|                         | ITTENTE:                                                                                              |                                                               |                                                               |                                             |                                                       |                                        |
|-------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|----------------------------------------|
|                         |                                                                                                       | <u>J</u>                                                      |                                                               | R <i>OVIARIA ITALIANA</i><br>E DELLO STATO  |                                                       |                                        |
| PROGE                   | ETTAZIONE:                                                                                            |                                                               |                                                               |                                             |                                                       |                                        |
|                         |                                                                                                       |                                                               |                                                               |                                             | GRUP                                                  | ////////////////////////////////////// |
|                         | RASTRUTTURE<br>GE OBIETTIVO                                                                           |                                                               |                                                               | STRATEGI                                    | CHE DEF                                               | FINITE DALLA                           |
| 434**                   | 47.                                                                                                   |                                                               |                                                               |                                             |                                                       |                                        |
| DIRE                    | ZIONE TECNI                                                                                           | CA - CEN                                                      | TRO DI P                                                      | RODUZIOI                                    | NE MILAN                                              | 0                                      |
| PRO                     | GETTO DEFIN                                                                                           | IITIVO PEI                                                    | R APPAL                                                       | TO INTEG                                    | RATO                                                  |                                        |
|                         | <b>4.1.</b>                                                                                           |                                                               | · <b>-</b>                                                    |                                             |                                                       |                                        |
|                         |                                                                                                       |                                                               |                                                               |                                             |                                                       |                                        |
|                         | ENZIAMENTO                                                                                            | DELLA LI                                                      | INEA RH                                                       | O-ARONA                                     |                                                       | RHO-GALLARATE                          |
|                         |                                                                                                       | DELLA LI                                                      | INEA RH                                                       | O-ARONA                                     |                                                       |                                        |
| QUA                     | ENZIAMENTO<br>ADRUPLICAME                                                                             | DELLA LI<br>NTO RHO                                           | INEA RHO                                                      | O-ARONA<br>IAGO E RA                        |                                                       |                                        |
| QUA<br>OPE<br>INX2      | ENZIAMENTO                                                                                            | DELLA LI<br>NTO RHO<br>LI – OPER<br>SIZIONE S                 | INEA RHO<br>PARAB<br>RE IDRAU                                 | O-ARONA<br>IAGO E RA                        | ACCORDO                                               | Υ                                      |
| QUA<br>OPE<br>INX2      | ENZIAMENTO ADRUPLICAME ERE PRINCIPA 2 - PREDISPES                                                     | DELLA LI<br>NTO RHO<br>LI – OPER<br>SIZIONE S                 | INEA RHO<br>PARAB<br>RE IDRAU                                 | O-ARONA<br>IAGO E RA                        | ACCORDO                                               | Υ                                      |
| QUA<br>OPE<br>INX2      | ENZIAMENTO ADRUPLICAME ERE PRINCIPA 2 - PREDISPES                                                     | DELLA LI<br>NTO RHO<br>LI – OPER<br>SIZIONE S                 | INEA RHO<br>PARAB<br>RE IDRAU                                 | O-ARONA<br>IAGO E RA                        | ACCORDO                                               | Y<br>DI POGLIANO                       |
| OPE<br>INX2<br>RELA     | ENZIAMENTO<br>ADRUPLICAME<br>ERE PRINCIPA<br>2 — PREDISPES<br>AZIONE DI CALCO                         | DELLA LI<br>INTO RHO<br>LI – OPER<br>SIZIONE S<br>OLO         | INEA RHO<br>PARAB<br>RE IDRAU<br>SOTTOSE                      | O-ARONA<br>IAGO E RA                        | CORDO                                                 | Y<br>DI POGLIANO                       |
| QUA<br>OPE<br>INX2      | ENZIAMENTO<br>ADRUPLICAME<br>ERE PRINCIPA<br>2 — PREDISPES<br>AZIONE DI CALCO                         | DELLA LI ENTO RHO  LI – OPER SIZIONE S OLO  E ENTE TIP        | INEA RHO<br>PARAB<br>RE IDRAU<br>BOTTOSE                      | O-ARONA<br>IAGO E RA<br>LICHE<br>RVIZI IN C | COMUNE D                                              | POGLIANO SCALA:                        |
| OPE<br>INX2<br>RELA     | ENZIAMENTO ADRUPLICAME ERE PRINCIPA 2 — PREDISPES AZIONE DI CALCO                                     | DELLA LI ENTO RHO  LI – OPER SIZIONE S OLO  E ENTE TIP        | INEA RHO<br>P-PARAB<br>RE IDRAU<br>SOTTOSE                    | D-ARONA IAGO E RA LICHE RVIZI IN C          | PROGR.  Approvato                                     | POGLIANO SCALA: - REV.                 |
| OPE<br>INX2<br>RELA     | ENZIAMENTO ADRUPLICAME ERE PRINCIPA 2 — PREDISPES AZIONE DI CALCO IESSA LOTTO FAS L 1 1 2 D           | DELLA LI ENTO RHO  LI – OPER SIZIONE S OLO  E ENTE TIP  2 6 ( | INEA RHO<br>P-PARAB<br>RE IDRAU<br>SOTTOSE                    | D-ARONA IAGO E RA LICHE RVIZI IN C          | PROGR.                                                | POGLIANO  SCALA:  REV.  A              |
| OPE INX2 RELA  COMM M D | ENZIAMENTO ADRUPLICAME ERE PRINCIPA 2 — PREDISPES AZIONE DI CALCO DESCRIZIONE DESCRIZIONE DESCRIZIONE | DELLA LI ENTO RHO  LI – OPER SIZIONE S OLO  E ENTE TIP  2 6 ( | INEA RHO PARAB  RE IDRAU SOTTOSE  PO DOC. OP C L I  Data Veri | D-ARONA IAGO E RA LICHE RVIZI IN C          | ACCORDO COMUNE D A PROGR.  O 0 1  Approvato S.Borelli | POGLIANO  SCALA:  REV.  A              |
| OPE INX2 RELA  COMM M D | ENZIAMENTO ADRUPLICAME ERE PRINCIPA 2 — PREDISPES AZIONE DI CALCO DESCRIZIONE DESCRIZIONE DESCRIZIONE | DELLA LI ENTO RHO  LI – OPER SIZIONE S OLO  E ENTE TIP  2 6 ( | INEA RHO PARAB  RE IDRAU SOTTOSE  PO DOC. OP C L I  Data Veri | D-ARONA IAGO E RA LICHE RVIZI IN C          | ACCORDO COMUNE D A PROGR.  O 0 1  Approvato S.Borelli | POGLIANO  SCALA:  REV.  A              |
| OPE INX2 RELA  COMM M D | ENZIAMENTO ADRUPLICAME ERE PRINCIPA 2 — PREDISPES AZIONE DI CALCO DESCRIZIONE DESCRIZIONE DESCRIZIONE | DELLA LI ENTO RHO  LI – OPER SIZIONE S OLO  E ENTE TIP  2 6 ( | INEA RHO PARAB  RE IDRAU SOTTOSE  PO DOC. OP C L I  Data Veri | D-ARONA IAGO E RA LICHE RVIZI IN C          | ACCORDO COMUNE D A PROGR.  O 0 1  Approvato S.Borelli | POGLIANO  SCALA:  REV.  A              |



# POTENZIAMENTO DELLA LINEA RHO-ARONA TRATTA RHO-GALLARATE

### PROGETTO DEFINITIVO PER APPALTO INTEGRATO

**INX2 - RELAZIONE DI CALCOLO** 

COMMESSA
MDL1

LOTTO

CODIFICA D 26 CL DOCUMENTO INX200 001

REV.

FOGLIO 2 di 35

### **INDICE**

| 1 | PR  | EMESSA            |                                | 4  |
|---|-----|-------------------|--------------------------------|----|
| 2 | SC  | OPO DEL DOCUM     | ENTO                           | 5  |
| 3 | DO  | CUMENTI DI RIF    | ERIMENTO                       | 7  |
|   | 3.1 | DOCUMENTI REF     | ERENZIATI                      | 7  |
|   | 3.2 | DOCUMENTI CO      | RRELATI                        | 7  |
| 4 | RII | FERIMENTI NOR     | MATIVI                         | 8  |
| 5 | MA  | TERIALI           |                                | 10 |
| 6 | CA  | RATTERISTICHE     | DEL TERRENO                    |    |
| 7 | TC  | MBINO CIRCOLA     | RE                             |    |
|   | 7.1 | GEOMETRIA E SO    | CHEMA STATICO                  |    |
|   | 7.2 | Analisi dei car   | ICHI                           |    |
|   | 7.3 |                   |                                |    |
|   | 7.4 | VERIFICHE DI RE   | SISTENZA                       | 18 |
|   | 7.5 | VERIFICHE DI FE   | SSURAZIONE                     | 21 |
| 8 | OF  | PERE ACCESSORI    | E PER IL VARO                  | 22 |
|   | 8.1 | GENERALITÀ        |                                | 22 |
|   | 8.2 | CARATTERISTIC     | HE GEOMETRICHE DELLE STRUTTURE | 24 |
|   | 8.3 | VALUTAZIONE I     | ELLA SPINTA                    | 2: |
|   | 8   | 3.1 Spinta primo  | stacco                         |    |
|   | 8   | 3.2 Spinta finale |                                |    |
|   | 8.4 | VARO              |                                | 2  |
|   | 8.5 | RILEVATO DI SP.   | INTA                           | 2  |
|   | 8.6 | PARETE REGGIS     | PINTA                          | 2  |



#### TRATTA RHO-GALLARATE

### PROGETTO DEFINITIVO PER APPALTO INTEGRATO

**INX2 - RELAZIONE DI CALCOLO** 

COMMESSA MDL1 LOTTO CODIFICA

12 D 26 CL

DOCUMENTO INX200 001 REV. FOGLIO
A 3 di 35



### TRATTA RHO-GALLARATE

### PROGETTO DEFINITIVO PER APPALTO INTEGRATO

INX2 - RELAZIONE DI CALCOLO

COMMESSA LOTTO MDL1 12

CODIFICA D 26 CL

DOCUMENTO INX200 001

REV. Α

4 di 35

#### **PREMESSA** 1

Il Progetto Definitivo di Potenziamento della Linea Rho-Arona – tratta Gallarate-Rho, riguarda il quadruplicamento dell'attuale linea a due binari attraverso l'ampliamento della sede ferroviaria attuale.

Il progetto richiede la realizzazione o l'adeguamento di alcune opere strutturali che consentano l'integrazione degli interventi di ampliamento con le infrastrutture preesistenti: il presente documento riguarda, nello specifico, la realizzazione di un tombino posto trasversalmente all'asse della ferrovia che permetta il futuro passaggio della fognatura comunale nella porzione di territorio "oltre" ferrovia.



#### TRATTA RHO-GALLARATE

### PROGETTO DEFINITIVO PER APPALTO INTEGRATO

**INX2 - RELAZIONE DI CALCOLO** 

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

MDL1 12 D 26 CL INX200 001 A 5 di 35

#### 2 SCOPO DEL DOCUMENTO

Lo scopo del presente documento è quello di realizzare le strutture del nuovo tombino idraulico posto trasversalmente all'asse della ferrovia che permetta il futuro passaggio della fognatura comunale nella porzione di territorio "oltre" ferrovia. L'intervento per la realizzazione del tombino, richiesto dal Comune di Pogliano è situato alla progressiva pk 4+223.27 della linea ferroviaria Linea Rho-Arona – tratta Gallarate-Rho, e denominato INX2.

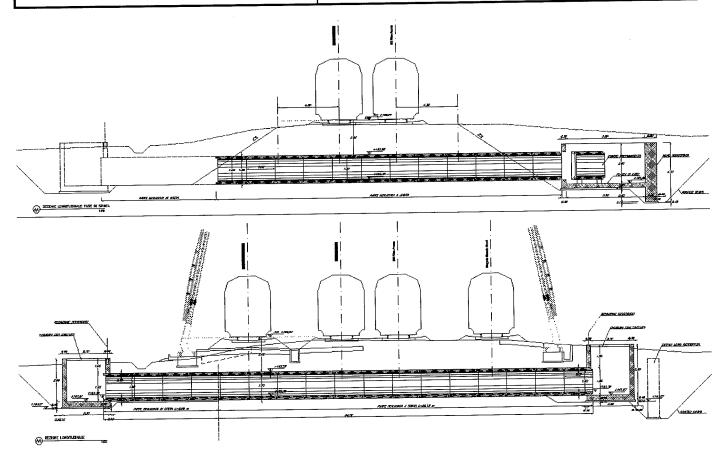
Il tombino è costituito da elementi circolari prefabbricati con diametro nominale pari a 1500mm e spessore pari 225mm. Lo sviluppo complessivo dell'attraversamento misura 34,13m; in dx e sx dell'opera saranno realizzati manufatti di raccordo con i canali idraulici situati al piede del rilevato ferroviario.

L'attraversamento idraulico verrà realizzato preliminarmente alle operazioni di quadruplicamento dei binari.

L'opera infatti viene eseguita parzialmente mediante infissione a spinta su platea di varo al di sotto dei due binari esistenti, ossia per una lunghezza pari a 26 m. Sarà quindi realizzata una camera di varo per permettere le operazione di infissione dei conci, di lunghezza pari a 2,00m. Il restante sviluppo del tombino sarà eseguito in prosecuzione, sia in sx sia in dx del rilevato, mediante l'alloggiamento dei conci di completamento.

- Il calcolo è stato effettuato in conformità al D.M. 16/01/1996; per quanto concerne la valutazione delle spinte agenti sull'opera si è fatto riferimento al D.M. 23/02/'71 "Norme tecniche per gli attraversamenti e per i parallelismi di condotte e canali convoglianti liquidi e gas con ferrovie ed altre linee di trasporto".

Si riporta di seguito una sezione significativa dell'opera.




### TRATTA RHO-GALLARATE

## PROGETTO DEFINITIVO PER APPALTO INTEGRATO

INX2 - RELAZIONE DI CALCOLO

| COMMESSA | LOTTO | CODIFICA | DOCUMENTO  | REV. | FOGLIO  |
|----------|-------|----------|------------|------|---------|
| MDL1     | 12    | D 26 CL  | INX200 001 | Α    | 6 di 35 |



Sezioni longitudinale sottopasso

(fase di spinta e configurazione finale)



### 3 DOCUMENTI DI RIFERIMENTO

#### 3.1 Documenti Referenziati

Per la redazione della presente relazione si è fatto riferimento alla seguente documentazione:

- [E\_1] MDL1 12 D26 RB GE0005 001 A. Potenziamento della linea Rho-Arona tratta Rho-Gallarate Relazione geotecnica generale.
- [E\_2] MDL1 12 D26 F5 GE0005 001 A. Potenziamento della linea Rho-Arona tratta Rho-Gallarate Profilo geotecnico tav. 1/4.
- [E\_3] MDL1 12 D26 F5 GE0005 002 A. Potenziamento della linea Rho-Arona tratta Rho-Gallarate Profilo geotecnico tav. 2/4.
- [E\_4] MDL1 12 D26 F5 GE0005 003 A. Potenziamento della linea Rho-Arona tratta Rho-Gallarate Profilo geotecnico tav. 3/4.
- [E\_5] MDL1 12 D26 F5 GE0005 004 A. Potenziamento della linea Rho-Arona tratta Rho-Gallarate Profilo geotecnico tav. 4/4.
- [E\_6] MDL1 12 D26 WA RI0000 001 A. Potenziamento della linea Rho-Arona tratta Rho-Gallarate Rilevati Sezioni tipo degli interventi.

#### 3.2 Documenti Correlati

I documenti correlati sono documenti la cui lettura è consigliata per allargare la conoscenza dell'ambito nel quale il presente documento si inquadra. Non si riporta la revisione e la data in quanto si fa implicitamente riferimento all'ultima revisione del documento citato.

#### I documenti correlati sono:

- Planimetria e sezione tipo - (documento MDL112D26INX200001A).



#### 4 RIFERIMENTI NORMATIVI

La progettazione è conforme alle normative vigenti nonché alle istruzioni dell'Ente FF.SS.

#### Legge n° 1086 del 5 Novembre 1971

"Norme per la disciplina delle Opere di conglomerato cementizio armato normale e precompresso e a struttura metallica";

#### D.M. 9 Gennaio 1996

"Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle opere in cemento armato normale e precompresso e per le strutture metalliche";

#### D.M. 16 Gennaio 1996

"Norme tecniche relative ai criteri per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi";

### • D.M. 16 Gennaio 1996

"Norme tecniche per le costruzioni in zone sismiche";

### D.M. 11 Marzo 1988:

"Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione ed il collaudo delle opere di sostegno delle terre e delle opere di fondazione";

#### Min. LL.PP. Circolare 15/10/1996 n. 252/AA.GG./S.T.C.

Istruzioni per l'applicazione delle "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato normale, precompresso e per le strutture metalliche" di cui al D.M. 9.1.1996;

### Min. LL.PP. Circolare 04/07/1996 n.156 AA.GG./STC

Istruzioni per l'applicazione delle "Norme tecniche relativi ai criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi" di cui al D.M. 16.1.1996;



#### TRATTA RHO-GALLARATE

### PROGETTO DEFINITIVO PER APPALTO INTEGRATO

**INX2 - RELAZIONE DI CALCOLO** 

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

MDL1 12 D 26 CL INX200 001 A 9 di 35

### Min. LL.PP. Circolare 10/04/1997 n. 65/AA.GG

Istruzioni per l'applicazione delle "Norme tecniche relative alle costruzioni sismiche" di cui al D.M. 16.1.1996;

### Min. LL.PP. Circolare 24/09/1988 n.30483:

Istruzioni per l'applicazione delle "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione ed il collaudo delle opere di sostegno delle terre e delle opere di fondazione";

### Norme CNR 10011/85:

Costruzioni in acciaio: istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione.

### Istruzioni FS. del 2 Giugno 1995 I/SC/PS-OM/2298

"Sovraccarichi per il calcolo dei ponti ferroviari. Istruzioni per la progettazione, l'esecuzione e il collaudo". Testo aggiornato della istruzione n° I/SC/PS-OM/2298 del 2 Giugno 1995 completo delle relative integrazioni - 13 Gennaio 1997;

### Istruzione FF.SS. n° 44b del 14/04/1998

"Istruzioni tecniche per manufatti sottobinario da costruire in zona sismica". Testo aggiornato dell' istruzione 44/b del 14/11/1996, approvato dal Consiglio Superiore dei Lavori Pubblici con voto dell'Assemblea Generale del 16/12/1997;



#### TRATTA RHO-GALLARATE

### PROGETTO DEFINITIVO PER APPALTO INTEGRATO

**INX2 - RELAZIONE DI CALCOLO** 

COMMESSA LOTTO
MDL1 12

CODIFICA D 26 CL DOCUMENTO INX200 001 REV. FOGLIO A 10 di 35

#### **5 MATERIALI**

I materiali adottati in fase di calcolo sono:

#### Calcestruzzo

Per le strutture di elevazione e fondazione si adotterà un calcestruzzo con le seguenti caratteristiche:

- Rck  $\geq$  35 N/mm2 (C30/35)
- classe di esposizione ambientale (UNI EN 206): XC1
- rapporto a/c non superiore a 0.60
- classe di consistenza S3-S4
- tipo di cemento: CEM III, IV, V
- diametro massimo inerte Φmax = 20 mm

Per il magrone di sottofondazione si adotterà un calcestruzzo con le seguenti caratteristiche:

- Rck ≥ 15 N/mm2 (C12/15)
- classe di esposizione ambientale (UNI EN 206): X0
- tipo di cemento: CEM I÷V

#### Acciaio per c.a

Per gli elementi in c.a. si adotterà acciaio in barre ad aderenza migliorata FeB44 K (B450 C) saldabile con  $\emptyset \le 26$  mm avente le seguenti caratteristiche:

- fyk ≥ 430 N/mm2
- ftk  $\geq$  540 N/mm2
- $(fy/fyk) \le 1.35$
- (ft/fy)medio ≥1.13

dove:

fy = tensione di snervamento;

ft = tensione di rottura;

fyk = tensione caratteristica di snervamento;

ftk = tensione caratteristica di rottura.



#### TRATTA RHO-GALLARATE

### PROGETTO DEFINITIVO PER APPALTO INTEGRATO

**INX2 - RELAZIONE DI CALCOLO** 

COMMESSA MDL1 LOTTO CODIFICA

12 D 26 CL

DOCUMENTO INX200 001 REV. A FOGLIO

Tensione normale di compressione e trazione ammissibile:

 $\sigma$ s,adm = 255 N/mm<sup>2</sup>

Copriferro netto

Copriferro netto di progetto per strutture di elevazione  $c \ge 40 \text{ mm}$ .

Copriferro netto di progetto per strutture di fondazione  $c \ge 40 \text{ mm}$ .



#### TRATTA RHO-GALLARATE

### PROGETTO DEFINITIVO PER APPALTO INTEGRATO

**INX2 - RELAZIONE DI CALCOLO** 

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 CL
 INX200 001
 A
 12 di 35

#### **6 CARATTERISTICHE DEL TERRENO**

La caratterizzazione stratigrafica della tratta in esame è stata individuata dalle informazioni ottenute dalla campagna d'indagine svolta nell'anno 2008.

Negli elaborati [E\_2]÷[E\_3] e [E\_4]÷[E\_5], ovvero profilo geotecnico della tratta, sono rappresentate le indagini eseguite durante la campagna geognostica del 2008: in particolare, nelle immediate vicinanze dell'opera in esame (prg. km 4+221.96) è stato eseguito il sondaggio S20, spinto fino alla profondità di 20.0 m dal p.c.

Sulla base di quanto sopra e dalla caratterizzazione stratigrafica e dei parametri geotecnici di progetto riportati nella relazione geotecnica generale (elaborato [E\_1]), per l'opera in oggetto è stata individuata la caratterizzazione stratigrafico-geotecnica di progetto riportata nella seguente scheda geotecnica, caratterizzante il sito di ubicazione dell'opera.

Si riporta di seguito la scheda geotecnica caratterizzante il sito d'ubicazione dell'opera:

| S   18   -   30   200-3350   70-250   10-29   -   4-35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +223,27       |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------|
| S   3.2   GS'   Ghiala sabblosa di colore marrone (livelli superficiali)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                           |
| S   3.2   GS'   Ghiala sabbiosa di colore marrone (livelli superficiali)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                           |
| Solution    |               |                           |
| PARAMETRI GEOTECNICI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                           |
| FALDA   Q=17.30   GS"    |               |                           |
| FALDA Q=17.30  GS"  GS"  GS"  GS"  GS"  GS"  GS"  GS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | « <del></del> | <del></del>               |
| S   18   - 30   10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20   - 10;20      |               | c <sub>v</sub><br>(cm²/s) |
| Note   GS"   19+20.5   -   35+37   200-350   70+250   -   15+40   -   4+35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /             | U.I. 757                  |
| FALDA Q=17.30  GS"  GS"    19-20.5   -   36+38     250+450   150+400   30+50   -   25+80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                           |
| FALDA Q=17.30  GS"  GS"  GS"  GS"  GS"  GS"  GS"  GS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25÷60         |                           |
| FALDA Q=17.30 GS*  GS*  GS*  GS*  GS*  GS*  GS*  GS*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                           |
| Q=17.30  GS"  GS"  GS"  GS"  GS"  GS"  GS"  GS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                           |
| GS"    In modulo di Young operativo in condizioni non drenate   In modulo di reazione orizzontale   In |               |                           |
| (s) modulo di reazione orizzontale (s) gradiente con la profondità del modulo di reazione orizzontale  SONDAGGI DI RIFERIMENTO: S20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                           |
| (8) gradiente con la profondità del modulo di reazione orizzontale  SONDAGGI DI RIFERIMENTO: S20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                           |
| SONDAGGI DI RIFERIMENTO: S20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                           |



### TRATTA RHO-GALLARATE

### PROGETTO DEFINITIVO PER APPALTO INTEGRATO

### **INX2 - RELAZIONE DI CALCOLO**

| COMMESSA | LOTTO | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |
|----------|-------|----------|------------|------|----------|
| MDL1     | 12    | D 26 CL  | INX200 001 | Α    | 13 di 35 |

I simboli rappresentati nella scheda geotecnica hanno il seguente significato:

 $\gamma =$  peso di volume naturale

c<sub>u</sub> = coesione non drenata

c' = coesione efficace

 $\phi' =$  angolo d'attrito

v coefficiente di Poisson

 $V_s =$  velocità delle onde di taglio

G<sub>o</sub> = modulo di taglio iniziale associato a piccole deformazioni

 $E_0$  = modulo di Young operativo associato al livello di deformazione raggiunto dal terreno

 $E_{op}$  = modulo di Young operativo associato al livello di deformazione raggiunto dal terreno

 $E_{ij}$  = modulo di Young operativo in condizioni non drenate

 $E_s =$  modulo di reazione orizzontale

K<sub>h</sub> = gradiente con la profondità del modulo di reazione orizzontale

N<sub>SPT</sub> = numero di colpi/30 cm di riferimento nel calcolo dei pali di fondazione

c<sub>v</sub> = coefficiente di consolidazione primaria

 $c_{\alpha}$  = coefficiente di consolidazione secondaria

Note: - il valore di  $\phi'$  adottato per i terreni tipo GS" è stato considerato pari a quello dello strato GS' ( $\phi = 35^{\circ}$ ) a favore di sicurezza.

- il valore di c' = 0 kPa adottato per i terreni tipo LS è stato adottato a favore di sicurezza.
- il valore del modulo di Young  $E_{op}$  adottato per i terreni tipo S è stato stimato cautelativamente a favore di sicurezza.



#### TRATTA RHO-GALLARATE

#### PROGETTO DEFINITIVO PER APPALTO INTEGRATO

**INX2 - RELAZIONE DI CALCOLO** 

COMMESSA LOTTO CODIFICA DOCU

MDL1 12 D 26 CL INX2

DOCUMENTO INX200 001

REV.

Α

FOGLIO 14 di 35

Per i dettagli circa le prove in sito ed in laboratorio si rimanda alla relazione geotecnica generale, elaborato [E\_1].

Per quanto concerne la falda, nella zona in esame il livello di falda è posto a 17.30 m dal p.c., come si evince dal profilo geotecnico di riferimento (si veda gli elaborati [E\_2]÷[E\_3] e [E\_4]÷[E\_5]).



#### 7 TOMBINO CIRCOLARE

### 7.1 Geometria e schema statico

Il tombino, costituito da conci prefabbricati di lunghezza pari 2.00m, ha diametro nominale paria 1.50m e spessore pari a 0.225m. L'analisi è stata effettuata su una striscia unitaria di tombino, in particolare si è considerato un concio di 1 m in senso longitudinale.

#### 7.2 Analisi dei carichi

| Diametro nominale (interno)<br>Spessore<br>Raggio medio                                                                                                                                       | Dn<br>s<br>r                           | 1.50<br>0.225<br>0.8625                | m<br>m<br>m                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------|
| Caratteristiche materiali e terreno Peso specifico tubo Ballast + armamento Sub ballast + supercompattato Peso specifico terreno Angolo di attrito interno terreno Coeff. spinta Ricoprimento | γtubo<br>γ<br>γ<br>γterreno<br>φ<br>Κ0 | 25.00<br>18<br>19<br>18<br>35<br>0.500 | kN/m3<br>KN/m3<br>KN/m3<br>kN/m3 |
| Spessore ballast + armamento Spessore medio traversina + binario Spessore del sub ballast + supercompattato                                                                                   | Hb<br>Htb<br>Hsb                       | 0.80<br>0.35<br>0.30                   | m<br>m<br>m                      |
| Spessore del rinterro                                                                                                                                                                         | Hr                                     | 1.40                                   | m                                |
| Carichi permanenti Soletta superiore Peso ballast + armamento Spessore del sub ballast + supercompattato Spessore del rinterro Totale                                                         | Pb<br>Psb<br>Pr                        | 14.4<br>5.7<br>25.2<br>45.3            | KN/m2<br>KN/m2<br>KN/m2<br>KN/m2 |
| Diffusione del carico Larghezza traversina Distanza tra gli assi binari Diffusione nel ballast (1/4) Diffusione nel sub-b., superc. e ricopr. (2/3) Impronta di carico totale (1 binario)     | Ld1                                    | 2.40<br>4.16<br>0.11<br>1.13<br>4.00   | m<br>m<br>m<br>m                 |

Carichi verticali sulla copertura



CODIFICA

### TRATTA RHO-GALLARATE

LOTTO

### PROGETTO DEFINITIVO PER APPALTO INTEGRATO

DOCUMENTO

**FOGLIO** 

| INX2 - RELAZIONE DI CALCOLO            | MDL1 | 12 | D 26 CL | INX200 001 | Α | 16 di 35 |
|----------------------------------------|------|----|---------|------------|---|----------|
| Lunghozza carattoristica per coeff din |      |    | ΙΦ      | 1.93       | m |          |

COMMESSA

Lunghezza caratteristica per coeff. din. L $\Phi$  1.93 m
Coefficiente dinamico  $\Phi$ 3 1.35 m
Treno LM71
Carico Qvk ( $a \cdot \Phi$ 3  $\cdot$  Qvk) - L= 6.40 m
61.1 KN/m2

### 7.3 Sollecitazioni

Nella seguente tabelle sono riportate le sollecitazioni agenti sulla struttura.

|                                                                                  |        | Sezione verticale superiore |                | Sezione<br>orizzontale |                  | Sezione verticale inferiore |  | ore              |                |
|----------------------------------------------------------------------------------|--------|-----------------------------|----------------|------------------------|------------------|-----------------------------|--|------------------|----------------|
|                                                                                  |        | <b>M</b><br>kN m            | <b>N</b><br>kN |                        | <b>M</b><br>kN m | <b>N</b><br>kN              |  | <b>M</b><br>kN m | <b>N</b><br>kN |
| <b>A - Peso proprio</b><br>peso tubo 30.5 kN/m                                   |        | 2.1                         | -2.4           |                        | -2.4             | 7.6                         |  | 6.3              | 2.4            |
| B - Carico ripartito superiore P 45.3 kN/m <sup>2</sup> O 61.1 kN/m <sup>2</sup> |        |                             |                |                        |                  |                             |  |                  |                |
| p 106.4 kN/m <sup>2</sup>                                                        |        | 23.7                        | -9.7           |                        | -24.3            | 91.8                        |  | 46.5             | 9.7            |
| C - Carico ripartito laterale<br>q 53.2 kN/m <sup>2</sup>                        |        | -9.9                        | 45.9           |                        | 9.9              | 0.0                         |  | -9.9             | 45.9           |
| D - Carico triangolare laterale<br>z 15.5 kN/m <sup>2</sup>                      |        | -1.2                        | 4.2            |                        | 1.4              | 0.0                         |  | -1.7             | 9.2            |
| E - Reazione radiale costante<br>O 214.0 kN                                      |        | -1.3                        | 3.2            |                        | 1.4              | 0.0                         |  | -20.6            | 25.5           |
|                                                                                  | Totale | 13.3                        | 41.1           |                        | -13.9            | 99.4                        |  | 20.6             | 92.8           |

| А            | В                                | С                               | D                                 | E                                                      |
|--------------|----------------------------------|---------------------------------|-----------------------------------|--------------------------------------------------------|
| PESO PROFRIO | EARRES<br>ERFARTITO<br>SUPERIORE | CARICO<br>RIPARTITO<br>EATERALE | Carico<br>Trianoolare<br>Laterale | 34°≈80,<br>Cosemie seelobe<br>Mynchi seoimi.<br>Mynchi |
|              |                                  |                                 |                                   |                                                        |



### TRATTA RHO-GALLARATE

### PROGETTO DEFINITIVO PER APPALTO INTEGRATO

INX2 - RELAZIONE DI CALCOLO

COMMESSA MDL1 LOTTO 12 CODIFICA

D 26 CL

DOCUMENTO INX200 001 REV.

FOGLIO 17 di 35

Per il calcolo delle sollecitazioni si è fatto riferimento al D.M. 23/02/'71.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Α                                                      | В                                                                   | С                               | D                                     | E                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------|---------------------------------|---------------------------------------|-------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PESO PROFRIO                                           | CARREG<br>RIPARTITO<br>SUPERIORE                                    | CARICO<br>RIPARTITO<br>LATERALE | CARICO<br>TIRANGOLARE<br>LATERALE     | eeriche radiale<br>Costante setiche<br>2 % ≈60, |
| \$91.841.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                     |                                 |                                       |                                                 |
| 35 E 9 3 38 37 4 5 5 5 6 5 5 6 5 5 6 5 5 6 5 6 5 6 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 800                                                    | ит( <del>å - !</del> )сг <sup>:</sup> т<br>10 2594: рг <sup>2</sup> | ₩= - <u>1</u> or 2              | M=-3 212=<br>30 212=<br>2-0:10417 712 | (Azreasione isiale)<br>ywwn 6073638 O           |
| - 1402<br>- | NT- PASC                                               | is=- <u>s</u> ar =<br>=-0.10010 pr                                  | Na gr                           | N=                                    | 8= 0.014817 C                                   |
| ZZZW K.F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | м= Дег <sup>ў</sup> =<br>= -0 57080 Дег <sup>ў</sup> = | ×=('¦-'ģ)pr²=<br>=−030689 pr²                                       | w=‡gr²                          | um y zr²=<br>=0.125 u/²               | V∞ 0.0975:18 G                                  |
| 162%<br>163%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N= <del>∏</del>                                        | ym bia                                                              | Nw 0                            | Na O                                  | Nx 6                                            |
| **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n= j X etç                                             | Ma( <mark>2</mark> 0,+3);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;        | ¥∞-≟ cf²                        | M== 7 2+2=<br>==0.14583 2+4           | ⊌∞-0.11163 Qr                                   |
| X 2000 200<br>X 2000 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N= \$ 3/ 8 s r                                         | N= 1 pr =<br>=0.10610 pr                                            | N= qr                           | N=11<br>18 zr =<br>≈0.68750 zr        | N= 0.11916 0                                    |

- M Momento flettente
- N Storzo assiale
- p Carico uniformemente riportifo, dovuto ai carichi mobili ed al peso della massicciata
- q Pressione uniforme dovula alle spinte orizzontali
- z Pressione variabile dovuta alle spinte orizzontali
- r Raggio medio della tubazione
- s Spessore della tubazione
- Peso specifico del materiale costituente la



#### 7.4 Verifiche di resistenza

Si riportano di seguito le verifiche a flessione delle sezioni più significative.

### Sezione verticale Lembo superiore

| Sol | leci | tazi | oni |
|-----|------|------|-----|
|     |      |      |     |

| Momento flettente | M | 13.3 | kN m |
|-------------------|---|------|------|
| Sforzo normale    | N | 41.1 | kN   |

#### Materiali

| Res. caratteristica cls        | R <sub>ck</sub>   | 35   | N/mm²             |
|--------------------------------|-------------------|------|-------------------|
| Tensione ammissibile cls       | σc <sub>amm</sub> | 11.0 | N/mm <sup>2</sup> |
| Tensione ammissibile acciaio   | σs <sub>amm</sub> | 260  | N/mm²             |
| Coefficiente omog. acciaio-cls | n                 | 15   |                   |

Caratteristiche geometriche

| earacecribaterie geometrici    |                   |      |                 |        |                   |   |    |
|--------------------------------|-------------------|------|-----------------|--------|-------------------|---|----|
| Altezza sezione                | Н                 | 22.5 | cm              |        |                   |   | 1  |
| Larghezza sezione              | В                 | 100  | cm              |        |                   |   |    |
| Armatura compressa (1º strato) | $As_i^r$          | 3.53 | cm <sup>2</sup> | 13 Ø 6 | $c_{s1} =$        | 4 | cm |
| Armatura compressa (2º strato) | As <sub>2</sub> ' | 0.00 | cm <sup>2</sup> | Ø      | $c_{s2} =$        |   | cm |
| Armatura tesa (2º strato)      | $As_2$            | 0.00 | cm <sup>2</sup> | Ø      | $c_{i2} =$        |   | cm |
| Armatura tesa (1º strato)      | As <sub>1</sub>   | 3.53 | cm <sup>2</sup> | 13 Ø 6 | c <sub>i1</sub> = | 4 | cm |

#### Tensioni nei materiali

| Compressione max nel cls.                | σc        | 3.8     | N/mm²             | < | σc <sub>amm</sub>      |
|------------------------------------------|-----------|---------|-------------------|---|------------------------|
| Trazione nell'acciaio (1º strato)        | σs        | 159.1   | N/mm <sup>2</sup> | < | σa <sub>amm</sub>      |
| Eccentricità                             | e         | 32.5    | cm                | > | H/6 Sez. parzializzata |
|                                          | u         | 21.2    | cm                |   |                        |
| Posizione asse neutro                    | у         | 4.9     | cm                |   |                        |
| Area ideale (sez. int. reagente)         | $A_{id}$  | 2349    | cm² ´             |   |                        |
| Mom. di inerzia ideale (sez. int. reag.) | $J_{id}$  | 100495  | cm⁴               |   |                        |
| Mom. di inerzia ideale (sez. parz. N=0)  | $J_{id*}$ | 13769.3 | cm⁴               |   |                        |



### TRATTA RHO-GALLARATE

### PROGETTO DEFINITIVO PER APPALTO INTEGRATO

**INX2 - RELAZIONE DI CALCOLO** 

COMMESSA MDL1 LOTTO CODIFICA

12 D 26 CL

DOCUMENTO INX200 001

REV.

FOGLIO 19 di 35

#### Sezione orizzontale

| _  |     |      |     | - |   |
|----|-----|------|-----|---|---|
| So | 110 | ri i | -27 |   | m |
|    |     |      |     |   |   |

| Momento flettente | М | 13.9 | kN m |
|-------------------|---|------|------|
| Sforzo normale    | N | 99.4 | kN   |

#### Materiali

| -iacaiaii                      |                   |      |                   |
|--------------------------------|-------------------|------|-------------------|
| Res. caratteristica cls        | $R_{ck}$          | 35   | N/mm <sup>2</sup> |
| Tensione ammissibile cls       | σc <sub>amm</sub> | 11.0 | N/mm²             |
| Tensione ammissibile acciaio   | σs <sub>amm</sub> | 260  | N/mm²             |
| Coefficiente omog. acciaio-cls | n                 | 15   |                   |

Caratteristiche geometriche

| Altezza sezione                | Н                 | 22.5 | cm              |        |                   |   |    |
|--------------------------------|-------------------|------|-----------------|--------|-------------------|---|----|
| Larghezza sezione              | В                 | 100  | cm              |        |                   |   |    |
| Armatura compressa (1º strato) | As <sub>1</sub> ' | 3.53 | cm²             | 13 Ø 6 | $c_{s1} =$        | 4 | cm |
| Armatura compressa (2º strato) | As <sub>2</sub> ' | 0.00 | cm²             | Ø      | $c_{s2} =$        |   | cm |
| Armatura tesa (2º strato)      | As <sub>2</sub>   | 0.00 | cm <sup>2</sup> | Ø      | $c_{i2} =$        |   | cm |
| Armatura tesa (1º strato)      | As <sub>1</sub>   | 3.53 | cm <sup>2</sup> | 13 Ø 6 | c <sub>i1</sub> = | 4 | cm |

#### Tensioni nei materiali

| Compressione max nel cls.                | σο               | 3.6     | N/mm²           | < | σc <sub>amm</sub>      |
|------------------------------------------|------------------|---------|-----------------|---|------------------------|
| Trazione nell'acciaio (1º strato)        | σs               | 90.4    | N/mm²           | < | σa <sub>amm</sub>      |
|                                          | _                | 140     |                 |   | H/6 Sez. parzializzata |
| Eccentricità                             | е                | 14.0    | cm              | _ | nyo sez. parzializzata |
|                                          | u                | 2.8     | cm              |   |                        |
| Posizione asse neutro                    | у                | 6.9     | cm              |   |                        |
| Area ideale (sez. int. reagente)         | $A_{id}$         | 2349    | cm <sup>2</sup> |   |                        |
| Mom. di inerzia ideale (sez. int. reag.) | $J_id$           | 100495  | cm⁴             |   |                        |
| Mom. di inerzia ideale (sez. parz. N=0)  | J <sub>id*</sub> | 18504.1 | cm <sup>4</sup> |   |                        |



#### Sezione verticale Lembo inferiore

| Sol |  |  |
|-----|--|--|
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |

| Momento flettente | М | 20.6 | kN m |
|-------------------|---|------|------|
| Sforzo normale    | N | 92.8 | kN   |

#### Materiali

| Res. caratteristica cls        | $R_{ck}$          | 35   | N/mm² |
|--------------------------------|-------------------|------|-------|
| Tensione ammissibile cls       | σc <sub>amm</sub> | 11.0 | N/mm² |
| Tensione ammissibile acciaio   | σs <sub>amm</sub> | 260  | N/mm² |
| Coefficiente omog. acciaio-cls | n                 | 15   |       |

**Caratteristiche geometriche** 

| caracteristicite geometricite  |                   |      |                 |        |                   |   |     |
|--------------------------------|-------------------|------|-----------------|--------|-------------------|---|-----|
| Altezza sezione                | Н                 | 22.5 | cm              |        |                   |   | j   |
| Larghezza sezione              | В                 | 100  | cm              |        |                   |   |     |
| Armatura compressa (1º strato) | As <sub>1</sub> ' | 3.53 | cm <sup>2</sup> | 13 Ø 6 | $c_{s1} =$        | 4 | cmi |
| Armatura compressa (2° strato) | As <sub>2</sub> ' | 0.00 | cm <sup>2</sup> | Ø      | $c_{s2} =$        |   | cm  |
| Armatura tesa (2º strato)      | As <sub>2</sub>   | 0.00 | cm <sup>2</sup> | Ø      | $c_{i2} =$        |   | cm  |
| Armatura tesa (1º strato)      | As <sub>1</sub>   | 3.53 | cm <sup>2</sup> | 13 Ø 6 | C <sub>i1</sub> = | 4 | cm  |

Tensioni nei materiali

| Compressione max nel cls.                | σς               | 5.7     | N/mm <sup>2</sup> | < | σc <sub>amm</sub>      |
|------------------------------------------|------------------|---------|-------------------|---|------------------------|
| Trazione nell'acciaio (1º strato)        | σs               | 203.7   | N/mm²             | < | σa <sub>amm</sub>      |
| Eccentricità                             | e                | 22.2    | cm                | > | H/6 Sez. parzializzata |
|                                          | u                | 10.9    | cm                |   |                        |
| Posizione asse neutro                    | У                | 5.5     | cm                |   |                        |
| Area ideale (sez. int. reagente)         | $A_{id}$         | 2349    | cm <sup>2</sup>   |   |                        |
| Mom. di inerzia ideale (sez. int. reag.) | $J_{id}$         | 100495  | cm⁴               |   |                        |
| Mom. di inerzia ideale (sez. parz. N=0)  | J <sub>id*</sub> | 14587.7 | cm⁴               |   |                        |
| , , , , , , , , , , , , , , , , , , , ,  |                  |         |                   |   |                        |



### 7.5 Verifiche di fessurazione

Momento di fessurazione (fctk)

Sezione verticale Lembo superiore

| Momento flettente | М | <b>13.3</b> kN | m |
|-------------------|---|----------------|---|
| Sforzo normale    | N | <b>41.1</b> kN |   |

| Materiali                          |                   |      |                   |
|------------------------------------|-------------------|------|-------------------|
| Res. caratteristica cls            | R <sub>ck</sub>   | 35   | N/mm²             |
| Tensione ammissibile cls           | σc <sub>amm</sub> | 11.0 | N/mm <sup>2</sup> |
| Res. media a trazione cls          | $f_{ctm}$         | 2.9  | N/mm <sup>2</sup> |
| Res. caratteristica a trazione cls | $f_{ctk}$         | 2.0  | N/mm <sup>2</sup> |
| Tensione ammissibile acciaio       | σs <sub>amm</sub> | 260  | N/mm <sup>2</sup> |
| Coefficiente omog. acciaio-cls     | n                 | 15   |                   |

| Caratteristiche geometriche    |                   |      |                 |    |     |                   |   |    |
|--------------------------------|-------------------|------|-----------------|----|-----|-------------------|---|----|
| Altezza sezione                | Н                 | 22.5 | cm              |    |     |                   |   |    |
| Larghezza sezione              | В                 | 100  | cm              |    |     |                   |   |    |
| Armatura compressa (1º strato) | As <sub>1</sub> ' | 3.53 | cm <sup>2</sup> | 13 | Ø 6 | $c_{s1} =$        | 4 | cm |
| Armatura compressa (2º strato) | As <sub>2</sub> ' | 0.00 | cm <sup>2</sup> | 0  | Ø O | $c_{s2} =$        | 0 | cm |
| Armatura tesa (2º strato)      | $As_2$            | 0.00 | cm <sup>2</sup> | 0  | Ø O | $c_{i2} =$        | 0 | cm |
| Armatura tesa (1º strato)      | As <sub>1</sub>   | 3.53 | cm <sup>2</sup> | 13 | Ø 6 | c <sub>i1</sub> = | 4 | cm |

| σς               | 3.8                                                           | N/mm <sup>2</sup>                                                                       | <                                                                                                                         | σc <sub>amm</sub>                                                                                                                                  |
|------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| σs               | 159.1                                                         | N/mm²                                                                                   | <                                                                                                                         | σa <sub>amm</sub>                                                                                                                                  |
| e (M)            | 32.5                                                          | cm                                                                                      | >                                                                                                                         | H/6 Sez. parzializzata                                                                                                                             |
| u (M)            | 21.2                                                          | cm                                                                                      |                                                                                                                           |                                                                                                                                                    |
| y (M)            | 4.9                                                           | cm                                                                                      |                                                                                                                           |                                                                                                                                                    |
| $A_{id}$         | 2349                                                          | cm <sup>2</sup>                                                                         |                                                                                                                           |                                                                                                                                                    |
| $J_{id}$         | 100495                                                        | cm⁴                                                                                     |                                                                                                                           |                                                                                                                                                    |
| J <sub>id*</sub> | 13769.3                                                       | cm⁴                                                                                     |                                                                                                                           |                                                                                                                                                    |
|                  |                                                               |                                                                                         |                                                                                                                           |                                                                                                                                                    |
|                  | e (M)<br>u (M)<br>y (M)<br>A <sub>id</sub><br>J <sub>id</sub> | e (M) 32.5<br>u (M) 21.2<br>y (M) 4.9<br>A <sub>id</sub> 2349<br>J <sub>id</sub> 100495 | e (M) 32.5 cm u (M) 21.2 cm y (M) 4.9 cm A <sub>ld</sub> 2349 cm² J <sub>id</sub> 100495 cm⁴ J <sub>id*</sub> 13769.3 cm⁴ | os 159.1 N/mm² <  e (M) 32.5 cm >  u (M) 21.2 cm  y (M) 4.9 cm  A <sub>id</sub> 2349 cm²  J <sub>id</sub> 100495 cm⁴  J <sub>id*</sub> 13769.3 cm⁴ |

M<sub>fess</sub>\*

19.6 kN m

La sezione non è fessurata



#### Sezione orizzontale

| Sol | lecita | zioni |
|-----|--------|-------|
|     |        |       |

| JOHCGICALIONI     |   |      |      |
|-------------------|---|------|------|
| Momento flettente | M | 13.9 | kN m |
| Sforzo normale    | N | 99.4 | kN   |

### Materiali

| Res. caratteristica cls            | $R_{ck}$          | 35   | N/mm <sup>2</sup> |
|------------------------------------|-------------------|------|-------------------|
| Tensione ammissibile cls           | σc <sub>amm</sub> | 11.0 | N/mm²             |
| Res. media a trazione cls          | f <sub>ctm</sub>  | 2.9  | N/mm²             |
| Res. caratteristica a trazione cls | f <sub>ctk</sub>  | 2.0  | N/mm²             |
| Tensione ammissibile acciaio       | σs <sub>amm</sub> | 260  | N/mm²             |
| Coefficiente omog. acciaio-cls     | . n               | 15   |                   |

Caratteristiche geometriche

| Caracteristicite geometricite  |                   |      |                 |    |   | _ |                   |   |    |
|--------------------------------|-------------------|------|-----------------|----|---|---|-------------------|---|----|
| Altezza sezione                | Н                 | 22.5 | cm              |    |   |   |                   |   |    |
| Larghezza sezione              | В                 | 100  | cm              |    |   |   |                   |   |    |
| Armatura compressa (1º strato) | As <sub>1</sub> ¹ | 3.53 | cm <sup>2</sup> | 13 | Ø | 6 | $c_{s1} =$        | 4 | cm |
| Armatura compressa (2º strato) | As <sub>2</sub> ' | 0.00 | cm <sup>2</sup> | 0  | Ø | 0 | $c_{s2} =$        | 0 | cm |
| Armatura tesa (2º strato)      | $As_2$            | 0.00 | cm <sup>2</sup> | 0  | Ø | 0 | $c_{i2} =$        | 0 | cm |
| Armatura tesa (1º strato)      | As <sub>1</sub>   | 3.53 | cm <sup>2</sup> | 13 | Ø | 6 | c <sub>i1</sub> = | 4 | cm |

Tensioni nei materiali

| Compressione max nel cls.                | σc               | 3.6     | N/mm <sup>2</sup> | < | σc <sub>amm</sub>      |
|------------------------------------------|------------------|---------|-------------------|---|------------------------|
| Trazione nell'acciaio (1º strato)        | σs               | 90.4    | N/mm <sup>2</sup> | < | σa <sub>amm</sub>      |
| Eccentricità                             | e (M)            | 14.0    | cm                | > | H/6 Sez. parzializzata |
|                                          | u (M)            | 2.8     | cm                |   |                        |
| Posizione asse neutro                    | y (M)            | 6.9     | cm                |   |                        |
| Area ideale (sez. int. reagente)         | $A_{id}$         | 2349    | cm <sup>2</sup>   |   |                        |
| Mom. di inerzia ideale (sez. int. reag.) | $J_{id}$         | 100495  | cm⁴               |   |                        |
| Mom. di inerzia ideale (sez. parz. N=0)  | J <sub>id*</sub> | 18504.1 | cm <sup>4</sup>   |   |                        |

### Verifica a fessurazione

| Momento di fessurazione (f <sub>ctk</sub> ) | M <sub>fess</sub> * | 21.8 kN m | La sezione non è fessurata |
|---------------------------------------------|---------------------|-----------|----------------------------|
|                                             |                     |           |                            |



### Sezione verticale Lembo inferiore

| _  |    |      |     | -    |
|----|----|------|-----|------|
| So | HΔ | - 11 | 271 | ΛNI  |
| 30 |    |      |     | vill |

| Momento flettente | М | 20.6 | kN m |
|-------------------|---|------|------|
| Sforzo normale    | N | 92.8 | kN   |

#### Materiali

| Res. caratteristica cls            | R <sub>ck</sub>   | 35   | N/mm <sup>2</sup> |
|------------------------------------|-------------------|------|-------------------|
| Tensione ammissibile cls           | σc <sub>amm</sub> | 11.0 | N/mm <sup>2</sup> |
| Res. media a trazione cls          | f <sub>ctm</sub>  | 2.9  | N/mm²             |
| Res. caratteristica a trazione cis | f <sub>ctk</sub>  | 2.0  | N/mm²             |
| Tensione ammissibile acciaio       | σs <sub>amm</sub> | 260  | N/mm²             |
| Coefficiente omog. acciaio-cls     | n                 | 15   |                   |

Caratteristiche geometriche

| Caracterioticine geometricine  |                   |      |                 |    |   |   |            |   |    |
|--------------------------------|-------------------|------|-----------------|----|---|---|------------|---|----|
| Altezza sezione                | Н                 | 22.5 | cm              |    |   |   |            |   | ļ  |
| Larghezza sezione              | В                 | 100  | cm              |    |   |   |            |   |    |
| Armatura compressa (1º strato) | As <sub>1</sub> ¹ | 3.53 | cm <sup>2</sup> | 13 | Ø | 6 | $c_{si} =$ | 4 | cm |
| Armatura compressa (2º strato) | As <sub>2</sub> ' | 0.00 | cm <sup>2</sup> | 0  | Ø | 0 | $c_{s2} =$ | 0 | cm |
| Armatura tesa (2º strato)      | As <sub>2</sub>   | 0.00 | cm <sup>2</sup> | 0  | Ø | 0 | $c_{i2} =$ | 0 | cm |
| Armatura tesa (1º strato)      | As <sub>1</sub>   | 3.53 | cm <sup>2</sup> | 13 | Ø | 6 | $C_{i1} =$ | 4 | cm |

Tensioni nei materiali

| Compressione max nel cls.                                                                                                                        | σc                                                              | 5.7                              | N/mm²                                                 | < | σc <sub>amm</sub>      |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------|-------------------------------------------------------|---|------------------------|
| Trazione nell'acciaio (1º strato)                                                                                                                | σs                                                              | 203.7                            | N/mm <sup>2</sup>                                     | < | σa <sub>amm</sub>      |
| Eccentricità                                                                                                                                     | e (M)<br>u (M)                                                  | 22.2<br>10.9                     | cm<br>cm                                              | > | H/6 Sez. parzializzata |
| Posizione asse neutro<br>Area ideale (sez. int. reagente)<br>Mom. di inerzia ideale (sez. int. reag.)<br>Mom. di inerzia ideale (sez. parz. N=0) | y (M)<br>A <sub>id</sub><br>J <sub>id</sub><br>J <sub>id*</sub> | 5.5<br>2349<br>100495<br>14587.7 | cm <sup>2</sup><br>cm <sup>4</sup><br>cm <sup>4</sup> |   |                        |

#### Verifica a fessurazione

| Momento di fessurazione (f <sub>ctk</sub> ) | $M_{fess}^{*}$ | 21.6 kN m | La sezione non e ressurata |
|---------------------------------------------|----------------|-----------|----------------------------|
| 11-1011CHO di ressuruzione (IGK)            | 1622           |           |                            |



#### TRATTA RHO-GALLARATE

### PROGETTO DEFINITIVO PER APPALTO INTEGRATO

**INX2 - RELAZIONE DI CALCOLO** 

COMMESSA LOTTO CODIFICA

MDL1 12 D 26 CL

DOCUMENTO

INX200 001

REV.

Α

FOGLIO 24 di 35

### 8 OPERE ACCESSORIE PER IL VARO

#### 8.1 Generalità

Il dispositivo di spinta è composto da una platea di varo e da una parete di spinta che consentono l'infissione dei conci prefabbricati nel rispetto delle tolleranze plano-altimetriche richieste. La platea di varo costituisce la base di appoggio in sede provvisoria e la parete di spinta assicura il contrasto necessario per il varo del manufatto prefabbricato. L'infissione avviene tramite martinetti che contrastano da un lato sulla struttura e dall'altro su una parete, detta muro reggispinta, che a sua volta scarica e ripartisce tale azione sul terreno retrostante.

Nella fase iniziale dovrà essere lasciato uno spazio di 2.0m tra la parete reggispinta e la posizione del concio prefabbricato sulla platea di varo, per consentire l'alloggiamento dei martinetti e della trave di ripartizione.

### 8.2 Caratteristiche geometriche delle strutture

#### **Monolite**

DN=1,50 m Lconcio=2,00 mSp=0,225 m

Lunghezza della canna=18.00 m

#### Platea di varo

Larghezza=4,00 m Lunghezza=5,80 m

Spessore=0,30 m

Vol= 6.96 mc

Pp= 174 KN

#### Parete reggispinta

Larghezza=4,00 m

Altezza=4,10 m Spessore=0,80 m



### 8.3 Valutazione della spinta

Si può distinguere:

- spinta di primo stacco
- spinta finale

### 8.3.1 Spinta primo stacco

In base ai dati sperimentali fino ad ora acquisiti si può valutare, a vantaggio di sicurezza, che il valore della spinta per cui il monolite inizia la sua traslazione sia circa pari al peso della struttura.

Ciò equivale a fissare un coefficiente d'attrito di primo stacco pari all'unità.

Sps = 
$$P_{concio} * N_{conci} + Peso Rostro = 786+4= 790 KN$$

### 8.3.2 Spinta finale

Il valore massimo della spinta in fase d'infissione dipende in larga parte da parametri aleatori non quantificabili con le normali teorie geotecniche, pertanto si fa riferimento al confronto con dati sperimentali:

$$S_{max}=1.5\times P_{m}$$

dove:

S<sub>max</sub>=spinta massima in fase d'infissione,

P<sub>m</sub>=peso del monolite= S<sub>ps</sub>

Smax 1185 KN

LOTTO 12

CODIFICA D 26 CL

DOCUMENTO INX200 001 FOGLIO
 26 di 35

Α

#### 8.4 Varo

La sollecitazione di trazione nella platea di varo in fase d'infissione è pari a:

$$T_{pv} = S_{ps} - (P_m + P_p) \times f_a = 790 - (61.1 + 174) \times 0.6 = 649 \text{ KN}$$

dove:

 $S_{ps}$  =forza d'attrito di primo stacco dei conci =790KN

P<sub>n</sub>=peso della platea di varo

P<sub>m</sub>=peso del manufatto che insiste sulla platea

f<sub>a</sub>=coefficiente d'attrito = 0.6

Nel caso in esame risulta:

T<sub>DV</sub> 649 KN

L'armatura necessaria si calcola con la seguente formula:

$$A_s = A_s' = \frac{Tpv * \psi_t}{2 * B_p * \overline{\sigma}_s}$$

dove:

A<sub>s</sub>= armatura inferiore;

A<sub>s</sub>'= armatura superiore;

 $\psi_t$ = coeff. maggiorativo della sollecitazione, posto durante i calcoli pari ad 1,2;

σ<sub>s</sub>= tensione ammissibile dell'acciaio,

 $B_0$ =base platea= 4 m

 $A_s = A_{s'} = 4.15 \text{ cm}^2/\text{m} -$ 

Si adottano due strati di Ø14/20.

Con armatura di ripartizione di doppio strato Ø10/20

12

LOTTO CODIFICA D 26 CL

DOCUMENTO INX200 001

Α

27 di 35

### 8.5 Rilevato di spinta

Il dimensionamento del rilevato realizzato a tergo della parete si esegue per un valore di spinta detta di esercizio (Ses), pari alla differenza tra la spinta massima e lo sforzo di trazione sulla platea di varo:

$$S_{es} = S_{max} - T_{pv} = 1185-649 = 536 \text{ kN}$$

A questo punto, nota l'azione sollecitante, occorre calcolare la reazione passiva del rilevato, facendo riferimento alla teoria di Rankine quindi ponendoci in condizioni di rottura, si ha che:

$$R_p = \frac{1}{2} * \gamma * K_p * H_m^2 + K_p * q * H_m = 565 \text{ KN/m}$$

dove:

 $K_p$ = coeff. di spinta del terreno in condizioni passive (relazione di Muller-Breslau)

q= sovraccarico di terreno=  $\gamma$ \*h<sub>terr</sub>

con:

h<sub>terr</sub> =H<sub>t</sub>-H<sub>m</sub>; (altezza di terreno da utilizzare come sovraccarico)

Per il terreno di riempimento si adottano le seguenti caratteristiche:

 $\gamma = 18 \text{ KN/m}^3$ 

:peso specifico;

 $\omega = 30^{\circ}$ 

:angolo di attrito interno;

Per cui la reazione passiva totale sarà:

$$R_{passiva} = R_p * B_r = 2260 \text{ KN}$$

Di conseguenza si può valutare il coeff. di sicurezza adottato con la seguente relazione:

$$F = \frac{R_{passiva}}{S_{es}} = 4$$



MDL1

12

D 26 CL

FOGLIO

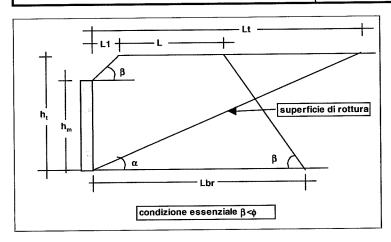
28 di 35

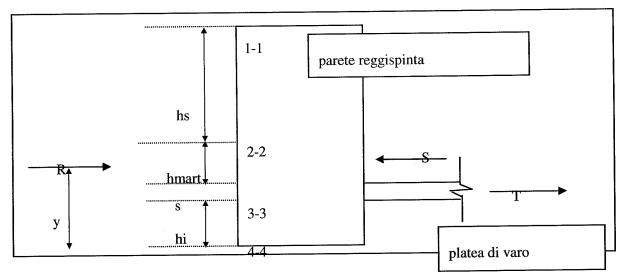
| Altezza totale rilevato        | ht      | 4.6  | m     |
|--------------------------------|---------|------|-------|
|                                | hm      | 4.1  | m     |
| Altezza parete reggispinta     | 11111   |      |       |
| Larghezza parete reggispinta   | Bpr     | 4.0  | m     |
| Lunghezza sommità rilevato     | L       | 4.5  | m     |
| Angolo di scarpa               | β       | 29   | 0     |
| Dato del terreno               | γ       | 18   | KN/m3 |
| Dato del terreno               | ф       | 30   | 0     |
| Spinta applicata alla parete   | Ses     | 395  | KN    |
|                                | L1      | 1    |       |
|                                | Rpassiv |      |       |
| Spinta applicabile alla parete | а       | 2260 | KN    |
| Coefficiente di sicurezza      | F       | 4    | ≥1.5  |

# 8.6 Parete reggispinta

Si valutano le sollecitazioni nel manufatto reggispinta soggetto alla spinta ed alla reazione passiva del terreno schematizzata con una distribuzione trapezia:

| Inclinaz. superficie di rottura | α      | 31.0° | 0 |
|---------------------------------|--------|-------|---|
| Ingombro al P.C.                | 2*L1+L | 8.6   | m |
|                                 | Lt     | 8     | m |
|                                 | L1+L   | 5.5   | m |
|                                 | Lb     | 13.8  | m |
|                                 | L1     | 1     | m |





### TRATTA RHO-GALLARATE

### PROGETTO DEFINITIVO PER APPALTO INTEGRATO

### **INX2 - RELAZIONE DI CALCOLO**

| MDL1     | 12    | D 26 CL  | INX200 001 | Α    | 29 di 35 |
|----------|-------|----------|------------|------|----------|
| COMMESSA | LOTTO | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |





### Parete reggispinta

| Larghezza                                 | $B_{ps}$              | 4      | m                 |
|-------------------------------------------|-----------------------|--------|-------------------|
| Altezza                                   | $H_{ps}$              | 4.1    | m                 |
| Spessore                                  | Sps                   | 0.8    | m                 |
| Altezza del rilevato                      | $h_t$                 | 4.6    | m                 |
| Ampiezza impronta martinetto              | $h_{mart}$            | 0.5    | m                 |
| Valore medio della reazione del terreno   | $\sigma_{\text{med}}$ | 0.033  | N/mm <sup>2</sup> |
| Valore unitario alla sommità della parete | $\sigma_1$            | 0.006  | N/mm²             |
| Valore unitario alla base della parete    | $\sigma_4$            | 0.059  | N/mm <sup>2</sup> |
| Reazione del terreno · ( y )              | $R \cdot y$           | 804.35 | KNm               |
| Approfondimento parete reggispinta        | h <sub>i</sub>        | 0.466  | m                 |
| Altezza da sommità a sez.2-2              | $h_s$                 | 2.834  | m                 |
| Tensione alla sezione 2-2                 | $\sigma_2$            | 0.043  | N/mm <sup>2</sup> |
| Tensione alla sezione 3-3                 | $\sigma_3$            | 0.053  | N/mm <sup>2</sup> |
|                                           |                       |        |                   |



#### TRATTA RHO-GALLARATE

### PROGETTO DEFINITIVO PER APPALTO INTEGRATO

**INX2 - RELAZIONE DI CALCOLO** 

COMMESSA MDL1

LOTTO CODIFICA

12 D 26 CL

DOCUMENTO INX200 001 REV.

FOGLIO 30 di 35

il valor medio della reazione del terreno è:

$$\sigma_{med} = (S_{max} - T)/bh = 0.033 \text{ N/mm}^2$$

dove:

 $B_{ps}$  = larghezza parete reggispinta=

4.00 m

H<sub>ps</sub> = altezza parete reggispinta=

4.10 m

da cui si ricavano i valori unitari della reazione del terreno alla sommità ed alla base della parete:

$$\sigma_1 = \sigma_{med} \frac{h_t - H_{ps}}{h_t - H_{ps}/2} = 0.006$$

N/mm<sup>2</sup>

$$\sigma_4 = \sigma_{med} \frac{h_t}{h_t - H_{ns}/2} = 0.059$$

N/mm<sup>2</sup>

Con riferimento alla figura, hi e hs, vengono definite in modo che la reazione del terreno abbia lo stesso punto di applicazione della risultante delle rimanenti forze agenti (S e T).

Imponendo l'equilibrio alla rotazione rispetto al piede della parete si avrà:

$$R \cdot y + T \cdot (h_i + ts/2) - S \cdot (h_i + ts + Hmart) = 0$$

con:

$$R \cdot y = \left[\frac{1}{2}\sigma_1 \cdot h^2 + \frac{1}{6} \cdot (\sigma_4 - \sigma_1) \cdot h^2\right] \cdot b,$$

dove

s = spessore della platea di varo



#### TRATTA RHO-GALLARATE

### PROGETTO DEFINITIVO PER APPALTO INTEGRATO

**INX2 - RELAZIONE DI CALCOLO** 

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 CL
 INX200 001
 A
 31 di 35

essendo  $R \cdot y = 804.35 \text{ KN m}$ ,

si ha hi = 0.466 m, dunque hs = 2.834 m e pertanto:

$$\sigma_2 = \sigma_{med} \frac{h_t - h_i - h_{mart}}{h_t - H_{ps}/2} = 0.043 \text{ N/mm}^2$$

$$\sigma_3 = \sigma_{med} \frac{h_t - h_i}{h_t - H_{ps}/2} = 0.053 \text{ N/mm}^2$$

Le massime sollecitazioni risultano:

#### **Sollecitazioni**

| $M_2$ | 74.33                         | KNm/m                                    |
|-------|-------------------------------|------------------------------------------|
| $T_2$ | 69.62                         | KN/m                                     |
| $M_3$ | 6.19                          | KNm/m                                    |
| $T_3$ | 26.10                         | KN/m                                     |
|       | T <sub>2</sub> M <sub>3</sub> | T <sub>2</sub> 69.62 M <sub>3</sub> 6.19 |

Si riportano di seguito le verifiche a taglio e flessione della parete reggispinta, per le sezioni 2-2 e 3-3.



### 8.6.1 Verifica a flessione

Armature:

Si adottano due strati di Ø16/20.

Con armatura di ripartizione di doppio strato Ø10/20

sezione 2-2



#### TRATTA RHO-GALLARATE

### PROGETTO DEFINITIVO PER APPALTO INTEGRATO

# **INX2 - RELAZIONE DI CALCOLO**

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO MDL1 12 D 26 CL INX200 001 A 33 di 35

| Sollecitazioni    |   |      |      |
|-------------------|---|------|------|
| Momento flettente | М | 74.3 | kN m |
| Sforzo normale    | N | 0.0  | kN   |
|                   |   |      |      |

#### Materiali N/mm<sup>2</sup> 35 Res. caratteristica cls $R_{ck}$ N/mm<sup>2</sup> 11.0 Tensione ammissibile cls $\sigma c_{amm}$ 260 N/mm<sup>2</sup> $\sigma s_{amm}$ Tensione ammissibile acciaio n 15 Coefficiente omog. acciaio-cls

| Caratteristiche geometriche    |                   |       |                 |   |             |            |   |    |
|--------------------------------|-------------------|-------|-----------------|---|-------------|------------|---|----|
| Altezza sezione                | Н                 | 80    | cm              |   |             |            |   |    |
| Larghezza sezione              | В                 | 100   | cm              |   |             |            |   |    |
| Armatura compressa (1º strato) | As <sub>1</sub> ' | 10.05 | cm²             | 5 | Ø <b>16</b> | $c_{s1} =$ | 6 | cm |
| Armatura compressa (2º strato) | As <sub>2</sub> ' | 0.00  | cm <sup>2</sup> |   | Ø           | $c_{s2} =$ |   | cm |
| Armatura tesa (2º strato)      | $As_2$            | 0.00  | cm <sup>2</sup> |   | Ø           | $c_{i2} =$ |   | cm |
| Armatura tesa (1º strato)      | $As_1^-$          | 10.05 | cm <sup>2</sup> | 5 | Ø <b>16</b> | $C_{i1} =$ | 6 | cm |

| Tensioni nei materiali                   |           |         |                 |   |                        |
|------------------------------------------|-----------|---------|-----------------|---|------------------------|
| Compressione max nel cls.                | σc        | 1.5     | N/mm²           | < | σc <sub>amm</sub>      |
| Trazione nell'acciaio (1º strato)        | σs        | 106.3   | N/mm²           | < | σa <sub>amm</sub>      |
|                                          | _         |         | 500             |   | U/6 Coz narzializzata  |
| Eccentricità                             | е         | ∞       | cm              | > | H/6 Sez. parzializzata |
|                                          | u         | ∞       | cm              |   |                        |
| Posizione asse neutro                    | У         | 12.8    | cm              |   |                        |
| Area ideale (sez. int. reagente)         | $A_{id}$  | 8281    | cm <sup>2</sup> |   |                        |
| Mom. di inerzia ideale (sez. int. reag.) | $J_id$    | 4615308 | cm⁴             |   |                        |
| Mom. di inerzia ideale (sez. parz. N=0)  | $J_{id*}$ | 641677  | cm⁴             |   |                        |



| Solieciazioni     |   |     |      | 7 |
|-------------------|---|-----|------|---|
| Momento flettente | М | 6.2 | kN m |   |
| Sforzo normale    | N | 0.0 | kN   |   |

#### Materiali

| Res. caratteristica cls        | R <sub>ck</sub>    | 35   | N/mm <sup>2</sup> |
|--------------------------------|--------------------|------|-------------------|
| Tensione ammissibile cls       | σc <sub>amm</sub>  | 11.0 | N/mm²             |
| Tensione ammissibile acciaio   | O'S <sub>amm</sub> | 260  | N/mm²             |
| Coefficiente omog. acciaio-cls | n                  | 15   |                   |

**Caratteristiche geometriche** 

| Altezza sezione                | Н                 | 80    | cm              |   |             |                   |   |    |
|--------------------------------|-------------------|-------|-----------------|---|-------------|-------------------|---|----|
| Larghezza sezione              | В                 | 100   | cm              |   |             |                   |   |    |
| Armatura compressa (1º strato) | As <sub>1</sub> ' | 10.05 | cm <sup>2</sup> | 5 | Ø <b>16</b> | $c_{si} =$        | 6 | cm |
| Armatura compressa (2º strato) | As <sub>2</sub> ' | 0.00  | cm <sup>2</sup> |   | Ø           | $c_{s2} =$        |   | cm |
| Armatura tesa (2º strato)      | $As_2$            | 0.00  | cm <sup>2</sup> |   | Ø           | $c_{i2} =$        |   | cm |
| Armatura tesa (1º strato)      | As <sub>1</sub>   | 10.05 | cm <sup>2</sup> | 5 | Ø <b>16</b> | C <sub>i1</sub> = | 6 | cm |

### Tensioni nei materiali

| Compressione max nel cls.                | σc                  | 0.1     | N/mm² | < | σc <sub>amm</sub>      |
|------------------------------------------|---------------------|---------|-------|---|------------------------|
| Trazione nell'acciaio (1º strato)        | σs                  | 8.9     | N/mm² | < | σa <sub>amm</sub>      |
| _                                        |                     |         |       |   | IIIC Con portiolizanto |
| Eccentricità                             | е                   | σ.      | cm    | > | H/6 Sez. parzializzata |
|                                          | u                   | ∞       | cm    |   |                        |
| Posizione asse neutro                    | у                   | 12.8    | cm    |   |                        |
| Area ideale (sez. int. reagente)         | $A_{id}$            | 8281    | cm²   |   |                        |
| Mom. di inerzia ideale (sez. int. reag.) | $J_{id}$            | 4615308 | cm⁴   |   |                        |
| Mom. di inerzia ideale (sez. parz. N=0)  | ${\sf J}_{\sf id*}$ | 641677  | cm⁴   |   |                        |

# 8.6.2 Verifica a taglio



### TRATTA RHO-GALLARATE

### PROGETTO DEFINITIVO PER APPALTO INTEGRATO

# INX2 - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 MDL1
 12
 D 26 CL
 INX200 001
 A
 35 di 35

| τtaglio    | 1.05  | daN/cm2 |
|------------|-------|---------|
| copriferro | 4     | cm      |
| b          | 100   | cm      |
| Н          | 80    | cm      |
| τc1        | 19.71 | daN/cm2 |
| τς0        | 6.67  | daN/cm2 |
| σа         | 2600  | daN/cm2 |
| Rck        | 350   | daN/cm2 |
| Taglio     | 6962  | daN     |
|            |       |         |

| sezione | 22  |
|---------|-----|
| SCZIUNC | .)) |

| 0.4   | daN/cm2                                        |
|-------|------------------------------------------------|
| 4     | cm                                             |
| 100   | cm                                             |
| 80    | cm                                             |
| 19.71 | daN/cm2                                        |
| 6.67  | daN/cm2                                        |
| 2600  | daN/cm2                                        |
| 350   | daN/cm2                                        |
| 2610  | daN                                            |
|       | 350<br>2600<br>6.67<br>19.71<br>80<br>100<br>4 |