

PROGETTO DEFINITIVO DELL'IMPIANTO AGRIVOLTAICO DELLA POTENZA DI PICCO DI 360MW CON SISTEMA DI ACCUMULO DI CAPACITA' PARI A 82,5MWH E RELATIVE OPERE DI CONNESSIONE ALLA RETE RTN, DA REALIZZARSI NEL COMUNE DI SASSARI NELLE FRAZIONI DI "PALMADULA, LA CORTE, CANAGLIA, LI PIANI, SAN GIORGIO, SCALA ERRE"

PROGETTO DEFINITIVO

COMMITTENTE:

PALMADULA SOLAR S.R.L.₩

PROGETTISTA:

4434444

TITOLO ELABORATO:

RELAZIONE DI CALCOLO DELLE FONDAZIONI

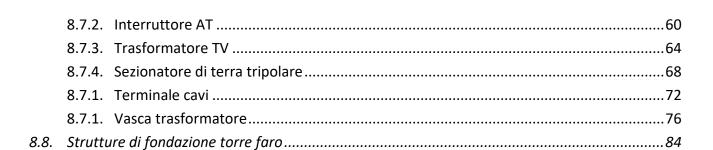
ELABORATO n°: BI028F-D-PAL-RT-11-r00

Dott Ing. Simone Venturini

NOME FILE:

SCALA: ----

DATA: AGOSTO 2023


	N.	DATA	DESCRIZIONE	ELABORATO	CONTROLLATO	APPROVATO
Ш	00	Agosto 2023	Prima Emissione	A. Perlini	M. Sandri	S. Venturini
NOISI	01					
>	02					
RE	03					
	04					

SOMMARIO

1.	PREN	ЛESSA	4
	1.1.	Descrizione delle sottostazioni	5
	1.1.	Descrizione delle cabine	6
2.	NORI	MATIVA DI RIFERIMENTO	7
3.	CARA	ATTERISTICHE DEI MATERIALI	8
	3.1.	Conglomerato cementizio C30/37, per le strutture di fondazione	8
	<i>3.2.</i>	Conglomerato cementizio C12/15, per magrone di fondazione	8
	<i>3.3.</i>	Acciaio B450C per barre ad aderenza migliorata	8
4.	CARA	ATTERIZZAZIONE GEOTECNICA DEL TERRENO DI FONDAZIONE	9
5.	IPOT	ESI DI CALCOLO	.12
	5.1.	Vita nominale e periodo di ritorno per il calcolo delle azioni	.12
	5.2.	Parametri per la definizione dell'azione sismica	.12
		5.2.1. Parametri di pericolosità sismica	.13
		5.2.2. Coefficienti di amplificazione stratigrafica e topografica	.15
	5.3.	Parametri e ipotesi per la definizione dell'azione vento	.15
6.	ANAI	LISI DEI CARICHI	.16
	6.1.	Carichi permanenti (G2)	.16
	6.2.	Azione del vento (Qv)	.16
		6.2.1. Definizione del sito	.16
		6.2.2. Velocità di riferimento	.17
		6.2.3. Coefficiente di esposizione (ce)	.18
		6.2.4. Coefficienti aerodinamici per edifici	.19
	6.3.	Azione della neve (Qn)	.20
	6.4.	Azione termiche (Qt)	.21
7.	СОМ	BINAZIONE DI CARICO	.22
8.	VERII	FICHE GEOTECNICHE	.24
	8.1.	Strutture di fondazione cabine di campo	.24
	<i>8.2.</i>	Strutture di fondazione armadio power converter	.28
	8.3.	Strutture di fondazione trafo (Juppiter 9000-6000-3000)	.32
	8.4.	Strutture di fondazione unità converter sottostazione SUD	.39
	8.5.	Strutture di fondazione unità storage sottostazione SUD	.43
	8.6.	Strutture di fondazione edificio comandi ausiliari	.47
	8.7.	Strutture della stazione di trasformazione utente (SSE)	.51
		8.7.1. Edificio sottostazione	.51
		8.7.1. Trasformatore TA	.56

Pag. 2

INDICE DELLE FIGURE

Figura 1.1 Planimetria generale di progetto	4
Figura 4.1 – Modello geotecnico 1	9
Figura 4.2 – Modello geotecnico 2	9
Figura 4.3 – Modello geotecnico 3	9
Figura 4.4 – Planimetria delle zone di intervento con indicazione dei modelli geotecnici	. 10
Figura 6.1 – Andamento del coefficiente Ce in funzione dell'altezza dal suolo	. 19
Figura 6.2 – Andamento del coefficiente Cpe per edifici a pianta rettangolare	. 20
Figura 8.1 – Prospetto e particolari tipologici della fondazione prefabbricata	. 24
Figura 8.2 – Pianta platea, assonometria e dati tecnici armadio power converter	. 28
Figura 8.3 – Planimetria, assonometria e sezioni della fondazione dei trasformatori tipo Jupp	iter.
	. 32
Figura 8.4 – Dati tecnici unità converter	. 39
Figura 8.5 – Dati tecnici unità storage	. 43
Figura 8.6 – Planimetria e sezione longitudinale edificio comandi ausiliari	. 47
Figura 8.7 – Planimetria della cabina della sottostazione	
Figura 8.8 – Sezioni della cabina della sottostazione	. 52
Figura 8.9 – Planimetria degli elementi della sottostazione utente (Nord)	. 56
Figura 8.10 – Sezione degli elementi della sottostazione utente (Nord)	. 56
Figura 8.11 – Dati tecnici trasformatore TA	. 57
Figura 8.12 – Planimetria degli elementi della sottostazione utente (Nord)	. 60
Figura 8.13 – Sezione degli elementi della sottostazione utente (Nord)	. 60
Figura 8.14 – Dati tecnici interruttore tripolare AT	. 61
Figura 8.15 – Planimetria degli elementi della sottostazione utente (Nord)	. 64
Figura 8.16 – Sezione degli elementi della sottostazione utente (Nord)	
Figura 8.17 – Dati tecnici trasformatore TV	. 65
Figura 8.18 – Planimetria degli elementi della sottostazione utente (Nord)	
Figura 8.19 – Sezione degli elementi della sottostazione utente (Nord)	
Figura 8.20 – Dati tecnici sezionatore tripolare	. 69
Figura 8.21 – Planimetria degli elementi della sottostazione utente (Nord)	. 72
Figura 8.22 – Dati tecnici sezionatore tripolare	. 73
Figura 8.23 – Planimetria della vasca del trasformatore	
Figura 8.24 – Sezioni vasca trasformatore	
Figura 8.25 – Dati tecnici trasformatore	
Figura 8.26 – Caratteristiche dei grigliati	. 78

Figura 8.27 – Tabelle di portata dei grigliati	79
Figura 8.27 – Tabelle di portata dei grigliati Figura 8.28 – Planimetria e sezione plinto torre faro INDICE DELLE TABELLE Tabella 1 – Parametri di pericolosità sismica per SLV (TR = 332 anni) Tabella 2 - Coefficienti parziali di sicurezza per le combinazioni SLU Tabella 3 - Coefficienti Ψ per le azioni variabili	
INDICE DELLE TABELLE	
Tabella 1 – Parametri di pericolosità sismica per SLV (TR = 332 anni)	15
Tabella 2 - Coefficienti parziali di sicurezza per le combinazioni SLU	23
Tabella 3 - Coefficienti Ψ per le azioni variabili	23

<u> सन्दर्भ स्थापम् स्थ</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dog 4
32377777			RELAZIONE DI CALCOLO	Pag. 4
			DELLE FONDAZIONI	

1. PREMESSA

Il progetto in esame è relativo alla realizzazione e messa in esercizio di un impianto agrivoltaico, ovvero un sistema innovativo in cui si implementano la produzione di energia mediante fonti rinnovabili (solare) e la produzione agricola per la generazione di energia elettrica, comprensivo delle opere di connessione, nel territorio comunale di Sassari (SS) in Sardegna, denominato Palmadula, per una potenza nominale installata pari a circa 440 MWp DC ed una potenza in immissione pari a circa 400 MW AC, con rapporto DC/AC di circa 1,10.

L'energia elettrica sarà prodotta da moduli fotovoltaici bifacciali montati su strutture ad inseguimento mono assiale in acciaio. L'impianto sarà anche corredato da un sistema di accumulo elettrochimico da circa 40 MWh. Tutta l'energia elettrica prodotta, al netto dei consumi dei servizi ausiliari, verrà ceduta alla rete.

L'area interessata dall'impianto ha una superficie di circa 1000 ha dislocate sul territorio, come mostra la sottostante figura.

Figura 1.1 Planimetria generale di progetto

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dag E
739111111			RELAZIONE DI CALCOLO DELLE FONDAZIONI	Pag. 5

La presente relazione illustra i calcoli per il dimensionamento delle strutture di fondazioni delle cabine e degli elementi delle sottostazioni.

1.1. Descrizione delle sottostazioni

L'impianto in oggetto ha origine dalla stazione AAT di Terna di Olmedo (attualmente in fase di progettazione) all'interno della quale sarà previsto uno stallo alla tensione di 400kV (punto di connessione dell'impianto alla rete di distribuzione di Terna).

L'impianto in oggetto prevede la realizzazione di due sottostazioni di trasformazione:

Sottostazione sud

E la sottostazione principale dell'impianto e sarà connessa alla stazione di Olmedo mediante linea in cavo interrato alla tensione di 400kV.

Nella sottostazione sud avviene il primo salto di tensione da 400kV a 150kV mediante due autotrasformatori di potenza 250MVA.

Una linea in cavo interrato alla tensione di 150kV collega la sottostazione sud con la sottostazione nord.

Inoltre in sottostazione sud avviene il secondo salto di tensione da 150kV a 30kV mediante tre trasformatori AT/MT 150/30kV di potenza 100MVA ciascuno con relativo quadro di distribuzione di media tensione dal quale hanno origine le linee per la connessione dei sottocampi.

Infine in sottostazione sud è previsto anche il sistema BESS di potenza 41,25MW e capacità di accumulo di 82,5MW/h.

Sottostazione nord

È la sottostazione di trasformazione secondaria.

In sottostazione nord è prevista l'installazione di un trasformatore AT/MT 150/30kV di potenza 100MVA con relativo quadro di distribuzione di media tensione dal quale hanno origine le linee per la connessione dei sottocampi.

<u> सन्त्रकःस्यासन्यय</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dag 6
433111117			RELAZIONE DI CALCOLO DELLE FONDAZIONI	Pag. 6

1.1. Descrizione delle cabine

<u>Cabine di campo</u>: è previsto l'uso di cabine di campo prefabbricate con lo scopo di garantire la protezione dei circuiti di BT ed elevare la tensione da 800Vca a 30kVca. Ciascuna cabina di campo (realizzata con container prefabbricato) contiene:

- Quadro di distribuzione di BT completo di interruttore automatico magnetotermico generale, interruttori automatici magnetotermici per la protezione delle linee verso gli inverter e controllore permanente di isolamento (la rete di BT dell'impianto è gestita come sistema IT)
- Trasformatore elevatore con isolamento in olio tipo ONAN di potenza 9000kVA o 6600kVA (a seconda dei casi) 30/0.8kV
- Quadro MT con cella di arrivo, cella protezione trasformatore con relè di protezione che implementa le funzioni protettive 50-51-51N cella di partenza

<u>Cabina di principale di testa</u>: Consiste di una costruzione in cui sono alloggiati i quadri elettrici MT necessari per l'immissione dell'energia prodotta dall'impianto fotovoltaico e per il prelievo dell'energia elettrica necessaria alle utenze di servizio sulla rete MT principale, il trasformatore dei servizi ausiliari i quadri elettrici AC per la distribuzione servizi, la stazione meteo, i dispositivi di misura e protezione, le utenze ausiliarie e locali di monitoraggio. Sul quadro MT delle cabine di campo sono installate anche le protezioni di interfaccia.

<u>स्थितःस्यस्यस्य</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dag 7
7.22.11.1.12			RELAZIONE DI CALCOLO DELLE FONDAZIONI	Pag. 7

2. NORMATIVA DI RIFERIMENTO

Di seguito sono riportati i principali riferimenti normativi applicati nella progettazione delle strutture o comunque di supporto:

- DM 17/01/2018: "Norme tecniche per le costruzioni", abbreviate nel seguito con l'acronimo "NTC 2018";
- Circ. 21/01/2019, n. 7 C.S.LL.PP.: "Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni";
- CNR-DT 207 R1/2018: "Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni";
- Eurocodice 1 "Actions on structures";
- Eurocodice 3 "Design of steel structures" EN 1993-1-1;
- Eurocodice 7 "Geotechnical design";
- Raccomandazioni sui pali di fondazione Associazione Geotecnica Italiana dicembre 1984.

<u> अस्त्रकत्त्रासर्</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dag 9
329443447			RELAZIONE DI CALCOLO	Pag. 8
			DELLE FONDAZIONI	

3. CARATTERISTICHE DEI MATERIALI

Per le fondazioni di cabine, trasformatori e componenti delle sotto stazioni si prevede l'impiego di questi materiali:

3.1. Conglomerato cementizio C30/37, per le strutture di fondazione

Classe di consistenza S4, classe di esposizione XF2, rapporto a/c<0.45; D_{max}<32 mm

Resistenza cubica caratteristica: $R_{ck} = 37 N/mm^2$

Resistenza cilindrica caratteristica: $f_{ck} = 30.7 \ N/mm^2$

Modulo elastico: $E_c = 33019 N/mm^2$

Peso per unità di volume $\gamma = 25 \, KN/m^3$

3.2. Conglomerato cementizio C12/15, per magrone di fondazione

Classe di consistenza S3, classe di esposizione X0, ; D_{max}<32 mm

Resistenza cubica caratteristica: $R_{ck} = 15 N/mm^2$

Resistenza cilindrica caratteristica: $f_{ck} = 12 N/mm^2$

Modulo elastico: $E_c = 27267 N/mm^2$

Peso per unità di volume $\gamma = 24 \ KN/m^3$

3.3. Acciaio B450C per barre ad aderenza migliorata

Tensione caratteristica di snervamento: $f_{vk} = 450 \ N/mm^2$

Tensione caratteristica di rottura: $f_{tk} = 540 \ N/mm^2$

Modulo elastico: $E_s = 210000 MPa$

4. CARATTERIZZAZIONE GEOTECNICA DEL TERRENO DI FONDAZIONE

Dal punto di vista geologico-geotecnico l'area di intervento è stata suddivisa in 3 zone caratterizzate da altrettanti modelli stratigrafici e geotecnici.

		Lotti SCALA ERRE 1,2 -	LIPIANI 1,2,3	3- LA	CORTE	3 - SE NO	ORD					
Sigla	Prof (m da p.c.)	Descrizione	γ (kN/m³)	IP	OCR	Dr (%)	Sr (%)	c' (kPa)	φ' (°)	Cu (kPa)	E (Mpa)	K (m/s)
Copertura	da 0 a 2.0 m	Limo argilloso sabbioso debolmente ghiaioso mediamente compatto	20,0	20				5-10	28	80-100	15-20	1,00E-08
C1.2	da 2.0 a 10 m	Limo argilloso sabbioso molto compatto con clasti poligenici eterometrici. Presenti depositi di ghiaia e ciottoli in matrice sabbioso limosa mediamente addensati e addensati	19,5	20				10-20	28	100-200	40-50	1,00E-08
Suolo di for	Scala Erre 1, 2 Suolo di fondazione TIPO B Lipiani 1,2,3 SE NORD		Terreni gran	ulari c	on pres			oligenici inserire		L netrici; per la p vellati	resenza d	i tali clasti
Suolo di for	ndazione TIPO C	La Corte 3					Verti	cali inda	gate: 6			
Falda: Non	rilevata (>10 m d	a p.c.)										

Figura 4.1 – Modello geotecnico 1.

		Lotti CANAGLIA 1 - PALMADU	ILA 1,2,3,4,5,6	5,7,8,9	,10 - LA	CORTE	4,5 - SE :	SUD				
Sigla	Prof (m da p.c.)	Descrizione	γ IP OCR Dr Sr c' φ' Cu (kPa)				E (Mpa)	K (m/s)				
Copertura	da 0 a 1.0 m	Sabbia limoso argillosa debolmente ghiaiosa con clasti poligenici	19,0	12				10-15	26-28	100-150	20	1,00E-08
B2.1	da 1.0 a 10 m	Metareniti, quarziti e metapelti	22,0					30-50	30-35		500	1,00E-08
Suolo di for	Canaglia 1 Suolo di fondazione TIPO B Palmadula 4, 5, 8, 9, 10 SE SUD			fioran	te a sub	affiora		ompatta re pali tr		rata, per tale r	notivo è p	referibile
Suolo di fondazione TIPO C		Palmadula 1, 2, 3, 6, 7 La Corte 4, 5					Vertic	ali indag	ate: 14			
Falda: Non	rilevata (>10 m da	a p.c.)										

Figura 4.2 – Modello geotecnico 2.

		Lotti SCALA ERRE	3 - SAN GIOR	GIO 1	- LA COI	RTE 1,2						
Sigla	Prof (m da p.c.)	Descrizione	γ (kN/m³)	IP	OCR	Dr (%)	Sr (%)	c' (kPa)	φ' (°)	Cu (kPa)	E (Mpa)	K (m/s)
Copertura	da 0 a 2.5 m	Sabbia limosa argillosa debolmente ghiaiosa	19,5	18				10	27	100-120	20-30	1,00E-06
C2.1	da 2.50 a 10 m	Calcarenite fratturata e alterata	20,0	15				20	30-32		75-100	1,00E-04
Suolo di for	Scala Erre 3 Suolo di fondazione TIPO B San Giorgio 1 La Corte 1, 2			di terre						cia alterata e o trivellati.	compatta,	per tale
Suolo di for	Suolo di fondazione TIPO C -			Verticali indagate: 5								
Falda: Non	rilevata (>10 m da	a p.c.)										

Figura 4.3 – Modello geotecnico 3.

**************************************	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dog. 10
32000300			RELAZIONE DI CALCOLO	Pag. 10

Figura 4.4 – Planimetria delle zone di intervento con indicazione dei modelli geotecnici. modello 1 = azzurro; modello 2 = verde; modello 3 = blu

<u> सम्बद्धारप्रसम्पर</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dog. 11
4224444			RELAZIONE DI CALCOLO	Pag. 11
			DELLE FONDAZIONI	

Per la verifica geotecnica ai carichi si considerano i valori più sfavorevoli delle tre stratigrafie:

$$\phi' = 26^{\circ}$$
 $c' = 5 \text{ kPa}$ $\gamma = 19 \text{ kN/m}^3$

La falda si trova ad una profondità superiore ai 10m e pertanto non interferisce con le opere di fondazione.

<u> सन्द्रभः स्ट्रास्टर</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dog. 12
4334447			RELAZIONE DI CALCOLO DELLE FONDAZIONI	Pag. 12

5. IPOTESI DI CALCOLO

5.1. Vita nominale e periodo di ritorno per il calcolo delle azioni

La vita nominale di progetto della struttura è assunta pari a:

$$V_N = 25$$
anni.

Il periodo di ritorno per il calcolo delle azioni ambientali (Vento e Neve) sono assunti pari a:

$$T_R = 50$$
anni.

Il periodo di ritorno dei sovraccarichi e delle azioni climatiche agenti sulla costruzione non è infatti correlato alla vita nominale di progetto delle opere.

Per le azioni ambientali il periodo di riferimento è da assumersi sempre pari a 50anni tranne per le verifiche nelle fasi costruttive, per le quali si può considerare un periodo di ritorno diverso (*rif. C2.4.1 della Circolare 21/01/2019 n.7*).

5.2. Parametri per la definizione dell'azione sismica

Come definito al punto 2.4.3 delle Norme Tecniche 20018, le azioni sismiche sulla costruzione vengono valutate in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_U :

$$V_R = V_N \times C_U$$

La vita nominale è assunta pari a V_N = 25 anni, mentre il valore del coefficiente d'uso è definito, al variare della classe d'uso, dalla tabella 2.4.II delle Norme Tecniche:

Tab. 2.4.II - Valori del coefficiente d'uso Cu

CLASSE D'USO	I	II	III	IV
COEFFICIENTE C _U	0,7	1,0	1,5	2,0

Nel caso in esame, essendo la classe d'uso = I (Costruzioni con presenza solo occasionale di persone, edifici agricoli), tale coefficiente vale $C_U = 0.7$ e quindi il periodo di riferimento per il calcolo dell'azione sismica è:

$$V_R = max (35anni; V_N x Cu = 25 x 0,7 = 17,5 anni) = 35 anni$$

	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dag 12
			RELAZIONE DI CALCOLO DELLE FONDAZIONI	Pag. 13

5.2.1. Parametri di pericolosità sismica

In generale l'azione sismica è definita sul sito di riferimento rigido orizzontale, in funzione di tre parametri:

- ag: accelerazione orizzontale massima al sito;
- F0: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- TC*: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Tali valori sono calcolati per il territorio italiano peninsulare come media pesata dei valori assunti nei quattro vertici della maglia elementare del reticolo di riferimento che contiene il punto caratterizzante la posizione dell'opera, utilizzando come pesi gli inversi delle distanze tra il punto in questione ed i quattro vertici.

Per le isole si fa invece riferimento alla Tabella 2 dell'Allegato B alle norme tecniche per le costruzioni.

In particolare nella Tabella 2, per tutte le isole, con l'esclusione della Sicilia, Ischia, Procida, Capri, vengono forniti i valori di ag, F_0 , T^*_C (costanti su tutto il territorio di ciascuna isola) per diversi tempi di ritorno dell'azione sismica.

L'accelerazione al sito ag è espressa in g/10; F_0 è adimensionale, T^*c è espresso in secondi.

TABELLA 2: Valori di a_e, F₀, T_C* per le isole, con l'esclusione della Sicilia, Ischia, Procida e Capri.

_	Т	R=30		1	Γ _R =5()	1	T _R =72	2	Т	_R =10	1	Т	_R =14	0	Т	_R =20	1	Т	_R =47	5	T	_R =97	5	Т	_R =24	75
Isole	ag	F _o	T _C *	ag	F。	T _c *	ag	F _o	T _c *	ag	F。	T _c *	ag	F。	T _c *	ag	F _o	T _C *	ag	F。	T _c *	ag	F.	T _c *	ag	F _o	T _C *
Arcipelago Toscano, Isole Egadi, Pantelleria, Sardegna, Lampedusa, Linosa, Ponza, Palmarola, Zannone	0,186	2,61	0,273	0,235	2,67	0,296	0,274	2,70	0,303	0,314	2,73	0,307	0,351	2,78	0,313	0,393	2,82	0,322	0,500	2,88	0,340	0,603	2,98	0,372	0,747	3,09	0,401
Ventotene, Santo Stefano	0,239	2,61	0,245	0,303	2,61	0,272	0,347	2,61	0,298	0,389	2,66	0,326	0,430	2,69	0,366	0,481	2,71	0,401	0,600	2,92	0,476	0,707	3,07	0,517	0,852	3,27	0,564
Ustica, Tremiti	0,429	2,50	0,400	0,554	2,50	0,400	0,661	2,50	0,400	0,776	2,50	0,400	0,901	2,50	0,400	1,056	2,50	0,400	1,500	2,50	0,400	1,967	2,50	0,400	2,725	2,50	0,400
Alicudi, Filicudi,	0,350	2,70	0,400	0,558	2,70	0,400	0,807	2,70	0,400	1,020	2,70	0,400	1,214	2,70	0,400	1,460	2,70	0,400	2,471	2,70	0,400	3,212	2,70	0,400	4,077	2,70	0,400
Panarea, Stromboli, Lipari, Vulcano, Salina	0,618	2,45	0,287	0,817	2,48	0,290	0,983	2,51	0,294	1,166	2,52	0,290	1,354	2,56	0,290	1,580	2,56	0,292	2,200	2,58	0,306	2,823	2,65	0,316	3,746	2,76	0,324

Le forme spettrali previste dalle NTC sono caratterizzate da prescelte probabilità di superamento e vite di riferimento. A tal fine occorre fissare:

- la vita di riferimento V_R della costruzione;

<u> सन्त्रकःस्टरस्सः/ट</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dog 14
7 432111417			RELAZIONE DI CALCOLO DELLE FONDAZIONI	Pag. 14

 le probabilità di superamento nella vita di riferimento P_{VR} associate a ciascuno degli stati limite considerati, per individuare infine, a partire dai dati di pericolosità sismica disponibili, le corrispondenti azioni sismiche.

Tale operazione deve essere possibile per tutte le vite di riferimento e tutti gli stati limite considerati dalle NTC; a tal fine è conveniente utilizzare, come parametro caratterizzante la pericolosità sismica, il periodo di ritorno dell'azione sismica T_R , espresso in anni. Fissata la vita di riferimento V_R , i due parametri T_R e P_{VR} sono immediatamente esprimibili, l'uno in funzione dell'altro, mediante l'espressione:

$$T_{R} = -\frac{V_{R}}{\ln\left(1 - P_{V_{R}}\right)}$$

Considerando lo Stato Limite di salvaguardia della Vita (SLV), la probabilità di superamento nel periodo di riferimento V_R vale:

$$P_{VR} = 10\%$$
 per SLV

Quindi per $T_R = 35$ anni si ottiene:

Qualora la attuale pericolosità sismica su reticolo di riferimento non contempli il periodo di ritorno T_R corrispondente alla V_R e alla P_{VR} fissate, il valore del generico parametro $p(a_g,F_0,T^*c)$ ad esso corrispondente potrà essere ricavato per interpolazione, a partire dai dati relativi ai TR previsti nella pericolosità sismica, utilizzando l'espressione seguente:

$$\log(p) = \log(p_1) + \log\left(\frac{p_2}{p_1}\right) \times \log\left(\frac{T_R}{T_{R1}}\right) \times \left[\log\left(\frac{T_{R2}}{T_{R1}}\right)\right]^{-1}$$

nella quale:

- p è il valore del parametro di interesse corrispondente al periodo di ritorno
 TR desiderato;
- T_{R1} , T_{R2} sono i periodi di ritorno più prossimi a T_R per i quali si dispone dei valori p_1 e p_2 del generico parametro p.

Eseguendo l'interpolazione fra T_{R1} =201anni e T_{R2} =475anni si ottengono i seguenti parametri di pericolosità sismica per lo SLV - T_R =332anni:

	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dag 15
3.2.3.7.7.7.7.7			RELAZIONE DI CALCOLO	Pag. 15
			DELLE FONDAZIONI	

Tabella 1 – Parametri di pericolosità sismica per SLV (TR = 332 anni)

Isola	T _R	ag/g	Fo	Tc*
Sardegna	332	0,045	2,85	0,332

5.2.2. Coefficienti di amplificazione stratigrafica e topografica

Per la definizione dell'azione sismica di progetto occorre determinare anche il coefficiente S che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la seguente relazione:

$$S = S_S \times S_T$$

Il coefficiente di amplificazione stratigrafica S_S ed il coefficiente di amplificazione topografica S_T si ottengono con riferimento alla categoria del sottosuolo e alle condizioni topografiche, secondo le tabelle 3.2.IV e 3.2.V delle Norme Tecniche.

Considerando la categoria di suolo C e la categoria topografica = T1 (Superficie pianeggiante, pendii e rilievi isolati con inclinazione media $i \le 15^\circ$) si ottiene:

$$S_S = 1,50$$
; $S_T = 1,00$ da cui: $S = 1,50 \times 1,0 = 1,50$

Mentre per suolo di categoria B si ottiene:

$$S_S = 1,20$$
; $S_T = 1,00$ da cui: $S = 1,20 \times 1,0 = 1,20$

5.3. Parametri e ipotesi per la definizione dell'azione vento

Per il calcolo dell'azione del vento si fa riferimento ai seguenti dati:

Zona = 6 (Sardegna zona Nord-occidentale).

Classe di rugosità del terreno = D (aree prive di ostacoli o con al più rari ostacoli isolati (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate, ...)

Categoria di esposizione = I

<u> सन्दरभागम्</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dag 16
323171377			RELAZIONE DI CALCOLO	Pag. 16
			DELLE FONDAZIONI	

6. ANALISI DEI CARICHI

6.1. Carichi permanenti (G2)

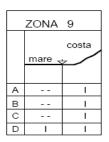
I carichi permanenti di cabine ed elementi della sottostazione sono valutati in base ai valori indicati nelle schede dei fornitori ed alle dimensioni delle componenti strutturali.

6.2. Azione del vento (Qv)

L'azione del vento è valutata con riferimento al par. 3.3 del D.M. 17 gennaio 2018, alla relativa circolare applicativa e alle CNR-DT 207/2018 - Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni.

6.2.1. Definizione del sito

Il sito di intervento si trova in comune di Sassari, nella parte nord-occidentale della Sardegna ricompresa nella **ZONA 6** (Figura 3.3.1 delle NTC2018).


Figura 3.3.1 – Mappa delle zone in cui è suddiviso il territorio italiano

L'altitudine massima del sito è as = 250 m s.l.m.

La **classe di rugosità del terreno è D** (aree prive di ostacoli o con al più rari ostacoli isolati (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate, ...)

La categoria di esposizione è la I (vedi figura riportata qui di seguito).

	ZONE	1,2,3,4	1,5						
	cos mare s	sta	_	500 <u>m</u>	750m				
-	2 km	10 km	30 km						
Α		IV	IV	V	V	V			
В		III	III	IV	IV	IV			
С		*	III	III	IV	IV			
D	- 1	Ш	II	П	III	**			
*	Categoria II in zona 1,2,3,4 Categoria III in zona 5								
**		ria III in oria IV in		3,4,5					

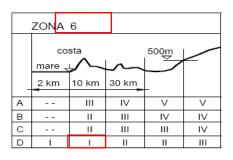


Figura 3.3.2 - Definizione delle categorie di esposizione

6.2.2. Velocità di riferimento

La velocità di riferimento Vr è il valore medio su 10 minuti, a 10m di altezza dal suolo su un terreno pianeggiante e omogeneo di categoria di esposizione, riferito al periodo di ritorno di progetto T_R .

Per le opere in progetto il periodo di ritorno si assume pari a $T_R = 50$ anni.

$$Vr = Vb \times Cr$$

Con Cr coefficiente di ritorno, funzione del periodo di ritorno di progetto T_R:

$$c_{r} = 0.75 \sqrt{1 - 0.2 \times \ln\left[-\ln\left(1 - \frac{1}{T_{R}}\right)\right]}$$

Assunto TR pari a 50 anni, si ottiene:

$$Cr = 1,0$$

Vb è la velocità base di riferimento:

$$Vb = Vb,0 \times Ca$$

Con Vb,0 = 28 m/s per la zona 6 è la velocità base di riferimento al livello del mare assegnata in finzione della zona in cui sorge la costruzione.

<u> सन्द्रभः स्टर्गस्य स्टर्</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dog. 19
72377777			RELAZIONE DI CALCOLO	Pag. 18
			DELLE FONDAZIONI	

Ca è il coefficiente di altitudine pari a:

$$\begin{aligned} c_a &= 1 & per \ a_s \leq a_0 \\ c_a &= 1 + k_s \left(\frac{a_s}{a_0} - 1\right) & per \ a_0 < a_s \leq 1500 \ m \end{aligned}$$

Nel caso in esame, per altitudine as = 250 m s.l.m.m. $< a_0 = 500$ m s.l.m.m., si ottiene:

$$Ca = 1,00$$

Da cui:

La pressione cinetica di riferimento è data dalla seguente espressione:

$$qr = \frac{1}{2} \rho v_r^2 = 490,0 \text{ N/m}^2$$

con ρ = densità dell'aria assunta convenzionalmente costante e pari a 1,25 kg/m³

6.2.3. Coefficiente di esposizione (ce)

Il coefficiente di esposizione ce dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno e dalla categoria di esposizione del sito ove sorge la costruzione. In assenza di analisi specifiche che tengano in conto la direzione di provenienza del vento e l'effettiva scabrezza e topografia del terreno che circonda la costruzione, per altezze sul suolo non maggiori di z = 200 m, esso è dato dalla formula:

$$\begin{split} c_{\text{e}}\left(z\right) &= k_{\text{r}}^{2} \; c_{\text{t}} \; \ln \left(z/z_{0}\right) \left[7 + \; c_{\text{t}}^{} \; \ln \left(z/z_{0}\right)\right] & \text{per } z \geq z_{\text{min}} \\ c_{\text{e}}\left(z\right) &= c_{\text{e}}\left(z_{\text{min}}\right) & \text{per } z \leq z_{\text{min}} \end{split}$$

Per categoria di esposizione I si ha:

 $k_r = 0,17$ fattore di terreno;

z_o = 0,01 m lunghezza di rugosità;

 $z_{min} = 2 m$ altezza minima.

Inoltre per il coefficiente di topografia, in mancanza di più approfondite valutazioni, il coefficiente di topografia è posto di regola pari a 1 sia per le zone pianeggianti sia per quelle ondulate, collinose e montane:

ct = 1.00 Coefficiente di topografia

<u>अस्त्रकत्त्रकत्त्रकत्त्र</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dag. 10
32944447			RELAZIONE DI CALCOLO	Pag. 19
			DELLE FONDAZIONI	

Da cui il coefficiente di esposizione ce(z) assume i seguenti valori al variare dell'altezza z di riferimento:

z [m]	Ce (z)
0	1,883
2,0	1,883
2,5	1,998
3,0	2,094
3,5	2,177
4,0	2,250
4,5	2,315
5,0	2,373
5,5	2,427
6,0	2,477
6,5	2,523
7,0	2,566
7,5	2,606
8,0	2,644
8,5	2,679
9,0	2,713
9,5	2,746
10,0	2,776
10,5	2,806
11,0	2,834
11,5	2,861

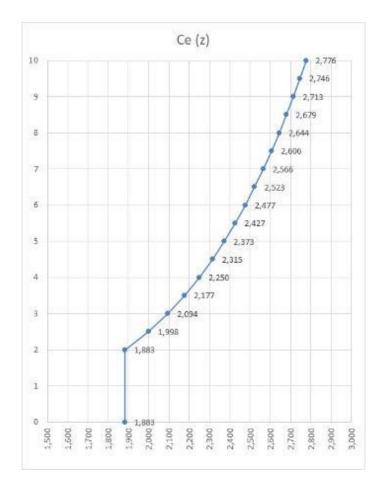
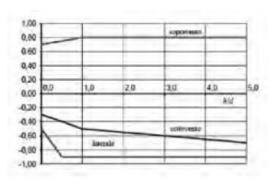



Figura 6.1 – Andamento del coefficiente Ce in funzione dell'altezza dal suolo.

6.2.4. Coefficienti aerodinamici per edifici

Per la determinazione dei coefficienti di forma per edifici a pianta rettangolare si fa riferimento al paragrafo G.2 della Circolare CNR-DT 207/2008, ripresi dal paragrafo C3.3.8.1 della Circ. 21/01/2019, n. 7:

 $\textbf{Tabella C3.3.I:} \ \textit{Edifici a pianta rettangolare: } c_{P^e} \ \textit{per facce sopravento, sottovento e laterali}$

Faccia sopravento	C _U = 2,0	C _U = 1,5
$h/d \le 1$: $c_{pe} = 0.7 + 0.1 \cdot h/d$	$h/d \le 0.5$: $c_{pe} = -0.50.8 \cdot h/d$	$h/d \le 1$: $c_{pe} = -0.3 - 0.2 \cdot h/d$
$h/d > 1$: $c_{pe} = 0.8$	$h/d > 0.5$: $c_{pe} = -0.9$	$1 < h/d \le 5$: $c_{pe} = -0.5 - 0.05 \cdot (h/d-1)$

Figura 6.2 – Andamento del coefficiente Cpe per edifici a pianta rettangolare

A favore di sicurezza di assume comunque:

cpe = 0.8 per le facce sopravento

 c_{pe} = -0.4 per le facce sottovento

cpe = 0.10 per l'azione radente in copertura

6.3. Azione della neve (Qn)

Secondo il par. 3.4 del DM 17.01.2018 (NTC) il carico neve va valutato con la seguente espressione:

Il carico provocato dalla neve sulle coperture sarà valutato mediante la seguente espressione:

$$q_s = q_{sk} \cdot \mu_i \cdot C_E \cdot C_t \tag{3.4.1}$$

dove:

 q_{sk} $\,$ è il valore di riferimento del carico della neve al suolo, di cui al § 3.4.2;

 μ_{i} è il coefficiente di forma della copertura, di cui al § 3.4.3;

 C_{E} è il coefficiente di esposizione di cui al § 3.4.4;

C_t è il coefficiente termico di cui al § 3.4.5.

Si assume che il carico della neve agisca in direzione verticale e lo si riferisce alla proiezione orizzontale della superficie della copertura.

$$q_s = q_{sk} \mu_i C_E C_t$$

dove:

qs è il carico neve sulla copertura;

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dag 21
72377777			RELAZIONE DI CALCOLO	Pag. 21
			DELLE FONDAZIONI	

q_{sk} è il valore di riferimento del carico neve al suolo [kN/m2], fornito al § 3.4.2 delle NTC per un periodo di ritorno di 50anni;

 μ_{i} è il coefficiente di forma della copertura, fornito al par. 3.4.3 delle NTC;

 C_E è il coefficiente di esposizione di cui al § 3.4.4 delle NTC. C_E = 1,0 per classe di topografia <u>normale</u>;

 C_t è il coefficiente termico di cui al § 3.4.5 delle NTC. Si assume C_t = 1,0.

Si ipotizza che il carico agisca in direzione verticale e lo si riferisce alla proiezione orizzontale della superficie della copertura.

Per la zona III a quota as = 250 m s.l.m. (superiore a 200 m s.l.m.) il valore di riferimento risulta:

$$q_{sk} = 0.51 [1+(as/481)^2] = 0.65 kN/m^2$$

Per coperture ad una o due falde il valore del coefficiente di forma dipende dall'angolo α , espresso in gradi sessagesimali, formato dalla falda con l'orizzontale (vedi Tabella 3.4.II delle NTC).

Tab. 3.4.II - Valori del coefficiente di forma

Coefficiente di forma	0°≤ α ≤ 30°	30° < α < 60°	α ≥ 60°
μ1	0,8	$0.8 \cdot \frac{(60 - \alpha)}{30}$	0,0

Per $\alpha = 5^{\circ} \le 30^{\circ}$ il coefficiente di forma vale $\mu 1 = 0.8$, per cui si ottiene:

$$q_s = 0.8 \times 0.65 \times 1.0 \times 1.0 \cong 0.52 \text{ kN/m}^2$$

Tale carico è applicato sulla proiezione orizzontale della copertura.

6.4. Azione termiche (Qt)

Le azioni dovute alle variazioni termiche non inducono sollecitazioni sulle strutture di sostegno e pertanto vengono trascurate.

	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dag 33
32333333			RELAZIONE DI CALCOLO	Pag. 22
			DELLE FONDAZIONI	

7. COMBINAZIONE DI CARICO

Le combinazioni di carico SLU statiche sono ottenute mediante diverse combinazioni dei carichi permanenti ed accidentali, in modo da considerare tutte le situazioni più sfavorevoli agenti sulla struttura.

I carichi vengono applicati mediante opportuni coefficienti parziali di sicurezza, considerando l'eventualità più gravosa per la struttura.

Combinazioni per verifiche agli stati limite ultimi (SLU)

Ai fini delle verifiche SLU si definiscono le seguenti combinazioni delle azioni.

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
Comb. fondamentali (SLU)

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 Comb. sismiche (SLV)

$$G_1+G_2+P+A_d+\psi_{21}\cdot Q_{k1}+\psi_{22}\cdot Q_{k2}+... \hspace{1.5cm} \text{Comb. eccezionali (ECC)}$$

Combinazioni per verifiche agli stati limite di esercizio (SLE)

Ai fini delle verifiche SLE si definiscono le seguenti combinazioni delle azioni.

$$G_1+G_2+P+Q_{k1}+\psi_{02}\cdot Q_{k2}+\psi_{03}\cdot Q_{k3}+\dots \\ \hspace{1.5cm} \text{Combinazioni caratteristiche (RARE)}$$

$$G_1+G_2+P+\psi_{11}\cdot Q_{k1}+\psi_{22}\cdot Q_{k2}+\psi_{23}\cdot Q_{k3}+\dots \\ \\ \text{Combinazioni frequenti (FREQ)}$$

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 Comb. quasi permanenti (QP)

<u> स्थलस्यत्रस्य</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dog 22
32377777			RELAZIONE DI CALCOLO	Pag. 23
			DELLE FONDAZIONI	

I valori dei coefficienti di combinazione γ e Ψ sono riportati nelle seguenti tabelle desunte dalla NTC2018 cap. 2.

Tabella 2 - Coefficienti parziali di sicurezza per le combinazioni SLU

G1	Carichi permanenti (peso prop.	rio)	γG1	1,30 sfavorevole 1,00 favorevole
G2	Sovraccarichi permanenti (perrali)	manenti non struttu-	γG2	1,50 sfavorevole 0,80 favorevole
Qv,	Sovraccarichi variabili (Vento,	Neve, Variazioni	γQ1	1,50 sfavorevole
Qn, Qt	termiche)	,	γQ2 γQ3	0,00 favorevole

Tabella 3 - Coefficienti Ψ per le azioni variabili

	Azione	Coefficiente Ψo	Coefficiente Ψ1 (frequente)	Coefficiente Ψ2 (quasi permanente)
Qv	Vento	0,6	0,2	0,0
Qn	Neve	0,5	0,2	0,0
Qt	Variazioni termiche	0,6	0,5	0,0

<u> अन्यवस्थातमः</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dag 24
2200000			RELAZIONE DI CALCOLO	Pag. 24
			DELLE FONDAZIONI	

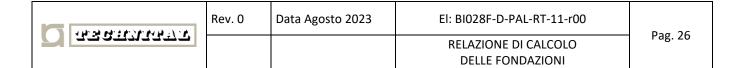
8. VERIFICHE GEOTECNICHE

Si riportano nelle pagine seguenti le verifiche geotecniche (ribaltamento, scorrimento e capacità portante) per le fondazioni dei vari elementi per le combinazioni di carico più gravose.

Considerando il valore di sismicità del sito di progetto, spesso risultano più gravose le verifiche per le sollecitazioni dovute all'azione del vento e sono quindi esposte solo quelle verifiche in quanto più significative.

8.1. Strutture di fondazione cabine di campo

È prevista l'installazione di tre tipologie di cabine di campo a struttura prefabbricata con fondazione in vasca passa-cavi ad elementi prefabbricati.


Figura 8.1 – Prospetto e particolari tipologici della fondazione prefabbricata.

Rev. 0

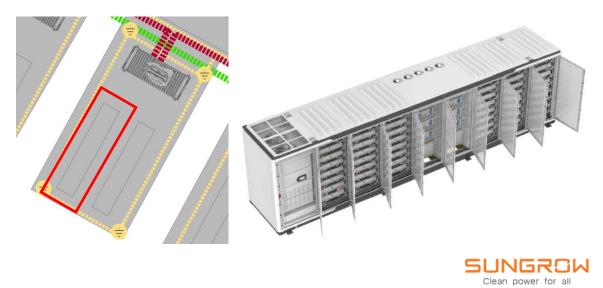
RELAZIONE DI CALCOLO
DELLE FONDAZIONI

Data Agosto 2023

Dimensioni cabina [m]				у	
larghezza Lx	4.00				
lunghezza Ly	13.75				
larghezza copertura Lcopx	4.60				
larghezza copertura Lcopy	14.35				L
Altezza estradosso copertura da piano campagna	3.00				
Dimensioni platea [m]					X
spessore ricoprimento	0.70				
larghezza Lx	4.00				
lunghezza Ly	13.75				
spessore	0.10			В	
Analisi dei carichi (valori caratteristici)					
, mano, doi odinom (raion odiditonomoj)	kN/mq	mq		kN	H appl. [m]
G1 + G2 copertura	5.50	66.01	=>	363.06	3.00
G1 + G2 pareti e macchinari	2.00	55.00	=>	110.00	1.50
G1 pavimento	2.50	55.00	=>	137.50	0.10
G1 platea	2.50	55.00	=>	137.50	00
G2 riempimento	0.00	55.00	=>	0.00	
·					
	kN/mq	μ		kN	
Valore di riferimento neve	0.65	0.80	=>	34.33	
		mq		kN	
Carico per uso cabina	2.00	66.01	=>	132.02	
			0.00	0.40	0.40
	1.01/	_	0.80	-0.40	0.10
	kN/mq	C _t	sopravento	sottovento	radente
Valore di riferimento vento	0.50	1.80	0.72	-0.36	0.09
Ordinata massima spettro SLV (adimensionale su g)	0.050				
Calcolo delle azioni (azioni SLU e SLV)					
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Risultante [kN]	H appl. su fond. [m]	Mrib [kN m]		
Risultante vento copertura	5.94	3.70	21.98	21.98	
Risultante vento dir X	44.55	2.20	98.01		
Risultante vento dir Y	12.96	2.20		28.51	
			119.99	50.49	
Risultante sisma G1+G2 copertura	18.15	3.70	67.17		
Risultante sisma cabina	5.50	2.20	12.10		
Risultante sisma pavimento	6.88	0.80	15.13		
	0.00	0.00	94.39		

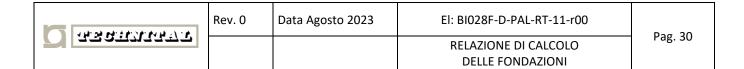
Verifica a ribaltamento per vento (SLU)				
La verifica a ribaltamento più sfavorevole è con ve	ento in direzione X			
	Risultante [kN]		H appl. su imposta [m]	
Risultante vento copertura	8.91		3.80	33.86
Risultante vento dir X	66.83		2.30	153.70
				187.56
Contributi stabilizzanti:	[kN]	[%]	braccio [m]	M _{stab} [kN m]
G1 + G2 copertura	471.97	100%	2.00	943.94
G1 + G2 pareti cabina	143.00	100%	2.00	286.00
G1 platea	178.75	100%	2.00	357.50
G2 riempimento	0.00	0%	2.00	0.00
				1587.44
		$M_{Sd}/M_{stab} =$	8.46	> 1.0 OK
Verifica a scorrimento per vento (SLU)				
Azioni sollecitanti			[kN]	
Risultante vento copertura			8.91	
Risultante vento dir X			66.83	
			75.74	
	F _{Sd}	17	F _{stab}	0.20
Contributi stabilizzanti:	[kN]	[%]	[kN]	
G1 + G2 copertura	363.06	100%	72.77	
G1 + G2 pareti chiosco	110.00	100%	22.05	
G1 platea	137.50	100%	27.56	
G2 riempimento	0.00	0%	0.00	
			122.37	
		F _{Sd} /F _{stab} =	1.62	> 1.1 OK

Data Agosto 2023


RELAZIONE DI CALCOLO DELLE FONDAZIONI

CALCOLO	DELLA CA	PACITA' F	PORTANTE	DELLE F	ONDAZIONI	DIRETTE	COMBIN	IAZIONE	VENTO
								фy	
Dimensioni	i del plinto								
	D	4.00							
	B =	4.00					-		-
	L =	13.75							L
spessore ri		0.70 0.10							l
spessore fo	D =	0.10		profondità	del piano di	fondazione	\Box		x
	D =	0.00	111	protoriuita	uei piano ui	ioriuazione			
Sollecitazio	oni SLU alla	base del r	<u>olinto</u>						
	N =	1170.50	kN						
	V _x =	75.74	kN					В	
	V _y =	0.00	kN						
	M _{xx} =	0.00	kNm						
	M _{yy} =	187.56							
	IVIyy —	107.50	KINIII						
Caratteristi	che del terre	eno							
	-								
	Terreno imm			NO					
	γ =		kN/m3	peso spec	ifico del terr	eno posto	sopra il p	oiano di fon	dazione
	γ'=		kN/m3						
	γ2 =		kN/m3						
	γ2 ' =		kN/m3						
	φ =	26							
	c' =	0	kN/m2						
Calcolo del	lla capacità i	portante							
	F=	75.74	kN						
	F/N =	0.06							
	e _x =	0.16	m	ey =	0.00	m			
	B' =	3.68	m	L' =	13.75	m			
	q = γ ' D =	15.2	kN/m2						
attori di c	apacità porta	ante (Vesi	c, 1975):						
	N _c =	22.25							
	N _q =	11.85							
	$N_{\gamma} =$	12.54							
attori di fo	orma della fo	ndazione	(De Beer, 1	967):					
	s _c =	1.05							
	s _q =	1.13							
	s _γ =	0.89							
	5γ =	0.03							
attore di i	nclinazione	del carico	(Vesic. 19	70):					
			,,	- ,-					
	i _c =	0.88		m =	1.79				
	i _q =	0.89							
	i _γ =	0.83							
	q _{lim} =	506	kN/m2						
	N _{lim} =	25 575	kN						
	γ _{R3} =	2.3							
	$N_{Rd} = N_{lim}/\gamma_l$	R3 =	11119.6						
	IXU - FIIII/ [N							
	$F_s = N_{Rd}$		9.50						

<u> सन्द्रवस्त्रासर</u> ा	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dog 20
22233335			RELAZIONE DI CALCOLO	Pag. 28
			DELLE FONDAZIONI	


8.2. Strutture di fondazione armadio power converter

Type designation	ST2752UX
Battery Data	
Cell type	LFP
Battery capacity (BOL)	2752 kWh
System output voltage range	1160 ~ 1500 V
Conoral Data	
Dimensions of battery unit (W * H * D)	9340*2600*1730mm
Weight of battery unit	26,400kg
Degree of protection	1254
Operating temperature range	-30 to 50 °C (> 45 °C derating)
Relative humidity	0 – 95 % (non-condensing)
Max. working altitude	3000 m
Cooling concept of battery chamber	Liquid cooling
	Fused sprinkler heads,
Fire safety	NFPA 69 explosion prevention and ventillation IDLH gases
Communication interfaces	RS485, Ethernet
Communication protocols	Modbus RTU, Modbus TCP
Compliance	CE, IEC 62477-1, IEC 61000-6-2, IEC 61000-6-4, IEC 62619
2 HOURS APPLICATION-ST2752UX*4-5000UD-MV	
BOL kWh (DC/AC LV Side)	11,008 kWh DC / 10,379 kWh AC
ST2752UX Quantity	4
PCS Model	SC5000UD-MV
4 HOURS APPLICATION-ST2752UX*8-5000UD-MV	
BOL kWh (DC/AC LV Side)	22,016 kWh / 21,448 kWh
ST2752UX Quantity	8
PCS Model	SC5000UD-MV
Grid Connection Data	
Max.THD of current	< 3 % (at nominal power)
DC component	< 0.5 % (at nominal power)
Power factor	> 0.99 (at nominal power)
Adjustable power factor	1.0 leading – 1.0 lagging
Nominal grid frequency	50 / 60 Hz
Grid frequency range	45 – 55 Hz / 55 – 65 Hz
Fransformer	
Fransformer rated power	5,000 kVA
LV/MV voltage	0.9 kV / 33 kV
Fransformer cooling type	ONAN (Oil Natural Air Natural)

Figura 8.2 – Pianta platea, assonometria e dati tecnici armadio power converter

Dimensioni armadio [m]					
larghezza Lx	1.70	Lx < Ly			
lunghezza Ly	9.35	-			
larghezza copertura Lcopx	1.70				
larghezza copertura Lcopy	9.35				
Altezza estradosso copertura da piano campagna	2.60				
Dimensioni platea [m]					
distanza da pavimento a estradosso platea	0.00				
larghezza Lx	2.30				
lunghezza Ly	9.95				
spessore	0.30				
Analisi dei carichi (valori caratteristici)					
	kN/mq	mq		kN	H appl. [m]
G1 armadio				264.00	1.30
G1 platea	7.50	22.89	=>	171.64	
	kN/mq	μ	kN/mq	kN	
Valore di riferimento neve	0.65	0.80	0.52	8.27	1.30
		mq		kN	
Carico per manutenzione	1.00	15.90	=>	15.90	
			0.80	-0.40	0.10
	kN/mq	Ct	sopravento	sottovento	radente
Valore di riferimento vento	0.50	1.80	0.72	-0.36	0.09
Ordinata massima spettro SLV (adimensionale su g)	0.050				
Calcala della ariani (ariani asyetteriotisha a CLV)					
Calcolo delle azioni (azioni caratteristiche e SLV)	Digultonto	Ll appl c	Meilo [leN] po 1		
	Risultante [kN]	H appl. su fond. [m]	Mrib [kN m]		
Risultante vento copertura	1.43	2.60	3.72	3.72	
Risultante vento dir X	26.25	1.30	34.13		
Risultante vento dir Y	4.77	1.30		6.21	
			37.85	9.93	
Risultante sisma armadio	13.20	1.30	17.16		
			17.16		

Verifica a ribaltamento per vento (SLU)					
La verifica a ribaltamento più sfavorevole è con ve	ento in direzione X				
	5				
	Risultante		H appl. su		
	[kN]		imposta [m]		
Risultante vento copertura	2.15		2.90	6.22	
Risultante vento dir X	39.38		1.60	63.01	
				69.23	
Contributi stabilizzanti:	[kN]	[%]	braccio [m]	M _{stab} [kN m]	
G1 + G2 armadio	343.20	100%	1.15	394.68	
G1 platea	223.13	100%	1.15	256.60	
-		.0070		651.28	
		$M_{Sd}/M_{stab} =$	9.41	> 1.0 OK	
		ou dub			
Verifica a scorrimento per vento (SLU)					
Azioni sollecitanti			[kN]		
Risultante vento copertura			2.15		
Risultante vento dir X			39.38		
			41.53		
	F _{Sd}	17	F _{stab}	0.20	
Contributi stabilizzanti:	[kN]	[%]	[kN]		
G1 + G1 armadio	343.20	100%	68.79		
G1 platea	223.13	100%	44.72		
- · p		. 33,3	113.51		

Rev. 0

CALCOLO	DELLA CA	APACITA' I	PORTANTE	E DELLE F	ONDAZION	I DIRETTE	COMB	INAZIONI 3		VENTO
Dimensioni	i del plinto							13	1	
	B =	2.30					+			-
spessore ri	L =	9.95	m							L
spessore fo		0.30								x
	D =	0.30		profondità	del piano d	i fondazion	е			
Sollecitazio	oni SLU alla	a hase del i	nlinto							
	N =	602.57								
	V _x =	13.20						I	В	
	V _y =	3.96								
	M _{xx} =	6.34	kNm							
	M _{yy} =	21.12	kNm							
<u>Caratteristi</u>	che del ter	<u>reno</u>								
	Terreno im	merso [s/n] =	NO						
	γ =		kN/m3		cifico del ter	reno posto	sopra il	piano di	fondazion	е
	γ'=		kN/m3							
	γ2 =		kN/m3							
	γ2 '=		kN/m3							
	φ=	26	0							
	c' =	0	kN/m2							
Calcolo del	lla capacità	portante								
	F =	13.78								
	F/N =	0.02								
	e _x =	0.04	m	e _y =	0.01	m				
	B' =	2.23	m	L' =	9.93	m				
	q = γ ' D =	5.7	kN/m2		22.14061					
attori di c	apacità por	tante (Vesi	c, 1975):							
	N _c =	22.25								
	N _q =	11.85								
	$N_{\gamma} =$	12.54								
		12101								
attori di fo	rma della f	ondazione	(De Beer, 1	967):						
	s _c =	1.04								
		1.11								
	s _q =									
	s _γ =	0.91								
attore di i	nclinazione	del carico	(Vesic, 19	70):						
	i _c =	0.96		m =	1.82					
	i _q =	0.96								
	i _γ =	0.94								
	q _{lim} =	298	kN/m2							
	N _{lim} =	6 607								
	γ _{R3} =	2.30								
	No N. /	/vpo =	2872.4							
	$N_{Rd} = N_{lim}/$	7R3 —	2012.4							
	F _s = N _R	/ NI	4.77	-1.						

<u> सम्बद्धस्य सम्प्र</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dag 22
420111417			RELAZIONE DI CALCOLO DELLE FONDAZIONI	Pag. 32

8.3. Strutture di fondazione trafo (Juppiter 9000-6000-3000)

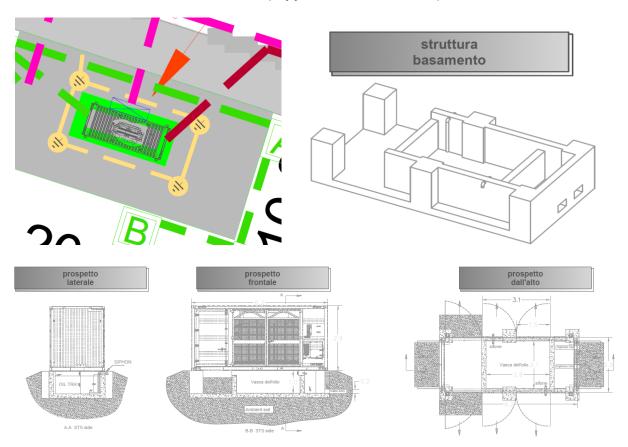
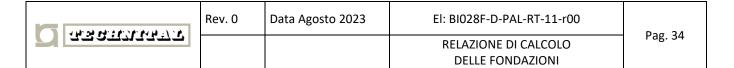



Figura 8.3 – Planimetria, assonometria e sezioni della fondazione dei trasformatori tipo Juppiter.

La verifica più gravosa per scorrimento e ribaltamento è per il trafo Juppiter 3000K (peso 15 tons, quella più gravosa a capacità portante è per il trafo Juppiter 9000K (peso 28 tons).

Dimensioni trasformatore Juppiter 3000 [m]					
larghezza Lx	2.50	Lx < Ly			
lunghezza Ly	6.20				
Altezza trasformatore da piano campagna	2.90				
Dimensioni platea [m]					
larghezza Lx	3.00				
lunghezza Ly	6.70				
spessore	0.20				
profondità piano di posa	1.20				
Analisi dei carichi (valori caratteristici)					
	kN/mq	mq		kN	H appl. [m]
Peso macchinari				150.00	1.45
G1 platea	5.00	20.10	=>	100.50	
G1 pareti perimetrali (H 1.00 m)	25.00	3.88	=>	97.00	
G1 pareti supporto trasformatore (H 1.00 m)	25.00	1.20	=>	30.00	
			0.80	-0.40	0.10
	kN/mq	c _t	sopravento	sottovento	radente
Valore di riferimento vento	0.50	1.80	0.72	-0.36	0.09
Ordinata massima spettro SLV (adimensionale su g)	0.05				
Calcolo delle azioni (azioni caratteristiche e SLV)					
· ·	Risultante [kN]	H _{appl.} su fond. [m]	M _{rib} [kN m]		
Ris. vento su trasformatore (sup. 6.20x2.90) dir X	19.42	2.45	47.58		
			47.58		
Ris. vento su trasformatore (sup. 2.5x2.90) dir Y	7.83	2.45	19.18		
			19.18		
Risultante sisma su trasformatore	7.50	2.45	18.38		
			18.38		

Verifica a ribaltamento per vento (SLU)					
La verifica a ribaltamento più sfavorevole è con vento	in direzione X				
	Risultante [kN]		H appl. su imposta [m]		
Ris. vento su trasformatore (sup. 6.20x2.90) dir X	29.13		2.65	77.19	
				77.19	
Contributi stabilizzanti:	[kN]	[%]	braccio [m]	M _{stab} [kN m]	
Peso macchinari	195.00	100%	1.50	292.50	
G1 platea	130.65	100%	1.50	195.98	
G1 pareti perimetrali (H 1.00 m)	126.10	100%	1.50	189.15	
G1 pareti supporto trasformatore (H 1.00 m)	39.00	100%	1.50	58.50	
Sottospinta idraulica	0.00	100%	1.50	0.00	
				736.13	
		$M_{Sd}/M_{stab} =$	9.54	> 1.0 OK	
Verifica a scorrimento per vento (SLU)					
Azioni sollecitanti			[kN]		
Ris. vento su trasformatore (sup. 6.20x2.90) dir X			29.13		
			29.13		
	F _{Sd}	17	F _{stab}	0.20	
Contributi stabilizzanti:	[kN]	[%]	[kN]		
Peso macchinari	195.00	100%	39.08		
G1 platea	130.65	100%	26.19		
G1 pareti perimetrali (H 1.00 m)	126.10	100%	25.27		
G1 pareti supporto trasformatore (H 1.00 m)	39.00	100%	7.82		
G1 pareti supporto grigliati (H 0.60 m)	0.00	100%	0.00		
G2 grigliati	0.00	0%	0.00		
Sottospinta idraulica	0.00	100%	0.00		
			98.36		
		F _{Sd} /F _{stab} =	3.38	> 1.1 OK	

Data Agosto 2023

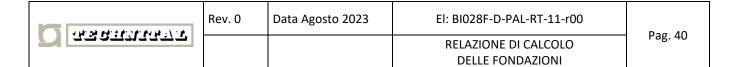
CALCOLO	DELLA CA	PACITA' I	PORTANTE	DELLE FO	JNDAZION	DIKETTE	COMBINA	ZIUNE	STR02
Dimension	i del plinto							Ţy	
	B =	3.00							-
spessore r	L =	6.70	m						L
spessore f		0.20							x
	D =	1.20		profondità	del piano di	fondazione			
Sollecitazi	oni SLU alla	base del p	<u>olinto</u>						
	N =	490.75	LΝ	Aziono aci	siale senza	voriobili ari	aliati		
SI	N =	490.75			siale seriza siale depura			В	
	V _x =	29.13		7 1210110 40	laio dopaio				
	V _y =	0.00							
	M _{xx} =		kNm						
		77.19							
	M _{yy} =	77.19	KINIII						
Caratterist	iche del terre	eno							
	Terreno imm			NO					
	γ =		kN/m3	peso spec	ifico del teri	reno posto :	sopra il pia	no di fondaz	ione
	γ'=		kN/m3						
	γ2 =		kN/m3						
	γ2 ' =	19.0 26	kN/m3						
	φ = c' =		kN/m2						
	C =		KIN/IIIZ						
Calcolo de	lla capacità	portante							
	F =	29.13	kN						
	F/N =	0.06							
	e _x =	0.16		e _y =	0.00				
	B' =	2.69	m	L' =	6.70	m			
	q = γ ' D =	22 R	kN/m2						
	q = 7 D =	22.0	KIN/IIIZ						
Fattori di c	apacità porta	ante (Vesi	c, 1975):						
		,	,						
	N _c =	22.25							
	N _q =	11.85							
	$N_{\gamma} =$	12.54							
Fattori di fo	orma della fo	ndazione	(De Beer, 1	967):					
		_							
	s _c =	1.08							
	s _q =	1.20							
	s _γ =	0.84							
F-44- ""		dat a	//: 10°	70).					
rattore di i	inclinazione (del carico	(vesic, 19	/U):					
	i _c =	0.92		m =	1.71				
		0.92			1.71				
	i _q =								
	i _γ =	0.89							
	O:	640	kN/m2						
	q _{lim} =	049	N W 1112						
	N _{lim} =	11 669	kN						
	γ _{R3} =	2.3							
	$N_{Rd} = N_{lim}/\gamma_{lim}$	_{R3} =	5073.3						

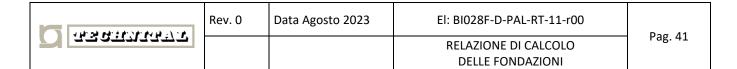
Dimensioni trasformatore Juppiter 9000 [m]					
larghezza Lx	2.50	Lx < Ly			
lunghezza Ly	6.20				
Altezza trasformatore da piano campagna	2.90				
Dimensioni platea [m]					
larghezza Lx	3.00				
lunghezza Ly	6.70				
spessore	0.20				
profondità piano di posa	1.20				
Analisi dei carichi (valori caratteristici)					
	kN/mq	mq		kN	H appl. [m]
Peso macchinari				280.00	1.45
G1 platea	5.00	20.10	=>	100.50	
G1 pareti perimetrali (H 1.00 m)	25.00	3.88	=>	97.00	
G1 pareti supporto trasformatore (H 1.00 m)	25.00	1.20	=>	30.00	
			0.80	-0.40	0.10
	kN/mq	C _t	sopravento	sottovento	radente
Valore di riferimento vento	0.50	1.80	0.72	-0.36	0.09
Ordinata massima spettro SLV (adimensionale su g)	0.05				
Calcolo delle azioni (azioni caratteristiche e SLV)					
· ·	Risultante [kN]	H _{appl.} su fond. [m]	M _{rib} [kN m]		
Ris. vento su trasformatore (sup. 6.20x2.90) dir X	19.42	2.45	47.58		
			47.58		
Ris. vento su trasformatore (sup. 2.5x2.90) dir Y	7.83	2.45	19.18		
			19.18		
Risultante sisma su trasformatore	14.00	2.45	34.30		
			34.30		

Verifica a ribaltamento per vento (SLU)				
La verifica a ribaltamento più sfavorevole è con vento	in direzione X			
	Risultante		H appl. su	
	[kN]		imposta [m]	
Ris. vento su trasformatore (sup. 6.20x2.90) dir X	29.13		2.65	77.19
, ,				77.19
Contributi stabilizzanti:	[kN]	[%]	braccio [m]	Mstab [kN m]
Peso macchinari	364.00	100%	1.50	546.00
G1 platea	130.65	100%	1.50	195.98
G1 pareti perimetrali (H 1.00 m)	126.10	100%	1.50	189.15
G1 pareti supporto trasformatore (H 1.00 m)	39.00	100%	1.50	58.50
				989.63
		MSd/Mstab =	12.82	> 1.0 OK
Verifica a scorrimento per vento (SLU)				
Azioni sollecitanti			[kN]	
Ris. vento su trasformatore (sup. 6.20x2.90) dir X			29.13	
			29.13	
	F _{Sd}	17	F _{stab}	0.20
Contributi stabilizzanti:	[kN]	[%]	[kN]	
Peso macchinari	364.00		72.95	
G1 platea	130.65		26.19	
G1 pareti perimetrali (H 1.00 m)	126.10	100%	25.27	
G1 pareti supporto trasformatore (H 1.00 m)	39.00	100%	7.82	
· · · · · · · · · · · · · · · · · · ·			132.23	
		F _{Sd} /F _{stab} =	4.54	> 1.1 OK

CALCOLO	DELLA CA	PACITA' I	PORTANTE	DELLE FO	DNDAZION	DIKELLE	OMBINAZ	IONE	VENTO
Dimonsion	i del plinto							Ty	
<u> Jimension</u>	i dei piirito							1	
	B =	2.50	m						
	L =	6.20							L
spessore r			m				_		l
spessore f	D =	0.20 1.20		profondità	del niano di	fondazione			X
	0 =	1.20	111	profortuita	uei piano ui	IOTIGAZIOTIC			
Sollecitazi	oni SLU alla	base del p	olinto						
	N =	610.35		Azione ass					
SI	N =	563.85		Azione ass	siale depura	ata della sott	ospinta	В	
	V _x =	52.43							
	V _y =	0.00							
	M _{xx} =		kNm						
	M _{yy} =	138.94	kNm						
Caratterist	iche del terre	ano.							
Jaratterist	iche dei tene	311O							
	Terreno imm	nerso [s/n]	=	SI					
	γ =		kN/m3	peso spec	ifico del teri	reno posto s	opra il pian	o di fondaz	ione
	γ'=		kN/m3						
	γ2 =		kN/m3						
	γ2 ' =		kN/m3						
	φ = c' =	38	kN/m2						
	C =	- 0	KIN/IIIZ						
Calcolo de	lla capacità	portante							
	F=	52.43							
	F/N =	0.09							
	_	0.05		_	0.00				
	e _x =	0.25		e _y =	0.00				
	B' =	2.01	m	L' =	6.20	m			
	q = γ ' D =	12.6	kN/m2						
	9-7-5-	12.0	KI W/IIIZ						
Fattori di c	apacità port	ante (Vesi	c, 1975):						
	N _c =	61.35							
	N _q =	48.93							
	N _γ =	78.02							
Fattori di fo	orma della fo	ndazione	(De Beer, 1	967):					
		4.00							
	S _C =	1.06							
	s _q =	1.25							
	s _γ =	0.87							
Fattore di i	inclinazione	del carico	(Vesic 19	70).					
attore un		adi dalidu	(10310, 191						
	i _c =	0.84		m =	1.76				
	i _q =	0.84							
	i _γ =	0.76							
	q _{lim} =	1 198	kN/m2						
	N _{lim} =	14 906	kN						
	γ _{R3} =	2.3							
	$N_{Rd} = N_{lim}/\gamma$	R3 =	6481.1						
	TAU THIN!	ivo							

<u> सन्द्रवस्त्रास्सर</u> ा	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dog. 20
323441347			RELAZIONE DI CALCOLO	Pag. 39
			DELLE FONDAZIONI	


8.4. Strutture di fondazione unità converter sottostazione SUD



Type Designation	SC2750UD-MV	SC3150UD-MV	SC3450UD-MV			
DC side						
Max. DC voltage		1500 V				
Min. DC voltage	800 V	915 V	1000 V			
DC voltage range	800 - 1500 V	915 - 1500 V	1000 - 1500 V			
Max. DC current		1935 A * 2				
No. of DC inputs		2				
AC side (Grid)						
AC output power	2750 kVA @ 45 ℃ 3025 kVA @ 30 ℃	3150 kVA @ 45 ℃ 3465 kVA @ 30 ℃	3450 kVA @ 45 ℃ 3795 kVA @ 30 ℃			
Converter port max. AC output current		1587 A*2				
Converter port nominal AC voltage	550 V	630 V	690 V			
Converter port AC voltage range	484 - 605 V	554 - 693 V	607 - 759 V			
Nominal grid frequency / Grid frequency range	50 Hz	: / 45 - 55 Hz, 60 Hz / 55 -	65 Hz			
Harmonic (THD)		< 3 % (at nominal power)				
Power factor at nominal power / Adjustable power factor	>	0.99 / 1 leading – 1 laggin	g			
Adjustable reactive power range		-100 % - 100 %				
Feed-in phases / AC connection		3/3				
AC side (Off-Grid)						
Converter port nominal AC voltage	550 V	630 V	690 V			
Converter port AC voltage range	484 - 605 V	554 - 693 V	607 - 759 V			
AC voltage Distortion		< 3 % (Linear load)				
DC voltage component	< 0	5 % Un (Linear balance lo	ad)			
Unbalance load Capacity	100%					
Nominal frequency / Frequency range	50 Hz	: / 45 - 55 Hz, 60 Hz / 55 -	65 Hz			
Efficiency						
Converter max. efficiency		99%				
Transformer						
Transformer rated power	2750 kVA	3150 kVA	3450 kVA			
Transformer max. power	3025 kVA	3465 kVA	3795 kVA			
_V / MV voltage	0.55 kV / 20 - 35 kV	0.63 kV / 20 - 35 kV	0.69 kV / 20 - 35 kV			
Transformer vector		Dyll				
Transformer cooling type		ONAN				
Oil type	Mineral oil (F	CB free) or degradable o	il on request			
Protection						
DC input protection		Load break switch + fuse				
Converter output protection		Circuit breaker				
AC output protection		Circuit breaker				
Surge protection		DC Type II / AC Type II				
Grid monitoring / Ground fault monitoring		Yes / Yes				
nsulation monitoring		Yes				
Overheat protection		Yes				
General Data						
Dimensions (W*H*D)		6058*2896*2438 mm				
Weight		16000 kg				
Degree of protection		IP54 (Converter: IP65)				
Operating ambient temperature range	-3	5 to 60 ℃ (> 45 ℃ deratin	g)			
Allowable relative humidity range		0 – 100 %				
Cooling method	Temperature controlled forced air cooling					
Max. operating altitude	4	000 m (> 2000 m deratin	g)			
Display		LED, WEB HMI				
Communication		RS485, CAN, Ethernet				
Compliance	CE, IEC 62	477-1, IEC 61000-6-2, IEC	61000-6-4			
Cried supposet	L/HVRT, FRT, activ	e & reactive power contro	ol and power ramp			
Grid support	rate contro	I, Volt-var, Volt-watt, Freq	uency-watt			

Figura 8.4 – Dati tecnici unità converter

Dimensioni converter [m]						
larghezza Lx	2.90	Lx < Ly				
lunghezza Ly	6.00					
larghezza copertura Lcopx	2.90					
larghezza copertura Lcopy	6.00					
Altezza estradosso copertura da piano campagna	2.60					
Dimensioni platea [m]						
distanza da pavimento a estradosso platea	0.00					
larghezza Lx	3.50					
lunghezza Ly	6.60					
spessore	0.30					
Analisi dei carichi (valori caratteristici)						
· · · · · · · · · · · · · · · · · · ·	kN/mq	mq		kN	H appl. [m]	
G1 macchina				160.00	1.30	
G1 platea	7.50	23.10	=>	173.25		
	kN/mq	μ	kN/mq	kN		
Valore di riferimento neve	0.65	0.80	0.52	9.05	1.30	
		mg		kN		
Carico per manutenzione	1.00	17.40	=>	17.40		
			0.80	-0.40	0.10	
	kN/mq	Ct	sopravento	sottovento	radente	
Valore di riferimento vento	0.50	1.80	0.72	-0.36	0.09	
Ordinata massima spettro SLV (adimensionale su g)	0.050					
Calcolo delle azioni (azioni caratteristiche e SLV)						
	Risultante [kN]	H appl. su fond. [m]	Mrib [kN m]			
Risultante vento copertura	1.57	2.60	4.07	4.07		
Risultante vento dir X	16.85	1.30	21.90			
Risultante vento dir Y	8.14	1.30		10.59		
			25.97	14.66		
Risultante sisma converter	8.00	1.30	10.40			
			10.40			

Verifica a ribaltamento per vento (SLU)				
La verifica a ribaltamento più sfavorevole è con v	ento in direzione X			
	Risultante [kN]		H appl. su imposta [m]	
Risultante vento copertura	2.35		2.90	6.81
Risultante vento dir X	25.27		1.60	40.44
				47.25
Contributi stabilizzanti:	[kN]	[%]	braccio [m]	M _{stab} [kN m]
G1 + G2 converter	208.00	100%	1.75	364.00
G1 platea	225.23	100%	1.75	394.14
·				758.14
		$M_{Sd}/M_{stab} =$	16.05	> 1.0 OK
Verifica a scorrimento per vento (SLU)			FI A PI	
Azioni sollecitanti			[kN]	
Risultante vento copertura Risultante vento dir X			2.35 25.27	
Risultante vento dir A			25.27 27.62	
	F _{Sd}	17	F _{stab}	0.20
Contributi stabilizzanti:	[kN]	[%]	[kN]	, , , ,
G1 + G1 converter	208.00	100%	41.69	
G1 platea	225.23	100%	45.14	
•			86.83	
		F _{Sd} /F _{stab} =	3.14	> 1.1 OK

Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dag 42
	RELAZIONE DI CALCOLO	Pag. 42
	DELLE FONDAZIONI	

CALCOLO	DELLA CA	APACITA' I	PORTANTE	DELLE FO	ONDAZION	DIRETTE	COMBIN	AZIONE	VENTO
0,12002	J DEEE, (O)		O.C.I.					†y	, Little
Dimension	ni del plinto							ľ	
	_								
	B =	3.50							
noonoro	L =	6.60	m m						L
spessore spessore		0.30							x
spessore	D =	0.30		profondità	del piano di	i fondazione	2		A
		0.00		prototratta	doi piario di	Indiadzione			
Sollecitaz	ioni SLU alla	a base del l	<u>olinto</u>						
		470.00							
	N =	472.90							
	V _x =	8.00						В	
	V _y =	2.40	kN						
	M _{xx} =	3.84	kNm						
	M _{yy} =	12.80	kNm						
Caratteris:	tiche del teri	reno							
<u>Jaratteris</u>									
	Terreno im			NO					
	γ =		kN/m3	peso spec	ifico del terr	reno posto	sopra il pi	ano di fondaz	ione
	γ'=		kN/m3						
	γ2 =		kN/m3						
	γ2 '=		kN/m3						
	φ=	26							
	c' =	0	kN/m2						
Calcolo de	ella capacità	portante							
	F=	8.35	kN						
	F/N =	0.02							
	e _x =	0.03	m	e _y =	0.01	m			
	B' =	3.45		L' =	6.58				
		0.40		_	0.00				
	q = γ ' D =	5.7	kN/m2		22.68675				
attori di d	capacità por	tante (Vesi	c, 1975):						
	N.I	00.05							
	N _c =	22.25							
	N _q =	11.85							
	$N_{\gamma} =$	12.54							
Fattori di f	orma della f	ondazione	(De Reer 1	967).					
atton an	Omia dona i	Oridaziono	(50 5001, 1	001).					
	s _c =	1.10							
	s _q =	1.26							
	s _γ =	0.79							
	3γ -	0.73							
Fattore di	inclinazione	del carico	(Vesic, 19	70):					
	i _c =	0.97		m =	1.66				
	i _q =	0.97							
	i _γ =	0.95							
	T	5.00							
	q _{lim} =	392	kN/m2						
	N _{lim} =	8 890	kN						
	γ _{R3} =	2.30							
	$N_{Rd} = N_{lim}/$	γ _{R3} =	3865.4						
	F _s = N _R	_d / N =	8.17	ok					

44.54.54.54.44.47.72

<u> अन्यवस्थातस्य</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dog. 42
452777477			RELAZIONE DI CALCOLO	Pag. 43
			DELLE FONDAZIONI	

8.5. Strutture di fondazione unità storage sottostazione SUD

Type designation	ST2752UX
Battery Data	
Cell type	LFP
Battery capacity (BOL)	2752 kWh
System output voltage range	1160 ~ 1500 V
General Data	
Dimensions of battery unit (W * H * D)	9340*2600*1730mm
Weight of battery unit	26,400kg
Degree of protection	IP54
Operating temperature range	-30 to 50 °C (> 45 °C derating)
Relative humidity	0 – 95 % (non-condensing)
Max. working altitude	3000 m
Cooling concept of battery chamber	Liquid cooling
F	Fused sprinkler heads,
Fire safety	NFPA 69 explosion prevention and ventillation IDLH gases
Communication interfaces	RS485, Ethernet
Communication protocols	Modbus RTU, Modbus TCP
Compliance	CE, IEC 62477-1, IEC 61000-6-2, IEC 61000-6-4, IEC 62619
2 HOURS APPLICATION-ST2752UX*4-5000UD-MV	
BOL kWh (DC/AC LV Side)	11,008 kWh DC / 10,379 kWh AC
ST2752UX Quantity	4
PCS Model	SC5000UD-MV
4 HOURS APPLICATION-ST2752UX*8-5000UD-MV	
BOL kWh (DC/AC LV Side)	22,016 kWh / 21,448 kWh
ST2752UX Quantity	8
PCS Model	SC5000UD-MV
Grid Connection Data	
Max.THD of current	< 3 % (at nominal power)
DC component	< 0.5 % (at nominal power)
Power factor	> 0.99 (at nominal power)
Adjustable power factor	1.0 leading – 1.0 lagging
Nominal grid frequency	50 / 60 Hz
Grid frequency range	45 – 55 Hz / 55 – 65 Hz
Transformer	
Transformer rated power	5,000 kVA
LV/MV voltage	0.9 kV / 33 kV
Transformer cooling type	ONAN (Oil Natural Air Natural)
Oil type	Mineral oil (PCB free) or degradable oil on request

Figura 8.5 – Dati tecnici unità storage

Dimensioni storage [m]					
larghezza Lx	2.60	Lx < Ly			
lunghezza Ly	9.50				
larghezza copertura Lcopx	2.60				
larghezza copertura Lcopy	9.50				
Altezza estradosso copertura da piano campagna	1.80				
Dimensioni platea [m]					
distanza da pavimento a estradosso platea	0.00				
larghezza Lx	3.20				
lunghezza Ly	10.10				
spessore	0.30				
Analisi dei carichi (valori caratteristici)					
	kN/mq	mq		kN	H appl. [m]
G1 macchina				264.00	0.90
G1 platea	7.50	32.32	=>	242.40	
	kN/mq	μ	kN/mq	kN	
Valore di riferimento neve	0.65	0.80	0.52	12.84	0.90
		mq		kN	
Carico per manutenzione	1.00	24.70	=>	24.70	
			0.80	-0.40	0.10
	Ich I/ma m		sopravento	sottovento	radente
	kN/mq	C _t			
Valore di riferimento vento	0.50	1.80	0.72	-0.36	0.09
Ordinata massima spettro SLV (adimensionale su g)	0.050				
Calcolo delle azioni (azioni caratteristiche e SLV)					
	Risultante [kN]	H appl. su fond. [m]	Mrib [kN m]		
Risultante vento copertura	2.22	1.80	4.00	4.00	
Risultante vento dir X	18.47	0.90	16.62		
Risultante vento dir Y	5.05	0.90		4.55	
			20.62	8.55	
Risultante sisma storage	13.20	0.90	11.88		
	. 5.20	3.55	11.88		

<u> सम्बद्धारमस्य</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dog 45
33377777			RELAZIONE DI CALCOLO	Pag. 45
			DELLE FONDAZIONI	

Verifica a ribaltamento per vento (SLU)				
La verifica a ribaltamento più sfavorevole è con ve	ento in direzione X			
	Risultante [kN]		H appl. su imposta [m]	
Risultante vento copertura	3.33		2.10	7.00
Risultante vento dir X	27.70		1.20	33.24
				40.24
Contributi stabilizzanti:	[kN]	[%]	braccio [m]	M _{stab} [kN m]
G1 + G2 storage	343.20	100%	1.60	549.12
G1 platea	315.12	100%	1.60	504.19
				1053.31
		$M_{Sd}/M_{stab} =$	26.17	> 1.0 OK
Verifica a scorrimento per vento (SLU)				
Azioni sollecitanti			[kN]	
Risultante vento copertura			3.33	
Risultante vento dir X			27.70	
			31.04	
	F _{Sd}	17	F _{stab}	0.20
Contributi stabilizzanti:	[kN]	[%]	[kN]	
G1 + G1 storage	343.20	100%	68.79	
G1 platea	315.12	100%	63.16	
			131.94	
		F _{Sd} /F _{stab} =	4.25	> 1.1 OK

Pag. 46

Rev. 0 Data Agosto 2023

CALCOLO	DELLA CA	PACITA' I	PORTANTE	DELLE F	ONDAZION	DIRETTE	COMBI	4	VENTO
)imension	i del plinto								
<u> </u>	r der pilitto								
	B =	3.20	m						
	L=	10.10							L
spessore r			m				_		<u>-</u>
spessore f	D =	0.30		profondità	del piano di	fondazione			X
	D =	0.30	111	protoriuita	uei piano ui	ioriuazione			
Sollecitazi	oni SLU alla	base del j	<u>olinto</u>						
	N =	714.64	kN						
	V _x =	13.20	kN					В	
	V _y =	3.96	kN						
	M _{xx} =	4.75	kNm						
	M _{yy} =	15.84	kNm						
	che del terre	ano							
<u> Zaratteristi</u>									
	Terreno imn			NO	ifico del te	nno ===+=	20022 !!	nione di f-	doziona
	γ =		kN/m3	peso spec	ifico del teri	eno posto :	sopra ıl ı	Diano di ton	aazione
	γ'=		kN/m3 kN/m3						
	$\gamma 2 =$		kN/m3						
	γ2 ' = φ=	19.0							
	φ= C'=		kN/m2						
	U =		KIN/IIIZ						
Calcolo de	la capacità	<u>portante</u>							
	F=	13.78	kN						
	F/N =	0.02							
	e _x =	0.02	m	e _y =	0.01	m			
	B' =	3.16	m	L' =	10.09	m			
	~!D-		IchI/ma O		24 0202				
	q = γ ' D =	5.7	kN/m2		31.8303				
attori di c	apacità port	ante (Vesi	c, 1975):						
	N _c =	22.25							
	N _q =	11.85							
	$N_{\gamma} =$	12.54							
Fattori di fo	orma della fo	ndazione	(De Reer 1	967).					
atton and	ima dona id	II GUZIONO	(50 5001, 1	001).					
	s _c =	1.06							
	s _q =	1.15							
	s _γ =	0.87							
Fattore di i	nclinazione	del carico	(Vesic, 197	70):					
	i _c =	0.96		m =	1.76				
	i _q =	0.97							
	i _γ =	0.95							
	q _{lim} =	387	kN/m2						
	N _{lim} =	12 315	kN						
	γ _{R3} =	2.30							
	110								
	$N_{Rd} = N_{lim}/\gamma$	_{'B3} =	5354.3						
	7.50 111177	110							
	$F_s = N_{Rd}$	/ NI _	7.49	ok					

<u> सन्त्रकःस्ययसम्</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dog. 47
7.22.77.7.7.7			RELAZIONE DI CALCOLO	Pag. 47
			DELLE FONDAZIONI	

8.6. Strutture di fondazione edificio comandi ausiliari

L'edificio per comandi ausiliari ha una struttura costituita da telai con travi e pilastri prefabbricati con plinti a bicchiere:

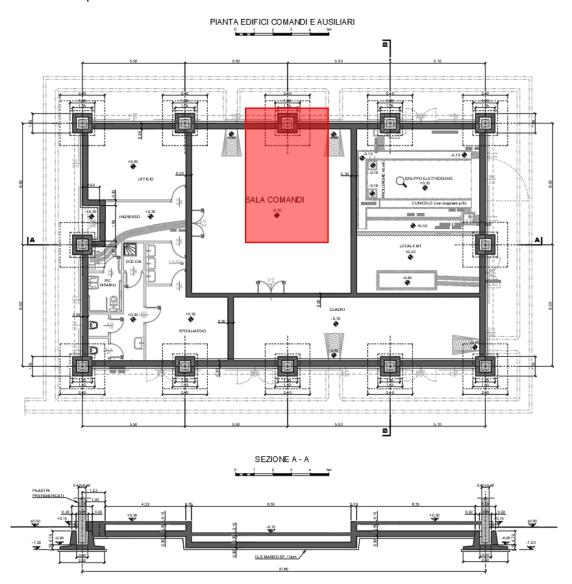
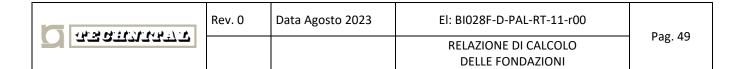



Figura 8.6 – Planimetria e sezione longitudinale edificio comandi ausiliari

Si riportano in seguito le verifiche per il plinto del pilastro tipo:

Dimensioni area di influenza [m]			4	у	
larghezza Lx	5.50				
lunghezza Ly	6.50				
larghezza copertura Lcopx	5.50				
larghezza copertura Lcopy	7.00				L
Altezza estradosso copertura da piano campagna	4.50				
					x
Dimensioni plinto [m]					
spessore ricoprimento	1.20				
larghezza Lx	2.40				
lunghezza Ly	2.40				
spessore	0.25			В	
Analisi dei carichi (valori caratteristici)					
	kN/mq	mq		kN	H appl. [m]
G1 + G2 copertura e travi	6.75	38.50	=>	259.88	4.50
G1 pareti e pilastro			=>	121.53	2.25
G1 platea	6.25	5.76	=>	36.00	
	kN/mq			kN	
Valore di riferimento neve	0.65	μ 0.80	=>	20.02	
valore di filerimento fieve	0.05	0.00	=>	20.02	
		mq		kN	
Carico per uso cabina	0.00	38.50	=>	0.00	
			0.80	-0.40	0.10
	kN/mq	Ct	sopravento	sottovento	radente
Valore di riferimento vento	0.50	1.80	0.72	-0.36	0.09
0.5.4	0.050				
Ordinata massima spettro SLV (adimensionale su g)	0.050				
Calcolo delle azioni (azioni caratteristiche e SLV)					
·	Risultante [kN]	H appl. su fond. [m]	Mrib [kN m]		
Risultante vento copertura	3.47	5.70	19.75	19.75	
Risultante vento dir X	0.00	3.45	0.00		
Risultante vento dir Y	26.73	3.45		92.22	
			19.75	111.97	
Risultante sisma G1+G2 copertura	12.99	5.70	74.06		
Risultante sisma pareti e pilastro	6.08	3.45	20.96		
	0.00	0.40	95.03		

Verifica a ribaltamento per vento (SLU)				
La verifica a ribaltamento più sfavorevole è con v	vento in direzione Y			
	Risultante [kN]		H appl. su imposta [m]	
Risultante vento copertura	5.20		5.95	30.93
Risultante vento dir Y	40.10		3.70	148.35
				179.28
Contributi stabilizzanti:	[kN]	[%]	braccio [m]	M _{stab} [kN m]
G1 + G2 copertura	337.84	100%	1.20	405.41
G1 + G2 pareti cabina	157.98	100%	1.20	189.58
G1 platea	46.80	100%	1.20	56.16
				651.14
		$M_{Sd}/M_{stab} =$	3.63	> 1.0 OK
Verifica a scorrimento per vento (SLU)				
Azioni sollecitanti			[kN]	
Risultante vento copertura			5.20	
Risultante vento dir Y			40.10	
			45.29	
	F _{Sd}	17	F _{stab}	0.20
Contributi stabilizzanti:	[kN]	[%]	[kN]	
G1 + G2 copertura	259.88	100%	52.09	
G1 + G2 pareti chiosco	121.53	100%	24.36	
G1 platea	36.00	100%	7.22	
			83.66	
		F _{Sd} /F _{stab} =	1.85	> 1.1 OK

DELLE FONDAZIONI

Rev. 0

Data Agosto 2023 RELAZIONE DI CALCOLO

CALCOLO	DELLA CA	PACITA' F	PORTANTE	DELLE F	ONDAZION	DIRETTE CO	OMBINAZIO	NE	VENTO
							4	у	
<u>Dimension</u>	i del plinto							!	1
	B =	2.40	m						
	L=	2.40							L
spessore r		1.20							
spessore f		0.25	m						x
	D =	1.45	m	profondità	del piano d	fondazione			
Calla aita ai	ani CLLI alla	baaa dal s	linta				_		
ollecitazi	oni SLU alla	base dei p	<u>olinto</u>						
	N =	542.62	kN						
	V _x =	45.29	kN					В	
	V _y =	0.00						_	
	M _{xx} =		kNm						
	M _{yy} =	179.28	KINM						
Caratteristi	iche del terre	eno							
Januarion or									
	Terreno imm	nerso [s/n]	=	NO					
	γ =		kN/m3	peso spec	cifico del ter	reno posto so	pra il piano c	li fondazior	ne
	γ'=		kN/m3						
	γ2 =		kN/m3						
	γ2 ' =		kN/m3						
	φ =	26							
	c' =	0	kN/m2						
Salcolo de	lla capacità	nortanto							
zaicolo de	па сарасна	portante							
	F=	45.29	kN						
	F/N =	0.08							
	e _x =	0.33	m	e _y =	0.00	m			
	B' =	1.74	m	L' =	2.40	m			
	q = γ' D =	27.55	kN/m2						
	.,,		4075)						
-attori di c	apacità port	ante (Vesi	c, 1975):						
	N -	22.25							
	N _c =								
	N _q =	11.85							
	$N_{\gamma} =$	12.54							
Eattori di fo	orma della fo	ndazione	(De Beer 1	067).					
attori ui it	Jima della lo	iluazione i	(De Deel, 1	301).					
	s _c =	1.14							
		1.35							
	Sq =	0.71							
	s _γ =	0.71							
attore di i	nclinazione	del carico	(Vesic. 197	70):					
				,					
	i _c =	0.86		m =	1.58				
	i _q =	0.87							
	i _γ =	0.80							
	,	3.00							
	q _{lim} =	503	kN/m2						
	,								
	N _{lim} =	2 098	kN						
		2.3							
	γ _{R3} =	2.3							
	$N_{Rd} = N_{lim}/\gamma$	R3 =	912.2						
									-
	$F_s = N_{Rd}$	/ N =	1.68	ok					

<u> अञ्चलक्ष्यक्रम</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dog. 5 1
32377777			RELAZIONE DI CALCOLO	Pag. 51
			DELLE FONDAZIONI	

8.7. Strutture della stazione di trasformazione utente (SSE)

Ognuna delle due stazioni di trasformazione (Nord e Sud) sarà costituita da due sezioni, in funzione dei livelli di tensione: la parte di media tensione, contenuta all'interno della cabina di stazione e dalla parte di alta tensione costituita dalle apparecchiature elettriche con isolamento in aria, ubicate nell'area esterna della stazione utente.

8.7.1. Edificio sottostazione

Il locale MT e ausiliari SSE avrà dimensioni esterne 7.00 m x 2.55 m e struttura prefabbricata.

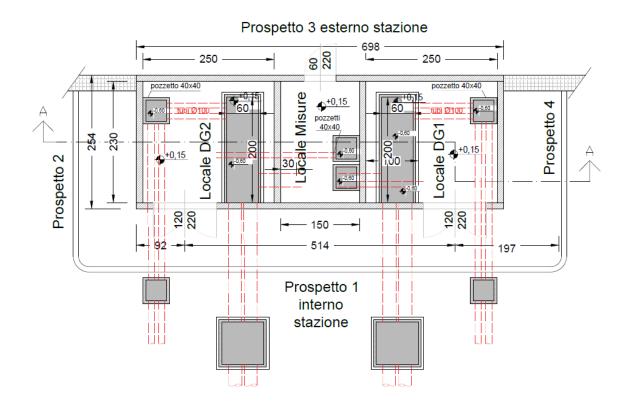
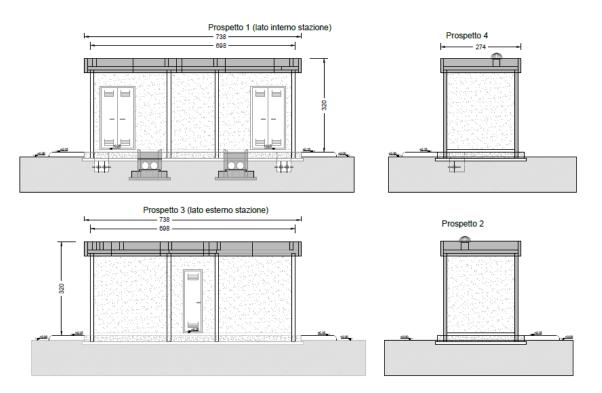
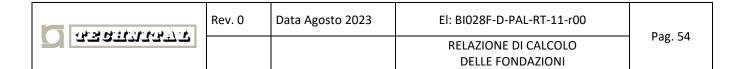
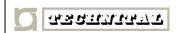


Figura 8.7 – Planimetria della cabina della sottostazione

<u> सन्दर्भ स्थापम् स्थ</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dog 52
323441347			RELAZIONE DI CALCOLO	Pag. 52
			DELLE FONDAZIONI	


Figura 8.8 – Sezioni della cabina della sottostazione

Dimensioni cabina [m]				у	
larghezza Lx	2.55				_
lunghezza Ly	7.00				
larghezza copertura Lcopx	2.95				
larghezza copertura Lcopy	7.40				L
Altezza estradosso copertura da piano campagna	3.35				
<u> </u>					x
Dimensioni platea [m]					
spessore ricoprimento	0.00				
larghezza Lx	2.95				
lunghezza Ly	7.40				
spessore	0.20			В	
Analisi dei carichi (valori caratteristici)					
	kN/mq	mq		kN	H appl. [m]
G1 + G2 copertura	5.50	21.83	=>	120.07	3.35
G1 + G2 pareti e macchinari	2.00	17.85	=>	35.70	1.68
G1 platea	5.00	21.83	=>	109.15	
G2 riempimento	0.00	21.83	=>	0.00	
	kN/mq			kN	
Valore di riferimento neve	0.65	μ 0.80	=>	11.35	
valore di file il frenco fieve	0.00	0.00		11.55	
		mq		kN	
Carico per uso cabina	2.00	21.83	=>	43.66	
			0.80	-0.40	0.10
	kN/mq	C _t	sopravento	sottovento	radente
Valore di riferimento vento	0.50	1.80	0.72	-0.36	0.09
Ordinata massima spettro SLV (adimensionale su g)	0.050				
Calcolo delle azioni (azioni caratteristiche e SLV)					
outono dene azioni (azioni caratteristiche e oz v)	Risultante [kN]	H appl. su fond. [m]	Mrib [kN m]		
Risultante vento copertura	1.96	3.35	6.58	6.58	
Risultante vento dir X	25.33	1.68	42.42	2.00	
Risultante vento dir Y	9.23	1.68	12.12	15.45	
	5.25		49.00	22.04	
			10100		
Risultante sisma G1+G2 copertura	6.00	3.35	20.11		
Risultante sisma chiosco	1.79	1.68	2.99		
			23.10		

Verifica a ribaltamento per vento (SLU)				
La verifica a ribaltamento più sfavorevole è con ve	nto in direzione X			
	Risultante [kN]		H appl. su imposta [m]	
Risultante vento copertura	2.95		3.55	10.46
Risultante vento dir X	37.99		1.88	71.23
				81.69
Contributi stabilizzanti:	[kN]	[%]	braccio [m]	M _{stab} [kN m]
G1 + G2 copertura	156.08	100%	1.48	230.22
G1 + G2 pareti cabina	46.41	100%	1.48	68.45
G1 platea	141.90	100%	1.48	209.30
G2 riempimento	0.00	0%	1.48	0.00
·				507.97
		$M_{Sd}/M_{stab} =$	6.22	> 1.0 OK
Verifica a scorrimento per vento (SLU)				
Azioni sollecitanti			[kN]	
Risultante vento copertura			2.95	
Risultante vento dir X			37.99	
			40.94	
	F _{Sd}	17	F _{stab}	0.20
Contributi stabilizzanti:	[kN]	[%]	[kN]	
G1 + G2 copertura	120.07	100%	24.06	
G1 + G2 pareti chiosco	35.70	100%	7.16	
G1 platea	109.15	100%	21.88	
G2 riempimento	0.00	0%	0.00	
			53.10	
		- /-	4.00	1.1016
		$F_{Sd}/F_{stab} =$	1.30	> 1.1 OK

Data Agosto 2023

CALCOLO	DELLA C	APACITA' I	PORTANTE	: DELLE FO	UNDAZION	DIKELLE	COMBINA	ZIONE	VENTO
								фу	
<u>Jimension</u>	i del plinto								
	B =	2.95	m						
	L=	7.40	m						L
spessore r		0.00	m						
spessore f		0.20							x
	D =	0.10	m	profondità	del piano di	fondazione	;		
Sollecitazi	oni SHLLall	a base del j	olinto						
Jonechazi	OIII OLO AII	a base del j	<u>Jiii ito</u>		con peso r	iempimento			
	N =	409.88	kN		N =	409.88			
	V _x =	40.94	kN					В	
	V _y =	0.00	kN		senza pes	o riempimei	nto		
	M _{xx} =	0.00	kNm		N =	409.88			
	M _{yy} =	81.69							
	iviyy –	01.03	KINIII						
Caratterist	iche del ter	reno							
	Terreno im	merso [s/n]	=	NO					
	γ =		kN/m3	peso spec	ifico del ten	eno posto s	sopra il pia	no di fondaz	ione
	γ'=		kN/m3						
	γ2 =		kN/m3						
	γ2 ' =		kN/m3						
	φ = c' =	26	kN/m2						
	C =	0	KIN/IIIZ						
Calcolo de	lla capacita	portante							
	F=	40.94	kN						
	F/N =	0.10							
	e _x =	0.20		e _y =	0.00				
	B' =	2.55	m	L' =	7.40	m			
	- 10	4.0	I-NI/ O						
	q = γ ' D =	1.9	kN/m2						
Fattori di c	: :apacità po	rtante (Vesi	c 1975):						
atton and	apaona po		,						
	N _c =	22.25							
	N _q =	11.85							
	N _v =	12.54							
Fattori di fo	orma della	fondazione	De Beer, 1	967):					
	s _c =	1.07							
	s _q =	1.17							
	s _γ =	0.86							
Fattore di i	inclinazione	del carico	(Vesic, 197	70):					
	i _c =	0.82		m =	1.74				
	i _q =	0.83							
	i _γ =	0.75							
			1.51/ -2						
	q _{lim} =	218	kN/m2						
		4	1-81						
	N _{lim} =	4 120	KN						
	γ _{R3} =	2.3							
	N _{Rd} = N _{lim}	$\gamma_{R3} =$	1791.2						
	F _s = N _F	d/N =	4.37	ok					

Data Agosto 2023

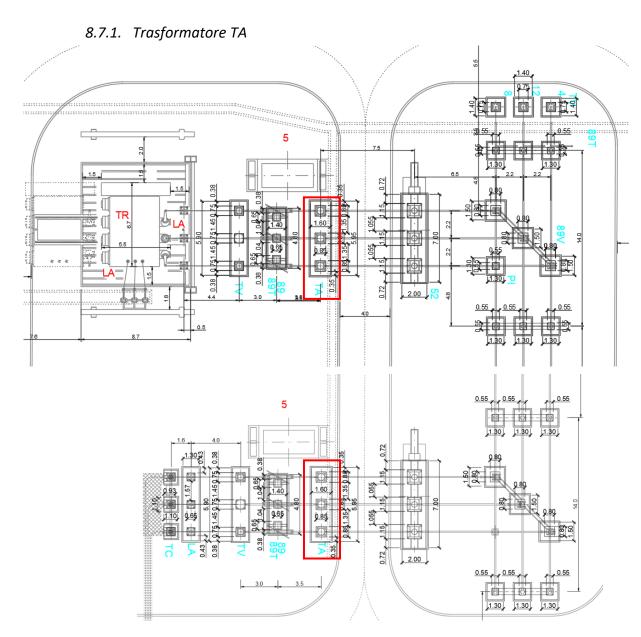


Figura 8.9 – Planimetria degli elementi della sottostazione utente (Nord)

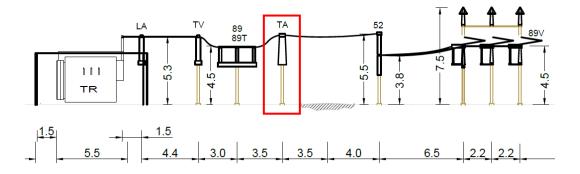


Figura 8.10 – Sezione degli elementi della sottostazione utente (Nord)

Pag. 57

Rev. 0

RELAZIONE DI CALCOLO

DELLE FONDAZIONI

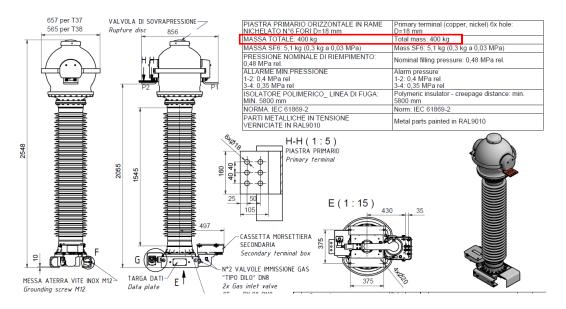
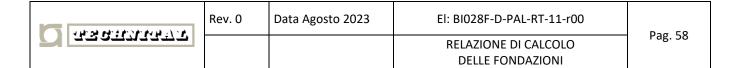



Figura 8.11 – Dati tecnici trasformatore TA.

Dimensioni platea [m]					
distanza da pavimento a estradosso platea	0.50				
larghezza Lx	1.60				
lunghezza Ly	5.95				
spessore	0.30				
Analisi dei carichi					
	kN/mq	mq		kN	H appl. [m]
Peso macchinari trasformatore TA				12.00	4.25
Peso struttura trasformatore TA				2.25	1.55
G1 platea	7.50	9.52	=>	71.40	
G1 baggioli	12.50	2.17	=>	27.09	
G2 riempimento	10.00	7.35	=>	73.53	
			0.80	-0.40	0.10
	kN/mq	C _t	sopravento	sottovento	radente
Valore di riferimento vento	0.50	1.80	0.72	-0.36	0.09
Ordinata massima spettro SLV (adimensionale su g)	0.050				
Calcolo delle azioni (azioni caratteristiche e SLV)					
	Risultante [kN]	H appl. su fond. [m]	Mrib [kN m]		
Risultante vento trasf. TA (superficie 2.5x0.50x3 m)	4.05	4.75	19.24		
Risultante vento str. trasf. TA (superficie 2.9x0.30x3 m	2.82	2.05	5.78		
			25.02		
Risultante sisma macchinari trasf. TA	0.60	4.75	2.85		
Risultante sisma struttura trasf. TA	0.11	2.05	0.23		
			3.08		

Verifica a ribaltamento per vento					
La verifica a ribaltamento più sfavorevole è con vento in	direzione X				
	Risultante		H appl. su		
D: 1: 0 5 0 5 0 5 0 0 0	[kN]		imposta [m]	00.00	
Risultante vento trasf. TA (superficie 2.5x0.50x3 m)	6.08		5.05	30.68	
Risultante vento str. trasf. TA (superficie 2.9x0.30x3 m)	4.23		2.35	9.94	
				40.62	
Contributi stabilizzanti:	[kN]	[%]	braccio [m]	M _{stab} [kN m]	
Peso macchinari trasformatore TA	12.00	100%	0.80	9.60	
Peso struttura trasformatore TA	2.25	100%	0.80	1.80	
G1 platea	71.40	100%	0.80	57.12	
G1 baggioli	27.09	100%	0.80	21.68	
G2 riempimento	73.53	0%	0.80	0.00	
OZ NOMPIMORIO	70.00	070	0.00	90.20	
				50.20	
		$M_{Sd}/M_{stab} =$	2.22	> 1.0 OK	
Verifica a scorrimento per vento					
Azioni sollecitanti			[kN]		
Risultante vento trasf. TA (superficie 2.5x0.50x3 m)			6.08		
Risultante vento str. trasf. TA (superficie 2.9x0.30x3 m)			4.23		
(Cop			10.30		
	F _{Sd}	17	F _{stab}	0.20	
Contributi atabili— anti				0.20	
Contributi stabilizzanti:	[kN]	[%]	[kN]		
Peso macchinari trasformatore TA	12.00	100%	2.41		
Peso struttura trasformatore TA	2.25 71.40	100% 100%	0.45 14.31		
G1 platea	-				
G1 baggioli	27.09	100%	5.43		
G2 riempimento	73.53	0%	0.00		
			22.60		

Data Agosto 2023

CALCOLO	DELLA CAF	PACITA' I	PORTANTE	DELLE F	ONDAZION	DIRELLE	COMBI	4		VENTO
N	-1-1-1:-4-								7	
imensioni	del plinto									1
	B =	1.60	m							
	L=	5.95								L
spessore ri	coprim	0	m							
spessore fo		0.30	m							x
	D =	0.80	m	profondità	del piano di	fondazione	•			
2 11 11 1	. 01 11 11 1		ı							
Sollecitazio	oni SLU alla l	oase dei j	<u>Diinto</u>		000 0000 r	iomnimont				
	N =	242.15	ΓNI		con peso r	242.15				
	V _x =	10.30			IN =	242.13		I	₹	
							-4-	1	,	
	V _y =	0.00			senza pes		nto			
	M _{xx} =	0.00	kNm		N =	146.57				
	M _{yy} =	40.62	kNm							
Jaratteristi	che del terre	no								
	Terreno imm	erso [e/n]	=	NO						
			kN/m3		ifico del teri	reno posto	conra il	niano di	fondazior	10
	γ = γ ' =		kN/m3	hean ahea	inco dei tell	euo hosto	sopia II	piai iU UI	ioi iuazioi	IC
	γ – γ2 =		kN/m3							
	γ2 '=		kN/m3							
	φ =	26								
	c' =		kN/m2							
Calcolo del	la capacità p	ortante								
	_									
	F =	10.30	kN							
	F/N =	0.04								
	0 -	0.17	m		0.00	m				
	e _x = B' =	1.26		e _y =	0.00 5.95					
	D =	1.20	111	L =	5.95	111				
	q = γ ' D =	15.2	kN/m2							
	9 / 5									
Fattori di c	apacità porta	nte (Vesi	c, 1975):							
	N _c =	22.25								
	N _q =	11.85								
	$N_{\gamma} =$	12.54								
	,									
Fattori di fo	rma della for	ndazione	(De Beer, 1	967):						
	s _c =	1.04								
	s _q =	1.10								
	s _γ =	0.91								
attore di i	nclinazione d	lel carico	(Vesic, 19	70):						
	i _c =	0.92		m =	1.82					
	i _q =	0.92								
	i _γ =	0.88								
	q _{lim} =	306	kN/m2							
	N _{lim} =	2 299	kN							
	γ _{R3} =	2.3								
	-1/0									
	$N_{Rd} = N_{lim}/\gamma_{F}$		999.7							
	· · · Ka — · · · lim/ //F	.s –	333.1							
							1 1			

Data Agosto 2023

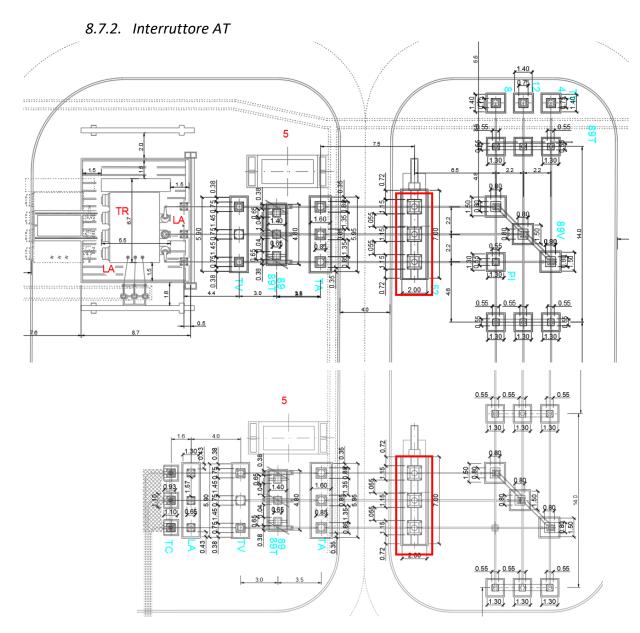


Figura 8.12 – Planimetria degli elementi della sottostazione utente (Nord)

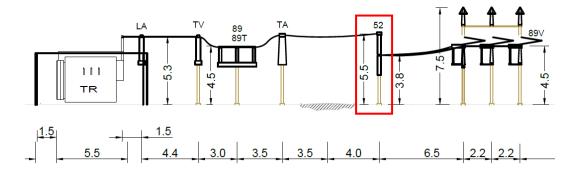


Figura 8.13 – Sezione degli elementi della sottostazione utente (Nord)

RELAZIONE DI CALCOLO **DELLE FONDAZIONI**

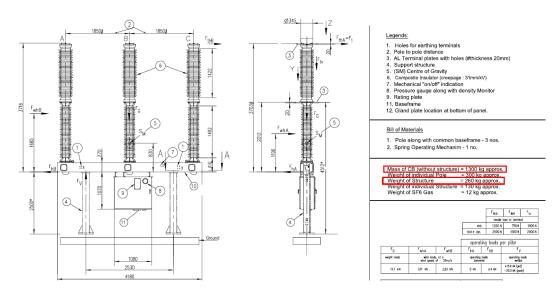
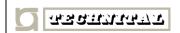



Figura 8.14 – Dati tecnici interruttore tripolare AT.

Dimensioni platea [m]					
distanza da pavimento a estradosso platea	0.50				
larghezza Lx	2.00				
lunghezza Ly	7.00				
spessore	0.30				
Analisi dei carichi					
	kN/mq	mq		kN	H appl. [m]
Peso macchinari interruttore				13.00	4.60
Peso struttura interruttore				2.60	1.10
G1 platea	7.50	14.00	=>	105.00	
G1 baggioli	12.50	3.97	=>	49.59	
G2 riempimento	10.00	10.03	=>	100.33	
			0.80	-0.40	0.10
	kN/mq	C_{t}	sopravento	sottovento	radente
Valore di riferimento vento	0.50	1.80	0.72	-0.36	0.09
Ordinata massima spettro SLV (adimensionale su g)	0.050				
Calcolo delle azioni (azioni caratteristiche e SLV)					
	Risultante [kN]	H appl. su fond. [m]	Mrib [kN m]		
Risultante vento interruttore (superficie 3.7x0.35x3 m)	4.20	5.10	21.40		
Risultante vento str. interruttore (superficie 2.0x0.30x2	1.30	1.60	2.07		
			23.47		
Risultante sisma macchinari interruttore	0.65	5.10	3.32		
Risultante sisma struttura interruttore	0.13	1.60	0.21		
			3.52		

<u> </u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dog. 62
7.22777777			RELAZIONE DI CALCOLO	Pag. 62
			DELLE FONDAZIONI	

Verifica a ribaltamento per vento				
La verifica a ribaltamento più sfavorevole è con vento in	direzione X			
	Risultante [kN]		H appl. su imposta [m]	
Risultante vento interruttore (superficie 3.7x0.35x3 m)	6.29		5.40	33.99
Risultante vento str. interruttore (superficie 2.0x0.30x2	1.94		1.90	3.69
				37.68
Contributi stabilizzanti:	[kN]	[%]	braccio [m]	M _{stab} [kN m]
Peso macchinari interruttore	13.00	100%	1.00	13.00
Peso struttura interruttore	2.60	100%	1.00	2.60
G1 platea	105.00	100%	1.00	105.00
G1 baggioli	49.59	100%	1.00	49.59
G2 riempimento	100.33	0%	1.00	0.00
				170.19
		$M_{Sd}/M_{stab} =$	4.52	> 1.0 OK
Verifica a scorrimento per vento				
Azioni sollecitanti			[kN]	
Risultante vento interruttore (superficie 3.7x0.35x3 m)			6.29	
Risultante vento str. interruttore (superficie 2.0x0.30x2	m)		1.94	
			8.24	
	F _{Sd}	17	F _{stab}	0.20
Contributi stabilizzanti:	[kN]	[%]	[kN]	
Peso macchinari interruttore	13.00	100%	2.61	
Peso struttura interruttore	2.60	100%	0.52	
G1 platea	105.00	100%	21.04	
G1 baggioli	49.59	100%	9.94	
G2 riempimento	100.33	0%	0.00	
			34.11	
		F _{Sd} /F _{stab} =	4.14	> 1.1 OK

Data Agosto 2023

CALCOLO	DELLA CA	APACITA' I	PORTANTI	E DELLE FO	ONDAZION	DIRETTE	COMBIN	AZIONE	VENTO
								фу	
<u>Dimension</u>	i del plinto								
	B =	2.00							-
	L =	7.00							L
spessore r			m						
spessore f		0.30			del!				X
	D =	0.80	m	protondita	del piano d	tondazione	9		
N - 11 !4 !	: 0111-11-		-1:4-						
<u>soliecitazi</u>	oni SLU alla	a base dei j	<u>DIINTO</u>						
	N =	351.67	LANI		N =	iempimento 351.67)		
					IN =	331.07		ъ.	
	V _x =	8.24						В	
	V _y =	0.00	kN		senza pes	o riempime	nto		
	M _{xx} =	0.00	kNm		N =	221.25			
	M _{yy} =	37.68	kNm						
	iviyy –	37.00	KINIII						
arattorict	iche del teri	ono							
arallerisi	iche dei ten	eno							
	Terreno im	mareo [c/s	l –	NO					
					if an alati				-1
	γ =		kN/m3	peso spec	inco del ter	reno posto :	sopra II pi	ano di fonda:	zione
	γ'=		kN/m3						
	γ2 =		kN/m3						
	γ2 ' =		kN/m3						
	φ =	26							
	c' =	0	kN/m2						
Calcolo de	lla capacità	<u>portante</u>							
	F=	8.24							
	F/N =	0.02							
	e _x =	0.11	m	e _y =	0.00	m			
	B' =	1.79	m	L' =	7.00	m			
	q = γ ' D =	15.2	kN/m2						
	9 / -								
attori di c	apacità por	tante (Vesi	c 1975)·						
atton ar c	apacita poi	tarite (Vesi	0, 1070).						
	NI _	22.25							
	N _c =								
	N _q =	11.85							
	$N_{\gamma} =$	12.54							
attori di f	orma della f	ondazione	(De Beer, 1	1967):					
	s _c =	1.05							
		1.12							
	s _q =								
	s _γ =	0.90							
			04 : :	70)					
attore di	inclinazione	del carico	(Vesic, 19	/U):					
	i _c =	0.95		m =	1.80				
	i _q =	0.96							
	i _γ =	0.94							
	1	5.54							
	a	272	kN/m2						
	q _{lim} =	3/3	NIW/IIIZ						
		_							
	N _{lim} =	4 661	kN						
	$\gamma_{R3} =$	2.3							
	110	_,-							
	$N_{Rd} = N_{lim}/$	γ _{R3} =	2026.7						
	F _s = N _R	/ NI _	5.76	ok					

Pag. 64

Rev. 0

RELAZIONE DI CALCOLO

DELLE FONDAZIONI

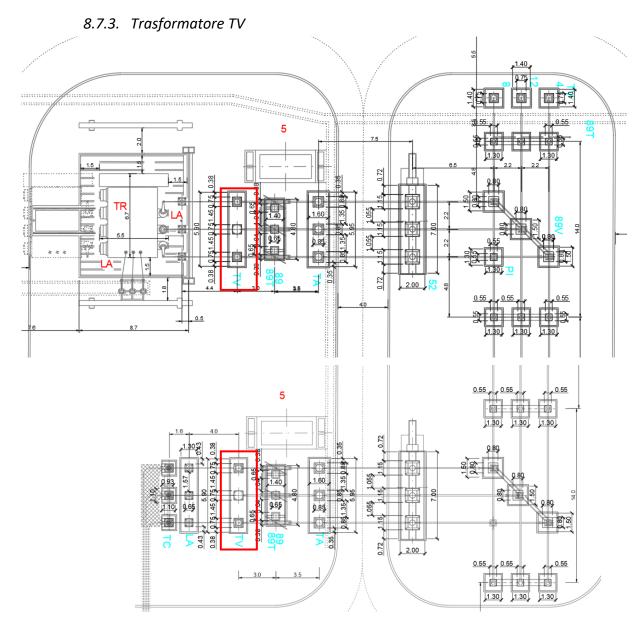


Figura 8.15 – Planimetria degli elementi della sottostazione utente (Nord)

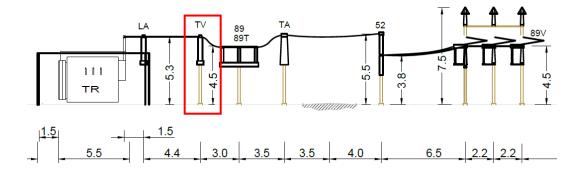


Figura 8.16 – Sezione degli elementi della sottostazione utente (Nord)

RELAZIONE DI CALCOLO DELLE FONDAZIONI

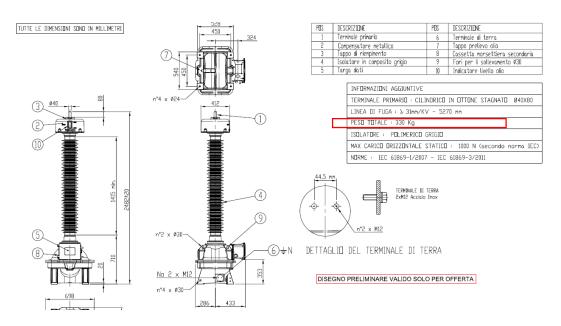


Figura 8.17 – Dati tecnici trasformatore TV

Dimensioni platea [m]					
distanza da pavimento a estradosso platea	0.50				
larghezza Lx	1.30				
lunghezza Ly	5.90				
spessore	0.30				
Analisi dei carichi					
	kN/mq	mq		kN	H appl. [m]
Peso macchinari trasformatore TV				3.30	4.50
Peso struttura trasformatore TV				2.25	1.65
G1 platea	7.50	7.67	=>	57.53	
G1 baggiolo	12.50	1.69	=>	21.09	
G2 riempimento	10.00	5.98	=>	59.83	
			0.80	-0.40	0.10
	kN/mq	Ct	sopravento	sottovento	radente
Valore di riferimento vento	0.50	1.80	0.72	-0.36	0.09
Ordinata massima spettro SLV (adimensionale su g)	0.050				
Calcolo delle azioni (azioni caratteristiche e SLV)					
	Risultante [kN]	H appl. su fond. [m]	Mrib [kN m]		
Risultante vento trasf. TV (superficie 2.5x0.30x3 m)	2.43	5.00	12.15		
Risultante vento str. trasf. TV (superficie 3.3x0.20x3 m)	2.14	2.15	4.60		
			16.75		
Risultante sisma macchinari trasf. TV	0.17	5.00	0.83		
Risultante sisma struttura trasf. TV	0.11	2.15	0.24		
			1.07		

Verifica a ribaltamento per vento					
La verifica a ribaltamento più sfavorevole è con vento in	direzione X				
	Risultante [kN]		H appl. su imposta [m]		
Risultante vento trasf. TV (superficie 2.5x0.30x3 m)	3.65		5.30	19.32	
Risultante vento str. trasf. TV (superficie 3.3x0.20x3 m	3.21		2.45	7.86	
				27.18	
Contributi stabilizzanti:	[kN]	[%]	braccio [m]	M _{stab} [kN m]	
Peso macchinari trasformatore TV	3.30	100%	0.65	2.15	
Peso struttura trasformatore TV	2.25	100%	0.65	1.46	
G1 platea	57.53	100%	0.65	37.39	
G1 baggiolo	21.09	100%	0.65	13.71	
G2 riempimento	59.83	0%	0.65	0.00	
				54.71	
		$M_{Sd}/M_{stab} =$	2.01	> 1.0 OK	
Verifica a scorrimento per vento					
Azioni sollecitanti			[kN]		
Risultante vento trasf. TV (superficie 2.5x0.30x3 m)			3.65		
Risultante vento str. trasf. TV (superficie 3.3x0.20x3 m)			3.21		
			6.85		
	F _{Sd}	17	F _{stab}	0.20	
Contributi stabilizzanti:	[kN]	[%]	[kN]		
Peso macchinari trasformatore TV	3.30	100%	0.66		
Peso struttura trasformatore TV	2.25	100%	0.45		
G1 platea	57.53	100%	11.53		
G1 baggioli	21.09	100%	4.23		
G2 riempimento	59.83	0%	0.00		
			16.87		
			10.07		

Section Sect	CALCOLO	DELLA C	APACITA' I	PORTANTE	DELLE FO	ONDAZION	I DIRETTE	COMBINA	ZIONE	VENTO
B =									l y	
L = 5.90 m	<u>Dimension</u>	i del plinto								
L = 5.90 m		D _	4 20	m				-		
pessore incoprim										L
pessore fondaz D = 0.80 m D = 0.80 m profondità del piano di fondazione N = 192.5 kN N N = 187.19 V ₄ = 6.85 kN V ₇ = 0.00 kNm N ₆ = 0.00 kNm N ₇ = 2.0.5 kN/m3 V ₇ = 20.5 kN/m3 V ₇ = 20.5 kN/m3 V ₈ = 20.5 kN/m3 V ₉ = 20.5 kN/m3 V ₉ = 20.5 kN/m3 V ₁ = 20.5 kN/m3 V ₂ = 20.5 kN/m3 V ₂ = 38 Y V ₃ = 38 Y V ₄ = 38 Y V ₇ = 30 KN/m3 V ₈ = 38 Y V ₉ = 30 KN/m3 V ₁ = 30 KN/m3 V ₁ = 30 KN/m3 V ₂ = 20.5 kN/m3 V ₁ = 30 KN/m3 V ₂ = 30 KN/m3 V ₃ = 30 KN/m3 V ₄ = 30 KN/m3 V ₇ = 30 KN/m3 V ₈ = 30 Y V ₉ = 0.00 KN/m2 V ₈ = 0.85 KN/m3 V ₉ = 10 KN/m2 V ₉ = 0.00 M V ₉ = 0.00	naccora r									
D = 0.80 m profondità del piano di fondazione N = 1924 kN N N = 187.19										v
N =	spessore i				profondità	del niano di	i fondazione			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.00		proformata	doi piario di	Toridazione			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sollecitazi	oni SLU alla	a base del i	olinto						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						con peso r	iempimento			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		N =	109.42	kN						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		V _* =	6.85	kN					В	
M _{xx} = 0.00 kNm N = 109.42						conza noc	o riemnime	nto		
								ino		
Terreno immerso s/n = NO NO P NO						IN =	109.42			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$M_{yy} =$	27.18	kNm						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Caratterist	iche del ter	reno							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_	<u> </u>							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					peso spec	ifico del ter	reno posto :	sopra il pia	ano di fondaz	zione
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$F = 6.85 \text{ kN}$ $F/N = 0.06$ $e_x = 0.25 \text{ m} e_y = 0.00 \text{ m}$ $A = 0.80 \text{ m} L' = 5.90 \text{ m}$ $A = 0.80 \text{ m} L' = 5.90 \text{ m}$ $A = 0.80 \text{ m} L' = 5.90 \text{ m}$ $A = 0.80 \text{ m} L' = 5.90 \text{ m}$ $A = 0.80 \text{ m} L' = 5.90 \text{ m}$ $A = 0.80 \text{ m} L' = 5.90 \text{ m}$ $A = 0.80 \text{ m} L' = 5.90 \text{ m}$ $A = 0.80 $		c' =	0	kN/m2						
$F = 6.85 \text{ kN}$ $F/N = 0.06$ $e_x = 0.25 \text{ m} e_y = 0.00 \text{ m}$ $A = 0.80 \text{ m} L' = 5.90 \text{ m}$ $A = 0.80 \text{ m} L' = 5.90 \text{ m}$ $A = 0.80 \text{ m} L' = 5.90 \text{ m}$ $A = 0.80 \text{ m} L' = 5.90 \text{ m}$ $A = 0.80 \text{ m} L' = 5.90 \text{ m}$ $A = 0.80 \text{ m} L' = 5.90 \text{ m}$ $A = 0.80 \text{ m} L' = 5.90 \text{ m}$ $A = 0.80 $										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>Calcolo de</u>	lla capacità	portante							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		_								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		F/N =	0.06							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
Fattori di capacità portante (Vesic, 1975): $N_c = 61.35$ $N_q = 48.93$ $N_\gamma = 78.02$ Fattori di forma della fondazione (De Beer, 1967): $s_c = 1.03$ $s_q = 1.11$ $s_\gamma = 0.95$ Fattore di inclinazione del carico (Vesic, 1970): $i_c = 0.88$ $i_q = 0.89$ $i_\gamma = 0.83$ $Q_{lim} = 1290 \text{ kN/m2}$ $N_{lim} = 6115 \text{ kN}$ $\gamma_{R3} = 2.3$		B' =	0.80	m	L' =	5.90	m			
Fattori di capacità portante (Vesic, 1975): $N_c = 61.35$ $N_q = 48.93$ $N_\gamma = 78.02$ Fattori di forma della fondazione (De Beer, 1967): $s_c = 1.03$ $s_q = 1.11$ $s_\gamma = 0.95$ Fattore di inclinazione del carico (Vesic, 1970): $i_c = 0.88$ $i_q = 0.89$ $i_\gamma = 0.83$ $Q_{lim} = 1290 \text{ kN/m2}$ $N_{lim} = 6115 \text{ kN}$ $\gamma_{R3} = 2.3$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$q = \gamma' D =$	16.4	kN/m2						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			01							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fattori di c	apacità por	tante (Vesi	c, 1975):						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			61.35							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$N_q =$	48.93							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$N_{\gamma} =$	78.02							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fattori di fo	orma della f	ondazione	(De Beer, 1	967):					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		sc =	1.03							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1.11							
Fattore di inclinazione del carico (Vesic, 1970):										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-γ	3.33							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fattore di i	nclinazione	del carico	(Vesic 19	70):					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ul l		. 30. 341100	, , , , , , , , ,	/-					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		i. =	U 88		m =	1 22				
$i_{\gamma} =$ 0.83					=	1.50				
Q _{lim} =										
$N_{lim} = 6115 \text{ kN}$ $\gamma_{R3} = 2.3$		ι _γ =	0.83							
$N_{lim} = 6115 \text{ kN}$ $\gamma_{R3} = 2.3$										
$\gamma_{R3} =$ 2.3		q _{lim} =	1 290	kN/m2						
$\gamma_{R3} =$ 2.3										
$\gamma_{R3} =$ 2.3		N _{lim} =	6 115	kN						
			2.3							
$N_{Rd} = N_{lim}/\gamma_{R3} =$ 2658.9		1K3								
$N_{Rd} = N_{lim}/\gamma_{R3} = 2638.9$		NI NI	,	0050						
		$N_{Rd} = N_{lim}$	γ _{R3} =	2658.9						
$F_s = N_{Rd} / N = 24.30 \text{ ok}$										

DELLE FONDAZIONI

Rev. 0

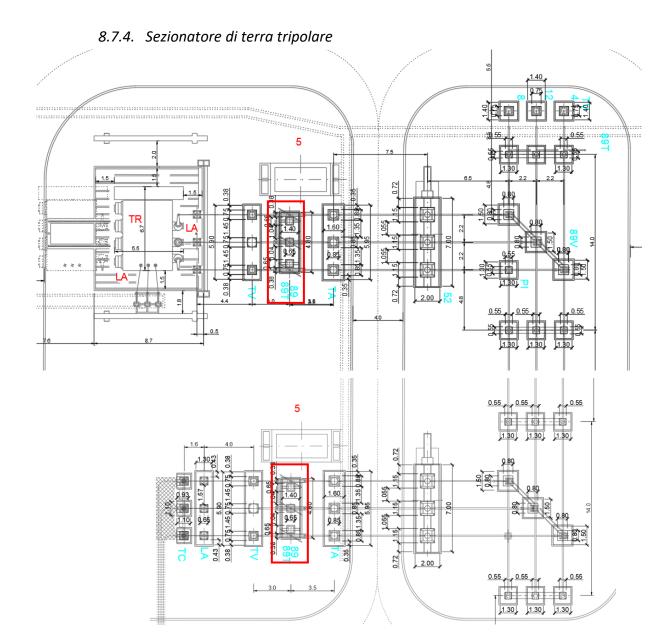


Figura 8.18 – Planimetria degli elementi della sottostazione utente (Nord)

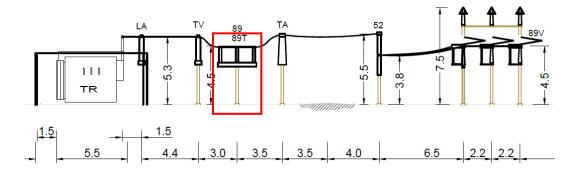


Figura 8.19 – Sezione degli elementi della sottostazione utente (Nord)

RELAZIONE DI CALCOLO **DELLE FONDAZIONI**

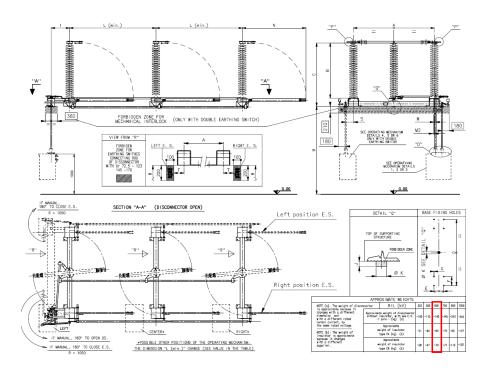


Figura 8.20 – Dati tecnici sezionatore tripolare

Dimensioni platea [m]					
distanza da pavimento a estradosso platea	0.50				
larghezza Lx	1.40				
lunghezza Ly	4.80				
spessore	0.30				
Analisi dei carichi					
	kN/mq	mq		kN	H appl. [m]
Peso macchinari sezionatore				10.50	3.90
Peso struttura sezionatore				5.20	1.40
G1 platea	7.50	6.72	=>	50.40	
G1 baggioli	15.00	1.08	=>	16.20	
G2 riempimento	10.00	5.64	=>	56.40	
			0.80	-0.40	0.10
	kN/mq	Ct	sopravento	sottovento	radente
Valore di riferimento vento	0.50	1.80	0.72	-0.36	0.09
Ordinata massima spettro SLV (adimensionale su g)	0.050				
Calcolo delle azioni (azioni caratteristiche e SLV)					
	Risultante [kN]	H appl. su fond. [m]	Mrib [kN m]		
Risultante vento interruttore (superficie 2.2x0.30x3 m)	2.14	4.40	9.41		
Risultante vento str. interruttore (superficie 2.8x0.20x2	1.21	1.90	2.30		
			11.71		
Risultante sisma macchinari interruttore	0.53	4.40	2.31		
Risultante sisma struttura interruttore	0.26	1.90	0.49		
			2.80		

<u> स्ट्रद्ययस्य</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dog. 70
			RELAZIONE DI CALCOLO DELLE FONDAZIONI	Pag. 70

Verifica a ribaltamento per vento					
La verifica a ribaltamento più sfavorevole è con vento in	direzione X				
	Risultante [kN]		H appl. su imposta [m]		
Risultante vento interruttore (superficie 2.2x0.30x3 m)	3.21		4.70	15.08	
Risultante vento str. interruttore (superficie 2.8x0.20x2	1.81		2.20	3.99	
				19.07	
Contributi stabilizzanti:	[kN]	[%]	braccio [m]	M _{stab} [kN m]	
Peso macchinari sezionatore	10.50	100%	0.70	7.35	
Peso struttura sezionatore	5.20	100%	0.70	3.64	
G1 platea	50.40	100%	0.70	35.28	
G1 baggioli	16.20	100%	0.70	11.34	
G2 riempimento	56.40	0%	0.70	0.00	
				57.61	
		$M_{Sd}/M_{stab} =$	3.02	> 1.0 OK	
Verifica a scorrimento per vento					
Azioni sollecitanti			[kN]		
Risultante vento interruttore (superficie 2.2x0.30x3 m)		3.21			
Risultante vento str. interruttore (superficie 2.8x0.20x2)		1.81			
			5.02		
	F _{Sd}	17	F _{stab}	0.20	
Contributi stabilizzanti:	[kN]	[%]	[kN]		
Peso macchinari sezionatore	10.50	100%	2.10		
Peso struttura sezionatore	5.20	100%	1.04		
G1 platea	50.40	100%	10.10		
G1 baggioli	16.20	100%	3.25		
G2 riempimento	56.40	0%	0.00		
			16.49		

CALCOLO	DELLA CA	PACITA' I	PORTANTE	DELLE F	ONDAZION	DIRETTE	COMBIN	IAZIOŅE		VENTO
Nimo e ' '	dal U t							∫ y		
imensioni	del plinto									i
	B =	1.40	m							
	L=	4.80								L
spessore ri	coprim	0	m							
spessore fo		0.30	m							x
	D =	0.80	m	profondità	del piano di	fondazione)			
Sollecitazio	oni SLU alla	base del p	<u>olinto</u>							
	N =	180.31	LAI			iempimento)			
		5.02			N =	160.31				
	V _x =							В		
	V _y =	0.00				o riempime	nto			
	M _{xx} =	0.00	kNm		N =	106.99				
	M _{yy} =	19.07	kNm							
Caratteristi	che del terre	eno								
	Terreno imm			NO						
	γ =		kN/m3	peso spec	ifico del teri	reno posto	sopra il p	piano di f	ondazion	е
	γ'=		kN/m3							
	γ2 =		kN/m3							
	γ2 ' =		kN/m3							
	φ =	26								
	c' =	0	kN/m2							
Coloolo dol	la capacità	nortonto								
Calculu del	іа Сарасіта	portante								
	F =	5.02	kN							
	F/N =	0.03								
	e _x =	0.11	m	e _y =	0.00	m				
	B' =	1.19	m	L' =	4.80					
	q = γ ' D =	15.2	kN/m2							
Fattori di c	apacità porta	ante (Vesi	c, 1975):							
	N _c =	22.25								
	N _q =	11.85								
	$N_{\gamma} =$	12.54								
Fattori di fo	rma della fo	ndazione	(De Beer, 1	967):						
	s _c =	1.05								
	s _q =	1.12								
	s _γ =	0.90								
Fattore di i	nclinazione	del carico	(Vesic, 197	70):						
	i _c =	0.95		m =	1.80					
	i _q =	0.95								
	i _γ =	0.92								
	1	5.02								
	q _{lim} =	310	kN/m2							
	pitti	5.0								
	N _{lim} =	1 767	kN							
			IXI X							
	γ _{R3} =	2.3								
	$N_{Rd} = N_{lim}/\gamma$	_{R3} =	768.3							

<u> </u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dog 72
32377777			RELAZIONE DI CALCOLO	Pag. 72
			DELLE FONDAZIONI	

8.7.1. Terminale cavi

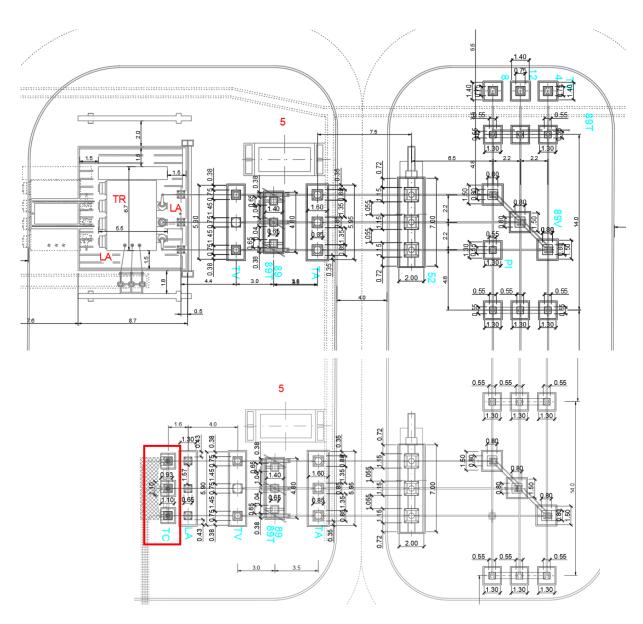
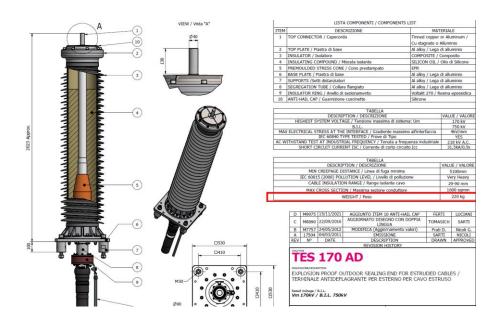



Figura 8.21 – Planimetria degli elementi della sottostazione utente (Nord)

Rev. 0

RELAZIONE DI CALCOLO DELLE FONDAZIONI

Data Agosto 2023

Figura 8.22 – Dati tecnici sezionatore tripolare

Dimensioni platea [m]					
distanza da pavimento a estradosso platea	0.50				
larghezza Lx	1.10				
lunghezza Ly	1.10				
spessore	0.30				
Analisi dei carichi					
	kN/mq	mq		kN	H appl. [m]
Peso macchinari terminali cavi				2.20	3.60
Peso struttura terminali cavi				2.25	1.30
G1 platea	7.50	1.21	=>	9.08	
G1 baggiolo	12.50	0.49	=>	6.13	
G2 riempimento	10.00	0.72	=>	7.20	
			0.80	-0.40	0.10
	kN/mq	C _t	sopravento	sottovento	radente
Valore di riferimento vento	0.50	1.80	0.72	-0.36	0.09
Ordinata massima spettro SLV (adimensionale su g)	0.050				
Calcolo delle azioni (azioni caratteristiche e SLV)					
	Risultante [kN]	H appl. su fond. [m]	Mrib [kN m]		
Risultante vento terminale (superficie 2.0x0.40 m)	0.864	4.10	3.54		
Risultante vento str. terminale (superficie 2.6x0.30 m)	0.842	1.80	1.52		
			5.06		
Risultante sisma macchinari terminale	0.110	4.10	0.45		
Risultante sisma struttura terminale	0.113	1.80	0.20		
			0.65		

Verifica a ribaltamento per vento					
Vento in direzione X					
	Risultante		H appl. su		
	[kN]		imposta [m]		
Risultante vento terminale (superficie 2.0x0.40 m)	1.30		4.40	5.70	
Risultante vento str. terminale (superficie 2.6x0.30 m)	1.26		2.10	2.65	
				8.36	
Contributi stabilizzanti:	[kN]	[%]	braccio [m]	M _{stab} [kN m]	
Peso macchinari terminali cavi	2.20	100%	0.55	1.21	
Peso struttura terminali cavi	2.25	100%	0.55	1.24	
G1 platea	9.08	100%	0.55	4.99	
G1 baggiolo	6.13	100%	0.55	3.37	
G2 riempimento	7.20	0%	0.55	0.00	
				10.81	
		$M_{Sd}/M_{stab} =$	1.29	> 1.0 OK	
Verifica a scorrimento per vento					
Azioni sollecitanti			[kN]		
Risultante vento terminale (superficie 2.0x0.40 m)			1.30		
Risultante vento str. terminale (superficie 2.6x0.30 m)			1.26		
, i			2.56		
	F _{Sd}	17	F _{stab}	0.20	
Contributi stabilizzanti:	[kN]	[%]	[kN]	V.20	
Peso macchinari terminali cavi	2.20	100%	0.44		
Peso struttura terminali cavi	2.20	100%	0.44		
G1 platea	9.08	100%	1.82		
G1 baggioli	6.13	100%	1.02		
G2 riempimento	7.20	0%	0.00		
OZ HOMPHIORIO	7.20	0 /0	3.94		
		$F_{Sd}/F_{stab} =$	1.54	> 1.1 OK	

44.54.54.54.44.47.72

Pag. 75

RELAZIONE DI CALCOLO
DELLE FONDAZIONI

CALCOLO	DELLA CAP	ACITA' I	PORTANTE	DELLE F	ONDAZION	DIRETTE	COMBINA	AZIONE	VENTO
Dimensioni	dal plinta							y	
Jimensioni	dei piinto							<u>1</u>	
	B =	1.10							
	L=	1.10							L
spessore ric		0.50							
spessore fo	ondaz D =	0.30		profondità	del piano di	i fondazione			X
	U =	0.00	111	proionuita	uei piano u	i ioriuazione			
Sollecitazio	ni SLU alla b	ase del i	<u>olinto</u>						
		•			con peso r	iempimento			
	N =	25.55			N =	34.91			
	V _x =	2.56	kN					В	
,	V _y =	0.00	kN		senza pes	o riempime	nto		
	M _{xx} =	0.00	kNm		N =	25.55			
	M _{yy} =	8.36	kNm						
Caratteristic	che del terrer	10							
	T	F / ·		NO					
	Terreno imm			NO	:e:				-!
	γ = γ ' =		kN/m3 kN/m3	peso spec	inco del ter	reno posto :	sopra il pi	ano di fonda:	zione
	γ2 = γ2 ' =		kN/m3 kN/m3						
	γz = φ =	26							
	φ - c' =		kN/m2						
			,						
Calcolo dell	la capacità p	<u>ortante</u>							
	_								
	F = F/N =	2.56 0.10							
	F/IN =	0.10							
	e _x =	0.33	m	e _y =	0.00	m			
	B' =	0.45		L' =	1.10				
				_					
	q = γ ' D =	15.2	kN/m2						
attori di ca	apacità porta	nte (Vesi	c, 1975):						
	N _c =	22.25							
	N _q =	11.85							
	$N_{\gamma} =$	12.54							
	ΙΝ _γ =	12.34							
attori di fo	rma della fon	dazione	De Beer. 1	967):					
			,						
	s _c =	1.08							
	s _q =	1.20							
	s _γ =	0.84							
attore di ir	nclinazione d	el carico	(Vesic, 197	70):					
	i _c =	0.82		m =	1.71				
i	i _q =	0.83							
i	i _γ =	0.75							
	q _{lim} =	214	kN/m2						
	N _{lim} =	105	kN						
	γ _{R3} =	2.3							
1	$N_{Rd} = N_{lim}/\gamma_{R}$	3 =	45.5						
	$F_s = N_{Rd}$	N =	1.78	ok					

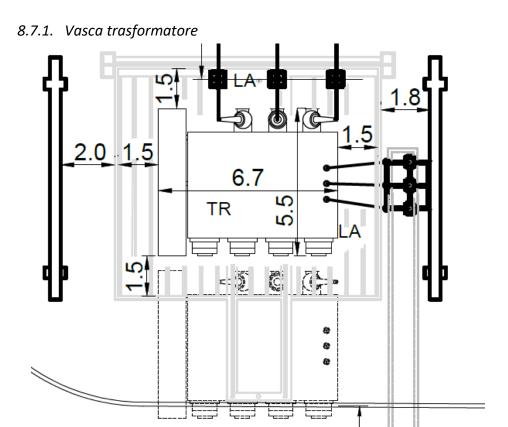


Figura 8.23 – Planimetria della vasca del trasformatore

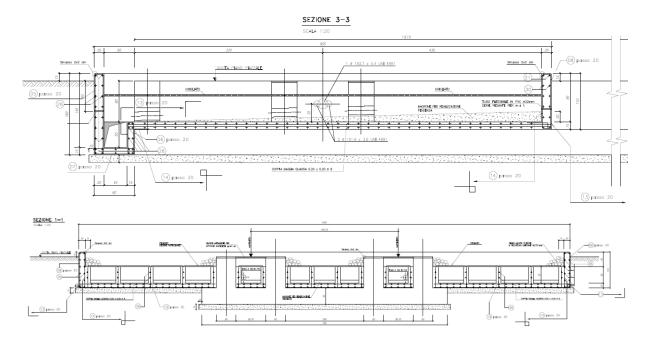
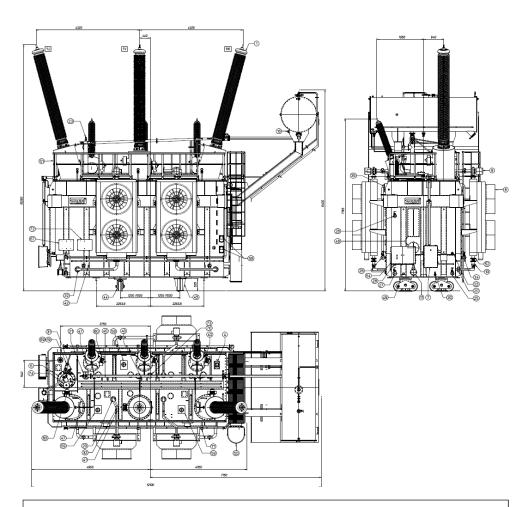



Figura 8.24 – Sezioni vasca trasformatore

RELAZIONE DI CALCOLO DELLE FONDAZIONI Pag. 77

DATI TECNICI TECHNICAL DATA CA	RACTERISTIQUES
TRASF. TRIFASE TIPO THREE PHASE TRANSF. TYPE : ATOE (OFAF) Hz TRANSF. TRIPHASE TYPE	: 50
POTENZA NOMINALE RATING POWER PUISSANCE NOMINALE MVA: 250	
TENSIONI A VUOTO NO LOAD RATIO TENSION A VIDE V: 400000 / 155000±5×2%	
COLLEGAMENTI CONNECTIONS : STELLA CON NEUTRO COUPLAGES	
GRUPPO VETTORIALE VECTOR GROUP : YNa0 GROUPE VECTORIEL	
NORME DI RIFERIMENTO STANDARDS : CE EN 60076 NORME DE EXECUTION	
PESI WEIGHTS OIL : 57 Tons ESTRAIBILE CORE & COILS : 115 Tons DECUVABLE	TOTALE TOTAL : 222 Tons TOTAL
CLIENTE CUSTOMER : TERNA Rete Italia CLIENT	
ORDINE CLIENTE CUSTOMER ORDER : C.Q. 6000003310 del 12.01.2 ORDRE CLIENT	2021

Figura 8.25 – Dati tecnici trasformatore

4434344447.V	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dog 79
45044144			RELAZIONE DI CALCOLO	Pag. 78
			DELLE FONDAZIONI	

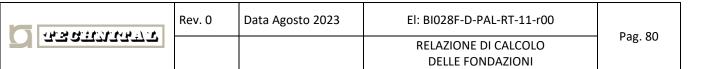
La vasca del trasformatore deve avere un volume tale da raccogliere l'olio del trasformatore in caso di perdita, con un margine di sicurezza di almeno il 20%; considerando che il trasformatore contiene 57'000 kg di olio (con densità pari a 0.90 kg/lt), la capienza minima della vasca deve essere di circa 63 mc.

In considerazioni delle dimensioni effettive, determinate anche dalla geometria del trasformatore, la capienza della vasca risulta effettivamente di circa 220 mc, adeguata quindi alla necessità.

Il trasformatore poggia su quattro muri al centro della vasca, che trasferiscono il carico alla platea di fondazione.

Intorno al trasformatore il piano di calpestio è costituito da pannelli in grigliato elettrosaldato, per consentire il transito per operazioni di manutenzione e lasciare la possibilità dello sversamento dell'olio del trasformatore nella vasca in caso di perdite.

I pannelli in grigliato sono poggiati sulle pareti laterali della vasca e su muretti rompitratta, ed hanno una luce di calcolo massima pari a 1.00 m.


Si prescrive l'utilizzo di un grigliato di portata analoga al grigliato Orsogril Potissimum Edilizia 40x2 mm maglia 25x76 mm (peso circa 25 kg/mq) o equivalente, che garantisce una portata di almeno 6.00 kN/mq per una luce di calcolo fino a 1.50 m.

				ANTITACCO ANTISFER		SFERA	EDIL	.IZIA
BAF PORT		BARRA TRASVERSALE	N. barre portanti	67	47	47	41	41
		L	Maglia	15x76	22x38	22x76	25x24	25x76
mm		mm	Peso	kg/m²	kg	/m²	kg	/m²
25	2	998		25,2	-	18,0	18,4	15,8
30	2	998		30,1	-	21,5	-	18,9
40	2	998		40,1	-	-	-	25,0
25	3	999		38,1	-	-	-	23,6
30	3	999		45,7	-	32,2*	-	28,2
40	3	999		61,0	-	-	-	37,6
50	3	999		76,2	-	-	-	46,9
60	3	999		92,4	-	-	-	57,1
70	3	999		107,8	-	-	-	66,5
80	3	999		123,2	-	-	-	-
40	4	1000		-	-	57,6	-	50,4
50	4	1000		-	-	72,0		63,0
60	4	1000		-	-	87,2	-	76,3
70	4	1000		-	-	101,8	-	89,0

Figura 8.26 – Caratteristiche dei grigliati

				,	INTERASSE BARR	RE PORTANTI mm		,	
BARRA PORTANTE		11	15	22	25	30	34	44	66
		mm	mm	mm	mm	mm	mm	mm	mm
20 x 2	luce netta	1129	1045	933	894	842	807	741	633
20 X Z	freccia	5,00	5,00	4,65	4,46	4,21	4,02	3,70	2,96
25 2	luce netta	1335	1235	1123	1087	1039	1007	926	792
25 x 2	freccia	5,00	5,00	5,00	5,00	5,00	5,00	4,62	3,71
30 x 2	luce netta	1531	1417	1287	1247	1191	1154	1082	950
30 X Z	freccia	5,00	5,00	5,00	5,00	5,00	5,00	5,00	4,44
40 2	luce netta	1900	1758	1597	1547	1478	1432	1343	1214
40 x 2	freccia	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00
252	luce netta	1478	1367	1242	1203	1150	1114	1045	926
25 x 3	freccia	5,00	5,00	5,00	5,00	5,00	5,00	5,00	4,62
202	luce netta	1694	1568	1425	1380	1318	1278	1198	1082
30 x 3	freccia	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00
40 x 3	luce netta	2102	1945	1768	1712	1636	1585	1486	1343
	freccia	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00
	luce netta	2485	2300	2090	2024	1934	1874	1757	1588
50 x 3	freccia	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00
	luce netta	2850	2637	2396	2321	2217	2149	2015	1821
60 x 3	freccia	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00
702	luce netta	3199	2960	2690	2605	2489	2412	2262	2044
70 x 3	freccia	5,00	5,00	5,00	4,99	5,00	5,00	5,00	5,00
	luce netta	3536	3272	2973	2880	2751	2667	2500	2259
80 x 3	freccia	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00
	luce netta	1821	1685	1531	1483	1417	1373	1287	1163
30 x 4	freccia	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00
	luce netta	2259	2090	1900	1840	1758	1704	1597	1443
40 x 4	freccia	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00
	luce netta	2671	2471	2246	2175	2078	2014	1888	1706
50 x 4	freccia	5,00	4,99	5,00	5,00	5,00	5,00	5,00	5,00
	luce netta	3062	2834	2575	2494	2383	2309	2165	1956
60 x 4	freccia	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00
70 *	luce netta	3437	3181	2890	2800	2675	2592	2430	2196
70 x 4	freccia	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00

Figura 8.27 – Tabelle di portata dei grigliati

Dimensioni trasformatore [m]					
larghezza Lx	10.00				
lunghezza Ly	6.20				
Altezza trasformatore da piano campagna	7.00				
Dimensioni platea [m]					
larghezza Lx	7.50	Lx < Ly			
lunghezza Ly	9.00				
spessore	0.65				
profondità piano di posa	1.45				
profondità minima falda	10.00				
Analisi dei carichi (valori caratteristici)					
·	kN/mq	mq		kN	H appl. [m]
Peso macchinari				2220.00	3.50
G1 platea	16.25	67.50	=>	1096.88	
G1 pareti perimetrali (H 0.95 m)	23.75	3.00	=>	71.25	
G1 pareti supporto trasformatore (H 0.80 m)	20.00	20.64	=>	412.80	
G1 pareti supporto grigliati (H 0.50 m)	12.50	12.90	=>	161.25	
G2 grigliati + ghiaia 20 cm	4.70	45.90	=>	215.73	
Q su grigliati	11.00	21.00	=>	231.00	
			0.80	-0.40	0.10
	kN/mq	Ct	sopravento	sottovento	radente
Valore di riferimento vento	0.50	1.80	0.72	-0.36	0.09
Ordinata massima spettro SLV (adimensionale su g)	0.05				
Calcolo delle azioni (azioni caratteristiche e SLV)					
,	Risultante [kN]	H _{appl.} su	M _{rib}		
Dis		fond. [m]	[kN m]		
Ris. vento su trasformatore (sup. 7.00x6.20) dir X	46.87	4.30	201.55 201.55		
Ris. vento su trasformatore (sup. 7.00x10.00) dir Y	75.60	4.30	325.08		
			325.08		
Risultante sisma su trasformatore	111.00	4.30	477.30		
			477.30		

Verifica a ribaltamento per sisma				
La verifica a ribaltamento più sfavorevole è con sis	sma in direzione X			
	Risultante [kN]		H _{appl.} su fond. [m]	
Risultante sisma su trasformatore	111.00		4.95	549.45
				549.45
Contributi stabilizzanti:	[kN]	[%]	braccio [m]	M _{stab} [kN m]
Peso macchinari	2220.00	100%	3.75	8325.00
G1 platea	1096.88	100%	3.75	4113.28
G1 pareti perimetrali (H 0.95 m)	71.25	100%	3.75	267.19
G1 pareti supporto trasformatore (H 0.80 m)	412.80	100%	3.75	1548.00
G1 pareti supporto grigliati (H 0.50 m)	161.25	100%	3.75	604.69
G2 grigliati + ghiaia 20 cm	215.73	0%	3.75	0.00
				14858.16
		$M_{Sd}/M_{stab} =$	27.04	> 1.0 OK
Verifica a scorrimento per sisma				
Azioni sollecitanti			[kN]	
Risultante sisma su macchinari			111.00	
			111.00	
	F _{Sd}	17	F _{stab}	0.20
Contributi stabilizzanti:	[kN]	[%]	[kN]	
Peso macchinari	2220.00	100%	444.94	
G1 platea	1096.88	100%	219.84	
G1 pareti perimetrali (H 0.95 m)	71.25	100%	14.28	
G1 pareti supporto trasformatore (H 0.80 m)	412.80	100%	82.74	
G1 pareti supporto grigliati (H 0.50 m)	161.25	100%	32.32	
G2 grigliati + ghiaia 20 cm	215.73	0%	0.00	
			794.12	
		F _{Sd} /F _{stab} =	7.15	> 1.1 OK

Data Agosto 2023

RELAZIONE DI CALCOLO DELLE FONDAZIONI Pag. 82

CALCOLO	DELLA CA	APACITA' I	PORTANTE	E DELLE F	ONDAZION	DIRETTE	OMBINAZ		VENTO
Dimensioni	del plinto							у	
	B =	7.50							
spessore ri	L =	9.00	m m				_		L
spessore for		0.65							x
	D =	1.45		profondità	del piano di	fondazione			-
0 11 11	. 01.11. 11								
Sollecitazio	oni SLU alla	a base del p	<u>olinto</u>						_
	N =	5431.28	kN	Azione as	siale senza	variabili grig	liati		
	N =	5431.28	kN	Azione as	siale depura	ata della sott	ospinta	В	
	V _x =	70.31	kN						
	V _y =	0.00	kN						
	$M_{xx} =$	0.00	kNm						
	M _{yy} =	348.02	kNm						
Jaratteristi	che del ter	reno							
	Terreno im	merso [s/n]	=	NO					
	γ =		kN/m3		cifico del ter	reno posto s	opra il pian	o di fondaz	zione
	γ'=	19.0	kN/m3						
	γ2 =		kN/m3						
	γ2 ' =		kN/m3						
	φ =	26							
	c' =	0	kN/m2						
Calcolo del	la capacità	portante							
	F =	70.31	kN						
	F/N =	0.01							
	e _x =	0.06	m	e _y =	0.00	m			
	B' =	7.37		L' =	9.00				
	_			_	0.50				
	q = γ ' D =	27.55	kN/m2						
-			10==:						
⊢attori di c	apacità por	tante (Vesi	c, 1975):						
	N _c =	22.25							
		11.85							
	N _q =	12.54							
	$N_{\gamma} =$	12.54							
Fattori di fo	rma della f	ondazione	De Beer, 1	967):					
	s _c =	1.16							
	s _q =	1.40							
	s _γ =	0.67							
Eattors di !	oolinaziaz -	dol comic -	(Vocio 10	70):					
allore al I	iciii iazione	del carico	(vesic, 19	70).					
	i _c =	0.98		m =	1.55				
	i _q =	0.98							
	i _γ =	0.97							
	1								
	q _{lim} =	1 019	kN/m2						
	N _{lim} =	67 610	kN						
	γ _{R3} =	2.3							
	$N_{Rd} = N_{lim}/$	γ _{R3} =	29395.7						

CALCOLO	DELLA CA	APACITA' I	ORIANTE	DELLE F	UNDAZION	DIKETTE	COMBINA	ZIONE	SISMA
<u>. </u>								y	
Dimension	i del plinto							-	
	B =	7.50	m						
	Б = L =	9.00							L
spessore ri			m						
spessore for		0.65							x
эрсэзогс к	D =	1.45		profondità	del piano di	fondazione			A
	<i>D</i> =	1.40		protoriuita	dei piario di	IOIIGGZIOIIG			
Sollecitazio	oni alla bas	e del nlinto							
O O II O O II O O II	orn and bao	<u>o ao. pto</u>							
	N =	4177.91	kN	Azione as	siale senza	variabili gri	gliati		
SI	N =	4177.91			siale depura			В	
	V _x =	111.00							
		33.30							
	V _y =								
	M _{xx} =	164.84	kNm						
	M _{yy} =	549.45	kNm						
Caratteristi	che del terr	eno							
	Terreno imi	merso [s/n]	=	NO					
	γ =		kN/m3		ifico del ter	reno posto	sopra il pia	no di fondaz	zione
	γ'=		kN/m3	,		poolo	a ii più		
	$\gamma = \gamma = \gamma = \gamma = \gamma$		kN/m3						
	γ2 ' =		kN/m3						
		26							
	φ =		kN/m2						
	υ =	U	NIN/IIIZ						
Coloolo do	lla capacità	nortonto							
Calculo de	iia Capacita	portante							
	г	445.00	LAN						
	F =	115.89							
	F/N =	0.03							
	e _x =	0.13		e _y =	0.04				
	B' =	7.24	m	L' =	8.92	m			
	q = γ ' D =	27.55	kN/m2						
Fattori di c	apacità por	tante (Vesi	c, 1975):						
	N _c =	22.25							
	N _q =	11.85							
	$N_{\gamma} =$	12.54							
	1 Ψγ —	12.54							
Eattori di fa	orma della f	ondoziono	(Do Poor 1	067\.					
ration unit	Jilla uella i	Jiluazione	(De Deel, I	967).					
	s _c =	1.16							
	s _q =	1.40							
	s _γ =	0.68							
Fattore di i	nclinazione	del carico	(Vesic, 197	70):					
	i _c =	0.95		m =	1.55				
	i _q =	0.96							
	i _γ =	0.93							
	q _{lim} =	978	kN/m2						
	N _{lim} =	63 162	kN						
	γ _{R3} =	2.3							
	$N_{Rd} = N_{lim}/2$	γ _{R3} =	27461.7						
		-							

<u> स्थितःस्यस्यस्य</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dag 94
7 322777377			RELAZIONE DI CALCOLO DELLE FONDAZIONI	Pag. 84

8.8. Strutture di fondazione torre faro

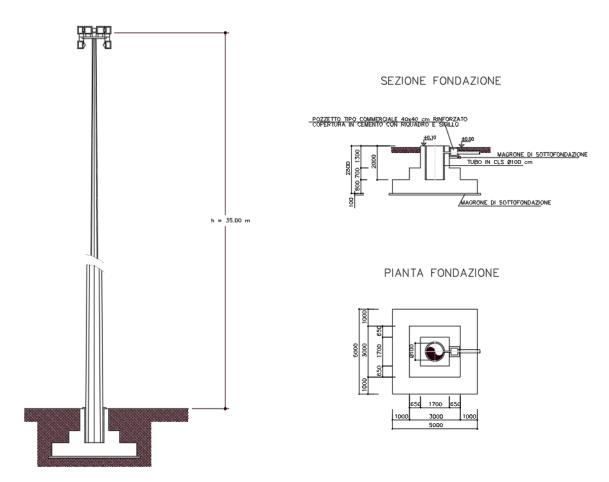


Figura 8.28 – Planimetria e sezione plinto torre faro

Dimensioni cabina [m]				фу	
larghezza Lx					_
lunghezza Ly					
larghezza copertura Lcopx	2.00				
larghezza copertura Lcopy	2.00				L
Altezza estradosso copertura da piano campagna	35.00				
Dimensioni plinto [m]					X
spessore ricoprimento	2.00				
larghezza Lx	5.00				
lunghezza Ly	5.00				
spessore	0.80			В	
Analisi dei carichi (valori caratteristici)					
	kN/mq	mq		kN	H appl. [m]
G1 corpo illuminante				2.00	35.00
G1 struttura				10.00	17.50
G1 platea	20.00	25.00	=>	500.00	
G1 baggiolo	20.00	9.00	=>	180.00	
G2 riempimento	40.00	16.00	=>	640.00	
	kN/mq	μ		kN	
Valore di riferimento neve	0.65	0.80	=>	2.08	
		mq		kN	
Carico per uso cabina	0.00	4.00	=>	0.00	
			0.80	-0.40	0.10
	kN/mq	c_{t}	sopravento	sottovento	radente
Valore di riferimento vento	0.50	1.80	0.72	-0.36	0.09
Ordinata massima spettro SLV (adimensionale su g)	0.050				
Calcolo delle azioni (azioni caratteristiche e SLV)					
,	Risultante [kN]	H appl. su fond. [m]	Mrib [kN m]		
Risultante vento dir X	18.90	19.50	368.55		
Risultante vento dir Y	18.90	19.50		368.55	
			368.55	368.55	
Risultante sisma G1+corpo illuminante	0.10	37.00	3.70		
Risultante sisma G1 struttura	0.50	19.50	9.75		
	5.50	. 5.00	13.45		

सम्बद्धाः <u>। सम्बद्धाः । स</u>	Rev. 0	Data Agosto 2023	El: BI028F-D-PAL-RT-11-r00	Dag 96
422441477			RELAZIONE DI CALCOLO DELLE FONDAZIONI	Pag. 86

Verifica a ribaltamento per vento (SLU)				
La verifica a ribaltamento più sfavorevole è con ve	ento in direzione X			
	Risultante [kN]		H appl. su imposta [m]	
Risultante vento dir X	28.35		20.30	575.51
				575.51
Contributi stabilizzanti:	[kN]	[%]	braccio [m]	M _{stab} [kN m]
G1 corpo illuminante	2.00	100%	2.50	5.00
G1 struttura	10.00	100%	2.50	25.00
G1 platea	500.00	100%	2.50	1250.00
G1 baggiolo	180.00	100%	2.50	450.00
G2 riempimento	640.00	0%	2.50	0.00
				1730.00
		$M_{Sd}/M_{stab} =$	3.01	> 1.0 OK
Verifica a scorrimento per vento (SLU)				
Azioni sollecitanti			[kN]	
Risultante vento dir X			28.35	
			28.35	
	F _{Sd}	17	F _{stab}	0.20
Contributi stabilizzanti:	[kN]	[%]	[kN]	
G1 corpo illuminante	2.00	100%	0.40	
G1 struttura	10.00	100%	2.00	
G1 platea	500.00	100%	100.21	
G1 baggiolo	180.00	100%	36.08	
G2 riempimento	640.00	0%	0.00	
			102.62	
		F _{Sd} /F _{stab} =	3.62	> 1.1 OK

Data Agosto 2023

RELAZIONE DI CALCOLO DELLE FONDAZIONI

JALCOLO	DELLA CA	APACITA' I	PORTANTE	DELLE FO	ONDAZIONI	DIRETTE	COMBINAZ	ZIOŅE	VENTO
N	-1-1-1:-4-							ф	
<u>Dimensioni</u>	dei piinto							'	
	3 =	5.00	m						
	_ =	5.00	m						L
spessore ric		2.00							
spessore fo		0.80							X
) =	0.10	m	profondità	del piano di	fondazione	9		
Sollecitazio	ni SLLL alla	haca dal r	olinto						
DONECITAZIO	III SLU alla	i base dei j	JIIIIO		con peso r	iempimento			
	V =	899.60	kN		N =	1731.60			
	/ _x =	28.35						В	
		0.00			senza peso	n riempime	nto		
	M _{xx} =		kNm		N =	899.60	i ii o		
					14 =	033.00			
	M _{y y} =	575.51	KNM						
Caratteristic	he del terr	eno							
-	Terreno imi	merso [s/n]		NO					
	y =	19.0		peso spec	ifico del terr	eno posto	sopra il piar	no di fonda:	zione
	y '=		kN/m3						
	y2 =		kN/m3						
	y2 ' =		kN/m3						
	b =	26							
(c' =	0	kN/m2						
Calcolo dell	a capacità	portanto							
Jaicolo dell	а сарасна	portante							
	= =	28.35	kN						
	=/N =	0.03							
	e _x =	0.64	m	e _y =	0.00	m			
	3' =	3.72	m	L' =	5.00	m			
(q = γ ' D =	1.9	kN/m2						
attori di ca	pacità por	ante (Vesi	c, 1975):						
	V _c =	22.25							
	N _q =	11.85							
l	$N_{\gamma} =$	12.54							
			<u> </u>						
attori di fo	ma della fo	ondazione	(De Beer, 1	967):					
		4 4 5							
	S _c =	1.15							
	Sq =	1.36							
	s _γ =	0.70							
attore di ir	olinaziona	dal carias	(Vacia 10	70):					
attore or Ir	iciii iazi0110	uei calico	(1000)	, oj.					
	c =	0.95		m =	1.57				
		0.95			1.57				
	q =								
	γ =	0.92							
	q _{lim} =	316	kN/m2						
	10m -	310	₩ 1114						
ı	N _{lim} =	5 876	kN						
	y _{R3} =	2.3							
- 1	$N_{Rd} = N_{lim}/r$	Vp2 =	2554.6						