0.80

LEGENDA:

X= ascissa sezione platea

DX= distanza sezione da lembo estremo

qz,inf= carico distribuito dovuto alla reazione di sottofondo del terreno

u,inf= pressione idrostatica sotto platea di fondazione

qz,sup= carico distribuito verso il basso

V= sforzo di taglio (+: verso l'alto)

M= momento flettente (+: tese le fibre di intradosso platea)

Sollecitazioni s	u platea	di fondaz	zione	combo 3								
sezione	X (m)	DX (m)	qz,inf kN/m²	u,inf kN/m²	qz,sup kN/m²	V,inf kN/m	V,sup k N /m	M,inf kNm/m	M,sup kNm/m	V,tot kN/m	M,tot kNm/m	spessore (m)
sez 0 - (valle)	0.00	0.00	175.41	0.00	-20.00	0.00	0.00	0.00	0.00	0.00	0.00	0.80
sez 1 - (valle)	-0.13	0.13	171.80	0.00	-20.00	21.70	-2.50	1.36	-0.16	19.20	1.20	0.80
sez 2 - (valle)	-0.25	0.25	168.18	0.00	-20.00	42.95	-5.00	5.41	-0.63	37.95	4.78	0.80
sez 3 - (valle)	-0.38	0.38	164.57	0.00	-20.00	63.75	-7.50	12.08	-1.41	56.25	10.67	0.80
sez 4 - (valle)	-0.50	0.50	160.95	0.00	-20.00	84.09	-10.00	21.32	-2.50	74.09	18.82	0.80
					parame	nto mur	0					
sez 5 - (monte)	-1.20	2.80	140.71	0.00	-134.40	280.64	-376.32	340.00	-526.85	-95.68	-186.84	0.80
sez 6 - (monte)	-1.76	2.24	124.52	0.00	-134.40	206.38	-301.06	204.06	-337.18	-94.68	-133.12	0.80
sez 7 - (monte)	-2.32	1.68	108.33	0.00	-134.40	141.18	-225.79	107.17	-189.67	-84.61	-82.50	0.80
sez 8 - (monte)	-2.88	1.12	92.13	0.00	-134.40	85.05	-150.53	44.24	-84.30	-65.48	-40.05	0.80
sez 9 - (monte)	-3.44	0.56	75.94	0.00	-134.40	37.99	-75.26	10.21	-21.07	-37.27	-10.86	0.80
sez 10 - (monte)	-4.00	0.00	59.75	0.00	-134.40	0.00	0.00	0.00	0.00	0.00	0.00	0.80

LEGENDA:

X= ascissa sezione platea

DX= distanza sezione da lembo estremo

qz,inf= carico distribuito dovuto alla reazione di sottofondo del terreno

u,inf= pressione idrostatica sotto platea di fondazione

qz,sup= carico distribuito verso il basso

V= sforzo di taglio (+: verso l'alto)

M= momento flettente (+: tese le fibre di intradosso platea)

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 136 di 155

Verifica a ribaltamento Azioni (comb.:1)	Market of Control and Control			Mstab kNm/m	Mrib kNm/m
Muro + platea di fondazione + fo Terrapieno + forze inerziali Spinta terreno a monte	rze inerziali			219.50 582.40 0.00	9.12 25.09 99.90
			Σ=	801.90	134.11
Coefficiente di sicurezza	$\eta_r =$	5.98		>= 1.5	
Azioni (comb.:2)				Mstab kNm/m	Mrib kNm/m
Muro + platea di fondazione + formatione + formatione + forze inerziali Spinta terreno a monte Spinta sovraccarico a monte Forze applicate in sommità del respinta dell'acqua Sovraccarico a valle Incremento di spinta terreno a ma Sovraccarico aggiuntivo laterale Sottospinta idraulica sotto platea	nuro nonte in fase - lato monte			219.50 582.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00	9.12 25.09 99.90 107.39 0.00 0.00 24.42 0.00
			$\Sigma =$	801.90	265.91
Coefficiente di sicurezza	$\eta_r =$	3.02		>= 1.5	

GRUPPO FERROVIE DELLO STATO	QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y							
Relazione di calcolo muri di sostegno sede		LOTTO		DIFICA	DOCUMENTO	REV.	FOGLIO	
ferroviaria	MDL1	12	D 2	26 XX	XX 00 00 000	X	137 di 155	
Verifica allo scorrimento								
(verifica alla traslazione magrone terreno - inclinazione p	oiano di slittam	nento = 0	°)	Fx	Fz	Ft	Fn	
Azioni (comb.:1)				kN/m	kN/m	kN/m	kN/m	
Muro + platea di fondazione + forze inerziali				6.00	-150.00	6.00	-150.00	
Terrapieno + forze inerziali				8.96	-224.00	8.96	-224.00	
Spinta terreno a monte				62.44	0.00	62.44	0.00	
			Σ=	77.40	-374.00	77.40	-374.00	
Coefficiente di sicurezza $\eta_t =$	2.76			>= 1.3				
				Fx	Fz	Ft	Fn	
Azioni (comb.:2)				kN/m	k N /m	kN/m	kN/m	
Muro + platea di fondazione + forze inerziali				6.00	-150.00	6.00	-150.00	
Terrapieno + forze inerziali				8.96	-224.00	8.96	-224.00	
Spinta terreno a monte Spinta sovraccarico a monte				62.44 44.75	0.00 0.00	62.44 44.75	0.00 0.00	
Forze applicate in sommità del muro				0.00	0.00	0.00	0.00	
Spinta dell'acqua				0.00	0.00	0.00	0.00	
Sovraccarico a valle				0.00	0.00	0.00	0.00	
Incremento di spinta terreno a monte in fase di sisma				8.52	0.00	8.52	0.00	
Sovraccarico aggiuntivo laterale - lato monte				0.00	0.00	0.00	0.00	
Sottospinta idraulica sotto platea di fondazione				0.00	0.00	0.00	0.00	
			Σ=	130.66	-374.00	130.66	-374.00	
Coefficiente di sicurezza $\eta_t =$	1.64			>= 1.3				

Relazione di calcolo muri di sostegno sede ferroviaria

Riepilogo delle sollecitazioni (comb.: 2 e 3)	spessore (m)	N kN/m	T kN/m	M kNm/m
Paramento verticale - sezione di spiccato	0.70	-70.00	100.20	173.78
Riepilogo delle sollecitazioni (comb.: 2)	spessore (m)	N kN/m	T kN/m	M kNm/m
Mensola lato valle - sezione filo paramento verticale	0.80	0.00	71.53	18.30
Mensola lato monte - sezione filo paramento verticale	0.80	0.00	-181.30	-350.07
Riepilogo delle sollecitazioni (comb.: 3)	spessore (m)	N kN/m	T kN/m	M kNm/m
Mensola lato valle - sezione filo paramento verticale	0.80	0.00	74.09	18.82
Mensola lato monte - sezione filo paramento verticale	0.80	0.00	-95.68	-186.84

N (-) : sforzo normale di compressione

M (+) : momento flettente che tende le fibre lato terreno - paramento verticale

: momento flettente che tende le fibre lato intradosso - <u>platea di fondazione</u>

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO CODIFICA MDL1 12 D 26 XX

DOCUMENTO XX 00 00 000 REV FOGLIO

Х

139 di 155

Muri di sostegno con fondazioni superficiali Verifica al carico limite dell'insieme fondazione-terreno (Meyerhof)

2.00

Parametri geotecnici terreno di fondazione

19.00 KN/m³

peso specifico terreno di fondazione

φ' = 35.00

angolo di attrito interno

 $\phi' = 0.61087 \text{ rad}$

c' = 0.00

KN/m² 20.00

peso specifico terreno di riempimento (laterale)

Caratteristiche geometriche della fondazione

KN/m³

kNm

B = 4.00

m L=

larghezza della fondazione

1.00 m lunghezza della fondazione approfondimento della fondazione

D= 0.85 m

Azioni esterne e pressione applicata

comb.

M =

130.66 H = kN V = 374.00 kΝ 212.01

azione orizzontale azione verticale

momento flettente

e = M/V =B* = B-2e = 0.57

0.30

D/B* = 130.48 KN/m²

 $q_{es}^* = V/(B^*L) =$ θ= 0.34 rad

19.26

eccentricità del carico verticale V (in direzione trasversale --> B) $2.87 \, \, \text{m} < 3 \, \, \text{m}$ larghezza ridotta in relazione alla eccentricità del carico verticale

> pressione media di esercizio applicata sull'area ridotta angolo di inclinazione della risultante misurata dalla verticale

Valutazione del carico limite dell'insieme fondazione-terreno e del coefficiente di sicurezza

 $q_{lim} = c' N_c s_c d_c i_c + \gamma_r D N_q s_q d_q i_q + 1/2 B^* \gamma N_\gamma s_\gamma d_\gamma i_\gamma$ $q_{lim} = 0.00 + 369.64 + 216.32 = 585.96 \text{ KN/m}^2$ q*_{es}= 130.48 KN/m²

 $F = q_{lim}/q_{es}^* = 585.96/130.48 = 4.49 > 2.00$

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO CODIFICA

MDL1 12 D 26 XX

DOCUMENTO XX 00 00 000 FOGLIO 140 di 155

REV.

Χ

Muri di sostegno con fondazioni superficiali

Verifica al carico limite dell'insieme fondazione-terreno (Meyerhof)

F = 2.00

Parametri geotecnici terreno di fondazione

γ = 19.00 KN/m³ peso specifico terreno di fondazione

 ϕ' = 35.00 ° angolo di attrito interno ϕ' = 0.61087 rad

c' = 0.00 KN/m² coesione

 γ_r = 20.00 KN/m³ peso specifico terreno di riempimento (laterale)

Caratteristiche geometriche della fondazione

B = 4.00 m larghezza della fondazione L = 1.00 m lunghezza della fondazione D = 0.85 m approfondimento della fondazione

Azioni esterne e pressione applicata

comb. 2

H = 130.66 kN azione orizzontale e = M/V = 0.33 eccentricità del carico verticale V (in direzione trasversale --> B)
V = 470.32 kN azione verticale B* = B-2e = 3.34 m < 3 m larghezza ridotta in relazione alla eccentricità del carico verticale

= 154.22 kNm momento flettente D/B* = 0.25 $q^*_{es} = V/(B^*L) = 140.64 \text{ KN/m}^2$

L) = 140.64 KN/m² pressione media di esercizio applicata sull'area ridotta θ = 0.27 rad angolo di inclinazione della risultante misurata dalla verticale θ = 15.53 °

Valutazione del carico limite dell'insieme fondazione-terreno e del coefficiente di sicurezza

$$\begin{split} q_{lim} &= c^t \; N_c \; s_c \; d_c \; i_c + \gamma_f \; D \; N_q \; s_q \; d_q \; i_q + 1/2 \; B^* \; \gamma \; N_\gamma \; s_\gamma \; d_\gamma \; i_\gamma \\ q_{lim} &= 0.00 + 406.51 + 383.24 = 789.75 \; KN/m^2 \\ q^*_{es} &= 140.64 \qquad KN/m^2 \end{split}$$

 $F = q_{lim}/q_{es}^* = 789.75/140.64 = 5.62 > 2.00$

Le verifiche risultano soddisfatte.

13.2.1 Muro frontale

Le massime sollecitazioni agenti nella sezione di spiccato del muro frontale sono:

M = 173.78 kNm

T = 100.20 kN

N = -70.00 kN

La sezione è armata con ϕ 18/20 lato interno e ϕ 18/20 lato esterno. Vengono riportate le verifiche tensionali

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 141 di 155

Sollec	Sollecitazioni		enteria	Armatura				Verifiche tension	nali
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _ε [MPa]	σ _s [MPa]
-70.00	173.78	100	70	1	5 \$ 18 (12.72)	6.1	19.43	-3.06	105.16
				2	10 ¢ 18 (25.45)	63.9	(dal bordo superiore)		

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni					
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm ²]> T/ σ
100.20	100.0	63.9	0.17	0.67 (Rck 35)	25.45 > 3.93

13.2.2 Plinto lato monte

Sollecitazioni		Carpenteria		Armatura			Verifiche tensionali		
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]
-	-350.07	100	80	1	10 ¢ 20 (31.42)	6.2	20.77	-4.34	166.37
				2	5 ¢ 20 (15.71)	73.8	(dal bordo inferiore)		

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni			Verifiche tensionali		
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm ²]> T/ σ
181.30	100.0	73.8	0.27	0.60 (Rck 30)	15.71 > 7.11

13.2.3 Plinto lato monte

Sollecitazioni		Carpenteria		Armatura			Verifiche tensionali		
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]
-	18.82	100	80	1	5 \$\phi\$ 20 (15.71)	6.2	20.77	-0.23	8.94
				2	10 ¢ 20 (31.42)	73.8	(dal bordo superiore)		

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni			Verifiche tensionali	7	
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm²]> T/σ
74.09	100.0	73.8	0.11	0.60 (Rck 30)	31.42 > 2.91

Le verifiche risultano soddisfatte.

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO CODIFICA DOCUMENTO REV. MDL1 12 D 26 XX XX 00 00 000 Х 142 di 155

FOGLIO

14 A1 – MURO 3.0<H≤4.0 M CON BARRIERA ANTIRUMORE H4

14.1 VERIFICA STATICA

<u>Dati geometrici</u>	H tot =4.30 [m]		
muro	altezza muro	3.50	m
	spessore muro superiore	0.70	m
	spessore muro inferiore	0.70	m
	inclinazione muro - lato monte	0.00	0
	inclinazione muro - lato valle	0.00	0
	spessore muro inferiore - lato monte	0.00	m
	spessore muro inferiore - lato valle	0.00	m
platea di fondazione	sbalzo platea - lato valle	0.50	m
	spessore sbalzo platea - lato valle	0.80	m
	spessore sbalzo platea filo muro - lato valle	0.80	m
	sbalzo platea - lato monte	2.70	m
	spessore sbalzo platea - lato monte	0.80	m
	spessore sbalzo platea filo muro - lato monte	0.80	m
	inclinazione magrone sottofondo	0.00	0
	lunghezza platea	3.90	m
terrapieno	inclinazione terrapieno	0.00	0
•	lunghezza terrapieno superiore	2.70	m
	lunghezza terrapieno inferiore	2.70	m
	altezza totale terrapieno a monte	4.30	m

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 143 di 155

Dati geotecnici

terrapieno	angolo di attrito	35.0	0
	angolo di attrito muro-terrapieno	0.6	0
	coefficiente di spinta attiva - formula generale: $ka(\alpha,\delta,\phi,\iota)$	0.27099	
	coesione	0.0	kN/m²
	peso di volume	20.0	kN/m³
terreno di fondazione	angolo di attrito	35.0	0
	coefficiente di attrito f= tan (KTF x AATF)	0.5715	
	fattore di riduzione angolo di attrito	0.9	
	coesione	0.0	kN/m²
	peso di volume	19.00	MPa
	tensione ammissibile sul terreno (calcolo reazioni terreno)	0.15	MPa

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione	di	calcolo	muri	di	sostegno	sede	
ferroviaria					-		

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	X	144 di 155

Dati di carico

azione sismica	grado di sismicità (categoria zona sismica: I, II, III) coefficiente di intensità sismica angolo di attrito muro-terrapieno in fase di sisma coefficiente di spinta attiva in presenza di sisma = A x KAS* coefficiente di incremento di spinta attiva in presenza di sisma = KAS-KA	2 0.00 0.0 -	(2-6-9-12)
calcestruzzo	peso di volume	25.00	kN/m³
sovraccarico uniforme	Sovraccarico a monte in sommità del muro Percentuale sovraccarico su platea	54.40 100.00	kN/m ² (0-100 %)
	Sovraccarico a valle Percentuale sovraccarico su platea	0.00 100.00	kN/m ² (0-100 %)
falda	livello acqua falda da intradosso platea peso di volume pressione idrostatica a monte sottospinta idraulica sotto platea di fondazione	0.00 10.00 0 0	m kN/m³ (1= si; 0= n (1= si; 0= n
carichi applicati - uniforme	Sovraccarico aggiuntivo laterale - lato monte distanza di applicazione da filo posteriore platea di fondazione (+ verso monte) distanza di applicazione da intradosso platea di fondazione (+ verso alto) angolo di diffusione nel terreno	0.00 0.00 2.40 35.00	kN/m ² m m
- forze concentrate	forza verticale (+ verso l'alto) braccio orizzontale x forza verticale (+ verso monte)	-41.46 0.35	kN/m m
	forza orizzontale (+ verso valle) braccio verticale x forza orizzontale (+ verso l'alto)	25.03 0.00	kN/m m
	coppia (+ oraria)	95.75	kNm/m

POTENZIAMENTO DELLA LINEA RHO-ARONA PROGETTO DEFINITIVO PER APPALTO INTEGRATO

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 145 di 155

Sollecitazioni su paramento muro riferite al baricentro della sezione

sezione	z (m)	s _M (z) (m)	Xo (m)	σ _ν kN/m²	σ _h kN/m²	u kN/m²	N kN/m	T kN/m	M kNm/m
10 9	3.50 3.15	0.70 0.70	-0.85 -0.85	-54.40 -61.40	14.74 16.64	0.00 0.00	-41.46 -47.59	25.03 30.52	95.75 105.45
8	2.80	0.70	-0.85	-68.40	18.54	0.00	-53.71	36.68	117.19
7	2.45	0.70	-0.85	-75.40	20.43	0.00	-59.84	43.50	131.20
6	2.10	0.70	-0.85	-82.40	22.33	0.00	-65.96	50.98	147.72
5 4	1.75 1.40	0.70 0.70	-0.85 -0.85	-89.40 -96.40	24.23 26.12	0.00 0.00	-72.09 -78.21	59.13 67.94	166.97 189.18
3	1.05	0.70	-0.85	-103.40	28.02	0.00	-84.34	77.41	214.60
2	0.70	0.70	-0.85	-110.40	29.92	0.00	-90.46	87.55	243.45
1 0	0.35 0.00	0.70 0.70	-0.85 -0.85	-117.40 -124.40	31.81 33.71	0.00 0.00	-96.59 -102.71	98.36 109.82	275.96 312.38

LEGENDA:

 $s_M(z)$ = spessore sezione muro

z = quota sezione da estradosso platea lato monte (+ verso l'alto)

Xo= distanza baricentro sezione da spigolo inferiore sbalzo platea lato valle (s.d.r.)

 σ_v = tensione verticale dietro al muro (+ verso l'alto)

 σ_h = tensione orizzontale dietro al muro (+ verso valle)

u= pressione idrostatica dietro al muro

N= sforzo normale (-: compressioni)

T= sforzo di taglio (+: verso valle)

M= momento flettente (+: tese le fibre lato monte)

Riepilogo delle sollec. riferite al baricentro della platea di fondaz. - lato intrad. (comb.: 2)

azione orizzontale azione verticale momento flettente F_x = 138.53 kN/m F_z = -369.71 kN/m $M_{p,G}$ = 411.07 kNm/m

Riepilogo delle sollec. riferite al baricentro della platea di fondaz. - lato intrad. (comb.: 3)

azione orizzontale azione verticale momento flettente F_x = 138.53 kN/m F_z = -516.59 kN/m $M_{p,G}$ = 322.94 kNm/m

POTENZIAMENTO DELLA LINEA RHO-ARONA

PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	Х	146 di 155

Sollecitazioni s	u platea	di fondaz	zione	combo 2								
sezione	X (m)	DX (m)	qz,inf kN/m²	u,inf k N /m²	qz,sup kN/m²	V,inf kN/m	V,sup kN/m	M,inf kNm/m	M,sup kNm/m	V,tot kN/m	M,tot kNm/m	spessore (m)
sez 0 - (valle)	0.00	0.00	294.07	0.00	-20.00	0.00	0.00	0.00	0.00	0.00	0.00	0.80
sez 1 - (valle)	-0.13	0.13	279.45	0.00	-20.00	35.85	-2.50	2.26	-0.16	33.35	2.10	0.80
sez 2 - (valle)	-0.25	0.25	264.83	0.00	-20.00	69.86	-5.00	8.89	-0.63	64.86	8.26	0.80
sez 3 - (valle)	-0.38	0.38	250.21	0.00	-20.00	102.05	-7.50	19.65	-1.41	94.55	18.24	0.80
sez 4 - (valle)	-0.50	0.50	235.59	0.00	-20.00	132.42	-10.00	34.32	-2.50	122.42	31.82	0.80
					parame	nto mur	0					
sez 5 - (monte)	-1.20	2.70	153.73	0.00	-144.40	110.08	-389.88	57.44	-526.34	-279.80	-468.90	0.80
sez 6 - (monte)	-1.74	2.16	90.57	0.00	-144.40	44.12	-311.90	17.34	-336.86	-267.79	-319.51	0.80
sez 7 - (monte)	-2.28	1.62	27.42	0.00	-144.40	12.26	-233.93	3.66	-189.48	-221.67	-185.83	0.80
sez 8 - (monte)	-2.82	1.08	0.00	0.00	-144.40	0.00	-155.95	0.00	-84.21	-155.95	-84.21	0.80
sez 9 - (monte)	-3.36	0.54	0.00	0.00	-144.40	0.00	-77.98	0.00	-21.05	-77.98	-21.05	0.80
sez 10 - (monte)	-3.90	0.00	0.00	0.00	-144.40	0.00	0.00	0.00	0.00	0.00	0.00	0.80

LEGENDA:

X= ascissa sezione platea

DX= distanza sezione da lembo estremo

qz,inf= carico distribuito dovuto alla reazione di sottofondo del terreno

u,inf= pressione idrostatica sotto platea di fondazione

qz,sup= carico distribuito verso il basso

V= sforzo di taglio (+: verso l'alto)

M= momento flettente (+: tese le fibre di intradosso platea)

Sollecitazioni s	u platea	di fondaz	zione	combo 3								
sezione	X (m)	DX (m)	qz,inf kN/m²	u,inf kN/m²	qz,sup kN/m²	V,inf kN/m	V,sup kN/m	M,inf kNm/m	M,sup kNm/m	V,tot kN/m	M,tot kNm/m	spessore (m)
sez 0 - (valle)	0.00	0.00	259.85	0.00	-20.00	0.00	0.00	0.00	0.00	0.00	0.00	0.80
sez 1 - (valle)	-0.13	0.13	251.68	0.00	-20.00	31.97	-2.50	2.01	-0.16	29.47	1.85	0.80
sez 2 - (valle)	-0.25	0.25	243.52	0.00	-20,00	62.92	-5.00	7.95	-0.63	57.92	7.33	0.80
sez 3 - (valle)	-0.38	0.38	235.35	0.00	-20.00	92.85	-7.50	17.70	-1.41	85.35	16.29	0.80
sez 4 - (valle)	-0.50	0.50	227.19	0.00	-20.00	121.76	-10.00	31.12	-2.50	111.76	28.62	0.80
					parame	nto mur	0					
sez 5 - (monte)	-1.20	2.70	181.46	0.00	-144.40	251.81	-389.88	232,78	-526,34	-138.07	-293.56	0.80
sez 6 - (monte)	-1.74	2.16	146.18	0.00	-144.40	163.34	-311.90	121.55	-336.86	-148.56	-215.31	0.80
sez 7 - (monte)	-2.28	1.62	110.90	0.00	-144.40	93.93	-233.93	52.94	-189.48	-139.99	-136.54	0.80
sez 8 - (monte)	-2.82	1.08	75.62	0.00	-144.40	43.57	-155.95	16.67	-84.21	-112.38	-67.54	0.80
sez 9 - (monte)	-3.36	0.54	40.34	0.00	-144.40	12.26	-77.98	2.45	-21.05	-65.71	-18.60	0.80
sez 10 - (monte)	-3.90	0.00	5.07	0.00	-144.40	0.00	0.00	0.00	0.00	0.00	0.00	0.80

LEGENDA:

X= ascissa sezione platea

DX= distanza sezione da lembo estremo

qz,inf= carico distribuito dovuto alla reazione di sottofondo del terreno

u,inf= pressione idrostatica sotto platea di fondazione

qz,sup= carico distribuito verso il basso

V= sforzo di taglio (+: verso l'alto)

M= momento flettente (+: tese le fibre di intradosso platea)

Coefficiente di sicurezza

POTENZIAMENTO DELLA LINEA RHO-ARONA PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO CODIFICA

MDL1 12 D 26 XX

 Σ = 721.35

>= 1.5

411.49

DOCUMENTO XX 00 00 000 REV. FOGLIO

X 147 di 155

Verifica a ribaltamento					Mstab	Mrib
Azioni (comb.:1)					kNm/m	kNm/m
Muro + platea di fondazione					204.16	0.00
Terrapieno					481.95	0.00
Spinta terreno a monte					0.00	71.82
				Σ=	686.11	71.82
Coefficiente di sicurezza	$\eta_r =$	9.	.55		>= 1.5	
					Mstab	Mrib
Azioni (comb.:2)					kNm/m	kNm/m
					13. 4111/111	13,411,111
Muro + platea di fondazione					204.16	0.00
Terrapieno					481.95	0.00
Spinta terreno a monte					0.00	71.82
Spinta sovraccarico a monte					0.00	136.29
Forze applicate in sommità del mi	uro				35.24	203.38
Spinta dell'acqua					0.00	0.00
Sovraccarico a valle					0.00	0.00
Incremento di spinta terreno a mo	nte in fase	di sisn	na		0.00	0.00
Sovraccarico aggiuntivo laterale -					0.00	0.00
Sottospinta idraulica sotto platea d					0.00	0.00
,		-				

 $\eta_r =$

1.75

Coefficiente di sicurezza

 $\eta_t =$

POTENZIAMENTO DELLA LINEA RHO-ARONA PROGETTO DEFINITIVO PER APPALTO INTEGRATO

>= 1.3

GRUPPO FERROVIE DELLO STATO	QUADRUPL	ICAME!	OTI	RHO-PAR	RABIAGO E I	RACCORE	00 Y
Relazione di calcolo muri di sostegno sede ferroviaria	COMMESSA MDL1	LOTTO 12		DIFICA 6 XX	DOCUMENTO XX 00 00 000	REV.	FOGLIO 148 di 155
Verifica allo scorrimento							
(verifica alla traslazione magrone terreno - inclinazione pi Azioni (comb.:1)	ano di slittame	ento = 0	°)	Fx kN/m	Fz kN/m	Ft kN/m	Fn kN/m
Muro + platea di fondazione				0.00	-139.25	0.00	-139.25
Terrapieno				0.00	-189.00	0.00	-189.00
Spinta terreno a monte				50.11	0.00	50.11	0.00
			Σ=	50.11	-328.25	50.11	-328.25
Coefficiente di sicurezza $\eta_t =$	3.74			>= 1.3			
				Fx	Fz	Ft	Fn
Azioni (comb.:2)				kN/m	kN/m	kN/m	kN/m
Muro + platea di fondazione				0.00	-139.25	0.00	-139.25
Terrapieno				0.00	-189.00	0.00	-189.00
Spinta terreno a monte				50.11	0.00	50.11	0.00
Spinta sovraccarico a monte				63.39	0.00	63.39	0.00
Forze applicate in sommità del muro				25.03	-41.46	25.03	-41.46
Spinta dell'acqua				0.00	0.00	0.00	0.00
Sovraccarico a valle				0.00	0.00	0.00	0.00
Incremento di spinta terreno a monte in fase di sisma				0.00	0.00	0.00	0.00
Sovraccarico aggiuntivo laterale - lato monte				0.00	0.00	0.00	0.00
Sottospinta idraulica sotto platea di fondazione				0.00	0.00	0.00	0.00
			Σ=	138.53	-369.71	138.53	-369.71

1.53

POTENZIAMENTO DELLA LINEA RHO-ARONA PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

 DMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 149 di 155

Riepilogo delle sollecitazioni (comb.: 2 e 3)	spessore (m)	N kN/m	T kN/m	M kNm/m
Paramento verticale - sezione di spiccato	0.70	-102.71	109.82	312.38
Riepilogo delle sollecitazioni (comb.: 2)	spessore (m)	N kN/m	T kN/m	M kNm/m
Mensola lato valle - sezione filo paramento verticale	0.80	0.00	122.42	31.82
Mensola lato monte - sezione filo paramento verticale	0.80	0.00	-279.80	-468.90
Riepilogo delle sollecitazioni (comb.: 3)	spessore (m)	N kN/m	T kN/m	M kNm/m
Mensola lato valle - sezione filo paramento verticale	0.80	0.00	111.76	28.62
Mensola lato monte - sezione filo paramento verticale	0.80	0.00	-138.07	-293.56

N (-) : sforzo normale di compressione

M (+) : momento flettente che tende le fibre lato terreno - paramento verticale

: momento flettente che tende le fibre lato intradosso - platea di fondazione

Le verifiche risultano soddisfatte.

14.2 Verifiche strutturali

14.2.1 Muro frontale

Le massime sollecitazioni agenti nella sezione di spiccato del muro frontale sono:

M = 312.38 kNm

T = 109.82 kN

N = -102.71 kN

POTENZIAMENTO DELLA LINEA RHO-ARONA PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 XX
 XX 00 00 000
 X
 150 di 155

La sezione è armata con ϕ 18/10 lato interno e ϕ 18/20 lato esterno. Vengono riportate le verifiche tensionali

Sollec	itazioni	Carpe	enteria	Armatura				nali	
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _ε [MPa]	σ _s [MPa]
-102.71	312.38	100	70	1	5 ф 18 (12.72)	6.1	19.08	-5.48	193.13
				2 10 φ 18 (25.45) 63.9 (dal bordo superiore)				eriore)	

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni			Verifiche tension	ali	
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm ²]> T/ σ
109.82	100.0	63.9	0.19	0.67 (Rck 35)	25.45 > 4.31

POTENZIAMENTO DELLA LINEA RHO-ARONA PROGETTO DEFINITIVO PER APPALTO INTEGRATO

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO CODIFICA

MDL1 12 D 26 XX

DOCUMENTO XX 00 00 000 REV. FOGLIO X 151 di 155

0.00037501

35

N = M = -102.71 312.38 [kN] [kNm] $w_k = 1.7 w_m =$ $w_m = \varepsilon_{sm} s_{rm} =$

0.101 0.059

[mm] [mm]

Sezione di ca	alcestruzzo [R]	Sezione interamente	reagente [l° stadio]	P	rmatura ordinaria	
dim. B [cm] x	dim. B [cm] x H [cm]= 100 x 70				Asv1	
A tot cls $[cm^2] =$	7000.00	$A,I^{\circ} [cm^{2}] =$	7572.56	As tot [cm ²] =	38.17	
J tot cls [cm 4] =	2858333.33	J,1° [cm ⁴] =	3332519.81	μ _{.tot} [%] =	0.55	
y_inf [cm] =	35.00	y_inf,I° [cm] =	34.27	n° livelli di armatura=	2	
y_sup [cm] =	35.00	y_sup,I° [cm] =	35.73	livello	As [cm²]	hi_sup [cm]
$W_{inf}[cm^3] =$	81666.67	W_inf,I° [cm³] =	97238.44	1	5 ¢ 18 (12.72)	6.1
W_sup [cm³] =	81666.67	W_sup,I° [cm³] =	93273.77	2	10 ¢ 18 (25.45)	63.9
					_	
					_	
					-	

Calcolo della distanza media tra le fessure

 s_{rm} = 2 (c+s/10) + k_2 k_3 ϕ / ρ_r =

φ = diametro della barra

c = ricoprimento dell'armatura

s = distanza tra le barre; se s > 14 φ si adotterà s= 14 φ

k₂ = coefficiente di aderenza del cls alla barra

k₃ = coefficiente di forma del diagramma delle tensioni

 $\rho_r = A_s/A_{c eff}$

 A_s = area della sezione di acciaio nell'area $A_{c\,eff}$

 $A_{c eff} = b_{eff} d_{eff}$

 $b_{eff} = B$

d eff =

 $d \, eff = c + s' + 7.5\phi$

d eff < (H-xI)/2= 16.41 cm; xI= 37.18 cm

 β_2 = coefficiente di sollecitazione

s' = interasse verticale tra le file di barre= 0.0 cm

15.80 [cm]

1.8 [cm]

4.0 [cm]

10.0 [cm]

0.4

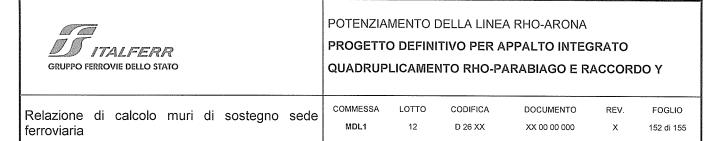
0.125

0.01550475

25.45 [cm²]

1641.23 [cm²]

100.0 [cm]


16.4 [cm]

0.5

17.5 [cm]

Calcolo della deformazione unitaria media dell'armatura

$\varepsilon_{sm} = \sigma_s / E_s \left[1 - \beta_1 \beta_2 \left(\sigma_{sr} / \sigma_s \right)^2 \right] \qquad (>= 0.4 \sigma_s / E_s)$	0.00037501	$0.4 \sigma_{\rm s} / E_{\rm s} = 0.4 \sigma_{\rm s} / $
E _s = modulo di elasticità normale	206000 [MPa]	
$\sigma_{\rm s}$ = tensione nell'acciaio nella sezione fessurata	193.13 [MPa]	
σ_{sr} = tensione nell'acciaio nella sezione fessurata per la sollecitazione	218.12 [MPa]	
di fessurazione (M _{fess,} N _{fess})		
Nfess= N	-102.71 [kN]	
Mfess = [fcm-N/A,I°]W_inf,I°	349.31 [kNm]	
fcm= fcfm = resistenza a trazione media per flessione	3.46 [MPa]	cls Rck [MPa] =
fci= trazione iniziale nel cls	0.00 [MPa]	
β_1 = coefficiente aderenza acciaio cls	1.0	

14.2.2 Plinto lato monte

La zattera di fondazione è armata con $\phi 22/10$ superiormente e $\phi 22/20$ inferiormente.

I tassi di lavoro risultano:

Sollec	itazioni	Carpe	enteria	Armatura			Armatura Verifiche tens		
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]
-	-468.90	100	80	1	10 ¢ 22 (38.01)	6.3	22.26	-5.36	185.62
				2 5 \(\phi 22 \) (19.01) 73.7 (dal bordo inferiore)				riore)	

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni					
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm ²]> T/ σ
279.80	100.0	73.7	0.42	0.60 (Rck 30)	19.01 > 10.97

POTENZIAMENTO DELLA LINEA RHO-ARONA PROGETTO DEFINITIVO PER APPALTO INTEGRATO

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA LOTTO CODIFICA DOCUMENTO REV. MDL1 12 D 26 XX XX 00 00 000 Х

N = 0.00 M = -468.90

[kN] [kNm]

 $w_k = 1.7 w_m =$ $W_m = \epsilon_{sm} s_{rm} =$ 0.144 0.085

[mm]

FOGLIO

153 di 155

0.00036043

30

[mm]

Sezione di calcestruzzo [R] dim. B [cm] x H [cm]= 100 x 80		Sezione interamente reagente [I° stadio]		Armatura ordinaria			
				armatura - check	Asv1		
A tot cls [cm ²] =	8000.00	$A, I^{\circ} [cm^{2}] =$	8855.30	As tot [cm ²] =	57.02		
J tot cls [cm ⁴] =	$[cm^4] = 4266666.67$		5227596.37	μ _{.tot} [%] =	0.71	/1	
y_inf [cm] =	40.00	y_inf,I° [cm] =	41.08	n° livelli di armatura=	2		
y_sup [cm] =	40.00	y_sup,i° [cm] =	38.92	livello	As [cm²]	hi_sup [cm]	
$W_{inf}[cm^3] =$	106666.67	$W_inf, I^{\circ}[cm^3] =$	127238.61	1	10 ¢ 22 (38.01)	6.3	
W_sup [cm³] =	106666.67	W_sup,I° [cm³] =	134333.65	2	5 φ 22 (19.01)	73.7	
					_		
					_		
					_		
					-		

 $s_{rm} = 2 (c+s/10) + k_2 k_3 \phi / \rho_r =$

φ = diametro della barra

c = ricoprimento dell'armatura

s = distanza tra le barre; se s > 14 ϕ si adotterà s= 14 ϕ

k₂ = coefficiente di aderenza del cls alla barra

 k_3 = coefficiente di forma del diagramma delle tensioni

 $\rho_r = A_s/A_{c eff}$

 A_s = area della sezione di acciaio nell'area $A_{c\,eff}$

 $A_{c eff} = b_{eff} d_{eff}$

 $b_{eff} = B$

d eff =

 $d \, eff = c + s' + 7.5 \phi$

d eff < (H-xI)/2= 19.46 cm; xI= 41.08 cm

s' = interasse verticale tra le file di barre= 0.0 cm

15.63 [cm] 2.2 [cm]

4.0 [cm]

10.0 [cm]

0.4 0.125

0.01953656

38.01 [cm²]

1945.75 [cm²]

100.0 [cm]

19.5 [cm]

20.5 [cm]

Calcolo della deformazione unitaria media dell'armatura

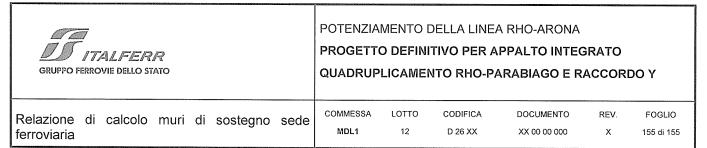
$\varepsilon_{sm} = \sigma_s / E_s \left[1 - \beta_1 \beta_2 \left(\sigma_{sr} / \sigma_s \right)^2 \right] \qquad (>= 0.4 \sigma_s / E_s)$	0.00054134	$0.4 \sigma_{\rm s} / E_{\rm s} =$
E₅ = modulo di elasticità normale	206000 [MPa]	
σ_s = tensione nell'acciaio nella sezione fessurata	185.62 [MPa]	
σ_{sr} = tensione nell'acciaio nella sezione fessurata per la sollecitazione	165.87 [MPa]	
di fessurazione (M _{fess,} N _{fess})		
Nfess= N	0.00 [kN]	
Mfess = -[fcm]W_sup,I°	-418.99 [kNm]	
fcm= fcfm = resistenza a trazione media per flessione	3.12 [MPa]	cls Rck [MPa] =
fci= trazione iniziale nel cls	0.00 [MPa]	
β_1 = coefficiente aderenza acciaio cls	1.0	
β_2 = coefficiente di sollecitazione	0.5	

POTENZIAMENTO DELLA LINEA RHO-ARONA PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Relazione di calcolo muri di sostegno sede ferroviaria

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 XX	XX 00 00 000	Х	154 di 155

14.2.3 Plinto lato valle


La zattera di fondazione è armata con $\phi 22/20$ superiormente e $\phi 22/10$ inferiormente.

I tassi di lavoro risultano:

Sollec	itazioni	Carpe	enteria	Armatura			Verifiche tensionali		nali
N [kN]	M [kNm]	B [cm]	H [cm]	livello	As (cm ²)	hi_sup [cm]	y [cm]	σ _c [MPa]	σ _s [MPa]
-	28.26	100	80	1	5 ¢ 22 (19.01)	6.3	22.26	-0.32	11.19
				2	10 \(\phi 22 (38.01) \)	73.7	(dal bordo sup	eriore)	

Verifica delle tensioni tangenziali - sezione solo cls

Sollecitazioni					
T [kN]	B [cm]	h [cm]	τ _{max} [MPa]	τ _{co} [MPa]	A*I,inf [cm²]> T/σ
138.07	100.0	73.7	0.21	0.60 (Rck 30)	38.01 > 5.41

Verifica a formazione fessure - Sezione: PLINTO VALLE

Sollecitazioni di verifica				
N = M =		[KN] [KNm]	sforzo assiale (+ trazione) momento flettente (+ tende le fibre inferiori)	
141 —	20.20	[KIMII]	momento hettente (+ tende le libre linerion)	
Materiali				
cls Rck =	30.00	[MPa]		
$f_{ctk} = 0.7 \times [0.27 \times (Rck)^{2/3}] =$		[MPa]	resistenza caratteristica a trazione per sforzo normale	
$f_{cfk} = 0.7 \times 1.2 \times [0.27 \times (Rck)^{2/3}] =$	2.19	[MPa]	resistenza caratteristica a trazione per flessione	
Caratteristiche geometriche sezione re	ttangolare (solo	cls)		
B =	100.00	[cm]	base	
H =	80.00		altezza	
$y_{G,cls} = H/2 =$	40.00		posizione baricentro	
$A_{cls} =$	8000.0		area	
$J_{cls} = 1/12 \text{ B H}^3 =$	4266666.7		momento di inerzia	
$W_{cls} = J_{cls} / (H/2) =$	106666.7	[cm]	modulo resistente ai lembi	
Caratteristiche geometriche (I° stadio)				
n=	15.00			
armatura superiore	As [cm ²]	hi sup [cm]	copriferro [cm]	
1° livello	5 \$ 22 (19.01)	6.3	5.2	
2° livello		-	-	
3° livello	_	-	•	
armatura inferiore	As [cm ²]	hi_inf [cm]	copriferro [cm]	
1° livello	10 ¢ 22 (38.01)	6.3	5.2	
2° livello 3° livello	-	-	-	
3 livelio	_	-	•	
$y_{G_{sup}} = S_{xi} / A_i =$	41.08	[cm]	posizione baricentro sezione omogeneizzata	
A_i = BH+n Σ As =	8855.3	-	area sezione omogeneizzata	
$J_i = J_i' - A_i y_{G_{sup}}^2 =$	5227596.4	[cm⁴]	momento di inerzia sezione omogeneizzata	
$y_s = y_{G_sup} =$	41.08	[cm]	distanza dal baricentro del lembo superiore	
$W_{i,s} = J_i / y_s =$	127238.6 [cm³]		modulo resistente al lembo superiore sezione omogeneizzata	
y _i = H - y _{G_sup} =	38.92	[cm]	distanza dal baricentro del lembo inferiore - trazione	
$W_{i,i} = J_i / y_i =$	134333.7	[cm ³]	modulo resistente al lembo inferiore sezione omogeneizzata - trazione	
Trazione nel calcestruzzo				
$\sigma_{c(N)} = N / Ai =$	0.00	[MPa]		
$\sigma_{c(M)} = M / Wt =$		[MPa]		
σ _{c,tot} =	0.21	[MPa]	< 2.19	

Le verifiche risultano soddisfatte.

