COMMITTENTE:

PROGETTAZIONE:

S.O. GEOLOGIA TECNICA

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO 1 BATTIPAGLIA – PRAIA

LOTTO 1B ROMAGNANO – BUONABITACOLO

INDAGINI GEOFISICHE – Socotec Italia S.r.l.

								SCALA:	
COM	COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. R C A B 1 R 6 9 I G G 0 0 5 0 0 1 B								
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data	
А	Emissione esecutiva	D. Fiore	Ottobre 2021	S. Giugliano	Ottobre 2021	I. D'Amore	Ottobre 2021	G. BENEDETTI Marzo 2023	
В	Emissione esecutiva	D. Fiore	Marzo 2023	S. Giugliano	Marzo 2023)	I. D'Anjore Karia Juor	Marzo 2023	ITALFERR S.p.A. Sruppo Ferrovie della Stata Italiane	
								ordine del Geologi Emilia Romagna 1 an h. 1019 Jene Je	· K
							1		
File: I	RC2AB1R69IGGE0005001B.	doc						n. Elab.: X]

INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA RC2A	LOTTO B1 R 69	CODIFICA IG	DOCUMENTO GE 0005 001	REV. B	FOGLIO
	ROZA	BIR05	10	GE 0003 001	Б	2 di 52

Sommario

1.	PREMESSA	4
2.	METODO MASW	7
2.1.	PRINCIPI DI FUNZIONAMENTO E CENNI SUL METODO	7
2.2.	STRUMENTAZIONE IMPIEGATA1	0
2.3.	SCHEMA DI ACQUISIZIONE	2
2.4.	RISULTATI INDAGINI MASW	2
3.	METODO DI PROSPEZIONE DOWN HOLE	3
3.1.		4
3.2.	STRUMENTAZIONE IMPIEGATA	5
3.3.	PROCESSING INDAGINE DOWN HOLE	6
3.4.	RISULTATI INDAGINI DH	0
4.	METODO HVSR	1
4.1.	PRINCIPI DI FUNZIONAMENTO E CENNI SUL METODO	1
4.2.	FREQUENZA FONDAMENTALE DEL SITO	2
4.3.	ACQUISIZIONE E STRUMENTAZIONE UTILIZZATA	3
4.4.	RISULTATI INDAGINI HVSR	6
5.	METODO SISMICA A RIFRAZIONE (SRT)	7
5.1.	PRINCIPI BASE DEL METODO	7
5.2.	Fattori di Influenza delle velocità sismiche	9
5.3.	SCHEMA DI ACQUISIZIONE	2
5.4.	PROCESSING	3
5.5.	RISULTATI INDAGINI SRT	6
6.	METODO DELLA RESISTIVITÀ ELETTRICA (ERT)	7
6.1.	PRINCIPI DI FUNZIONAMENTO E CENNI SUL METODO	7
6.2.	PROPRIETÀ ELETTRICHE DEL SUOLO ED INTERPRETAZIONE DEI VALORI DI RESISTIVITÀ	0

Internet Internet Reggio Calabria GRUPPO FERROVIE DELLO STATO ITALIANE LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO 1 BATTIPAGLIA – PRAIA LOTTO 1 BATTIPAGLIA – PRAIA LOTTO 1 B ROMAGNANO – BUONABITACOLO PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA						A	
IND	AGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA RC2A	LOTTO B1 R 69	CODIFICA IG	DOCUMENTO GE 0005 001	REV. B	FOGLIO 3 di 52
6.3.	STRUMENTAZIONE UTILIZZATA						45
6.4.	SCHEMA DI ACQUISIZIONE						46
6.5.	6.5. PROCESSING						
6.6.	RISULTATI INDAGINI ERT						49
7.	BIBLIOGRAFIA						51
ALLEC	GATI						

1. PREMESSA

La presente relazione tecnica riferisce sui risultati delle indagini geofisiche tipo MASW, DH, HVSR, nella fase 1, SRT e ERT, nella fase 2, eseguite presso le aree indicate in figura 1. Le indagini sono state realizzate nel mese di giugno e luglio 2021.

5 di 52

INDAGINI GEOFISICHE – Socotec Italia S.r.I.

Figura 1 – Ubicazione generale indagini.

Si riporta di seguito il riepilogo delle indagini eseguite:

ID Prova	Lunghezza (m)	Coordinate A	Coordinate B
MASW_L1B_S1	80	531733.53 m E 4494691.60 m N	531779.39 m E 4494756.71 m N
MASW_L1B_S6	80	543505.07 m E 4484874.12 m N	543556.42 m E 4484813.98 m N
MASW_L1B_S9	80	543803.36 m E 4482011.04 m N	543873.27 m E 4482047.36 m N
MASW_L1B_S11	80	544740.36 m E 4480048.69 m N	544811.82 m E 4480081.06 m N
MASW_L1B_S13	80	545498.93 m E 4478448.10 m N	545527.52 m E 4478372.82 m N
MASW_L1B_S16	80	546719.35 m E 4475261.58 m N	546796.49 m E 4475278.62 m N
MASW_L1B_S17	80	547077.27 m E 4474660.77 m N	547111.08 m E 4474590.46 m N
MASW_L1B_S21	80	548973.88 m E 4472183.78 m N	549051.87 m E 4472205.64 m N

INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA RC2A	LOTTO B1 R 69	CODIFICA	DOCUMENTO GE 0005 001	REV.	FOGLIO
						6 di 52

MASW_L1B_S26	80	551572.81 m E 4467915.38 m N	551642.60 m E 4467955.59 m N
MASW_L1B_S29	80	552473.02 m E 4465034.99 m N	552555.34 m E 4465040.93 m N
MASW_L1B_S33	80	553550.67 m E 4462636.57 m N	553588.15 m E 4462567.14 m N
MASW_L1B_S35	80	554446.57 m E 4460748.69 m N	554494.42 m E 4460686.09 m N

Tabella 1 - Coordinate indagini MASW

ID Prova	Coordinate
HVSR_L1B_S1	531715.00 m E 4494700.00 m N
HVSR_L1B_S6	543539.00 m E 4484826.00 m N
HVSR_L1B_S7	543509.00 m E 4483824.00 m N
HVSR_L1B_S9	543836.00 m E 4482037.00 m N
HVSR_L1B_S11	544785.00 m E 4480062.00 m N
HVSR_L1B_S13	545518.00 m E 4478376.00 m N
HVSR_L1B_S14	545947.06 m E 4477365.70 m N
HVSR_L1B_S16	546804.00 m E 4475276.00 m N
HVSR_L1B_S17	547115.00 m E 4474581.00 m N
HVSR_L1B_S19	547857.00 m E 4473421.00 m N
HVSR_L1B_S21	549012.00 m E 4472199.00 m N
HVSR_L1B_S24	550629.00 m E 4469656.00 m N
HVSR_L1B_S26	551640.00 m E 4467946.00 m N
HVSR_L1B_S28	552283.00 m E 4465987.00 m N
HVSR_L1B_S29	552485.00 m E 4465022.00 m N
HVSR_L1B_S31	552742.00 m E 4464278.00 m N
HVSR_L1B_S33	553578.00 m E 4462603.00 m N
HVSR_L1B_S35	554455.00 m E 4460711.00 m N

Tabella 2 - Coordinate indagini HVSR

INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA RC2A	LOTTO B1 R 69	CODIFICA IG	DOCUMENTO GE 0005 001	REV. B	FOGLIO
						7 di 52

ID Prova	Coordinate
DH_L1B_S07	543514.78 m E 4483831.10 m N
DH_L1B_S19	547844.40 m E 4473417.45 m N
DH_L1B_S14	545947.06 m E 4477365.70 m N
DH_L1B_S28	552279.00 m E 4465992.00 m N
DH_L1B_S31	552741.00 m E 4464281.02 m N

Tabella 3 - Coordinate indagini DH

ID Prova	Lunghezza (m)	Coordinate A	Coordinate B
ERT1	475	543155.14 m E 4485973.60 m N	543579.74 m E 4485772.07 m N
ERT2	475	543220.56 m E 4485742.67 m N	543656.34 m E 4485549.19 m N
ERT3	475	543442.56 m E 4485298.33 m N	543868.17 m E 4485086.55 m N
ERT4	360	543145.32 m E 4486038.28 m N	543492.34 m E 4486091.80 m N
SRT1	431	543155.14 m E 4485973.60 m N	543543.60 m E 4485789.22 m N
SRT2	475	543220.56 m E 4485742.67 m N	543657.44 m E 4485548.71 m N
SRT3	431	543442.56 m E 4485298.33 m N	543829.94 m E 4485095.46 m N
SRT4	362	543145.32 m E 4486038.28 m N	543495.21 m E 4486091.87 m N

Tabella 4 – Coordinate indagini ERT+SRT

2. METODO MASW

2.1. Principi di funzionamento e cenni sul metodo

Il metodo MASW (Multichannel Analysis of Surface Waves) è una tecnica di indagine non invasiva, che individua il profilo di velocità delle onde di taglio Vs, basandosi sulla misura delle onde superficiali fatta in corrispondenza di diversi sensori (accelerometri o geofoni) posti sulla superficie del suolo. La determinazione delle Vs viene ottenuta tramite l'inversione delle curve di dispersione delle onde di Rayleigh (Fig. 2).

Figura 2 - Distribuzione delle onde di Rayleigh nel sottosuolo.

In un mezzo stratificato, le onde di Rayleigh sono dispersive, ossia onde con diverse lunghezze d'onda si propagano con diverse velocità di fase e velocità di gruppo (Achenbach, J.D., 1999; Aki, K. and Richards, P.G., 1980). La velocità di fase (o di gruppo) apparente delle onde di Rayleigh, quindi, dipende dalla frequenza di propagazione. La natura dispersiva delle onde superficiali è correlabile al fatto che onde ad alta frequenza, ossia con lunghezza d'onda corta, si propagano negli strati più superficiali dando, quindi, informazioni sulla porzione più superficiale del suolo. Onde a bassa frequenza, invece, si propagano negli strati più profondi dando informazioni, quindi, sulla parte più profonda del suolo. Le indagini MASW si distinguono in attive e passive o in una combinazione di entrambe. Nel metodo attivo, le onde superficiali generate in un punto sulla superficie del suolo sono misurate da uno stendimento lineare di sensori. Nel metodo passivo, lo stendimento dei sensori può essere sia lineare, sia circolare e consente di misurare anche il rumore ambientale di fondo esistente.

Facendo riferimento al metodo attivo da noi utilizzato, possiamo dire che, una generica acquisizione di segnali sismici lungo uno stendimento lineare, con sorgente esterna alla linea sismica, può essere rappresentata come una funzione u(x, t) dove x è lo spazio e t il tempo.

Applicando ai segnali la trasformata di Fourier lungo l'asse dei tempi, otteniamo la funzione U(x,f):

$$U(x,f) = \int u(x,t)e^{ift}dt$$
(2.1)

La funzione U(x, f) può essere espressa come la moltiplicazione di due termini separati:

$$U(x,f) = P(x,f)A(x,f)$$
(2.2)

dove $P(x,f) \in A(x,f)$ rappresentano, rispettivamente, lo spettro di fase e di ampiezza.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO 1 BATTIPAGLIA – PRAIA LOTTO 1B ROMAGNANO – BUONABITACOLO PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA						
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
	RC2A	B1 R 69	IG	GE 0005 001	B	9 di 52	

Nella funzione U(x,f), ogni componente in frequenza è completamente separata dalle altre e l'informazione del tempo di arrivo è preservata nello spettro di fase P(x, f).

Nella funzione P(x,f), sono contenute inoltre tutte le informazioni relative alla dispersione delle onde superficiali di Rayleigh mentre la funzione A(x, f) contiene tutte le informazioni inerenti l'attenuazione e la divergenza sferica. Tenendo conto della rappresentazione esponenziale dello spettro di fase, la (2.2) può essere espressa come:

$$U(x,f) = e^{-i\theta x} A(x,f)$$
(2.3)

Dove F=f/cf con f = frequenza angolare e cf = velocità di fase per ogni frequenza.

Operando un integrale di linea in dx e normalizzando per il modulo della funzione |U(x,f)|, otteniamo la funzione $V(f, \phi)$:

$$V(f,\varphi) = \int e^{i\phi x} \left[U(x,f) / |U(x,f)| \right] dx = \int e^{-i(\Phi-\phi)x} \left[A(x,f) / |A(x,f)| \right] dx$$
(2.4)

La funzione V(f, ϕ), ottenuta dalla trasformazione integrale, può essere pensata come la somma, lungo tutto lo stendimento, del campo d'onda relativo ad ogni frequenza, applicando uno shift di fase dipendente dall'offset, al campo d'onda, per un'assunta velocità di fase cf = f/ ϕ .

La normalizzazione al modulo della funzione |U(x, f)|, minimizza i fenomeni di attenuazione e di divergenza sferica. Risulta ovvio che la funzione V(f, ϕ) avrà un massimo in corrispondenza di un valore:

$$\phi = F = f / cf \tag{2.5}$$

Per un dato valore di ϕ , dove si verifica un massimo della funzione V(f, ϕ), la velocità di fase cf può essere determinata. Tenendo conto che cf = f/ ϕ , la funzione V(f, ϕ) può essere trasformata nella funzione I(f, cf) che viene definita "spettro di velocità di fase". In essa, lungo l'asse cf, appariranno dei picchi che soddisferanno, per ogni frequenza, l'equazione (2.5). Il luogo dei punti lungo questi massimi, per differenti valori di frequenza f, perme di identificare le curve di dispersione delle velocità di fase dei modi di oscillazione dell'onda superficiale di Rayleigh.

La curva di dispersione media delle velocità di fase dell'onda di Rayleigh, estratta con la metodologia MASW, è invertita al fine ottenere un modello monodimensionale di onde di taglio.

2.2. Strumentazione impiegata

L'apparecchiatura utilizzata per questo tipo di prove si compone delle seguenti parti:

- sistema energizzante;
- sistema di ricezione;
- trigger;
- sistema di acquisizione dati.

Nel dettaglio:

<u>sistema energizzante</u>: tale sistema deve essere in grado di generare onde elastiche ad alta frequenza ricche di energia, con forme d'onda ripetibili e direzionali. Per generare le onde di compressione P è stata utilizzata una massa battente da 5kg.

FOGLIO

10 di 52

<u>sistema di ricezione</u>: per l'indagine sono stati utilizzati 24 geofoni del tipo elettromagnetico a bobina mobile (oscillazione verticale), con frequenza caratteristica di 4.5 Hz. (Fig. 3).

Figura 3 - Geofoni per onda P ed Sh; a) schema di funzionamento del geofono per onda P; b) geofono per onda P con frequenza caratteristica di 4.5 Hz;

<u>trigger</u>: la metodologia utilizzata, in quanto attiva, prevede che l'inizio della registrazione sia individuato mediante un *trigger*: consiste in un circuito elettrico che viene chiuso nell'istante in cui la massa battente colpisce la piastra o la trave (nel nostro caso si è usato un geofono starter) e l'impulso generato, inviato al sistema di acquisizione, consente di fissare il tempo zero di riferimento per il calcolo dei tempi di percorso delle onde generate.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO 1 BATTIPAGLIA – PRAIA LOTTO 1B ROMAGNANO – BUONABITACOLO PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA					
INDAGINI GEOFISICHE – Socotec Italia S.r.l.	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RC2A	B1 R 69	IG	GE 0005 001	B	11 di 52

<u>sistema di acquisizione dati</u>: sismografo costituito da un sistema multicanale a conversione digitale. Il modello è denominato *GEODE* (prodotto dalla *GEOMETRICS,* Fig. 4; Tab. 5) ed è caratterizzato da una risoluzione di acquisizione pari a 24 bit (Tecnologia Delta Sigma). Tale sistema è in grado di registrare, su ciascun canale in forma digitale, le forme d'onda e di conservarle su memoria di massa dinamica minima a 24 bit. Esso è collegato a ciascuno dei geofoni ed al sensore del trigger, consentendo quindi di registrare in forma numerica e visualizzare sotto forma di tracce, su un apposito monitor, le vibrazioni a partire dall'impulso inviato dal trigger.

Figura 4 - smografo GEODE (Geometrics)

A/D Conversion:	24 bit (Crystal Semiconductor sigma-delta converters)
DynamicRange:	144 dB (system), 110 dB (instantaneous, measured) at 2ms, 24dB.
Distortion:	0.0005% @ 2 ms, 1.75 to 208 Hz.
Bandwidth:	1.75 Hz to 20 kHz
Common Mode Rejection:	> -100 dB at <=100 Hz, 36 dB.
Crosstalk:	-125 dB at 23.5 Hz, 24 dB, 2 ms.
Noise Floor:	0.2uV, RFI at 2 ms, 36 dB, 1.75 to 208 Hz.
Stacking Trigger Accuracy:	1/32 of sample interval.
Maximum Input Signal:	2.8 VPP.
Input Impedance:	20 kOhm, 0.02 uf.
Preamplifier Gains: dB, or 0dB.	24 or 36 dB
Anti-alias Filters:	-3 dB at 83% of Nyquist frequency, down 90 dB.
Pre-trigger Data:	Up to 4,096 Samples.
Sample Interval:	0.02, 0.03125, 0.0625, 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0 ms.
Record Length:	16,000 samples standard
Delay:	0 to 9999 ms in 1 ms steps.
Data Transmission:	Ethernet connections

Tabella 5 - Specifiche tecniche Sismografo GEODE.

2.3. Schema di acquisizione

Gli stendimenti sismici sono stati realizzati utilizzando 24 canali d'acquisizione (geofoni):

- Passo intergeofonico pari a 3 m (Fig. 5).
- n° geofoni: 24;
- tempo di acquisizione: 1 s;
- intervallo di campionamento 0.125 μs.

Figura 5 - Fasi di acquisizione

2.4. Risultati indagini MASW

L' indagine MASW ha consentito di ottenere un modello monodimensionale di Vs che, com'è noto, può essere ritenuto esaustivo del profilo verticale di Vs nel punto centrale dello stendimento. Pertanto, in entrambe le prove, si riscontra la presenza di terreno che va a collocarsi nelle categorie di suolo B e C, secondo la normativa NTC2018. Inoltre, secondo tale normativa, per il calcolo della Vs devono essere inseriti solo gli strati sopra al bedrock sismico, qualora individuato; questo vuol dire che la velocità equivalente, senza l'inserimento della parte veloce del bedrock sismico, può modificare la definizione semplificata e l'ingresso nella tabella 3.2.2 delle NTC2018. Qualora sia presente inversione di velocità, secondo tale

normativa, non viene segnalata la categoria di suolo; nella seguente tabella verrà indicata con un trattino "-". Tuttavia, su richiesta della committenza, qualora l'inversione di velocità non superi i 50 m/s, si è attribuita ugualmente la categoria di suolo contrassegnando, però, la Masw con un asterisco*.

Nella tabella seguente, vengono riportati i valori di Vseq e le categorie di suolo ricavate lungo tutti gli stendimenti sismici. Tutte le indagini, ad eccezione di quelle ubicate nel settore nord dell'area investigata, restituiscono categorie di suolo C (ad eccezione della Masw L1B_S1 in cui la categoria di suolo è B e la presenza di inversioni di velocità ricollegabili a lenti di argille limose debolmente sabbiose poco consistenti a una profondità compresa tra circa 8 – 13 m dal p.c..

ID MASW	Vs _{eq} (m/s)	Suolo
MASW_L1B_S1	545	В
MASW_L1B_S6	277	С
MASW_L1B_S9	318	С
MASW_L1B_S11	224	C*
MASW_L1B_S13	286	-
MASW_L1B_S16	219	C*
MASW_L1B_S17	315	-
MASW_L1B_S21	234	С
MASW_L1B_S26	246	С
MASW_L1B_S29	289	C*
MASW_L1B_S33	351	С
MASW_L1B_S35	291	C*

Tabella 6 – Tabella riassuntiva delle indagini MASW

3. METODO DI PROSPEZIONE DOWN HOLE

Lo scopo della prova DH, prova sismica in foro, è quello di valutare la velocità delle onde sismiche primarie Vp e secondarie Vsh, dal piano campagna sino ad una profondità pari a 30 m (Gasperini & Signanini, 1983). Le prove sismiche Down-Hole vengono eseguite con lo scopo di misurare la velocità delle onde dirette che si propagano dalla superficie in profondità. Il terreno viene energizzato in superficie, in prossimità di testa-foro,

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO 1 BATTIPAGLIA – PRAIA LOTTO 1B ROMAGNANO – BUONABITACOLO PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA					A
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RC2A	B1 R 69	IG	GE 0005 001	B	14 di 52

e la registrazione avviene in foro grazie ad un geofono triassiale ancorato a profondità crescenti. Tale geofono registra gli spostamenti, tradotti sotto forma di impulsi elettrici, lungo tre direzioni ortogonali tra loro (x, y, z). Le onde sismiche vengono generate energizzando il terreno in direzione verticale e in direzione trasversale (parallelamente al suolo). Nel primo caso, verranno generate prevalentemente onde compressive (onde P) che si propagano in profondità e vengono registrate al meglio dal geofono verticale (asse z). Nel secondo caso, verranno generate prevalentemente onde di taglio (onde Sh) visibili principalmente sui geofoni con l'asse posto orizzontalmente (assi x e y). Le onde di taglio, avendo velocità inferiori rispetto a quelle compressive, solitamente intorno al 60 - 70%, raggiungono il geofono quando il primo fronte d'onda compressiva è già transitato. Questo passaggio, purtroppo, costituisce un disturbo per la misura delle onde trasversali, in quanto i geofoni orizzontali si trovano ancora in movimento all'arrivo dell'onda Sh. Per migliorare il rapporto fra l'energia dell'onda compressiva P e l'energia dell'onda trasversale S a favore di quest'ultima, si realizza una doppia energizzazione orizzontale con verso opposto. La sottrazione delle forme d'onda relative a queste due acquisizioni, riduce sensibilmente la componente compressiva presente nel segnale. Tali prove forniscono una dettagliata stratigrafia di velocità delle onde compressive (Vp) e delle onde di taglio (Vsh).

3.1. Acquisizione

La distanza tra le sorgenti di onde P e Sh ed il boccaforo è pari a 2 metro. Una volta raggiunta la profondità di prova (fondo foro), i ricevitori vengono assicurati alla parete del tubo di rivestimento mediante dei pistoni azionati da un compressore; la sorgente viene colpita in senso verticale per generare onde di compressione P e lateralmente per generare onde di taglio Sh (Fig. 6) facendo partire, per mezzo del trigger, la registrazione del segnale acquisita secondo i seguenti parametri:

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO 1 BATTIPAGLIA – PRAIA LOTTO 1B ROMAGNANO – BUONABITACOLO PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA					A
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RC2A	B1 R 69	IG	GE 0005 001	B	15 di 52

Sampling interval (ms)	0. 125
Record length (s)	0.5
Spacing (m)	1

Tabella 7 - Parametri di campionamento prove DH

Figura 6 - Schema di acquisizione prova Down-Hole

3.2. Strumentazione impiegata

L'apparecchiatura utilizzata per questo tipo di prove si compone delle seguenti parti:

- sistema energizzante;
- sistema di ricezione;
- trigger;
- sistema di acquisizione dati.

La strumentazione è uguale a quella utilizzata per la prova sismica MASW, ad eccezione del sistema di ricezione qui descritto:

<u>sistema di ricezione</u>: per l'indagine è stato utilizzato il geofono da foro triassiale "BHG-2 Borehole Geophone". Il modello Geostuff BHG-2 (Fig. 7) contiene 2 geofoni, posizionati sulla stessa verticale e distanziati 1 m tra loro, orientati in un modello X-Y-Z. Il geofono longitudinale punta verso la molla del morsetto. Il diametro esterno è di 1,85 pollici (47 mm), abbastanza piccolo da adattarsi all'interno di un tubo di plastica da 40 pollici. Il meccanismo di blocco consiste in una robusta molla in acciaio compressa da un motore elettrico CC. La lunghezza del geofono è 700 mm e il peso di 2 kg. I cavi down-hole si collegano alla

scatola di controllo. Due scatole di controllo possono essere salvate in modo da poter leggere i risultati dei due geofoni del foro da un sismografo a 12 canali.

Figura 7 - Geofono da foro triassiale true interval

3.3. Processing indagine Down Hole

La misura dei tempi dei primi arrivi delle onde sismiche deve essere realizzata con precisione e con un dettaglio pari a circa un decimo di millisecondo. La prima fase dell'elaborazione consiste nella determinazione dei primi arrivi sia delle onde P che delle onde Sh. Il picking dei tempi delle onde P è una operazione relativamente semplice, mentre per la corretta individuazione dei tempi di arrivo delle onde Sh, è necessario evidenziare l'inversione di fase dell'onda di taglio. A tale scopo, si effettua la sovrapposizione dei sismogrammi ricavati per la stessa profondità dai due punti di battuta; la corretta localizzazione delle onde Sh si avrà quando, sovrapponendo le tracce, si noterà un movimento uguale ed opposto della fase d'onda. La prima operazione da fare è la correzione, sulla verticale, dei tempi di tragitto (t) misurati lungo i percorsi sorgente-ricevitore per tenere conto della distanza tra la sorgente e il bocca-foro. Con i tempi corretti si realizza il grafico (Tcorr, z), sia per le onde P che per le onde Sh. Le velocità dei terreni investigati vengono finalmente ottenute in maniera indiretta con il "metodo intervallo": i tempi di tragitto dell'onda sismica si misurano fra due posizioni consecutive del ricevitore posti a differente profondità, consentendo così di migliorare la qualità delle misure (velocità d'intervallo). La seconda fase consiste nel calcolo delle dromocrone; la velocità media delle onde sismiche, in strati omogenei di terreno, è rappresentata

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SAI NUOVA LI LOTTO 1 E LOTTO 1B PROGETT	LERNO – NEA AV S BATTIPA(ROMAGI O DI FAT	REGGIO CA GALERNO - GLIA - PRAI NANO - BU(TIBILITA' TI	ALABRIA REGGIO CALA A ONABITACOLC ECNICA ED EC	BRIA) ONOMIC	A
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RC2A	B1 R 69	IG	GE 0005 001	B	17 di 52

dall'inclinazione dei segmenti di retta lungo i quali si allineano i dati sperimentali. Successivamente alla costruzione delle dromocrone ed alla determinazione della velocità di propagazione del segnale sismico nei diversi strati di terreno, si potranno calcolare i moduli elastici caratteristici avendo informazioni sulla densità dei litotipi incontrati durante la perforazione.

Il modulo di Young E (o modulo di elasticità longitudinale) è definito a partire dalla legge di Hooke:

Con σ : sforzo, viene misurato in Pascal; ε : deformazione, è una grandezza adimensionale, spesso la si esprime in percentuale. Il modulo di Young viene determinato dal diagramma sforzo-deformazione mediante la formula appena vista, nel tratto in cui il materiale subisce una deformazione elastica (ovvero rimuovendo lo sforzo il materiale deve essere in grado di ritornare alle dimensioni iniziali, Fig. 8).

Figura 8 - Diagramma sforzo - deformazione di un materiale duttile

Il **modulo di taglio µ**, detto anche modulo di scorrimento, di rigidità o di elasticità tangenziale, è una costante di Lamè che esprime il rapporto sforzo-deformazione tangenziali.

Data una piastra di lunghezza indefinita di spessore h, perpendicolare all'asse x, sulle cui facce agisce una coppia di tensioni tangenziali (o di taglio) di verso opposto T1 e -T1, si produrrà uno spostamento $\delta l/2$ nel senso delle z positive e $\delta l/2$ nel senso opposto. In pratica è come se una faccia rimanesse ferma e si producesse uno spostamento di δl .

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO 1 BATTIPAGLIA – PRAIA LOTTO 1B ROMAGNANO – BUONABITACOLO PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA					A
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RC2A	B1 R 69	IG	GE 0005 001	B	18 di 52

Lo spostamento totale δI sarà in relazione allo sforzo di taglio T1 e allo spessore h secondo la relazione:

$$dl = \frac{1}{\mu}hT_1$$

dove μ è il modulo di taglio. Considerando lo spostamento angolare α , ponendo l'angolo uguale alla sua tangente, la relazione diventerà semplicemente:

Figura 9 - Esempio di resistenza al taglio

Il modulo bulk K (o modulo di compressibilità) di un materiale definisce la capacità dello stesso di resistere ad una forza di compressione uniforme. È definito come l'incremento di pressione necessario a causare un relativo decremento di volume secondo la relazione:

$$K=-V\frac{\partial p}{\partial V}$$

dove *K* è appunto il modulo di compressibilità, *p* la pressione e *V* il volume.

Figura 10 - Esempio di compressione uniforme

Si precisa inoltre che i moduli presentati nelle sezioni cui afferisce questa nota tecnica sono moduli DINAMICI cioè ottenuti calcolando i valori a piccolissime deformazioni rappresentate dal tratto iniziale *reversibile* della curva sforzi deformazioni. Per tanto, essi risulteranno essere molto maggiori rispetto a quelli calcolati con prove in situ e/o di laboratorio, in cui il terreno viene portato a rottura.

In particolare, nel presente lavoro è stato utilizzato il "Metodo della velocità di intervallo".

Per interpretare i dati ottenuti dalla down-hole, è necessario correggere il i tempi di arrivo (t) misurati lungo i percorsi sorgente-ricevitore per tener conto dell'inclinazione del percorso delle onde. Se d è la distanza dall'asse sorgente del foro (Fig. 11), r la distanza tra la sorgente e i geofoni, z la profondità, è possibile

ottenere il tempo corretto (tcor) usando la seguente formula di conversione: $t_{corr} = \frac{z}{t}$.

In particolare, nel metodo della velocità di intervallo, i tempi di percorrenza sono misurati tra due ricevitori ubicati sulla stessa verticale (Fig.11) ma a diverse profondità, consentendo quindi misurazioni di qualità migliore (velocità intervalli).

Figura 11 - Diagramma di una down-hole utilizzando il metodo d'intervallo.

Attraverso le misurazioni ottenute, è possibile calcolare il range di velocità delle onde P e S (Fig. 12), con la seguente formula:

$$v_{p,s} = \frac{\underline{z_2} - \underline{z_1}}{t_{2cor} - t_{1cor}}$$

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO 1 BATTIPAGLIA – PRAIA LOTTO 1B ROMAGNANO – BUONABITACOLO PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA					
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RC2A	B1 R 69	IG	GE 0005 001	B	20 di 52

Figura 12 - Profilo di velocità sismica col metodo d'intervallo.

3.4. Risultati indagini DH

I risultati delle indagini DH hanno restituito delle velocità crescenti con la profondità. Tuttavia, la DH L1B-S14, ha mostrato la presenza di litotipi caratterizzati da Vs decrescenti suggerendo la presenza di argilla limosa meno consistente. Il rispettivo sondaggio geognostico conferma tale risultato. Si specifica che la L1B -S28 ha restituito valori di Vs notevolmente bassi dovuti alla presenza di limi sabbiose e ghiaie e valori di Vp sempre superiori a 1400 m/s; ciò è dovuto alla presenza di falda acquifera già dai primi metri di profondità.

INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RC2A	B1 R 69	IG	GE 0005 001	B	21 di 52

4. METODO HVSR

4.1. Principi di funzionamento e cenni sul metodo

La tecnica di sismica passiva a stazione sismica o HVSR (Horizontal to Vertical Spectral Ratio) è una tecnica totalmente non invasiva. Si può applicare ovunque senza nessun tipo di perforazione e non ha bisogno di energizzazioni esterne diverse dal rumore ambientale che in natura esiste ovunque. Le registrazioni di microtremore ambientale, nelle sue tre componenti spaziali, rappresentano uno strumento per una microzonazione speditiva. Il microtremore ambientale (*noise* sismico) è un movimento minimo (nell'ordine di $10^{-2} - 10^{-6}$ mm) del terreno presente in qualsiasi punto della superficie terrestre e consiste per lo più nelle onde di superficie (Rayleigh e Love) prodotte dall'interferenza costruttiva delle onde P e S negli strati superficiali. Viene prodotto anche dal vento e dalle onde del mare e a frequenze alte da sorgenti di carattere antropico (industrie e traffico veicolare; Cessaro, 1994; Gutenberg, 1958). I risultati che si possono ottenere sono:

- la frequenza caratteristica di risonanza del sito, parametro fondamentale per il corretto dimensionamento degli edifici così da evitare l'effetto della "doppia risonanza";
- la frequenza fondamentale di risonanza di un edificio qualora la misura viene effettuata all'interno dello stesso;
- stimare la velocità delle onde di taglio Vs a patto che si dispone di informazioni aggiuntive sul modello geologico del sottosuolo o si hanno informazioni di letteratura sul sito in esame (per es. profondità del bedrock sismico, stratigrafie da sondaggi a carotaggio continuo o profili Vs da prove MASW o di sismica a rifrazione).

Il metodo si basa sul rapporto spettrale tra la componente orizzontale (H) e quella verticale (V) (eseguito nel dominio delle frequenze). Esso fu introdotto come strumento speditivo per stimare l'incidenza delle condizioni locali sull'amplificazione dello scuotimento dovuto ad un sisma. Il principio si basa sul fatto che, misurando il rapporto H/V determinabile da microtremori, si stimano le frequenze che possono essere amplificate in caso di sisma.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO 1 BATTIPAGLIA – PRAIA LOTTO 1B ROMAGNANO – BUONABITACOLO PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA					A
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RC2A	B1 R 69	IG	GE 0005 001	B	22 di 52

4.2. Frequenza fondamentale del sito

La prova sismica passiva a stazione singola mette in luce le frequenze alle quali il moto del terreno viene amplificato per *risonanza stratigrafica* (si ha risonanza stratigrafica quando si è in presenza di terreni di copertura con spessore superiore a tre metri su di un substrato rigido), in quanto il rumore sismico agisce come sorgente di eccitazione. Un suolo vibra con maggiore ampiezza a specifiche frequenze non solo quando è eccitato da un terremoto ma anche quando è eccitato da un tremore di qualsiasi origine. Questo fa sì che la misura delle frequenze di risonanza dei terreni sia possibile ovunque ed in modo semplice, anche in assenza di terremoti. Le frequenze a cui si manifesta la risonanza sono descritte dalla relazione: f=Vs/4h (formula semplificata) dove Vs è la velocità delle onde di taglio nello strato che risuona e h è lo spessore di detto strato. Dal grafico del rapporto tra le componenti spettrali orizzontale e verticale (Esempio in Fig.13a) viene evidenziata la frequenza (o più frequenze se si è in presenza di un profilo stratigrafico multistrato con contrasti di impedenza significativi) attraverso un "picco" della curva (in genere dovuto ad un minimo della componente verticale, riscontrabile negli spettri delle singole componenti; Fig.13b). La frequenza fondamentale del sito è da intendersi quella più significativa a bassa frequenza. Eventuali altre frequenze evidenziate (picchi secondari) se vicine alle frequenze di interesse ingegneristico (struttura) possono essere comunque significative.

Figura 13 - a) Rapporto spettrale H/V; b) Esempio di spettri a singole componenti

Le frequenze di risonanza del sottosuolo costituiscono un parametro fondamentale per i progettisti, i quali devono evitare, o se non è possibile quanto meno tenere in debita considerazione nel dimensionamento delle strutture, i fenomeni di "doppia risonanza" che costituiscono la vera causa delle distruzioni generate da un terremoto.

La curva sperimentale HVSR viene "fittata" con una curva teorica usando come vincolo lo spessore dello strato più superficiale (o altro orizzonte il cui picco H/V è individuabile sulla curva sperimentale) di sottosuolo (generalmente noto dalle indagini geotecniche necessarie per legge per ogni progettazione edilizia, come ad esempio prove penetrometriche; Fig.14), basandosi sulla nota equazione che lega la frequenza di risonanza (f) allo spessore (h) dello strato e alla velocità delle onde di taglio (Vs): f=Vs/4h (da cui h=Vs/4f).

Figura 14 - esempio di fittaggio del modello teorico

4.3. Acquisizione e strumentazione utilizzata

Esistono delle note linee guida (progetto SESAME) per acquisire dati utili alle analisi HVSR (Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations Measurements, Processing and Interpretation, <u>http://sesame-fp5.obs.ujfgrenoble.fr/Delivrables/Del-D23 HV User Guidelines.pdf</u>). I dati vengono acquisiti attraverso il Tromino della Micromed (Fig. 15).

Figura 15 – tromino della Micromed

In Tabella 8 sono elencate le caratteristiche dello strumento.

Tromino				
Numero dei canali velocimetrici	3 canali velocimetrici per l'acquisizione del microtremore sismico ambientale e 3 per la			
	registrazione di vibrazioni forti.			
Numero dei canali accelerometrici	3 canali per il monitoraggio di vibrazioni.			
Numero dei canali analogici	1 (es. trigger esterno).			
GPS	ricevitore GPS integrato, antenna interna e/o esterna per localizzazione e/o sincronizzazione			
	tra diverse unità.			
Intervallo di frequenza	0.1 – 1024 Hz con conversione A/D > 24 bit equivalenti a 128 Hz.			
Cavo esterno	Nessuno			

Tabella 8 - Specifiche tecniche del Tromino

Per tutte le misure l'intervallo di registrazione utilizzato è di 40 minuti con una frequenza di campionamento pari a 128 Hz. Per una migliore valutazione della direzionalità del segnale, lo strumento è stato messo in bolla ed orientato con il nord strumentale rispetto al nord magnetico.

Importante è la messa in bolla dello strumento al fine di minimizzare gli errori come, ad esempio, il cosiddetto "effetto del tilting" che può essere provocato da un cambiamento della livellazione mentre si effettua la misura producendo una perturbazione della forma della curva H/V risultante soprattutto nella sua parte in bassa frequenza. Importante è anche orientare il N sul sensore secondo il nord geografico, per convenzione; in questo caso il terzo canale, (connessione al geofono orizzontale N-S) è quello maggiormente eccitato. Le registrazioni sono state suddivise in intervalli temporali di durata di 20 secondi; è stata eseguita, quindi, un'analisi spettrale delle tre componenti e calcolato il rapporto spettrale per ognuno dei segmenti temporali ottenuti. Durante tale operazione è stata eseguita una "lisciatura" dello spettro, con una finestra

25 di 52	INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA RC2A	LOTTO B1 R 69	CODIFICA IG	DOCUMENTO GE 0005 001	REV. B	FOGLIO 25 di 52
----------	---	------------------	-------------------------	----------------	--------------------------	-----------	--------------------

temporale pari al 10 % della frequenza centrale. La curva H/V finale è stata ottenuta come media dei rapporti spettrali su tutti i segmenti.

In alcuni casi è stato necessario eliminare alcuni dei segmenti temporali in cui erano presenti i cosiddetti "transienti", cioè rumore sismico elevato e occasionale (in genere di origine antropica). I risultati finali dell'elaborazione consistono in modelli modimensionali che riportano una stima delle velocità delle onde di taglio in relazione alla profondità.

I dati acquisiti attraverso le misure a stazione singola HVSR sono stati elaborati mediante il software Grilla V.6.1 (Micromed). Nello specifico, Grilla è il software creato per archiviare, gestire, visualizzare ed analizzare le registrazioni del Tromino. I diversi moduli del software permettono di effettuare:

- Analisi spettrale completa delle tracce, calcolo delle curve H/V per la determinazione delle frequenze di risonanza del sottosuolo;
- Procedure di pulizia dei tracciati nel dominio del tempo e della frequenza, test sulla significatività dei picchi secondo le linee guida europee;
- determinazione delle frequenze dei modi di vibrare delle strutture con rimozione dell'effetto di sottosuolo;
- analisi direzionale, confronto tra analisi e registrazioni diverse, numerosi altri strumenti matematici di analisi;
- Referto automatico con tabelle e illustrazioni.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SAL NUOVA LII LOTTO 1 E LOTTO 1B PROGETT	ERNO – NEA AV S BATTIPAC ROMAGI O DI FAT	REGGIO CA GALERNO - GLIA - PRAI NANO - BU(TIBILITA' TI	ALABRIA REGGIO CALA A ONABITACOLO ECNICA ED EC	ABRIA) ONOMIC	Ą
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RC2A	B1 R 69	IG	GE 0005 001	B	26 di 52

Figura 16 – Fasi di acquisizione di alcuni dei tromini effettuati

4.4. Risultati indagini HVSR

Tutte le prove HVSR hanno individuato la profondità del bedrock sismico (Vs \ge 800 m/s). Il basamento sismico viene rilevato a profondità sempre maggiori fino a giungere a 545 m dal p.c. in corrispondenza del HVSR_L1B_S26.

ID HVSR	Basamento sismico	Profondità (m)
HVSR_L1B_S1	Х	31.5
HVSR_L1B_S6	Х	22.5
HVSR_L1B_S7	X	134.5
HVSR_L1B_S9	X	144.0
HVSR_L1B_S11	Х	165.0
HVSR_L1B_S13	X	209.0
HVSR_L1B_S14	X	237.0
HVSR_L1B_S16	Х	415.0
HVSR_L1B_S17	Х	464.0
HVSR_L1B_S19	Х	315.0
HVSR_L1B_S21	Х	403.0
HVSR_L1B_S24	Х	515.0
HVSR_L1B_S26	Х	545.0
HVSR_L1B_S28	Х	319.0
HVSR_L1B_S29	Х	180.0
HVSR_L1B_S31	Х	120.0
HVSR_L1B_S33	Х	116.0
HVSR_L1B_S35	X	110.0

Tabella 9 – Tabella risultati HVSR

в

27 di 52

5. METODO SISMICA A RIFRAZIONE (SRT)

5.1. Principi base del metodo

INDAGINI GEOFISICHE – Socotec Italia S.r.l.

Le indagini indirette, ed in particolare la metodologia a rifrazione, permettono la ricostruzione areale delle geometrie e degli spessori dei depositi di copertura, la profondità del substrato (entro i limiti di penetrazione del metodo), la verifica di eventuali discontinuità laterali, nonché di determinare le caratteristiche fisico-meccaniche dei materiali attraverso la determinazione dei moduli elastici dinamici. Il metodo di sismica a rifrazione si basa sul concetto della bi-rifrazione delle onde elastiche a seguito del fronte d'onda conico. Data una sorgente di onde elastiche e uno stendimento di geofoni lungo un profilo, giungeranno in superficie ai geofoni onde dirette, onde riflesse ed onde coniche o birifratte (head wave): le onde analizzate sono quelle birifratte ossia quelle che giungono sulla superficie di separazione con un angolo d'incidenza critico (secondo la legge di Snell) e che quindi vengono rifratte con un angolo di 90° propagandosi parallelamente alla superficie rifrangente e venendo nuovamente rifratte verso la superficie con lo stesso angolo di incidenza. I contrasti di proprietà possono essere legati a cause stratigrafiche, strutturali, idrogeologiche. L'indagine viene eseguita disponendo una serie di i trasduttori del moto del suolo (velocimetri o accelerometri) lungo la superficie libera del suolo e generando onde elastiche da una sorgente puntiforme che può essere una massa battente, un fucile sismico o una carica esplosiva. I trasduttori situati più vicino alla sorgente rilevano prima l'onda diretta che arriva con velocità legata alle caratteristiche meccaniche dello strato di terreno più superficiale, mentre quelli più lontani rilevano le onde birifratte che viaggiano a velocità più elevata. Quando l'onda birifratta avrà percorso sufficiente distanza alla velocità V2, essa arriverà prima della diretta (Fig. 17).

RC2A

Figura 17 – Schema illustrativo delle onde sismiche

Se si riporta in un semplice grafico x-y, per ogni distanza di ciascun ricevitore, il tempo di arrivo del primo impulso letto sui sismogrammi, i punti si dispongono in una serie di allineamenti di cui il primo passante per l'origine: ciascuna linea è detta "dromocrona" ed è rappresentativa della velocità di propagazione delle onde elastiche nel mezzo posto al di sopra di un rifrattore (una superficie di separazione più o meno netta tra due materiali a comportamento elastico diverso). Il coefficiente angolare della dromocrona passante per l'origine rappresenta l'inverso della velocità di propagazione delle onde elastiche nel primo strato (V0), i coefficienti angolari delle altre dromocrone rappresentano l'inverso delle velocità degli strati sottostanti (dal più superficiale al più profondo). L'intersezione tra due dromocrone è detto "punto di ginocchio" e rappresenta il punto in cui arrivano contemporaneamente le onde rifratte da due rifrattore. In un'indagine di sismica a rifrazione sarà possibile individuare un numero di punti di ginocchio pari al numero di rifrattori investigati (Fig. 18).

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO 1 BATTIPAGLIA – PRAIA LOTTO 1B ROMAGNANO – BUONABITACOLO PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA							
INDAGINI GEOFISICHE	COMMESSA	LOTTO	Codifica	DOCUMENTO	REV.	FOGLIO		
	RC2A	B1 R 69	Ig	GE 0005 001	A	29 di 52		

Figura 18 – Schema esemplificativo delle dromocrone in un sottosuolo a 2 strati.

Pertanto, più è profondo il rifrattore più il rispettivo punto di ginocchio sarà distante dalla sorgente: da ciò si deduce che gli impulsi rifratti possono essere ricevuti solo a partire da una certa distanza proporzionale alla profondità del rifrattore e che quindi la profondità totale di indagine è legata alla lunghezza dello stendimento dei ricevitori. Tramite semplici relazioni trigonometriche è possibile, note le velocità di propagazione delle onde elastiche nei diversi strati omogenei del sottosuolo, conoscere gli spessori di ciascuno di essi. Se gli strati sono poco spessi e caratterizzati da velocità crescente con la profondità (come normalmente avviene nei terreni non consolidati), i percorsi delle onde saranno curvi, con concavità rivolta verso l'alto, ed anche la corrispondente dromocrona sarà una curva. Nei casi reali, si assume che l'effetto delle onde dirette, in termini di ampiezza delle vibrazioni, sia predominante rispetto a quello delle onde indirette, tanto da potere trascurare queste ultime e considerare il mezzo, limitatamente all'area comprendente la sorgente e il ricevitore, come mezzo omogeneo, isotropo e non confinato.

5.2. Fattori di influenza delle velocità sismiche

Sebbene la velocità dell'onda P sia un buon indicatore del tipo di terreno o di roccia, non è un indicatore univoco. Ogni tipo di sedimento o roccia ha una vasta gamma di velocità sismiche e molti di questi range si sovrappongono tra loro. Ci sono molte variabili che influenzano il modulo elastico e quindi la

velocità delle onde di compressione delle rocce e dei terreni. Nelle tabelle 10 e 11, si riportano le velocità da bibliografia di alcune delle principali litologie.

LITOLOGIA	VELOC	ITA' [m/sec]						
Suoli superficiali	300	700						
Limi ed argille sature	1100	2500						
Arenarie sature e porose	2000	3500						
Acqua	1450	1500						
Sabbie asciutte	400	1200						
Sabbie sature	1500	2000						
Arenarie	2100	4400						
Argilliti	2000	6000						
Calcari	2000	7000						
Dolomie	2500	6500						
Marne	2000	3000						

Tabella 10 – Velocità delle onde di compressione di alcuni terreni.

VELOCITA' ONDE DI TAGLIO							
LITOLOGIA	VELOCITA	(m/sec]					
Suoli superficiali	50	300					
Limi ed argille sature	200	800					
Arenarie sature e porose	800	1800					
Acqua	-	-					
Sabbie asciutte	100	500					
Sabbie sature	400	600					
Arenarie	900	3100					
Argilliti	500	2100					
Calcari	1000	3500					
Dolomie	1200	3800					
Marne	750	1500					

Tabella 11 – Velocità delle onde di taglio di alcuni terreni.

I primi esperimenti sulla variazione delle proprietà elastiche delle rocce sono iniziate tra il 1950 e il 1960. A quel tempo molti ricercatori (Wyllie et al., 1956; 1962; 1963; 1985) hanno studiato i cambiamenti della velocità di elasticità onde in funzione di saturazione, porosità e contenuto in argilla, fratturazione. In particolare:

- Saturazione: in condizioni di saturazione totale, la velocità delle onde P è controllata dal mezzo liquido (che è incompressibile) se superiore a quello dello scheletro solido: questo perché la velocità delle onde S non risulta influenzata da tale parametro (l'acqua non può sostenere sforzi di taglio). Per saturazioni parziali, invece, la velocità delle onde P è inferiore a quella ottenibile alla massima saturazione ma, nel contempo, è inferiore anche a quella che si ottiene per gli stati secchi.
- Porosità e contenuto in argilla: la diminuzione della velocità associata ad un aumento del contenuto di argilla può essere confrontata con la diminuzione della velocità associata ad un aumento della porosità. Infatti, le particelle di argilla creano una microporosità composta da piccoli pori di 1 µm riducendo notevolmente la dimensione dei pori. Da vari studi effettuati in merito, si evince che una gran parte della variazione della velocità dovuta al cambiamento di contenuto di argilla, è attribuibile alla significativa quantità di microporosità presente all'interno di minerali di argilla. Si riscontra, infatti, un brusco cambiamento delle proprietà della matrice rocciosa con l'aggiunta di una piccola quantità d'argilla.
- Fratturazione: il grado di fratturazione di una formazione rocciosa è legato alle proprietà idrogeologiche delle rocce, come la porosità e la permeabilità (capacità delle rocce di farsi attraversare dalle acque). L'importanza dell'impiego del metodo sismico per la valutazione del grado di fratturazione di una formazione rocciosa è basata sulle evidenze sperimentali che indicano una diminuzione della velocità delle onde di compressione (Vp) e di taglio (Vs) e un aumento del coefficiente di attenuazione α al crescere della densità di frattura. In sintesi, le indagini suggeriscono che le velocità delle onde P e S decrescono con l'aumentare dei parametri di frattura, mentre il rapporto Vp/Vs aumenta con il decrescere dei parametri di frattura.

NDAGINI GEOFISICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RC2A	B1 R 69	IG	GE 0005 001	Α	32 di 52

Le velocità sismiche che si andranno a misurare su rocce o terreni, pertanto, saranno spesso influenzate dall'effetto contemporaneo di tutti i fattori citati (oltre che ad altri meno importanti nel nostro contesto).

5.3. Schema di acquisizione

Gli stendimenti sismici sono stati realizzati in modalità roll-along utilizzando:

- 3 basi sismiche a 72 canali d'acquisizione (geofoni) con un passo intergeofonico di 2 m per la tomografia sismica SRT1 e SRT3;
- 4 basi sismiche a 60 canali di acquisizione con un passo intergeofonico di 2 m per la tomografia sismica SRT 2
- 3 basi sismiche a 72 canali d'acquisizione (geofoni) con un passo intergeofonico di 3 m per la tomografia sismica SRT4 (Fig.19).

Tutti gli stendimenti sono caratterizzati da:

- tempo di acquisizione: 1 s;
- intervallo di campionamento 0.125 μs.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SAL NUOVA LII LOTTO 1 E LOTTO 1B PROGETT	ERNO – NEA AV S BATTIPA ROMAG O DI FAT	REGGIO CA SALERNO – GLIA – PRAI NANO – BUO TIBILITA' TE	LABRIA REGGIO CALA A DNABITACOLO ECNICA ED EC(BRIA ONOMIC	A
INDAGINI GEOFISICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RC2A	B1 R 69	IG	GE 0005 001	Α	33 di 52

Figura 19 – Fasi di acquisizione

5.4. Processing

Il processing del dataset di sismica a rifrazione è stato condotto mediante il Software RAYFRACT (Intelligent Resources Inc., Canada), studiato per l'elaborazione di dati relativi ad indagini sismiche eseguite in superficie, realizzate sia con onde P che S, per scopi geotecnico-ingegneristici, ambientali, nonché per l'esplorazione nel campo delle georisorse. Rayfract consente sia la ricostruzione della geometria dei rifrattori con la sismica a rifrazione tradizionale, che la realizzazione di dettagliati modelli di velocità del sottosuolo con le più evolute tecniche tomografiche, soprattutto nel caso di strutture profonde.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SAL NUOVA LIN LOTTO 1 B LOTTO 1B PROGETTO	ERNO – NEA AV S BATTIPAC ROMAGI D DI FAT	REGGIO CA GALERNO – GLIA – PRAI NANO – BU(TIBILITA' TE	LABRIA REGGIO CALA A DNABITACOLO ECNICA ED ECC	BRIA DNOMIC	Ą
INDAGINI GEOFISICHE	COMMESSA RC2A	LOTTO B1 R 69	CODIFICA	DOCUMENTO GE 0005 001	REV.	FOGLIO 34 di 52

Lo schema di interpretazione utilizzato nel presente lavoro è basato sulla creazione di un modello iniziale ottenuto mediante interpretazione con una tecnica sofisticata di processo dei tempi di primo arrivo basata sui metodi dei "Fronti d'onda" (Brückl, 1987; Jones and Jovanovich, 1985) e del Plus-minus (Hagedoorn, 1959), fondata su una regressione del campo dei tempi di primo arrivo (Brückl, 1987). Tale metodo può essere considerato un'ottimizzazione dell'algoritmo del GRM, capace di risolvere l'immagine dei rifrattori con andamenti topografici molto accidentati. A partire dal modello sopraccitato è stato quindi utilizzato il codice di calcolo per la modellazione tomografica che utilizza, nell'algoritmo d'inversione, un "raytracing" con raggi curvilinei e metodi di calcolo ai minimi quadrati attraverso il metodo Delta t-v (Gebrande and Miller, 1985), al fine di migliorare il riconoscimento e la localizzazione di strutture di forma anomala, stabilizzando la soluzione dell'algoritmo d'iterazione. In generale, il tempo di percorrenza di un'onda sismica lungo un percorso S attraverso un mezzo bidimensionale (2D) può essere scritto come

$$t = \int_{S} u[\mathbf{r}(x, y)]$$
(2.1)

dove u(r) è il campo delle lentezze (l'inverso delle velocità) e r è il vettore posizione. Discretizzando il campo di lentezze u(r) con m celle equidimensionali ognuna caratterizzata da una lentezza costante uk (k=1, 2, ..., m) la dromocrona i-esima delle n disponibili può essere scritta come

$$t_i = \sum_{k=1}^{k} l_{ik} \cdot u_k \tag{2.2}$$

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SAL NUOVA LII LOTTO 1 E LOTTO 1B PROGETT	ERNO – NEA AV S BATTIPAC ROMAG O DI FAT	REGGIO CA SALERNO – GLIA – PRAI NANO – BU(TIBILITA' TE	LABRIA REGGIO CALA A DNABITACOLO ECNICA ED ECO	BRIA DNOMIC	A
INDAGINI GEOFISICHE	COMMESSA RC2A	LOTTO B1 R 69	CODIFICA	DOCUMENTO GE 0005 001	REV.	FOGLIO 35 di 52

dove lik rappresenta la porzione dell'i-esima dromocrona nella cella k-esima. Considerando tutte le dromocrone disponibili si ottiene il seguente sistema

$$\mathbf{t} = \mathbf{M} \cdot \mathbf{u} \tag{2.3}$$

dove t è il vettore dei dati sperimentali (tempi di primo arrivo letti sui sismogrammi), M è la matrice rettangolare contenente le porzioni dei percorsi nelle varie celle, u è il vettore delle lentezze (incognite del problema). Il problema inverso da risolvere è pertanto:

$$\mathbf{u} = \mathbf{M} \cdot \mathbf{t} \tag{2.4}$$

dove M è la matrice inversa generalizzata. Poiché i percorsi sismici dipendono dalle lentezze, la matrice M dipende anche dalle lentezze e quindi il problema inverso è un problema non-lineare che deve essere risolto iterativamente partendo da una soluzione iniziale (modello di partenza). L'equazione da considerare è pertanto la seguente

$$\mathbf{J} \cdot \Delta \mathbf{u} = \Delta \mathbf{t} \tag{2.5}$$

dove Δt è la differenza tra i tempi sperimentali e i tempi calcolati per il modello di lentezze iniziale u(); Δu è la perturbazione del modello iniziale; e J è la matrice jacobiana contenente le derivate parziali delle dromocrone rispetto alle lentezze nelle celle. Poiché il problema è parzialmente sovradeterminato (per alcune celle si hanno molti percorsi) e parzialmente sottodeterminato (per alcune celle non è disponibile nessun percorso) esso è stato risolto con la tecnica dei minimi quadrati smorzati, cioè è stata minimizzata con la seguente funzione errore

$$\varphi = \|\mathbf{J} \cdot \Delta \mathbf{u} - \Delta \mathbf{t}\|^2 + \lambda \|\mathbf{L}_2 \mathbf{u}\|^2$$
(2.6)

dove λ è il fattore di smorzamento e la matrice L2 è una matrice derivata seconda (operatore laplaciano) che forza la soluzione verso la soluzione più regolare possibile (smoothest solution).

5.5. Risultati indagini SRT

Il settore nord è stato investigato attraverso l'indagine di sismica a rifrazione SRT4. Il settore orientale delle linee indagate sembrano restituire valori di Vp e Vs più alti rispetto al settore occidentale con valori che arrivano, già nei primi 50 m dal p.c., a 2200 m/s e 1100 m/s, rispettivamente. Nel settore occidentale delle tomografie, caratterizzato da velocità sismiche più basse, si riscontrano i seguenti sismostrati:

- Il primo, dal piano campagna fino a circa 50 m di profondità, è caratterizzato da velocità gradualmente crescenti con la profondità, con valori di Vp che arrivano a 2100 m/s e Vs che arrivano a 800 m/s.
- Dalla profondità di circa 50 m dal p.c., si riscontra un marcato aumento dei valori di velocità raggiungendo, a circa 70 75 m di profondità, i 2700 m/s per le onde P e i 1500 m/s per le onde S. Tale aumento è collegato al passaggio da calcare calcilutitico fratturato ad alternanza di calcare calcilutitico e dolomitico, come da sondaggio geognostico L1B-S5.

Spostandosi a sud, la linea SRT1 mostra valori di velocità crescenti con la profondità ad eccezione del settore sud-orientale della linea in cui è presente un'area caratterizzata da bassi valori delle velocità sismiche. In particolare, si riscontra la presenza di n°2 sismostrati:

- Il primo, dal p.c. fino a 25 30 m, è caratterizzato da velocità che arrivano a 2500 m/s per le onde P e 800 m/s per le onde S.
- Da 25 30 m fino alla massima profondità di indagine, si identifica un secondo sismostrato caratterizzato da un netto aumento delle velocità sismiche con valori di Vp che arrivano a 3500 m/s e di Vs che arrivano a 1900 m/s.

INDAGINI GEOFISICHE

GE 0005 001

37 di 52

Α

IG

B1 R 69 La SRT2 ha restituito valori simili alla linea precedentemente descritta. Le Vs e Vp sono uniformemente crescenti con la profondità individuando un basamento sismico a circa 25 m dal p.c.. In particolare, si riscontra la presenza di n°2 sismostrati:

RC2A

- Il primo, dal p.c. fino a 20 30 m, è caratterizzato da velocità che arrivano a 2500 m/s per le onde P e 800 m/s per le onde S.
- Da 20 30 m fino alla massima profondità di indagine, si identifica un secondo sismostrato caratterizzato da un netto aumento delle velocità sismiche con valori di Vp che arrivano a 3500 m/s e di Vs che arrivano a 1100 m/s.

Il settore più meridionale dell'area, è stato investigato attraverso la linea SRT3. Le indagini sismiche mostrano, a circa 150 m e 370 m da inizio linea, due aree caratterizzate da velocità sismiche particolarmente alte se confrontate con le velocità a contorno, suggerendo la presenza di materiale particolarmente compatto. In particolare, si riscontra la presenza di n°2 sismostrati:

- Il primo, con spessore variabile da 15 a 35 m di spessore, partendo dal p.c., è caratterizzato da velocità che arrivano a 2500 m/s per le onde P e 800 m/s per le onde S.
- Da tali profondità fino alla massima profondità di indagine, si identifica un secondo sismostrato caratterizzato da un netto aumento delle velocità sismiche con valori di Vp che arrivano a 3500 m/s e di Vs che arrivano a 1600 m/s.

6. METODO DELLA RESISTIVITÀ ELETTRICA (ERT)

6.1. Principi di funzionamento e cenni sul metodo

Le indagini geoelettriche sono tra i metodi geofisici più utilizzati per lo studio del sottosuolo. Lo scopo è quello di ricavare informazioni riguardanti la geometria e la localizzazione di elementi sepolti geologici (e non) alla luce delle loro proprietà elettriche. In particolare, il metodo della resistività si realizza attraverso la misura della differenza di potenziale elettrico in diversi punti della superficie del terreno. L'obiettivo è quello di ricostruire modelli di resistività del sottosuolo attraverso un processo di inversione dei dati acquisiti in campagna. Questa tipologia di rilievi non invasivi si basa sui principi che

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SAI NUOVA LII LOTTO 1 E LOTTO 1B PROGETT	ERNO – NEA AV S BATTIPA ROMAG O DI FAT	REGGIO CA SALERNO – GLIA – PRAI NANO – BUO TIBILITA' TE	LABRIA REGGIO CALA A ONABITACOLO ECNICA ED EC(BRIA ONOMIC	A
INDAGINI GEOFISICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

descrivono la conduzione elettrica attraverso un mezzo: più una sostanza si lascia attraversare da portatori di carica, più essa viene definita conduttiva; viceversa, essa è definita resistiva. Quando si fanno fluire cariche elettriche attraverso un conduttore è possibile misurare la corrente elettrica (I). In presenza di un conduttore ohmico (ossia per cui vale la legge di Ohm), la corrente elettrica incontra una resistenza (R), misurata in Ohm, che dipende dalla differenza di potenziale (ΔV), misurata in Volt, e dalla corrente (I) secondo la relazione (Legge di Ohm):

$$R = \frac{V}{I}$$

(4.1)

Per un conduttore omogeneo (ovvero un corpo in cui ogni sua parte ha le stesse proprietà fisiche), isotropo (ovvero un corpo le cui proprietà fisiche non dipendono dalla direzione lungo le quali vengono considerate) e cilindrico di sezione S e lunghezza l, la resistenza elettrica può essere espressa come:

$$R = \rho \frac{l}{S} \tag{4.2}$$

dove con (ρ) si indica la resistività tipica del materiale: la resistività è l'attitudine di un materiale ad opporre resistenza al passaggio delle cariche elettriche. Dall'equazione (6.3) risulta evidente che la resistenza elettrica di un materiale dipende non solo dalle sue proprietà fisiche ma anche dalle sue caratteristiche geometriche.

Nel dettaglio, il metodo geoelettrico della resistività prevede l'energizzazione del terreno (generalmente attraverso una batteria) con corrente continua I ed una misura diretta sulla superficie del suolo della differenza di potenziale (ΔV). Combinando le relazioni (6.2) e (6.3) è possibile scrivere la relazione:

$$\rho_{a} = K \frac{\Delta V}{I} \tag{4.3}$$

dove con (K) si indica un fattore geometrico (misurato in metri) e con pa la resistività apparente, la quale è influenzata dal contributo delle diverse resistività degli elementi presenti nel sottosuolo. Nel caso di una misura geofisica, non si verificano le condizioni di omogeneità ed isotropia del mezzo (il sottosuolo è

generalmente molto eterogeneo ed anisotropo dal punto di vista elettrico): è pertanto necessario introdurre il concetto di resistività apparente. Un successivo processo di inversione, consente di passare dalle misure di resistività apparente al modello di resistività. Per realizzare misure di resistività si utilizzano 2 elettrodi conduttivi (chiamati convenzionalmente A e B) che, a contatto con il terreno, permettono l'immissione della corrente elettrica. A distanza nota, attraverso altri due elettrodi (chiamati convenzionalmente M e N), viene misurata la differenza di potenziale (ΔV). Questa configurazione è chiamata quadripolo: in Fig. 20, è rappresentato uno schema con il posizionamento dei 4 elettrodi, le linee di corrente e quelle di potenziale. Le cariche, nel passare da un elettrodo all'altro, percorrono linee di corrente a profondità diverse: maggiore è la separazione tra A e B, maggiore è la diffusione della corrente nel terreno (e di conseguenza la profondità raggiunta) e minore è la differenza di potenziale registrata in superficie al centro del quadripolo (con M e N fissati).

Figura 20 – Schema di un quadripolo: A e B sono gli elettrodi di corrente; M e N sono elettrodi di potenziale. Sono visibili anche le linee di corrente e superfici equipotenziali.

Una volta che posizionati gli elettrodi A, B, M e N, è possibile compiere una misura, immettendo con una corrente elettrica A e B e registrando la differenza di potenziale M e N. Allargando ad ogni misura i quattro elettrodi mantenendo invariato il centro del quadripolo, si ottiene un sondaggio elettrico verticale (SEV), mentre spostando ad ogni misura i quattro elettrodi lungo un allineamento orizzontale si realizza un profilo di resistività a profondità costante. Fissata una linea, è possibile realizzare più profili a profondità crescenti: il risultato è un insieme di misure che formano una sezione 2D di resistività

apparente, detta pseudosezione. Un sondaggio elettrico 2D è, pertanto, un'indagine bidimensionale che permette lo studio delle variazioni di resistività sia lungo la direzione verticale sia lungo una direzione orizzontale. Attraverso un processo di inversione, è possibile elaborare le misure di resistività apparente per ottenere un modello 2D di resistività del sottosuolo chiamato "tomografia elettrica": decine di elettrodi vengono impiantati nel terreno e collegati, attraverso cavi elettrici, ad una centralina computerizzata che ne gestisce l'attivazione. Si utilizzano cavi multiconduttori a 24 prese ciascuno; ogni elettrodo (picchetto metallico di lunghezza da 45 – 50 cm) viene infisso nello strato superficiale per una profondità media di 30 cm dal piano campagna e collegato al sistema di cavi. In caso di terreno molto duro ed asfaltato, i fori vengono preventivamente realizzati attraverso l'uso di un trapano a rotopercussione o, in presenza di suoli secchi e/o a granulometria grossolana, si può migliorare il contatto con l'uso di soluzioni saline (o semplicemente acqua) versate attorno agli elettrodi.

La strumentazione adottata (Syscal Pro switch 96 a commutazione concentrata, prodotto da IRIS Instruments, Francia), permette di eseguire misure di alta precisione, con correnti indotte fino ad oltre 2 Ampere, con compensazione automatica del potenziale spontaneo (caduta di tensione esistente tra due poli in assenza di trasmissione e spesso fortemente variabile nel breve tempo). Il Syscal-Pro, rispetto ai resistivimetri di più classica concezione, ha la possibilità di ricevere 10 coppie di elettrodi contemporaneamente, abbattendo di un ordine di grandezza il tempo necessario per l'acquisizione. Sia nel caso di indagini 1D che 2D, la metodologia di acquisizione può variare a seconda di come vengono posizionati sul terreno gli elettrodi di corrente e di potenziale: le configurazioni più comuni sono chiamate Wenner, Schlumberger, polo – dipolo e dipolo – dipolo.

6.2. Proprietà elettriche del suolo ed interpretazione dei valori di resistività

La resistività dei materiali è controllata da molteplici fattori e principalmente da:

- grado di saturazione dei pori;
- porosità;
- salinità del fluido (se presente nei pori);
- temperatura;
- eventuale presenza di sostanze organiche (idrocarburi, solventi, ecc.);

GE 0005 001

Α

41 di 52

IG

INDAGINI GEOFISICHE	
---------------------	--

- presenza di argilla;
- presenza di minerali particolari (ad esempio metalli pesanti, miche);
- grado di compattazione.

La relazione empirica proposta da Archie è valida per suoli aventi scarsa componente argillosa (sabbie, ghiaie):

RC2A

$$\rho_{\rm s} = \rho_{\rm f} \, a \, \phi^{-n} \, \text{S-m} \qquad (4.4)$$

B1 R 69

dove:

INDAGINI GEOFISICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RC2A	B1 R 69	IG	GE 0005 001	Α	42 di 52

 ρ_s è la resistività (espressa in Ohm·m, di seguito indicata con Ω ·m) del suolo parzialmente saturo di fluido;

- ρ_f è la resistività (Ω ·m) del fluido presente nei pori;
- S è la frazione del volume di pori occupata dal fluido;
- m è il coefficiente di saturazione (solitamente assunto essere pari a 2);
- a è la costante empirica di Winsaur (es. per la sabbia pari a 0.62);
- n è il coefficiente empirico, detto di "tortuosità" (es. per la sabbia pari a 2.15);
- ϕ è la porosità del suolo.

La resistività del fluido ρ_f è calcolabile, qualora si conoscano le concentrazioni di ioni in soluzione (ad es. Cl-, SO4=, NO3-, ecc.), utilizzando la formula:

$$\rho_{\rm f} = 0.0123 + 10^{(3.562 - 0.955 \log_{10} C)} \tag{4.5}$$

dove C è la somma delle concentrazioni (pesate da opportuni coefficienti ricavati sperimentalmente per ciascun ione) di tutti gli ioni presenti. Nel caso di presenza di argilla, i cationi adsorbiti sulla superficie delle particelle di tale sostanza, offrono cammini addizionali per la corrente elettrica e quindi aumentano la conducibilità dei sedimenti. Esistono relazioni semi-empiriche valide per il calcolo della resistività di sedimenti con componente argillosa non trascurabile, che non riporteremo in questo contesto. La distribuzione della resistività nel sottosuolo consente di discriminare eventuali variazioni nella risposta elettrica dei terreni dovute alla presenza, al suo interno, di sostanze o materiali stessi diversi dal terreno che li ingloba, ovvero rispetto alle variazioni di un normale schema geologico-stratigrafico. Alla luce di tutti i parametri di influenza citati in precedenza, si riportano i valori di resistività di alcuni terreni e materiali; si nota che il range di variazione della resistività può essere molto ampio (Palacky, 1988): nei materiali granulari, da grossolani a fini, piccole variazioni del contenuto in argilla o del fuso granulometrico possono comportare notevoli cambiamenti nella resistività del materiale. Nei materiali lapidei, invece, è la fatturazione e/o la porosità (Worthigton et al., 1993) ad essere il principale fattore di controllo (Tab. 12).

LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO 1 BATTIPAGLIA – PRAIA LOTTO 1B ROMAGNANO – BUONABITACOLO PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

INDAGINI GEOFISICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RC2A	B1 R 69	IG	GE 0005 001	Α	43 di 52

Rocce e minerali metallici	Resistività (Ω·m)
Sedimentarie	
Calcare	50 ÷ 150
Argilla	1 ÷ 100
Ghiaia	100÷5000
Calcare compatto	50 ÷ 10 ⁷
Marna	1 ÷ 100
Quarzite	10 ÷ 10 ⁸
Argilla	10 ÷ 1000
Sabbia	500÷5000
Arenaria	1 ÷ 10 ⁸
lgnee e Metamorfiche	
Basalto	10 ÷ 10 ⁷
Gabbro	10 ³ ÷ 10 ⁶
Granito	10 ² ÷ 10 ⁶
Marmo	10 ² ÷ 10 ⁸
Scisto	10 ÷ 10 ⁴
Ardesia	10 ² ÷ 10 ⁷
Minerali e minerali metallici	
Argento	1.6·10 ⁻⁸
Grafite (giacimento massivo)	10 ⁻⁴ ÷ 10 ⁻³
Galena (Pbs)	10 ⁻³ ÷ 10 ²
Magnetite di giacimento	1 ÷ 10 ⁵
Sfalerite (ZnS)	10 ³ ÷ 10 ⁶
Pirite	10 ²
Calcopirite	10 ⁻⁵ ÷ 0.3
Quarzo	10 ¹⁰ ÷ 2·10 ¹⁴
Salgemma	10 ÷ 10 ¹³
Acque ed effetto del contenuto in s	sale
Acqua pura	106
Acque naturali	1 ÷ 10 ³
Acqua di mare	0,2
Sale 20%	5·10 ⁻²
Granito 0% di acqua	10 ¹⁰
Granito 0,19% di acqua	10 ⁶
Granito 0,31% di acqua	4·10 ³

Tabella 12 - Riepilogo delle resistività dei principali materiali

Quindi, in linea generale, la distribuzione della resistività elettrica consente di discriminare eventuali variazioni nei geo-materiali dovute a:

- presenza di litologie differenti o con caratteristiche di maggiore o minore cementazione;
- fratture o discontinuità tettoniche;
- presenza di sostanze fluide a comportamento elettrico resistivo o conduttivo all'interno dei pori;
- presenza di argilla (i cationi adsorbiti sulla superficie delle particelle di tale sostanza offrono cammini addizionali per la corrente elettrica e quindi aumentano la conducibilità dei sedimenti).

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SAL NUOVA LII LOTTO 1 E LOTTO 1B PROGETT	ERNO – NEA AV S BATTIPAC ROMAGI O DI FAT	REGGIO CA SALERNO – GLIA – PRAI NANO – BU(TIBILITA' TE	LABRIA REGGIO CALA A DNABITACOLO ECNICA ED ECO	BRIA DNOMIC	A
INDAGINI GEOFISICHE	COMMESSA RC2A	LOTTO B1 R 69	Codifica Ig	DOCUMENTO GE 0005 001	REV.	FOGLIO 44 di 52

Inoltre, la resistività è strettamente dipendente dalla temperatura. In particolare, tale dipendenza è espressa dalla seguente relazione:

$$\rho = \rho_0 (1 + \alpha_0 T)$$
 (4.6)

dove ρ è la resistività alla temperatura T, ρ_0 è la resistività a 0°C e α_0 è il coefficiente di temperatura della resistività riferito alla temperatura di 0°C. L'equazione è valida in un intervallo di temperatura di alcune centinaia di gradi ed il coefficiente di temperatura della resistività può essere positivo o negativo. Se il materiale considerato è una roccia, la relazione che lega la resistività alla temperatura è ancora più complessa. Infatti, essendo la roccia un aggregato di più minerali, per definire il comportamento elettrico delle rocce in funzione delle variazioni di temperatura, bisogna studiare non solo le relazioni di ogni minerale in essa presente, ma anche le relazioni tra i diversi meccanismi di conduzione. Infatti, i minerali possono presentare una conducibilità metallica, essere dei semiconduttori o, come nella maggior parte dei casi, essere degli elettroliti solidi. La minima conduzione elettrica che può avvenire negli elettroliti solidi è dovuta alle imperfezioni reticolari per temperature inferiori a 500 - 600°C, o può essere causata dalla temperatura per valori più elevati di 600°C (Keller & Rapolla; 1974). A complicare ulteriormente la relazione tra resistività e temperatura vi è il fatto che le rocce a temperatura ambiente presentano una certa quantità d'acqua che, se è presente in quantità tale da formare almeno una pellicola continua sulle pareti dei pori (in genere superiore al 10% della quantità totale di acqua che potenzialmente la roccia può contenere), le proprietà elettriche cambiano sensibilmente. Esse dipenderanno, quindi, anche dalle caratteristiche elettriche della soluzione a contatto con la roccia.

La temperatura è legata alla resistività da una relazione di tipo inverso: all'aumentare della temperatura la viscosità dell'acqua diminuisce e quindi gli ioni in essa presenti godono di una mobilità maggiore. Come già accennato, il parametro della resistività è influenzato anche da: tessitura, porosità, grado di cementazione, contenuto argilloso e salinità della soluzione acquosa che imbibisce la formazione. Le rocce con tessitura granitica conducono l'elettricità lungo le fessure o i giunti di strato per cui presentano generalmente una resistività alta; un'arenaria ben selezionata ha una resistività più bassa rispetto ad un'arenaria meno selezionata. Sperimentalmente si verifica, inoltre, che, a parità di

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SAL NUOVA LIN LOTTO 1 E LOTTO 1B PROGETTO	ERNO – NEA AV S ATTIPAC ROMAGI D DI FAT	REGGIO CA GALERNO - GLIA - PRAI NANO - BUO TIBILITA' TE	LABRIA REGGIO CALA A DNABITACOLO ECNICA ED ECC	BRIA DNOMIC/	A
INDAGINI GEOFISICHE	COMMESSA RC2A	LOTTO B1 R 69	CODIFICA	DOCUMENTO GE 0005 001	REV.	FOGLIO 45 di 52

contenuto e tipo d'acqua, una roccia vulcanica presenterà una resistività più alta di una roccia sedimentaria con la stessa porosità. La causa è da ricercarsi, molto probabilmente, nella differenza tra porosità totale e porosità utile che caratterizza le due litologie (Fig. 21).

Figura 21 – Campi di variazione del fattore di formazione F con la porosità Φ per le principali tipologie di rocce sature (da Keller & Rapolla, 1974).

6.3. Strumentazione utilizzata

Lo strumento di acquisizione utilizzato, il georesistivimetro multielettrodo e multicanale IRIS SYSCAL PRO (Fig.22; Tab. 13), è capace di gestire contemporaneamente oltre 256 elettrodi e di personalizzare, tramite specifico software applicativo, tutte le misure desiderate e la loro posizione nel sottosuolo. È uno strumento a 10 canali di ricezione, ovvero consente l'acquisizione contemporanea di più quadripoli, fino ad un massimo di dieci. Il Syscal ha una precisione strumentale di circa 0.5%, utilizza un'alimentazione in corrente continua fino a 2.5 A ed effettua una compensazione automatica dei potenziali spontanei.

Figura 22 – Georesistivimetro Syscal Pro (IRIS instruments) ed elettrodi di acquisizione.

Specifiche SYSCAL Pro							
Casa produttrice	IRIS Instruments (Orléans, Francia)						
Voltaggio massimo	800V in modalità switch						
Voltaggio massimo	1000V in modalità manuale						
Corrente massima	2.5A, accuratezza 0.2%						
Potenza massima	250W con DC/DC interna						
Energia	1200 W con AC / DC esterno						
Durata dell'impulso	250ms, 500ms, 1s, 2s, 4s o 8s						
Risoluzione/precisione	1 μV / 0,2%						
Impedenza di input	100Mohm						

Tabella 13 - Specifiche tecniche SYSCAL Pro.

Inoltre, sono stati utilizzati cavi di connessione elettrodi - georesistivimetro schermati, batteria esterna da 12V/65Ah, elettrodi in acciaio inossidabile e una soluzione salina per migliorare l'accoppiamento terreno-elettrodi.

6.4. Schema di acquisizione

Gli stendimenti di tomografia elettrica sono stati realizzati utilizzando un diverso numero di canali, in configurazione elettrodica Polo-Dipolo, a seconda dell'area da indagare (Fig. 23):

- 95 canali di acquisizione con passo elettrodico pari a 5 m nel caso della ERT 1, ERT2, ERT3;
- 72 canali di acquisizione con passo elettrodico pari a 5 m nel caso della ERT 4.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SAL NUOVA LIN LOTTO 1 B LOTTO 1B PROGETTO	ERNO – NEA AV S ATTIPAC ROMAGI D DI FAT	REGGIO CA ALERNO - GLIA - PRAI NANO - BU(TIBILITA' TE	LABRIA REGGIO CALA A DNABITACOLO ECNICA ED ECO	BRIA DNOMIC	A
INDAGINI GEOFISICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RC2A	B1 R 69	IG	GE 0005 001	Α	47 di 52

Figura 23 – Fasi di acquisizione

6.5. Processing

I dati acquisiti sono stati elaborati mediante il software ERTlab 64[™] sviluppato e prodotto da Geostudi Astier srl (Livorno, Italia) e dalla Multi-Phase Technologies LLC (Nevada, U.S.A.). Viene effettuato un filtraggio in base ad una serie di criteri:

- Fattore di qualità Q: i valori che eccedono il fattore Q, imposto in fase di acquisizione, vengono esclusi;
- Valori di intensità di corrente I: se troppo bassi non garantiscono un sufficiente rapporto S/N (segnale/rumore);

RC2A B1 R 69 IG GE 0005 001 A 48 di 52	INDAGINI GEOFISICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
		RC2A	B1 R 69	IG	GE 0005 001	Α	48 di 52

• Fattore geometrico K: data la rapidità di acquisizione delle moderne attrezzature, si preferisce utilizzare sequenze che presentano anche quadripoli con fattori geometrici K molto elevati. Nel caso in cui i parametri I e Q si rivelino ottimali, si riesce ad ottenere un numero maggiore di dati, in caso contrario i dati con "K" elevato vengono scartati.

Al fine di calcolare un'immagine di resistività dai dati ERT, è necessario effettuare un'inversione che produca un modello in grado di dare una distribuzione spaziale di resistività il più possibile vicina a quella reale del sistema investigato.

L'obiettivo finale è derivare la distribuzione delle proprietà elettriche all'interno del sottosuolo, da un insieme di misurazioni effettuate sul contorno dell'oggetto, o almeno al di fuori della regione di interesse. A tal fine, si ricorre al cosiddetto "modello inverso" ossia, dato un insieme di misurazioni (dati), la distribuzione delle proprietà elettriche (modello) deve essere "coerente" con le resistenze effettivamente misurate. In generale, per formulare il modello inverso, il sottosuolo è suddiviso in celle, ciascuna avente una conduttività
☐ (o resistività ρ). Ne consegue, quindi, che la distribuzione di conduttività è rappresentata da un vettore di incognite m. Dal momento che le variazioni di conduttività possono essere di vari ordini di grandezza, usualmente il vettore m è dato dai logaritmi della conduttività. Questa trasformazione ha anche il vantaggio di garantire che la soluzione del problema inverso non contenga conduttività elettriche negative. Il modello inverso cerca di determinare il miglior set di parametri che riproduca i dati sperimentali di resistenza tramite calcoli effettuati con il modello diretto.

Il calcolo del miglior set m si effettua minimizzando una funzione obiettivo 🕮d), generalmente corrispondente alla norma della differenza pesata tra valori di resistenza misurati d e calcolati con il modello diretto F(m*). Usare soltanto il *misfit* dei dati causa, però, un sistema contemporaneamente sotto determinato (troppe incognite e poche equazioni) e sovra determinato (solo alcune parti del dominio). Per tale motivo, l'inversione va vincolata, introducendo una funzione di penalità (@m) alla funzione obiettivo, in modo che l'inversione non conduca a soluzioni diverse da ciò che riteniamo accettabile.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SAL NUOVA LI BATTIPAG LOTTO 1B PROGETT	ERNO – NEA AV LIA – PR ROMAG O DI FAT	REGGIO CA SALERNO AIA NANO – BU(TIBILITA' TE	ALABRIA - REGGIO CA ONABITACOLO ECNICA ED EC	LABRIA) ONOMIC	LOTTO 1 A
INDAGINI GEOFISICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RC2A	C1 R 69	IG	GE0005 001	А	49 di 52

La funzione da minimizzare sarà composta da una funzione obiettivo (2d), che si occupa dei dati, e una funzione di penalità (2m) che si occuperà del modello. Resta all'operatore decidere quale peso attribuire ai vari termini: questo viene stabilito sulla base di un fattore peso 2 (più è piccolo e più pesano i dati rispetto alla *lisciatura*):

$$\Psi(\mathbf{m}) = \Psi d(\mathbf{m}) + \alpha \Psi m(\mathbf{m}) \tag{4.7}$$

Le iterazioni del modello inverso si devono fermare una volta che il misfit dei dati è prossimo agli errori dei dati stessi e del modello diretto (Telford et al., 1976). A tale scopo, il set di dati di resistività è stato importato su specifico software per la visualizzazione bidimensionale di dati geostatistici (MVS della C-Tech – USA).

Nel dettaglio, il programma di inversione per ogni profilo fornisce: la pseudosezione misurata, che riporta la distribuzione laterale e verticale della resistività apparente in funzione della profondità teorica (i.e., pseudo-profondità); la pseudosezione calcolata, derivata dal modello bidimensionale, relativamente all'iterazione che fornisce il valore più basso di errore percentuale; il modello 2D del terreno che mostra la distribuzione verticale ed orizzontale delle resistività reali.

6.6. Risultati indagini ERT

Il settore nord è stato investigato attraverso l'indagine di tomografia elettrica ERT4. Il settore orientale della linea indagata sembra restituire valori di resistività elettrica che superano i 40000 Ω ·m. Inoltre, nel settore iniziale della tomografia, dal p.c. fino a circa 50 m, è presente un primo elettrostrato caratterizzato da valori di resistività di circa 5000 – 10000 Ω ·m. Da 50 m di profondità, si identifica un elettrostrato caratterizzato da valori di resistività nettamente inferiori che non superano i 1000 Ω ·m.

Spostandosi a sud, la linea ERT1 mostra valori di velocità crescenti con la profondità ad eccezione del settore sud-orientale della linea in cui è presente un'area caratterizzata da valori estremamente bassi che non superano i 160 Ω ·m. Inoltre, da inizio tomografia, si identifica un secondo elettrostrato, dello spessore di circa 25 m che si approfondisce spostandosi verso la metà della linea, caratterizzato da

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SAI NUOVA LI BATTIPAG LOTTO 1B PROGETT	LERNO – INEA AV GLIA – PR ROMAG O DI FAT	REGGIO CA SALERNO AIA NANO – BU TIBILITA' TI	ALABRIA - REGGIO CA ONABITACOLO ECNICA ED EC	LABRIA) ONOMIC	LOTTO 1
INDAGINI GEOFISICHE	COMMESSA RC2A	LOTTO C1 R 69	CODIFICA IG	DOCUMENTO GE0005 001	REV.	FOGLIO 50 di 52

valori massimi di resistività di 1600 Ω ·m. A circa 95 m di profondità, si intercetta l'inizio di un terzo elettrostrato con valori di resistività che arrivano a 4000 Ω ·m.

La ERT2 ha restituito valori simili alla linea precedentemente descritta. La tomografia elettrica mostra un primo elettrostrato caratterizzato da valori di resistività che non superano i 160 Ω ·m; la continuità di tale elettrostrato è interrotta dalla presenza di aree, dalla forma ellissoidica, caratterizzate da valori di resistività di circa 500 Ω ·m. Il secondo elettostrato lo si intercetta a profondità di circa 90 m nel settore nord-ovest e a una profondità di 50 m nel settore sud-est; esso è caratterizzato da valori di resistività che oscillano da 1700 Ω ·m a 20000 Ω ·m.

Il settore più meridionale dell'area, è stato investigato attraverso la tomografia ERT3. Essa ha evidenziato la presenza di n°3 elettrostrati. Il primo, partendo dal p.c., ha uno spessore variabile da 3 m a circa 35 m con valori di resistività che non superano i 160 Ω ·m. Il secondo elettrostrato presenta valori di resistività media di circa 800 Ω ·m e sembra essere caratterizzato da una forma non piano-parallela. Il terzo ed ultimo elettrostrato lo si identifica a partire da profondità di circa 60 m nel settore iniziale e finale della tomografia, e di 100 m nel settore centrale della stessa, con valori che superano i 23000 Ω ·m.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO BATTIPAGLIA – PRAIA LOTTO 1B ROMAGNANO – BUONABITACOLO PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA					LOTTO 1 A
INDAGINI GEOFISICHE	COMMESSA RC2A	LOTTO C1 R 69	CODIFICA	DOCUMENTO GE0005 001	REV.	FOGLIO 51 di 52

7. BIBLIOGRAFIA

American Society for Testing and Materials (2014) "Standard Test Methods for Crosshole Seismic Testing", ASTM D 4428/D 4428M - 14

- Biot M. A., 1956. Theory of propagation of elastic waves in a fluid-saturated porous solid. *Journal of the Acoustic Society of America*, 28, 2, 168-191.
- Biot M. A., 1962. Mechaniscm of deformation and acoustic propagation in porous media. *Journal of Applied Physics*, 33, 4, 1482-1498.
- Boadu F. K., 1997. Fractured rock mass characterization parameters and seismic properties: Analytical studies. *Journal of Applied Geophysics*, 36, 1-19.
- Cessaro R.K., 1994. Sources of Primary and Secondary Microseisms. *Bulletin of the Seismological Society of America*, 84, 1, 142-148.
- Gutenberg, 1958. Two types of microseisms. JGR, 63, 3, 595-597.
- Jones G.M. and Jovanovich D.B., 1985. A ray inversion method for refraction analysis. *Geophysics*, 50, 11, 1701-1720. https://doi.org/10.1190/1.1441861.
- Kahraman S., 2002. The effects of fracture roughness on P-wave velocity. *Engineering Geology*, 63, 347-350.
- Klimentos T. & McCann C., 1990. Relationships among compressional wave attenuation, porosity, clay content, and permeability in sandstones. *Geophysics*, 55, 8, 998-1014.
- Kovallis B. J., Jones L. E. & Wang H. F., 1984. Velocity Porosity Clay content systematics of poorly consolidated sandstones. *Journal of Geophysical Resaerch*, *89*, *B12*, *10355-10364*.
- Liu Z., Rector J. W., Nihei K. T., Tomusa L., Myer L. R. & Nakagawa S., 2001. Extensional wave attenuation and velocity in partially-saturated sand in the sonic frequency range. *EG Technical Program Expanded Abstracts 2001, 1808-1811.* DOI:10.1190/1.1816479.
- Watanabe T. & Sassa K., 1995. Velocity and amplitude of P-waves transmitted through fractured zones composed of multiple thin low-velocity layers. *Internation Journal of Rock Mechanics and Mining Sciences*, 32, 4, 313-324.
- Wyllie M. R., Gregory A. R. & Gardner G. H., 1956. Elastic wave velocities in heterogeneous and porous media. *Geophysics*, 21, 1, 41-70.
- Wyllie M. R., Gregory A. R. & Gardner G. H., 1962. Studies of elastic wave attenuation in porous media. *Geophysics, 27, 3, 569-589.*
- Wyllie M. R., Gregory A. R., & Gardner G. H., 1963. Addendum to "Studies of elastic wave attenuation in porous media". *Geophysics, 28, 6, 1074-1074.*

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO BATTIPAGLIA – PRAIA LOTTO 1B ROMAGNANO – BUONABITACOLO PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA					LOTTO 1 A
INDAGINI GEOFISICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

ALLEGATI

0	TEST REPORT			1/4		
SOCOTEC		MASW	1/4			
CLIENTE	ITALFERR					
LAVORO:	Esecuzione di - Lotto 1B.	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria · Lotto 1B.				
UBICAZIONE	Contrada Mesarico					
NOME TEST	MASW_L1B_	_S1				
DATA DI ESECUZIONE	14/06/2021					
COORDINATE	Lat.	40°36'9.78"N				
	Long.	15°22'31.24"E				

	TEST REPORT			2/4		
SOCOTEC		2/4				
CLIENTE:	ITALFERR					
LAVORO:	Esecuzione di - Lotto 1B.	Ξsecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria · Lotto 1B.				
UBICAZIONE:	Contrada Mesarico					
NOME TEST	MASW_L1B_S1					
DATA DI ESECUZIONE	14/06/2021					
	Lat.	40°36'9.78"N				
	Long.	15°22'31.24"E				

	TEST REPORT			3/4		
SOCOTEC	MASW			3/4		
CLIENTE:	ITALFERR					
LAVORO:	Esecuzione di - Lotto 1B.	secuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria Lotto 1B.				
UBICAZIONE:	Contrada Me	Contrada Mesarico				
NOME TEST	MASW_L1B_S1					
DATA DI ESECUZIONE	14/06/2021					
COORDINATE	Lat. Long.	40°36'9.78"N 15°22'31.24"E				

		TEST REPORT		AIA		
SOCOTEC	MASW			4/4		
CLIENTE:	ITALFERR					
LAVORO:	Esecuzione di - Lotto 1B.	secuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria ₋otto 1B.				
UBICAZIONE:	Contrada Me	Contrada Mesarico				
NOME TEST:	MASW_L1B_	MASW_L1B_S1				
DATA DI ESECUZIONE	14/06/2021					
COORDINATE	Lat.	40°36'9.78"N				
	Long.	15°22'31.24"E				

GRAFICO & TABELLA Vs - h								
Sismostrato	Profo	Vs (m/s)						
1	0.00	2.50	2.50	310.00				
2	2.50	9.20	6.70	370.00				
3	9.20	27.80	18.60	750.00				
4	27.80	inf.	inf.	1120.00				

0	TEST REPORT			1/4		
SOCOTEC	MASW			1/4		
CLIENTE	ITALFERR					
LAVORO:	Esecuzione di - Lotto 1B.	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria Lotto 1B.				
UBICAZIONE	A3 Napoli - Reggio C. / Località Cisterna					
NOME TEST	MASW_L1B	_S6				
DATA DI ESECUZIONE	14/06/2021					
COORDINATE	Lat.	40°30'47.58"N				
	Long.	15°30'49.68"E				

	TEST REPORT			2/4		
SOCOTEC		MASW	2.14			
CLIENTE:	ITALFERR					
LAVORO:	Esecuzione di - Lotto 1B.	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.				
UBICAZIONE:	A3 Napoli - Reggio C. / Località Cisterna					
NOME TEST	MASW_L1B_	_S6				
DATA DI ESECUZIONE	14/06/2021					
COORDINATE	Lat.	40°30'47.58"N				
	Long.	15°30'49.68"E				

	TEST REPORT			3/4		
SOCOTEC	MASW			3/4		
CLIENTE:	ITALFERR					
LAVORO:	Esecuzione di - Lotto 1B.	secuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria Lotto 1B.				
UBICAZIONE:	A3 Napoli - R	A3 Napoli - Reggio C. / Località Cisterna				
NOME TEST	MASW_L1B_	MASW_L1B_S6				
DATA DI ESECUZIONE	14/06/2021					
COORDINATE	Lat. Long.	40°30'47.58"N 15°30'49.68"E				

	TEST REPORT			414		
SOCOTEC		MASW	4/4			
CLIENTE:	ITALFERR					
LAVORO:	Esecuzione di - Lotto 1B.	secuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria .otto 1B.				
UBICAZIONE:	A3 Napoli - F	A3 Napoli - Reggio C. / Località Cisterna				
NOME TEST:	MASW_L1B_S6					
DATA DI ESECUZIONE	14/06/2021					
COORDINATE	Lat.	40°30'47.58"N				
	Long.	15°30'49.68"E				

GRAFICO & TABELLA Vs - h								
Sismostrato	Profondità Spessore V							
1	0.00	2.60	2.60	140.00				
2	2.60	8.40	5.80	200.00				
3	8.40	24.40	16.00	310.00				
4	24.40	inf.	inf.	620.00				

		TEST REPORT	1/4		
SOCOTEC	MASW				
CLIENTE	ITALFERR				
LAVORO:	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.				
UBICAZIONE	Area industriale Sant'Antuono				
NOME TEST	MASW_L1B_S9				
DATA DI ESECUZIONE	14/06/2021				
COORDINATE	Lat.	40°29'16.11"N			
	Long.	15°31'2.13"E			

		TEST REPORT		2/4	
SOCOTEC	MASW				
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.				
UBICAZIONE:	Area industriale Sant'Antuono				
NOME TEST	MASW_L1B_S9				
DATA DI ESECUZIONE	14/06/2021				
COORDINATE	Lat.	40°29'16.11"N			
	Long.	15°31'2.13"E			

		TEST REPORT	3/4		
SOCOTEC	MASW				
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	∃secuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria · Lotto 1B.			
UBICAZIONE:	Area industriale Sant'Antuono				
NOME TEST	MASW_L1B_S9				
DATA DI ESECUZIONE	14/06/2021				
COORDINATE	Lat. Long.	40°29'16.11"N 15°31'2.13"E			

		TEST REPORT		A 1 A	
SOCOTEC	MASW				
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	secuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria Lotto 1B.			
UBICAZIONE:	Area industriale Sant'Antuono				
NOME TEST:	MASW_L1B_S9				
DATA DI ESECUZIONE	14/06/2021				
	Lat.	40°29'16.11"N			
	Long.	15°31'2.13"E			

GRAFICO & TABELLA Vs - h							
Sismostrato	Profo	ndità	Spessore	Vs (m/s)			
1	0.00	3.20	3.20	160.00			
2	3.20	7.40	4.20	260.00			
3	7.40	21.00	13.60	320.00			
4	21.00	inf.	inf.	570.00			

		TEST REPORT	1/4		
SOCOTEC	MASW				
CLIENTE	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.			
UBICAZIONE	Località san Giuseppe				
NOME TEST	MASW_L1B_S11				
DATA DI ESECUZIONE	14/06/2021				
	Lat.	40°28'12.22"N			
	Long.	15°31'41.52"E			

	TEST REPORT		2/4		
SOCOTEC	MASW			2/4	
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.			
UBICAZIONE:	Località san Giuseppe				
NOME TEST	MASW_L1B_S11				
DATA DI ESECUZIONE	14/06/2021				
COORDINATE	Lat.	40°28'12.22"N			
	Long.	15°31'41.52"E			

		TEST REPORT		3/4	
SOCOTEC	MASW			5/4	
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.			
UBICAZIONE:	Località san Giuseppe				
NOME TEST	MASW_L1B_S11				
DATA DI ESECUZIONE	14/06/2021				
COORDINATE	Lat. Long.	40°28'12.22"N 15°31'41.52"E			

40fnz

		TEST REPORT	A 1 A		
SOCOTEC	MASW				
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	secuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria Lotto 1B.			
UBICAZIONE:	Località san Giuseppe				
NOME TEST:	MASW_L1B_S11				
DATA DI ESECUZIONE	14/06/2021				
COORDINATE	Lat.	40°28'12.22"N			
	Long.	15°31'41.52"E			

GRAFICO & TABELLA Vs - h							
Sismostrato	Profo	ndità	Spessore	Vs (m/s)			
1	0.00	2.50	2.50	170.00			
2	2.50	12.10	9.60	230.00			
3	12.10	22.90	10.80	210.00			
4	22.90	inf.	inf.	270.00			

* Categoria assegnata nonostante inversione di velocità

		TEST REPORT	1/4		
SOCOTEC	MASW				
CLIENTE	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.			
UBICAZIONE	Località san Giuseppe				
NOME TEST	MASW_L1B_S13				
DATA DI ESECUZIONE	17/06/2021				
COORDINATE	Lat.	40°27'18.63"N			
	Long.	15°32'12.33"E			

		TEST REPORT		2/4	
SOCOTEC	MASW			2/4	
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.				
UBICAZIONE:	Località san Giuseppe				
NOME TEST	MASW_L1B_S13				
DATA DI ESECUZIONE	17/06/2021				
COORDINATE	Lat.	40°27'18.63"N			
	Long.	15°32'12.33"E			

	TEST REPORT			3/4		
SOCOTEC		MASW	5/4			
CLIENTE:	ITALFERR					
LAVORO:	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.					
UBICAZIONE:	Località san Giuseppe					
NOME TEST	MASW_L1B_S13					
DATA DI ESECUZIONE	17/06/2021					
COORDINATE	Lat. Long.	40°27'18.63"N 15°32'12.33"E				

40ftz

	TEST REPORT			414		
SOCOTEC		MASW				
CLIENTE:	ITALFERR					
LAVORO:	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.					
UBICAZIONE:	Località san Giuseppe					
NOME TEST:	MASW_L1B_S13					
DATA DI ESECUZIONE	17/06/2021					
COORDINATE	Lat.	40°27'18.63"N				
	Long.	15°32'12.33"E				

GRAFICO & TABELLA Vs - h										
Sismostrato	Profo	ndità	Spessore	Vs (m/s)						
1	0.00	3.20	3.20	170.00						
2	3.20	10.70	7.50	360.00						
3	10.70	19.90	9.20	200.00						
4	19.90	inf.	inf.	530.00						

		TEST REPORT		1/4	
SOCOTEC	MASW			1/4	
CLIENTE	ITALFERR				
LAVORO:	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.				
UBICAZIONE	Località san Giuseppe				
NOME TEST	MASW_L1B_S16				
DATA DI ESECUZIONE	17/06/2021				
COORDINATE	Lat.	40°25'36.32"N			
	Long.	15°33'4.31"E			

		TEST REPORT		2/4	
SOCOTEC	MASW			2/4	
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.				
UBICAZIONE:	Località san Giuseppe				
NOME TEST	MASW_L1B_S16				
DATA DI ESECUZIONE	17/06/2021				
COORDINATE	Lat.	40°25'36.32"N			
	Long.	15°33'4.31"E			

		TEST REPORT		3/4		
SOCOTEC	MASW			3/4		
CLIENTE:	ITALFERR					
LAVORO:	Esecuzione di - Lotto 1B.	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.				
UBICAZIONE:	Località san Giuseppe					
NOME TEST	MASW_L1B_S16					
DATA DI ESECUZIONE	17/06/2021					
COORDINATE	Lat. Long.	40°25'36.32"N 15°33'4.31"E				

		TEST REPORT		A 1 A	
SOCOTEC	MASW			4/4	
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	secuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria Lotto 1B.			
UBICAZIONE:	Località san Giuseppe				
NOME TEST:	MASW_L1B_S16				
DATA DI ESECUZIONE	17/06/2021				
COORDINATE	Lat.	40°25'36.32"N			
	Long.	15°33'4.31"E			

GRAFICO & TABELLA Vs - h							
Sismostrato	Profo	ndità	Spessore	Vs (m/s)			
1	0.00	2.50	2.50	160.00			
2	2.50	13.10	10.60	220.00			
3	13.10	25.70	12.60	200.00			
4	25.70	inf.	inf.	420.00			

* Categoria assegnata nonostante inversione di velocità

0		TEST REPORT	1/4			
SOCOTEC		MASW				
CLIENTE	ITALFERR					
LAVORO:	Esecuzione di - Lotto 1B.	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.				
UBICAZIONE	Località Ponte Filo-barca					
NOME TEST	MASW_L1B_S17					
DATA DI ESECUZIONE	17/06/2021					
	Lat.	40°25'15.35"N				
	Long.	15°33'18.51"E				

		TEST REPORT		2/4	
SOCOTEC	MASW				
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.				
UBICAZIONE:	Località Ponte Filo-barca				
NOME TEST	MASW_L1B_S17				
DATA DI ESECUZIONE	17/06/2021				
	Lat.	40°25'15.35"N			
	Long.	15°33'18.51"E			

		TEST REPORT		3/4	
SOCOTEC	MASW			5/4	
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.			
UBICAZIONE:	Località Ponte Filo-barca				
NOME TEST	MASW_L1B_S17				
DATA DI ESECUZIONE	17/06/2021				
COORDINATE	Lat. Long.	40°25'15.35"N 15°33'18.51"E			

		TEST REPORT	AIA		
SOCOTEC	MASW			4/4	
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	secuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria Lotto 1B.			
UBICAZIONE:	Località Ponte Filo-barca				
NOME TEST:	MASW_L1B_S17				
DATA DI ESECUZIONE	17/06/2021				
COORDINATE	Lat.	40°25'15.35"N			
	Long.	15°33'18.51"E			

GRAFICO & TABELLA Vs - h							
Sismostrato	Profo	ndità	Spessore	Vs (m/s)			
1	0.00	2.80	2.80	250.00			
2	2.80	8.70	5.90	340.00			
3	8.70	19.80	11.10	230.00			
4	19.80	inf.	inf.	550.00			

		TEST REPORT	1/4		
SOCOTEC	MASW				
CLIENTE	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.			
UBICAZIONE	Località Trinità				
NOME TEST	MASW_L1B_S21				
DATA DI ESECUZIONE	17/06/2021				
COORDINATE	Lat.	40°23'56.09"N			
	Long.	15°34'39.17"E			

		TEST REPORT		2/4	
SOCOTEC	MASW			2/4	
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.			
UBICAZIONE:	Località Trinità				
NOME TEST	MASW_L1B_	_S21			
DATA DI ESECUZIONE	17/06/2021				
COORDINATE	Lat.	40°23'56.09"N			
	Long.	15°34'39.17"E			

		TEST REPORT		3/4		
SOCOTEC	MASW			3/4		
CLIENTE:	ITALFERR					
LAVORO:	Esecuzione di - Lotto 1B.	secuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria Lotto 1B.				
UBICAZIONE:	Località Trinità					
NOME TEST	MASW_L1B_S21					
DATA DI ESECUZIONE	17/06/2021					
COORDINATE	Lat.	40°23'56.09"N				
	Long.	15°34'39.17"E				

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 4

		TEST REPORT	A 1 A		
SOCOTEC		MASW	4/4		
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	Indagini Geofisiche a supporto del PFTE della L	inea AV Saler	no-Reggio Calabria	
UBICAZIONE:	Località Trinità				
NOME TEST:	MASW_L1B_S21				
DATA DI ESECUZIONE	17/06/2021				
COORDINATE	Lat.	40°23'56.09"N			
	Long.	15°34'39.17"E			

GRAFICO & TABELLA Vs - h						
Sismostrato	Profo	ndità	Spessore	Vs (m/s)		
1	0.00	2.50	2.50	140.00		
2	2.50	10.30	7.80	170.00		
3	10.30	27.20	16.90	290.00		
4	27.20	inf.	inf.	440.00		

		TEST REPORT			
SOCOTEC	MASW				
CLIENTE	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	Indagini Geofisiche a supporto del PFTE della	Linea AV Sale	rno-Reggio Calabria	
UBICAZIONE	Località Trinità				
NOME TEST	MASW_L1B_	_S26			
DATA DI ESECUZIONE	17/06/2021				
COORDINATE	Lat.	40°21'37.39"N			
	Long.	15°36'28.23"E			

		TEST REPORT		2/4	
SOCOTEC		MASW	2/4		
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.				
UBICAZIONE:	Località Trinità				
NOME TEST	MASW_L1B_	_S26			
DATA DI ESECUZIONE	17/06/2021				
COORDINATE	Lat.	40°21'37.39"N			
	Long.	15°36'28.23"E			

		TEST REPORT		3/4		
SOCOTEC	MASW					
CLIENTE:	ITALFERR					
LAVORO:	Esecuzione di - Lotto 1B.	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria Lotto 1B.				
UBICAZIONE:	Località Trinità					
NOME TEST	MASW_L1B_S26					
DATA DI ESECUZIONE	17/06/2021					
COORDINATE	Lat. Long.	40°21'37.39"N 15°36'28.23"E				

		TEST REPORT	A 1 A		
SOCOTEC		MASW	4/4		
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	secuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria Lotto 1B.			
UBICAZIONE:	Località Trinità				
NOME TEST:	MASW_L1B_S26				
DATA DI ESECUZIONE	17/06/2021				
COORDINATE	Lat.	40°21'37.39"N			
	Long.	15°36'28.23"E			

GRAFICO & TABELLA Vs - h						
Sismostrato	Profo	ndità	Spessore	Vs (m/s)		
1	0.00	2.60	2.60	140.00		
2	2.60	11.30	8.70	210.00		
3	11.30	23.60	12.30	280.00		
4	23.60	inf.	inf.	360.00		

		TEST REPORT		1/4		
SOCOTEC		MASW				
CLIENTE	ITALFERR					
LAVORO:	Esecuzione di - Lotto 1B.	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.				
UBICAZIONE	Località Sterpone					
NOME TEST	MASW_L1B_S29					
DATA DI ESECUZIONE	17/06/2021					
COORDINATE	Lat.	40°20'3.25"N				
	Long.	15°37'5.75"E				

		TEST REPORT		2/4	
SOCOTEC	MASW			2/4	
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.				
UBICAZIONE:	Località Sterpone				
NOME TEST	MASW_L1B_S29				
DATA DI ESECUZIONE	17/06/2021				
	Lat.	40°20'3.25"N			
	Long.	15°37'5.75"E			

		TEST REPORT		3/4		
SOCOTEC	MASW			3/4		
CLIENTE:	ITALFERR					
LAVORO:	Esecuzione di - Lotto 1B.	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria Lotto 1B.				
UBICAZIONE:	Località Sterpone					
NOME TEST	MASW_L1B_S29					
DATA DI ESECUZIONE	17/06/2021					
COORDINATE	Lat. Long.	40°20'3.25"N 15°37'5.75"E				

		TEST REPORT		A 1 A	
SOCOTEC	MASW			4/4	
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	Indagini Geofisiche a supporto del PFTE della L	inea AV Saler	no-Reggio Calabria	
UBICAZIONE:	Località Sterpone				
NOME TEST:	MASW_L1B_S29				
DATA DI ESECUZIONE	17/06/2021				
COORDINATE	Lat.	40°20'3.25"N			
	Long.	15°37'5.75"E			

GRAFICO & TABELLA Vs - h								
Sismostrato	Sismostrato Profondità Spessore Vs (m							
1	0.00	1.70	1.70	210.00				
2	1.70	5.70	4.00	280.00				
3	5.70	20.50	14.80	260.00				
4	20.50	inf.	inf.	390.00				

Vs eq (0 -30) 289

* Categoria assegnata nonostante inversione di velocità

	TEST REPORT			1/4
SOCOTEC		MASW		
CLIENTE	ITALFERR			
LAVORO:	Esecuzione di - Lotto 1B.	Indagini Geofisiche a supporto del PFTE della	Linea AV Sale	rno-Reggio Calabria
UBICAZIONE	Contrada Fontanelle			
NOME TEST	MASW_L1B_	_S33		
DATA DI ESECUZIONE	16/06/2021			
COORDINATE	Lat.	40°18'44.08"N		
	Long.	15°37'49.60"E		

	TEST REPORT			2/4		
SOCOTEC		MASW	2/4			
CLIENTE:	ITALFERR					
LAVORO:	Esecuzione di - Lotto 1B.	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria · Lotto 1B.				
UBICAZIONE:	Contrada Fontanelle					
NOME TEST	MASW_L1B_S33					
DATA DI ESECUZIONE	16/06/2021					
COORDINATE	Lat.	40°18'44.08"N				
	Long.	15°37'49.60"E				

		TEST REPORT	3/4			
SOCOTEC		MASW	5/4			
CLIENTE:	ITALFERR					
LAVORO:	Esecuzione di - Lotto 1B.	secuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria Lotto 1B.				
UBICAZIONE:	Contrada For	Contrada Fontanelle				
NOME TEST	MASW_L1B	MASW_L1B_S33				
DATA DI ESECUZIONE	16/06/2021					
COORDINATE	Lat. Long.	40°18'44.08"N 15°37'49.60"E				

	TEST REPORT			A 1 A		
SOCOTEC		MASW	**/**			
CLIENTE:	ITALFERR					
LAVORO:	Esecuzione di - Lotto 1B.	secuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria ₋otto 1B.				
UBICAZIONE:	Contrada For	Contrada Fontanelle				
NOME TEST:	MASW_L1B_	MASW_L1B_S33				
DATA DI ESECUZIONE	16/06/2021					
COORDINATE	Lat.	40°18'44.08"N				
	Long.	15°37'49.60"E				

GRAFICO & TABELLA Vs - h								
Sismostrato	Sismostrato Profondità Spessore Vs (n							
1	0.00	2.50	2.50	120.00				
2	2.50	9.10	6.60	240.00				
3	9.10	22.00	12.90	560.00				
4	22.00	inf.	inf.	570.00				

Vs eq (0 -30) 351

	TEST REPORT			1/4	
SOCOTEC		MASW	1/4		
CLIENTE	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	Indagini Geofisiche a supporto del PFTE della	Linea AV Sale	rno-Reggio Calabria	
UBICAZIONE	Località Volta	Località Volta Cammino			
NOME TEST	MASW_L1B_	_S35			
DATA DI ESECUZIONE	16/06/2021				
COORDINATE	Lat.	40°17'42.69"N			
	Long.	15°38'27.13"E			

	TEST REPORT			2/4		
SOCOTEC		MASW	2.14			
CLIENTE:	ITALFERR					
LAVORO:	Esecuzione di - Lotto 1B.	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria · Lotto 1B.				
UBICAZIONE:	Località Volta Cammino					
NOME TEST	MASW_L1B_S35					
DATA DI ESECUZIONE	16/06/2021					
	Lat.	40°17'42.69"N				
	Long.	15°38'27.13"E				

	TEST REPORT			3/4		
SOCOTEC	MASW			3/4		
CLIENTE:	ITALFERR					
LAVORO:	Esecuzione di - Lotto 1B.	secuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria Lotto 1B.				
UBICAZIONE:	Località Volta	Località Volta Cammino				
NOME TEST	MASW_L1B_	MASW_L1B_S35				
DATA DI ESECUZIONE	16/06/2021					
COORDINATE	Lat. Long.	40°17'42.69"N 15°38'27.13"E				

	TEST REPORT			A 1 A		
SOCOTEC		MASW	-*/-*			
CLIENTE:	ITALFERR					
LAVORO:	Esecuzione di - Lotto 1B.	secuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria ₋otto 1B.				
UBICAZIONE:	Località Volta	_ocalità Volta Cammino				
NOME TEST:	MASW_L1B_	MASW_L1B_S35				
DATA DI ESECUZIONE	16/06/2021					
COORDINATE	Lat.	40°17'42.69"N				
	Long.	15°38'27.13"E				

GRAFICO & TABELLA Vs - h								
Sismostrato	Sismostrato Profondità Spessore Vs (m							
1	0.00	3.20	3.20	170.00				
2	3.20	8.10	4.90	320.00				
3	8.10	26.20	18.10	290.00				
4	26.20	inf.	inf.	590.00				

CLIENTE:			ITALFERR						
LAVORO:			Indagini geognostiche per i PFTE della "AV Salerno-Reggio Calabria, lotto 1b"						
UBICAZION	NE:		Polla (SA)						
NOME TES	T:		DH L1B-S0	7					
DATA DI ES	SECUZION	E	14/02/2022						
			Y		40°30'14" N				
COORDINA	TE		x		15°30'48" E				
Profondità	On	de P	On	de S	Poisson	Young	Taglio	Bulk	γ
(m)	(ms)	(m/sec)	(ms)	(m/sec)	1 0133011	(MPa)	(MPa)	(MPa)	(kN/m³)
1.00	1.86	538.64	8.14	122.85	0.47	75.9	25.8	461.1	17.1
2.00	3.73	532.64	14.74	151.40	0.46	113.9	39.1	432.0	17.1
3.00	4.79	945.48	20.72	167.45	0.48	148.9	50.2	1532.4	17.9
4.00	6.05	795.44	23.97	306.94	0.41	468.2	165.7	892.0	17.6
5.00	7.61	639.41	28.73	210.29	0.44	220.0	76.4	604.6	17.3
6.00 7.00	9.00	719.85	33.52	208.70	0.45	220.9 720.0	70.0	802.4	17.4
7.00	11.30	766.20 941 10	30.02 40.67	400.28 215.00	0.31	730.2 243.4	201.0	000.2 1473.6	17.5
9.00	12.44	932.83	40.07	210.00	0.47	243.4	71.8	1473.0	17.9
10.00	13.08	1557.61	50.28	216.63	0.40	267.4	89.7	4518.0	19.1
11.00	13.76	1474.42	54.56	233.37	0.49	306.9	103.2	3981.7	18.9
12.00	14.38	1603.32	57.69	319.98	0.48	581.8	196.7	4675.1	19.2
13.00	15.00	1627.51	60.55	349.36	0.48	693.7	235.0	4786.9	19.3
14.00	15.64	1563.43	64.96	226.90	0.49	293.3	98.5	4543.9	19.1
15.00	16.27	1582.42	68.79	260.66	0.49	387.0	130.2	4625.4	19.2
16.00	16.89	1598.93	72.23	291.09	0.48	482.4	162.7	4691.2	19.2
17.00	17.52	1593.77	76.28	247.00	0.49	348.3	117.1	4717.7	19.2
18.00	18.15	1583.87	79.12	351.84	0.47	699.5	237.3	4492.1	19.2
19.00	18.81	1521.19	82.24	320.77	0.48	578.7	195.9	4145.2	19.0
20.00	19.50	1446.25	85.36	320.30	0.47	571.5	193.8	3693.2	18.9
21.00	20.17	1487.39	88.36	332.68	0.47	619.0	210.0	3917.8	19.0
22.00	20.95	1200.53	91.07	369.55	0.46	/38.4	253.7	2/46.1	10.5
23.00 24.00	21.70	1210.89	93.90	203.30 261.24	0.40	376.4	200.0 107.0	2473.U 3077.6	10.5
25.00	23.28	1311 23	101 39	272.67	0.40	409.1	138.5	3017.0	18.6
26.00	23.96	1472 77	104.03	379.22	0.46	798.0	272.5	3746 1	18.9
27.00	24.61	1547.79	106.66	380.19	0.47	810.3	276.0	4206.6	19.1
28.00	25.26	1538.74	109.65	334.78	0.48	630.8	213.8	4231.9	19.1
29.00	25.92	1504.05	111.39	575.38	0.41	1780.0	629.3	3460.9	19.0
30.00	26.57	1550.20	114.17	359.45	0.47	726.3	246.8	4261.0	19.1

Ω / Ω	
213	
- 0	

CLIENTE:	ITALFERR						
LAVORO:	Indagini geognostiche per i PFTE della "AV Salerno-Reggio Calabria, lotto 1b"						
UBICAZIONE:	Polla (SA)						
NOME TEST:	DH L1B-S07						
DATA DI ESECUZIONE	14/02/2022						
	Y	40°30'14" N					
	X	15°30'48" E					

2/2	
0/0	

CLIENTE:		ITALFERR							
LAVORO:		Indagini geognostiche per i PFTE della "AV Salerno-Reggio Calabria, lotto 1b"							
UBICAZION	IE:	Polla (SA)							
NOME TES	T:	DH L1B-S07							
DATA DI ES	SECUZIONE	14/02/2022							
		Y	40°30'14" N						
COORDINA	IE	x	X 15°30'48'' E						
Profondità base(m)	Onde P Velocità (m/sec)	Onde S Velocità (m/sec)		Poisson	Young (MPa)	Share (MPa)	Bulk (MPa)	γ (kN/m³)	
2.00	535.64	137.13		0.46	94.05	32.10	446.99	17.1	
11.00	974.93	239	239.90		303.26	103.31	1568.36	17.9	
30.00	1493.11	331	.92	0.47	616.64	209.17	3953.84	19.0	

CLIENTE:	ITALFERR					
LAVORO:	Indagini geognostiche per i PFTE della "AV Salerno-Reggio Calabria, lotto 1b"					
UBICAZIONE:	Sala Consilina (SA)					
NOME TEST:	DH L1B-S1	9				
DATA DI ESECUZIONE	25/03/2022					
COOPDINATE	Y	40°24'36" N				
COORDINATE	X	15°33'50" E				

Profondità	On	de P	One	de S	а <i>і</i>	Young	Taglio	Bulk	γ
(<i>m</i>)	(<i>ms</i>)	(m/sec)	(<i>ms</i>)	(m/sec)	Poisson	(MPa)	(MPa)	(MPa)	(kN/m^3)
1.00	1.03	967.66	7.35	136.05	0.49	98.9	33.2	1635.1	17.9
2.00	2.05	987.14	13.85	153.76	0.49	126.4	42.5	1694.8	18.0
3.00	2.88	1198.86	21.34	133.60	0.49	98.1	32.8	2600.5	18.4
4.00	3.62	1343.44	25.92	218.33	0.49	264.8	89.1	3253.9	18.7
5.00	4.31	1466.44	32.04	163.40	0.49	151.0	50.5	4004.0	18.9
6.00	4.93	1617.72	38.86	146.72	0.50	123.9	41.4	4978.7	19.2
7.00	5.57	1545.47	44.80	168.22	0.49	161.4	54.0	4487.8	19.1
8.00	6.16	1700.37	52.53	129.33	0.50	97.2	32.4	5566.0	19.4
9.00	6.74	1732.20	59.89	135.86	0.50	107.6	35.9	5792.4	19.5
10.00	7.32	1730.40	68.27	119.38	0.50	83.1	27.7	5790.1	19.5
11.00	7.93	1628.65	72.63	229.09	0.49	301.2	101.1	4973.2	19.3
12.00	8.52	1699.83	79.86	138.34	0.50	111.1	37.1	5555.9	19.4
13.00	9.08	1783.31	83.09	310.11	0.48	558.6	188.2	5971.7	19.6
14.00	9.64	1775.95	86.68	278.22	0.49	450.2	151.3	5964.9	19.6
15.00	10.23	1707.82	89.30	381.77	0.47	834.0	283.0	5285.6	19.4
16.00	10.78	1812.84	92.18	347.17	0.48	700.6	236.5	6134.4	19.6
17.00	11.32	1862.71	95.93	266.76	0.49	418.2	140.4	6656.9	19.7
18.00	11.97	1517.57	100.05	243.00	0.49	334.2	112.4	4234.0	19.0
19.00	12.58	1660.96	103.36	301.38	0.48	520.5	175.5	5096.5	19.3
20.00	13.21	1569.10	107.99	216.15	0.49	266.5	89.4	4592.8	19.1
21.00	13.85	1563.88	113.00	199.73	0.49	227.7	76.3	4576.4	19.1
22.00	14.39	1850.31	119.16	162.20	0.50	155.1	51.8	6675.7	19.7
23.00	15.03	1571.35	121.53	423.13	0.46	1001.4	342.7	4269.7	19.1
24.00	15.56	1895.94	126.26	211.08	0.49	263.4	88.2	6996.8	19.8
25.00	16.09	1873.70	131.18	203.58	0.49	244.6	81.8	6823.7	19.7
26.00	16.63	1842.49	138.55	135.69	0.50	108.5	36.2	6634.3	19.7
27.00	17.16	1904.30	142.15	277.40	0.49	454.0	152.4	6980.1	19.8
28.00	17.68	1909.71	145.82	272.46	0.49	438.3	147.1	7032.0	19.8
29.00	18.23	1838.02	153.42	131.55	0.50	102.0	34.0	6601.8	19.7
30.00	18.78	1804.58	160.45	142.32	0.50	118.9	39.7	6332.8	19.6
31.00	19.40	1615.27	166.84	156.51	0.50	140.9	47.1	4954.6	19.2
32.00	20.02	1614.68	169.83	333.94	0.48	633.7	214.4	4727.6	19.2
33.00	20.65	1578.07	173.95	242.86	0.49	336.2	113.0	4619.8	19.2
34.00	21.26	1640.35	1/8.5/	216.66	0.49	269.9	90.5	5067.3	19.3
35.00	21.88	1628.77	184.92	157.39	0.50	142.7	47.7	5045.2	19.3
36.00	22.53	1521.90	192.71	128.33	0.50	93.9	31.4	4369.1	19.0
37.00	23.16	1595.30	196.53	261.68	0.49	390.6	131.4	4708.8	19.2
38.00	23.70	1849.62	200.12	278.77	0.49	455.7	153.1	6535.2	19.7
39.00	24.28	1/19./1	203.21	323.17	0.48	601.6	203.0	5478.3	19.4
40.00	24.85	1770.88	206.07	350.31	0.48	709.7	239.8	5808.6	19.5
41.00	25.44	1695.43	209.08	331.75	0.48	631.7	213.4	5289.3	19.4
42.00	25.98	1853.05	212.09	332.27	0.48	645.5	217.6	64/6.5	19.7
43.00	26.53	1/96.00	215.14	328.01	0.48	625.1	210.8	6038.6	19.6
44.00	27.11	1/41.3/	218.02	347.32	0.48	695.3	235.0	5594.5	19.5
45.00	27.65	1843.76	220.91	346.66	0.48	/01.1	236.6	63/7.2	19.7
46.00	28.22	1/56.81	224.02	321.44	0.48	597.9	201.6	5753.8	19.5
47.00	28.79	1/5/.35	226.79	359.93	0.48	/4/.4	252.8	5689.6	19.5
48.00	29.32	1884.70	229.44	377.32	0.48	832.6	281.5	6647.0	19.8
49.00	29.87	1829.70	232.09	3//.48	0.48	827.9 706 9	280.1	0200.1	19.7
50.00	30.43	1705.04	204.90	349.31	0.40	700.9	230.0	0917.0	19.0

DOWN HOLE

2/3

CLIENTE:	ITALFERR	ITALFERR						
LAVORO:	Indagini geognostiche per i PFTE della "AV Salerno-Reggio Calabria, lotto 1b"							
UBICAZIONE:	Sala Consilina (SA)							
NOME TEST:	DH L1B-S19							
DATA DI ESECUZIONE	25/03/2022							
	Y	40°24'36" N						
	X	15°33'50" E						

DOWN HOLE

CLIENTE:		ITALFERR	ITALFERR						
LAVORO:		Indagini geognostiche per i PFTE della "AV Salerno-Reggio Calabria, lotto 1b"							
UBICAZION	IE:	Sala Consilina (SA)							
NOME TES	T:	DH L1B-S19							
DATA DI ES	SECUZIONE	25/03/2022							
COORDINATE		Y	40°24'36" N						
		х	15°33'50" E						
Profondità Onde P		Onc	de S Poisson Young		Share	Bulk	γ (LN1(3)		

Tiolonuna	onder	onde o	Poisson	roung	Share	Duik	/
base(m)	Velocità (m/sec)	Velocità (m/sec)	FUISSOIT	(MPa)	(MPa)	(MPa)	(kN/m ³)
12.00	1468.18	156.00	0.49	137.73	46.09	4020.39	18.9
17.00	1788.53	316.80	0.48	583.09	196.48	6000.38	19.6
23.00	1622.20	257.60	0.49	379.79	127.70	4893.94	19.2
36.00	1743.68	200.75	0.49	234.56	78.54	5820.23	19.5
50.00	1777.05	334.67	0.48	649.00	219.02	5882.99	19.6

V _{S eq(20-50)}	Suolo
254	-

Velocità (m/s)

CLIENTE:			ITALFERR						
LAVORO:			Indagini geognostiche per i PFTE della "AV Salerno-Reggio Calabria, lotto 1b"						
UBICAZION	IE:		Atena Lucana (SA)						
NOME TES	T:		DH L1B-S1	4					
DATA DI ES	SECUZION	E	29/07/2021						
			Y	4	40°26'44.43"	N			
COORDINA	TE		x		15°32'30.53"	E			
Profondità	On	de P	One	de S	Deieser	Young	Taglio	Bulk	γ
(m)	(ms)	(m/sec)	(ms)	(m/sec)	Poisson	(MPa)	(MPa)	(MPa)	(kN/m ³)
1.00	2.60	385.14	8.07	123.99	0.44	74.4	25.8	214.4	16.8
2.00	4.95	424.63	15.11	141.92	0.44	97.5	33.9	258.6	16.8
3.00	6.73	562.51	22.59	133.78	0.47	90.1	30.6	501.0	17.1
4.00	7.67	1065.14	28.08	181.91	0.48	178.2	60.0	1976.9	18.1
5.00	8.43	1316.64	33.25	193.69	0.49	208.2	69.9	3136.9	18.6
6.00	9.10	1492.16	40.37	140.30	0.50	111.8	37.4	4177.1	19.0
7.00	9.77	1476.87	45.01	215.71	0.49	262.7	88.2	4016.5	19.0
8.00	10.45	1485.04	49.43	226.45	0.49	289.5	97.3	4053.9	19.0
9.00	11.10	1524.42	54.19	209.89	0.49	250.1	83.9	4314.8	19.0
10.00	11.75	1551.68	58.72	220.79	0.49	277.5	93.1	4475.4	19.1
11.00	12.39	1571.09	61.10	419.26	0.46	983.6	336.5	4276.3	19.1
12.00	12.93	1849.22	65.88	209.41	0.49	258.0	86.4	6620.9	19.7
13.00	13.43	1998.87	68.71	353.15	0.48	740.2	249.4	7657.5	20.0
14.00	13.92	2012.54	71.41	370.69	0.48	815.9	275.2	7743.9	20.0
15.00	14.54	1612.65	74.52	321.65	0.48	588.5	198.9	4734.6	19.2
16.00	15.18	1578.20	77.80	304.92	0.48	527.4	178.1	4533.8	19.2
17.00	15.81	1581.63	80.48	372.49	0.47	782.0	265.9	4439.3	19.2
18.00	16.44	1584.42	83.40	342.59	0.48	663.9	225.0	4512.2	19.2
19.00	16.90	2167.53	87.14	267.55	0.49	434.4	145.6	9359.7	20.3
20.00	17.32	2398.90	89.13	503.25	0.48	1556.0	526.7	11266.2	20.8
21.00	17.73	2423.96	91.61	402.01	0.49	1001.3	336.9	11800.1	20.8
22.00	18.22	2054.25	96.04	225.89	0.49	306.6	102.6	8348.9	20.1
23.00	18.70	2056.39	99.22	314.31	0.49	591.3	198.7	8240.3	20.1
24.00	19.42	1402.54	101.53	433.90	0.45	1024.7	354.0	3227.1	18.8
25.00	20.20	1269.16	103.78	443.25	0.43	1042.1	364.2	2500.4	18.5
26.00	20.75	1826.79	105.91	470.41	0.46	1273.8	434.9	5978.8	19.7
27.00	21.30	1827.69	108.15	446.89	0.47	1152.7	392.5	6042.4	19.7
28.00	21.85	1828.47	110.13	504.40	0.46	1459.1	500.1	5905.1	19.7
29.00	22.35	1985.95	112.50	421.44	0.48	1047.4	354.7	7403.9	20.0
30.00	22.83	2082.50	114.77	440.48	0.48	1155.4	391.2	8223.5	20.2

DOWN HOLE

2/3

CLIENTE:	ITALFERR	ITALFERR					
LAVORO:	Indagini geognostiche per i PFTE della "AV Salerno-Reggio Calabria, lotto 1b"						
UBICAZIONE:	Atena Lucai	na (SA)					
NOME TEST:	DH L1B-S14						
DATA DI ESECUZIONE	29/07/2021						
	Y	40°26'44.43"N					
COORDINATE	х	15°32'30.53"E					

DOWN HOLE

010	
3/3	
0,0	

Indegini geognostiche per i PFTE della "AV Salemo-Reggio Calabria, lotto 1b" LAVORO: Indagini geognostiche per i PFTE della "AV Salemo-Reggio Calabria, lotto 1b" UBICAZIONE: Atena Lucana (SA) NOME TEST: DH L1B-S14 DATA DI ESECUZIONE 29/07/2021 COORDINATE Y 40°26'44.43"N Trofondità Y 40°26'44.43"N COORDINATE Y 40°26'44.43"N Profondità Share Bulk γ NOME TEST: DH L1B-S14 COORDINATE Y 40°26'44.43"N COORDINATE Y AU° Share Bulk γ Profondità Onde S Poisson Young Share Bulk γ (MPa) M/(MPa) γ (M/Ma) Profondità Onde S <th col<="" th=""><th>CLIENTE:</th><th></th><th>ITAI FERR</th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th>CLIENTE:</th> <th></th> <th>ITAI FERR</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	CLIENTE:		ITAI FERR						
UBICAZIONE: Atena Lucana (SA) NOME TEST: DH L1B-S14 DATA DI ESECUZIONE $29/07/2021$ COORDINATE Y $40^{\circ}26'44.43"N$ X $15^{\circ}32'30.53"E$ $Velocitá (m/sec)$ Young (MPa) Share (MPa) Bulk (MPa) γ (kN/m ³) Profondità base(m) Onde P Onde S Poisson Young (MPa) Share (MPa) Bulk (MPa) γ (kN/m ³) 1.00 385.14 123.99 0.44 74.36 25.78 214.39 16.8 5.00 842.23 162.83 0.48 138.84 46.89 1191.93 17.7 7.00 1484.51 178.01 0.49 179.44 60.11 4100.22 19.0 11.00 1532.96 260.10 0.48 400.81 138.07 4206.05 10.1	LAVORO:		Indagini geog	nostiche per i	PFTE della "/	AV Salerno-Re	ggio Calabria	, lotto 1b"		
NOME TEST: DH L1B-S14 DATA DI ESECUZIONE $29/07/2021$ Y $40^{\circ}26'44.43"N$ COORDINATE Y $40^{\circ}26'44.43"N$ X $15^{\circ}32'30.53"E$ Profondità base(m) Onde P Onde S Poisson Young (MPa) Share (MPa) Bulk (MPa) γ (kN/m³) 1.00 385.14 123.99 0.44 74.36 25.78 214.39 16.8 5.00 842.23 162.83 0.48 138.84 46.89 1191.93 17.7 7.00 1484.51 178.01 0.49 179.44 60.11 4100.22 19.0 14.00 1523.06 260.10 0.48 400.81 138.07 4206.05 10.1	UBICAZIONE: Atena Lucana (SA)									
DATA DI ESECUZIONE 29/07/2021 Y $40^{\circ}26'44.43"N$ X $15^{\circ}32'30.53"E$ Profondità base(m) Onde P Onde S Poisson Young (MPa) Share (MPa) Bulk (MPa) γ (kN/m ³) 1.00 385.14 123.99 0.44 74.36 25.78 214.39 16.8 5.00 842.23 162.83 0.48 138.84 46.89 1191.93 17.7 7.00 1484.51 178.01 0.49 179.44 60.11 4100.22 19.0 11.00 1523.06 260.10 0.48 400.81 128.07 4206.05 10.1	NOME TES	Г:	DH L1B-S1	4						
Y $40^{\circ}26'44.43"N$ X $15^{\circ}32'30.53"E$ Profondità base(m) Onde P Onde S Young (MPa) Share (MPa) Bulk (MPa) γ (kN/m ³) 1.00 385.14 123.99 0.44 74.36 25.78 214.39 16.8 5.00 842.23 162.83 0.48 138.84 46.89 1191.93 17.7 7.00 1484.51 178.01 0.49 179.44 60.11 4100.22 19.0 11.00 1523.06 260.10 0.48 400.81 128.07 4206.05 10.1	DATA DI ES	ECUZIONE	29/07/2021							
X $15^{\circ}32'30.53"E$ Profondità base(m) Onde P Onde S Young (MPa) Share (MPa) Bulk (MPa) γ (kN/m ³) 1.00 385.14 123.99 0.44 74.36 25.78 214.39 16.8 5.00 842.23 162.83 0.48 138.84 46.89 1191.93 17.7 7.00 1484.51 178.01 0.49 179.44 60.11 4100.22 19.0 11.00 1523.06 260.10 0.48 400.81 128.07 4206.05 10.1			Y 40°26'44.43"N							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	COORDINATE		X 15°32'30.53"E							
1.00385.14123.990.4474.3625.78214.3916.85.00842.23162.830.48138.8446.891191.9317.77.001484.51178.010.49179.4460.114100.2219.011.001523.06260.100.48400.81138.074206.0510.1	Profondità base(m)	Onde P Velocità (m/sec)	Ono Velocità	<mark>de S</mark> (m/sec)	Poisson	Young (MPa)	Share (MPa)	Bulk (MPa)	γ (kN/m³)	
5.00842.23162.830.48138.8446.891191.9317.77.001484.51178.010.49179.4460.114100.2219.011.001523.06260.100.48400.81138.074306.0510.1	1.00	385.14	123	3.99	0.44	74.36	25.78	214.39	16.8	
7.00 1484.51 178.01 0.49 179.44 60.11 4100.22 19.0 11.00 1522.06 260.10 0.48 400.81 138.07 4206.05 10.1	5.00	842.23	162	162.83		138.84	46.89	1191.93	17.7	
	7.00	1484.51	178.01		0.49	179.44	60.11	4100.22	19.0	
	11.00	1533.06	269.10		0.48	409.81	138.07	4296.95	19.1	
14.00 1953.54 311.09 0.49 572.94 192.65 7340.34 19.9	14.00	1953.54	311.09		0.49	572.94	192.65	7340.34	19.9	
17.00 1590.83 333.02 0.48 628.44 212.73 4570.73 19.2	17.00	1590.83	333	3.02	0.48	628.44	212.73	4570.73	19.2	
22.00 2125.81 348.26 0.49 730.08 245.62 8824.38 20.3	22.00	2125.81	348	3.26	0.49	730.08	245.62	8824.38	20.3	

DOWN HOLE

CLIENTE:			ITALFERR						
LAVORO:			Indagini geoç	gnostiche per i	PFTE della "/	AV Salerno-Re	eggio Calabria	a, lotto 1b"	
UBICAZION	NE:		Padula (SA	.)					
NOME TES	T:		DH L1B S2	8					
DATA DI ES	SECUZION	E	06/05/2022						
			Y	44	466009.543 r	mN			
COORDINA	TE		x	5	52326.777 n	nE			
Profondità	On	de P	On	de S		Young	Taglio	Bulk	γ
(m)	(ms)	(m/sec)	(ms)	(m/sec)	Poisson	(MPa)	(MPa)	(MPa)	(kN/m ³)
1.00	1.44	695.62	6.26	159.64	0.47	130.5	44.3	782.4	17.4
2.00	2.17	1356.80	12.18	169.06	0.49	159.6	53.5	3373.7	18.7
3.00	3.08	1102.11	16.29	242.99	0.47	317.0	107.5	2067.9	18.2
4.00	3.61	1880.02	20.84	220.08	0.49	285.8	95.7	6856.6	19.8
5.00	4.20	1717.52	25.27	225.84	0.49	295.6	99.1	5600.9	19.4
6.00	4.74	1845.15	31.21	168.23	0.50	166.7	55.7	6629.4	19.7
7.00	5.25	1938.85	38.60	135.38	0.50	109.1	36.4	7423.7	19.9
8.00	5.82	1781.44	44.19	178.86	0.49	187.1	62.6	6124.9	19.6
9.00	6.38	1782.31	50.66	154.58	0.50	139.9	46.8	6152.6	19.6
10.00	6.92	1843.79	57.45	147.23	0.50	127.8	42.7	6636.1	19.7
11.00	7.46	1853.63	65.59	122.82	0.50	89.1	29.7	6731.7	19.7
12.00	8.02	1784.49	67.80	453.53	0.47	1179.7	402.5	5694.9	19.6
13.00	8.77	1323.04	71.96	240.04	0.48	318.7	107.4	3120.6	18.6
14.00	9.45	1484.79	77.10	194.52	0.49	214.1	71.8	4086.3	19.0
15.00	10.08	1587.42	81.10	250.35	0.49	357.5	120.2	4671.6	19.2
16.00	10.67	1692.95	87.29	161.38	0.50	151.0	50.5	5488.8	19.4
17.00	11.27	1658.15	91.41	242.92	0.49	339.4	114.0	5159.0	19.3
18.00	11.80	1900.28	95.28	258.58	0.49	394.7	132.4	6973.6	19.8
19.00	12.31	1942.16	98.80	284.11	0.49	478.0	160.5	7286.3	19.9
20.00	13.07	1319.36	101.14	426.70	0.44	978.5	339.4	2792.0	18.6
21.00	13.83	1313.39	105.00	259.16	0.48	370.3	125.1	3046.3	18.6
22.00	14.56	1367.49	109.43	225.93	0.49	284.2	95.6	3376.0	18.7
23.00	15.19	1594.37	114.16	211.14	0.49	255.1	85.5	4763.8	19.2
24.00	15.97	1277.45	119.53	186.32	0.49	191.8	64.4	2942.0	18.6
25.00	16.55	1739.37	121.67	467.35	0.46	1243.3	425.5	5325.8	19.5
26.00	17.02	2100.16	125.95	233.48	0.49	329.0	110.1	8762.8	20.2
27.00	17.54	1939.61	129.36	293.25	0.49	508.8	170.9	7250.8	19.9
28.00	18.07	1888.96	133.11	267.02	0.49	420.2	141.0	6869.1	19.8
29.00	18.62	1821.59	136.49	295.87	0.49	511.2	1/2.0	6288.7	19.6
30.00	19.16	1839.20	140.56	245.36	0.49	353.3	118.5	6498.6	19.7

DOWN HOLE

2/3

CLIENTE:	ITALFERR	TALFERR				
LAVORO:	Indagini geog	Indagini geognostiche per i PFTE della "AV Salerno-Reggio Calabria, lotto 1b"				
UBICAZIONE:	Padula (SA)					
NOME TEST:	DH L1B S28					
DATA DI ESECUZIONE	06/05/2022					
	Y	4466009.543 mN				
	Х	552326.777 mE				

DOWN HOLE

3/3

CLIENTE:		ITALFERR							
LAVORO:		Indagini geog	Indagini geognostiche per i PFTE della "AV Salerno-Reggio Calabria, lotto 1b"						
UBICAZION	IE:	Padula (SA))						
NOME TES	Т:	DH L1B S28	3						
DATA DI ES	SECUZIONE	06/05/2022							
		Y 4466009.543 mN			mN				
COORDINA		X 552326.777 mE							
Profondità	Onde P	Onc	le S		Young	Share	Bulk	γ	
base(m)	Velocità (m/sec)	Velocità	(m/sec)	Poisson	(MPa)	(MPa)	(MPa)	(kN/m ³)	
6.00	1432.87	197.64		0.49	219.65	73.69	3775.11	18.9	
16.00	1707.27	203.87		0.49	240.91	80.69	5551.31	19.4	
24.00	1546.58	261.86		0.49	388.90	130.92	4392.36	19.1	
27.00	1926.38	331.36		0.48	647.30	217.98	7076.57	19.9	
30.00	1849.91	269	9.42	0.49	425.88	142.99	6550.99	19.7	

DOWN HOLE

CLIENTE:			ITALFERR						
LAVORO:			Indagini geoç	nostiche per i	PFTE della "/	AV Salerno-Re	eggio Calabria	a, lotto 1b"	
UBICAZION	IE:		PADULA (S	A)					
NOME TES	T:		DH L1B-S3	1					
DATA DI ES	ECUZIONE	E	30/07/2021						
			Y	4	0°19'38.63"	N			
COORDINA	IE		х	1	5°37'15.03"	E			
Profondità	On	de P	One	de S	Poisson	Young	Taglio	Bulk	γ
(<i>m</i>)	(ms)	(m/sec)	(ms)	(m/sec)	Poisson	(MPa)	(MPa)	(MPa)	(kN/m ³)
1.00	1.56	640.27	3.52	284.46	0.38	385.1	139.8	522.0	17.3
2.00	2.86	767.83	8.18	214.23	0.46	234.6	80.5	926.5	17.5
3.00	3.83	1030.31	13.28	196.07	0.48	205.7	69.4	1824.6	18.1
4.00	4.62	1270.99	17.75	224.01	0.48	276.1	93.0	2871.2	18.5
5.00	5.40	1286.07	20.69	339.50	0.46	626.2	214.1	2786.4	18.6
6.00	6.02	1603.73	23.47	359.70	0.47	732.4	248.5	4608.7	19.2
7.00	0.62	1682.34	26.16	372.55	0.47	792.4	268.8	5122.3	19.4
8.00	7.19	1733.70	28.89	365.76	0.48	769.2	260.4	5504.1	19.5
9.00	7.70	1966.42	31.88	334.45	0.49	662.2	223.0	7410.3	19.9
10.00	8.30	1674.45	34.85	337.01	0.48	650.0	219.8	5132.0	19.3
11.00	8.89	1688.41	37.80	338.89	0.48	658.3	222.5	5227.1	19.4
12.00	9.41	1926.79	41.67	258.54	0.49	395.7	132.7	7193.8	19.9
13.00	10.10	1458.98	45.63	252.29	0.48	357.5	120.4	3800.4	18.9
14.00	10.78	1462.58	50.66	198.82	0.49	223.0	74.8	3948.6	18.9
15.00	11.31	1000.10	53.62	338.33	0.48	0/1.0	220.4	0748.0	19.8
16.00	11.83	1927.77	50.11	400.75	0.48	942.2	318.9	0953.7	19.9
17.00	12.30	1931.98	60.78	214.14	0.49	272.1	91.1	7292.9	19.9
18.00	12.80	1935.40	03.88	322.70	0.49	615.1 600 F	207.0	/ 10/.Z	19.9
19.00	13.41	1037.00	60.90	323.00	0.40	009.5 726.1	205.4	71027	19.7
20.00	13.92	1945.03	09.01	353.25	0.40	130.1	240.2	7193.7	19.9
21.00	14.40	1947.01	73.51	270.09	0.49	432.5	140.1	7340.0	19.9
22.00	14.95	1940.00	70.95	290.79	0.49	500.9	210.2	101006	19.9
23.00	15.50	2439.42	82.21	325.00	0.49	625.7	219.0	12152.0	20.9
24.00	16.17	2559.02	86.01	270.42	0.49	461.7	209.0	13657.9	21.1
25.00	16.64	2001.00	80.38	270.43	0.49	401.7	327.0	7451.2	21.1
20.00	17 15	1957.13	09.50	315 37	0.40	588 5	107.0	7431.2	10.0
27.00	17.15	1950.92	92.00	208.04	0.49	520.3	177.0	73/3/	19.9
20.00	18.10	1011 27	95.09	290.94	0.49	329.3 806.8	303.3	6836.6	19.9
29.00	18 71	1013.87	100.43	405 20	0.40	961 /	325.5	6828.6	19.0
31.00	10.71	101/ 32	100.92	400.20 530.41	0.40	1681.0	576.0	6407.2	19.0
32.00	19.24	1014.52	102.77	539.41	0.40	1682.6	577.5	6400.8	19.0
33.00	20.28	1015 02	107.00	405 56	0.40	963.2	326.2	6837 0	10.0
34 00	20.20	1740 72	107.03	454 07	0.40	1175 7	<u>4</u> 01 7	5367.5	10.0
35.00	20.00	177/ 82	111 50	451 12	0.40	1181.6	<u>+</u> 01.7	5620 5	10.5
36.00	21.42	17/0 72	113 /6	508 25	0.40	1/62.9	-00.0 502.2	5220.5	10.5
37.00	27.00	1006 75	117 20	25/ 72	0.40	387.0	120 g	7708 /	20.0
38.00	22.43	1997.02	110.85	20 1 .70 205 01	0.49	97/1	320 /	7534 6	20.0
39.00	23 /0	1997.02	122 55	370 77	0.48	81/ 8	27/ Q	7609 3	20.0
40.00	23.99	1997.46	124.43	532.36	0.46	1656 7	566.7	7222.1	20.0

DOWN HOLE

010	
213	
2,0	

CLIENTE:	ITALFERR	ALFERR				
LAVORO:	Indagini geog	ndagini geognostiche per i PFTE della "AV Salerno-Reggio Calabria, lotto 1b"				
UBICAZIONE:	PADULA (SA)					
NOME TEST:	DH L1B-S31					
DATA DI ESECUZIONE	30/07/2021					
	Y	40°19'38.63" N				
COORDINATE	X	15°37'15.03" E				

DOWN HOLE

3/3

LAVORO: Indagini geognostiche per i PFTE della "AV Salerno-Reggio Calabria, lotto 1b" UBICAZIONE: PADULA (SA) NOME TEST: DH L1B-S31 DATA DI ESECUZIONE 30/07/2021 COORDINATE Y 40°19'38.63" N X 15°37'15.03" E Protondità Onde P Onde S Velocità (m/sec) Poisson Young Share Bulk (MPa) // (RVm²) 1.00 640.27 284.46 0.38 350.09 139.83 521.98 17.3 35.00 1957.85 407.14 0.48 975.48 330.14 7193.83 19.9 40.00 1945.85 411.4.11 0.48 1008.62 341.62 7076.20 19.9 Velocità (m/s) Good 200 2500 30.19 70.00 30.19 70.00 30.14 7193.83 19.9 40.00 1945.85 4101.41 0.48 975.48 330.14 7193.83 19.9 40.00 20.00 20.00 20.00 20.0	CI	IENTE:		ITALFERR						
UBICAZIONE: PADULA (SA) NOME TEST: DH L1B-S31 DATA DI ESECUZIONE 30/07/2021 COORDINATE Y 40°19'38.63" N X 15°37'15.03" E Protondità Onde P Onde S Velocità (m/sec) Poisson Young Share Bulk (MPa) Y 1.00 640.27 284.46 0.38 385.09 139.83 521.98 17.3 35.00 1957.85 407.14 0.48 975.48 330.14 7193.83 19.9 40.00 1945.85 414.41 0.48 1008.62 341.62 7076.20 19.9 9.00 1000 1500 2000 2500 -	LÆ	AVORO:		Indagini geoç	Indagini geognostiche per i PFTE della "AV Salerno-Reggio Calabria, lotto 1b"					
NOME TEST: DH L1B-S31 DATA DI ESECUZIONE 30/07/2021 COORDINATE Y 40°19'38.63" N X 15°37'15.03" E Protondità base(m) Onde P Onde S Velocità (m/sec) Velocità (m/sec) Poisson Young (MPa) Share Status Bulk (MPa) y (KMm²) 1.00 640.27 284.46 0.38 385.09 139.83 521.98 17.3 35.00 1957.85 407.14 0.48 975.48 330.14 7193.83 19.9 40.00 1945.85 414.41 0.48 1008.62 341.62 7076.20 19.9 Velocità (m/s) 0 100 1500 2000 2500 1000 1500 2000 2500 414.41 0.48 1008.62 341.62 7076.20 19.9 Velocità (m/s) Contrational debaa Contrational debaa Contrational debaa Contrational debaa Contrational debaa 1100 100 1500 2000 2500 5200 <t< td=""><td>U</td><td>BICAZIO</td><td>NE:</td><td>PADULA (S</td><td>SA)</td><td></td><td></td><td></td><td></td><td></td></t<>	U	BICAZIO	NE:	PADULA (S	SA)					
DATA DI ESECUZIONE 30/07/2021 COORDINATE Y 40° 19'38.63" N X 15° 37'15.03" E Profondità base(m) Onde P Onde S Velocità (m/sec) Velocità (m/sec) Poisson Young (MPa) Share State Bulk (MPa) r 1.00 640.27 284.46 0.38 385.09 139.83 521.98 17.3 24.00 1735.37 301.91 0.48 526.88 177.47 5626.98 19.5 35.00 1957.85 407.14 0.48 1008.62 341.62 7076.20 19.9 40.00 1945.85 414.41 0.48 1008.62 341.62 7076.20 19.9 0.0 500 1000 1500 2000 2500 - - - - 110.0 10.0 1500 2000 2500 - - - - - - - - - - - - - - - <t< td=""><td>N</td><td>OME TES</td><td>Т:</td><td>DH L1B-S3</td><td>1</td><td></td><td></td><td></td><td></td><td></td></t<>	N	OME TES	Т:	DH L1B-S3	1					
Y 40°19'38.63" N X 15°37'15.03" E Protonditá base(m) Onde P Onde S Poisson Young (MPa) Share (MPa) Bulk (MPa) y (MPa) 1.00 640.27 284.46 0.38 521.98 17.3 24.00 1735.37 301.91 0.48 526.88 177.47 5626.98 19.5 35.00 1957.85 407.14 0.48 975.48 330.14 7193.83 19.9 40.00 1945.85 414.41 0.48 1008.62 341.62 7076.20 19.9 100 0 0 0 0 1700 200 2500 1000 1500 2000 2500 100 100.862 341.62 7076.20 19.9 110 120 130.0 120 130.0 120 130.0 120 100.862 341.62 7076.20 19.9 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140	D		SECUZIONE	30/07/2021						
COORDINATE x 15*37*15.03* E Profondità base(m) Onde P Velocità (m/sec) Onde S Velocità (m/sec) Poisson (MPa) Share (MPa) Bulk (MPa) r (NPa) r (NPa) 24.00 1735.37 301.91 0.48 526.88 177.47 5626.98 19.5 35.00 1957.85 407.14 0.48 975.48 330.14 7193.83 19.9 40.00 1945.85 414.41 0.48 1008.62 341.62 7076.20 19.9 40.00 1500 2000 2500 - - - - 0 50 1000 1500 2000 2500 - - - - 11.0 12.0 - <td></td> <td></td> <td></td> <td>Y</td> <td>4</td> <td>0°19'38.63"</td> <td>N</td> <td></td> <td></td> <td></td>				Y	4	0°19'38.63"	N			
Profondità Onde P Onde S Poisson Young (MPa) Share (MPa) Bulk (MPa) y (MPa) (MPa)	C	DORDINA	ATE	x	1	5°37'15.03"	E			
base(m) Velocità (m/sec) Velocità (m/sec) POISSOII (MPa)	P	Profondità	Onde P	Ond	de S	Doiocon	Young	Share	Bulk	γ
1.00 640.27 284.46 0.38 385.09 139.83 521.98 17.3 24.00 1735.37 301.91 0.48 526.88 177.47 5626.98 19.5 35.00 1957.85 407.14 0.48 975.48 330.14 7193.83 19.9 40.00 1945.85 414.41 0.48 975.48 330.14 7193.83 19.9 90 500 1000 1500 2000 2500 0.48 1008.62 341.62 7076.20 19.9 10.0 10.0 1500 2000 2500 700		base(m)	Velocità (m/sec)	Velocità	(m/sec)	Poisson	(MPa)	(MPa)	(MPa)	(kN/m³)
24.00 1735.37 301.91 0.48 526.88 177.47 5626.98 19.5 35.00 1957.85 407.14 0.48 975.48 330.14 7193.83 19.9 40.00 1945.85 414.41 0.48 975.48 330.14 7193.83 19.9 0.0 1945.85 414.41 0.48 1008.62 341.62 7076.20 19.9 100 100 1500 2000 2500 100		1.00	640.27	284	4.46	0.38	385.09	139.83	521.98	17.3
35.00 1937.65 407.14 0.46 973.46 300.14 7193.63 19.9 40.00 1945.85 414.41 0.48 1008.62 341.62 7076.20 19.9 Velocità (m/s) 0 500 1000 1500 2000 2500 - Terreno di riporto 100 500 1000 1500 2000 2500 - - - 100 500 1000 1500 2000 2500 - - - 100 100 1500 2000 2500 - - - 1100 1100 - - - - - 1100 1100 - - - - 1100 1100 - - - - 1100 1100 - - - - 1100 1100 - - - - 1100 1100 - - - - 1100 1100 - - - - 1100 1100 - - - - 1100 - - - - - <td< td=""><td></td><td>24.00</td><td>1/35.3/</td><td>301</td><td>1.91</td><td>0.48</td><td>526.88</td><td>1//.4/</td><td>5626.98</td><td>19.5</td></td<>		24.00	1/35.3/	301	1.91	0.48	526.88	1//.4/	5626.98	19.5
Velocità (m/s) Image: Construction of the second of the seco		40.00	1945.85	407	4.41	0.48 0.48	975.48 1008.62	330.14 341.62	7193.83	19.9 19.9
36.0 37.0 37.0 37.0 37.0 37.0 37.0 37.0 37.0 37.0 37.0 37.0 37.0 37.0 37.0 37.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 39.0 30.0 39.0 30.0 39.0 30.0		0.1 1.2 3.4 5.6 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			 Terreno di Argilla lima deboment sabbioosa Sabbia lim argillosa Sabbia lim 	osa ce osa cosa

V _{S eq(10-40)}	Suolo
350	С

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 14/06/21 10:12:24 End recording: 14/06/21 10:52:24 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 93% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

H/V TIME HISTORY

DIRECTIONAL H/V

TROMINO[®] Grilla www.tromino.eu

NO

OK

[According to the SESAME, 2005 guidelines. Please read carefully the *Grilla* manual before interpreting the following tables.]

Max. H/V at 28.75 ± 4.64 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]							
f ₀ > 10 / L _w	28.75 > 0.50	OK					
n _c (f ₀) > 200	64400.0 > 200	OK					
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1381	ОК					
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times						
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]							
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	9.5 Hz	ОК					
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	59.5 Hz	OK					
A ₀ > 2	2.56 > 2	OK					
$f_{\text{neak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.16153 < 0.05		NO				

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

4.64388 < 1.4375

0.2353 < 1.58

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
Â ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 14/06/21 11:41:26 End recording: 14/06/21 12:21:26 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 96% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

H/V TIME HISTORY

DIRECTIONAL H/V

TROMINO[®] Grilla www.tromino.eu

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
3.50	3.50	254	0.42
22.50	19.00	545	0.42
132.50	110.00	854	0.45
inf.	inf.	1561	0.45

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 18.13 ± 2.3 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	18.13 > 0.50	OK			
n _c (f ₀) > 200	41687.5 > 200	OK			
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$	Exceeded 0 out of 871 times	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria [At least 5	Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	11.906 Hz	OK			
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	43.031 Hz	OK			
A ₀ > 2	3.50 > 2	OK			
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.12665 < 0.05		NO		
$\sigma_{\rm f} < \epsilon({\rm f_0})$	2.29558 < 0.90625		NO		
$\sigma_A(f_0) < \theta(f_0)$	0.095 < 1.58	OK			

-	
L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
Â ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^*) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve
	should be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 18/06/21 12:39:02 End recording: 18/06/21 13:19:02 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 99% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

DIRECTIONAL H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
4.50	4.50	300	0.42
134.50	130.00	614	0.42
inf.	inf.	1340	0.45

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 1.53 ± 0.21 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	1.53 > 0.50	OK			
n _c (f ₀) > 200	3644.4 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 74 times	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria [At least 5	Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.719 Hz	OK			
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	2.188 Hz	OK			
A ₀ > 2	4.45 > 2	OK			
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.13788 < 0.05		NO		
$\sigma_{\rm f} < \epsilon({\rm f_0})$	0.21113 < 0.15313		NO		
$\sigma_A(f_0) < \theta(f_0)$	0.2571 < 1.78	OK			

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f _o	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_{f} < \varepsilon(f_{0})$
Â ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve
	should be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\tilde{\theta}(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 14/06/21 13:29:29 End recording: 14/06/21 14:09:29 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 100% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

H/V TIME HISTORY

DIRECTIONAL H/V

TROMINO[®] Grilla www.tromino.eu

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
4.00	4.00	295	0.42
144.00	140.00	646	0.42
694.00	550.00	1293	0.45
inf.	inf.	2233	0.45

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 24.94 ± 8.99 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	24.94 > 0.50	OK			
n _c (f ₀) > 200	59850.0 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1198	OK			
$\sigma_A(f) < 3$ for 0.5f ₀ < f < 2f ₀ if f ₀ < 0.5Hz	times				
Criteria [At least 5	Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	11.438 Hz	OK			
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	32.875 Hz	OK			
$A_0 > 2$	3.65 > 2	OK			
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.3604 < 0.05		NO		
$\sigma_{\rm f} < \epsilon({\rm f_0})$	8.98758 < 1.24688		NO		
$\sigma_A(f_0) < \theta(f_0)$	0.0863 < 1.58	OK			

L _w window length	
n _w number of windows used in the analysis	
n _c = L _w n _w f ₀ number of significant cycles	
f current frequency	
f ₀ H/V peak frequency	
σ _f standard deviation of H/V peak frequency	
$\epsilon(f_0)$ threshold value for the stability condition $\sigma_f < \epsilon(f_0)$	
A ₀ H/V peak amplitude at frequency f ₀	
A _{H/V} (f) H/V curve amplitude at frequency f	
f^{-1} frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$	
f^+ frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$	
$\sigma_A(f)$ standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve	
should be multiplied or divided	
$\sigma_{\text{loaH/V}}(f)$ standard deviation of log A _{H/V} (f) curve	
$\theta(f_0)$ threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$	

	Three	shold values for	σ_{f} and $\sigma_{A}(f_{0})$		
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 14/06/21 15:41:14 End recording: 14/06/21 16:21:14 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 99% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

H/V TIME HISTORY

DIRECTIONAL H/V

TROMINO[®] Grilla www.tromino.eu

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
15.00	15.00	255	0.42
165.00	150.00	576	0.42
765.00	600.00	1089	0.45
inf.	inf.	1972	0.42

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 0.38 ± 0.07 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]			
$f_0 > 10 / L_w$	0.38 > 0.50		NO
n _c (f ₀) > 200	892.5 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 19 times	ОК	
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$			
Criteria [At least 5	for a clear H/V peak		
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.125 Hz	ОК	
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	1.125 Hz	ОК	
A ₀ > 2	3.66 > 2	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.17587 < 0.05		NO
$\sigma_{f} < \epsilon(f_{0})$	0.06595 < 0.075	OK	
$\sigma_A(f_0) < \theta(f_0)$	0.3137 < 2.5	OK	

	successful and the second s
L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
Â ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve
	should be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

	Three	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 17/06/21 16:10:00 End recording: 17/06/21 16:50:00 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 93% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

H/V TIME HISTORY

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
9.00	9.00	301	0.42
209.00	200.00	629	0.40
inf.	inf.	1159	0.45

NO

OK

[According to the SESAME, 2005 guidelines. Please read carefully the *Grilla* manual before interpreting the following tables.]

Max. H/V at 30.0 ± 7.77 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]			
$f_0 > 10 / L_w$	30.00 > 0.50	OK	
n _c (f ₀) > 200	67200.0 > 200	OK	
σ _A (f) < 2 for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 1441	OK	
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times		
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]			
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	20.625 Hz	OK	
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$	61.031 Hz	OK	
$A_0 > 2$	2.80 > 2	OK	
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.2589 < 0.05		NO

7.76701 < 1.5

0.0874 < 1.58

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_{\mathsf{A}}(\mathsf{f}_0) < \theta(\mathsf{f}_0)$

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
Â ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

	Thre	shold values for	σ_f and $\sigma_A(f_0)$		
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 18/06/21 11:42:51 End recording: 18/06/21 12:22:51 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 94% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

H/V TIME HISTORY

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
17.00	17.00	291	0.42
237.00	220.00	502	0.40
inf.	inf.	979	0.45

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 49.38 ± 42.38 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	49.38 > 0.50	ОК		
$n_{c}(f_{0}) > 200$	111587.5 > 200	ОК		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1259	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times			
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$			NO	
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	59.344 Hz	ОК		
A ₀ > 2	2.65 > 2	OK		
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.85829 < 0.05		NO	
$\sigma_{\epsilon} \leq \epsilon(f_{0})$	42.37784 < 2.46875		NO	

0.1174 < 1.58

OK

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
Â ₀	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve
	should be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 17/06/21 15:08:32 End recording: 17/06/21 15:48:32 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 93% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

DIRECTIONAL H/V

EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio	
85.00	85.00	301	0.45	
415.00	330.00	572	0.45	
inf.	inf.	847	0.45	

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 0.81 ± 0.26 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	0.81 > 0.50	OK			
n _c (f ₀) > 200	1820.0 > 200	OK			
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$	Exceeded 0 out of 40 times	OK			
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$			NO		
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	1.75 Hz	OK			
$A_0 > 2$	2.34 > 2	OK			
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.32228 < 0.05		NO		
$\sigma_{\rm f} < \epsilon(f_0)$	0.26186 < 0.12188		NO		

 $\sigma_A(f_0) < \theta(f_0)$

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
Â ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{loaH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

0.2157 < 2.0

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0					
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 17/06/21 14:16:09 End recording: 17/06/21 14:56:09 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 92% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

H/V TIME HISTORY

EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
4.00	4.00	239	0.42
124.00	120.00	432	0.40
464.00	340.00	794	0.45
inf.	inf.	1094	0.45

Max. H/V at 0.81 ± 0.09 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	0.81 > 0.50	OK			
n _c (f ₀) > 200	1787.5 > 200	OK			
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$	Exceeded 0 out of 40 times	ОК			
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f_{1} in $[f_{0}/4, f_{0}] A_{H/V}(f_{1}) < A_{0} / 2$			NO		
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	1.25 Hz	OK			
A ₀ > 2	1.82 > 2		NO		
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.11614 < 0.05		NO		
$\sigma_{\rm f} < \epsilon(f_0)$	0.09436 < 0.12188	OK			

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
Å ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

0.1772 < 2.0

OK

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0					
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 18/06/21 10:48:23 End recording: 18/06/21 11:28:23 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 98% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

H/V TIME HISTORY

DIRECTIONAL H/V

TROMINO[®] Grilla www.tromino.eu

0.42

0.42

788

1663

290.00

inf.

315.00

inf.

SINGLE COMPONENT SPECTRA

Max. H/V at 9.53 ± 6.69 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	9.53 > 0.50	OK		
n _c (f ₀) > 200	22493.8 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 458 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
Criteria [At least 5	for a clear H/V peak			
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	7.625 Hz	OK		
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$ 10.781 Hz OK				
A ₀ > 2 3.27 > 2 OK				
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{A}(f)] = f_0 \pm 5\%$ 0.70225 < 0.05			NO	
$\sigma_{\rm f} < \epsilon(f_0)$	6.69328 < 0.47656		NO	
$\sigma_A(f_0) < \theta(f_0)$	0.2365 < 1.58	OK		

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
Â ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f) < A_0/2$
f +	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve
	should be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$
(-)	

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz]	Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0					
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 17/06/21 12:13:46 End recording: 17/06/21 12:53:46 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 99% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

H/V TIME HISTORY

DIRECTIONAL H/V

EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
23.00	23.00	411	0.42
403.00	380.00	753	0.42
inf.	inf.	1433	0.45

NO

OK

[According to the SESAME, 2005 guidelines. Please read carefully the *Grilla* manual before interpreting the following tables.]

Max. H/V at 0.63 ± 1.53 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	0.63 > 0.50	OK			
n _c (f ₀) > 200	1487.5 > 200	OK			
σ _A (f) < 2 for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 31 times	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$			NO		
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	1.063 Hz	OK			
$A_0 > 2$	2.35 > 2	OK			
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	2.44209 < 0.05		NO		

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

1.52631 < 0.09375

0.1965 < 2.0

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
Â ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{logH//} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 17/06/21 11:02:18 End recording: 17/06/21 11:42:18 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 98% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

DIRECTIONAL H/V

EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
5.00	5.00	371	0.42
515.00	510.00	640	0.40
inf.	inf.	1321	0.45

Max. H/V at 0.28 ± 5.09 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	0.28 > 0.50		NO		
n _c (f ₀) > 200	663.8 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 14 times	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria [At least 5	for a clear H/V peak				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.094 Hz	OK			
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$ NO				
A ₀ > 2 2.48 > 2 OK					
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$ 18.11511 < 0.05					
$\sigma_{f} < \epsilon(f_{0})$	5.09487 < 0.05625		NO		
$\sigma_A(f_0) < \Theta(f_0)$	0.2795 < 2.5	OK			

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
Â ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f +	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve
	should be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$
(*/	

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 17/06/21 10:09:55 End recording: 17/06/21 10:49:55 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 98% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

H/V TIME HISTORY

DIRECTIONAL H/V

EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
105.00	105.00	338	0.42
545.00	440.00	679	0.42
inf.	inf.	1199	0.45

Max. H/V at 0.28 ± 1.32 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
f ₀ > 10 / L _w	0.28 > 0.50		NO		
n _c (f ₀) > 200	658.1 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 14 times	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria [At least 5	a for a clear H/V peak 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.094 Hz	OK			
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$ NO					
A ₀ > 2 2.74 > 2 OK					
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$ 4.68666 < 0.05 NO					
σ _f < ε(f ₀)	1.31812 < 0.05625		NO		
$\sigma_A(f_0) < \Theta(f_0)$	0.2874 < 2.5	OK			

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_{f} < \varepsilon(f_{0})$
Â ₀	H/V peak amplitude at frequency f ₀
$A_{H/V}(f)$	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve
	should be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$
(0)	

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 17/06/21 09:06:24 End recording: 17/06/21 09:46:24 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 97% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

H/V TIME HISTORY

DIRECTIONAL H/V

0.42

0.45

613

1118

310.00

inf.

319.00

inf.

SINGLE COMPONENT SPECTRA

Max. H/V at 39.69 ± 6.51 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	39.69 > 0.50	OK			
n _c (f ₀) > 200	92075.0 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 1414	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times				
Criteria [At least 5	for a clear H/V peak				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	23.188 Hz	OK			
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	61.188 Hz	OK			
A ₀ > 2 2.03 > 2 OK					
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$ 0.16391 < 0.05 NO					
$\sigma_{\rm f} < \epsilon(f_0)$	6.50513 < 1.98438		NO		
$\sigma_A(f_0) < \theta(f_0)$	0.0532 < 1.58	OK			

L _w window length	
n _w number of windows used in the analysis	
$n_c = L_w n_w f_0$ number of significant cycles	
f current frequency	
f ₀ H/V peak frequency	
σ _f standard deviation of H/V peak frequency	
$\epsilon(f_0)$ threshold value for the stability condition $\sigma_f < \epsilon(f_0)$	
A ₀ H/V peak amplitude at frequency f ₀	
A _{H/V} (f) H/V curve amplitude at frequency f	
f^{-1} frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-1}) < A_0/2$	
f^+ frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$	
$\sigma_A(f)$ standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ c	urve
should be multiplied or divided	
$\sigma_{\text{logH/V}}(f)$ standard deviation of log A _{H/V} (f) curve	
$\theta(f_0)$ threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$	

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 17/06/21 08:12:21 End recording: 17/06/21 08:52:21 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 95% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

DIRECTIONAL H/V

Max. H/V at 0.63 ± 0.08 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	0.63 > 0.50	OK		
n _c (f ₀) > 200	1425.0 > 200	OK		
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$	Exceeded 0 out of 31 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$			NO	
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	1.0 Hz	OK		
$A_0 > 2$	2.04 > 2	OK		
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.13011 < 0.05		NO	
$\sigma_{f} < \varepsilon(f_{0})$	0.08132 < 0.09375	OK		

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
Å ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻¹	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

0.1927 < 2.0

OK

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 16/06/21 16:40:45 End recording: 16/06/21 17:20:45 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 98% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

DIRECTIONAL H/V

N-S component E-W component Up-Down component 10 -3 10 (mm/s) 10 - 5 10 ⁻⁶ 10 ⁻⁷ L_____ 0.1 10 frequency [Hz] EXPERIMENTAL vs. SYNTHETIC H/V Max. H/V at 0.94 \pm 0.06 Hz. (In the range 0.0 - 64.0 Hz). Average H/V Synthetic H/V Η/V 0L 0.1 10 frequency [Hz] Depth at the bottom of Thickness [m] Vs [m/s] **Poisson ratio** the layer [m] 120.00

485

1028

120.00

inf.

SINGLE COMPONENT SPECTRA

10 -2

inf.

TROMINO[®] Grilla www.tromino.eu

0.42

0.40

Max. H/V at 0.94 ± 0.06 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	0.94 > 0.50	ОК		
n _c (f ₀) > 200	2193.8 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 46 times	OK		
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.594 Hz	ОК		
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	1.469 Hz	ОК		
A ₀ > 2	3.73 > 2	OK		
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.06595 < 0.05		NO	
$\sigma_{\rm f} < \epsilon(f_0)$	0.06183 < 0.14063	OK		

0.3452 < 2.0

OK

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
Â ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{loaH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 16/06/21 15:45:14 End recording: 16/06/21 16:25:14 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 97% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

H/V TIME HISTORY

DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA

EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
6.00	6.00	246	0.42
116.00	110.00	465	0.42
inf.	inf.	1057	0.45

[According to the SESAME, 2005 guidelines. Please read carefully the *Grilla* manual before interpreting the following tables.]

Max. H/V at 1.03 ± 0.01 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]								
$f_0 > 10 / L_w$	1.03 > 0.50	OK						
n _c (f ₀) > 200	2392.5 > 200	OK						
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$	Exceeded 0 out of 50 times	ОК						
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]								
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.813 Hz	ОК						
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	1.281 Hz	OK						
$A_0 > 2$	4.70 > 2	OK						
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.01125 < 0.05	OK						
$\sigma_{\rm f} < \epsilon(f_0)$	0.01161 < 0.10313	OK						

	-
L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
Â ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f - 1	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{logH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

0.3534 < 1.78

OK

Threshold values for σ_f and $\sigma_A(f_0)$										
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2										
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀					
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58					
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20					

HVSR_L1B_S35

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 16/06/21 14:42:28 End recording: 16/06/21 15:22:28 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 92% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

H/V TIME HISTORY

DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA

EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of	Thickness [m]	Vs [m/s]	Poisson ratio
110.00	110.00	420	0.42
inf.	inf.	922	0.42

NO

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 0.91 ± 0.46 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]									
$f_0 > 10 / L_w$	0.91 > 0.50	OK							
n _c (f ₀) > 200	2011.9 > 200	OK							
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$	Exceeded 0 out of 44 times	ОК							
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]									
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$			NO						
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	1.438 Hz	OK							
A ₀ > 2	3.58 > 2	OK							
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.51219 < 0.05		NO						
$\sigma_{\rm f} < \epsilon(f_0)$	0.46418 < 0.13594		NO						

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

	-
L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

0.2874 < 2.0

Threshold values for σ_f and $\sigma_A(f_0)$										
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.1										
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀					
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58					
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20					

Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria

Lotto 1B

PFTE AV SA-RC Lotto1B-1C Romagnano-Praia

EMISSIONE: Rev.02 DATA: 05/10/2021

Elaborato	Verificato	Approvato
P. Luiso	Donato Fiore	Massimo De lasi
Pada Luiso	Down to Fiore	Komino Dedu

SOCOTEC ITALIA - AVELLINO DEPARTMENT

Lavoro: Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria Lotto 1B

Indagini: ERT +SRT Data di esecuzione: Agosto 2021 Elaborato: P. Luiso Verificato: D. Fiore

Approvato: M. De lasi

SOCOTEC

Scala 1:2000

Lavoro:

Lotto 1B

Tomografia elettrica – ERT1

Lavoro:

Lotto 1B

Tomografia sismica - SRT1 onda P

Tomografia sismica – SRT1 onda Sh

Scala 1:2000

Lavoro:

Lotto 1B

Tomografia elettrica – ERT2

Agosto 2021

Approvato: M. De lasi

Lavoro:

Tomografia sismica – SRT2 onda P

Scala 1:2000

Lavoro:

Lotto 1B

Tomografia sismica – SRT2 onda Sh

Agosto 2021

Approvato: M. De lasi

Lavoro:

Lotto 1B

Tomografia elettrica – ERT3

Passo interelettrodico: 5 m	Coordinate UTM-WGS84				Resistività n (0·m)					
	ID	Latitudine	Longitu	dine		Resistivita				
	Α	4485298.33 m N	543442.56 m E							
	В	4485086.55 m N	543868.1	L7 m E	65	315	1600	8000	40000	
					• • • • • • •					
	83	Argilla limoso - sabbiosa 🛛 👹 sab			a e ciottoli carbonatici in matrice osa addensata Eaclare calcilutitico fratturato			rato		
		Ghiaia a matrice argillosc	o - marnosa	Alternanza breccia calcarea in matrice			Alternanza calcare calcilutitico e do			
		Argilla sabbiosa - consiste	ente Sabb		Sabbia medio fine debolmente cementata					
		Ciottoli di calcare dolomi in matrice argilloso - limo	tico e ghiaia osa	Brec	cia in matrice debol	mente cementata				

[*m.s.l.m*]

Lavoro:

Lotto 1B

Tomografia sismica – SRT3 onda P

Passo intergeofonico: 2 m	Coordinate UTM-WGS84]			V	'n (m/s)					
	ID	Latitudine	Longitudine					v	vp (m/s)				
	Α	4485298.33 m N	543442.	56 m E									
	В	4485095.46 m N	543829.9	93 m E	200	700	1200	1700	2200	2700	3200	3700	4200
					-								
	Argilla limoso - sabbiosa			Ghia Sabb	sabbiosa addensata					ato			
		🔛 Ghiaia a matrice argilloso - marnosa		Alter sabb	rnanza breccia ca piosa debolmente	nza breccia calcarea in matrice a debolmente cementata			Alternanza calcare calci		e calcilut	utitico e dolomitico	
		Argilla sabbiosa - consiste	tente 🚺 Sab		pia medio fine de	ebolment	e cementa	ata					
		Ciottoli di calcare dolomi n matrice argilloso - limo	tico e ghiaia osa	Brec	ccia in matrice debolmente cementata			ata					

TAVOLA Nº 10

Lavoro:

Lotto 1B

Tomografia sismica – SRT3 onda Sh

[*m.s.l.m*]

TAVOLA Nº 11

Scala 1:2000

Lavoro:

Lotto 1B

Tomografia elettrica – ERT4

TAVOLA Nº 12

Scala 1:2000

Lavoro:

Lotto 1B

Tomografia sismica – SRT4 onda P

Scala 1:2000

Lavoro:

Lotto 1B

Tomografia sismica – SRT4 onda Sh

