

PROGETTO DEFINITIVO DELL'IMPIANTO AGRIVOLTAICO DELLA POTENZA DI PICCO DI 360MW CON SISTEMA DI ACCUMULO DI CAPACITA' PARI A 82,5MWH E RELATIVE OPERE DI CONNESSIONE ALLA RETE RTN, DA REALIZZARSI NEL COMUNE DI SASSARI NELLE FRAZIONI DI "PALMADULA, LA CORTE, CANAGLIA, LI PIANI, SAN GIORGIO, SCALA ERRE"

PROGETTO DEFINITIVO

COMMITTENTE:

PALMADULA SOLAR S.R.L.

PROGETTISTA:

ふるなれないなかずで

TITOLO ELABORATO:

RELAZIONE DI CALCOLO DEI SOSTEGNI DEI TRACKER

ELABORATO n°: BI028F-D-PAL-RT-09-r00

NOME FILE:

SCALA: ----

DATA: AGOSTO 2023

	N.	DATA	DESCRIZIONE	ELABORATO	CONTROLLATO	APPROVATO
빌	00	Agosto 2023	Prima Emissione	G. Pezzini	M. Sandri	S. Venturini
Ó	01					
SIV.	02					
RE	03					
	04					

DEI TRACKER

RELAZIONE DI CALCOLO DEI SOSTEGNI

Pag. 1

SOMMARIO

1.	PREN	ИESSA	4
	1.1.	Descrizione della struttura di sostegno dei pannelli	5
2.	NOR	MATIVA DI RIFERIMENTO	9
3.	CARA	ATTERISTICHE DEI MATERIALI	10
	3.1.	Acciaio da carpenteria S275	10
	3.2.	Acciaio da carpenteria S355	10
4.	CARA	ATTERIZZAZIONE GEOTECNICA DEL TERRENO DI FONDAZIONE	11
	4.1.	Tecnica di infissione dei pali	13
5.	IPOT	ESI DI CALCOLO	14
	5.1.	Vita nominale e periodo di ritorno per il calcolo delle azioni	14
	5.2.	Parametri per la definizione dell'azione sismica	14
		5.2.1. Parametri di pericolosità sismica	15
		5.2.2. Coefficienti di amplificazione stratigrafica e topografica	17
	5.3.	Parametri e ipotesi per la definizione dell'azione vento	17
		5.3.1. Condizioni di carico	17
		5.3.2. Condizione di riposo (alfa = 5°)	18
		5.3.3. Condizione di lavoro (alfa = max 60°)	18
6.	ANAI	LISI DEI CARICHI	22
	6.1.	Carichi permanenti (G2)	22
	6.2.	Azione del vento (Qv)	22
		6.2.1. Definizione del sito	22
		6.2.2. Velocità di riferimento in condizioni di riposo (alfa = 5°)	23
		6.2.3. Velocità di riferimento in condizioni di lavoro (alfa = 60°)	24
		6.2.4. Coefficiente di esposizione (ce)	24
		6.2.5. Coefficienti aerodinamici in posizione di riposo (alfa = 5°)	26
		6.2.6. Coefficienti aerodinamici in posizione di lavoro (alfa = 60°)	27
		6.2.7. Azioni a metro lineare in condizioni di riposo (alfa = 5°)	28
		6.2.8. Azioni a metro lineare in condizioni di lavoro (alfa = 60°)	29
	6.3.	Azione della neve (Qn)	31
		6.3.1. Neve in condizioni di riposo (alfa = 5°)	32
		6.3.2. Neve in condizioni di lavoro (alfa = 60°)	32
	6.4.	Azione termiche (Qt)	32
7.	СОМ	IBINAZIONE DI CARICO	33
8.	CALC	COLO DELLE SOLLECITAZIONI ALLA BASE DEI SOSTEGNI	35
	8.1.	Condizione di riposo (alfa = 5°)	35

Data Agosto 2023

RELAZIONE DI CALCOLO DEI SOSTEGNI DEI TRACKER

	8.1.	Condiz	ione di lavoro (alfa = 60°)	36
		8.1.1.	Sollecitazioni a base sostegni Tracker Esterni (TE)	36
		8.1.1.	Sollecitazioni a base sostegni Tracker Interni (TI)	36
9.	VERII	FICHE G	EOTECNICHE	37
	9.1.	Carico	limite verticale	37
	9.2.	Carich	i di progetto per il calcolo della lunghezza minima di infissione	40
	9.3.	Calcol	o della lunghezza minima di infissione – Modello geotecnico 1	42
		9.3.1.	Sostegno Laterale (SL) – COMPRESSIONE Ned = +51,1kN	42
		9.3.2.	Sostegno Laterale (SL) – TRAZIONE Ned = -20 kN	43
		9.3.3.	Sostegno Centrale (SC) – COMPRESSIONE Ned = +67,2kN	43
		9.3.4.	Sostegno Centrale (SC) – TRAZIONE Ned = -26,4 kN	43
	9.4.	Calcol	o della lunghezza minima di infissione – Modello geotecnico 2	44
		9.4.1.	Sostegno Laterale (SL) – COMPRESSIONE Ned = +51,1kN	44
		9.4.2.	Sostegno Laterale (SL) – TRAZIONE Ned = -20 kN	44
		9.4.3.	Sostegno Centrale (SC) – COMPRESSIONE Ned = +67,2kN	45
		9.4.4.	Sostegno Centrale (SC) – TRAZIONE Ned = -26,4 kN	45
	9.5.	Calcol	o della lunghezza minima di infissione – Modello geotecnico 3	46
		9.5.1.	Sostegno Laterale (SL) – COMPRESSIONE Ned = +51,1kN	46
		9.5.2.	Sostegno Laterale (SL) – TRAZIONE Ned = -20 kN	47
		9.5.3.	Sostegno Centrale (SC) – COMPRESSIONE Ned = +67,2kN	47
		9.5.4.	Sostegno Centrale (SC) – TRAZIONE Ned = -26,4 kN	47
	9.6.	Riepilo	go lunghezze minime di infissione	48
	9.7.	Carico	limite orizzontale (ovvero trasversale)	49
		9.7.1.	Tracker Esterno - Sostegno Laterale (TE-SL) – Acciaio S275	52
		9.7.2.	Tracker Esterno - Sostegno Centrale (TE-SC) – Acciaio S275	52
		9.7.3.	Tracker Esterno - Sostegno Laterale (TE-SL) – Acciaio S355	53
		9.7.4.	Tracker Esterno - Sostegno Centrale (TE-SC) – Acciaio S355	53
		9.7.5.	Tracker Interno - Sostegno Laterale (TI-SL) – Acciaio S275	54
		9.7.6.	Tracker Interno - Sostegno Centrale (TI-SC) – Acciaio S275	54
		9.7.7.	Tracker Interno - Sostegno Laterale (TI-SL) – Acciaio S355	55
		9.7.8.	Tracker Interno - Sostegno Centrale (TI-SC) – Acciaio S355	55
10.	CALC	OLO E	VERIFICA STRUTTURALE DEI SOSTEGNI	56
		10.1.1	. Tracker Esterno - Sostegno Laterale (TE-SL) – Acciaio S275	57
		10.1.2	. Tracker Esterno - Sostegno Centrale (TE-SC) — Acciaio S275	59
		10.1.3	. Tracker Interno - Sostegno Laterale (TI-SL) – Acciaio S275	61
		10.1.4	. Tracker Interno - Sostegno Centrale (TI-SC) – Acciaio S275	61
		10.1.5	. Tracker Esterno - Sostegno Laterale (TE-SL) – Acciaio S355	61

Rev. 0

DEI TRACKER

10.1.6. Tracker Esterno - Sostegno Centrale (TE-SC) – Acciaio S355	63
10.1.7. Tracker Interno - Sostegno Laterale (TI-SL) – Acciaio S355	
10.1.8. Tracker Interno - Sostegno Centrale (TI-SC) – Acciaio S355	
11. Conclusioni	
11. Conclusioni	69
INDICE DELLE FIGURE	
Figura 1.1 Planimetria generale di progetto	4
Figura 1.2 – Posizione di lavoro - massima rotazione dei pannelli (alfa=60°)	
Figura 1.3 – Posizione di riposo (alfa=5°).	
Figura 1.4 – Individuazione dei tracker interni ed esterni in funzione della loro posizione	
Figura 1.5 – Prospetto e pianta dei trackers con indicazione dei supporti laterali e centrale	
Figura 4.1 – Modello geotecnico 1	11
Figura 4.2 – Modello geotecnico 2	11
Figura 4.3 – Modello geotecnico 3	
Figura 4.4 – Planimetria delle zone di intervento con indicazione dei modelli geotecnici	12
Figura 5.1 – Curva di correlazione ASCE7-10	19
Figura 6.1 – Andamento del coefficiente Ce in funzione dell'altezza dal suolo	25
Figura 6.2 – Tettoie a semplice falda: posizione del punto di applicazione della forza risultan	te 26
Figura 6.3 – Condizioni di vento CC1 e CC2 in posizione di riposo (alfa = 5°)	27
Figura 6.4 – Condizioni di vento CC1 e CC2 in posizione di lavoro (alfa = 60°)	27
Figura 8.1 – Convenzione dei segni per le sollecitazioni agenti alla base dei sostegni	
Figura 9.1 – Valori di Nq (secondo vari autori)	
Figura 9.2 – Palo corto libero di ruotare in testa, terreni incoerenti	
Figura 9.3 – Palo lungo libero di ruotare in testa, terreni incoerenti	
Figura 10.1 – Modello agli elementi finiti utilizzato per il calcolo delle sollecitazioni lungo i	•
valori delle costanti di molla	
Figura 11.1 – Tracker con supporti in acciaio S275 in terreni con modello geotecnico 1e3	
Figura 11.2 – Tracker con supporti in acciaio S275 in terreni con modello geotecnico 2	
Figura 11.3 – Tracker con supporti in acciaio S355 in terreni con modello geotecnico 1e3	
Figura 11.4 – Tracker con supporti in acciaio S355 in terreni con modello geotecnico 2	72
INDICE DELLE TABELLE	
Tabella 1 – Parametri di pericolosità sismica per SLV (TR = 332 anni)	17
Tabella 2 - Coefficienti parziali di sicurezza per le combinazioni SLU	34
Tabella 3 - Coefficienti Ψ per le azioni variabili	34
Tabella 4 – Riepilogo delle lunghezze minime di infissione per i diversi sostegni in funzior	ıe della
zona di intervento (ovvero del modello geotecnico di riferimento)	
Tabella 5 - Lunghezza di infissione di progetto	49
Tabella 6 – Rienilogo complessivo delle verifiche	70

<u>क्रिक्सरफ्रक्स</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog 4
35377777			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 4
			DEI TRACKER	

1. PREMESSA

Il progetto in esame è relativo alla realizzazione e messa in esercizio di un impianto agrivoltaico, ovvero un sistema innovativo in cui si implementano la produzione di energia mediante fonti rinnovabili (solare) e la produzione agricola per la generazione di energia elettrica, comprensivo delle opere di connessione, nel territorio comunale di Sassari (SS) in Sardegna, denominato Palmadula, in quanto il blocco principale si concentra nella frazione di "Palmadula" per una potenza nominale installata pari a circa 358 MWp DC ed una potenza in immissione pari a circa 337 MW AC, con rapporto DC/AC di circa 1,06.

L'energia elettrica sarà prodotta da moduli fotovoltaici bifacciali montati su strutture ad inseguimento mono assiale in acciaio. L'impianto sarà anche corredato da un sistema di accumulo elettrochimico con una capacità di circa 82,5 MWh. Tutta l'energia elettrica prodotta, al netto dei consumi dei servizi ausiliari, verrà ceduta alla rete.

L'area interessata dall'impianto ha una superficie di circa 900 ha dislocate sul territorio, come mostra la sottostante figura.

Figura 1.1 Planimetria generale di progetto

<u> अन्य क्षेत्रस्य स्टब्स्स</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog F
755777777			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 5
			DEI TRACKER	İ

La presente relazione illustra i calcoli per il dimensionamento delle strutture di sostegno dei pannelli fotovoltaici (TRACKER).

1.1. Descrizione della struttura di sostegno dei pannelli

I sistemi ad inseguimento solare monoassiale saranno del tipo PVH Monoline 2V o equivalenti, con struttura portante in parte infissa nel terreno, a profondità variabile in funzione delle sollecitazioni, <u>senza utilizzo di cls</u>, in parte fuori terra su cui verranno montate particolari cerniere attraversate da una trave scatolare a sezione quadrata che ruota attorno al proprio asse, posizionando i pannelli ad una quota dal terreno pari a circa 3,2m.

La trave soggetta a torsione e le staffe di montaggio dei pannelli non sono oggetto di questa relazione.

I pannelli in condizione di lavoro possono raggiungere una configurazione inclinata allo zenitale massimo di 60°. In questa condizione l'altezza dal lembo più alto del pannello rispetto al terreno sarà di circa 5,15m, mentre il lembo più basso arriverà a 1,0 m.

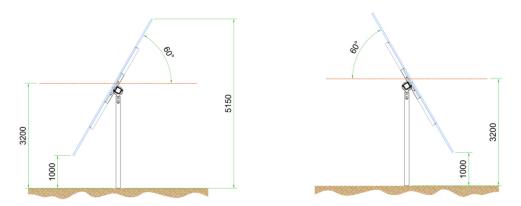


Figura 1.2 – Posizione di lavoro - massima rotazione dei pannelli (alfa=60°).

I trackers sono dotati di un sistema di sicurezza che riporta i pannelli in posizione di riposo in caso di forte vento.

La pendenza di sicurezza (o riposo) per i trackers è di 5 gradi.

In questa condizione l'altezza dal lembo più alto del pannello rispetto al terreno sarà di circa 3,4m.

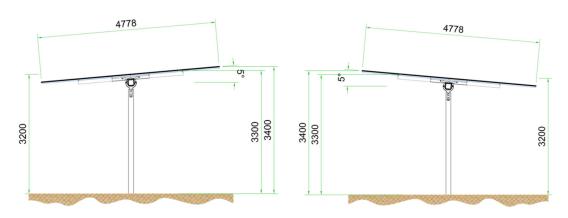


Figura 1.3 – Posizione di riposo (alfa=5°).

Il layout dei moduli fotovoltaici è composto da diverse file, in cui vengono considerate due diverse configurazioni a seconda della loro posizione.

Le **zone esterne** corrispondono ai tracker situati nella prima e nella seconda fila e sulle righe laterali. I tracker su queste zone sono soggetti a carichi di vento più elevati in fase di lavoro (alfa=60°).

Il resto dei tracker, che si trovano internamente, beneficiano in fase di lavoro dell'azione schermante dei tracker esterni.

In condizione di riposo (alfa=5°) non si considera alcuna azione schermante in quanto i pannelli sono orientati quasi parallelamente alla superficie del suolo e pertanto si considerano come un'unica struttura del tipo tettoia.

Figura 1.4 – Individuazione dei tracker interni ed esterni in funzione della loro posizione.

Tutti i tracker a 28 moduli hanno una lunghezza di circa 18,9m e sono sostenuti da 3 pali metallici la cui altezza fuori terra è di circa 2,8m.

Il baricentro dei 28 pannelli si trova più in alto, all'altezza di circa 3,2m dal piano campagna.

I sostegni laterali (SL) di ciascun tracker si prendono le azioni agenti su 5,7m di struttura, mentre quello centrale (SC) è più sollecitato perché gli compete una lunghezza di 7,5m, come evidenziato della seguente figura.

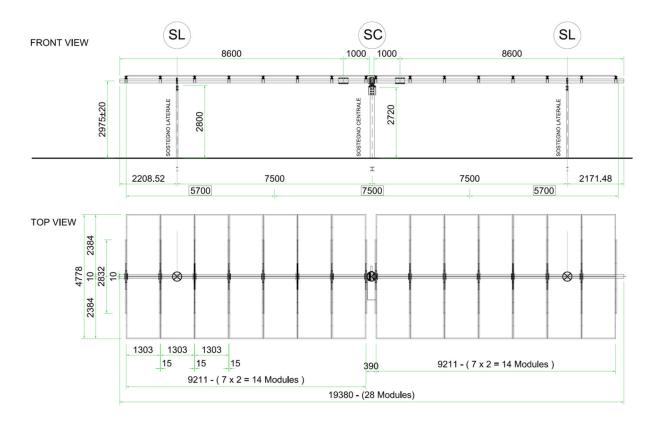


Figura 1.5 – Prospetto e pianta dei trackers con indicazione dei supporti laterali e centrale

<u> अस्त्रकःस्यासम्</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dag 0
7331113112			RELAZIONE DI CALCOLO DEI SOSTEGNI DEI TRACKER	Pag. 9

2. NORMATIVA DI RIFERIMENTO

Di seguito sono riportati i principali riferimenti normativi applicati nella progettazione delle strutture o comunque di supporto:

- DM 17/01/2018: "Norme tecniche per le costruzioni", abbreviate nel seguito con l'acronimo "NTC 2018";
- Circ. 21/01/2019, n. 7 C.S.LL.PP.: "Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni";
- CNR-DT 207 R1/2018: "Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni";
- Eurocodice 1 "Actions on structures";
- Eurocodice 3 "Design of steel structures" EN 1993-1-1;
- Eurocodice 7 "Geotechnical design";
- Raccomandazioni sui pali di fondazione Associazione Geotecnica Italiana dicembre 1984.

<u> सन्द्रभः स्ट्रास्टर</u>	Rev. 0	Data Agosto 2023	EI: BI028F-D-PAL-RT-09-r00	Dog. 10
7.5.2.7.7.7.7.7			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 10
			DEI TRACKER	

3. CARATTERISTICHE DEI MATERIALI

Per i sostegni dei tracker si ipotizza l'impiego di due tipi di acciaio da carpenteria.

3.1. Acciaio da carpenteria S275

Tensione caratteristica di snervamento: $fyk = 275 N/mm^2$

Tensione caratteristica di rottura: $ftk = 430 N/mm^2$

Modulo elastico: $Es = 210000 N/mm^2$

Peso per unità di volume $\gamma = 78,5 \ KN/m^3$

3.2. Acciaio da carpenteria S355

Tensione caratteristica di snervamento: $fyk = 355 N/mm^2$

Tensione caratteristica di rottura: $ftk = 510 N/mm^2$

Modulo elastico: $Es = 210000 N/mm^2$

Peso per unità di volume $\gamma = 78.5 \ KN/m^3$

4. CARATTERIZZAZIONE GEOTECNICA DEL TERRENO DI FONDAZIONE

Dal punto di vista geologico-geotecnico l'area di intervento è stata suddivisa in 3 zone caratterizzate da altrettanti modelli stratigrafici e geotecnici.

		Lotti SCALA ERRE 1,2 -	LIPIANI 1,2,3	3 - LA	CORTE 3	3 - SE NO	ORD								
Sigla	Prof (m da p.c.)	Descrizione	γ (kN/m³)	IP	OCR	Dr (%)	Sr (%)	c' (kPa)	φ' (°)	Cu (kPa)	E (Mpa)	K (m/s)			
Copertural da 0 a 2.0 m		Limo argilloso sabbioso debolmente ghiaioso mediamente compatto	20,0	20				5-10	28	80-100	15-20	1,00E-08			
C1.2	da 2.0 a 10 m	Limo argilloso sabbioso molto compatto con clasti poligenici eterometrici. Presenti depositi di ghiaia e ciottoli in matrice sabbioso limosa mediamente addensati e addensati	19,5	20				10-20	28	100-200	40-50	1,00E-08			
Scala Erre 1, 2 Suolo di fondazione TIPO B Lipiani 1,2,3 SE NORD		Terreni gran	ulari c	on pres			oligenici inserire			a presenza di tali clasti					
Suolo di fo	ndazione TIPO C	La Corte 3	Verticali indagate: 6												
Falda: Non	rilevata (>10 m d	a p.c.)													

Figura 4.1 – Modello geotecnico 1.

		Lotti CANAGLIA 1 - PALMADU	ILA 1,2,3,4,5,0	6,7,8,9	,10 - LA	CORTE	4,5 - SE	SUD				
Sigla	Prof (m da p.c.)	Descrizione	γ (kN/m³)	IP	OCR	Dr (%)	Sr (%)	c' (kPa)	φ' (°)	Cu (kPa)	E (Mpa)	K (m/s)
Copertura da 0 a 1.0 m Sabbia limoso argillosa debolmente gr		Sabbia limoso argillosa debolmente ghiaiosa con clasti poligenici	19,0	12				10-15	26-28	100-150	20	1,00E-08
B2.1	B2.1 da 1.0 a 10 m Metareniti, quarziti e metapelti		22,0					30-50	30-35		500	1,00E-08
Suolo di for	Canaglia 1 Suolo di fondazione TIPO B Palmadula 4, 5, 8, 9, 10 SE SUD			Roccia da affiorante a subaffiorante da compatta a fratturata, per tale motivo è preferibile inserire pali trivellati.								
Suolo di fondazione TIPO C		Palmadula 1, 2, 3, 6, 7 La Corte 4, 5	Verticali indagate: 14									
Falda: Non	rilevata (>10 m da	a p.c.)										

Figura 4.2 – Modello geotecnico 2.

		Lotti SCALA ERRE	3 - SAN GIOR	GIO 1	- LA CO	RTE 1,2						
Sigla	Prof (m da p.c.)	Descrizione	γ (kN/m³)	IP	OCR	Dr (%)	Sr (%)	c' (kPa)	φ' (°)	Cu (kPa)	E (Mpa)	K (m/s)
Copertura	da 0 a 2.5 m	Sabbia limosa argillosa debolmente ghiaiosa	19,5 18 10				10	27	100-120	20-30	1,00E-06	
C2.1	da 2.50 a 10 m	Calcarenite fratturata e alterata	20,0	15				20	30-32		75-100	1,00E-04
Suolo di foi	Scala Erre 3 Suolo di fondazione TIPO B San Giorgio 1 La Corte 1, 2			di terre						cia alterata e o trivellati.	compatta,	pertale
Suolo di for	Suolo di fondazione TIPO C -			Verticali indagate: 5								
Falda: Non	rilevata (>10 m da	a p.c.)										

Figura 4.3 – Modello geotecnico 3.

212457.T	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dag 12
1111111			RELAZIONE DI CALCOLO DEI SOSTEGNI DEI TRACKER	Pag. 12

Figura 4.4 – Planimetria delle zone di intervento con indicazione dei modelli geotecnici. modello 1 = azzurro; modello 2 = verde; modello 3 = blu

	Rev. 0	Data Agosto 2023	EI: BI028F-D-PAL-RT-09-r00	Dog. 12
32377777			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 13
			DEI TRACKER	

Per la verifica geotecnica ai carichi verticali si considerano le tre stratigrafie, mentre per la verifica geotecnica ai carichi orizzontali, poiché questa verifica è influenzata principalmente dalle caratteristiche degli strati superficiali, si ritiene lecito assumere per l'intera zona i seguenti parametri geotecnici:

La falda si trova ad una profondità superiore ai 10m e pertanto non interferisce con le opere di fondazione.

4.1. Tecnica di infissione dei pali

La natura degli strati più profondi (posti sotto lo strato superficiale di copertura) di origine litoide e/o la presenza di clasti poligenici di dimensioni decimetriche, suggeriscono di eseguire prima dell'infissione dei sostegni una perforazione con martello fondo-foro di piccolo diametro e il riempimento del foro con materiale granulare proveniente dallo scavo o da cava.

<u> अञ्चलक्ष्यक्रम</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog 14
7594444			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 14
			DEI TRACKER	

5. IPOTESI DI CALCOLO

5.1. Vita nominale e periodo di ritorno per il calcolo delle azioni

La vita nominale di progetto della struttura è assunta pari a:

$$V_N = 25$$
anni.

Il periodo di ritorno per il calcolo delle azioni ambientali (Vento e Neve) sono assunti pari a:

$$T_R = 50$$
anni.

Il periodo di ritorno dei sovraccarichi e delle azioni climatiche agenti sulla costruzione non è infatti correlato alla vita nominale di progetto delle opere.

Per le azioni ambientali il periodo di riferimento è da assumersi sempre pari a 50anni tranne per le verifiche nelle fasi costruttive, per le quali si può considerare un periodo di ritorno diverso (*rif. C2.4.1 della Circolare 21/01/2019 n.7*).

5.2. Parametri per la definizione dell'azione sismica

Come definito al punto 2.4.3 delle Norme Tecniche 20018, le azioni sismiche sulla costruzione vengono valutate in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_U :

$$V_R = V_N \times C_U$$

La vita nominale è assunta pari a V_N = 25 anni, mentre il valore del coefficiente d'uso è definito, al variare della classe d'uso, dalla tabella 2.4.II delle Norme Tecniche:

Tab. 2.4.II - Valori del coefficiente d'uso Cu

CLASSE D'USO	I	II	III	IV
COEFFICIENTE C _U	0,7	1,0	1,5	2,0

Nel caso in esame, essendo la classe d'uso = I (Costruzioni con presenza solo occasionale di persone, edifici agricoli), tale coefficiente vale $C_U = 0.7$ e quindi il periodo di riferimento per il calcolo dell'azione sismica è:

$$V_R = max (35anni; V_N x Cu = 25 x 0,7 = 17,5 anni) = 35 anni$$

<u> सम्बद्धस्यासम्</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog 15
A RESTANCET			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 15
			DEI TRACKER	

5.2.1. Parametri di pericolosità sismica

In generale l'azione sismica è definita sul sito di riferimento rigido orizzontale, in funzione di tre parametri:

- ag: accelerazione orizzontale massima al sito;
- F0: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- TC*: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Tali valori sono calcolati per il territorio italiano peninsulare come media pesata dei valori assunti nei quattro vertici della maglia elementare del reticolo di riferimento che contiene il punto caratterizzante la posizione dell'opera, utilizzando come pesi gli inversi delle distanze tra il punto in questione ed i quattro vertici.

Per le isole si fa invece riferimento alla Tabella 2 dell'Allegato B alle norme tecniche per le costruzioni.

In particolare nella Tabella 2, per tutte le isole, con l'esclusione della Sicilia, Ischia, Procida, Capri, vengono forniti i valori di ag, F_0 , T^*_{C} (costanti su tutto il territorio di ciascuna isola) per diversi tempi di ritorno dell'azione sismica.

L'accelerazione al sito ag è espressa in g/10; F_0 è adimensionale, $T*_c$ è espresso in secondi.

TABELLA 2: Valori di a, Fo, T per le isole, con l'esclusione della Sicilia, Ischia, Procida e C	TABELLA 2:	Valori di a., Fo.	Te per le isole, con	l'esclusione della Sicilia.	Ischia, Procida e Capri
---	------------	-------------------	----------------------	-----------------------------	-------------------------

_	Т	R=30		1	Γ _R =5()	1	T _R =7	2	Т	R=10	1	Т	_R =14	0	T	R=20	1	Т	_R =47	5	Т	R=97	5	Т	_R =24	75
Isole	ag	F.	T _c *	ag	F.	T _c *	ag	F.	T _C *	ag	F.	T _c '	ag	F.	T _c *	ag	F.	T _c *	ag	F.	T _c *	ag	F.	T _c *	ag	F.	T _c *
Arcipelago Toscano, Isole Egadi, Pantelleria, Sardegna, Lampedusa, Linosa, Ponza, Palmarola, Zannone	0,186	2,61	0,273	0,235	2,67	0,296	0,274	2,70	0,303	0,314	2,73	0,307	0,351	2,78	0,313	0,393	2,82	0,322	0,500	2,88	0,340	0,603	2,98	0,372	0,747	3,09	0,401
Ventotene, Santo Stefano	0,239	2,61	0,245	0,303	2,61	0,272	0,347	2,61	0,298	0,389	2,66	0,326	0,430	2,69	0,366	0,481	2,71	0,401	0,600	2,92	0,476	0,707	3,07	0,517	0,852	3,27	0,564
Ustica, Tremiti	0,429	2,50	0,400	0,554	2,50	0,400	0,661	2,50	0,400	0,776	2,50	0,400	0,901	2,50	0,400	1,056	2,50	0,400	1,500	2,50	0,400	1,967	2,50	0,400	2,725	2,50	0,400
Alicudi, Filicudi,	0,350	2,70	0,400	0,558	2,70	0,400	0,807	2,70	0,400	1,020	2,70	0,400	1,214	2,70	0,400	1,460	2,70	0,400	2,471	2,70	0,400	3,212	2,70	0,400	4,077	2,70	0,400
Panarea, Stromboli, Lipari, Vulcano, Salina	0,618	2,45	0,287	0,817	2,48	0,290	0,983	2,51	0,294	1,166	2,52	0,290	1,354	2,56	0,290	1,580	2,56	0,292	2,200	2,58	0,306	2,823	2,65	0,316	3,746	2,76	0,324

Le forme spettrali previste dalle NTC sono caratterizzate da prescelte probabilità di superamento e vite di riferimento. A tal fine occorre fissare:

- la vita di riferimento V_R della costruzione;

	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog. 16
3333333			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 16
			DEI TRACKER	

- le probabilità di superamento nella vita di riferimento P_{VR} associate a ciascuno degli stati limite considerati, per individuare infine, a partire dai dati di pericolosità sismica disponibili, le corrispondenti azioni sismiche.

Tale operazione deve essere possibile per tutte le vite di riferimento e tutti gli stati limite considerati dalle NTC; a tal fine è conveniente utilizzare, come parametro caratterizzante la pericolosità sismica, il periodo di ritorno dell'azione sismica T_R , espresso in anni. Fissata la vita di riferimento V_R , i due parametri T_R e P_{VR} sono immediatamente esprimibili, l'uno in funzione dell'altro, mediante l'espressione:

$$T_{R} = -\frac{V_{R}}{\ln\left(1 - P_{V_{R}}\right)}$$

Considerando lo Stato Limite di salvaguardia della Vita (SLV), la probabilità di superamento nel periodo di riferimento V_R vale:

$$P_{VR} = 10\%$$
 per SLV

Quindi per $T_R = 35$ anni si ottiene:

Qualora la attuale pericolosità sismica su reticolo di riferimento non contempli il periodo di ritorno T_R corrispondente alla V_R e alla P_{VR} fissate, il valore del generico parametro $p(a_g,F_0,T^*c)$ ad esso corrispondente potrà essere ricavato per interpolazione, a partire dai dati relativi ai TR previsti nella pericolosità sismica, utilizzando l'espressione seguente:

$$\log(p) = \log(p_1) + \log\left(\frac{p_2}{p_1}\right) \times \log\left(\frac{T_R}{T_{R1}}\right) \times \left[\log\left(\frac{T_{R2}}{T_{R1}}\right)\right]^{-1}$$

nella quale:

- p è il valore del parametro di interesse corrispondente al periodo di ritorno
 TR desiderato;
- T_{R1} , T_{R2} sono i periodi di ritorno più prossimi a T_R per i quali si dispone dei valori p_1 e p_2 del generico parametro p.

Eseguendo l'interpolazione fra T_{R1} =201anni e T_{R2} =475anni si ottengono i seguenti parametri di pericolosità sismica per lo SLV - T_R =332anni:

<u> अन्य क्षेत्रकरकरकरका</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog 17
75944347			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 17
			DEI TRACKER	

Tabella 1 – Parametri di pericolosità sismica per SLV (TR = 332 anni)

Isola	T _R	ag/g	Fo	Tc*
Sardegna	332	0,045	2,85	0,332

5.2.2. Coefficienti di amplificazione stratigrafica e topografica

Per la definizione dell'azione sismica di progetto occorre determinare anche il coefficiente S che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la seguente relazione:

$$S = S_S \times S_T$$

Il coefficiente di amplificazione stratigrafica S_S ed il coefficiente di amplificazione topografica S_T si ottengono con riferimento alla categoria del sottosuolo e alle condizioni topografiche, secondo le tabelle 3.2.IV e 3.2.V delle Norme Tecniche.

Considerando la categoria di suolo C e la categoria topografica = T1 (Superficie pianeggiante, pendii e rilievi isolati con inclinazione media $i \le 15^\circ$) si ottiene:

$$S_S = 1,50$$
; $S_T = 1,00$ da cui: $S = 1,50 \times 1,0 = 1,50$

Mentre per suolo di categoria B si ottiene:

$$S_S = 1,20$$
; $S_T = 1,00$ da cui: $S = 1,20 \times 1,0 = 1,20$

5.3. Parametri e ipotesi per la definizione dell'azione vento

Per il calcolo dell'azione del vento si fa riferimento ai seguenti dati:

Zona = 6 (Sardegna zona Nord-occidentale).

Classe di rugosità del terreno = D (aree prive di ostacoli o con al più rari ostacoli isolati (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate, ...)

Categoria di esposizione = I

5.3.1. Condizioni di carico

Si considerano le seguenti condizioni di carico per il calcolo dell'azione del vento sulla struttura di sostegno:

- Condizione di riposo: inclinazione minima dei pannelli, quasi orizzontale (alfa = 5°)

<u> सन्द्रभः स्ट्रास्ट्र</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog. 19
72933335			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 18
			DEI TRACKER	

Condizione di lavoro: inclinazione massima dei pannelli (alfa = 60°)

5.3.2. Condizione di riposo (alfa = 5°)

La forza del vento è calcolata con la velocità di riferimento:

Vr = 28 m/s (pari a 100,8 km/h) $T_R = 50 \text{ anni}$

La corrispondente pressione cinetica di riferimento vale:

$qr = 490 N/m^2$

Per la definizione delle azioni globali generate dal vento sui Tracker in condizione di riposo si fa riferimento alla trattazione valida per <u>tettoie a singola falda</u> (par. C3.3.8.2.1 della Circolare 21/01/2019 n.7 e Appendice G.6.1 delle CNR DT207/2018).

Non si considera alcuna azione di schermatura dei pannelli di bordo su quelli interni (il vento circola indisturbato sopra e sotto i pannelli che sono quasi orizzontali).

5.3.3. Condizione di lavoro (alfa = $max 60^{\circ}$)

In condizioni di lavoro i pannelli possono raggiungere una inclinazione massima rispetto all'orizzontale di 60°.

La massima velocità del vento in condizioni di lavoro viene assunta pari a 17m/s (raffica di 3sec a 10m di altezza dal suolo).

Raggiunta questa velocità di raffica, il sistema dei tracker passa dalla condizione di lavoro a quella di riposo – alfa = 5° (l'impianto prevede l'installazione di un sistema di sicurezza con anemometri ultrasonici che misurano direzione e velocità del vento).

La forza del vento è calcolata con la seguente velocità di riferimento (valore medio su 10min a 10m di altezza):

Vr = 17 m/s / 1,43 \cong 12 m/s (pari a 43,2 km/h), dove 1,43 è il coefficiente che consente la conversione del vento con raffica di 3 secondi a quello medio su 10 minuti, dedotto dalla curva ASCE7-10:

<u> अस्त्रवस्त्रासः/र</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog. 10
35944444			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 19
			DEI TRACKER	

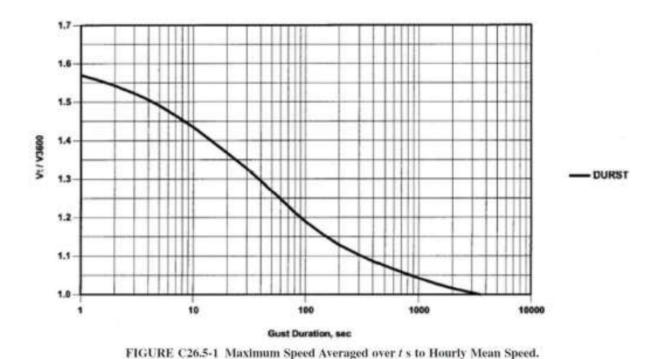


Figura 5.1 – Curva di correlazione ASCE7-10

La corrispondente pressione cinetica di riferimento vale:

$qr = 90 N/m^2$

In questa configurazione i coefficienti aerodinamici utilizzati per le coperture a singola falda (applicabili nel campo $0^{\circ} \le alfa \le 30^{\circ}$) non possono essere utilizzati.

Si fa pertanto riferimento alla trattazione relativa a insegne e tabelloni (Appendice G.7 della CNR DT207/2018) e alla trattazione relativa a Muri e parapetti (Appendice G.5 della CNR DT207/2018).

Effetto schermatura in condizione di lavoro

Per le file interne (vedi *Figura* **1.1**) si considera l'effetto schermante offerto dalle file di bordo moltiplicando i coefficienti di pressione complessiva per il fattore riduttivo ψ s fornito dalla Tabella G.XI e dalla Figura G.23 in funzione del rapporto tra la distanza x = 10,5m tra gli elementi e l'altezza h=5,15m dell'elemento oggetto del calcolo, e della densità ϕ dell'elemento schermante. Tale riduzione può essere applicata solo qualora l'elemento schermante sia alto almeno quanto quello schermato, e comunque va applicata solo nelle zone che distano più di h dai lati dell'elemento oggetto del calcolo (Figura G.24).

Tabella G.XI – Fattore di schermatura per muri e parapetti.

Rapporto di spaziatura x/h	φ = 1,0	$\varphi = 0.8$
$0 \le x/h \le 5$	$\psi_s = 0$),3
$5 \le x/h \le 10$	$\psi_s = 0.07 \cdot (x/h) - 0.05$	$\psi_s = 0.03 \cdot (x/h) + 0.15$
$10 \le x/h \le 15$	$\psi_s = 0.04 \cdot (x/h) + 0.25$	$\psi_s = 0.04 \cdot (x/h) + 0.05$
$15 \le x/h \le 20$	$\psi_s = 0.03 \cdot (x/h) + 0.40$	$\psi_s = 0.07 \cdot (x/h) - 0.40$

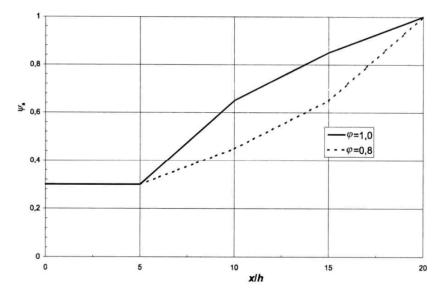


Figura G.23 – Coefficiente di schermatura ψ_s .

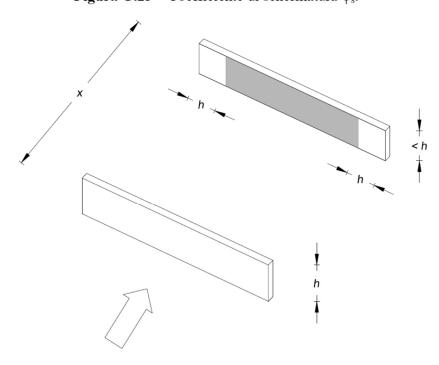


Figura G.24 – Effetto di schermatura.

	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog. 21
○			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 21
			DEI TRACKER	

Nel caso specifico nella sola condizione di lavoro si considera sui tracker interni l'effetto della schermatura offerto dai tracker esterni moltiplicando la forza vento per il coefficiente riduttivo:

$$\psi$$
s = 0,3

Valore dedotto dalla tabella G.XI delle CNR DT207/2018 per x/h = 2.

<u> </u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog 22
			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 22
			DEI TRACKER	

6. ANALISI DEI CARICHI

6.1. Carichi permanenti (G2)

Si considerano i carichi permanenti dovuti al peso dei pannelli fotovoltaici e al peso dei telai di sostegno.

Nell'analisi si considerano entrambi i carichi come non strutturali (G2).

Il carico, diretto verso il basso, è uniformemente distribuito sulla superficie dei pannelli e vale:

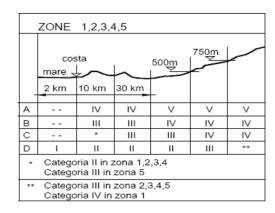
 $g2k = 0.50 \text{ kN/m}^2$

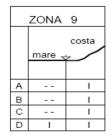
6.2. Azione del vento (Qv)

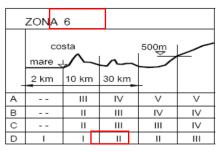
L'azione del vento è valutata con riferimento al par. 3.3 del D.M. 17 gennaio 2018, alla relativa circolare applicativa e alle CNR-DT 207/2018 - Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni.

6.2.1. Definizione del sito

Il sito di intervento si trova in comune di Sassari, nella parte nord-occidentale della Sardegna ricompresa nella **ZONA 6** (Figura 3.3.1 delle NTC2018).




Figura 3.3.1 – Mappa delle zone in cui è suddiviso il territorio italiano


L'altitudine massima del sito è as = 250 m s.l.m.

La **classe di rugosità del terreno è D** (aree prive di ostacoli o con al più rari ostacoli isolati (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate, ...)

La categoria di esposizione è la I (vedi figura riportata qui di seguito).

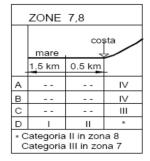


Figura 3.3.2 - Definizione delle categorie di esposizione

6.2.2. Velocità di riferimento in condizioni di riposo (alfa = 5°)

La velocità di riferimento Vr è il valore medio su 10 minuti, a 10m di altezza dal suolo su un terreno pianeggiante e omogeneo di categoria di esposizione, riferito al periodo di ritorno di progetto T_R .

Per le opere in progetto il periodo di ritorno si assume pari a $T_R = 50$ anni.

$$Vr = Vb \times Cr$$

Con Cr coefficiente di ritorno, funzione del periodo di ritorno di progetto T_R:

$$c_{r} = 0.75 \sqrt{1 - 0.2 \times ln \left[-ln \left(1 - \frac{1}{T_{R}} \right) \right]}$$

Assunto TR pari a 50 anni, si ottiene:

$$Cr = 1,0$$

Vb è la velocità base di riferimento:

THE RESIDENCE OF THE PARTY OF T	Rev. 0	Data Agosto 2023	EI: BI028F-D-PAL-RT-09-r00	Dog. 24
त्रऋदस्यात्रस्र र			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 24
			DEI TRACKER	

$$Vb = Vb,0 \times Ca$$

Con Vb,0 = 28 m/s per la zona 6 è la velocità base di riferimento al livello del mare assegnata in finzione della zona in cui sorge la costruzione.

Ca è il coefficiente di altitudine pari a:

$$\begin{aligned} c_a &= 1 & per \ a_s \leq a_0 \\ c_a &= 1 + k_s \left(\frac{a_s}{a_0} - 1\right) & per \ a_0 < a_s \leq 1500 \ m \end{aligned}$$

Nel caso in esame, per altitudine as = 250 m s.l.m.m. $< a_0 = 500$ m s.l.m.m., si ottiene:

$$Ca = 1,00$$

Da cui:

La pressione cinetica di riferimento è data dalla seguente espressione:

$$qr = \frac{1}{2} \rho v_r^2 = 490,0 \text{ N/m}^2$$

con ρ = densità dell'aria assunta convenzionalmente costante e pari a 1,25 kg/m³

6.2.3. Velocità di riferimento in condizioni di lavoro (alfa = 60°)

In condizioni di lavoro, come detto al precedente par. 5.3.3, si assume la velocità massima della raffica del vento pari a 17m/s a cui corrisponde la velocità di riferimento di:

$$Vr = 12 \text{ m/s}$$

La pressione cinetica di riferimento è data dalla seguente espressione:

$$qr = \frac{1}{2} \rho v_r^2 = 90.0 \text{ N/m}^2$$

con ρ = densità dell'aria assunta convenzionalmente costante e pari a 1,25 kg/m³.

6.2.4. Coefficiente di esposizione (ce)

Il coefficiente di esposizione ce dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno e dalla categoria di esposizione del sito ove sorge la costruzione. In assenza di analisi specifiche che tengano in conto la direzione di provenienza del vento e l'effettiva scabrezza e topografia del terreno che circonda la costruzione, per altezze sul suolo non maggiori di z = 200 m, esso è dato dalla formula:

$$\begin{aligned} c_e\left(z\right) &= k_r^2 \; c_t \; \mathrm{ln}\left(z/z_0\right) \left[7 + \; c_t \; \mathrm{ln}\left(z/z_0\right)\right] & \quad \text{per } z \geq z_{\mathrm{min}} \\ c_e\left(z\right) &= c_e\left(z_{\mathrm{min}}\right) & \quad \text{per } z \leq z_{\mathrm{min}} \end{aligned}$$

Per <u>categoria di esposizione I</u> si ha:

 $k_r = 0.17$ fattore di terreno;

z_o = 0,01 m lunghezza di rugosità;

z_{min} = 2 m altezza minima.

Inoltre per il coefficiente di topografia, in mancanza di più approfondite valutazioni, il coefficiente di topografia è posto di regola pari a 1 sia per le zone pianeggianti sia per quelle ondulate, collinose e montane:

Da cui il coefficiente di esposizione ce(z) assume i seguenti valori al variare dell'altezza z di riferimento:

z [m]	Ce (z)
0	1,883
2,0	1,883
2,5	1,998
3,0	2,094
3,5	2,177
4,0	2,250
4,5	2,315
5,0	2,373
5,5	2,427
6,0	2,477
6,5	2,523
7,0	2,566
7,5	2,606
8,0	2,644
8,5	2,679
9,0	2,713
9,5	2,746
10,0	2,776
10,5	2,806
11,0	2,834
11,5	2,861

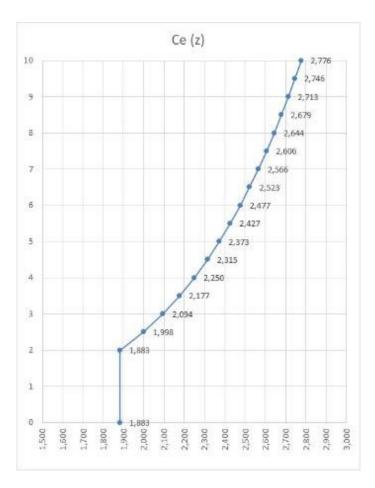


Figura 6.1 – Andamento del coefficiente Ce in funzione dell'altezza dal suolo.

	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog. 26
<u> </u>			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 26
			DEI TRACKER	

6.2.5. Coefficienti aerodinamici in posizione di riposo (alfa = 5°)

In posizione di riposo (alfa = 5°) si fa riferimento a quanto indicato nella Circolare n. 7 per le tettoie a falda singola (par. C3.3.8.2.1).

Si calcola la forza risultante del vento sul piano della copertura attraverso l'impiego di coefficienti di forza Cf positivi e negativi. Le forze risultanti saranno applicate secondo le condizioni di carico più gravose fra quelle riportate qui di seguito.

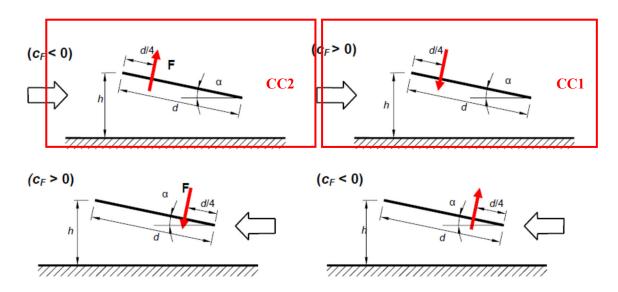


Figura 6.2 – Tettoie a semplice falda: posizione del punto di applicazione della forza risultante.

Per il dimensionamento della struttura di sostegno le condizioni di vento più gravose sono:

CC1: pressione verso il basso;

CC2: pressione verso l'alto (sollevamento).

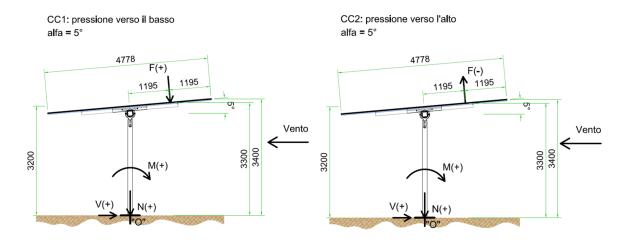


Figura 6.3 – Condizioni di vento CC1 e CC2 in posizione di riposo (alfa = 5°).

Per inclinazione della falda alfa=5°, i coefficienti di forza Cf assumono i seguenti valori:

$$Cf+ = 0.2 + 5/30 = +0.367$$
 schiacciamento
 $Cf- = -0.5 - 1.3 \times 5/30 = -0.717$ sollevamento

In questa configurazione di riposo, i pannelli quasi orizzontali lasciano circolare il vento in maniera pressoché indisturbata sopra e sotto di essi. Non si tiene pertanto conto di alcun effetto di schermatura offerto dai pannelli di bordo su quelli interni.

6.2.6. Coefficienti aerodinamici in posizione di lavoro (alfa = 60°)

In posizione di lavoro i pannelli possono raggiungere un'inclinazione massima rispetto all'orizzontale pari ad alfa = 60°.

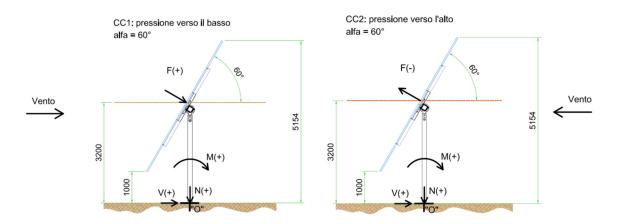


Figura 6.4 – Condizioni di vento CC1 e CC2 in posizione di lavoro (alfa = 60°).

	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog. 20
			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 28
			DFI TRACKER	

In questa configurazione i coefficienti aerodinamici utilizzati per le coperture a singola falda (applicabili nel campo $0^{\circ} \le alfa \le 30^{\circ}$) non possono essere utilizzati.

Si fa pertanto riferimento alla trattazione relativa a insegne e tabelloni (Appendice G.7 della CNR DT207/2018) e alla trattazione relativa a Muri e parapetti (Appendice G.5 della CNR DT207/2018).

Il coefficiente di forza Cf assume i seguenti valori per i pannelli esterni (non schermati):

$$Cf+ = +1,80$$
 schiacciamento
 $Cf- = -1,80$ sollevamento

Per i tracker interni si considera l'effetto di schermatura applicando il coefficiente riduttivo $\psi s = 0,3$ al coefficiente di forza:

$$\psi$$
*Cf+ = + 0,54 schiacciamento
 ψ *Cf- = - 0,54 sollevamento

6.2.7. Azioni a metro lineare in condizioni di riposo (alfa = 5°)

Per le notazioni si fa riferimento alla Figura 6.3.

La dimensione trasversale della copertura di pannelli è:

$$B = 4,778 \text{ m}$$

Considerando i sostegni di altezza 3,2m e l'inclinazione dei pannelli di 5° si calcola l'altezza massima della struttura in condizione di riposo:

$$h = 3,4m$$

Si calcolo quindi il coefficiente Ce(z) per z = h:

Ce =
$$2,163$$
 per z = h

Da cui la pressione del vento al netto del coefficiente di forza vale:

$$p = 0.490 \times 2.163 = 1.060 \text{ kN/m}^2$$

Le forze esercitate dal vento verso il basso e verso l'alto valgono:

$$F(+) = p*B*Cf+ = 1,86 \text{ kN/m}$$
 (Condizione CC1)
 $F(-) = p*B*Cf- = -3,63 \text{ kN/m}$ (Condizione CC2)

○ 14% G 24, 14, 14, 17, 17	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog. 20
72377777			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 29
			DEI TRACKER	

A metro lineare di struttura le sollecitazioni al piede dei tracker, valutati in asse ai sostegni alla quota del terreno sono:

Condizione CC1: pressione verso il basso

N = 1.85 kN/m (compressione)

H = 0,16 kN/m Azione orizzontale

M = 2,74 kNm/m Momento flettente

Condizione CC2: pressione verso l'alto (sollevamento)

N = -3,62 kN/m (trazione)

H = -0.32 kN/m Azione orizzontale

M = -5,35 kNm/m Momento flettente

6.2.8. Azioni a metro lineare in condizioni di lavoro (alfa = 60°)

Per le notazioni si fa riferimento alla Figura 6.4.

L'altezza z di riferimento per il calcolo del coefficiente Ce è pari all'altezza dei sostegni:

$$z = hs = 3,2m$$

Si calcolo quindi il coefficiente Ce(z):

Ce =
$$2,129$$
 per z = hs

Da cui la pressione del vento al netto del coefficiente di forza vale:

$$p = 0.090 \times 2.129 = 0.192 \text{ kN/m}^2$$

Le forze esercitate dal vento verso il basso e verso l'alto valgono:

Per i tracker esterni:

$$F(+) = p*B*Cf+ = 1,65 \text{ kN/m}$$
 (Condizione CC1)

$$F(-) = p*B*Cf- =- 1,65 \text{ kN/m}$$
 (Condizione CC2)

	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog. 20
<u> </u>			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 30
			DEI TRACKER	

Per i tracker interni schermati:

$$F(+) = p*B*\psi*Cf+ = 0.50 \text{ kN/m}$$
 (Condizione CC1)

$$F(-) = p*B*\psi*Cf- =- 0,50 \text{ kN/m}$$
 (Condizione CC2)

A metro lineare di struttura le sollecitazioni al piede dei tracker, valutati in asse ai sostegni alla quota del terreno sono:

TRACKER ESTERNI

Condizione CC1: pressione verso il basso

N = 0.83 kN/m (compressione)

H = 1,43 kN/m Azione orizzontale

M = 4,58 kNm/m Momento flettente

Condizione CC2: pressione verso l'alto (sollevamento)

N = -0.83 kN/m (trazione)

H = - 1,43 kN/m Azione orizzontale

M = - 4,58 kNm/m Momento flettente

TRACKER INTERNI SCHERMATI

Condizione CC1: pressione verso il basso

N = 0.25 kN/m (compressione)

H = 0.43 kN/m Azione orizzontale

M = 1,37 kNm/m Momento flettente

Condizione CC2: pressione verso l'alto (sollevamento)

N = -0.25 kN/m (trazione)

H = -0.43 kN/m Azione orizzontale

M = - 1,37 kNm/m Momento flettente

्राञ्चलकार्याः जन्म	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog 21
			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 31
			DEI TRACKER	

6.3. Azione della neve (Qn)

Secondo il par. 3.4 del DM 17.01.2018 (NTC) il carico neve va valutato con la seguente espressione:

Il carico provocato dalla neve sulle coperture sarà valutato mediante la seguente espressione:

$$q_s = q_{sk} \cdot \mu_i \cdot C_E \cdot C_t \tag{3.4}$$

dove:

 q_{sk} $\;\;$ è il valore di riferimento del carico della neve al suolo, di cui al § 3.4.2;

 μ_{i} è il coefficiente di forma della copertura, di cui al § 3.4.3;

C_E è il coefficiente di esposizione di cui al § 3.4.4;

C_t è il coefficiente termico di cui al § 3.4.5.

Si assume che il carico della neve agisca in direzione verticale e lo si riferisce alla proiezione orizzontale della superficie della copertura.

$$q_s = q_{sk} \mu_i C_E C_t$$

dove:

q_s è il carico neve sulla copertura;

 q_{sk} è il valore di riferimento del carico neve al suolo [kN/m2], fornito al § 3.4.2 delle NTC per un periodo di ritorno di 50anni;

μ_i è il coefficiente di forma della copertura, fornito al par. 3.4.3 delle NTC;

 C_E è il coefficiente di esposizione di cui al § 3.4.4 delle NTC. C_E = 1,0 per classe di topografia <u>normale</u>;

 C_t è il coefficiente termico di cui al § 3.4.5 delle NTC. Si assume C_t = 1,0.

Si ipotizza che il carico agisca in direzione verticale e lo si riferisce alla proiezione orizzontale della superficie della copertura.

Per la zona III a quota as = 250 m s.l.m. (superiore a 200 m s.l.m.) il valore di riferimento risulta:

$$q_{sk} = 0.51 [1+(as/481)^2] = 0.65 kN/m^2$$

Per coperture ad una o due falde il valore del coefficiente di forma dipende dall'angolo α , espresso in gradi sessagesimali, formato dalla falda con l'orizzontale (vedi Tabella 3.4.II delle NTC).

	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dag 22
क्रिक्स्यास स्ट			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 32
			DEI TRACKER	

Tab. 3.4.II - Valori del coefficiente di forma

Coefficiente di forma	0°≤ α ≤ 30°	30° < α < 60°	α ≥ 60°
μ1	0,8	$0.8 \cdot \frac{(60 - \alpha)}{30}$	0,0

6.3.1. Neve in condizioni di riposo (alfa = 5°)

Per α = 5° \leq 30° il coefficiente di forma vale μ 1 = 0,8, per cui si ottiene:

$$q_s = 0.8 \times 0.65 \times 1.0 \times 1.0 = 0.52 \text{ kN/m}^2$$

Tale carico è applicato sulla proiezione orizzontale della copertura.

A metro lineare il carico agente sulla struttura vale:

Qn = 0,52 kN/m² x 4,78 x cos
$$\alpha$$
 = 2,48 kN/m

6.3.2. Neve in condizioni di lavoro (alfa = 60°)

Per α = 60° il coefficiente di forma vale μ 1 = 0,0, per cui si ottiene:

$$q_s = 0.00 \text{ kN/m}^2$$

Nella condizione di lavoro dei pannelli, non si considera il carico neve.

6.4. Azione termiche (Qt)

Le azioni dovute alle variazioni termiche non inducono sollecitazioni sulle strutture di sostegno e pertanto vengono trascurate.

	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog 22
<u> </u>			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 33
			DEI TRACKER	

7. COMBINAZIONE DI CARICO

Le combinazioni di carico SLU statiche sono ottenute mediante diverse combinazioni dei carichi permanenti ed accidentali, in modo da considerare tutte le situazioni più sfavorevoli agenti sulla struttura.

I carichi vengono applicati mediante opportuni coefficienti parziali di sicurezza, considerando l'eventualità più gravosa per la struttura.

Combinazioni per verifiche agli stati limite ultimi (SLU)

Ai fini delle verifiche SLU si definiscono le seguenti combinazioni delle azioni.

$$\gamma_{G1}\cdot G_1 + \gamma_{G2}\cdot G_2 + \gamma_P \cdot P + \gamma_{Q1}\cdot Q_{k1} + \gamma_{Q2}\cdot \psi_{02}\cdot Q_{k2} + \gamma_{Q3}\cdot \psi_{03}\cdot Q_{k3} + \dots$$
 Comb. fondamentali (SLU)

$$E+G_1+G_2+P+\psi_{21}\cdot Q_{k1}+\psi_{22}\cdot Q_{k2}+\dots \hspace{1.5cm} \text{Comb. sismiche (SLV)}$$

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 Comb. eccezionali (ECC)

Combinazioni per verifiche agli stati limite di esercizio (SLE)

Ai fini delle verifiche SLE si definiscono le seguenti combinazioni delle azioni.

$$G_1+G_2+P+Q_{k1}+\psi_{02}\cdot Q_{k2}+\psi_{03}\cdot Q_{k3}+\dots$$
 Combinazioni caratteristiche (RARE)

$$G_1+G_2+P+\psi_{11}\cdot Q_{k1}+\psi_{22}\cdot Q_{k2}+\psi_{23}\cdot Q_{k3}+\dots \\ \\ \text{Combinazioni frequenti (FREQ)}$$

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 Comb. quasi permanenti (QP)

Per la struttura in oggetto, considerato che si tratta di struttura molto leggera ubicata in zona a bassa sismicità, le combinazioni sismiche non sono rilevanti e quindi non vengono considerate.

Anche le combinazioni eccezionali non sono significative e non vengono analizzate.

Infine tra le combinazioni SLE si considerano solo quelle caratteristiche (RARE).

	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Do = 24
		RELAZIONE DI CALCOLO DEI SOSTEGN		Pag. 34
			DEI TRACKER	

I valori dei coefficienti di combinazione γ e Ψ sono riportati nelle seguenti tabelle desunte dalla NTC2018 cap. 2.

Tabella 2 - Coefficienti parziali di sicurezza per le combinazioni SLU

G1	Carichi permanenti (peso proprio)	γG1	1,30 sfavorevole 1,00 favorevole
G2	Sovraccarichi permanenti (permanenti non strutturali)	γG2	1,50 sfavorevole 0,80 favorevole
Qv,	Sovraccarichi variabili (Vento, Neve, Variazioni	γQ1	1,50 sfavorevole
Qn, qt termiche)		γQ2 γQ3	0,00 favorevole

Tabella 3 - Coefficienti Ψ per le azioni variabili

Azione		Coefficiente Чо	Coefficiente Ψ1 (frequente)	Coefficiente Ψ2 (quasi permanente)	
Qv	Vento	0,6	0,2	0,0	
Qn	Neve	0,5	0,2	0,0	
Qt	Variazioni termiche	0,6	0,5	0,0	

Le combinazioni di progetto sono:

Combinazioni fondamentali (SLU)

SLU01: 1,50 G2 + 1,50 Qv(+) + 0,75 Qn vento principale verso il basso + neve

SLU02: 0,80 G2 + 1,50 Qv(-) vento verso l'alto

SLU03: 1,50 G2 + 0,90 Qv(+) + 1,50 Qn neve principale + vento verso il basso

Combinazioni caratteristiche RARE (SLE)

RARA01: G2 + Qv(+) + 0.5 Qn vento principale verso il basso + neve

RARA02: G2 + 1,00 Qv(-) vento verso l'alto

RARA03: G2 + 0,60 Qv(+) + 1,00 Qn neve principale + vento verso il basso

	Rev. 0	Data Agosto 2023	EI: BI028F-D-PAL-RT-09-r00	- Pag. 35
			RELAZIONE DI CALCOLO DEI SOSTEGNI	
			DEI TRACKER	

8. CALCOLO DELLE SOLLECITAZIONI ALLA BASE DEI SOSTEGNI

Si riportano le sollecitazioni "calcolate a mano" agenti in asse dei sostegni dei tracker a livello del terreno (punto "O" della *Figura* **8.1**).

Per i sostegni laterali si considera una lunghezza di influenza di 5,7m, mentre per i sostegni centrali la lunghezza di influenza è 7,5m.

Le convenzioni sui segni delle sollecitazioni N, V, M sono riportate nella seguente figura:

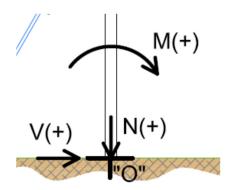


Figura 8.1 – Convenzione dei segni per le sollecitazioni agenti alla base dei sostegni

8.1. Condizione di riposo (alfa = 5°)

Per tutte le file, indipendentemente dalla loro posizione (esterna o interna) le sollecitazioni alla base dei sostegni è riportata nella seguente tabella:

	Sollecitazioni sostegno laterale			Sollecitazioni sostegno centrale			
Combi-	Llat = 5,7 m			Lcen = 7,5 m			
naz.	N	V	M	N	V	М	
	[kN]	[kN]	[kNm]	[kN]	[kN]	[kNm]	
SLU01	46,82	1,38	23,39	61,61	1,82	30,78	
SLU02	-20,02	-2,70	-45,73	-26,34	-3,56	-60,16	
SLU03	51,08	0,83	14,04	67,21	1,09	18,47	
RARA01	31,22	0,92	15,60	41,07	1,21	20,52	
RARA02	-6,99	-1,80	-30,48	-9,20	-2,37	-40,11	
RARA03	34,05	0,55	9,36	44,81	0,73	12,31	

<u>क्रिकस्यातकार</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog. 26
			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 36
			DEI TRACKER	

8.1. Condizione di lavoro (alfa = 60°)

Le sollecitazioni alla base dei sostegni sono riportate nelle seguenti tabelle per i tracker esterni e per quelli interni:

8.1.1. Sollecitazioni a base sostegni Tracker Esterni (TE)

	Sollecita	azioni sostegn	o laterale	Sollecita	zioni sostegno	centrale
Combi-		Llat = 5,7 m			Lcen = 7,5 m	
naz.	N	V	M	N	V	М
	[kN]	[kN]	[kNm]	[kN]	[kN]	[kNm]
SLU01	27,49	12,23	39,13	36,16	16,09	51,48
SLU02	3,83	-12,23	-39,13	5,05	-16,09	-51,48
SLU03	24,66	7,34	23,48	32,45	9,65	30,89
RARA01	18,32	8,15	26,08	24,11	10,73	34,32
RARA02	8,91	-8,15	-26,08	11,73	-10,73	-34,32
RARA03	16,44	4,89	15,65	21,63	6,44	20,59

8.1.1. Sollecitazioni a base sostegni Tracker Interni (TI)

	Sollecita	azioni sostegn	o laterale	Sollecitazioni sostegno centrale			
Combi-		Llat = 5,7 m			Lcen = 7,5 m		
naz.	N	V	M	N	V	М	
	[kN]	[kN]	[kNm]	[kN]	[kN]	[kNm]	
SLU01	22,54	3,67	11,74	29,66	4,83	15,44	
SLU02	8,78	-3,67	-11,74	11,55	-4,83	-15,44	
SLU03	21,70	2,20	7,04	28,55	2,90	9,27	
RARA01	15,03	2,45	7,83	19,78	3,22	10,30	
RARA02	12,21	-2,45	-7,83	16,06	-3,22	-10,30	
RARA03	14,46	1,47	4,70	19,03	1,93	6,18	

	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dag 27
			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 37
			DFI TRACKER	

9. VERIFICHE GEOTECNICHE

Le verifiche geotecniche dei pali di fondazione sono state eseguite, ai sensi delle NTC 2018 (par.6.4.3), nei confronti dei carichi limite verticale ed orizzontale.

9.1. Carico limite verticale

Il valore di progetto Rd della resistenza nei confronti del carico verticale si ottiene a partire dal valore caratteristico Rk applicando i coefficienti parziali γ_R della Tab. 6.4.Il per i pali infissi.

Tab. 6.4.II – Coefficienti parziali γ_R da applicare alle resistenze caratteristiche a carico verticale dei pali

Resistenza	Simbolo	Pali infissi	Pali trivellati	Pali ad elica continua
	γ_{R}	(R3)	(R3)	(R3)
Base	γь	1,15	1,35	1,3
Laterale in compressione	$\gamma_{\rm s}$	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	γ_{st}	1,25	1,25	1,25

^(°) da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

La resistenza caratteristica Rk del palo singolo può essere dedotta con riferimento alle procedure analitiche che prevedano l'utilizzo dei parametri geotecnici o dei risultati di prove in sito, il valore caratteristico della resistenza Rc,k (o Rt,k) è dato dal minore dei valori ottenuti applicando al valore medio e al valore minimo delle resistenze calcolate Rc,cal (o Rt,cal) i fattori di correlazione ξ riportati nella Tab. 6.4.IV, in funzione del numero n di verticali di indagine:

$$R_{c,k} = \min\left\{\frac{\left(R_{c,cal}\right)_{media}}{\xi_3}; \frac{\left(R_{c,cal}\right)_{min}}{\xi_4}\right\} \qquad \qquad R_{t,k} = \min\left\{\frac{\left(R_{t,cal}\right)_{media}}{\xi_3}; \frac{\left(R_{t,cal}\right)_{min}}{\xi_4}\right\}$$

Tab. 6.4.IV - Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ ₃	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ_4	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Fatta salva la necessità di almeno una verticale di indagine per ciascun sistema di fondazione, nell'ambito dello stesso sistema di fondazione, ai fini del conteggio delle verticali di indagine per la scelta dei coefficienti ξ in Tab. 6.4.IV si devono prendere solo le verticali lungo le quali la singola indagine (sondaggio con prelievo di campioni indisturbati, prove penetrometriche, ecc.) sia stata spinta ad una profondità superiore alla lunghezza dei pali, in grado di consentire una completa identificazione del modello geotecnico di sottosuolo. Nel caso in oggetto, il numero di verticali indagate varia a seconda del modello geologico considerato (vedi capitolo 4).

L'espressione generica utilizzata per il calcolo della portanza di un palo con la punta in terreno granulare soggetto ad un carico verticale è la seguente:

$$Qlim + Wp = Qs + Qp$$

Dove:

Qp = portata di punta (valore medio di calcolo)

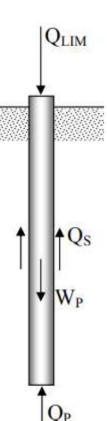
Qs = portata laterale (valore medio di calcolo)

Wp = peso proprio del palo, che nel caso specifico può essere trascurato.

Nel caso specifico, trascurando il peso del palo, il valore di progetto della resistenza a compressione, Rcd si ottiene con la seguente formulazione:

$$Rcd = Qs / (\xi 3 * 1,15) + (Qp / (\xi 3 * 1,15))$$

La resistenza di progetto a trazione del palo, ovvero allo sfilamento sotto azioni assiali di sollevamento, si calcola trascurando il contri-


buto della punta e utilizzando un coefficiente parziale di sicurezza più cautelativo per la portata laterale (1,25 anziché 1,15):

$$Rcd = Qs / (\xi 3 * 1,25)$$

La portata laterale di calcolo (Qs) sarà valutata come sommatoria dei contributi dei differenti strati nel caso in cui il palo attraversi strati di diversa natura.

Per la stima di Qs, si fa ricorso all'espressione:

$$Q_S = A_S \cdot \int_0^L \tau_S \cdot dz$$

Dove:

As è la è la superficie laterale per metro lineare di palo.

Nel caso di profili HE si può definire la dimensione d = B = H quale dimensione del palo, pari alla base B e all'altezza H del profilo. Con questa assunzione si ha As = 6*d.

 $\tau s = k \, \mu \, \sigma' v \, \dot{e}$ la resistenza laterale alla generica profondità z, che dipende dal coefficiente di attrito terreno-palo (μ), e dal rapporto fra la tensione normale che agisce alla profondità z sulla superficie laterale del palo e la tensione verticale $\sigma' v$ alla stessa profondità.

Considerando le modalità operative di infissione dei pali in acciaio si assume:

k = 0,75 per gli strati di copertura

k = 1,00 per gli strati più profondi compatti

$$\mu$$
 = tan 20° = 0,36

Per la scelta dei valori k e μ si è fatto riferimento alle raccomandazioni AGI 1984:

Tab. 5.1 - Valori indicativi di k e μ dell'eq. |4| per terreni incoerenti

	Tipo di palo	Valori di k	Valori di μ
BATTUTO	Acciaio Calcestruzzo prefabbricato Calcestruzzo gettato in opera	0.5 ÷ 1 1 ÷ 2 1 ÷ 3	tg 20° tg (3/4 ¢') tg ¢'
	TRIVELLATO	0.4 ÷ 0.7 (*)	tg ø'

(*) Decrescente con la profondità.

La resistenza di calcolo della portata di punta, Qp, in terreni incoerenti è stimata con l'equazione:

$$Qp = Ap * qp = Ap * (Nq * \sigma v0, P' + Nc * c')$$

In cui:

Ap è l'area di base del palo pari a d² (dove d=B=H);

qp è la capacità portante unitaria;

 $\sigma v 0, P'$ è la tensione verticale efficace alla punta;

Nq è un fattore di capacità portante.

<u> सन्द्रवस्त्रस्यस्य</u>	Rev. 0	Data Agosto 2023	EI: BI028F-D-PAL-RT-09-r00	Dog. 40
			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 40
			DEI TRACKER	

Il valore Nq dipende a parità di angolo di resistenza al taglio, dai meccanismi di rottura proposti da vari autori.

Si assumerà, caso per caso, i valori più cautelativi proposti dal Terzaghi riportati nella seguente figura 4 delle raccomandazioni AGI - 1984.

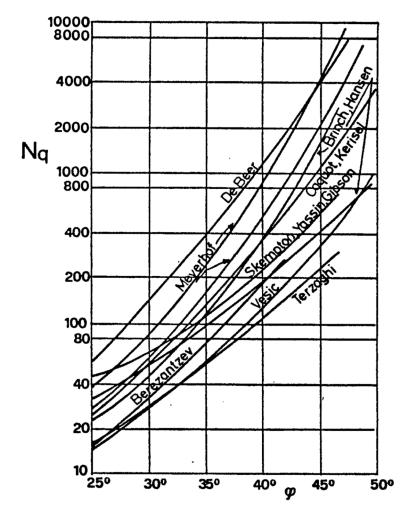


Figura 9.1 – Valori di Na (secondo vari autori)

Noto Nq, si calcola Nc con:

$$Nc = (Nq-1) ctg \phi$$

9.2. Carichi di progetto per il calcolo della lunghezza minima di infissione

Con i criteri illustrati nel precedente paragrafo si determina la lunghezza minima di infissione necessaria per sopportare i carichi verticali di progetto agenti sui supporti.

I carichi verticali SLU massimi e minimi si ottengono nella condizione di riposo dei tracker e sono indipendenti quindi dalla posizione dei tracker (interna o esterna), ma dipendono solo dal tipo di sostegno (SL: sostegno laterale o SC: sostegno centrale).

Si riassumono qui di seguito i carichi verticali di progetto:

In combinazione SLU03 (neve principale + vento verso il basso) si ottengono le massime azioni verticali di compressione agli SLU:

SL: Nmax,comp = 51,1 kN

SC: Nmax,comp = 67,2 kN

In combinazione SLU02 (vento verso l'alto) si ottengono le massime azioni verticali di trazione agli SLU:

SL: Nmax, traz = -20,0 kN

SC: Nmax, traz = -26,4 kN

Con queste azioni si determinano le lunghezze minime di infissione dei pali per ciascun modello geotecnico che caratterizza la zona di intervento.

<u> করবরসেকস</u> ফ	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog. 42
			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 42
			DEI TRACKER	

9.3. Calcolo della lunghezza minima di infissione – Modello geotecnico 1

Stratigrafia

Strato						Valori caratteristici					
Tipo	prof.	Strato	H strato [m]	γ [kN/m3]	φ' [°]	c' [kPa]	μ	k	K = μ * k	Nq	Nc
liv.0	0										
liv.1	2	Copertura	2	20	28	7,5	0,364	0,750	0,273	21	38
liv.2	10	C1.2	8	19,5	28	15	0,364	1,000	0,364	21	38
liv.3											
liv.4											
liv.5											
liv.6											
liv.7											
liv.8											

Si considera la coesione c' solo per la resistenza alla punta

Coefficienti di calcolo

 γ R3,base = 1,15

 γ R3,laterale in compressione = 1,15

 γ R3, laterale in trazione = 1,25

Numero verticali indagate = 6 da cui ξ 3 = 1,48

9.3.1. Sostegno Laterale (SL) – COMPRESSIONE Ned = +51,1kN

Dimensione del profilo HE:

D = 0.14

Lmin = 3,9m

 σ' vo = 77,05 kN/m²

Qs = 44,2 kN

Qp = 42,8 kN

Rcd = Qs / (1,48*1,15) + Qp / (1,48*1,15) = 51,1 kN \cong Ned

Dimensione del profilo HE: D = 0,16 Lmin = 3,4m

 σ' vo = 67,30 kN/m²

Qs = 37,7 kN

Qp = 50,6 kN

 $Rcd = Qs / (1,48*1,15) + Qp / (1,48*1,15) = 51,9 \text{ kN} \cong Ned$

<u> </u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog. 42
			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 43
			DEI TRACKER	

9.3.2. Sostegno Laterale (SL) – TRAZIONE Ned = -20 kN

Dimensione del profilo HE: D = 0,14 Lmin = 3,6m

Qs = 37,3 kN

Rcd = Qs / (1,48*1,25) = 20,2 kN $\cong Ned$

Dimensione del profilo HE: D = 0,16 Lmin = 3,4m

Qs = 37,7 kN

Rcd = Qs / (1,48*1,25) = 20,4 kN $\cong \text{Ned}$

9.3.3. Sostegno Centrale (SC) – COMPRESSIONE Ned = +67,2kN

Dimensione del profilo HE: D = 0,16 Lmin = 4,2m

 σ' vo = 82,90 kN/m²

Qs = 59,0 kN

Qp = 59,0 kN

Rcd = Qs / $(1,48*1,15) + Qp / (1,48*1,15) = 69,3 \text{ kN} \cong \text{Ned}$

Dimensione del profilo HE: D = 0,18 Lmin = 3,6m

 σ' vo = 71,20 kN/m²

Qs = 48,0 kN

Qp = 66,7 kN

Rcd = Qs / (1,48*1,15) + Qp / (1,48*1,15) = 67,4 kN \cong Ned

9.3.4. Sostegno Centrale (SC) – TRAZIONE Ned = -26,4 kN

Dimensione del profilo HE: D = 0,16 Lmin = 3,9m

Qs = 50,5 kN

Rtd = Qs / (1,48*1,25) = 27,3 kN $\cong \text{Ned}$

Dimensione del profilo HE: D = 0,18 Lmin = 3,7m

Qs = 50.8 kN

Rtd = Qs / (1,48*1,25) = 27,5 kN $\cong \text{Ned}$

<u> </u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dag 44
			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 44
			DEI TRACKER	I

9.4. Calcolo della lunghezza minima di infissione – Modello geotecnico 2

Stratigrafia

Strato							Valori	caratteristic	i		
Tipo	prof.	Strato	H strato [m]	γ [kN/m3]	[°]	c' [kPa]	μ	k	K = μ * k	Nq	Nc
liv.0	0										
liv.1	1	Copertura	1	19	27	12,5	0,364	0,750	0,273	18	33
liv.2	10	B2.1	9	22	33	40	0,364	1,000	0,364	40	60
liv.3											
liv.4											
liv.5											
liv.6											
liv.7											
liv.8											

Si considera la coesione c' solo per la resistenza alla punta

Coefficienti di calcolo

 γ R3,base = 1,15

 γ R3,laterale in compressione = 1,15

 γ R3, laterale in trazione = 1,25

Numero verticali indagate = 14 da cui

 ξ 3 = 1,40

9.4.1. Sostegno Laterale (SL) – COMPRESSIONE Ned = +51,1kN

Dimensione del profilo HE:

D = 0,14

Lmin = 1,7m

 σ' vo = 34,40 kN/m²

Qs = 8,3 kN

Qp = 74,0 kN

Rcd = Qs / $(1,40*1,15) + Qp / (1,40*1,15) = 51,2 \text{ kN} \cong \text{Ned}$

Dimensione del profilo HE:

D = 0.16

Lmin = 1,1m

 σ' vo = 21,20 kN/m²

Qs = 3.5 kN

Qp = 79,2 kN

Rcd = Qs / $(1,40*1,15) + Qp / (1,40*1,15) = 51,4 \text{ kN} \cong \text{Ned}$

9.4.2. Sostegno Laterale (SL) – TRAZIONE Ned = -20 kN

Dimensione del profilo HE:

D = 0,14

Lmin = 3,4m

Qs = 36,5 kN

Rev. 0 Data Agosto 2023

El: BI028F-D-PAL-RT-09-r00

RELAZIONE DI CALCOLO DEI SOSTEGNI DEI TRACKER Pag. 45

Rcd = Qs / (1,40*1,25) = 20,9 kN $\cong Ned$

Dimensione del profilo HE: D = 0,16 Lmin = 3,2m

Qs = 36,8 kN

Rcd = Qs / (1,40*1,25) = 21,0 kN \cong Ned

9.4.3. Sostegno Centrale (SC) – COMPRESSIONE Ned = +67,2kN

Dimensione del profilo HE: D = 0,16 Lmin = 1,8m

 σ' vo = 36,6 kN/m²

Qs = 10.8 kN

Qp = 99,0 kN

Rcd = Qs / $(1,40*1,15) + Qp / (1,40*1,15) = 68,2 \text{ kN} \cong \text{Ned}$

Dimensione del profilo HE: D = 0,18 Lmin = 1,1m

 σ' vo = 21,2 kN/m²

Qs = 3.9 kN

Qp = 100,3 kN

Rcd = Qs / (1,40*1,15) + Qp / (1,40*1,15) = 64,7 kN \cong Ned

9.4.4. Sostegno Centrale (SC) – TRAZIONE Ned = -26,4 kN

Dimensione del profilo HE: D = 0,16 Lmin = 3,6m

Qs = 47,0 kN

Rtd = Qs / (1,40*1,25) = 26,8 kN \cong Ned

Dimensione del profilo HE: D = 0,18 Lmin = 3,4m

Qs = 46,9 kN

Rtd = Qs / (1,40*1,25) = 26,8 kN \cong Ned

<u> अञ्चलकायासग्य</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog. 46
35944444			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 46
			DEI TRACKER	

9.5. Calcolo della lunghezza minima di infissione – Modello geotecnico 3

Stratigrafia

Strato				Valori caratteristici							
Tipo	prof.	Strato	H strato [m]	γ [kN/m3]	[°]	c' [kPa]	μ	k	K = μ * k	Nq	Nc
liv.0	0										
liv.1	2,5	Copertura	2,5	19,5	27	10	0,364	0,750	0,273	18	33
liv.2	10	C2.1	7,5	20	31	20	0,364	0,750	0,273	30	48
liv.3											
liv.4											
liv.5											
liv.6											
liv.7											
liv.8											

Si considera la coesione c' solo per la resistenza alla punta

Coefficienti di calcolo

 γ R3,base = 1,15

 γ R3,laterale in compressione = 1,15

 γ R3, laterale in trazione = 1,25

Numero verticali indagate = 5 da cui ξ 3 = 1,50

9.5.1. Sostegno Laterale (SL) – COMPRESSIONE Ned = +51,1kN

Dimensione del profilo HE:

D = 0.14

Lmin = 3,4m

 σ' vo = 66,75 kN/m²

Qs = 30,7 kN

Qp = 58,2 kN

Rcd = Qs / $(1,50*1,15) + Qp / (1,50*1,15) = 51,5 \text{ kN} \cong \text{Ned}$

Dimensione del profilo HE:

D = 0.16

Lmin = 2,8m

 σ' vo = 54,75 kN/m²

Qs = 22,1 kN

Qp = 66,1 kN

Rcd = Qs / $(1,50*1,15) + Qp / (1,50*1,15) = 51,2 \text{ kN} \cong \text{Ned}$

RELAZIONE DI CALCOLO DEI SOSTEGNI DEI TRACKER

9.5.2. Sostegno Laterale (SL) - TRAZIONE Ned = -20 kN

Dimensione del profilo HE: D = 0,14 Lmin = 3,8m

Qs = 39,5 kN

Rcd = Qs / (1,50*1,25) = 21,1 kN \cong Ned

Dimensione del profilo HE: D = 0,16 Lmin = 3,5m

Qs = 37,5 kN

Rcd = Qs / (1,50*1,25) = 20,0 kN $\cong \text{Ned}$

9.5.3. Sostegno Centrale (SC) – COMPRESSIONE Ned = +67,2kN

Dimensione del profilo HE: D = 0,16 Lmin = 3,6m

 σ' vo = 70,75 kN/m²

Qs = 40,0 kN

Qp = 79,0 kN

 $Rcd = Qs / (1,50*1,15) + Qp / (1,50*1,15) = 69,0 \text{ kN} \cong Ned$

Dimensione del profilo HE: D = 0,18 Lmin = 3,0m

 σ' vo = 58,75 kN/m²

Qs = 29,4 kN

Qp = 88,3 kN

Rcd = Qs / $(1,50*1,15) + Qp / (1,50*1,15) = 68,2 \text{ kN} \cong \text{Ned}$

9.5.4. Sostegno Centrale (SC) – TRAZIONE Ned = -26,4 kN

Dimensione del profilo HE: D = 0,16 Lmin = 4,0m

Qs = 50,5 kN

Rtd = Qs / (1,50*1,25) = 27,0 kN $\cong \text{Ned}$

Dimensione del profilo HE: D = 0,18 Lmin = 3,8m

Qs = 50.8 kN

Rtd = Qs / (1,50*1,25) = 27,1 kN $\cong \text{Ned}$

<u> </u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog. 49
32344347			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 48
			DEI TRACKER	

9.6. Riepilogo lunghezze minime di infissione

Si riassumono i risultati ottenuti nel precedente paragrafo. Si ricorda che le lunghezze ottenute sono state calcolate con le seguenti ipotesi:

- Resistenza alla punta calcolata considerando l'eventuale coesione dello strato in cui insiste la punta;
- Resistenza laterale trascurando la coesione (c'=0).

Tabella 4 – Riepilogo delle lunghezze minime di infissione per i diversi sostegni in funzione della zona di intervento (ovvero del modello geotecnico di riferimento)

Modello	Tipo di	Tipo di	Lmin [m]	Lmin [m]	L[m]
Geotecnico	sostegno	profilo	Compressione	Trazione	di progetto
	SL	HE140	3,9	3,6	3,9
Modello 1	SL	HE160	3,4	3,4	3,4
Modello 1	SC	HE160	4,2	3,9	4,2
	SC	HE180	3,6	3,7	3,7
	SL	HE140	1,7	3,4	3,4
Modello 2		HE160	1,1	3,2	3,2
Modello 2		HE160	1,8	3,6	3,6
	SC	HE180	1,1	3,4	3,4
	SL	HE140	3,4	3,8	3,8
Madalla 2	SL	HE160	2,8	3,5	3,5
Modello 3	SC	HE160	3,6	4,0	4,0
	SC	HE180	3,0	3,8	3,8

Analizzando i risultati ottenuti si rilevano lunghezze di infissione simili per i modelli geotecnici 1 e 3, mentre per il modello geotecnico 2 le lunghezze minime di infissione sono generalmente inferiori. Si sceglie quindi di assumere un valore di progetto della lunghezza di infissione L(1,3) valido per le zone di intervento caratterizzate con i modelli geotecnici 1 e 3, mentre per le strutture da installare nelle zone ricadenti nel modello geotecnico 2 si assumono le lunghezze di infissione L(2).

<u> सम्बद्धस्यस्य</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dag. 40
32944444			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 49
			DEI TRACKER	

Tabella 5 - Lunghezza di infissione di progetto

Tipo di sostegno	Tipo di profilo	Modello 1	Modello 2	Modello 3	L(1,3) [m]	L(2) [m]
GI.	HE140	3,9	3,4	3,8	3,9	3,4
SL	HE160	3,4	3,2	3,5	3,5	3,2
SC	HE160	4,2	3,6	4,0	4,2	3,6
	HE180	3,7	3,4	3,8	3,8	3,4

Queste lunghezze saranno assunte come dato di input nella successiva verifica del carico limite orizzontale. Qualora la lunghezza di infissione considerata risultasse insufficiente, si determinerà la lunghezza necessaria a soddisfare anche la verifica alle azioni orizzontali.

9.7. Carico limite orizzontale (ovvero trasversale)

Si considera la teoria di Broms (1964a, 1964b) applicata al caso specifico di palo libero di ruotare in testa e terreno incoerente.

In questo caso la teoria di Broms considera due possibili meccanismi di rottura:

- Comportamento di tipo "PALO CORTO";
- Comportamento di tipo "PALO LUNGO".

Si andrà quindi a ricercare il cinematismo di rottura dei pali e soddisfare poi le condizioni di equilibrio.

Le ipotesi di calcolo sono quelle di Broms:

- comportamento dell'interfaccia palo-terreno rigido-perfettamente plastico;
- la forma della sezione trasversale del palo sia ininfluente. l'interazione palo-terreno è determinata dalla dimensione caratteristica d della sezione del palo misurata normalmente alla direzione del movimento;
- le azioni orizzontali possono chiamare in causa la resistenza strutturale dei pali (nel caso di comportamento palo lungo). Si ipotizza un comportamento flessionale dei pali di tipo rigido perfettamente plastico.

Considerato che la verifica è principalmente influenzata dagli strati superficiali del terreno, si considerano i seguenti parametri geotecnici per l'intero sito di intervento:

$$\phi' = 28^{\circ}$$
 $\gamma = 20 \text{kN/m}^3$

Comportamento tipo Palo Corto

Il cinematismo che si ipotizza è il seguente: a seguito dell'applicazione della forza orizzontale H (dovuta all'azione del vento) nel palo corto la rotazione avviene attorno ad un punto molto prossimo all'estremità inferiore del palo. Broms suggerisce in questo caso di assumere il centro di rotazione coincidente con la punta del palo e di schematizzare la risultante delle azioni del terreno al di sotto di tale punto con una forza concentrata F.

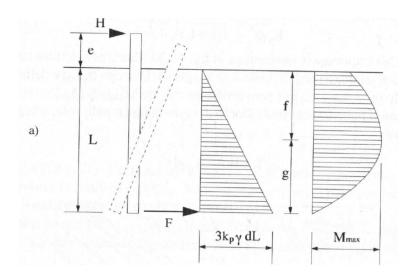


Figura 9.2 – Palo corto libero di ruotare in testa, terreni incoerenti

Imponendo l'equilibrio alla rotazione attorno alla punta del palo si ottiene il valore di Hlim che è funzione di γ e kp:

$$\frac{H}{Kp \cdot \gamma \cdot d^3} = \frac{d}{2(e+L)} \left(\frac{L}{d}\right)^3$$

Il massimo momento Mmax si trova alla profondità f che è pari a:

$$f = 0.816 \sqrt{\frac{H}{kp \cdot \gamma \cdot d}}$$

 $Mmax = H\left(e + \frac{2}{3}f\right)$

Per la validità dell'ipotesi assunta di comportamento tipo palo corto deve essere soddisfatta la condizione:

$$Mmax \le My = Mpl$$

<u> अस्त्रकत्तरप्रस्मित्र</u>	Rev. 0	Data Agosto 2023	EI: BI028F-D-PAL-RT-09-r00	Dog E1
32944444			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 51
			DEI TRACKER	

Cioè il massimo momento Mmax deve risultare inferiore al momento plastico caratteristico Mpl = My della sezione del palo.

Se invece risulta Mmax > My = Mpl allora il palo è lungo.

Comportamento tipo Palo Lungo

In questa condizione si ha un comportamento rappresentato nella seguente figura:

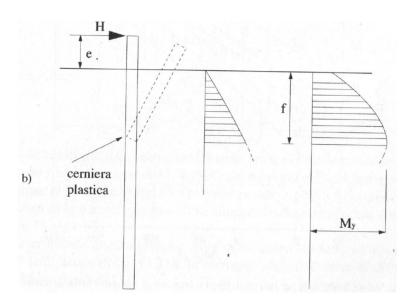


Figura 9.3 – Palo lungo libero di ruotare in testa, terreni incoerenti

Si eguaglia Mmax a My:

$$H\left(e + 0.816\frac{2}{3}\sqrt{\frac{H}{kp \cdot \gamma \cdot d}}\right) = My$$

Risolvendo l'equazione si determina il valore di <u>H che non dipende da L</u>, purché questa assuma almeno il valore per il quale si verifica Mmax=My.

Il carico limite orizzontale di un determinato palo di lunghezza L è il minore fra i valori che si ottengono considerando i due comportamenti.

Il valore così calcolato andrà quindi diviso per il coefficiente parziale (R3) per determinare la resistenza di progetto per carichi trasversali:

$$R_{Tr,d} = H / \gamma_T$$
 con $\gamma_T = 1,3$

<u> सन्द्रभयसम्</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog F2
35944444			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 52
			DEI TRACKER	

È stato verificato che per tutte le lunghezze di infissione il comportamento dei sostegni è di tipo palo lungo, quindi il valore di H non dipende dalla profondità di infissione L.

Si riporta qui di seguito il calcolo della resistenza RTr,d = H / γ T per i sostegni che ricadono nei modelli geotecnici 1 e 3, ma che valgono anche per il modello 2 dove le profondità di infissione dei pali sono leggermente inferiori.

Poiché il momento plastico dipende dalla classe di acciaio del profilo, si analizzano due serie di profili:

- Profili HEA in acciaio S275;
- Profili HEA in acciaio S355;

9.7.1. Tracker Esterno - Sostegno Laterale (TE-SL) – Acciaio S275

Profilo HEA160 in acciaio S275 - L = 3,8 m

My = Mpl = 67,4kNm

La condizione più gravosa è quella di lavoro (alfa = 60°)

H = 12,23 kN

e = 3,20 m

Considero il comportamento di Palo corto:

 $R_{Tr,d} = 26,72 \text{ kN}$ > H

Mmax = 110,8 kNm > My quindi il palo è lungo

Considero il comportamento di Palo lungo:

 $R_{Tr,d} = 13,11 \text{ kN}$ > H

La verifica è soddisfatta con un coefficiente di sicurezza pari a CS = $R_{Tr,d}$ / H = 1,07.

9.7.2. Tracker Esterno - Sostegno Centrale (TE-SC) – Acciaio S275

Profilo HEA180 in acciaio S275 - L = 4,1 m

My = Mpl = 89,3kNm

La condizione più gravosa è quella di lavoro (alfa = 60°)

H = 16,09 kN

e = 3,20 m

Considero il comportamento di Palo corto:

 $R_{Tr,d} = 36,21 \text{ kN}$ > H

Mmax = 153,4 kNm > My quindi il palo è lungo

Considero il comportamento di Palo lungo:

 $R_{Tr,d} = 17,13 \text{ kN}$ > H

La verifica è soddisfatta con un coefficiente di sicurezza pari a CS = $R_{Tr,d}$ / H = 1,06.

9.7.3. Tracker Esterno - Sostegno Laterale (TE-SL) – Acciaio S355

Profilo HEA140 in acciaio S355 - L = 4,3 m

My = Mpl = 61,6kNm

La condizione più gravosa è quella di lavoro (alfa = 60°)

H = 12,23 kN

e = 3,20 m

Considero il comportamento di Palo corto:

 $R_{Tr,d} = 31,62 \text{ kN}$ > H

Mmax = 135,9 kNm > My quindi il palo è lungo

Considero il comportamento di Palo lungo:

 $R_{Tr,d} = 11,94 \text{ kN}$ < H

La verifica fornisce un coefficiente di sicurezza pari a CS = $R_{Tr,d}$ / H = 0,98, leggermente inferiore a 1. Si ritiene la verifica comunque soddisfatta.

9.7.4. Tracker Esterno - Sostegno Centrale (TE-SC) – Acciaio S355

Profilo HEA160 in acciaio S355 - L = 4,5 m

My = Mpl = 87,0kNm

La condizione più gravosa è quella di lavoro (alfa = 60°)

H = 16,09 kN

e = 3,20 m

Considero il comportamento di Palo corto:

 $R_{Tr,d} = 40,34 \text{ kN}$ > H

Mmax = 175,9 kNm > My quindi il palo è lungo

Considero il comportamento di Palo lungo:

$$R_{Tr,d} = 16,54 \text{ kN}$$
 >

La verifica è soddisfatta con un coefficiente di sicurezza pari a CS = $R_{Tr,d}$ / H = 1,03.

9.7.5. Tracker Interno - Sostegno Laterale (TI-SL) – Acciaio S275

Profilo HEA160 in acciaio S275 - L = 3,8 m

$$My = Mpl = 67,4kNm$$

La condizione più gravosa è quella di riposo (alfa = 5°)

H = 2,70 kN

e = 16,91 m

Considero il comportamento di Palo corto:

 $R_{Tr,d} = 9,03 \text{ kN}$ > H

Mmax = 157,7 kNm > My quindi il palo è lungo

Considero il comportamento di Palo lungo:

 $R_{Tr,d} = 3,00 \text{ kN}$ > H

La verifica è soddisfatta con un coefficiente di sicurezza pari a CS = $R_{Tr,d}$ / H = 1,11.

9.7.6. Tracker Interno - Sostegno Centrale (TI-SC) – Acciaio S275

Profilo HEA180 in acciaio S275 - L = 4,1 m

My = Mpl = 89,9kNm

La condizione più gravosa è quella di riposo (alfa = 5°)

H = 3,56 kN

e = 16,91 m

Considero il comportamento di Palo corto:

 $R_{Tr,d} = 12,58 \text{ kN}$ > H

Mmax = 220,4 kNm > My quindi il palo è lungo

Considero il comportamento di Palo lungo:

 $R_{Tr,d} = 3,97 \text{ kN}$ >

La verifica è soddisfatta con un coefficiente di sicurezza pari a CS = $R_{Tr,d}$ / H = 1,12.

9.7.7. Tracker Interno - Sostegno Laterale (TI-SL) – Acciaio S355

Profilo HEA140 in acciaio S355 - L = 4,3 m

My = Mpl = 61,6kNm

La condizione più gravosa è quella di riposo (alfa = 5°)

H = 2,70 kN

e = 16,91 m

Considero il comportamento di Palo corto:

 $R_{Tr,d} = 7,90 \text{ kN}$

· H

>

Н

Mmax = 138,0 kNm

My quindi il palo è lungo

Considero il comportamento di Palo lungo:

 $R_{Tr,d} = 2,74 \text{ kN}$

La verifica è soddisfatta con un coefficiente di sicurezza pari a CS = $R_{Tr,d}$ / H = 1,02.

9.7.8. Tracker Interno - Sostegno Centrale (TI-SC) – Acciaio S355

Profilo HEA160 in acciaio S355 - L = 4,5 m

My = Mpl = 87,0kNm

La condizione più gravosa è quella di riposo (alfa = 5°)

H = 3,56 kN

e = 16,91 m

Considero il comportamento di Palo corto:

 $R_{Tr,d} = 14,51 \text{ kN}$

Н

Mmax = 255,5 kNm

>

quindi il palo è lungo

Considero il comportamento di Palo lungo:

 $R_{Tr,d} = 3,86 \text{ kN}$

Н

La verifica è soddisfatta con un coefficiente di sicurezza pari a CS = $R_{Tr,d}$ / H = 1,09.

My

<u> </u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog T.C
7.59.77.77.7			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 56
			DEI TRACKER	

10. CALCOLO E VERIFICA STRUTTURALE DEI SOSTEGNI

Per il calcolo delle sollecitazioni SLU lungo il fusto dei sostegni si utilizza un modello di calcolo elastico che schematizza il terreno come mezzo alla Winkler.

Allo scopo si è costruito un modello di calcolo agli elementi finiti implementato con il programma SAP2000 v24.1.0.

I pali di sostegno dei tracker sono vincolati al terreno considerando alla punta un vincolo a cerniera, mentre lungo il fusto, nella parte interessata dal terreno si sono implementate molle orizzontali con valore della costante kh di reazione crescente linearmente con la profondità z:

$$kh = nh z/d [kN/m^3]$$

I valori della costante kh variano da 0 kN/m³ alla quota del piano campagna e aumentano con la profondità fino alla punta posta a 4m di profondità.

Assumendo il valore di nh = 7.500 kN/m³, indicativo per terreni incoerenti a medio addensamento (rif. tabella 14.5 del testo "Fondazioni" di C. Viggiani) si ottiene:

kh punta =
$$7.500 \text{ kN/m}^3 * 4\text{m} / d = 30.000 / d [kN/m^3]$$

Nel modello si applicano molle orizzontali con passo verticale i = 0,25m, pertanto il valore della singola molla posta alla profondità z vale:

$$km = kh * d * i = 0.25 * 7.500 * z = 1875 z [kN/m]$$

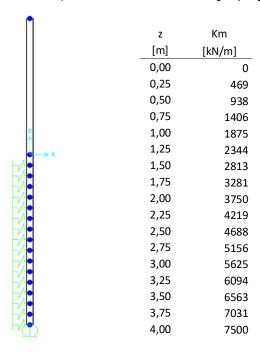
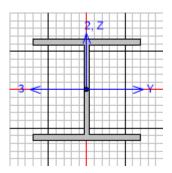


Figura 10.1 – Modello agli elementi finiti utilizzato per il calcolo delle sollecitazioni lungo il palo e valori delle costanti di molla

<u> </u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog. 57
222777777			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 57
			DEI TRACKER	i

Nei seguenti paragrafi si riporta la verifica automatica eseguita dal programma considerando le diverse condizioni e combinazioni di carico SLU.


Per ciascun sostegno si esplicita per la condizione e combinazione più gravosa il rapporto fra domanda e capacità (D/C) della sezione più sollecitata.

10.1.1. Tracker Esterno - Sostegno Laterale (TE-SL) – Acciaio S275

Profilo HEA160 in acciaio S275 - L = 3,8 m

Condizione di riposo (alfa=5°) – Comb. SLU02

D/C Ratio: 0,723 < 1,00


```
Italian NTC 2018 STEEL SECTION CHECK (Summary for Combo and Station)
Units : KN, m, C
                     X Mid: 0, Combo: COMBSLU2-5 Design Type: Column Y Mid: 0, Shape: HE160A Frame Type: DCH-MRF Z Mid: -0,375 Class: Class 1 Rolled: Yes
Frame: 2
Length: 0,25
Loc : 0,
Interaction=Method B
                                           MultiResponse=Envelopes
                                                                                             P-Delta Done? No
Consider Torsion? No
GammaM0=1,05 GammaM1=1,05 GammaM2=1,25 An/Ag=1, RLLF=1, PLLF=0,75
                                                              D/C Lim=0,95
An/Ag=1,
                                                                                            Prin. Axis Angle = 0, deg
Aeff=0,004 Av,2=0,001 Av,3=0,003 eNy=0,
A=0,004 Iy=1,673E-05 iy=0,066 Wel,y=2,201E-04
It=1,210E-07 Iz=6,160E-06 iz=0,04 Wel,z=7,700E-05
Iw=3,149E-08 Iyz=0, h=0,152 Wpl,y=2,450E-04
E=210000000, fy=275000, fu=430000, Wpl,z=1,180E-04
                                                                                              eNz=0,
                                                                                             Weff, y=2,201E-04
                                                                                              Weff, z=7,700E-05
STRESS CHECK FORCES & MOMENTS
     Location
                             Ned My,Ed
19,196 -46,405
                                                          Mz,Ed V2,Ed 0, 3,08
                                                                                        V3,Ed
                                                                                                          TEd
                           19,196
                                                                                          0,
PMM DEMAND/CAPACITY RATIO (Governing Equation NTC Eq 4.2.38(y))
     D/C Ratio: 0,723 = 0,723 <
                            3 = 0.723 < 0.95 OK
= (My, Ed/Mn, y, Rd) (NTC Eq 4.2.38 (y))
```

DEI TRACKER

Axial		NEd Force 19,196		Capacity			
		Npl,Rd 1016,19		Ncr,T 178674,738		An/Ag 1,	
	Curve	Alpha	Ncr	LambdaBar	Phi	Chi	Nb,Rd
Y-Y	b	0,34	554798,098	0,044	0,474	1,	1016,19
Y-Y Braced		0,34	554798,098	0,044	0,474	1,	
Z - Z			204277,124		0,471	1,	
Z-Z Braced			204277,124		0,471	1,	1016,19
Torsional	TF c	0,49	178674,73	0,077	0,473	1,	1016,19
MOMENT DESIGN							
		MEd	MEd, span	Mm, Ed	Meq, Ed		
		Moment					
Y-Y		-46,405			· ·		
Z - Z		0,	-2,806E-14	0,	2,798E-14		
		Mc,Rd	Mv,Rd	Mn,Rd	Mb,Rd		
	C	apacity	Capacity	Capacity	Capacity		
Y-Y		64,167	64,167	64,167	64,167		
Z-Z		30,905	30,905	30,905			
	Curve	AlphaLT	LambdaBarLT	PhiLT	ChiLT	Iw	Mcr
LTB		0,34	0,067			3,149E-08	
Factors	kw	Psi	C2	C3			
ractors	1,						
	za	ZS	zg		zj		
		1,4E-17		3,486E-17			
		kyy	kyz	kzy	kzz		
Factors		0,993	-	-	1,		
		Ved	_	Ved/Vpl,Rd	rho		
0.3.1		Force		Ratio	Factor		
2-Axis		3,08	200,203	0,015	1,		
3-Axis		0,	465,124	0,	1,		
SHEAR DESIGN							
		VEd		•		Status	
		Force			Ratio	Check	
2-Axis		3,08	0,	· ·	0,015	OK	
3-Axis		0,	0,	465,124	0,	OK	
		Vpl,Rd	Eta	Lambdabar	Chi		
		apacity					
2-Axis		200,203	1,2	0,236	1,2		
3-Axis		465,124	1,2	0,	1,		

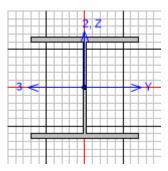
<u> </u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00
32033333			RELAZIONE DI CALCOLO DEI SOSTEGNI

Pag. 59

DEI TRACKER

10.1.2. Tracker Esterno - Sostegno Centrale (TE-SC) – Acciaio S275

Profilo HEA180 in acciaio S275 - L = 4,1 m


Condizione di riposo (alfa=5°) – Comb. SLU02

D/C Ratio: 0.717 < 1.00

Y-Y Braced

b

0,49 306747,305


```
Italian NTC 2018 STEEL SECTION CHECK (Summary for Combo and Station)
Units : KN, m, C
Frame : 2
                 X Mid: 0,
                                  Combo: COMBSLU2-5
                                                          Design Type: Column
Length: 0,25
                Y Mid: 0,
                                  Shape: HE180A
                                                          Frame Type: DCH-MRF
   : 0,
                 Z Mid: -0,375
                                  Class:
                                          Class 1
                                                          Rolled : Yes
Interaction=Method B
                                  MultiResponse=Envelopes
                                                                        P-Delta Done? No
Consider Torsion? No
GammaM0=1,05
             GammaM1=1,05
                                 GammaM2=1,25
An/Ag=1,
                RLLF=1,
                                  PLLF=0,75
                                                    D/C Lim=0,95
                                                                        Prin. Axis Angle = 0, deg
Aeff=0,005
                Av, 2=0,001
                                  Av, 3=0,004
                                                    eNy=0,
                                                                        eNz=0,
                                                                        Weff, y=2, 936E-04
A=0,005
                 Iy=2,510E-05
                                   iy=0,074
                                                    Wel, y=2,936E-04
It=1,490E-07
                                   iz=0,045
                                                                        Weff, z=1, 028E-04
                 Iz=9,250E-06
                                                    Wel, z=1,028E-04
Iw=6,032E-08
                                                    Wpl, y=3,250E-04
                Iyz=0,
                                  h=0,171
E=210000000,
                 fy=275000,
                                  fu=430000,
                                                    Wpl, z=1,560E-04
STRESS CHECK FORCES & MOMENTS
                                 My, Ed
                                                         V2,Ed
   Location
                       Ned
                                             Mz, Ed
                                                                     V3,Ed
   0,
                     25,378
                                 -61,05
                                                         2,594
                                                                                    0,
                                                0,
                                                                        0,
PMM DEMAND/CAPACITY RATIO (Governing Equation NTC Eq 4.2.38(y))
   D/C Ratio: 0,717 = 0,717 <
                                         0,95
                      = (My, Ed/Mn, y, Rd)
                                            (NTC Eq 4.2.38(y))
AXIAL FORCE DESIGN
                       NEd
                                Nc, Rd
                                            Nt.Rd
                                         Capacity
1186,429
                             Capacity
1186,429
                      Force
   Axial
                     25,378
                     Npl,Rd
                                 Nu,Rd
                                             Ncr, T
                                                       Ncr, TF
                                                                     An/Ag
                   1186,429
                             1402,488 265364,315 265364,312
                                        LambdaBar
                                                           Phi
                                                                       Chi
                                                                                 Nb, Rd
              Curve
                     Alpha
                                    Ncr
                     0,34 832362,957
0,34 832362,957
                                         0,039
                                                    0,473
0,473
0,469
                                                         0,473
   V-V
                  b
                                                                              1186,429
                                                                       1,
```

0,039

0,064

1,

1186,429

1186,429

4 (), () () () () () () () () (Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog. 60
<u> </u>			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 60
			DEI TRACKER	

Z-Z Bra Torsion		0,49	306747,305 265364,312	0,064 0,069	0,469 0,47	1, 1,	
MOMENT DESI	GN						
		MEd	MEd, span	Mm, Ed	Meg, Ed		
		Moment	Moment	Moment	Moment		
Y-Y		-61,05		-61,05			
Z - Z		0,	8,214E-14	0,	8,200E-14		
		Mc,Rd	Mv,Rd	Mn,Rd	Mb,Rd		
		Capacity					
Y-Y		85,119		85 , 119	85,119		
Z - Z		40,857	· ·	40,857	00,113		
			LambdaBarLT	PhiLT		Iw	Mcr
LTB	b	0,34	0,06	0,478	1,	6,032E-08	24992,064
Factors	s kw	Psi	C2	C3			
	1,	1,006	0,	0,995			
	za		_	ZZ	zj		
	0,086	0,	0,086	2,858E-17	-2,858E-17		
		kyy	kyz	kzy	kzz		
Factors	3	0,996		0,664	1,		
		Ved	Vpl,Rd	Ved/Vpl,Rd	rho		
		Force	Capacity	Ratio	Factor		
2-Axis		2,594	· ·	0,012	1,		
3-Axis		0,	547,08	0,	1,		
SHEAR DESIG	₽N						
21121111 22011	:	VEd	TEd	Vc,Rd	Stress	Status	
		Force	Torsion		Ratio	Check	
2-Axis		2,594	0,	219,558	0,012	OK	
3-Axis		0,	0,	547,08	0,	OK	
		Vpl,Rd	Eta	Lambdabar	Chi		
		Capacity					
2-Axis		219,558		0,263	1,2		
3-Axis		547,08	1,2	0,	1,		

RELAZIONE DI CALCOLO DEI SOSTEGNI DEI TRACKER

10.1.3. Tracker Interno - Sostegno Laterale (TI-SL) — Acciaio S275

Profilo HEA160 in acciaio S275 - L = 3,8 m

Condizione di riposo (alfa=5°) – Comb. SLU02

D/C Ratio: 0,723 < 1,00

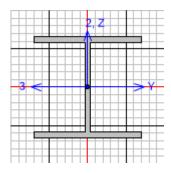
Per il dettaglio della verifica si rimanda al precedente par. 10.1.1.

10.1.4. Tracker Interno - Sostegno Centrale (TI-SC) – Acciaio S275

Profilo HEA180 in acciaio S275 - L = 4,1 m

Condizione di riposo (alfa=5°) – Comb. SLU02

D/C Ratio: 0,717 < 1,00


Per il dettaglio della verifica si rimanda al precedente par. 10.1.2

10.1.5. Tracker Esterno - Sostegno Laterale (TE-SL) – Acciaio S355

Profilo HEA140 in acciaio S355 - L = 4,3 m

Condizione di riposo (alfa=5°) - Comb. SLU02

D/C Ratio: 0.793 < 1.00

Italian NTC 2018 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C

Frame: 2 X Mid: 0, Combo: COMBSLU2-5 Design Type: Column Length: 0,25 Y Mid: 0, Shape: HE140A Frame Type: DCH-MRF Loc: 0, Z Mid: -0,375 Class: Class 1 Rolled: Yes

Interaction=Methor		Multi	Response=Env	elopes	P-De	lta Done? No	
GammaM0=1,05 An/Ag=1,	GammaM1=1,(RLLF=1,)5 Gamma PLLF=	M2=1,25 0,75	D/C Lim=0,95	Prin	. Axis Angle = 0	, deg
Aeff=0,003 A=0,003 It=8,100E-08 Iw=1,507E-08 E=210000000,	Av,2=0,001 Iy=1,033E-0 Iz=3,890E-0 Iyz=0, fy=355000,	<pre>iy=0, iy=0, iz=0, h=0,1</pre>	035	eNy=0, Wel,y=1,553E- Wel,z=5,557E- Wpl,y=1,730E- Wpl,z=8,480E-	-05 Weff -04	0, ,y=1,553E-04 ,z=5,557E-05	
STRESS CHECK FOR Location 0,	CES & MOMENTS Ned 19,353	My, Ed	Mz,Ed	V2,Ed 4,716	V3,Ed 0,	TEd 0,	
PMM DEMAND/CAPAC D/C Ratio:	0,793 = 0,7	(Governing Eq 793 < Ed/Mn,y,Rd)	0,95	q 4.2.38(y)) OK q 4.2.38(y))			
AXIAL FORCE DESI	GN NEd Force	•	Nt,Rd Capacity				
Axial	19,353	·	1061,619				
	Npl,Rd 1061,619		Ncr, T 111826, 413	Ncr,TF 111826,413	An/Ag 1,		
Y-Y Y-Y Braced Z-Z Z-Z Braced Torsional TF	b 0,34 c 0,49 c 0,49	Ncr 342562,125 342562,125 128999,677 128999,677 111826,413	LambdaBar 0,057 0,057 0,093 0,093 0,1	Phi 0,477 0,477 0,478 0,478 0,48	Chi 1, 1, 1, 1,	1061,619	
MOMENT DESIGN	MEd	MEd,span	Mm,Ed	Meq,Ed			
Y-Y Z-Z	Moment -46,405 0,	Moment -46,405 1,512E-14	Moment -46,405 0,	Moment -45,933 1,505E-14			
Y-Y Z-Z	Mc,Rd Capacity 58,49 28,67	58,49	Mn,Rd Capacity 58,49 28,67	Mb,Rd Capacity 58,49			
	urve AlphaLT b 0,34	LambdaBarLT	PhiLT 0,484	ChiLT 1,	Iw 1,507E-08	Mcr 8197,629	
Factors	kw Psi 1, 1,014 za zs ,067-1,4E-17	C2 0, zg 0.067	C3 0,995 zz -2,660E-18	zj -1.122E-17			
Factors	kyy 0,99	kyz	kzy 0,693	kzz 1,			
2-Axis 3-Axis	Ved Force 4,716 0,	Capacity	Ved/Vpl,Rd Ratio 0,024 0,	rho Factor 1,			

<u> </u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog 63
			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 63
			DEI TRACKER	


SHEAR DESIGN					
	VEd	TEd	Vc,Rd	Stress	Status
	Force	Torsion	Capacity	Ratio	Check
2-Axis	4,716	0,	197,298	0,024	OK
3-Axis	0,	0,	488,389	0,	OK
	Vpl,Rd	Eta	Lambdabar	Chi	
	Capacity	Factor	Ratio	Factor	
2-Axis	197,298	1,2	0,258	1,2	
3-Axis	488,389	1,2	0,	1,	

10.1.6. Tracker Esterno - Sostegno Centrale (TE-SC) – Acciaio S355

Profilo HEA160 in acciaio S355 - L = 4,5 m

Condizione di riposo (alfa=5°) – Comb. SLU02

D/C Ratio: 0.737 < 1.00


```
Italian NTC 2018 STEEL SECTION CHECK (Summary for Combo and Station)
Units : KN, m, C
                 X Mid: 0, Combo: COMBSLU2-5 Design Type: Column Y Mid: 0, Shape: HE160A Frame Type: DCH-MRF Z Mid: -0,375 Class: Class 1 Rolled: Yes
Frame : 2
Length: 0,25
Loc : 0,
Interaction=Method B
                                        MultiResponse=Envelopes
                                                                                       P-Delta Done? No
Consider Torsion? No
GammaM0=1,05 GammaM1=1,05 An/Ag=1, RLLF=1,
                                         GammaM2=1,25
                                         PLLF=0,75
                                                               D/C Lim=0,95
An/Ag=1,
                                                                                       Prin. Axis Angle = 0, deg
Aeff=0,004
                     Av, 2=0,001
                                          Av, 3=0,003
                                                               eNy=0,
                                                                                       eNz=0,
                                                                                      Weff, y=2,201E-04
Weff, z=7,700E-05
A=0,004
                    Iy=1,673E-05
                                         iy=0,066
                                                               Wel, y=2,201E-04
                                         iz=0,04
h=0,152
                                                               Wel, z=7,700E-05
Wpl, y=2,450E-04
It=1,210E-07
                     Iz=6,160E-06
Iw=3,149E-08
                    Iyz=0,
E=210000000,
                    fy=355000,
                                                               Wpl, z=1, 180E-04
                                         fu=510000,
STRESS CHECK FORCES & MOMENTS
                                       My, Ed Mz, Ed
    Location
                            Ned
                                                               V2,Ed
                                                                                  V3,Ed
                                                                                                  TEd
                         25,516
                                        -61,05
                                                                     4,046
    0,
                                                                                      0,
PMM DEMAND/CAPACITY RATIO (Governing Equation NTC Eq 4.2.38(y)) D/C Ratio: 0,737 = 0,737 < 0,95 OK = (My,Ed/Mn,y,Rd) (NTC Eq 4.2.38(y))
```

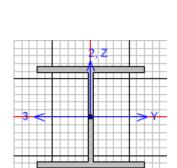
AXIAL FORCE D	ESIGN					
MAINE FORCE D.	NEd	Nc, Rd	Nt,Rd			
	Force	Capacity	Capacity			
Axial	25,516	1311,81	1311,81			
	Npl,Rd	Nu,Rd	Ncr, T	Ncr, TF	An/Ag	
	1311,81	Nu,Rd 1424,736	178674,738	178674,73	1,	
	Curve Alpha	Ncr	LambdaBar	Phi	Chi	Nb,Rd
Y-Y	b 0,34	554798 , 098	0,05	0,476	1,	
	d b 0,34			0,476	1,	
Z-Z	c 0,49	204277,124	0,082		1,	
	d c 0,49				1,	
Torsional	TF c 0,49	1/86/4,/3	0,088	0,476	1,	1311,81
MOMENT DESIGN		MEd, span	Mm Fd	Meg Ed		
	Moment	_				
Y-Y	-61 , 05		-61 , 05	-60.645		
Z-Z	· ·	-3,692E-14		3,681E-14		
	- /	-,	,	-,		
	Mc,Rd	Mv.Rd	Mn,Rd	Mb,Rd		
		Capacity				
Y-Y	82,833		82,833	82,833		
Z-Z	39,895			, , , , , , , , , , , , , , , , , , , ,		
	Curve AlphaLT	LambdaBarLT	PhiLT	ChiLT	Iw	Mcr
LTB	b 0,34	0,077	0,482	1,	3,149E-08	14810,175
Factors	kw Psi		C3			
	1, 1,009					
	za zs	_		Zj		
	0,076-1,4E-17	0,076	3,486E-17	-4,8/4E-1/		
	kyy	kyz	kzy	kzz		
Factors	0,993	_	0,682			
ractors	0,333	0,0	0,002	±,		
	Ved	Vnl.Rd	Ved/Vpl,Rd	rho		
		Capacity	Ratio			
2-Axis	4,046					
3-Axis	0,		0,	1,		
SHEAR DESIGN						
	VEd		Vc,Rd	Stress		
	Force		Capacity	Ratio	Check	
2-Axis	4,046		258,444	0,016	OK	
3-Axis	0,	0,	600,433	0,	OK	
	Vpl,Rd		Lambdabar	Chi		
	One and the	Past at a second				
2-7-7-6	Capacity		Ratio	Factor		
2-Axis 3-Axis	Capacity 258,444 600,433	1,2	Ratio 0,268 0,	factor 1,2 1,		

10.1.7. Tracker Interno - Sostegno Laterale (TI-SL) – Acciaio S355

Profilo HEA140 in acciaio S355 - L = 4,3 m

Condizione di riposo (alfa=5°) – Comb. SLU02

D/C Ratio: 0,793 < 1,00


44.54.04.44.47.17

RELAZIONE DI CALCOLO DEI SOSTEGNI DEI TRACKER

An/Ag

Ncr.TF

Pag. 65

Italian NTC 2018 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C Frame: 2 Length: 0,25 Loc: 0, Design Type: Column Design Type. OCH-MRF
Frame Type: DCH-MRF Interaction=Method B MultiResponse=Envelopes P-Delta Done? No Consider Torsion? No GammaM2=1,25 PLLF=0,75 GammaM0=1,05 GammaM1=1,05 An/Aq=1, RLLF=1, D/C Lim=0,95 Prin. Axis Angle = 0, deg Aeff=0,003 Av, 2=0,001Av, 3=0,003eNy=0, eNz=0, Wel, y=1,553E-04 Iy=1,033E-05 iy=0,057Weff, y=1,553E-04A=0.003It=8,100E-08 Iz=3,890E-06iz=0,035Wel, z=5,557E-05Weff, z=5,557E-05Iyz=0, Iw=1,507E-08 h=0,133 Wpl, y=1,730E-04 fy=355000, Wpl, z=8, 480E-05 E=210000000, fu=510000, STRESS CHECK FORCES & MOMENTS My,Ed Mz,Ed V2,Ed -46,405 0, 4,716 V3,Ed Location Ned TEd -46,405 0, 0, 19,353 0, 0,

PMM DEMAND/CAPACITY RATIO (Governing Equation NTC Eq 4.2.38(y)) D/C Ratio: 0,793 = 0,793 < 0,95 OK = (My, Ed/Mn, y, Rd) (NTC Eq 4.2.38(y))

AXIAL FORCE DESIGN

NEd Nc,Rd Nt,Rd
Force Capacity Capacity
Axial 19,353 1061,619 1061,619

Npl,Rd Nu,Rd Ncr,T

1153,008 111826,413 111826,413 1061,619 1, Alpha LambdaBar Phi Chi Nb, Rd 0,057 Y-Y 0,34 342562,125 0,477 1, 1061,619 0,34 342562,125 0,49 128999,677 Y-Y Braced b 0,057 0,477 1, 1061,619 0,478 1061,619 0,093 1, 1, 0,093 0,478 1061,619 0,1 0,48 1061,619

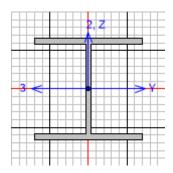
MOMENT DESIGN

MEd MEd, span Mm, Ed Meq, Ed

Moment Moment Moment Moment

Y-Y -46,405 -46,405 -46,405 -45,933

<u>নক্ষরমান্দেশ</u> ক	Rev. 0	Data Agosto 2023	EI: BI028F-D-PAL-RT-09-r00	Dag 66
			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 66
			DEI TRACKER	


Z - Z	0,	1,512E-14	0,	1,505E-14		
	Mc,Rd					
	Capacity	Capacity	Capacity	Capacity		
Y-Y	58,49					
Z - Z	28,67	28,67	28,67			
	Curve AlphaLT	LambdaBarLT	PhiLT	ChiLT	Iw	Mcr
LTB		0,087	0,484	1,	1,507E-08	8197 , 629
Factors	kw Psi	C2	C3			
	1, 1,014	0,	0,995			
	za zs		ZZ	Ζİ		
	0,067-1,4E-17	0,067	-2,660E-18	-1,122E-17		
	kyy	kyz	kzy	kzz		
Factors	0,99			1,		
	Ved	Vpl,Rd	Ved/Vpl,Rd	rho		
		Capacity		Factor		
2-Axis		197,298		1,		
3-Axis	0,	· · · · · · · · · · · · · · · · · · ·		1,		
SHEAR DESIGN						
	VEd	TEd	Vc, Rd	Stress	Status	
	Force	Torsion	Capacity	Ratio	Check	
2-Axis	4,716		197,298			
3-Axis	0,	0,	488,389	0,	OK	
	Vpl,Rd	Eta	Lambdabar	Chi		
	± *	Factor		Factor		
2-Axis	197,298		0,258	1,2		
3-Axis	488,389		0,	1,		

10.1.8. Tracker Interno - Sostegno Centrale (TI-SC) – Acciaio S355

Profilo HEA160 in acciaio S355 - L = 4,5 m

Condizione di riposo (alfa=5°) – Comb. SLU02

D/C Ratio: 0,737 < 1,00

Italian NTC 2018 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C

RELAZIONE DI CALCOLO DEI SOSTEGNI DEI TRACKER

Length: 0,25 Loc : 0,	Y Mid: 0, Z Mid: -0,3			Frame T Rolled	'ype: DCH-M : Yes	IRF	
Interaction=Metho Consider Torsion?		Multi	Response=Env	elopes	P-De	elta Done? No	
GammaM0=1,05 An/Ag=1,	GammaM1=1,09		M2=1,25 0,75	D/C Lim=0,95	Prin	. Axis Angle	= 0, deg
Aeff=0,004 A=0,004 It=1,210E-07 Iw=3,149E-08 E=210000000,	Av, 2=0,001 Iy=1,673E-05 Iz=6,160E-06 Iyz=0, fy=355000,	iy=0, iz=0, h=0,1	04	eNy=0, Wel,y=2,201E- Wel,z=7,700E- Wpl,y=2,450E- Wpl,z=1,180E-	05 Weff	0, , y=2,201E-04 , z=7,700E-05	
STRESS CHECK FORCE Location 0,	MOMENTS Ned 25,516	My, Ed -61,05	Mz,Ed	V2,Ed 4,046	V3,Ed 0,	TEd 0,	
PMM DEMAND/CAPACI D/C Ratio:	0,737 = 0,73		0,95	q 4.2.38(y)) OK q 4.2.38(y))			
AXIAL FORCE DESIG	NEd Force 25,516	Nc,Rd Capacity 1311,81					
	Npl,Rd 1311,81	Nu, Rd	Ncr,T	Ncr,TF 178674,73	An/Ag		
Y-Y Y-Y Braced Z-Z	b 0,34 c 0,49 c 0,49	554798,098 554798,098 204277,124	LambdaBar 0,05 0,05 0,082 0,082 0,088	Phi 0,476 0,476 0,474 0,474 0,476	Chi 1, 1, 1, 1,	1311,81	
MOMENT DESIGN Y-Y Z-Z		MEd, span Moment -61,05 -3,692E-14	Mm, Ed Moment -61,05	Meq,Ed Moment -60,645 3,681E-14			
Y-Y Z-Z	Mc,Rd Capacity	Mv,Rd Capacity 82,833	Mn,Rd Capacity	Mb,Rd			
Cu LTB	urve AlphaLT 1 b 0,34	LambdaBarLT 0,077	PhiLT 0,482		Iw 3,149E-08		
	kw Psi 1, 1,009 za zs 076-1,4E-17	zg	C3 0,995 zz 3,486E-17	zj -4,874E-17			
Factors	kyy 0,993	kyz 0,6	kzy 0,682	kzz 1,			
2-Axis	Ved Force 4,046	Vpl,Rd Capacity 258,444	Ved/Vpl,Rd Ratio 0,016	rho Factor 1,			

<u>क्षेत्रकस्याकर</u> ्	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dag 69
			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 68
			DEI TRACKER	

3-Axis	0,	600,433	0,	1,	
SHEAR DESIGN					
	VEd	TEd	Vc,Rd	Stress	Status
	Force	Torsion	Capacity	Ratio	Check
2-Axis	4,046	0,	258,444	0,016	OK
3-Axis	0,	0,	600,433	0,	OK
	Vpl,Rd	Eta	Lambdabar	Chi	
	Capacity	Factor	Ratio	Factor	
2-Axis	258,444	1,2	0,268	1,2	
3-Axis	600,433	1,2	0,	1,	

	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dag 60
			RELAZIONE DI CALCOLO DEI SOSTEGNI DEI TRACKER	Pag. 69

11. CONCLUSIONI

Il calcolo ha evidenziato che la lunghezza di infissione dei sostegni dei tracker è generalmente governata dalla verifica allo sfilamento in condizioni di riposo (alfa=5°).

In questa condizione, in cui i pannelli sono quasi orizzontali, non si ha l'effetto schermante dei pannelli esterni su quelli interni e pertanto le lunghezze di infissione dei supporti dei tracker esterni sono uguali a quelle dei supporti interni.

Le lunghezze di infissione sono invece influenzate dal tipo di terreno e dalla sezione del palo, quest'ultima dipende dal tipo di acciaio utilizzato. Un acciaio più resistente consente di impiegare, come è logico aspettarsi, dei profili di dimensioni inferiori, i quali per contro richiedono infissioni maggiori.

Nella relazione si è analizzato l'impiego di 2 acciai diversi: S275 e S355, a cui corrispondono 2 serie di profili con diverse lunghezze minime di infissione, quest'ultime differenziate per tipo di suolo (modello geotecnico).

L'acciaio **\$275** consente l'impiego di profili HEA160 per i sostegni laterali (SL) e HEA180 per quello centrale (SC), con lunghezze minime di infissione comprese tra 3,5m (SL) e 3,8m (SC) per suoli caratterizzati con modello 1 e 3 e lunghezze di infissione comprese tra 3,2m (SL) e 3,4m (SC) su modello geotecnico 2.

L'acciaio **\$355** consente l'impiego di profili HEA140 per i sostegni laterali (SL) e HEA160 per quello centrale (SC), con lunghezze minime di infissione comprese tra 3,9m (SL) e 4,2m (SC) per suoli caratterizzati con modello 1 e 3 e lunghezze di infissione comprese tra 3,4m (SL) e 3,6m (SC) su modello geotecnico 2.

Si riporta in un'unica tabella riassuntiva l'esito delle verifiche condotte sui sostegni dei tracker.

ABRUMATT	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dag 70	
			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 70	
			DEI TRACKER		

Tabella 6 - Riepilogo complessivo delle verifiche

Tipo Acciaio	Sigla del sostegno	Posizione Tracker	Tipo di sostegno	Tipo di profilo	Linf.(1,3) (*)	Linf.(2) (*)	RTr,d / H (>1,0)	D/C (<1,0)
S275	TE-SL-S275-HEA160	TE	SL	HEA160	3,5	3,2	1,07	0,723
S275	TE-SC-S275-HEA180	TE	SC	HEA180	3,8	3,4	1,06	0,717
S275	TI-SL-S275-HEA160	TI	SL	HEA160	3,5	3,2	1,11	0,723
S275	TI-SC-S275-HEA180	TI	SC	HEA180	3,8	3,4	1,12	0,717
S355	TE-SL-S355-HEA140	TE	SL	HEA140	3,9	3,4	0,98 (**)	0,793
S355	TE-SC-S355-HEA160	TE	SC	HEA160	4,2	3,6	1,03	0,737
S355	TI-SL-S355-HEA140	TI	SL	HEA140	3,9	3,4	1,02	0,793
S355	TI-SC-S355-HEA160	TI	SC	HEA160	4,2	3,6	1,09	0,737

^(*) Linf. = Lunghezza di infissione minima per soddisfare la verifica geotecnica allo sfilamento

Legenda:

TE: Tracker Esterno

TI: Tracker Interno

SL: Sostegno Laterale

SC: Sostegno Centrale

Linf.(1,3): Lunghezza minima di infissione per soddisfare la verifica di cap.

portante/sfilamento (modello geotecnico 1 e 3)

Linf.(2): Lunghezza minima di infissione per soddisfare la verifica di cap.

portante/sfilamento (modello geotecnico 2)

RTr,d / H Verifica carico limite orizzontale (rapporto resistenza/azione orizzontale)

D/C Verifica strutturale (coefficiente di sfruttamento della sezione)

Per maggiore chiarezza, nelle seguenti pagine si riportano gli schemi dei supporti dei tracker in funzione dell'acciaio impiegato e delle caratteristiche del suolo in cui sono installate le strutture.

^(**) Si accetta comunque la verifica essendo il coefficiente prossimo all'unità

———————————————————————————————	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-09-r00	Dog 71
			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 71
			DEI TRACKER	

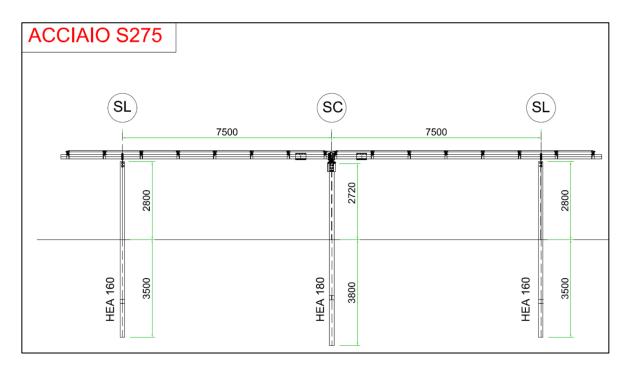


Figura 11.1 – Tracker con supporti in acciaio S275 in terreni con modello geotecnico 1e3

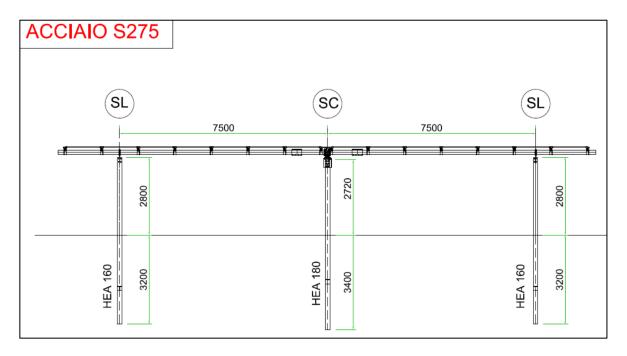


Figura 11.2 – Tracker con supporti in acciaio S275 in terreni con modello geotecnico 2

<u> ক্ষক্লয়েকেল</u>	Rev. 0	Data Agosto 2023	EI: BI028F-D-PAL-RT-09-r00	Do - 72
			RELAZIONE DI CALCOLO DEI SOSTEGNI	Pag. 72
			DEI TRACKER	

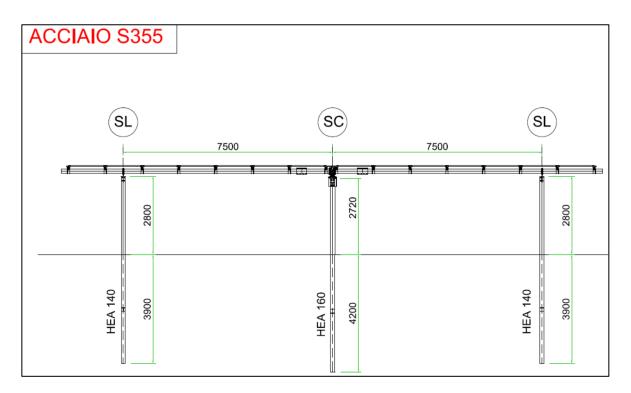


Figura 11.3 – Tracker con supporti in acciaio S355 in terreni con modello geotecnico 1e3

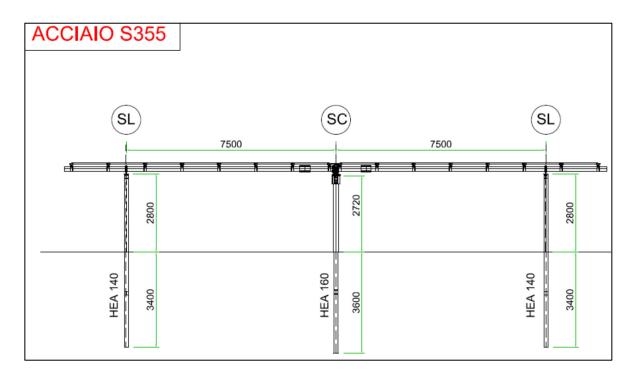


Figura 11.4 – Tracker con supporti in acciaio S355 in terreni con modello geotecnico 2