COMMITTENTE:

PROGETTAZIONE:

S.O. GEOLOGIA TECNICA

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO 1 BATTIPAGLIA – PRAIA LOTTO 1C BUONABITACOLO – PRAIA

INDAGINI GEOFISICHE – Socotec Italia S.r.l.

								SCALA:
cor R (MMESSA LOTTO FA	R 69		DC. OPER	A/DISCIPL	INA PRO	DGR. R	EV.
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
А	Emissione esecutiva	D. Fiore	Novembre 2021	S. Giugliano	Novembre 2021	I. D'Amore	Novembre 2021	G. BENEDETTI Marzo 2023
В	Emissione esecutiva	D. Fiore Dount to from	Marzo 2023	S. Giugliano	Marzo 2023	I. D'Amorie Raia Huero	Marzo 2023	/ITALFERR S.p.A. iruppo Ferrovie dello Stato Italiane pott. Geol. Giapluca Beriedetti rdine del Geologi Emilio Romagna l'A.m. h. 1019 L.m.e.J.c.M.
File: R	C2AC1R69IGGE0005001B.	doc					. /	n. Elab.: X

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO 1 BATTIPAGLIA – PRAIA LOTTO 1C BUONABITACOLO – PRAIA PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA					A
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA		CODIFICA	DOCUMENTO	REV.	FOGLIO

Indice

1.	PREMESSA	3
2.	METODO MASW	5
2.1.	. PRINCIPI DI FUNZIONAMENTO E CENNI SUL METODO	5
2.2.	. STRUMENTAZIONE IMPIEGATA	7
2.3.	SCHEMA DI ACQUISIZIONE	9
2.4.	. RISULTATI INDAGINI MASW	
3.	METODO DI PROSPEZIONE DOWN HOLE	11
3.1.	ACQUISIZIONE	
3.2.	STRUMENTAZIONE IMPIEGATA	
3.3.	PROCESSING INDAGINE DOWN HOLE	14
3.4.	. RISULTATI INDAGINI DH	
4.	METODO HVSR	19
4.1.	PRINCIPI DI FUNZIONAMENTO E CENNI SUL METODO	
4.2.	. FREQUENZA FONDAMENTALE DEL SITO	
4.3.	ACQUISIZIONE E STRUMENTAZIONE UTILIZZATA	
4.3. 4.4.	. ACQUISIZIONE E STRUMENTAZIONE UTILIZZATA	
4.3. 4.4. 5.	ACQUISIZIONE E STRUMENTAZIONE UTILIZZATA RISULTATI INDAGINI HVSR BIBLIOGRAFIA	22

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO 1 BATTIPAGLIA – PRAIA LOTTO 1C BUONABITACOLO – PRAIA PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA					A
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RC2M	C1 R 69	IG	GE0005 001	Α	3 di 27

1. PREMESSA

La presente relazione tecnica riferisce sui risultati delle indagini geofisiche tipo MASW, DH, HVSR, eseguite presso l'area indicata in figura 1. Le indagini sono state realizzate nel mese di giugno e luglio 2021.

Figura 1 – Ubicazione generale indagini.

Si riporta di seguito il riepilogo delle indagini eseguite:

LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO 1 BATTIPAGLIA – PRAIA LOTTO 1C BUONABITACOLO – PRAIA PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA			OF SAGE ASI	INE V.	
	RCZM	C1 R 69	IG	GE0005 001	A	4 di 27

ID Prova	ID Prova Lunghezza (m) Coordinate A		Coordinate B
MASW_L1B_S37	80	555094.21 m E 4458775.56 m N	555042.05 m E 4458714.45 m N
MASW_L1B_S51	80	565988.85 m E 4434675.57 m N	566064.90 m E 4434651.33 m N
MASW_L1B_S54	80	566496.82 m E 4433567.19 m N	566474.93 m E 4433490.62 m N
MASW_L1B_S57	80	566113.39 m E 4423873.15 m N	566161.18 m E 4423935.62 m N
MASW_L1B_S61	80	566817.09 m E 4420335.09 m N	566894.65 m E 4420359.12 m N
MASW_L1B_S66	80	566024.41 m E 4418433.24 m N	566064.16 m E 4418361.24 m N
MASW_L1B_S67	80	566295.36 m E 4417761.39 m N	566345.83 m E 4417774.96 m N

Tabella 1 - Coordinate indagini MASW

ID Prova	Coordinate
HVSR_L1B_S37	555062.00 m E 4458741.00 m N
HVSR_L1B_S39	555619.00 m E 4457742.00 m N
HVSR_L1B_S41	556321.00 m E 4456913.00 m N
HVSR_L1B_S49	565695.00 m E 4435463.00 m N
HVSR_L1B_S51	566019.00 m E 4434655.00 m N
HVSR_L1B_S53	566369.00 m E 4433826.00 m N
HVSR_L1B_S54	566474.00 m E 4433490.00 m N
HVSR_L1B_S57	566145.56 m E 4423911.49 m N
HVSR_L1B_S61	566865.00 m E 4420363.00 m N
HVSR_L1B_S62	566772.00 m E 4420036.00 m N
HVSR_L1B_S66	566014.00 m E 4418380.00 m N
HVSR_L1B_S67	566341.00 m E 4417770.00 m N

Tabella 2 - Coordinate indagini HVSR

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO 1 BATTIPAGLIA – PRAIA LOTTO 1C BUONABITACOLO – PRAIA PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA					A
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA RC2M	LOTTO C1 R 69	CODIFICA	DOCUMENTO GE0005 001	REV.	FOGLIO 5 di 27

ID Prova	Coordinate
DH_L1B_S39	555673.17 m E 4457779.97 m N
DH_L1B_S41	556321.00 m E 4456913.00 m N
DH_L1B_S49	565695.00 m E 4435463.00 m N
DH_L1B_S53	566369.00 m E 4433826.00 m N
DH_L1B_S62	566772.00 m E 4420036.00 m N

Tabella 3 - Coordinate indagini DH

2. METODO MASW

2.1. Principi di funzionamento e cenni sul metodo

Il metodo MASW (Multichannel Analysis of Surface Waves) è una tecnica di indagine non invasiva, che individua il profilo di velocità delle onde di taglio Vs, basandosi sulla misura delle onde superficiali fatta in corrispondenza di diversi sensori (accelerometri o geofoni) posti sulla superficie del suolo. La determinazione delle Vs viene ottenuta tramite l'inversione delle curve di dispersione delle onde di Rayleigh (Fig. 2).

Figura 2 - Distribuzione delle onde di Rayleigh nel sottosuolo.

In un mezzo stratificato, le onde di Rayleigh sono dispersive, ossia onde con diverse lunghezze d'onda si propagano con diverse velocità di fase e velocità di gruppo (Achenbach, J.D., 1999; Aki, K. and Richards,

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO 1 BATTIPAGLIA – PRAIA LOTTO 1C BUONABITACOLO – PRAIA PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA					A
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA		CODIFICA	DOCUMENTO	REV.	FOGLIO

P.G., 1980). La velocità di fase (o di gruppo) apparente delle onde di Rayleigh, quindi, dipende dalla frequenza di propagazione. La natura dispersiva delle onde superficiali è correlabile al fatto che onde ad alta frequenza, ossia con lunghezza d'onda corta, si propagano negli strati più superficiali dando, quindi, informazioni sulla porzione più superficiale del suolo. Onde a bassa frequenza, invece, si propagano negli strati più profondi dando informazioni, quindi, sulla parte più profonda del suolo. Le indagini MASW si distinguono in attive e passive o in una combinazione di entrambe. Nel metodo attivo, le onde superficiali generate in un punto sulla superficie del suolo sono misurate da uno stendimento lineare di sensori. Nel metodo passivo, lo stendimento dei sensori può essere sia lineare, sia circolare e consente di misurare anche il rumore ambientale di fondo esistente.

Facendo riferimento al metodo attivo da noi utilizzato, possiamo dire che, una generica acquisizione di segnali sismici lungo uno stendimento lineare, con sorgente esterna alla linea sismica, può essere rappresentata come una funzione u(x, t) dove x è lo spazio e t il tempo.

Applicando ai segnali la trasformata di Fourier lungo l'asse dei tempi, otteniamo la funzione U(x,f):

$$U(x,f) = \int u(x,t)e^{ift}dt$$
(2.1)

La funzione U(x, f) può essere espressa come la moltiplicazione di due termini separati:

$$U(x,f) = P(x,f)A(x,f)$$
(2.2)

dove $P(x,f) \in A(x,f)$ rappresentano, rispettivamente, lo spettro di fase e di ampiezza.

Nella funzione U(x,f), ogni componente in frequenza è completamente separata dalle altre e l'informazione del tempo di arrivo è preservata nello spettro di fase P(x, f).

Nella funzione P(x,f), sono contenute inoltre tutte le informazioni relative alla dispersione delle onde superficiali di Rayleigh mentre la funzione A(x, f) contiene tutte le informazioni inerenti l'attenuazione e la divergenza sferica. Tenendo conto della rappresentazione esponenziale dello spettro di fase, la (2.2) può essere espressa come:

$$U(x,f) = e^{-i\theta x} A(x,f)$$
(2.3)

Dove F=f/cf con f = frequenza angolare e cf = velocità di fase per ogni frequenza.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO 1 BATTIPAGLIA – PRAIA LOTTO 1C BUONABITACOLO – PRAIA PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA					A
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA RC2M	LOTTO C1 R 69	CODIFICA IG	DOCUMENTO GE0005 001	REV.	FOGLIO 7 di 27

Operando un integrale di linea in dx e normalizzando per il modulo della funzione |U(x,f)|, otteniamo la funzione $V(f, \phi)$:

$$V(f,\phi) = \int e^{i\phi x} \left[U(x,f) / |U(x,f)| \right] dx = \int e^{-i(\Phi-\phi)x} \left[A(x,f) / |A(x,f)| \right] dx$$
(2.4)

La funzione V(f, ϕ), ottenuta dalla trasformazione integrale, può essere pensata come la somma, lungo tutto lo stendimento, del campo d'onda relativo ad ogni frequenza, applicando uno shift di fase dipendente dall'offset, al campo d'onda, per un'assunta velocità di fase cf = f/ ϕ .

La normalizzazione al modulo della funzione |U(x, f)|, minimizza i fenomeni di attenuazione e di divergenza sferica. Risulta ovvio che la funzione V(f, ϕ) avrà un massimo in corrispondenza di un valore:

$$\phi = F = f / cf \tag{2.5}$$

Per un dato valore di ϕ , dove si verifica un massimo della funzione V(f, ϕ), la velocità di fase cf può essere determinata. Tenendo conto che cf = f/ ϕ , la funzione V(f, ϕ) può essere trasformata nella funzione I(f, cf) che viene definita "spettro di velocità di fase". In essa, lungo l'asse cf, appariranno dei picchi che soddisferanno, per ogni frequenza, l'equazione (2.5). Il luogo dei punti lungo questi massimi, per differenti valori di frequenza f, perme di identificare le curve di dispersione delle velocità di fase dei modi di oscillazione dell'onda superficiale di Rayleigh.

La curva di dispersione media delle velocità di fase dell'onda di Rayleigh, estratta con la metodologia MASW, è invertita al fine ottenere un modello monodimensionale di onde di taglio.

2.2. Strumentazione impiegata

L'apparecchiatura utilizzata per questo tipo di prove si compone delle seguenti parti:

- sistema energizzante;
- sistema di ricezione;
- trigger;
- sistema di acquisizione dati.

Nel dettaglio:

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO 1 BATTIPAGLIA – PRAIA LOTTO 1C BUONABITACOLO – PRAIA PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA					A
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RC2M	C1 R 69	IG	GE0005 001	Α	8 di 27

<u>sistema energizzante</u>: tale sistema deve essere in grado di generare onde elastiche ad alta frequenza ricche di energia, con forme d'onda ripetibili e direzionali. Per generare le onde di compressione P è stata utilizzata una massa battente da 5kg.

<u>sistema di ricezione</u>: per l'indagine sono stati utilizzati 24 geofoni del tipo elettromagnetico a bobina mobile (oscillazione verticale), con frequenza caratteristica di 4.5 Hz. (Fig. 3).

Figura 3 - Geofoni per onda P ed Sh; a) schema di funzionamento del geofono per onda P; b) geofono per onda P con frequenza caratteristica di 4.5 Hz;

<u>trigger</u>: la metodologia utilizzata, in quanto attiva, prevede che l'inizio della registrazione sia individuato mediante un *trigger*: consiste in un circuito elettrico che viene chiuso nell'istante in cui la massa battente colpisce la piastra o la trave (nel nostro caso si è usato un geofono starter) e l'impulso generato, inviato al sistema di acquisizione, consente di fissare il tempo zero di riferimento per il calcolo dei tempi di percorso delle onde generate.

sistema di acquisizione dati: sismografo costituito da un sistema multicanale a conversione digitale. Il modello è denominato *GEODE* (prodotto dalla *GEOMETRICS,* Fig. 4; Tab. 4) ed è caratterizzato da una risoluzione di acquisizione pari a 24 bit (Tecnologia Delta Sigma). Tale sistema è in grado di registrare, su ciascun canale in forma digitale, le forme d'onda e di conservarle su memoria di massa dinamica minima a 24 bit. Esso è collegato a ciascuno dei geofoni ed al sensore del trigger, consentendo quindi di

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SAL NUOVA LII LOTTO 1 E LOTTO 1C PROGETT	ERNO – NEA AV S BATTIPAC BUONAI O DI FAT	REGGIO CA SALERNO - GLIA - PRAI BITACOLO - TIBILITA' TI	ALABRIA REGGIO CALA A - PRAIA ECNICA ED EC(BRIA DNOMIC	A
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA	LOTTO C1 R 69	CODIFICA	DOCUMENTO	REV.	FOGLIO 9 di 27

registrare in forma numerica e visualizzare sotto forma di tracce, su un apposito monitor, le vibrazioni a partire dall'impulso inviato dal trigger.

Figura 4 - smografo GEODE (Geometrics)

A/D Conversion:	24 bit (Crystal Semiconductor sigma-delta converters)
DynamicRange:	144 dB (system), 110 dB (instantaneous, measured) at 2ms, 24dB.
Distortion:	0.0005% @ 2 ms, 1.75 to 208 Hz.
Bandwidth:	1.75 Hz to 20 kHz
Common Mode Rejection:	> -100 dB at <=100 Hz, 36 dB.
Crosstalk:	-125 dB at 23.5 Hz, 24 dB, 2 ms.
Noise Floor:	0.2uV, RFI at 2 ms, 36 dB, 1.75 to 208 Hz.
Stacking Trigger Accuracy:	1/32 of sample interval.
Maximum Input Signal:	2.8 VPP.
Input Impedance:	20 kOhm, 0.02 uf.
Preamplifier Gains: dB, or 0dB.	24 or 36 dB
Anti-alias Filters:	-3 dB at 83% of Nyquist frequency, down 90 dB.
Pre-trigger Data:	Up to 4,096 Samples.
Sample Interval:	0.02, 0.03125, 0.0625, 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0 ms.
Record Length:	16,000 samples standard
Delay:	0 to 9999 ms in 1 ms steps.
Data Transmission:	Ethernet connections

Tabella 4 - Specifiche tecniche Sismografo GEODE.

2.3. Schema di acquisizione

Gli stendimenti sismici sono stati realizzati utilizzando 24 canali d'acquisizione (geofoni) con passo intergeofonico di 3 m. L'acquisizione dei dati sismici è stata condotta secondo la seguente configurazione spazio temporale:

• n° geofoni: 24;

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SAL NUOVA LIN LOTTO 1 B LOTTO 1C PROGETTO	ERNO - NEA AV S ATTIPAC BUONAE D DI FAT	REGGIO CA SALERNO - GLIA - PRAI BITACOLO - TIBILITA' TE	LABRIA REGGIO CALA A - PRAIA ECNICA ED EC(BRIA DNOMIC	A
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA		CODIFICA	DOCUMENTO	REV.	FOGLIO

- tempo di acquisizione: 1 s;
- intervallo di campionamento 0.125 μs (Fig. 5);

Figura 5 - Fasi di acquisizione

2.4. Risultati indagini MASW

L' indagine MASW ha consentito di ottenere un modello monodimensionale di Vs che, com'è noto, può essere ritenuto esaustivo del profilo verticale di Vs nel punto centrale dello stendimento. Pertanto, in entrambe le prove, si riscontra la presenza di terreno che va a collocarsi nelle categorie di suolo **B** e **C**, secondo la normativa NTC2018. Inoltre, secondo tale normativa, per il calcolo della Vs devono essere inseriti solo gli strati sopra al bedrock sismico, qualora individuato; questo vuol dire che la velocità equivalente, senza l'inserimento della parte veloce del bedrock sismico, può modificare la definizione semplificata e l'ingresso nella tabella 3.2.2 delle NTC2018. Qualora sia presente inversione di velocità, secondo tale normativa, non viene segnalata la categoria di suolo; nella seguente tabella verrà indicata con un trattino "-". Tuttavia, su richiesta della committenza, qualora l'inversione di velocità non superi i 50 m/s, si è attribuita ugualmente la categoria di suolo contrassegnando, però, la Masw con un asterisco *.

Nella tabella seguente, vengono riportati i valori di $V_{S_{eq}}$ e le categorie di suolo ricavate lungo tutti gli stendimenti sismici. Tutte le indagini, ad eccezione della MASW_L1B_S61 e MASW_L1B_S66 che hanno restituito una categoria di suolo **B**, restituiscono categorie di suolo **C** e la presenza, per la

MASW_L1B_S37 e MASW_L1B_S51 di inversioni di velocità ricollegabili a lenti di argille limose debolmente sabbiose poco consistenti.

ID MASW	Vs _{eq} (m/s)	Suolo
MASW_L1B_S37	248	-
MASW_L1B_S51	324	C*
MASW L1B S54	261	С
MASW L1B S57	295	С
MASW L1B S61	366	В
MASW L1B S66	416	В
MASW_L1B_S67	339	С

Tabella 5 – Tabella riassuntiva delle indagini MASW

3. METODO DI PROSPEZIONE DOWN HOLE

Lo scopo della prova DH, prova sismica in foro, è quello di valutare la velocità delle onde sismiche primarie Vp e secondarie Vsh, dal piano campagna sino ad una profondità pari a 30 m (Gasperini & Signanini, 1983). Le prove sismiche Down-Hole vengono eseguite con lo scopo di misurare la velocità delle onde dirette che si propagano dalla superficie in profondità. Il terreno viene energizzato in superficie, in prossimità di testa-foro, e la registrazione avviene in foro grazie ad un geofono triassiale ancorato a profondità crescenti. Tale geofono registra gli spostamenti, tradotti sotto forma di impulsi elettrici, lungo tre direzioni ortogonali tra loro (x, y, z). Le onde sismiche vengono generate energizzando il terreno in direzione verticale e in direzione trasversale (parallelamente al suolo). Nel primo caso, verranno generate prevalentemente onde compressive (onde P) che si propagano in profondità e vengono registrate al meglio dal geofono verticale (asse z). Nel secondo caso, verranno generate prevalentemente onde di taglio, avendo velocità inferiori rispetto a quelle compressive, solitamente intorno al 60 - 70%, raggiungono il geofono quando il primo fronte d'onda compressiva è già transitato. Questo passaggio, purtroppo, costituisce un disturbo per la misura delle onde trasversali, in quanto i geofoni orizzontali si trovano ancora in movimento all'arrivo dell'onda Sh. Per migliorare il

INDAGINI GEOFISICHE – Socotec Italia S.r.I.	FOGLIO

rapporto fra l'energia dell'onda compressiva P e l'energia dell'onda trasversale S a favore di quest'ultima, si realizza una doppia energizzazione orizzontale con verso opposto. La sottrazione delle forme d'onda relative a queste due acquisizioni riduce sensibilmente la componente compressiva presente nel segnale. Tali prove forniscono una dettagliata stratigrafia di velocità delle onde compressive (Vp) e delle onde di taglio (Vsh).

3.1. Acquisizione

La distanza tra le sorgenti di onde P e Sh ed il boccaforo è pari a 2 metro. Una volta raggiunta la profondità di prova (fondo foro), i ricevitori vengono assicurati alla parete del tubo di rivestimento mediante dei pistoni azionati da un compressore; la sorgente viene colpita in senso verticale per generare onde di compressione P e lateralmente per generare onde di taglio Sh (Fig. 6) facendo partire, per mezzo del trigger, la registrazione del segnale acquisita secondo i seguenti parametri:

Sampling interval (ms)	0. 125
Record length (s)	0.5
Spacing (m)	1

Figura 6 - Schema di acquisizione prova Down-Hole

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SAI NUOVA LII LOTTO 1 E LOTTO 1C PROGETT	-ERNO - NEA AV S BATTIPA BUONA O DI FAT	REGGIO CA SALERNO - GLIA - PRAI BITACOLO - TIBILITA' TI	ALABRIA REGGIO CALA A - PRAIA ECNICA ED EC	BRIA ONOMIC	A
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA RC2M	LOTTO C1 R 69	CODIFICA IG	DOCUMENTO GE0005 001	REV.	FOGLIO 13 di 27

3.2. Strumentazione impiegata

L'apparecchiatura utilizzata per questo tipo di prove si compone delle seguenti parti:

- sistema energizzante;
- sistema di ricezione;
- trigger;
- sistema di acquisizione dati.

La strumentazione è uguale a quella utilizzata per la prova sismica MASW, ad eccezione del sistema di ricezione qui descritto:

<u>sistema di ricezione</u>: per l'indagine è stato utilizzato il geofono da foro triassiale "BHG-2 Borehole Geophone". Il modello Geostuff BHG-2 (Fig. 7) contiene 2 geofoni, posizionati sulla stessa verticale e distanziati 1 m tra loro, orientati in un modello X-Y-Z. Il geofono longitudinale punta verso la molla del morsetto. Il diametro esterno è di 1,85 pollici (47 mm), abbastanza piccolo da adattarsi all'interno di un tubo di plastica da 40 pollici. Il meccanismo di blocco consiste in una robusta molla in acciaio compressa da un motore elettrico CC. La lunghezza del geofono è 700 mm e il peso di 2 kg. I cavi down-hole si collegano alla scatola di controllo. Due scatole di controllo possono essere salvate in modo da poter leggere i risultati dei due geofoni del foro da un sismografo a 12 canali.

Figura 7 - Geofono da foro triassiale true interval

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SAL NUOVA LII LOTTO 1 E LOTTO 1C PROGETTO	ERNO – NEA AV S BATTIPAC BUONAI O DI FAT	REGGIO CA SALERNO - GLIA - PRAI BITACOLO - TIBILITA' TE	ALABRIA REGGIO CALA A - PRAIA ECNICA ED EC	BRIA ONOMIC	A
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA RC2M	LOTTO C1 R 69	CODIFICA	DOCUMENTO	REV.	FOGLIO 14 di 27

3.3. Processing indagine Down Hole

La misura dei tempi dei primi arrivi delle onde sismiche deve essere realizzata con precisione e con un dettaglio pari a circa un decimo di millisecondo. La prima fase dell'elaborazione consiste nella determinazione dei primi arrivi sia delle onde P che delle onde Sh. Il picking dei tempi delle onde P è una operazione relativamente semplice, mentre per la corretta individuazione dei tempi di arrivo delle onde Sh, è necessario evidenziare l'inversione di fase dell'onda di taglio. A tale scopo, si effettua la sovrapposizione dei sismogrammi ricavati per la stessa profondità dai due punti di battuta; la corretta localizzazione delle onde Sh si avrà quando, sovrapponendo le tracce, si noterà un movimento uguale ed opposto della fase d'onda. La prima operazione da fare è la correzione, sulla verticale, dei tempi di tragitto (t) misurati lungo i percorsi sorgente-ricevitore per tenere conto della distanza tra la sorgente e il bocca-foro. Con i tempi corretti si realizza il grafico (Tcorr, z), sia per le onde P che per le onde Sh. Le velocità dei terreni investigati vengono finalmente ottenute in maniera indiretta con il "metodo intervallo": i tempi di tragitto dell'onda sismica si misurano fra due posizioni consecutive del ricevitore posti a differente profondità, consentendo così di migliorare la qualità delle misure (velocità d'intervallo). La seconda fase consiste nel calcolo delle dromocrone; la velocità media delle onde sismiche, in strati omogenei di terreno, è rappresentata dall'inclinazione dei segmenti di retta lungo i quali si allineano i dati sperimentali. Successivamente alla costruzione delle dromocrone ed alla determinazione della velocità di propagazione del segnale sismico nei diversi strati di terreno, si potranno calcolare i moduli elastici caratteristici avendo informazioni sulla densità dei litotipi incontrati durante la perforazione.

Il modulo di Young E (o modulo di elasticità longitudinale) è definito a partire dalla legge di Hooke:

$E = \sigma/\epsilon$

Con σ : sforzo, viene misurato in Pascal; ϵ : deformazione, è una grandezza adimensionale, spesso la si esprime in percentuale. Il modulo di Young viene determinato dal diagramma sforzo-deformazione mediante la formula appena vista, nel tratto in cui il materiale subisce una deformazione elastica

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SAL NUOVA LIN LOTTO 1 B LOTTO 1C PROGETTO	ERNO - NEA AV S ATTIPAC BUONAE D DI FAT	REGGIO CA SALERNO - GLIA - PRAI BITACOLO - TIBILITA' TE	ALABRIA REGGIO CALA A - PRAIA ECNICA ED EC(BRIA DNOMIC	A
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA RC2M	LOTTO C1 R 69	CODIFICA	DOCUMENTO GE0005 001	REV.	FOGLIO 15 di 27

(ovvero rimuovendo lo sforzo il materiale deve essere in grado di ritornare alle dimensioni iniziali, Fig. 8).

Figura 8 - Diagramma sforzo - deformazione di un materiale duttile

Il **modulo di taglio** μ , detto anche modulo di scorrimento, di rigidità o di elasticità tangenziale, è una costante di Lamè che esprime il rapporto sforzo-deformazione tangenziali.

Data una piastra di lunghezza indefinita di spessore h, perpendicolare all'asse x, sulle cui facce agisce una coppia di tensioni tangenziali (o di taglio) di verso opposto T1 e -T1, si produrrà uno spostamento $\delta I/2$ nel senso delle z positive e $\delta I/2$ nel senso opposto. In pratica è come se una faccia rimanesse ferma e si producesse uno spostamento di δI .

Lo spostamento totale δl sarà in relazione allo sforzo di taglio T1 e allo spessore h secondo la relazione:

$$dl = \frac{1}{\mu}hT_1$$

dove μ è il modulo di taglio. Considerando lo spostamento angolare α , ponendo l'angolo uguale alla sua tangente, la relazione diventerà semplicemente:

$$\alpha = \frac{T_1}{\mu}$$

	GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVA LI LOTTO 1 E LOTTO 1C PROGETT	NEA AV S BATTIPA BUONA O DI FAT	SALERNO – GLIA – PRAI BITACOLO - TIBILITA' TI	REGGIO CALA A - PRAIA ECNICA ED EC(BRIA DNOMIC	A
INDAGINI GEOFISICHE – Socotec Italia S.r.I. RC2M C1 R 69 IG GE0005 001 A 16 di	INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA RC2M	LOTTO C1 R 69	CODIFICA IG	DOCUMENTO GE0005 001	REV.	FOGLIO 16 di 27

Figura 9 - Esempio di resistenza al taglio

Il modulo bulk K (o modulo di compressibilità) di un materiale definisce la capacità dello stesso di resistere ad una forza di compressione uniforme. È definito come l'incremento di pressione necessario a causare un relativo decremento di volume secondo la relazione:

$$K = -V \frac{\partial p}{\partial V}$$

dove *K* è appunto il modulo di compressibilità, *p* la pressione e *V* il volume.

Figura 10 - Esempio di compressione uniforme

Si precisa inoltre che i moduli presentati nelle sezioni cui afferisce questa nota tecnica sono moduli DINAMICI cioè ottenuti calcolando i valori a piccolissime deformazioni rappresentate dal tratto iniziale *reversibile* della curva sforzi deformazioni. Per tanto, essi risulteranno essere molto maggiori rispetto a quelli calcolati con prove in situ e/o di laboratorio, in cui il terreno viene portato a rottura.

In particolare, nel presente lavoro è stato utilizzato il "Metodo della velocità di intervallo".

Per interpretare i dati ottenuti dalla down-hole, è necessario correggere il i tempi di arrivo (t) misurati lungo i percorsi sorgente-ricevitore per tener conto dell'inclinazione del percorso delle onde. Se d è la

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SAI NUOVA LII LOTTO 1 E LOTTO 1C PROGETT	ERNO - NEA AV S BATTIPAC BUONAE O DI FAT	REGGIO CA SALERNO - GLIA - PRAI BITACOLO - TIBILITA' TI	ALABRIA REGGIO CALA A - PRAIA ECNICA ED EC(BRIA ONOMIC	A
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RC2M	C1 R 69	IG	GE0005 001	Α	17 di 27

distanza dall'asse sorgente del foro (Fig. 11), r la distanza tra la sorgente e i geofoni, z la profondità, è

possibile ottenere il tempo corretto (tcor) usando la seguente formula di conversione: $t_{corr} = \frac{z}{r}t$.

In particolare, nel metodo della velocità di intervallo, i tempi di percorrenza sono misurati tra due ricevitori ubicati sulla stessa verticale (Fig.11) ma a diverse profondità, consentendo quindi misurazioni di qualità migliore (velocità intervalli).

Figura 11 - Diagramma di una down-hole utilizzando il metodo d'intervallo.

Attraverso le misurazioni ottenute, è possibile calcolare il range di velocità delle onde P e S (Fig. 12), con la seguente formula:

$$v_{p,s} = \frac{\underline{z}_2 - \underline{z}_1}{t_{2cor} - t_{1cor}}$$

Figura 12 - Profilo di velocità sismica col metodo d'intervallo.

3.4. Risultati indagini DH

Tutte le indagini DH presenti nell'area indagata hanno permesso di caratterizzare i terreni nella categoria di suolo "B", ad eccezione della DH S39 che restituisce una categoria di suolo "C". In tutte le prove il calcolo del Vs Equivalente è stato eseguito a partire dal p.c..

La DH L1B-S49, si distingue per la presenza di roccia compatta, che induce il superamento della soglia di bedrock sismico (Vs>800 m/s). In questo caso, come previsto dalle NTC2018, il calcolo del Vs Equivalente è confinato solo ai depositi di copertura, ovvero ai primi 10 m dal p.c.

Inoltre, l'unica indagine DH che restituisce una categoria di suolo tipo C è la DH L1B-S39 con una Vs equivalente di 236 m/s. Tali valori particolarmente bassi sono probabilmente dovuti alla massiccia presenza di limi caratterizzati da un basso numero di colpi, come presente nel rispettivo sondaggio geognostico.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO 1 BATTIPAGLIA – PRAIA LOTTO 1C BUONABITACOLO – PRAIA PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA					A
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA RC2M	LOTTO C1 R 69	CODIFICA IG	DOCUMENTO GE0005 001	REV.	FOGLIO 19 di 27

4. METODO HVSR

4.1. Principi di funzionamento e cenni sul metodo

La tecnica di sismica passiva a stazione sismica o HVSR (Horizontal to Vertical Spectral Ratio) è una tecnica totalmente non invasiva. Si può applicare ovunque senza nessun tipo di perforazione e non ha bisogno di energizzazioni esterne diverse dal rumore ambientale che in natura esiste ovunque. Le registrazioni di microtremore ambientale, nelle sue tre componenti spaziali, rappresentano uno strumento per una microzonazione speditiva. Il microtremore ambientale (*noise* sismico) è un movimento minimo (nell'ordine di 10⁻² - 10⁻⁶ mm) del terreno presente in qualsiasi punto della superficie terrestre e consiste per lo più nelle onde di superficie (Rayleigh e Love) prodotte dall'interferenza costruttiva delle onde P e S negli strati superficiali. Viene prodotto anche dal vento e dalle onde del mare e a frequenze alte da sorgenti di carattere antropico (industrie e traffico veicolare; Cessaro, 1994; Gutenberg, 1958). I risultati che si possono ottenere sono:

- la frequenza caratteristica di risonanza del sito, parametro fondamentale per il corretto dimensionamento degli edifici così da evitare l'effetto della "doppia risonanza";
- la frequenza fondamentale di risonanza di un edificio qualora la misura viene effettuata all'interno dello stesso;
- stimare la velocità delle onde di taglio Vs a patto che si dispone di informazioni aggiuntive sul modello geologico del sottosuolo o si hanno informazioni di letteratura sul sito in esame (per es. profondità del bedrock sismico, stratigrafie da sondaggi a carotaggio continuo o profili Vs da prove MASW o di sismica a rifrazione).

Il metodo si basa sul rapporto spettrale tra la componente orizzontale (H) e quella verticale (V) (eseguito nel dominio delle frequenze). Esso fu introdotto come strumento speditivo per stimare l'incidenza delle condizioni locali sull'amplificazione dello scuotimento dovuto ad un sisma. Il principio si basa sul fatto che, misurando il rapporto H/V determinabile da microtremori, si stimano le frequenze che possono essere amplificate in caso di sisma.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO 1 BATTIPAGLIA – PRAIA LOTTO 1C BUONABITACOLO – PRAIA PROGETTO DI FATTIBILITA' TECNICA ED ECONOMI				BRIA ONOMIC	A
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA RC2M	LOTTO C1 R 69	CODIFICA IG	DOCUMENTO GE0005 001	REV.	FOGLIO 20 di 27

4.2. Frequenza fondamentale del sito

La prova sismica passiva a stazione singola mette in luce le frequenze alle quali il moto del terreno viene amplificato per *risonanza stratigrafica* (si ha risonanza stratigrafica quando si è in presenza di terreni di copertura con spessore superiore a tre metri su di un substrato rigido), in quanto il rumore sismico agisce come sorgente di eccitazione. Un suolo vibra con maggiore ampiezza a specifiche frequenze non solo quando è eccitato da un terremoto ma anche quando è eccitato da un tremore di qualsiasi origine. Questo fa sì che la misura delle frequenze di risonanza dei terreni sia possibile ovunque ed in modo semplice, anche in assenza di terremoti. Le frequenze a cui si manifesta la risonanza sono descritte dalla relazione: f=Vs/4h (formula semplificata) dove Vs è la velocità delle onde di taglio nello strato che risuona e h è lo spessore di detto strato. Dal grafico del rapporto tra le componenti spettrali orizzontale e verticale (Esempio in Fig.13a) viene evidenziata la frequenza (o più frequenze se si è in presenza di un profilo stratigrafico multistrato con contrasti di impedenza significativi) attraverso un "picco" della curva (in genere dovuto ad un minimo della componente verticale, riscontrabile negli spettri delle singole componenti; Fig.13b). La frequenze fondamentale del sito è da intendersi quella più significativa a bassa frequenza. Eventuali altre frequenze evidenziate (picchi secondari) se vicine alle frequenze di interesse ingegneristico (struttura) possono essere comunque significative.

Figura 13 - a) Rapporto spettrale H/V; b) Esempio di spettri a singole componenti

Le frequenze di risonanza del sottosuolo costituiscono un parametro fondamentale per i progettisti, i quali devono evitare, o se non è possibile quanto meno tenere in debita considerazione nel dimensionamento delle strutture, i fenomeni di "doppia risonanza" che costituiscono la vera causa delle distruzioni generate da un terremoto.

La curva sperimentale HVSR viene "fittata" con una curva teorica usando come vincolo lo spessore dello strato più superficiale (o altro orizzonte il cui picco H/V è individuabile sulla curva sperimentale) di sottosuolo (generalmente noto dalle indagini geotecniche necessarie per legge per ogni progettazione edilizia, come ad esempio prove penetrometriche; Fig.14), basandosi sulla nota equazione che lega la frequenza di risonanza (f) allo spessore (h) dello strato e alla velocità delle onde di taglio (Vs): f=Vs/4h (da cui h=Vs/4f).

Figura 14 - esempio di fittaggio del modello teorico

4.3. Acquisizione e strumentazione utilizzata

Esistono delle note linee guida (progetto SESAME) per acquisire dati utili alle analisi HVSR (Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations Measurements, Processing and Interpretation, <u>http://sesame-fp5.obs.ujfgrenoble.fr/Delivrables/Del-</u> <u>D23 HV User Guidelines.pdf</u>). I dati vengono acquisiti attraverso il Tromino della Micromed (Fig. 15).

Figura 15 – tromino della Micromed

In Tabella 7 sono elencate le caratteristiche dello strumento.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO 1 BATTIPAGLIA – PRAIA LOTTO 1C BUONABITACOLO – PRAIA PROGETTO DI FATTIBILITA' TECNICA ED ECONOI				BRIA ONOMIC	A
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA	LOTTO C1 R 69	CODIFICA	DOCUMENTO	REV.	FOGLIO

Tromino					
Numero dei canali velocimetrici	3 canali velocimetrici per l'acquisizione del microtremore sismico ambientale e 3 per la registrazione di vibrazioni forti.				
Numero dei canali accelerometrici	3 canali per il monitoraggio di vibrazioni.				
Numero dei canali analogici	1 (es. trigger esterno).				
GPS	ricevitore GPS integrato, antenna interna e/o esterna per localizzazione e/o sincronizzazione tra diverse unità.				
Intervallo di frequenza	0.1 – 1024 Hz con conversione A/D > 24 bit equivalenti a 128 Hz.				
Cavo esterno	Nessuno				

Tabella 7 - Specifiche tecniche del Tromino

Per tutte le misure l'intervallo di registrazione utilizzato è di 40 minuti con una frequenza di campionamento pari a 128 Hz. Per una migliore valutazione della direzionalità del segnale, lo strumento è stato messo in bolla ed orientato con il nord strumentale rispetto al nord magnetico.

Importante è la messa in bolla dello strumento al fine di minimizzare gli errori come, ad esempio, il cosiddetto "effetto del tilting" che può essere provocato da un cambiamento della livellazione mentre si effettua la misura producendo una perturbazione della forma della curva H/V risultante soprattutto nella sua parte in bassa frequenza. Importante è anche orientare il N sul sensore secondo il nord geografico, per convenzione; in questo caso il terzo canale, (connessione al geofono orizzontale N-S) è quello maggiormente eccitato. Le registrazioni sono state suddivise in intervalli temporali di durata di 20 secondi; è stata eseguita, quindi, un'analisi spettrale delle tre componenti e calcolato il rapporto spettrale per ognuno dei segmenti temporali ottenuti. Durante tale operazione è stata eseguita una "lisciatura" dello spettro, con una finestra temporale pari al 10 % della frequenza centrale. La curva H/V finale è stata ottenuta come media dei rapporti spettrali su tutti i segmenti.

In alcuni casi è stato necessario eliminare alcuni dei segmenti temporali in cui erano presenti i cosiddetti "transienti", cioè rumore sismico elevato e occasionale (in genere di origine antropica). I risultati finali dell'elaborazione consistono in modelli modimensionali che riportano una stima delle velocità delle onde di taglio in relazione alla profondità.

I dati acquisiti attraverso le misure a stazione singola HVSR sono stati elaborati mediante il software Grilla V.6.1 (Micromed). Nello specifico, Grilla è il software creato per archiviare, gestire, visualizzare ed analizzare le registrazioni del Tromino. I diversi moduli del software permettono di effettuare:

- Analisi spettrale completa delle tracce, calcolo delle curve H/V per la determinazione delle frequenze di risonanza del sottosuolo;
- Procedure di pulizia dei tracciati nel dominio del tempo e della frequenza, test sulla significatività dei picchi secondo le linee guida europee;
- determinazione delle frequenze dei modi di vibrare delle strutture con rimozione dell'effetto di sottosuolo;
- analisi direzionale, confronto tra analisi e registrazioni diverse, numerosi altri strumenti matematici di analisi;
- Referto automatico con tabelle e illustrazioni.

Figura 16 – Fasi di acquisizione di alcuni dei tromini effettuati

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CAL LOTTO 1 BATTIPAGLIA – PRAIA LOTTO 1C BUONABITACOLO – PRAIA PROGETTO DI FATTIBILITA' TECNICA ED E				ABRIA CONOMICA	
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA		CODIFICA	DOCUMENTO	REV.	FOGLIO

4.4. Risultati indagini HVSR

Tutte le prove HVSR hanno individuato la profondità del bedrock sismico (Vs \geq 800 m/s), ad eccezione dell'HVSR_L1B_S67. Spostandosi verso sud lungo l'area investigata, il basamento sismico lo si rileva a profondità minori fino a giungere a 18.5 m dal p.c. in corrispondenza del HVSR_L1B_S51.

ID HVSR	Basamento sismico	Profondità (m)
HVSR_L1B_S37	Х	186.0
HVSR_L1B_S39	X	150.0
HVSR_L1B_S41	X	90.0
HVSR_L1B_S49	X	30.0
HVSR_L1B_S51	X	18.5
HVSR_L1B_S53	X	52.0
HVSR_L1B_S54	X	23.0
HVSR_L1B_S57	X	37.5
HVSR_L1B_S61	X	28.0
HVSR_L1B_S62	X	96.0
HVSR_L1B_S66	x	32.0
HVSR_L1B_S67	-	-

Tabella 8 – Tabella risultati HVSR

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SALERNO – REGGIO CALABRIA NUOVA LINEA AV SALERNO – REGGIO CALABRIA LOTTO 1 BATTIPAGLIA – PRAIA LOTTO 1C BUONABITACOLO – PRAIA PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA				A	
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA RC2M	LOTTO C1 R 69	CODIFICA IG	DOCUMENTO GE0005 001	REV.	FOGLIO 26 di 27

5. BIBLIOGRAFIA

American Society for Testing and Materials (2014) "Standard Test Methods for Crosshole Seismic Testing", ASTM D 4428/D 4428M – 14

- Biot M. A., 1956. Theory of propagation of elastic waves in a fluid-saturated porous solid. Journal of the Acoustic Society of America, 28, 2, 168-191.
- Biot M. A., 1962. Mechaniscm of deformation and acoustic propagation in porous media. *Journal of Applied Physics*, 33, 4, 1482-1498.
- Boadu F. K., 1997. Fractured rock mass characterization parameters and seismic properties: Analytical studies. *Journal of Applied Geophysics*, 36, 1-19.
- Cessaro R.K., 1994. Sources of Primary and Secondary Microseisms. Bulletin of the Seismological Society of America, 84, 1, 142-148.
- Gutenberg, 1958. Two types of microseisms. JGR, 63, 3, 595-597.
- Jones G.M. and Jovanovich D.B., 1985. A ray inversion method for refraction analysis. *Geophysics*, 50, 11, 1701-1720. <u>https://doi.org/10.1190/1.1441861</u>.
- Kahraman S., 2002. The effects of fracture roughness on P-wave velocity. Engineering Geology, 63, 347-350.
- Klimentos T. & McCann C., 1990. Relationships among compressional wave attenuation, porosity, clay content, and permeability in sandstones. *Geophysics*, 55, 8, 998-1014.
- Kovallis B. J., Jones L. E. & Wang H. F., 1984. Velocity Porosity Clay content systematics of poorly consolidated sandstones. *Journal of Geophysical Resaerch*, *89*, *B12*, 10355-10364.
- Liu Z., Rector J. W., Nihei K. T., Tomusa L., Myer L. R. & Nakagawa S., 2001. Extensional wave attenuation and velocity in partially-saturated sand in the sonic frequency range. *EG Technical Program Expanded Abstracts 2001, 1808-1811.* DOI:10.1190/1.1816479.
- Watanabe T. & Sassa K., 1995. Velocity and amplitude of P-waves transmitted through fractured zones composed of multiple thin low-velocity layers. *Internation Journal of Rock Mechanics and Mining Sciences*, 32, 4, 313-324.
- Wyllie M. R., Gregory A. R. & Gardner G. H., 1956. Elastic wave velocities in heterogeneous and porous media. *Geophysics*, 21, 1, 41-70.
- Wyllie M. R., Gregory A. R. & Gardner G. H., 1962. Studies of elastic wave attenuation in porous media. *Geophysics, 27, 3, 569-589.*
- Wyllie M. R., Gregory A. R., & Gardner G. H., 1963. Addendum to "Studies of elastic wave attenuation in porous media". *Geophysics, 28, 6, 1074-1074.*
- Wyllie M. R., Gregory, A. R. & Gardner G. H., 1985. An experimental investigation of factors affecting elastic wave velocities in porous media. *Geophysics*, 23, 3, 459-493.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA SAL NUOVA LII LOTTO 1 E LOTTO 1C PROGETT	ERNO – NEA AV S BATTIPAC BUONAI O DI FAT	REGGIO CA SALERNO - GLIA - PRAI BITACOLO - TIBILITA' TI	ALABRIA REGGIO CALA A - PRAIA ECNICA ED EC	BRIA ONOMIC	A
INDAGINI GEOFISICHE – Socotec Italia S.r.I.	COMMESSA	LOTTO C1 R 69	CODIFICA	DOCUMENTO	REV.	FOGLIO 27 di 27

ALLEGATI

	TEST REPORT		1/4			
SOCOTEC		MASW				
CLIENTE	ITALFERR					
LAVORO:	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.					
UBICAZIONE	Località Montesano Scalo					
NOME TEST	MASW_L1B_	_S37				
DATA DI ESECUZIONE	16/06/2021					
COORDINATE	Lat.	40°17'42.69"N				
	Long.	15°38'51.75"E				

	TEST REPORT		TEST REPORT			
SOCOTEC		MASW	2.14			
CLIENTE:	ITALFERR					
LAVORO:	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.					
UBICAZIONE:	Località Montesano Scalo					
NOME TEST	MASW_L1B_S37					
DATA DI ESECUZIONE	16/06/2021					
COORDINATE	Lat.	40°17'42.69"N				
	Long.	15 36 51.75 E				

	TEST REPORT			3/4	
SOCOTEC	MASW			5/4	
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	secuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria Lotto 1B.			
UBICAZIONE:	Località Mont	Località Montesano Scalo			
NOME TEST	MASW_L1B_S37				
DATA DI ESECUZIONE	16/06/2021				
COORDINATE	Lat. Long.	40°17'42.69"N 15°38'51.75"E			

		TEST REPORT	AIA		
SOCOTEC	MASW				
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	secuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria Lotto 1B.			
UBICAZIONE:	_ocalità Montesano Scalo				
NOME TEST:	MASW_L1B_S37				
DATA DI ESECUZIONE	16/06/2021				
COORDINATE	Lat.	40°17'42.69"N			
	Long.	15°38'51.75"E			

GRAFICO & TABELLA Vs - h							
Sismostrato	Profo	ndità	Spessore	Vs (m/s)			
1	0.00	2.50	2.50	270.00			
2	2.50	9.30	6.80	290.00			
3	9.30	22.00	12.70	170.00			
4	22.00	inf.	inf.	580.00			

		TEST REPORT	1/4		
SOCOTEC	MASW				
CLIENTE	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria Lotto 1B.			
UBICAZIONE	Località Fiumicello				
NOME TEST	MASW_L1B_S51				
DATA DI ESECUZIONE	16/06/2021				
	Lat. Long.	40° 3'34.74"N 15°46'26.95"E+			

		TEST REPORT	2/4		
SOCOTEC	MASW				
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	Ξsecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria · Lotto 1B.			
UBICAZIONE:	Località Fiumicello				
NOME TEST	MASW_L1B_S51				
DATA DI ESECUZIONE	16/06/2021				
COORDINATE	Lat.	40° 3'34.74"N			
	Long.	15°46'26.95"E+			

	TEST REPORT			3/4	
SOCOTEC	MASW			5/4	
CLIENTE:	ITALFERR	ALFERR			
LAVORO:	Esecuzione di - Lotto 1B.	secuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria Lotto 1B.			
UBICAZIONE:	_ocalità Fiumicello				
NOME TEST	MASW_L1B_S51				
DATA DI ESECUZIONE	16/06/2021	6/06/2021			
COORDINATE	Lat.	40° 3'34.74"N			
	Long.	15°46'26.95"E+			

		TEST REPORT	4/4		
SOCOTEC	MASW				
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	secuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria Lotto 1B.			
UBICAZIONE:	Località Fiumicello				
NOME TEST:	MASW_L1B_S51				
DATA DI ESECUZIONE	16/06/2021				
COORDINATE	Lat.	40° 3'34.74"N			
	Long.	15°46'26.95"E+			

GRAFICO & TABELLA Vs - h						
Sismostrato	Profo	ndità	Spessore	Vs (m/s)		
1	0.00	2.50	2.50	230.00		
2	2.50	9.20	6.70	220.00		
3	9.20	24.30	15.10	390.00		
4	24.30	inf.	inf.	450.00		

Vs eq (0 -30) 324

* Categoria assegnata nonostante inversione di velocità

		TEST REPORT	1/4		
SOCOTEC	MASW				
CLIENTE	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria Lotto 1B.			
UBICAZIONE	Contrada Fiumara				
NOME TEST	MASW_L1B_S54				
DATA DI ESECUZIONE	16/06/2021				
COORDINATE	Lat.	40° 2'57.86"N			
	Long.	15°46'46.05"E			

		TEST REPORT		2/4	
SOCOTEC		MASW	2/4		
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	Indagini Geofisiche a supporto del PFTE della	Linea AV Sale	rno-Reggio Calabria	
UBICAZIONE:	Contrada Fiumara				
NOME TEST	MASW_L1B_	_S54			
DATA DI ESECUZIONE	16/06/2021				
COORDINATE	Lat.	40° 2'57.86"N			
	Long.	15°46'46.05"E			

	TEST REPORT		3/4		
SOCOTEC	MASW			5/4	
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.				
UBICAZIONE:	Contrada Fiumara				
NOME TEST	MASW_L1B_S54				
DATA DI ESECUZIONE	16/06/2021				
COORDINATE	Lat.	40° 2'57.86"N			
	Long.	15°46'46.05"E			

	TEST REPORT			A 1 A	
SOCOTEC		MASW	44/ 44		
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	Indagini Geofisiche a supporto del PFTE della L	inea AV Saler	no-Reggio Calabria	
UBICAZIONE:	Contrada Fiumara				
NOME TEST:	MASW_L1B_S54				
DATA DI ESECUZIONE	16/06/2021				
COORDINATE	Lat.	40° 2'57.86"N			
	Long.	15°46'46.05"E			

GRAFICO & TABELLA Vs - h						
Sismostrato	Profo	ndità	Spessore	Vs (m/s)		
1	0.00	2.50	2.50	210.00		
2	2.50	9.40	6.90	230.00		
3	9.40	25.40	16.00	250.00		
4	25.40	inf.	inf.	510.00		

Vs eq (0 -30) 261

	TEST REPORT			1/4
SOCOTEC	MASW		1/4	
CLIENTE	ITALFERR			
LAVORO:	Esecuzione di - Lotto 1B.	Indagini Geofisiche a supporto del PFTE della	Linea AV Sale	rno-Reggio Calabria
UBICAZIONE	SS258			
NOME TEST	MASW_L1B_	_S57		
DATA DI ESECUZIONE	15/06/2021			
COORDINATE	Lat.	39°57'45.65"N		
	Long.	15°46'27.70"E		

		TEST REPORT		2/4	
SOCOTEC		MASW	2/4		
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.				
UBICAZIONE:	SS258				
NOME TEST	MASW_L1B_	_S57			
DATA DI ESECUZIONE	15/06/2021				
COORDINATE	Lat.	39°57'45.65"N			
	Long.	15°46'27.70"E			

	TEST REPORT		3/4		
SOCOTEC		MASW	3/4		
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.				
UBICAZIONE:	SS258				
NOME TEST	MASW_L1B_S57				
DATA DI ESECUZIONE	15/06/2021				
COORDINATE	Lat. Long.	39°57'45.65"N 15°46'27.70"E			

	TEST REPORT			A 1 A
SOCOTEC		MASW	-7/-	
CLIENTE:	ITALFERR			
LAVORO:	Esecuzione di - Lotto 1B.	Indagini Geofisiche a supporto del PFTE della L	inea AV Saler	no-Reggio Calabria
UBICAZIONE:	SS258			
NOME TEST:	MASW_L1B_	_S57		
DATA DI ESECUZIONE	15/06/2021			
COORDINATE	Lat.	39°57'45.65"N		
	Long.	15°46'27.70"E		

GRAFICO & TABELLA Vs - h						
Sismostrato	Profo	ndità	Spessore	Vs (m/s)		
1	0.00	2.50	2.50	150.00		
2	2.50	13.70	11.20	260.00		
3	13.70	23.50	9.80	340.00		
4	23.50	inf.	inf.	500.00		

Vs eq (0 -30) 295

		TEST REPORT		1/4	
SOCOTEC	MASW			1/4	
CLIENTE	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	Indagini Geofisiche a supporto del PFTE della	Linea AV Sale	rno-Reggio Calabria	
UBICAZIONE	SS258				
NOME TEST	MASW_L1B_S61				
DATA DI ESECUZIONE	15/06/2021				
COORDINATE	Lat.	39°57'45.65"N			
	Long.	15°46'27.70"E			

	TEST REPORT		2/4	
SOCOTEC		MASW	2.1	
CLIENTE:	ITALFERR			
LAVORO:	Esecuzione di - Lotto 1B.	Indagini Geofisiche a supporto del PFTE della	Linea AV Sale	rno-Reggio Calabria
UBICAZIONE:	SS258			
NOME TEST	MASW_L1B	_S61		
DATA DI ESECUZIONE	15/06/2021			
COORDINATE	Lat.	39°57'45.65"N		
	Long.	15°46'27.70"E		

TEST REPORT		3/4		
	MASW		0,4	
ITALFERR				
Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.				
SS258				
MASW_L1B_S61				
15/06/2021				
Lat.	39°57'45.65"N 15°46'27 70"F			
	ITALFERR Esecuzione di - Lotto 1B. SS258 MASW_L1B_ 15/06/2021 Lat. Long.	TEST REPORT MASW ITALFERR Esecuzione di Indagini Geofisiche a supporto del PFTE della - Lotto 1B. SS258 MASW_L1B_S61 15/06/2021 Lat. 39°57'45.65"N Long. 15°46'27.70"E	TEST REPORT MASW ITALFERR Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Sale - Lotto 1B. SS258 MASW_L1B_S61 15/06/2021 Lat. 39°57'45.65"N Long. 15°46'27.70"E	

		TEST REPORT	4/4	
SOCOTEC		MASW		
CLIENTE:	ITALFERR			
LAVORO:	Esecuzione di - Lotto 1B.	Indagini Geofisiche a supporto del PFTE della L	inea AV Saler.	no-Reggio Calabria
UBICAZIONE:	SS258			
NOME TEST:	MASW_L1B	_S61		
DATA DI ESECUZIONE	15/06/2021			
COORDINATE	Lat. Long.	39°57'45.65"N 15°46'27.70"E		

GRAFICO & TABELLA Vs - h								
Sismostrato Profondità Spessore Vs (m/s								
1	0.00	2.50	2.50	260.00				
2	2.50	11.30	8.80	380.00				
3	11.30	27.50	16.20	400.00				
4	27.50	inf.	inf.	1350.00				

0	TEST REPORT			1/4	
SOCOTEC		MASW			
CLIENTE	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	Indagini Geofisiche a supporto del PFTE della	Linea AV Sale	rno-Reggio Calabria	
UBICAZIONE	Località Falconara				
NOME TEST	MASW_L1B	_S66			
DATA DI ESECUZIONE	15/06/2021				
COORDINATE	Lat.	39°54'47.32"N			
	Long.	15°46'21.68"E			

	TEST REPORT			2/4	
SOCOTEC		MASW			
CLIENTE:	ITALFERR				
LAVORO:	Esecuzione di - Lotto 1B.	Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria - Lotto 1B.			
UBICAZIONE:	Località Falconara				
NOME TEST	MASW_L1B	_S66			
DATA DI ESECUZIONE	15/06/2021				
COORDINATE	Lat.	39°54'47.32"N			
	Long.	15°46'21.68"E			

	TEST REPORT			3/4		
SOCOTEC	MASW			 		
CLIENTE:	ITALFERR					
LAVORO:	Esecuzione di - Lotto 1B.	secuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria Lotto 1B.				
UBICAZIONE:	Località Falco	Località Falconara				
NOME TEST	MASW_L1B_S66					
DATA DI ESECUZIONE	15/06/2021					
COORDINATE	Lat. Long.	39°54'47.32"N 15°46'21.68"E				

		TEST REPORT	4/4			
SOCOTEC		MASW				
CLIENTE:	ITALFERR					
LAVORO:	Esecuzione di - Lotto 1B.	Indagini Geofisiche a supporto del PFTE della L	inea AV Saler	no-Reggio Calabria		
UBICAZIONE:	Località Falco	Località Falconara				
NOME TEST:	MASW_L1B	_S66				
DATA DI ESECUZIONE	15/06/2021					
COORDINATE	Lat.	39°54'47.32"N				
	Long.	15°46'21.68"E				

GRAFICO & TABELLA Vs - h								
Sismostrato Profondità Spessore Vs (m/s								
1	0.00	2.50	2.50	260.00				
2	2.50	16.40	13.90	350.00				
3	16.40	29.00	12.60	650.00				
4	29.00	inf.	inf.	1020.00				

		TEST REPORT	1/4	
SOCOTEC		MASW	1/4	
CLIENTE	ITALFERR			
LAVORO:	Esecuzione di - Lotto 1B.	Indagini Geofisiche a supporto del PFTE della	Linea AV Sale	rno-Reggio Calabria
UBICAZIONE	Praia a Mare			
NOME TEST	MASW_L1B	_S67		
DATA DI ESECUZIONE	15/06/2021			
COORDINATE	Lat.	39°54'26.69"N		
	Long.	15°46'33.26"E		

		TEST REPORT	2/4	
SOCOTEC		MASW		
CLIENTE:	ITALFERR			
LAVORO:	Esecuzione di - Lotto 1B.	Indagini Geofisiche a supporto del PFTE della	Linea AV Sale	rno-Reggio Calabria
UBICAZIONE:	Praia a Mare			
NOME TEST	MASW_L1B_	_S67		
DATA DI ESECUZIONE	15/06/2021			
	Lat.	39°54'26.69"N		
	Long.	15°46'33.26"E		

	TEST REPORT	3/4			
MASW			3/4		
ITALFERR					
Esecuzione di - Lotto 1B.	secuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Salerno-Reggio Calabria Lotto 1B.				
Praia a Mare	Praia a Mare				
MASW_L1B_S67					
15/06/2021					
Lat.	39°54'26.69"N 15°46'33 26"E				
	ITALFERR Esecuzione di - Lotto 1B. Praia a Mare MASW_L1B_ 15/06/2021 Lat. Long.	TEST REPORT MASW ITALFERR Esecuzione di Indagini Geofisiche a supporto del PFTE della Li - Lotto 1B. Praia a Mare MASW_L1B_S67 15/06/2021 Lat. 39°54'26.69"N Long. 15°46'33.26"E	TEST REPORT MASW ITALFERR Esecuzione di Indagini Geofisiche a supporto del PFTE della Linea AV Sale - Lotto 1B. Praia a Mare MASW_L1B_S67 15/06/2021 Lat. 39°54'26.69"N Long. 15°46'33.26"E		

		TEST REPORT	A 1 A	
SOCOTEC		MASW	4/4	
CLIENTE:	ITALFERR			
LAVORO:	Esecuzione di - Lotto 1B.	Indagini Geofisiche a supporto del PFTE della L	inea AV Saler	no-Reggio Calabria
UBICAZIONE:	Praia a Mare			
NOME TEST:	MASW_L1B_	_S67		
DATA DI ESECUZIONE	15/06/2021			
COORDINATE	Lat.	39°54'26.69"N		
	Long.	15°46'33.26"E		

GRAFICO & TABELLA Vs - h								
Sismostrato Profondità Spessore Vs (m/s)								
1	0.00	2.50	2.50	260.00				
2	2.50	9.60	7.10	320.00				
3	9.60	26.80	17.20	330.00				
4	26.80	inf.	inf.	690.00				

DOWN HOLE

CLIENTE:			ITALFERR						
LAVORO:			Indagini geog	nostiche per i	PFTE della "A	AV Salerno-Re	eggio Calabria	a, lotto 1B"	
UBICAZION	IE:		Montesano sulla Marcellana (SA)						
NOME TES	т:		DH L1B -S3	9					
DATA DI ES	SECUZIONE	E	06/05/2021						
	те		Y		40°16'5.89"N	N			
COONDINA			х	1	15°39'14.94"	E			
Profondità	On	de P	Onc	le S	Deferre	Young	Taglio	Bulk	γ
(m)	(<i>ms</i>)	(m/sec)	(<i>ms</i>)	(m/sec)	Poisson	(MPa)	(MPa)	(MPa)	(kN/m^3)
1.00	2.53	395.50	8.00	125.00	0.44	75.8	26.2	227.7	16.8
2.00	5.06	395.66 625.80	27.11	108.20	0.46	57.4 52.7	19.7 17 7	236.7	16.8
4.00	7.79	882.04	33.69	152.00	0.48	121.9	41.0	1327.3	17.8
5.00	8.91	890.26	41.14	134.26	0.49	95.4	32.1	1366.5	17.8
6.00	9.96	951.36	50.23	110.00	0.49	64.7	21.7	1591.5	17.9
7.00	10.70	1351.91	56.27	165.36	0.49	152.7	51.1	3350.2	18.7
8.00	11.44	1300.23	67.45	120.50	0.50	81.3	27.2	3405.7	18.7
10 00	12.00	1450.00	70.21	361 53	0.48	724 7	232.0	3644 4	18.9
11.00	13.45	1423.36	75.56	187.16	0.49	196.9	66.0	3730.2	18.8
12.00	14.15	1426.35	78.20	377.58	0.46	786.1	268.8	3477.2	18.9
13.00	14.84	1463.16	86.75	117.00	0.50	77.6	25.9	4017.2	18.9
14.00	15.52	1459.56	90.75	250.00	0.48	351.2	118.2	3872.7	18.9
15.00	16.21	1448.26	96.63	1/0.00	0.49	163.1	54.6	3890.6	18.9
17.00	10.09	1403.27	102 00	315.00	0.40	554.3 554.4	107.0	3808.2	10.9
18.00	18.26	1456.24	106.69	270.00	0.48	408.7	137.9	3826.8	18.9
19.00	18.99	1358.59	110.39	270.00	0.48	403.7	136.4	3272.8	18.7
20.00	19.60	1636.24	113.25	350.00	0.48	696.9	236.1	4845.0	19.3
21.00	20.11	1994.73	116.38	320.00	0.49	608.7	204.7	7680.8	20.0
22.00	20.61	1997.48	119.01	380.00	0.48	855.3	288.7	7592.9	20.0
23.00	21.11	1999.81	121.38	422.00	0.48	1051.9	356.2	7523.5	20.0
24.00	21.71	1652.63	123.82	410.00	0.47	952.3	324.5	4840.0	19.3
25.00	22.30	1712 37	126.30	403.02	0.47	927.9	315.5	5268.2 5289.5	19.4 19.4
20.00	23.46	1713.22	131.39	389.05	0.47	866 1	294.0	5309.8	19.4
28.00	24.05	1713.95	134.01	382.07	0.47	836.0	283.6	5329.1	19.4
29.00	24.60	1798.00	136.68	375.08	0.48	814.5	275.7	5967.4	19.6
30.00	25.12	1947.53	139.39	368.10	0.48	798.7	269.6	7186.5	19.9
31.00	25.63	1948.25	141.01	619.21	0.44	2202.9	762.9	6534.9	19.9
32.00	26.14	1948.89	144.47	288.70	0.49	493.8	165.8	7336.4	19.9
33.00	20.00	1949.46	148.30	261.07	0.49	404.4	135.6	7381.0	19.9
35.00	27.22	1907 14	152 59	404.90 548 73	0.47	1736.0	596.6	6411.4	19.5
36.00	28.27	1907.54	154.50	523.59	0.46	1585.4	543.2	6485.8	19.8
37.00	28.80	1907.88	156.38	532.60	0.46	1638.8	562.1	6463.5	19.8
38.00	29.32	1908.21	158.29	525.29	0.46	1595.5	546.8	6486.6	19.8
39.00	29.84	1908.50	160.41	470.36	0.47	1286.9	438.4	6633.5	19.8
40.00	30.37	1908.76	162.88	405.47	0.48	962.0	325.8	6785.8	19.8
41.00 42.00	30.89	1909.01	165.36	402.69	0.48	949.1 1599.0	321.4 544 4	6/93.8 6/08 2	19.8
42.00 43.00	31.42	1909.24	167.27	558 26	0.46	1705.9	044.4 617 7	0490.3 6402 3	19.8 19.8
44 00	32 46	1909.44	171.92	350.20	0.45	721 0	243 1	6903.3	19.0
45.00	32.99	1909.80	174.68	362.29	0.48	770.7	260.1	6882.0	19.8
46.00	33.51	1909.97	177.35	373.65	0.48	819.1	276.7	6861.3	19.8
47.00	34.03	1910.11	179.82	405.70	0.48	963.3	326.2	6796.5	19.8
48.00	34.56	1910.26	181.70	531.85	0.46	1634.9	560.7	6485.2	19.8
49.00	35.08	1910.59	183.30	625.65	0.44	2234.4	775.9	6200.9	19.8

183.30 184.77

49.00

50.00

35.08

35.60

1910.59

1926.27

625.65 680.00

0.44 0.43

2234.4 2623.3

775.9 918.0

19.8 19.9

6200.9

6142.3

DOWN HOLE

	I					
CLIENTE:	ITALFERR					
LAVORO:	Indagini geognostiche per i PFTE della "AV Salerno-Reggio Calabria, lotto 1B"					
UBICAZIONE:	Montesano sulla Marcellana (SA)					
NOME TEST:	DH L1B -S39					
DATA DI ESECUZIONE	06/05/2021					
	Y	40°16'5.89"N				
	х	15°39'14.94"E				

28.00

50.00

TEST REPORT

DOWN HOLE

19.6

19.8

CLIENTE:		ITALFERR									
LAVORO:		Indagini geognostiche per i PFTE della "AV Salerno-Reggio Calabria, lotto 1B"									
UBICAZIONE:		Montesano	Montesano sulla Marcellana (SA)								
NOME TES	T:	DH L1B -S39									
DATA DI ESECUZIONE		06/05/2021									
COORDINATE		Y	Y 40°16'5.89"N								
		x	(15°39'14.94"E								
Profondità	Onde P	Onde S		Poisson	Young	Share	Bulk	γ			
base(m)	Velocità (m/sec)	Velocità (m/sec)		1 0100011	(MPa)	(MPa)	(MPa)	(kN/m ³)			
2.00	395.58 1095.82	11 16	6.60	0.45	66.31 141.52	22.83 47 52	232.32	16.8 18.2			
20.00	1460.39	27	1.18	0.48	412.45	139.14	3849.78	18.9			

0.48

0.47

871.07

1235.82

387.77

460.80

1811.95

1905.35

295.08 420.65

6049.42

6631.14

V _{S eq (0-30)}	Suolo
236	С

/3

				0					
CLIENTE:			HALFERR	S.p.a.					
LAVORO:			Indagini geo	ognostichepe	er i PFTE del	lla "AV Saler	no - Reggio	Calabria, lot	to 1b"
UBICAZION	NE:		Tortora Marir	na (CS)					
NOME TES	т:		DH L1B-S4	1					
DATA DI ES	SECUZION	E	30/07/2021						
			Y	Y 40°15'38.83"N					
COORDINA	AIE .		Х	1	5°39'44.39"	E			
Profondità	On	de P	One	de S	Poisson	Young	Taglio	Bulk	γ
(m)	(ms)	(m/sec)	(ms)	(m/sec)	ruiss011	(MPa)	(MPa)	(MPa)	(kN/m ³)
1.00	1.33	752.61	4.12	242.78	0.44	297.6	103.2	854.0	17.5
2.00	2.91	631.02	13.26	109.35	0.48	61.3	20.6	659.8	17.3
3.00	4.02	902.29	17.74	223.39	0.47	260.8	88.9	1331.0	17.8
4.00	4.99	1034.97	21.49	266.92	0.46	377.0	128.7	1763.9	18.1
5.00	5.78	1255.99	24.77	304.69	0.47	504.8	171.9	2691.1	18.5
6.00	6.38	1690.89	26.87	474 96	0.46	1274.3	437.2	4958 5	19.0
7.00	6.98	1655.30	28.88	497.65	0.45	1387.2	478.2	4653.5	19.3
8.00	7.56	1712 53	31 43	393.09	0.47	883.8	300.2	5296 7	19.4
9.00	8 14	1734 49	33 51	480.87	0.46	1313.1	450.2	5256.9	19.5
10.00	8.71	1740.03	35.47	508 79	0.45	1465 7	504.3	5225.6	19.5
11.00	9.32	1642 45	38.03	390.44	0.10	864.4	294.0	4810.4	19.3
12.00	10.08	1317 70	40.38	426.66	0.44	978.0	339.2	2783.4	18.6
13.00	10.83	1339 90	41.97	626.67	0.36	1995 4	733.6	2375.5	18.7
14.00	11 43	1661 98	43.60	614 79	0.00	2075.3	730.4	4363.8	19.3
15.00	12.06	1598.98	45.00	571 54	0.42	1789 5	627.1	4000.0	19.0
16.00	12.00	1788.39	47 23	532.85	0.45	1613.4	555.8	5520.2	19.6
17.00	13.17	1811 52	50.96	267.94	0.40	419.5	140.9	6251.7	19.6
18.00	13 77	1671.85	53 38	412 44	0.43	965.8	329 1	4968.0	19.3
19.00	14.27	100/ 1.00	56.08	371 19	0.47	816.4	275 4	7588 1	20.0
20.00	14.27	2013 47	57.86	561.99	0.40	1844 1	632.5	7275.6	20.0
20.00	15.18	2403.98	60.38	395.93	0.40	969 5	326.2	11590 3	20.0
22.00	15.10	2466.67	62.46	481 54	0.45	1437.0	485.4	12089.6	20.0
23.00	16.03	2241.00	64 94	402.29	0.10	983.4	331.5	9844 3	20.5
24.00	16.00	2247.86	67 75	356 13	0.40	773.1	259.9	10009 7	20.5
25.00	16.93	2221 94	70.87	321.03	0.49	627.6	210.7	9812.3	20.0
26.00	17.47	1842 25	73.53	374.96	0.43	818.3	276.7	6311.7	19.7
27.00	17.47	2082.06	75.42	529 15	0.40	1654.8	564.6	7988.3	20.2
28.00	18/13	2088 13	77 59	462 33	0.47	1004.0	/31 3	8222 4	20.2
20.00	18.96	1862.88	79.57	503.86	0.46	1462.8	500.8	6177.8	19.7
30.00	19.50	1881 36	82.16	386 72	0.40	873.6	295.6	6601.0	19.8
31.00	20.00	2002.96	84 72	389 74	0.40	899.7	303.9	7620.9	20.0
32.00	20.49	2008 21	86.97	445 17	0.47	1169 5	396.7	7543 5	20.0
33.00	21.00	1962.85	89.65	373 59	0.48	823.8	278 1	7306.2	19.9
34.00	21 49	2040 47	92 20	392 27	0.48	915 1	309.0	7948 7	20.1
35.00	22.00	1980 59	95 54	298 59	0.40	529.7	178.0	7593.0	20.0
36.00	22.00	2460 41	98 1/	285 82	0.49	926 5	311 /	122/19/	20.0
37.00	22.40	2400.41	90.14	631 17	0.45	2477 A	8/12 7	12053 6	20.9
38.00	22.13	2019.40 9229 77	101 04	150 PO	0.47	1250 4	040.7 ∕100 ∩	11007 0	21.2
39.00	23.60	2069 02	101.34	-30.00 307 71	0.40	9/2 /	722.U 212 5	8106 2	20.0
40.00	24.16	2130.88	104.45	468.76	0.40	1313.0	445.2	8606.5	20.3

DOWN HOLE

CLIENTE:	ITALFERR S.p.a.					
LAVORO:	Indagini geognosticheper i PFTE della "AV Salerno - Reggio Calabria, lotto 1b"					
UBICAZIONE:	Tortora Marina (CS)					
NOME TEST:	DH L1B-S41					
DATA DI ESECUZIONE	30/07/2021					
	Y	40°15'38.83"N				
	х	15°39'44.39"E				

A /A	
••••	
- 3/ 3	

CLIENTE:		ITALFERR S.p.a.								
LAVORO:		Indagini geognosticheper i PFTE della "AV Salerno - Reggio Calabria, lotto 1b"								
UBICAZION	IE:	Tortora Mar	ina (CS)							
NOME TES	T:	DH L1B-S4	DH L1B-S41							
DATA DI ESECUZIONE		30/07/2021								
COORDINATE		Y 40°15'38.83"N		N						
		X 15°39'44.39"E								
Profondità base(m)	Onde P Velocità (m/sec)	Onc Velocità	de S (m/sec)	Poisson	Young (MPa)	Share (MPa)	Bulk (MPa)	γ (kN/m³)		
11.00	1341.14	353	3.91	0.46	684.47	233.99	3048.32	18.7		
12.00	1317.70	426	6.66	0.44	977.98	339.24	2783.42	18.6		
14.00	1500.94	620).73	0.40	2045.40	732.15	3304.55	19.0		
18.00	1717.69	446	446.19		1132.81	386.93	5218.38	19.4		
31.00	2103.81	425	5.91	0.48	1084.04	366.57	8455.14	20.2		
40.00	2179.41	427	7.13	0.48	1099.45	371.43	9174.85	20.4		

SOC	<u>отес</u>											
CLIENTE:			ITALFERR	S.p.a.								
LAVORO:			Indagini ge	ognostichepe	er i PFTE del	la "AV Saleri	no - Reggio	Calabria, lott	o 1b"			
UBICAZION	NE:		Tortora Marin	na (CS)								
NOME TES	τ·		DH I 1B-S4	9								
	••			0								
DATA DI ES	SECUZIONE	Ξ	04/11/2021									
			Y		40°4'0 73" N							
COORDINA	TE		•									
			Х	1	5°46'13.41"	E						
Profondità	On	de P	On	de S		Youna	Taglio	Bulk	γ			
(<i>m</i>)	(ms)	(m/sec)	(<i>ms</i>)	(m/sec)	Poisson	(MPa)	(MPa)	(MPa)	(kN/m ³)			
1.00	1.45	688.26	3.37	296.46	0.39	423.4	152.7	619.5	17.4			
2.00	2.21	1315.30	5.65	438.39	0.44	1029.4	358.0	2745.7	18.6			
3.00 4.00	2.07	2015 34	7.40 9.30	540.30 552 21	0.47	1782.8	610.8	6769.4 7321.2	20.3			
5.00	3.70	1890.74	11.03	578.02	0.45	1914.6	660.9	6190.4	19.8			
6.00	4.19	2032.24	12.81	561.12	0.46	1843.1	631.7	7444.4	20.1			
7.00	4.70	1950.85	14.63	548.91	0.46	1747.4	599.6	6774.7	19.9			
8.00 9.00	5.18	2087.88	16.23	625.13	0.45	2287.7	788.4 943.4	7743.9 8926 9	20.2			
10.00	6.15	1918.30	19.15	690.77	0.43	2698.5	946.5	6037.6	19.8			
11.00	6.59	2263.76	20.42	785.10	0.43	3622.8	1265.3	8832.5	20.5			
12.00	6.99	2499.33	21.88	685.74	0.46	2881.9	987.4	11800.6	21.0			
13.00	7.42	2375.36	23.34	686.35 840.55	0.45	2843.5	977.5 1783.6	10404.9	20.8			
15.00	8.23	2409.44	25.81	781.79	0.44	3667.6	1272.4	10389.6	20.8			
16.00	8.62	2577.36	26.82	987.83	0.41	5837.4	2064.3	11300.2	21.2			
17.00	9.02	2480.68	27.88	944.54	0.42	5293.1	1870.1	10405.7	21.0			
18.00	9.45	2333.48	29.07	839.21	0.43	4150.3	1455.5 2071 7	9312.7 12425.4	20.7			
20.00	10.21	2605.50	31.09	992.72	0.42	5916.0	2090.3	11612.3	21.3			
21.00	10.60	2528.04	32.24	869.97	0.43	4566.8	1593.6	11332.1	21.1			
22.00	10.93	3090.24	33.18	1064.82	0.43	7205.9	2514.9	17828.3	22.2			
23.00	11.24 11.57	3225.91	34.14	1037.67	0.44	6973.6 5790.0	2417.5	20141.1	22.5			
25.00	11.89	3146.97	36.04	1181.05	0.42	8819.3	3109.7	17932.3	22.3			
26.00	12.24	2841.77	36.86	1218.03	0.39	8926.9	3217.0	13221.6	21.7			
27.00	12.54	3305.05	37.63	1305.19	0.41	10843.4	3851.7	19562.3	22.6			
28.00	12.87	3084.23	38.57 39.48	1064.52	0.43	7196.7	2512.2	17738.1	22.2			
30.00	13.59	2510.38	40.58	911.64	0.42	4975.6	1747.0	10918.0	21.0			
31.00	13.93	3007.31	41.90	758.17	0.47	3710.4	1265.4	18222.5	22.0			
32.00	14.30	2695.81	43.17	787.57	0.45	3856.7	1326.9	13777.0	21.4			
33.00	14.69	2572.56	44.39	815.38 814.04	0.44	4060.5	1405.8 1434.5	12119.5 15348 7	21.1			
35.00	15.40	2784.66	46.97	743.44	0.45	3485.0	1192.2	15136.1	21.6			
36.00	15.77	2678.09	48.07	902.90	0.44	4999.7	1741.0	12995.6	21.4			
37.00	16.10	3052.41	49.17	910.13	0.45	5314.4	1831.0	18154.2	22.1			
38.00 39.00	16.46	∠708.24 2651.57	51.83	090.42 819.51	0.47	3003.0 4141 0	1044.5	13070.2	21.5 21.3			
40.00	17.19	2819.48	52.98	865.08	0.45	4689.9	1619.4	15042.7	21.6			
41.00	17.52	3096.48	53.75	1311.17	0.39	10612.4	3815.3	16191.9	22.2			
42.00	17.80	3484.86	54.52	1285.76	0.42	10793.6	3797.3	22832.0	23.0			
43.00	18.10	3355.12 2999 13	55.44 56.37	1088.46	0.44	7755.3	2690.6 2549.6	21977.1	22.7			
45.00	18.79	2816.80	57.39	987.37	0.43	6031.7	2109.1	14352.8	21.6			
46.00	19.19	2503.64	58.95	638.36	0.47	2508.6	856.1	12026.5	21.0			
47.00	19.61	2402.51	60.39	696.78	0.45	2937.5	1010.1	10661.9	20.8			
48.00 49.00	20.30	∠୦୪4.७1 249∩ 19	63.03	o∠⊃.v <i>1</i> 700.66	0.44	4105.5 3001.4	1443.2 1030 0	12217.2	21.2			
50.00	20.75	2820.34	63.90	1137.83	0.40	7860.5	2801.7	13478.0	21.6			
51.00	21.06	3221.14	64.67	1298.74	0.40	10621.4	3785.4	18238.3	22.4			
52.00	21.35	3434.25	65.40	1380.06	0.40	12227.6	4355.5	21164.0	22.9			
53.00 54.00	21.65 21.93	3325.91 3653 48	00.20 67.03	1251.03	0.42	9794 3	3545.2 3404 2	20329.9 26571.0	22.7			
55.00	22.20	3652.44	67.82	1261.85	0.43	10629.4	3710.8	26141.7	23.3			
56.00	22.50	3278.03	68.58	1320.00	0.40	11029.8	3930.2	18997.3	22.6			
57.00	22.79	3549.77	69.25	1483.83	0.39	14181.0	5086.0	22326.1	23.1			
59.00	23.08 23.39	3237 16	70 75	1291 00	0.40	10528.8	4200.4 3745 7	18557 1	22.7			
60.00	23.69	3431.27	71.47	1390.83	0.40	12398.1	4422.5	21020.7	22.9			

		TEST REPORT	2/3				
SOCOTEC		DOWN HOLE					
CLIENTE:	TE: ITALFERR S.p.a.						
LAVORO:	Indagini geog	Indagini geognosticheper i PFTE della "AV Salerno - Reggio Calabria, lotto 1b"					
UBICAZIONE:	Tortora Mai	Tortora Marina (CS)					
NOME TEST:	DH L1B-S4	DH L1B-S49					
DATA DI ESECUZIONE 04/11/2021							
	Y	40°4'0.73" N					
COORDINATE	X	15°46'13.41" E					

2	12
J	J

200									
CLIENTE:		ITALFERR	S.p.a.						
LAVORO:		Indagini geognosticheper i PFTE della "AV Salerno - Reggio Calabria, lotto 1b"							
UBICAZION	IE:	Tortora Mar	ina (CS)						
NOME TES	T:	DH L1B-S4	DH L1B-S49						
DATA DI ES	SECUZIONE	04/11/2021							
			40°4'0.73" N						
COORDINA	IE	x	X 15°46'13.41" E						
Profondità base(m)	Onde P Velocità (m/sec)	One Velocità	Onde S Velocità (m/sec)		Young (MPa)	Share (MPa)	Bulk (MPa)	γ (kN/m³)	
1.00 10.00 45.00 49.00 60.00	688.26 1956.86 2802.65 2495.24 3358.91	296 579 945 715 130	5.46 9.98 5.48 5.37 8.84	0.39 0.45 0.44 0.46 0.41	423.37 1945.08 5546.05 3126.37 10978.45	152.72 669.86 1931.36 1074.19 3891.71	619.50 6732.43 14395.49 11636.85 20441.95	17.4 19.9 21.6 21.0 22.7	

1	/3
	<i>,</i> u

CLIENTE:			ITALFERR S.p.a.							
LAVORO:			Indagini geognosticheper i PFTE della "AV Salerno - Reggio Calabria, lotto 1b"							
UBICAZION	NE:		Località Fiu	imicello						
NOME TES	T:		DH L1B-S5	3						
DATA DI ES	SECUZION	E	03/11/2021							
			Y		40° 3'7.68"N	1				
COORDINA	IE		х		5°46'40.78"	E				
Profondità	On	de P	On	de S		Youna	Taolio	Bulk	γ	
(m)	(ms)	(m/sec)	(ms)	(m/sec)	Poisson	(MPa)	(MPa)	(MPa)	, (kN/m ³)	
1 00	1.51	664.07	4 15	240.84	0.42	286.3	100.5	630.1	17.3	
2.00	2.43	1087.26	7.98	261.12	0.47	364.2	123.9	1983.3	18.2	
3.00	3.30	1147.54	11.58	278.17	0.47	415.8	141.6	2220.4	18.3	
4.00	4.24	1058.34	14.03	407.71	0.41	851.0	301.2	1627.7	18.1	
5.00	4.91	1498.97	17.74	269.58	0.48	409.6	138.1	4084.6	19.0	
6.00	5.40	2031.76	20.48	364.56	0.48	791.1	266.7	7926.8	20.1	
7.00	5.92	1940.40	22.39	523.59	0.46	1592.3	545.0	6758.7	19.9	
8.00	6.39	2134.48	24.78	418.31	0.48	354.7	8761.6	20.3		
9.00	6.85	2174.18	26.49 586.58 0.46 2045.5					8685.2	20.3	
10.00	7.30	2212.95	27.78 771.42 0.43 3478.4 12					8382.1	20.4	
11.00	7.77	2106.24	29.44	29.44 602.85 0.46 2138.2				7987.3	20.2	
12.00	8.23	2198.85	31.27	546.22	0.47	1785.7	608.6	9050.8	20.4	
13.00	8.66	2307.26	33.74	405.03	0.48	1003.8	338.2	10523.1	20.6	
14.00	9.10	2298.04	36.08	427.81	0.48	1117.3	377.0	10374.2	20.6	
15.00	9.56	2172.94	38.22	466.54	0.48	1307.2	442.9	9016.2	20.3	
16.00	9.98	2337.73	40.12	526.33	0.47	1687.7	572.8	10535.4	20.7	
17.00	10.39	2461.86	43.84	268.77	0.49	451.6	151.1	12479.8	20.9	
18.00	10.84	2209.83	46.82	335.47	0.49	684.0	229.8	9665.2	20.4	
19.00	11.26	2419.04	50.45	276.17	0.49	474.7	158.9	11982.1	20.8	
20.00	11.69	2285.58	53.44	334.20	0.49	684.3	229.8	10439.7	20.6	
21.00	12.12	2324.63	55.63	455.32	0.48	1267.2	428.1	10587.9	20.6	
22.00	12.54	2382.37	58.14	399.64	0.49	985.3	331.6	11343.2	20.8	
23.00	12.99	2218.03	60.26	471.58	0.48	1341.9	454.5	9447.8	20.4	
24.00	13.39	2001.07	03.29	329.00	0.49	004.1	229.3	10906.0	21.1	
25.00	13.02	2321.00	60.33	327.20	0.49	1020.7	221.1	10020.0	20.6	
20.00	14.19	2033.17	71.00	403.73	0.49	1340.6	540.0 151 1	1/1856.9	21.4	
27.00	14.00	2009.07	73.15	459.50	0.40	1388.0	451.4	14050.9	21.4	
20.00	15.30	2626.94	74.73	631.09	0.43	2487.6	846.5	13538.2	21.0	
30.00	15.68	2631 91	77.45	367.67	0.49	856.6	287.4	14346 1	21.3	
31.00	16.00	2780.80	79.26	554 51	0.48	1961.5	663.0	15789.2	21.6	
32,00	16.39	2780.07	80.89	611.92	0.47	2380.8	807.3	15586.9	21.6	
33.00	16.80	2476.36	82.66	565.18	0.47	1971.1	669.3	11956.6	21.0	
34.00	17.12	3125.57	83.93 785.93 0.47 4030.5 1374.4 19905.0					22.3		
35.00	17.44	3103.85	85.63	589.68	0.48	2287.7	772.2	20365.0	22.2	
36.00	17.79	2900.46	86.70	930.22	0.44	5443.1	1886.5	15825.1	21.8	
37.00	18.11	3040.62	87.71	993.43	0.44	6277.2	2179.2	17509.4	22.1	
38.00	18.43	3126.09	89.18	680.08	0.48	3036.5	1029.2	20373.5	22.3	
39.00	18.78	2906.53	90.81	614.07	0.48	2429.2	822.5	17330.7	21.8	
40.00	19.11	2993.01	92.07	795.98	0.46	4073.0	1393.0	17838.0	22.0	

DOWN HOLE

CLIENTE:	ITALFERR	S.p.a.				
LAVORO:	Indagini geognosticheper i PFTE della "AV Salerno - Reggio Calabria, lotto 1b"					
UBICAZIONE:	Località Fiumicello					
NOME TEST:	DH L1B-S53					
DATA DI ESECUZIONE	03/11/2021					
	Y	40° 3'7.68"N				
	х	15°46'40.78"E				

2/2	
0/0	

CLIENTE:		ITALFERR	ITALFERR S.p.a.							
LAVORO:		Indagini geognosticheper i PFTE della "AV Salerno - Reggio Calabria, lotto 1b"								
UBICAZION	IE:	Località Fiu	micello							
NOME TES	Т:	DH L1B-S5	3							
DATA DI ES	SECUZIONE	03/11/2021	03/11/2021							
		Y 40° 3'7.68"N			1					
COORDINA		x	X 15°46'40.78"E							
Profondità base(m)	Onde P Velocità (m/sec)	One Velocità	le S (m/sec)	Poisson	Young (MPa)	Share (MPa)	Bulk (MPa)	γ (kN/m³)		
1.00	664.07	240).84	0.42	286.30	100.51	630.14	17.3		
3.00	1117.40	269	269.64		389.55	132.58	2099.99	18.2		
5.00	1278.66	338.65		0.46	622.40	212.82	2750.29	18.6		
33.00	2377.87	460.57		0.48	1303.67	440.28	11148.83	20.8		
40.00	3028.02	769	9.91	0.47	3831.87	1307.41	18479.74	22.1		

CLIENTE:			ITALFERR S.p.a.						
LAVORO: Indagini geognostichep			ognostichepe	er i PFTE del	la "AV Saler	no - Reggio	Calabria, loti	to 1b"	
UBICAZION	IE:		Tortora Marin	a (CS)					
NOME TES	T:		DH L1B-S6	2					
DATA DI ES	SECUZIONE	1	03/11/2021						
			Y	3	9°55'39,85"	N			
COORDINA	TE		x	1	5°46'53.26"	E			
Profondità	On	de P	Onc	le S		Young	Taglio	Bulk	γ
(<i>m</i>)	(ms)	(m/sec)	(<i>ms</i>)	(m/sec)	Poisson	(MPa)	(MPa)	(MPa)	(kN/m ³)
1.00	1.15	866.35	4.20	237.87	0.46	292.8	100.3	1197.2	17.7
2.00	2.11	1049.76	9.95	174.01	0.49	162.9	54.8	1921.5	18.1
3.00	3.06	1053.61	15.21	190.01	0.48	193.9	65.4	1922.9	18.1
4.00	4.12	943.23	20.27	197.78	0.48	206.7	70.0	1498.0	17.9
5.00	5.45	749.33	24.79	221.00	0.45	248.2	85.5	868.6	17.5
6.00	6.76	762.45	29.08	233.44	0.45	276.6	95.5	891.4	17.5
7.00	8.20	696.37	32.07	333.88	0.35	523.8	193.9	584.9	17.4
8.00	9.31	902.45	36.26	239.10	0.46	297.7	101.8	1314.3	17.8
9.00	10.24	1068.76	39.23	335.83	0.45	591.3	204.6	1799.0	18.1
10.00	11.15	1099.53	41.59	424.05	0.41	924.6	327.2	1763.9	18.2
11.00	11.98	1203.91	44.02	411.51	0.43	893.9	311.7	2252.4	18.4
12.00	12.70	1279.11	40.51	402.52	0.45	869.0	300.7	2035.4	18.0
13.00	13.20	1929.34	50.17	212.10	0.49	440.3	147.0	7195.1	19.9
14.00	13.01	1900.32	52.71	394.11	0.40	900.0 725.5	307.0 247.0	0740.4 3848.6	19.0
15.00	14.40	1404.12	57.21	578 32	0.47	1605.0	247.0 610.7	3040.0 2122.0	19.0
17.00	16.07	1203.99	59.50	437.07	0.37	1035.0	353.5	2100.9	18.5
18.00	16.07	1201.42	61 52	437.07	0.45	1255 /	118 Q	2420.3	18.0
19.00	17.54	1567.22	63 23	587 13	0.40	1871 1	659.6	3820.3	19.4
20.00	18.08	1850 77	64 82	627 79	0.43	2228.5	776.5	5713.2	19.7
21.00	18 59	1967 82	66.92	477.02	0.47	1332.6	453.6	7114.9	19.9
22.00	19.00	2474.73	68.99	482.78	0.48	1445.5	488.3	12179.1	20.9
23.00	19.40	2457.60	70.38	719.83	0.45	3149.5	1083.7	11187.4	20.9
24.00	19.80	2493.68	72.00	615.82	0.47	2336.0	795.9	11989.7	21.0
25.00	20.21	2440.85	73.69	590.36	0.47	2138.1	727.8	11470.5	20.9
26.00	20.60	2553.42	75.12	701.12	0.46	3028.0	1037.5	12378.2	21.1
27.00	20.96	2779.20	76.92	556.64	0.48	1976.0	668.0	15760.9	21.6
28.00	21.32	2786.88	79.58	375.27	0.49	905.8	303.8	16350.6	21.6
29.00	21.70	2630.28	82.04	406.00	0.49	1042.8	350.5	14241.5	21.3
30.00	22.16	2172.67	85.14	322.95	0.49	631.8	212.2	9321.1	20.3
31.00	22.52	2822.74	87.14	499.97	0.48	1605.7	541.1	16525.4	21.6
32.00	22.87	2859.92	89.35	453.21	0.49	1326.9	446.1	17170.2	21.7
33.00	23.33	2157.26	91.70	424.94	0.48	1085.7	366.8	8964.8	20.3
34.00	23.70	2681.74	93.92	450.66	0.49	1289.0	433.9	14785.6	21.4
35.00	24.11	2453.93	95.42	666.89	0.46	2715.4	929.9	11350.4	20.9
36.00	24.53	2418.61	96.71	773.91	0.44	3601.7	1248.0	10525.1	20.8
37.00	24.91	2629.68	97.93	822.64	0.45	4160.0	1438.7	12783.0	21.3
38.00	25.29	20/1.50	99.28	130.11	0.46	3342.9 2510 5	1148.4	12524.0	21.2
40.00	25.70 26.10	2436.72	100.84	785.93	0.46	3742.5	1295.4	11474.5	20.9 21.0

DOWN HOLE

CLIENTE:	ITALFERR	S.p.a.				
LAVORO:	Indagini geognosticheper i PFTE della "AV Salerno - Reggio Calabria, lotto 1b"					
UBICAZIONE:	Tortora Marina (CS)					
NOME TEST:	DH L1B-S62					
DATA DI ESECUZIONE	03/11/2021					
	Y	39°55'39,85" N				
	х	15°46'53.26" E				

DOWN HOLE

CLIENTE:		ITALFERR S.p.a.							
LAVORO:		Indagini geognosticheper i PFTE della "AV Salerno - Reggio Calabria, lotto 1b"							
UBICAZION	IE:	Tortora Mar	ina (CS)						
NOME TES	Т:	DH L1B-S6	2						
DATA DI ESECUZIONE 03/11/2021									
		Y 39°55'39,85"		N					
COORDINA	.IE	х	15°46'53.26" E						
Profondità base(m)	Onde P Velocità (m/sec)	One Velocità	de S (m/sec)	Poisson	Young (MPa)	Share (MPa)	Bulk (MPa)	γ (kN/m³)	
10.00	919.18	258	3.70	0.46	347.87	119.38	1347.99	17.8	
12.00	1241.51	407.02		0.44	881.71	306.19	2440.62	18.5	
29.00	2060.76	510.40		0.47	1538.29	524.18	7846.17	20.1	
30.00	2172.67	322.95		0.49	631.78	212.19	9321.11	20.3	
36.00	2565.70	544	4.93	0.48	1852.83	627.49	13073.77	21.1	
40.00	2537.54	746	6.73	0.45	3414.03	1175.15	12003.65	21.1	

HVSR_L1B_S37

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 16/06/21 13:36:27 End recording: 16/06/21 14:16:27 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 95% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

HORIZONTAL TO VERTICAL SPECTRAL RATIO

DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA

EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
6.00	6.00	302	0.42
186.00	180.00	608	0.42
inf.	inf.	1201	0.45

Max. H/V at 0.72 ± 0.05 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	0.72 > 0.50	OK			
n _c (f ₀) > 200	1638.8 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 36 times	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria [At least 5	Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.344 Hz	OK			
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	1.094 Hz	OK			
$A_0 > 2$	2.78 > 2	OK			
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.07216 < 0.05		NO		
$\sigma_{f} < \varepsilon(f_{0})$	0.05186 < 0.10781	OK			
$\sigma_A(f_0) < \theta(f_0)$	0.2314 < 2.0	OK			

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_{\rm f} < \epsilon(f_0)$
Å ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve
	should be multiplied or divided
$\sigma_{logH//}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$
(0)	

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0					
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 18/06/21 09:41:58 End recording: 18/06/21 10:21:58 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 98% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA N-S component E-W component Up-Down component (mm/s) 10 1 frequency [Hz]

EXPERIMENTAL vs. SYNTHETIC H/V

10 ⁻²

10 ⁻³

10

10 ⁻⁵

10 ⁻⁶

10⁻⁷

Depth at the bottom of	i nickness [m]	vs [m/s]	Poisson ratio
150.00	150.00	552	0.42
inf.	inf.	1081	0.42

Max. H/V at 0.84 ± 0.06 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
f ₀ > 10 / L _w	0.84 > 0.50	OK			
n _c (f ₀) > 200	1991.3 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 42 times	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria [At least 5	Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.375 Hz	OK			
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$	1.219 Hz	OK			
A ₀ > 2	2.44 > 2	OK			
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.06904 < 0.05		NO		
$\sigma_{\rm f} < \epsilon({\rm f_0})$	0.05825 < 0.12656	OK			
$\sigma_A(f_0) < \theta(f_0)$	0.1995 < 2.0	OK			

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_{f} < \varepsilon(f_{0})$
Â ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve
	should be multiplied or divided
$\sigma_{\text{logHAV}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$
(3)	

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0					
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 18/06/21 08:43:23 End recording: 18/06/21 09:23:23 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 97% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA

the layer [m] 90.00 90.00 inf. inf.

466 870

0.42 0.42

Max. H/V at 45.31 ± 6.96 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	45.31 > 0.50	OK		
n _c (f ₀) > 200	105125.0 > 200	OK		
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$	Exceeded 0 out of 1324	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times			
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f ⁻ in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	31.656 Hz	OK		
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	57.781 Hz	OK		
A ₀ > 2 2.48 > 2 OK				
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.15352 < 0.05		NO	
σ _f < ε(f ₀) 6.95629 < 2.26563 NO				

	-
L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
Â ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

0.0674 < 1.58

OK

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0					
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 16/06/21 12:02:13 End recording: 16/06/21 12:42:13 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 94% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 5%

DIRECTIONAL H/V

10 ⁻² N-S component E-W component Up-Down component 10 ⁻³ 10 (mm/s) 10 -5 10 ⁻⁶ 10⁻⁷ 10 1 frequency [Hz] EXPERIMENTAL vs. SYNTHETIC H/V Max. H/V at 3.91 \pm 0.31 Hz. (In the range 0.0 - 64.0 Hz). Average H/V Synthetic H/V 5 H/V 3 2 0L 0.1 10 1 frequency [Hz]

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
30.00	30.00	483	0.42
inf.	inf.	1072	0.42

SINGLE COMPONENT SPECTRA

Max. H/V at 3.91 ± 0.31 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	3.91 > 0.50	OK		
n _c (f ₀) > 200	8828.1 > 200	OK		
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$	Exceeded 0 out of 188 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	2.625 Hz	OK		
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	6.094 Hz	OK		
A ₀ > 2 3.11 > 2 OK				
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.07833 < 0.05		NO	
σ _f < ε(f ₀) 0.30597 < 0.19531 NO				

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
Å ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{loaH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

0.1796 < 1.58

OK

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 16/06/21 10:59:54 End recording: 16/06/21 11:39:54 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 95% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

DIRECTIONAL H/V

TROMINO[®] Grilla www.tromino.eu

SINGLE COMPONENT SPECTRA

EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
2.50	2.50	269	0.42
18.50	16.00	470	0.40
74.50	58.00	886	0.45
inf.	inf.	1389	0.42

Max. H/V at 5.13 ± 0.55 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	5.13 > 0.50	OK		
n _c (f ₀) > 200	11685.0 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 247 times	OK		
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$				
Criteria [At least s	a for a clear H/V peak 5 out of 6 should be fulfilled]			
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	1.406 Hz	OK		
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$	8.594 Hz	OK		
A ₀ > 2	2.77 > 2	OK		
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.10757 < 0.05		NO	
$\sigma_{\rm f} < \epsilon(f_0)$	0.55129 < 0.25625		NO	
$\sigma_{A}(f_0) < \theta(f_0)$	0.1183 < 1.58	OK		

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f _o	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_{f} < \varepsilon(f_{0})$
Â ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve
	should be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\tilde{\theta}(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 16/06/21 10:02:54 End recording: 16/06/21 10:42:54 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 97% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

H/V TIME HISTORY

DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA

EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
10.00	10.00	320	0.42
52.00	42.00	596	0.42
inf.	inf.	982	0.45

Max. H/V at 53.13 ± 0.62 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	53.13 > 0.50	OK		
n _c (f ₀) > 200	123250.0 > 200	OK		
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$	Exceeded 0 out of 1199	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$	times			
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	36.813 Hz	ОК		
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$	61.156 Hz	OK		
A ₀ > 2 3.12 > 2 OK				
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.01165 < 0.05	OK		

0.6191 < 2.65625

0.0863 < 1.58

ΟΚ

OK

 $\sigma_{\rm f} < \epsilon(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
Â ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f f	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 16/06/21 09:12:51 End recording: 16/06/21 09:52:51 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 98% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

DIRECTIONAL H/V

10 ⁻² N-S component E-W component Up-Down component 10 ⁻³ (mm/s) 10 -5 10 ⁻⁶ 10⁻⁷ 10 1 frequency [Hz] EXPERIMENTAL vs. SYNTHETIC H/V Max. H/V at 7.78 \pm 0.34 Hz. (In the range 0.0 - 64.0 Hz). Average H/V Synthetic H/V H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
5.00	5.00	361	0.42
23.00	18.00	621	0.42
inf.	inf.	1154	0.45

frequency [Hz]

1

10

SINGLE COMPONENT SPECTRA

10

5

3 2

0L 0.1

Max. H/V at 7.78 ± 0.34 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]						
$f_0 > 10 / L_w$	7.78 > 0.50	OK				
n _c (f ₀) > 200	18208.1 > 200	OK				
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 374 times	OK				
$\sigma_A(f) < 3$ for 0.5f ₀ < f < 2f ₀ if f ₀ < 0.5Hz						
Criteria [At least 5	Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]					
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	3.719 Hz	OK				
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$	9.906 Hz	OK				
A ₀ > 2	3.96 > 2	OK				
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.04411 < 0.05	OK				
$\sigma_{\rm f} < \epsilon(f_0)$	0.34325 < 0.38906	OK				
$\sigma_A(f_0) < \theta(f_0)$	0.1335 < 1.58	OK				

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve
	should be multiplied or divided
σ _{logH//} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$
()	

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 15/06/21 15:29:07 End recording: 15/06/21 16:09:07 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 91% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 5%

DIRECTIONAL H/V

TROMINO[®] Grilla www.tromino.eu

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
8.50	8.50	314	0.42
37.50	29.00	623	0.42
inf.	inf.	920	0.45

OK

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 5.59 ± 0.04 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	5.59 > 0.50	OK		
n _c (f ₀) > 200	12194.4 > 200	OK		
σ _A (f) < 2 for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 270 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	2.25 Hz	OK		
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	11.844 Hz	OK		
A ₀ > 2	2.86 > 2	OK		
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.00691 < 0.05	OK		
$\sigma_{\rm f} < \epsilon(f_0)$	0.03868 < 0.27969	OK		

 $\sigma_f \leq \epsilon(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
$\epsilon(f_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
Â ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{loaH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

0.1571 < 1.58

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 15/06/21 13:38:53 End recording: 15/06/21 14:18:53 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 96% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

DIRECTIONAL H/V

10 ⁻² N-S component E-W component Up-Down component 10 ⁻³ 10 (mm/s) 10 -5 10 ⁻⁶ 10⁻⁷ 10 1 frequency [Hz] EXPERIMENTAL vs. SYNTHETIC H/V Max. H/V at 3.31 \pm 0.19 Hz. (In the range 0.0 - 64.0 Hz). Average H/V Synthetic H/V H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
28.00	28.00	367	0.42
inf.	inf.	804	0.42

frequency [Hz]

1

10

5

3 2

0L 0.1

SINGLE COMPONENT SPECTRA

TROMINO[®] Grilla www.tromino.eu

Max. H/V at 3.31 ± 0.19 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	3.31 > 0.50	OK			
n _c (f ₀) > 200	7618.8 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 160 times	ОК			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria [At least	a for a clear H/V peak 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	2.094 Hz	OK			
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	5.469 Hz	OK			
$A_0 > 2$	4.49 > 2	OK			
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.05629 < 0.05		NO		
σ _f < ε(f ₀)	0.18646 < 0.16563		NO		
$\sigma_A(f_0) < \theta(f_0)$	0.191 < 1.58	OK			

$\begin{array}{ccc} L_w & \mbox{window length} \\ n_w & \mbox{number of windows used in the analysis} \\ n_c = L_w n_w f_0 & \mbox{number of significant cycles} \\ f & \mbox{current frequency} \\ f_0 & \mbox{H/V peak frequency} \\ \sigma_f & \mbox{standard deviation of H/V peak frequency} \\ \epsilon(f_0) & \mbox{threshold value for the stability condition } \sigma_f < \epsilon(f_0) \\ A_0 & \mbox{H/V peak amplitude at frequency} f_0 \end{array}$
$\begin{array}{ccc} n_w & number of windows used in the analysis \\ n_c = L_w n_w f_0 & number of significant cycles \\ f & current frequency \\ f_0 & H/V peak frequency \\ \sigma_f & standard deviation of H/V peak frequency \\ \epsilon(f_0) & threshold value for the stability condition \\ A_0 & H/V peak amplitude at frequency f_0 \end{array}$
$n_c = L_w n_w f_0$ number of significant cyclesfcurrent frequency f_0 H/V peak frequency σ_f standard deviation of H/V peak frequency $\epsilon(f_0)$ threshold value for the stability condition $\sigma_f < \epsilon(f_0)$ A_0 H/V peak amplitude at frequency f_0
fcurrent frequency f_0 H/V peak frequency σ_f standard deviation of H/V peak frequency $\epsilon(f_0)$ threshold value for the stability condition $\sigma_f < \epsilon(f_0)$ A_0 H/V peak amplitude at frequency f_0
f_0 H/V peak frequency σ_f standard deviation of H/V peak frequency $\epsilon(f_0)$ threshold value for the stability condition $\sigma_f < \epsilon(f_0)$ A_0 H/V peak amplitude at frequency f_0
σ_f standard deviation of H/V peak frequency $\epsilon(f_0)$ threshold value for the stability condition $\sigma_f < \epsilon(f_0)$ A_0 H/V peak amplitude at frequency f_0
$\epsilon(f_0)$ threshold value for the stability condition $\sigma_f < \epsilon(f_0)$ A ₀ H/V peak amplitude at frequency f_0
A_0 H/V peak amplitude at frequency f_0
A _{H/V} (f) H/V curve amplitude at frequency f
f^{-1} frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-1}) < A_0/2$
f^+ frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$ standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve
should be multiplied or divided
$\sigma_{\text{logH/V}}(f)$ standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$ threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 15/06/21 12:42:57 End recording: 15/06/21 13:22:57 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 92% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA

EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
17.00	17.00	361	0.42
96.00	79.00	825	0.42
inf.	inf.	1235	0.45

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 5.25 ± 0.04 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	5.25 > 0.50	OK		
n _c (f ₀) > 200	11655.0 > 200	OK		
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 253 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	2.125 Hz	ОК		
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	6.531 Hz	OK		
A ₀ > 2 4.24 > 2 OK				
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.00842 < 0.05	OK		
$\sigma_{\rm f} < \epsilon(f_0)$	0.04419 < 0.2625	OK		
$\sigma_A(f_0) < \theta(f_0)$	0.1929 < 1.58	OK		

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
$\sigma_{\rm f}$	standard deviation of H/V peak frequency
$\varepsilon(\mathbf{f}_0)$	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
Â ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve
	should be multiplied or divided
σ _{logH//} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$
(3)	

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

HVSR_L1B_S66

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 15/06/21 11:08:40 End recording: 15/06/21 11:48:40 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 97% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

H/V TIME HISTORY

DIRECTIONAL H/V

10 ⁻² N-S component E-W component Up-Down component 10 ⁻³ 10 (mm/s) 10 ⁻⁵ 10 ⁻⁶ 10 ⁻⁷ - 0.1 10 1 frequency [Hz] EXPERIMENTAL vs. SYNTHETIC H/V Max. H/V at 3.75 \pm 0.13 Hz. (In the range 0.0 - 64.0 Hz). Average H/V Synthetic H/V 5 H/V 3 2 0L 0.1 10 frequency [Hz]

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
4.00	4.00	224	0.42
32.00	28.00	411	0.42
inf.	inf.	919	0.45

SINGLE COMPONENT SPECTRA

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 3.75 ± 0.13 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]				
$f_0 > 10 / L_w$	3.75 > 0.50	OK		
n _c (f ₀) > 200	8700.0 > 200	OK		
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$	Exceeded 0 out of 181 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	2.344 Hz	OK		
Exists f^{+} in $[f_0, 4f_0] A_{H/V}(f^{+}) < A_0 / 2$	5.031 Hz	OK		
A ₀ > 2 6.83 > 2 OK				
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.03435 < 0.05	OK		
$\sigma_{\rm f} < \epsilon(f_0)$ 0.12881 < 0.1875 OK				

0.327 < 1.58

OK

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
Â ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
	be multiplied or divided
σ _{logH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	

HVSR_L1B_S67

Instrument: TE3-0338/02-17 Data format: 16 byte Full scale [mV]: 51 Start recording: 15/06/21 09:26:10 End recording: 15/06/21 10:06:10 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN; north south; east west; up down GPS data not available

Trace length: 0h40'00". Analyzed 98% trace (automatic window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

DIRECTIONAL H/V

TROMINO[®] Grilla www.tromino.eu

SINGLE COMPONENT SPECTRA

EXPERIMENTAL vs. SYNTHETIC H/V

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
3.50	3.50	201	0.42
36.50	33.00	318	0.42
inf.	inf.	713	0.45

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 2.28 ± 0.15 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
f ₀ > 10 / L _w	2.28 > 0.50	OK			
n _c (f ₀) > 200	5338.1 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded 0 out of 110 times	OK			
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$					
Criteria [At least 5	Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	0.969 Hz	OK			
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	3.25 Hz	OK			
A ₀ > 2 5.44 > 2 OK					
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$ 0.06386 < 0.05			NO		
σ _f < ε(f ₀)	0.14569 < 0.11406		NO		
$\sigma_A(f_0) < \theta(f_0)$	0.4621 < 1.58	OK			

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σ _f	standard deviation of H/V peak frequency
$\varepsilon(f_0)$	threshold value for the stability condition $\sigma_{f} < \varepsilon(f_{0})$
Â ₀	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f ⁻	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f) < A_0/2$
f ⁺	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve
	should be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$
(3)	

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20	