COMMITTENTE:

PROGETTAZIONE:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N.443/01

DIREZIONE TECNICA - CENTRO DI PRODUZIONE MILANO

PROGETTO DEFINITIVO PER APPALTO INTEGRATO

POTENZIAMENTO DELLA LINEA RHO-ARONA. TRATTA RHO-GALLARATE QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

OPERE PRINCIPALI – SOTTOVIA E SOTTOPASSI

PROLUNGAMENTO SOTTOVIA VIA DEI ROVEDI AL KM 1+033.53 - PREGNANA MILANESE

Relazione di calcolo

							COALA
							SCALA:
							-
COMMESSA	LOTTO FASE	ENTE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV	·.

MDL1 12 D 26 CL SL0100 001 B

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	A	Itorizzato Data
Α	Emissione Esecutiva	M. Passaro	Nov. 2010			S. Borelli			ACC ACC
В	Recepimento osservazioni Validazione	M. Passaro	Apr. 2011	U		8. Borelli			A STAN
									G. Dong
									dine ing
	DI 112D26CI SI 0100001 B							I Fla	4 50

File: MDL112D26CLSL0100001_B.doc

n. Elab.:

Prolungamento sottovia Via Dei Rovedi al km 1+033.53 – Pregnana Milanese: Relazione di calcolo COMMESSA LOTTO
MDL1 12

CODIFICA D 26 CL DOCUMENTO SL 01 00 001 REV. FOGLIO

B 2 di 36

INDICE

1]	PREMESSA	3
2		CARATTERISTICHE DEI MATERIALI	4
3		PARAMETRI GEOTECNICI	
	3.1		
4		NORMATIVA DI RIFERIMENTO	
5		ELABORATI DI RIFERIMENTO	
		ANALISI STRUTTURALE	
6			
	6.1		
	6.2		
		6.2.1 Condizioni di carico	
	(6.2.2 Combinazioni di carico	
	6.3		
	6.4		.34
7	(CONCLUSIONI	36

Prolungamento sottovia Via Dei Rovedi al km 1+033.53 – Pregnana Milanese: Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 CL
 SL 01 00 001
 B
 3 di 36

1 PREMESSA

La presente relazione di calcolo ha per oggetto la verifica strutturale del sottopasso (SL01) al km 1+033.53 per il potenziamento della linea ferroviaria Rho – Arona tratta Rho – Gallarate.

Tale tratta è ubicata a nord-ovest del capoluogo lombardo ed interessa la provincia di Milano corrispondente con una fascia di territorio compresa nei comuni di Rho, Pregnana Milanese, Vanzago, Pogliano Milanese, Nerviano, Parabiago, Canegrate e Legnano, e la provincia di Varese corrispondente con una fascia di territorio compresa nei comuni di Castellanza, Busto Arsizio e Gallarate.

Viene condotta la verifica in condizioni sismiche per un sito classificato a bassa sismicità (S=6).

PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Prolungamento sottovia Via Dei Rovedi al km 1+033.53 – Pregnana Milanese: Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 CL
 SL 01 00 001
 B
 4 di 36

2 CARATTERISTICHE DEI MATERIALI

I materiali impiegati presentano le seguenti caratteristiche:

Calcestruzzo per magrone: $Rck = 15 \text{ N/mm}^2$

 $\sigma_{\rm c,amm} =$

6.00

 N/mm^2

 $\tau_{\rm c0} =$

0.40

 N/mm^2

 $\tau_{c1} =$

1.40

 N/mm^2

Calcestruzzo per opere di fondazione ed in elevazione: Rck = 35 N/mm².

 $\sigma_{c,amm} =$

11.00

N/mm²

 $\tau_{c0} =$

0.66

 N/mm^2

 $\tau_{c1} =$

1.97

 N/mm^2

Acciaio per cemento armato: FeB44k

 $\sigma_{s,amm} =$

255 N/mm²

PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Prolungamento sottovia Via Dei Rovedi al km 1+033.53 – Pregnana Milanese: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 CL	SL 01 00 001	В	5 di 36

3 PARAMETRI GEOTECNICI

La caratterizzazione stratigrafica della tratta in esame è stata individuata dalle informazioni ottenute dalla campagna d'indagine svolta nell'anno 2008.

Negli elaborati $[E_2] \div [E_4]$ e $[E_6] \div [E_11]$, oovero profilo geologico-tecnico e profilo geotecnica della tratta, sono rappresentate le indagini eseguite durante la campagna geognostica del 2008: in particolare, nelle immediate vicinanze dell'opera in esame (prg. km 1+026.70) è stato eseguito il sondaggio S24, spinto fino alla profondità di 20.0 m dal p.c.

Sulla base di quanto sopra e dalla caratterizzazione stratigrafica e dei parametri geotecnica di progetto riportati nella relazione geotecnica generale (elaborato [E_5]), per l'opera in oggetto è stata individuata la caratterizzazione stratigrafico-geotecnica di progetto riportata nella seguente scheda geotecnica, caratterizzante il sito di ubicazione dell'opera.

Prolungamento sottovia Via Dei Rovedi al km 1+033.53 – Pregnana Milanese: Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 CL
 SL 01 00 001
 B
 6 di 36

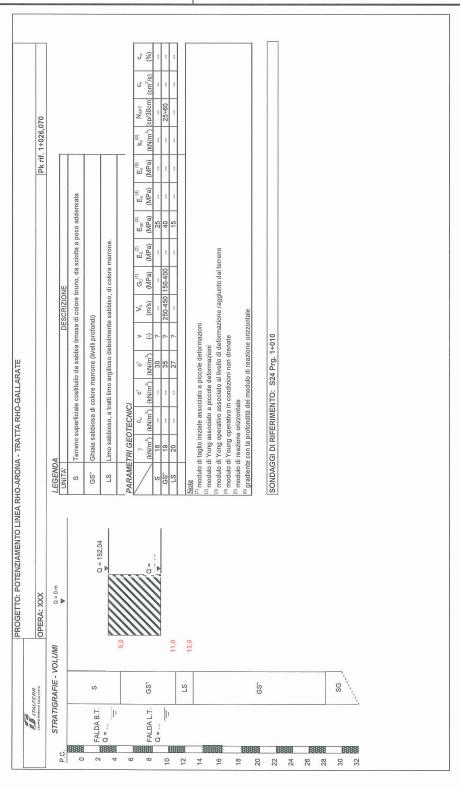


Figura 1

PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Prolungamento sottovia Via Dei Rovedi al km 1+033.53 – Pregnana Milanese: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 CL	SL 01 00 001	В	7 di 36

I simboli rappresentati nella scheda geotecnica hanno il seguente significato:

peso di volume naturale

		•
$C_{11} =$	coesione noi	n drenata

c' = coesione efficace

 $\phi' =$ angolo d'attrito

v coefficiente di Poisson

V_s = velocità delle onde di taglio

 G_0 = modulo di taglio iniziale associato a piccole deformazioni

E_o = modulo di Young operativo associato al livello di deformazione raggiunto dal terreno

 E_{op} = modulo di Young operativo associato al livello di deformazione raggiunto dal terreno

 $E_u = modulo di Young operativo in condizioni non drenate$

 $E_s =$ modulo di reazione orizzontale

K_h = gradiente con la profondità del modulo di reazione orizzontale

N_{SPT} = numero di colpi/30 cm di riferimento nel calcolo dei pali di fondazione

 $c_v = c_v = coefficiente di consolidazione primaria$

 c_{α} = coefficiente di consolidazione secondaria

Note: - il valore di φ' adottato per i terreni tipo GS" è stato considerato pari a quello dello strato GS' a favore di sicurezza.

- il valore di c' = 0 kPa adottato per i terreni tipo LS è stato adottato a favore di sicurezza.
- il valore del modulo di Young E_{op} adottato per i terreni tipo S è stato stimato cautelativamente a favore di sicurezza.

Per i dettagli circa le prove in sito ed in laboratorio si rimanda alla relazione geotecnica generale, elaborato [E_5].

Per quanto concerne la falda, nella zona in esame il livello di falda è posto a 148 m s.m.l.m. come si evince dal profilo geotecnica di riferimento (si veda l'elaborato [E_11], in particolare in corrispondenza del sondaggio S24).

PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Prolungamento sottovia Via Dei Rovedi al km 1+033.53 – Pregnana Milanese: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 CL	SL 01 00 001	В	8 di 36

3.1 INterazione terreno struttura

Di seguito sono trattati gli aspetti di natura geotecnica riguardanti l'interazione terreno-struttura relativamente all'opera in esame.

Per la determinazione della costante di sottofondo si può fare riferimento alle seguenti formulazioni assimilando il comportamento del terreno a quello di un mezzo elastico omogeneo:

B = 5.90 m

L = 14.0 m

$$s = B \cdot c_t \cdot (q - \sigma_{v0}) \cdot (1 - v^2) / E$$

dove:

s = cedimento elastico totale;

B = lato minore della fondazione;

c_t = coefficiente adimensionale di forma ottenuto dalla interpolazione dei valori dei coefficienti proposti dal Bowles, 1960 (L = lato maggiore della fondazione):

$$c_t = 0.853 + 0.534 \ln (L/B) = 1.31$$

rettangolare con L / B≤10

$$c_t = 2 + 0.0089 (L / B)$$

rettangolare con L / B>10

q = pressione media agente sul terreno;

 σ_{v0} = tensione litostatica verticale alla quota di posa della fondazione;

v = coefficiente di Poisson del terreno;

E = modulo elastico medio del terreno sottostante il tombino (media su una altezza pari a 2 B).

Il valore della costante di di sottofondo kw è valutato attraverso il rapporto tra il carico applicato ed il corrispondente cedimento pertanto, si ottiene:

$$k_w = E / [(1-v^2) \cdot B \cdot c_t]$$

Il valore di kw da utilizzare nelle analisi per il dimensionamento dei manufatti può essere determinato considerando che i carichi applicati alla struttura sono di natura impulsiva e di breve durata (treno, sisma); la risposta del terreno di fondazione in condizioni dinamiche è notevolmente più rigida rispetto a quella usualmente considerata per carichi statici di lunga durata. Sulla base di indicazioni di letteratura, si possono pertanto indicare moduli operativi per la valutazione dei parametri d'interazione considerano moduli del terreno almeno 3÷5 volte superiori rispetto a quelli adottabili per problemi statici.

PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Prolungamento sottovia Via Dei Rovedi al km 1+033.53 – Pregnana Milanese: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 CL	SL 01 00 001	В	9 di 36

Per l'opera in esame, si può considerare un modulo elastico del terreno compreso nel seguente range:

 $E = 30000 \div 100000 \text{ kPa},$

dal quale risulta, secondo le formulazioni sopra riportate, un valore della costante di sottofondo compreso nel range:

 $kw = 30000 \div 100000 / [(1-0.16) \cdot 5.90 \cdot 1,31] \approx 5000 \div 15000 \text{ kN } / \text{ m}^3$

Nelle calcolazioni è stato assunto, operando a vantaggio di sicurezza, una costante di sottofondo k_w = 5000 kN / m^3 = 0.05 N/mmq/cm.

PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Prolungamento sottovia Via Dei Rovedi al km 1+033.53 – Pregnana Milanese: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 CL	SL 01 00 001	В	10 di 36

4 NORMATIVA DI RIFERIMENTO

Il dimensionamento e la verifica degli elementi strutturali sono stati condotti nel rispetto delle vigenti normative di seguito riportate:

- L. 05/11/1971 n. 1086: "Norme per la disciplina delle opere in conglomerato cementizio armato normale e precompresso ed a struttura metallica";
- **D.M.** 14/02/1992: "Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche" (valido per il metodo alle tensioni ammissibili);
- Circ. Min. 24/06/1993 n. 37406: "Istruzioni relative alle Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche" (valido per il metodo alle tensioni ammissibili);
- **D.M.** 09/01/1996: "Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche";
- Circ. Min. 15/10/1996 n. 252: "Istruzioni relative alle Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche";
- **D.M.** 16/01/1996: "Norme tecniche relative ai criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e dei sovraccarichi";
- Circ. Min. 04/07/1996 n. 156 STC: "Istruzioni per l'applicazione delle Norme tecniche relative ai criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e dei sovraccarichi";
- L. 02/02/1974 n. 64: "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche";
- **D.M. 16/01/1996**: "Norme tecniche per le costruzioni in zona sismica";
- Circ. Min. 10/04/1997 n. 65: "Istruzioni per l'applicazione delle Norme tecniche per le costruzioni in zona sismica di cui al D.M: 16/01/1996";
- **D.M.** 11/03/1988: "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione ed il collaudo delle opere di sostegno delle terre e delle opere di fondazione";
- Circ. Min. 24/09/1988 n. 30483: "Norme tecniche per terreni e fondazioni: istruzioni applicative del D.M. 11/03/1988";
- Asa Servizi di Ingegneria (Ferrovie dello Stato), Istruzione n. I/SC/PS-OM/2298 del 02/06/1995, Testo completo delle relative integrazioni: 13/01/1997: "Sovraccarichi per il calcolo dei ponti ferroviari. Istruzioni per la progettazione, l'esecuzione ed il collaudo";
- Ferrovie dello Stato Istruzione F.S. 44/b (Testo aggiornato secondo il D.M. 16/01/1999): "Istruzioni tecniche per i manufatti sotto binario da costruire in zona sismica";

• Ente Ferrovie dello Stato - Divisione tecnologie e sviluppo del sistema servizio Alta Velocità: "Manuale di progettazione esecutiva";

PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Prolungamento sottovia Via Dei Rovedi al km 1+033.53 – Pregnana Milanese: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 CL	SL 01 00 001	В	12 di 36

5 ELABORATI DI RIFERIMENTO

Per la redazione della presente relazione si è fatto riferimento alla seguente documentazione:

- [E_1] Potenziamento della linea Rho-Arona tratta Rho-Gallarate Progetto Definitivo Relazione geologica, geomorfologica, idrogeologica.
- [E_2] Potenziamento della linea Rho-Arona tratta Rho-Gallarate Progetto Definitivo Profilo geologicotecnico binario pari linea storica – tav. 1/3.
- [E_3] Potenziamento della linea Rho-Arona tratta Rho-Gallarate Progetto Definitivo Profilo geologicotecnico binario pari linea storica – tav. 2/3.
- [E_4] Potenziamento della linea Rho-Arona tratta Rho-Gallarate Progetto Definitivo Profilo geologicotecnico binario pari linea storica – tav. 3/3.
- [E_5] Potenziamento della linea Rho-Arona tratta Rho-Gallarate Relazione geotecnica generale.
- [E_6] Potenziamento della linea Rho-Arona tratta Rho-Gallarate Profilo geotecnica tav. 1/6.
- [E 7] Potenziamento della linea Rho-Arona tratta Rho-Gallarate Profilo geotecnica tav. 2/6.
- [E_8] Potenziamento della linea Rho-Arona tratta Rho-Gallarate Profilo geotecnica tav. 3/6.
- [E_9] Potenziamento della linea Rho-Arona tratta Rho-Gallarate Profilo geotecnica tav. 4/6.
- [E 10] Potenziamento della linea Rho-Arona tratta Rho-Gallarate Profilo geotecnica tav. 5/6.
- [E_11] Potenziamento della linea Rho-Arona tratta Rho-Gallarate Profilo geotecnica tav. 6/6.

POTENZIAMENTO DELLA LINEA RHO-ARONA PROGETTO DEFINITIVO PER APPALTO INTEGRATO

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Prolungamento sottovia Via Dei Rovedi al km 1+033.53 – Pregnana Milanese: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 CL	SL 01 00 001	В	13 di 36

6 ANALISI STRUTTURALE

6.1 MO0DELLO DI CALCOLO

L'analisi della struttura è stata condotta mediante un modello di calcolo agli elementi finiti implementato nel software SAP 2000.

È stato modellato un tratto di scatolare di lunghezza unitaria, utilizzando elementi "trave" disposti secondo le linee d'asse della struttura, ai quali sono state attribuite le caratteristiche geometriche e meccaniche delle sezioni reali.

In corrispondenza delle zone di giunzione tra solette e piedritti sono stati inseriti degli elementi di raccordo, modellati mediante offset infinitamente rigidi.

La reattività verticale offerta dal terreno di fondazione è stata schematizzata con elementi "spring" di rigidezza definita in funzione dei parametri geotecnici del terreno in sito.

Dai risultati ottenuti si è passati alla verifica di resistenza dei diversi elementi strutturali.

Con riferimento ai carichi e sovraccarichi, sono stati considerati tutti quelli previsti dalla normativa vigente, disposti in modo da massimizzare le sollecitazioni nei vari elementi strutturali.

Nelle pagine che seguono sono riportati la sezione trasversale schematica dell'opera, lo schema numerazione nodi ed elementi, la descrizione dei carichi elementari e la tabella delle "combinazioni di carico" con i relativi coefficienti moltiplicativi, nonché il riepilogo delle massime sollecitazioni riscontrate nel calcolo.

I tabulati del calcolo completi sono riportati nell'allegato che si affianca alla presente relazione.

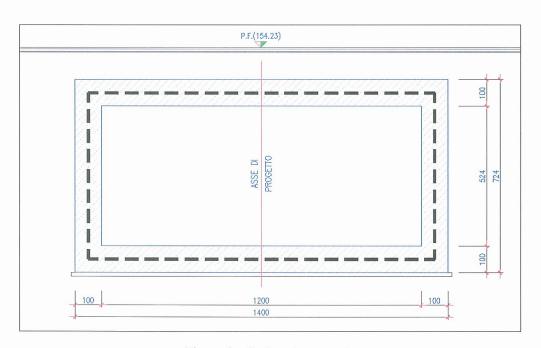


Figura 2 – Sezione trasversale

Luce interna	12.00 m	
Altezza interna	5.24 m	
Spessore ritti	1.00 m	
Spessore soletta di copertura	1.00 m	
Spessore soletta di fondazione	1.00 m	
Luce di calcolo	13.00 m	
Altezza di calcolo	6.24 m	

6.2 Analisi dei carichi

6.2.1 Condizioni di carico

Peso proprio della struttura

Il peso proprio della struttura è calcolato, in automatico, dal programma di calcolo.

Peso soletta di copertura 25*1,00*1,00 = 25 KN/m

Peso piedritti 25*1,00*1,00 = 25 KN/m

Peso soletta di fondazione 25*1,00*1,00 = 25 KN/m

Carichi permanenti portati

Il peso dei carichi permanenti in copertura è stato calcolato considerando i differenti spessori di ballast e supercompattato, ciascuno per il suo peso dell'unità di volume:

$$q_{pp} = h_b \gamma_b + h_{sc} \gamma_{sc} = 22.4 \text{ kN/m}^2$$

dove:

- h_b = spessore del ballast; (0.80 m)
- γ_b = peso specifico del ballast (18 kN/mc)
- H_{sc} = spessore del supercompattato; (0.40 m)
- γ_b = peso specifico del supercompattato (20 kN/mc)

Con riferimento invece alla zattera di fondazione è stato considerato uno strato di riempimento realizzato in cls:

$$q_r = h_r \gamma_{csl} = 0.4*20 = 8 \text{ kN/m}^2$$

Treno di carico LM71

Il treno di carico LM71 schematizza gli effetti prodotti dal traffico ferroviario normale e risulta costituito, come indicato nella figura seguente, da:

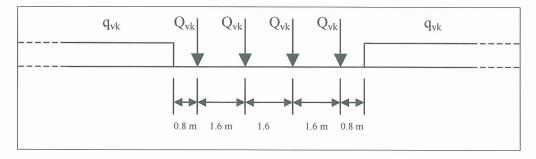


Figura 3 – Treno di carico L; 71

Prolungamento sottovia Via Dei Rovedi al km 1+033.53 – Pregnana Milanese: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 CL	SL 01 00 001	В	16 di 36

- quattro assi da 250 kN disposti ad interasse di 1.60 m (Qvk = 250 kN);
- carico distribuito di 80 kN/m in entrambe le direzioni, a partire da 0.80 m dagli assi di estremità e per una lunghezza illimitata (qvk = 80 kN/m).

In direzione longitudinale i carichi concentrati vengono considerati come carichi uniformemente ripartiti.

In direzione trasversale i carichi vengono ripartiti, a partire da una dimensione pari a 2.30 m, fino al piano medio del traverso di copertura dello scatolare, adottando una diffusione di 4:1 all'interno dello strato di ballast, 3:2 ll'interno dello strato di supercompattato e di 1/1 nello spessore del traverso di copertura dello scatolare; per cui si avrà una larghezza, in direzione trasversale, sulla quale andranno distribuiti i carichi pari a: $\Delta L = 4.133$ m

Lo scatolare è stato assimilato ad un ponte di categoria A, pertanto i carichi sopra descritti (valori caratteristici) devono essere moltiplicati per un coefficiente di adattamento $\alpha = 1.1$ (funzione del modello e della categoria del ponte).

Il carico ferroviario deve inoltre essere maggiorato attraverso un coefficiente di incremento dinamico che nel caso specifico è pari a $\phi_3 = 1.28$

Tenendo conto della ripartizione del carico Q_{vk} sulla propria superficie di influenza (1.60 m) e della ripartizione trasversale fino al piano medio del traverso di copertura (ΔL), il carico verticale a mq, uniformemente distribuito, da considerare sul traverso di copertura è pari a:

$$Q_{sf} = (\alpha * Q_{vk} * \phi) / (1.6 * \Delta L) = 53,23 \text{ kN/mq}$$

 $q_{sf} = (\alpha * q_{vk} * \phi) / (\Delta L) = 27,25 \text{ kN/mq}$

SPINTA ATTIVA

Il calcolo del coefficiente di spinta attiva si è reso necessario per la determinazione delle sovra spinte sismiche da applicare al modello. In condizioni statiche, alla struttura sono state applicate delle spinte determinate utilizzando il coefficiente di spinta a riposo del terreno ai lati dello scatolare.

Per il calcolo della spinta attiva del terreno sui piedritti il modello di riferimento è quello di Coulomb.

La teoria di Coulomb considera l'ipotesi di un cuneo di spinta a monte della parete che si muove rigidamente lungo una superficie di rottura rettilinea. Dall'equilibrio del cuneo si ricava la spinta che il terreno esercita sull'opera di sostegno. In particolare Coulomb ammette, al contrario della teoria di Rankine, l'esistenza di attrito fra il terreno e la parete, e quindi la retta di spinta risulta inclinata rispetto alla normale alla parete stesso di un angolo di attrito terra-parete.

L'espressione della spinta esercitata da un terrapieno, di peso di volume γ, su una parete di altezza H, risulta espressa secondo la teoria di Coulomb dalla seguente relazione (per terreno incoerente)

PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Prolungamento sottovia Via Dei Rovedi al km 1+033.53 – Pregnana Milanese: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 CL	SL 01 00 001	В	17 di 36

$$S = 1/2\gamma H^2 K_a$$

K_a rappresenta il coefficiente di spinta attiva di Coulomb nella versione riveduta da Muller-Breslau, espresso come:

$$Ka = \frac{\sin(\alpha + \phi)}{\sin^2 \alpha \sin(\alpha - \delta) \left[1 + \frac{\sqrt{\sin(\phi + \delta)\sin(\phi + \beta)}}{\sqrt{\sin(\alpha - \delta)\sin(\alpha + \beta)}}\right]^2}$$

dove ϕ è l'angolo d'attrito del terreno, α rappresenta l'angolo che la parete forma con l'orizzontale ($\alpha = 90^{\circ}$ per parete verticale), δ è l'angolo d'attrito terreno-parete, β è l'inclinazione del terrapieno rispetto all'orizzontale.

La spinta risulta inclinata dell'angolo d'attrito terreno-parete δ rispetto alla normale alla parete.

Il diagramma delle pressioni del terreno sulla parete risulta triangolare con il vertice in alto. Il punto di applicazione della spinta si trova in corrispondenza del baricentro del diagramma delle pressioni (1/3~H rispetto alla base della parete). L'espressione di K $_a$ perde di significato per $\beta>\phi$. Questo coincide con quanto si intuisce fisicamente: la pendenza del terreno a monte della parete non può superare l'angolo di natural declivio del terreno stesso.

Nel caso in esame il coefficiente di spinta attiva vale:

$$ka = 0.27$$

mentre la pressione del terreno ad una generica profondità z vale

$$\sigma_a = \gamma z K_a$$

SPINTA A RIPOSO

Il coefficiente di spinta a riposo è espresso dalla relazione

$$K0 = 1 - \sin \phi$$

dove φ rappresenta l'angolo d'attrito interno del terreno di rinfianco.

Nel caso in esame questo vale:

$$K_0 = 0,43$$

Quindi la pressione laterale, ad una generica profondità z e la spinta totale sulla parete di altezza H valgono

$$\sigma = \gamma z K0 + pvK0$$

PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Prolungamento sottovia Via Dei Rovedi al km 1+033.53 – Pregnana Milanese: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 CL	SL 01 00 001	В	18 di 36

$$S = 1/2 \gamma H2 K0 + pvK0 H$$

dove p_v è la pressione verticale agente in corrispondenza della calotta.

SPINTA IN PRESENZA DI SISMA

Per tener conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana).

La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma nel modo seguente.

Detta ε l'inclinazione del terrapieno rispetto all'orizzontale e β l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parete pari a

$$\epsilon' = \epsilon + \theta$$

$$\beta' = \beta + \theta$$

dove $\theta = arctg(C)$ essendo C il coefficiente di intensità sismica.

Detta S la spinta calcolata in condizioni statiche l'incremento di spinta da applicare è espresso da

$$\Delta S = A S' - S$$

dove il coefficiente A vale

$$A = \frac{\cos^2(\beta + \theta)}{\cos^2\beta \cos\theta}$$

Tale incremento di spinta deve essere applicato ad una distanza dalla base pari a 2/3 dell'altezza della parete.

Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali che si destano per effetto del sisma. Tale forza viene valutata come

$$F_i = CW$$

dove Wè il peso della parete e dei relativi sovraccarichi permanenti e va applicata nel baricentro dei pesi.

Spinta a riposo del terreno sui piedritti

A ciascun piedritto è stato applicato il diagramma di spinta indicato in figura.

POTENZIAMENTO DELLA LINEA RHO-ARONA PROGETTO DEFINITIVO PER APPALTO INTEGRATO

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Prolungamento sottovia Via Dei Rovedi al km 1+033.53 – Pregnana Milanese: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 CL	SL 01 00 001	В	19 di 36

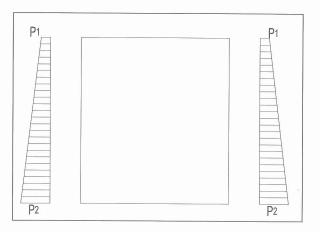


Figura 4 - Diagrammi delle spinte applicate ai piedritti

con

$$P1 = q_{pp} * K_0 + \gamma K_0 s_{sol}/2 = 18,08 KN/m$$

$$P2 = P1 + \gamma K_0 h = 71,30 KN/m$$

Spinta a riposo da LM71 sul piedritto sinistro

Nell'ipotesi che la spinta sui piedritti generata dai convogli non subisce diffusione, generando quindi un diagramma di spinta rettangolare, si ha :

$$\sigma o = Ko^*((\alpha * Q_{vk}) / (1.6 * \Delta L^*)) = 23,58 \text{ kN/mg}$$

Essendo ΔL*= 3.133 il valore della larghezza di diffusione riferita all'estrasdosso della soletta di copertura.

Si fa rilevare che indipendentemente dalla posizione longitudinale del convoglio, conservativamente la spinta da accidentale ferroviario è stata comunque stimata in funzione del carico Q_{vk} e non già dell'SW/2.

Frenatura treno LM71

Tra le azioni di avviamento e frenatura dei vari convogli di progetto, si considera quella relativa al convoglio LM71 per coerenza con il tipo di convoglio adottato per il calcolo delle spinte sul piedritto e delle azioni agenti sulla soletta di copertura.

La forza di frenatura per il convoglio in esame è pari a Q_{lb,k}=35 kN/m.

Tale azione, agisce in sommità del binario nella direzione longitudinale dello stesso e si trasferisce, attraverso opportuna distribuzione, nella soletta superiore dello scatolare sotto forma di azione assiale.

PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Prolungamento sottovia Via Dei Rovedi al km 1+033.53 - Pregnana Milanese: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 CL	SL 01 00 001	В	20 di 36

 $q_{fSW2} = Q_{lb,k} / \Delta L^* = 11,17 \text{ kN/mq}$

Variazione termica uniforme sul traverso di copertura

L'effetto delle azioni climatiche viene schematizzato attraverso l'applicazione di una variazione termica uniforme $\Delta T = +-15$ °C sul traverso di copertura.

Variazione termica a farfalla sul traverso di copertura

L'effetto delle azioni climatiche viene schematizzato attraverso l'applicazione di una variazione termica a farfalla ΔT=+-5°C sul traverso di copertura

Le azioni termiche sono state implementate nel modello con il segno alterno e quindi inviluppate al fine di cogliere le condizioni più gravose per tutte le sezioni.

Ritiro

La soletta superiore si considera soggetta ad un ritiro differenziale. Il ritiro finale viene posto pari a $\varepsilon_{cs} = 0.31*10^{-3}$, valore di normativa nel caso $\alpha \ge 60$ cm, t_0 =1-7 gg umidità relativa pari al 55%. Ai fini del calcolo l'effetto del ritiro si assimila ad una variazione di temperatura; si ha:

$$\varepsilon_{cs} = \alpha * \Delta T$$

$$\Delta T = 0.31*10^{-3}/(1*10^{-5}) = 31^{\circ}C$$

nel rispetto della normativa FS vigente, trattandosi di un fenomeno lento, l'effetto del ritiro si determina considerando un valore convenzionale del modulo di elasticità pari a 1/3E. Pertanto, per comodità di calcolo, per utilizzare un unico valore del modulo di elasticità E, si considera un valore di ΔT equivalente pari a $1/3\Delta T = 10.33$ °C.

Incremento sismico della spinta del terreno

Tale incremento è calcolato a partire dai coefficienti di spinta attiva in condizione statica ($k_a = 0,27$) e sismica (k_{as} = 0.295).

Detta S la spinta calcolata in condizioni statiche l'incremento di spinta da applicare è espresso da

$$\Delta S = A S' - S$$

dove il coefficiente A si è posto pari ad 1,00.

Tale incremento di spinta deve essere applicato ad una distanza dalla base pari a 2/3 dell'altezza della parete, per tale motivo, ai piedritti sono stati applicati i diagrammi di spinta riportati in figura.

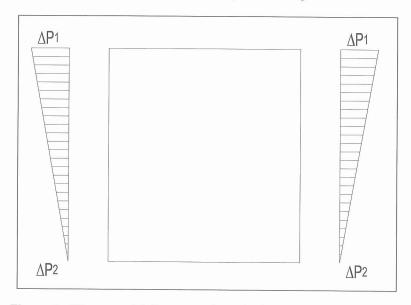


Figura 5 - Diagrammi delle sovraspinte sismiche applicate ai piedritti

Con

$$\Delta P1 = 2* \Delta S/h = 2,37KN/m^2$$

$$\Delta S = S'-S = 14,79 \text{ KN/m}$$

$$S = (P1_a + P2_a)h/2 = 159,72 \text{ KN/m}$$

$$S' = (P'1+P'2)h/2 = 174,51 \text{ KN/m}$$

Treno sismico

Il treno supposto presente sulla traversa durante il sisma è schematizzato attraverso un carico verticale uniforme pari a qvk = 85,20 kN/m. Il treno sismico darà luogo ad un carico verticale uniformemente distribuito sul traverso di copertura pari a:

$$q_{\text{sismco}} = q_{\text{vk}} / \Delta L = 20,61 \text{ kN/mg}$$

COMMESSA	LOTTO	CODIFICA	DOCUMENTO
MDL1	12	D 26 CL	SL 01 00 001

REV. FOGLIO
B 22 di 36

Spinta da treno sismico sui piedritti

La spinta sui piedritti in presenza del treno sismico è stata valutata come somma della spinta attiva e dell'incremento di spinta dovuto al sisma. Nell'ipotesi che la spinta sui piedritti generata dai convogli non subisca diffusione, generando quindi un diagramma di spinta rettangolare, si ha:

$$\sigma_a = K_a * q_{sismico} = 5,57 \text{ kN/mq}$$

$$\Delta \sigma_{as} = \Delta K_{as} * q_{sismico} = 0.51 \text{ kN/mq}$$

$$\sigma_s = \sigma_a + \Delta \sigma_{as} = 6.08 \text{ kN/mq}$$

Sisma verticale

Le azioni sismiche verticali, si considerano agenti esclusivamente sul solettone di copertura attraverso un carico uniformemente ripartito pari a:

$$F_V = m \cdot C \cdot I \cdot (W_{soletta} + W_{p,perm} + W_{tr,sism}) = 2 \cdot 0.04 \cdot 1.2 \cdot (25 + 22.4 + 20.61) = 6.53 \text{ kN/m}^2$$

Inerzie sismiche

La forza sismica distribuita da applicare alla soletta di copertura è pari a:

$$F_{hs} = C (W_{sol} + W_{perm} + W_{tr sism}) = 2,72kN/m^2$$

La forza sismica distribuita da applicare ai piedritti è pari a:

$$F_{hp} = W \cdot C = 0.04 \cdot 25 = 1 \text{ kN/m}^2$$

Le condizioni di carico considerate sono riassunte nella seguente tabella.

Peso proprio	DEAD
Carichi permanenti	PERM
Spinta del terreno sulla parete sinistra	SPTSX
Spinta del terreno sulla parete destra	SPTDX
Ritiro	Ritiro

Prolungamento sottovia Via Dei Rovedi al km 1+033.53 – Pregnana Milanese: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUI

 MDL1
 12
 D 26 CL
 SL 01

 DOCUMENTO
 REV.
 FOGLIO

 SL 01 00 001
 B
 23 di 36

Carico Accidentale LM71	ACCM
Spinta del carico acc. (LM71) sulla parete Sx	SPACCSX
Spinta del carico acc. (LM71) sulla parete Dx	SPACCDX
Avviamento e frenatura	AVV
Variazione termica sulla soletta superiore	Term
Carico accidentale rappresentato dal treno sismico	ACCE
Incremento sismico della spinta sul terreno parete sinistra	SPSSX
Incremento sismico della spinta sul terreno parete destra	SPSDX
Spinta sui piedritti dovuta al treno sismico parete sinistra	SPACCESX
Spinta sui piedritti dovuta al treno sismico parete destra	SPACCEDX
Azione sismica orizzontale	Sisma H
Azione sismica verticale	Sisma V

6.2.2 Combinazioni di carico

Le combinazioni di carico sono state definite coerentemente alle prescrizioni contenute nell' *Istruzione FF.SS. n. I/SC/PS-OM/2298 del 02/06/1995* (Testo completo delle relative integrazioni: 13/01/1997: "Sovraccarichi per il calcolo dei ponti ferroviari. Istruzioni per la progettazione, l'esecuzione ed il collaudo").

I valori riportati in tabella costituiscono i fattori di partecipazione del carico nella specifica combinazione di carico.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
				-							15000000	25-(15-21)		

Prolungamento sottovia Via Dei Rovedi al km 1+033.53 – Pregnana Milanese: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 CL
 SL 01 00 001
 B
 24 di 36

	Combo TA1							Combo TA2					Combo TA3		
Condizioni di carico	TA1 gr1 ₁	TA1 gr1 ₂	TA1 gr3 ₁	TA1 gr3 ₂	TA1 gr3 ₃	TA1 gr3 ₄	TA2 gr1 ₁	TA2 gr3 ₁	TA2 gr3 ₂	TA2 gr3 ₃	TA2 gr3 ₄	TA3		TA3 3	TA3 4
DEAD	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
PERM	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
SPTSX	1	1	1	1	0,6	1	1	1	1	0,6	0,6	1	1	0,6	0,6
SPTDX	1	0,6	0,6	0,6	0,6	1	1	0,6	0,6	0,6	0,6	1	0,6	0,6	0,6
Ritiro	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ACCM	1	1	1	1	1	1	0,8	0,8	0,8	0,8	0,8	-	-	-	-
SPACCSX	1	1	1	1	1	1	0,8	0,8	0,8	0,8	0,8	-	-	1	-
SPACCDX	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AVV	0,5	0,5	1	1	1	1	0,4	0,8	0,8	0,8	0,8	-	-	-	-
Term	0,6	-0,6	-0,6	0,6	0,6	-0,6	1	-1	1	-1	1	0,6	-0,6	-0,6	0,6
ACCE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SPSSX	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SPSDX	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SPACCESX	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=
SPACCEDX	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sisma H	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-
Sisma V	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Tabella 1

Prolungamento sottovia Via Dei Rovedi al km 1+033.53 – Pregnana Milanese: Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 CL
 SL 01 00 001
 B
 25 di 36

	16	17	18	19	20	21
]	Fessur	azion	e		G:
Condizioni di carico	TA5 gr6 ₁	TA5 gr6 ₂	TA5 gr6 ₃	TA5 gr6 ₄	Sism a Or.	Sism a Or. + Vert.
DEAD	1	1	1	1	1	1
PERM	1	1	1	1	1	1
SPTSX	0,6	1	0,6	1	1	1
SPTDX	0,6	1	0,6	1	1	1
Ritiro	1	1	1	1	1	1
ACCM	0,8	0,8	0,8	0,8	-	-
SPACCSX	0,8	0,8	0,8	0,8	-	-
SPACCDX	-	-	-	-	-	-
AVV	0,8	0,8	0,8	0,8	-	-
Term	-0,6	0,6	0,6	-0,6	-	-
ACCE	-	-	-	-	1	1
SPSSX	-	-	-	-	1	1
SPSDX	-	-	-	-	1	1
SPACCESX	-	-	-	-	1	1
SPACCEDX	_	-	-	-	1	1
Sisma H	-	-	-	-	1	1
Sisma V	-	-	-	_	-	1

Tabella 2

Si precisa che le combinazioni di carico considerate, oltre ad essere quelle che massimizzano le sollecitazioni nelle sezioni maggiormente significative, sono pienamente congruenti con quanto specificato nella istruzione N°I/SC/PS-OM/2298 e nella istruzione 44b.

6.3 Analisi delle sollecitazioni

Di seguito si riportano i diagrammi di inviluppo delle caratteristiche delle sollecitazioni di Taglio, Flessione e Sforzo normale, ottenuti rispettivamente per:

- le combinazioni delle azioni Combo TA1 Combo TA2 Combo TA3 (Inv_TA)
- le combinazioni delle azioni in presenza si sisma (Inv. Sisma)
- le combinazioni delle azioni per le verifiche di fessurazione (Inv. Fessurazione)

Inv_TA

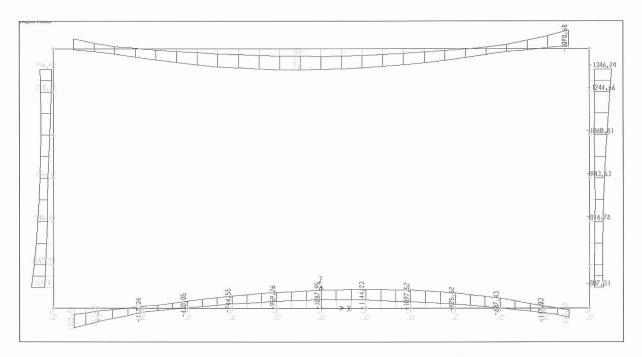


Figura 6 - Inv_TA - Diagramma del momento flettente

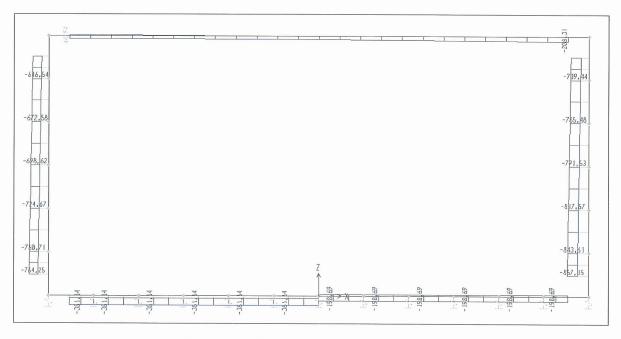


Figura 7 Inv_TA – Diagramma dello sforzo normale

Prolungamento sottovia Via Dei Rovedi al km 1+033.53 – Pregnana Milanese: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 CL	SL 01 00 001	В	28 di 36

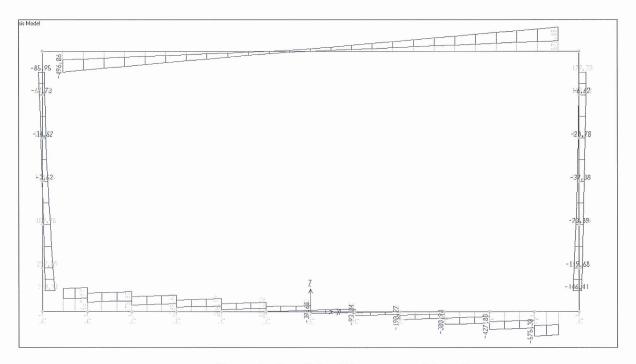


Figura 8 - Inv_TA - Diagramma del taglio

Inv_Sisma

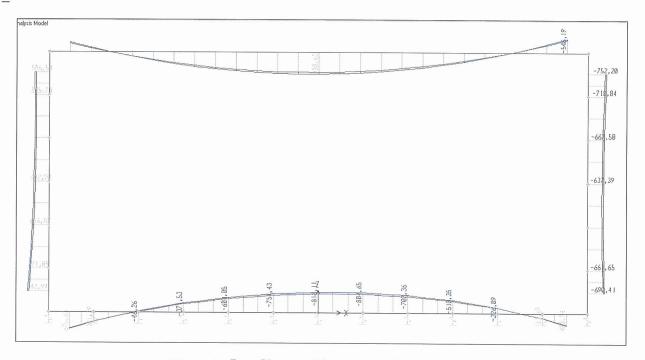


Figura 9 - Inv_Sisma - Diagramma del momento flettente

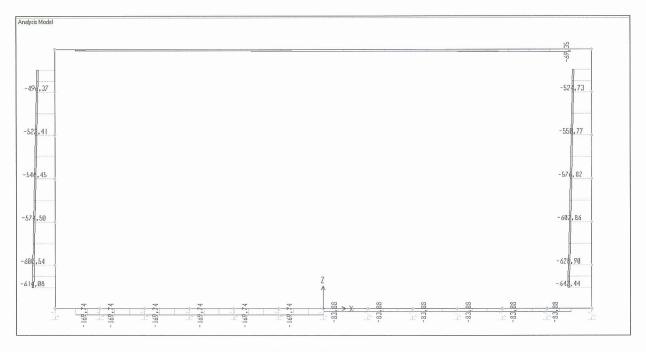


Figura 10 - Inv_Sisma - Diagramma dello sforzo normale

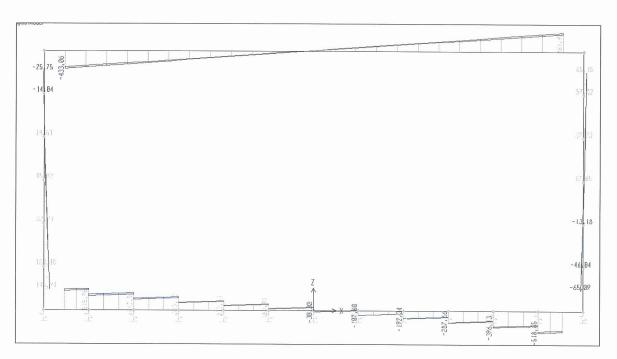


Figura 11 - Inv_Sisma - Diagramma del taglio

Inv_Fessurazione

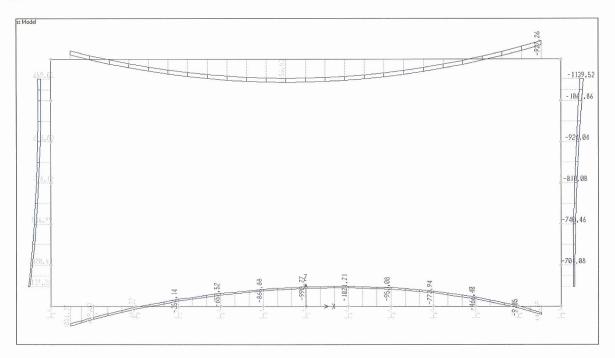
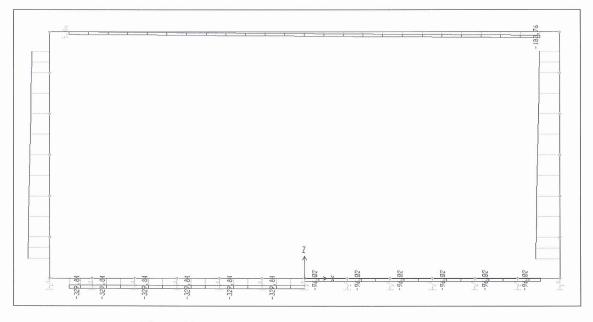



Figura 12 - Inv_ Fessurazione - Diagramma del momento flettente

 $Figura\ 13 - Inv_Fessurazione - Diagramma\ dello\ sforzo\ normale$

ITALFERR	POTENZIAMENTO PROGETTO DEFIN	IITIVO PER A	PPALTO INTEG		00 Y
Prolungamento sottovia Via Dei Rovedi al km	COMMESSA LOTTO MDL1 12	CODIFICA	DOCUMENTO	REV.	FOGLIO
1+033.53 – Pregnana Milanese: Relazione di calcolo		D 26 CL	SL 01 00 001	B	33 di 36

Nelle seguito si riporta una sezione schematica della struttura esaminata con l'evidenza delle sezioni di verifica e delle tabelle riepilogative delle sollecitazioni massime riscontrate.

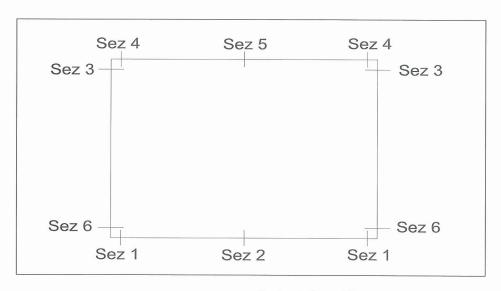


Figura 14 - Sezioni di verifica

Sollecitazioni - verifiche di resistenza								
Sezione	Mmax	Ncorrisp	Tmax					
	KNm	KN	KN					
1	-1186,4		568					
2	1144,2		30					
3	-1345,9	-725,9	180					
4	-1098,7		578					
5	1279,5		63					
6	-1317,4	-738	295					

Tabella 3

PROGETTO DEFINITIVO PER APPALTO INTEGRATO

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Prolungamento sottovia Via Dei Rovedi al km 1+033.53 - Pregnana Milanese: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
MDL1	12	D 26 CL	SL 01 00 001	В	34 di 36	

Sollecitazioni - verifiche a								
į	fessurazione							
Sezione	Sezione Mmax Ncorrisp							
	KNm	KN						
1	-1001							
2	1021,2							
3	-1139,3	-639						
4	-927,3							
5	1156,8							
6	-1137,3	-687						

Tabella 4

La convenzione utilizzata per le sollecitazioni è la seguente :

N < 0compressione

M > 0tende le fibre interne allo scatolare

La convenzione utilizzata per le tensioni è la seguente :

 $\sigma > 0$ trazione

 $\sigma < 0$ compressione

6.4 Verifiche di resistenza e di fessurazione

Sulla scorta dei risultati dell'analisi numerica svolta descritta in precedenza, nel seguito si riportano le verifiche di resistenza dei vari elementi strutturali, condotte con riferimento alle sezioni più sollecitate della struttura.

Le sezioni sono armate con barre \$26/20 correnti opportunamente integrate, nelle zone "di nodo" e di campata con ferri sagomati \$\psi 26\$ secondo quanto riepilogato nelle tabelle che seguono:

PROGETTO DEFINITIVO PER APPALTO INTEGRATO QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Prolungamento sottovia Via Dei Rovedi al km 1+033.53 – Pregnana Milanese: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 CL	SL 01 00 001	В	35 di 36

	Verifiche a flessione/pressoflessione									
Sezione	Mmax	Ncorrisp	b	h	Af	Af'	$\sigma_{\rm c}$	$\sigma_{\rm s}$		
	KNm	KN	cm	cm	-	-	N/mm ²	N/mm ²		
1	-1186,4		100	100	1φ26/10+1φ26/10	1φ26/20	-6,66	150,3		
2	1144,2		100	100	1\psi_26/10+1\psi_26/20	1φ26/20	-6,7	177,8		
3	-1345,9	-725,9	100	100	1\psi_26/10+1\psi_26/20	1φ26/20	-8,6	171,3		
4	-1098,7		100	100	1φ26/10+1φ26/20	1φ26/20	-6,59	175,5		
5	1279,5		100	100	1φ26/10+1φ26/10	1φ26/20	-7,18	162,0		
6	-1317,4	-738	100	100	1φ26/10+1φ26/20	1φ26/20	-8,42	166,3		

Tabella 5

I valori delle tensioni di compressione e di trazione si mantengono entro i valori ammissibili per i materiali utilizzati.

Verifiche a taglio							
Sezione	Tmax	b	h	τ			
	KN	cm	cm	N/mm ²			
1	568	100	100	0,63			
2	30	100	100	0,03			
3	180	100	100	0,23			
4	578	100	100	0,64			
5	63	100	100	0,07			
6	295	100	100	0,38			

Tabella 6

La τ massima è inferiore alla τ_{c0} per tale motivo non è necessario predisporre armatura a taglio nello scatolare.

Verifiche a fessurazione									
Sezione	Mmax	Ncorrisp	b	h	Af	Af'	W		
	KNm	KN	cm	cm	_	_	mm		
1	-1001		100	100	1φ26/10+1φ26/10	1φ26/20	0,083		
2	1021,2		100	100	1\phi26/10+1\phi26/20	1φ26/20	0,102		
3	-1139,3	-639	100	100	1\phi26/10+1\phi26/20	1φ26/20	0,092		
4	-927,3		100	100	1φ26/10+1φ26/20	1φ26/20	0,146		
5	1156,8		100	100	1φ26/10+1φ26/10	1φ26/20	0,112		
6	-1137,3	-687	100	100	1φ26/10+1φ26/20	1φ26/20	0,09		

Tabella 7

L'ampiezza delle fessure calcolate risultano ammissibili.

POTENZIAMENTO DELLA LINEA RHO-ARONA PROGETTO DEFINITIVO PER APPALTO INTEGRATO

QUADRUPLICAMENTO RHO-PARABIAGO E RACCORDO Y

Prolungamento sottovia Via Dei Rovedi al km 1+033.53 – Pregnana Milanese: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MDL1	12	D 26 CL	SL 01 00 001	В	36 di 36

7 CONCLUSIONI

Le analisi sono state effettuate considerando una fascia di larghezza pari ad 1 m.

La struttura è stata analizzata sia in condizioni statiche, che sismiche.

In condizioni statiche sono stati considerati i carichi dovuti ai pesi propri, al ricoprimento costituito dal ballast e dall'armamento ferroviario ed alle spinte del terreno ai lati dello scatolare, valutate in condizioni reostatiche (K0); si è inoltre considerato il contributo ai carichi verticali ed alle spinte, offerto dal treno LM71.

In condizioni sismiche, ai carichi permanenti gravanti sulla struttura sono state sommate le forze di inerzia derivanti dall'eccitazione delle masse in gioco, le sovra spinte sismiche valutate con il metodo di Mononobe – Okabe e si è considerato un treno sismico rappresentato da un carico pari ad 85,20 KN/m agente sul piano del ferro; di questo è stato considerato anche il contributo offerto in termini di spinta del terreno.

Le solette ed i piedritti dello scatolare hanno spessore di 100 cm adeguatamente armate su entrambi i lati.

Si fa rilevare che la sottospinta relativa al tirante idraulico massimo di 2,20 m è bilanciata dal peso della sola zattera di fondazione pertanto la verifica a galleggiamento dell'opera è soddisfatta in piena cautela.

I risultati delle verifiche dimostrano che la struttura sia in grado di resistere ai valori massimi delle sollecitazioni mantenendo un cimento dei materiali al di sotto di quello ritenuto ammissibile; inoltre, si riscontrano aperture di fessure sempre di ampiezza ammissibile e, in ultimo, la struttura non necessita di essere armata a taglio.