REGIONE SICILIA

Provincia di Trapani

COMUNE DI MAZARA DEL VALLO

PROGETTO

IMPIANTO EOLICO " RACASALE" NEL COMUNE DI MAZARA DEL VALLO (TP) DI POTENZA PARI A 37,2 MW E RELATIVE OPERE DI CONNESSIONE ALLA RTN

PROGETTO DEFINITIVO

COMMITTENTE

LIMES 22 S.r.I.

Via Giuseppe Giardina 22 - 96018 Pachino (SR), Italia Tel. +39 0236516713

SVILUPPATORE

IBS ENERGY S.r.I.

Via Sardegna, 32, 20146, Milano-Italia Tel. +39 348 -info@ibsenergy.it



PROGETTISTA

Hydro Engineering s.s. di Damiano e Mariano Galbo

via Rossotti, 39 91011 Alcamo (TP) Italy

OGGETTO DELL'ELABORATO

DISCIPLINARE DESCRITTIVO E PRESTAZIONALE DEGLI ELEMENTI TECNICI

REV.	DATA	AT	TIVITA'			RI	EDATTO	VERIFICATO	APROVATO
0	Agosto 2023	PRIMA EMISSIONE			MG	VF	EG		
	CODICE	PROGETTISTA	DATA	SCALA	FOR	MATO	FOGLIO	CODICE COM	MITTENTE
	REC-PD-R08		Agosto 2023	/	A	\ 4	1 di41		

NOME FILE: REC-PD-R08_Disciplinare descrittivo e prestazionale degli elementi tecnici.dwg

LIMES 22 S.r.l. si riserva tutti i diritti su questo documento che non può essere riprodotto neppure parzialmente senza la sua autorizzazione scritta.

INDICE

1	PR	EMESSA	2
2	AE	ROGENERATORI	3
3	SCA	AVI	4
4	FO	NDAZIONI E PIAZZOLE	6
	4.1	GENERALITÀ	6
	4.2	PALI DI FONDAZIONE	
	4.3	CLASSIFICAZIONE DEL CALCESTRUZZO	
	4.4	CLASSI DI ESPOSIZIONE AMBIENTALE	
	4.5	CLASSI DI RESISTENZA	
	4.6	CONSISTENZA	14
	4.7	SPECIFICHE PER LA PRODUZIONE DEL CALCESTRUZZO	16
	4.8	ACQUA D'IMPASTO	16
	4.9	CEMENTO	17
	4.10	AGGREGATI	
	4.11	ADDITIVI	
	4.12	COPRIFERRO E DIMENSIONE DEGLI INERTI	
	4.13	COPRIFERRO MINIMO NECESSARIO PER L'ADERENZA DELLE ARMATURE	
	4.14	COPRIFERRO MINIMO PER GARANTIRE LA DURABILITÀ	
	4.15	DIMENSIONE MASSIMA DEGLI AGGREGATI	
	4.16	MODALITÀ DI MESSA IN OPERA E DISARMO	
	4.17	CALCESTRUZZO NON STRUTTURALE	
	4.18	PRESCRIZIONI SULLE TIPOLOGIE DI ACCIAIO	
	4.19	GIUNZIONI	
	4.20	DIAMETRI AMMISSIBILI NEI MANDRINI PER BARRE PIEGATE	
5	STI	RADE DI ACCESSO E VIABILITÀ DI SERVIZIO	24
	5.1	GENERALITÀ	24
	5.2	MATERIALI PER RILEVATI E SOVRASTRUTTURE – BONIFICHE E	
	SOTT	OFONDI	
	5.2.	r r r r r r r r	
	5.2.	T T	
	5.2.	1 1	
	5.2.	4 Pavimentazione con materiale arido	32
6	OP	ERE IDRAULICHE	33
7	CA	VIDOTTI	35
	7.1	GENERALITÀ	35
	7.2	SISTEMA DI POSA CAVI	
	7.3	FIBRA OTTICA DI COLLEGAMENTO	39
	7.4	SISTEMA DI TERRA	39

1 PREMESSA

Il presente documento si propone di fornire il disciplinare descrittivo e prestazionale con lo scopo di precisare i contenuti prestazionali tecnici degli elementi previsti nel progetto. Il disciplinare contiene, inoltre, la descrizione delle caratteristiche, della forma e delle principali dimensioni dell'intervento, dei materiali e di componenti previsti nel progetto. Gli elementi principali del progetto e le opere necessarie per la realizzazione del parco eolico sono le seguenti:

- Aerogeneratori,
- Fondazioni,
- Piste e piazzole di montaggio temporanee,
- Cavidotti,
- Edificio consegna,

2 AEROGENERATORI

L'aerogeneratore è una macchina che sfrutta l'energia cinetica posseduta del vento, per la produzione di energia elettrica, descritta nell'elaborato "Tipico aerogeneratore REC-PD-T42". Sul mercato esistono diverse tipologie di aerogeneratori, ad asse orizzontale e verticale, con rotore mono, bi o tripala, posto sopra o sottovento. Il tipo di aerogeneratore previsto per l'impianto in oggetto è un aerogeneratore ad asse orizzontale con rotore tripala e una potenza massima di 6,20 MW le cui caratteristiche principali sono di seguito riportate:

- rotore tripala a passo variabile, di diametro di 170 m, posto sopravvento al sostegno, in resina epossidica rinforzata con fibra di vetro, con mozzo rigido in acciaio;
- navicella in carpenteria metallica con carenatura in vetroresina e lamiera, in cui sono collocati il generatore elettrico e le apparecchiature idrauliche ed elettriche di comando e controllo;
- sostegno tubolare troncoconico in acciaio, avente altezza fino all'asse del rotore di circa 115,00 m, diametro del rotore 170,00 m e altezza massima al top della pala pari a 200 m.

I tronchi di torre sono realizzati da lastre in acciaio laminate, saldate per formare una struttura tubolare troncoconica. Si tratta di aerogeneratori di ultima generazione, già impiegati estesamente in altri parchi italiani/UE, che consentono il miglior sfruttamento della risorsa vento e che presentano garanzie specifiche dal punto di vista della sicurezza (così come si dimostrerà in vari altri documenti: piano di produzione, studio di gittata etc.); Di seguito le coordinate assolute nel sistema UTM 33 WGS84 degli aerogeneratori:

WTG	EST	NORD	Quota m. slm	Riferimenti catastali
WTG - 01	298584.99	4171248.12	53,60	Mazara del Vallo, Foglio 166, p.lle: 401, 431, 433
WTG - 02	298904.59	4170715.98	57,90	Mazara del Vallo, Foglio 166, p.lla: 320
WTG - 03	300310.63	4170485.16	107,00	Mazara del Vallo, Foglio 167, p.lla: 218
WTG - 04	300602.69	4170922.43	108,15	Mazara del Vallo, Foglio 167, p.lla: 140
WTG - 05	299949.26	4171751.10	98,60	Mazara del Vallo, Foglio 148, p.lla: 101
WTG - 06	299306.14	4171788.45	58,50	Mazara del Vallo, Foglio 147, p.lla: 150, 428, 429

Coordinate aerogeneratori nel sistema UTM 33 WGS84

3 SCAVI

Per scavo di sbancamento si intende quello occorrente per lo spianamento del terreno su cui dovranno sorgere manufatti, per la regolarizzazione dei versanti in frana, per l'asportazione di materiali in alveo ed in generale qualsiasi scavo a sezione aperta in vasta superficie che permetta l'impiego di normali mezzi meccanici od ove sia possibile l'allontanamento delle materie di scavo, sia pure con la formazione di rampe provvisorie, che saranno eseguite a carico dell'Impresa. Saranno pertanto considerati scavi di sbancamento anche quelli che si trovino al di sotto del piano di campagna quando gli scavi stessi rivestano i caratteri sopra accennati, come ad esempio la realizzazione del cassonetto al di sotto del piano di posa dei rilevati arginali o di quello stradale. Lo scavo andrà eseguito anche in presenza di acqua e i materiali scavati, se non diversamente indicato dall'Ufficio di Direzione Lavori, andranno trasportati a discarica o accumulati in aree indicate ancora dall'Ufficio di Direzione Lavori, per il successivo utilizzo. In quest'ultimo caso, sarà onere dell'Impresa provvedere a rendere il terreno scevro da qualunque materiale vegetale o in genere estraneo per l'utilizzo previsto. L'Impresa eseguirà tutti gli scavi necessari alla realizzazione delle opere, sia a mano che a macchina, qualunque sia il tipo di materiale incontrato, tanto all'asciutto che in presenza d'acqua. Gli scavi saranno eseguiti in larghezza, lunghezza e profondità secondo quanto indicato nei disegni esecutivi o richiesto dalla Direzione Lavori.

Eventuali scavi eseguiti dall'Impresa per comodità di lavoro od altri motivi, senza autorizzazione scritta dall'Ufficio di Direzione Lavori, non saranno contabilizzati agli effetti del pagamento.

All'inizio dei lavori, l'Impresa dovrà provvedere, ove necessario, alla rimozione della vegetazione e degli apparati radicali ed al loro trasporto a rifiuto.

Gli scavi dovranno essere condotti in modo da non sconnettere e danneggiare il materiale d'imposta. L'Impresa prenderà inoltre tutte le precauzioni necessarie per evitare gli smottamenti delle pareti dello scavo, soprattutto in conseguenza di eventi meteorologici avversi e metterà in atto tutti gli accorgimenti necessari per evitare danni alle persone ed alle opere e sarà obbligata a provvedere a suo carico alla rimozione delle eventuali materie franate. In ogni caso l'Impresa sarà l'unica responsabile per i danni alle persone ed alle opere che possono derivare da cedimenti delle pareti di scavo.

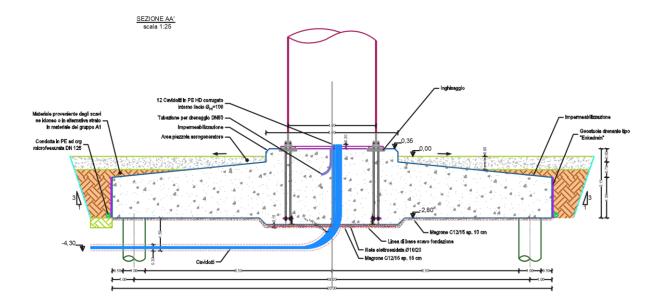
La manutenzione degli scavi, lo sgombero dei materiali eventualmente e per qualsiasi causa caduti entro gli scavi stessi sarà a totale carico dell'Impresa indipendentemente dal tempo che trascorrerà fra l'apertura degli scavi ed il loro rinterro, che potrà essere effettuato solo

dopo l'autorizzazione dell'Ufficio di Direzione Lavori e con le modalità da questa eventualmente prescritte in aggiunta od in variante a quanto indicato in queste specifiche.

Le materie provenienti dagli scavi, ritenute inutilizzabili dall'Ufficio di Direzione Lavori, dovranno essere portate a rifiuto; tali materie non dovranno in ogni caso riuscire di danno ai lavori, alle proprietà pubbliche o private ed al libero sfogo e corso delle acque. Contravvenendo a queste disposizioni, l'Impresa dovrà a sue spese rimuovere e asportare le materie in questione.

Durante l'esecuzione dei lavori i mezzi impiegati per gli esaurimenti di acqua saranno tali da tenere a secco gli scavi.

Se l'Impresa non potesse far defluire l'acqua naturale, l'Ufficio di Direzione Lavori avrà la facoltà di ordinare, se lo riterrà opportuno, l'esecuzione degli scavi subacquei.



4 FONDAZIONI E PIAZZOLE

4.1 Generalità

Il dimensionamento delle fondazioni sarà effettuato sulla base dei parametri geotecnici derivanti dalle prove in sito e di laboratorio su campioni indisturbati prelevati nel corso di appositi sondaggi in fase di progettazione esecutiva.

In via esemplificativa, fermo restando che la scelta sarà effettuata in fase di progettazione esecutiva, di seguito si riporta lo schema di una fondazione su pali del tipo rappresentato subito sotto.

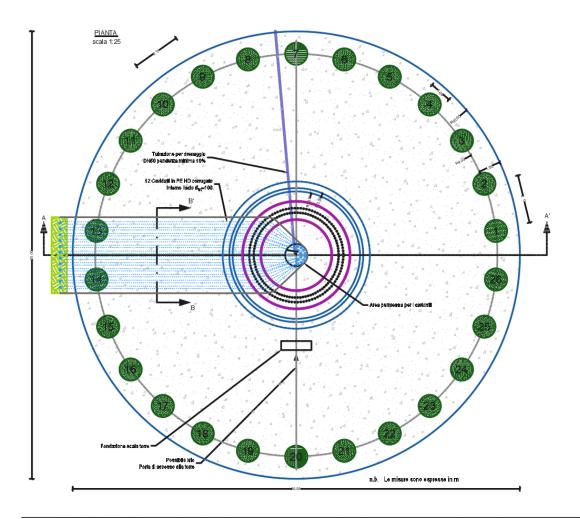


Fig. 1 Tipologia della fondazione su pali prevista

Nella attuale fase di progettazione definitiva, si eseguiranno dei calcoli basati sullo studio geologico redatto dal dott. Carlo Cibella ed allegato al presente progetto.

Durante la fase di progettazione esecutiva a seguito di indagini geologiche più approfondite saranno valutate eventuali alternative alle fondazioni indirette.

La fondazione indiretta proposta è formata da un plinto circolare, di diametro 21,40 m e spessore variabile su pali di adeguata lunghezza.

All'interno del plinto di fondazione si prevede di annegare una gabbia di ancoraggio metallica cilindrica dotata di una piastra superiore di ripartizione dei carichi ed una piastra inferiore di ancoraggio. Entrambe le piastre dovranno essere dotate di due serie concentriche fori che per consentire il passaggio di barre filettate ad alta resistenza di diametro 36 mm, che, tramite dadi, garantiscono il corretto collegamento delle due piastre.

A tergo dei lati del manufatto dovrà essere realizzato uno strato di drenaggio dello spessore

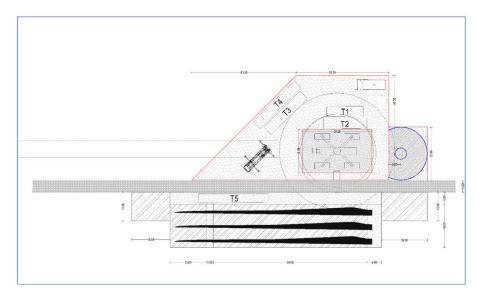
di 60 cm, munito di tubazione di drenaggio forata per l'allontanamento delle acque dalla fondazione.

Nella fondazione, oltre al sistema di ancoraggio della torre, saranno posizionate le tubazioni passacavo in PVC corrugato, nonché gli idonei collegamenti alla rete di terra

La piazzola per un montaggio standard è costituita da un trapezio rettangolo B=61,00 (m); b=30,00(m); h=38,00(m) oltre a un rettangolo 22,00(m) x 16,00(m) ove sarà allocato l'aerogeneratore e un ulteriore rettangolo 5,00(m) x 88,00(m).

Le singole piazzole a servizio degli aerogeneratori devono svolgere una doppia funzione:

- 1. Durante le fasi di costruzione permettere lo scarico dei componenti l'aerogeneratore (conci di torre, navicella, pale, etc.), il posizionamento delle gru per il montaggio, il movimento delle stesse con i componenti durante le fasi di assemblaggio e montaggio;
- 2. Durante le fasi di esercizio permettere la manutenzione ordinaria e straordinaria per tutta la vita utile del parco eolico.


Per le ragioni esposte sopra, per le piazzole a servizio degli aerogeneratori dovrà predisporsi lo scotico superficiale, la spianatura, il riporto di materiale vagliato e la compattazione di una superficie, stimata in 50mx30m, tale da garantire una parte destinata come area di scarico dei materiali e una seconda destinata alla movimentazione degli stessi e ai relativi necessari lavori.

A montaggio ultimato, l'area attorno alle macchine (piazzola aerogeneratore) sarà mantenuta piana e sgombra da piantumazioni allo scopo di consentire le operazioni di controllo e/o manutenzione ordinaria e straordinaria delle macchine.

Le altre aree eccedenti la piazzola definitiva e quelle utilizzate temporaneamente per le attività di cantiere, montaggio main components WTG e stoccaggio, saranno ripristinate come ante operam, prevedendo il riporto di terreno vegetale per la successiva eventuale coltivazione.

Schema tipo piazzola

Le fondazioni sono il contatto tra la torre eolica e il terreno. Il loro compito è quello di assicurare il sostengo alle sollecitazioni della torre sia in termini di forza di gravità che di momenti flettenti e o torcenti. Sono realizzate seguendo i riferimenti normativi.

Si farà, inoltre, riferimento alle seguenti normative:

- Circolare esplicativa n° 617 del 02/02/2009 "Istruzioni per l'applicazione delle Norme tecniche per le costruzioni di cui al D.M. 17/01/2018";
- Legge n. 1086 del 05.11.1971 "Norme per la disciplina delle opere in c.a. normale e precompresso, ed a struttura metallica";
- Legge n. 64 del 02.02.1974 "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- IEC 60400-1 "Wind Turbine safety and design";
- Guidelines for Design of Wind Turbines, DNV/Riso
- Eurocodice 2 "Design of concrete structures".
- Eurocodice 3 "Design of steel structures".
- Eurocodice 4 "Design of composite steel and concrete structures".
- Eurocodice 7 "Geotechnical design".
- Eurocodice 8 "Design of structures for earthquake resistance".

4.2 Pali di fondazione

Come detto la fondazione indiretta (nel caso in fase di progettazione venisse adottata tale tipologia) è costituita da un plinto circolare, di diametro 20,00 m e spessore variabile su pali trivellati di adeguata lunghezza.

Con tale denominazione si vengono ad identificare i pali realizzati mediante infissione per rotazione di una trivella ad elica continua e successivo getto di calcestruzzo, fatto risalire dalla base del palo attraverso il tubo convogliatore interno all'anima dell'elica, con portate e pressioni controllate.

L'estrazione dell'elica avviene contemporaneamente alla immissione del calcestruzzo.

4.3 Classificazione del calcestruzzo

I dati fondamentali per identificare i calcestruzzi a prestazione, specificati nel seguito, comprendono:

- a- classe di esposizione ambientale;
- b- classe di resistenza;
- c- classe di consistenza;
- d- acqua da impasto;
- e- tipo di cemento,
- f- tipo di aggregati e loro dimensione massima;
- g- additivi;
- h- valore nominale del copri ferro.

Dopo avere definito ciascuno degli elementi sopra riportati, si potrà procedere alla caratterizzazione prestazionale del calcestruzzo da impiegare per la costruzione delle strutture in cemento armato. Di seguito si procederà con l'analisi e la scelta di ciascuno di tali elementi caratteristici.

4.4 Classi di esposizione ambientale

In accordo con la normativa europea UNI EN 206-1 e con quella italiana UNI 11104, il livello di rischio per una determinata opera dipende dalle azioni chimico-fisiche alle quali si

presume che potrà essere esposto il calcestruzzo durante il periodo di vita delle opere e che causa effetti che non possono essere classificati come dovuti a carichi o ad azioni indirette quali deformazioni impresse, cedimenti e variazioni. A tal fine, le norme suddette suddividono gli ambienti in base alla tipologia del degrado atteso per le armature e per l'acciaio, individuando delle classi di esposizione ambientale. Ai fini di una corretta prescrizione del calcestruzzo, occorre, quindi, classificare l'ambiente nel quale ciascun elemento strutturale risulterà inserito.

A seconda delle condizioni ambientali, vengono individuate le classi e sottoclassi di esposizione ambientale del calcestruzzo, riportate nella tabella 3.1.

Tabella - Classi di esposizione ambientale del calcestruzzo

Ambiente di esposizione	Esempi di condizioni ambientali
chio di corrosione delle armature o di att	acco al calcestruzzo
molto secco	Interni di edifici con umidità relativa molto bassa
delle armature indotta da carbonatazion	ne del calcestruzzo
Secco	Interni di edifici con umidità relativa bassa
bagnato, raramente secco	Parti di strutture di contenimento liquidi; fondazioni
umidità moderata	Interni di edifici con umidità da moderata ad alta; calcestruzzo all'esterno riparato dalla pioggia
Ciclicamente secco e bagnato	Superfici soggette a contatto con acqua non comprese nella classe XC2
indotta dai cloruri	
umidità moderata	Superfici esposte a spruzzi diretti d'acqua contenente cloruri
bagnato, raramente secco	Piscine; calcestruzzo esposto ad acque industriali contenenti cloruri
Ciclicamente secco e bagnato	Parti di ponti; pavimentazioni; parcheggi per auto
indotta dai cloruri dell'acqua di mare	
Esposizione alla salsedine marina ma non in contatto diretto con acqua di mare	Strutture sulla costa o in prossimità
Sommerse	Parti di strutture marine
nelle zone di maree, nelle zone soggette a spruzzi	Parti di strutture marine
cicli di gelo/disgelo	
grado moderato di saturazione, in assenza di agenti disgelanti	Superfici verticali esposte alla pioggia e al gelo
grado moderato di saturazione, in presenza di sali disgelanti	Superfici verticali di opere stradali esposte al gelo ad agenti disgelanti nebulizzati nell'aria
grado elevato di saturazione, in assenza di sali disgelanti	Superfici orizzontali esposti alla pioggia e al gelo
grado elevato di saturazione, in presenza di sali disgelanti	Superfici verticali e orizzontali esposte al gelo e a spruzzi d'acqua contenenti sali disgelanti
	chio di corrosione delle armature o di atti molto secco delle armature indotta da carbonatazion Secco bagnato, raramente secco umidità moderata Ciclicamente secco e bagnato indotta dai cloruri umidità moderata bagnato, raramente secco Ciclicamente secco e bagnato indotta dai cloruri dell'acqua di mare Esposizione alla salsedine marina ma non in contatto diretto con acqua di mare Sommerse nelle zone di maree, nelle zone soggette a spruzzi cicli di gelo/disgelo grado moderato di saturazione, in assenza di agenti disgelanti grado elevato di saturazione, in presenza di sali disgelanti grado elevato di saturazione, in presenza di sali disgelanti grado elevato di saturazione, in presenza di sali disgelanti grado elevato di saturazione, in presenza di grado elevato di saturazione, in presenza di

Classe	Ambiente di esposizione	Esempi di condizioni ambientali
XA1	Aggressività debole	
XA2	Aggressività moderata	
XA3	Aggressività forte	

Poiché la classificazione di tabella differisce da quella della Norma UNI 9858, si fornisce una correlazione tra le classi di esposizione ambientale dei due documenti e le caratteristiche del calcestruzzo ai fini della durabilità delle opere.

Ambiente d'esposizione	Classi di es	sposizione
(UNI 9858)	UNI 9858	Linee Guida / prEN206
Secco/ molto secco (0)	1	X0(0)
Umido senza gelo	2a	XC1 XC2
Umido con gelo	2b	XF1
Umido con gelo e sali disgelanti	3	XF2
Marino senza gelo	4a	XS1 XD2
Marino con gelo	4b ⁽¹⁾	XF3
Debolmente aggressivo	5a	XC3 XD1 XA1(
Moderatamente aggressivo	5b	XA2 XC4
Fortemente aggressivo	5c	XD3 XS2 XS3 XF4 XA3

(0) L'ambiente della classe X0 è definito nelle Linee Guida come «molto secco».

Nel presente progetto, poiché si tratta di opere di fondazione si è considerata una classe di esposizione ambientale XC4 o 5b per il plinto ed una classe di esposizione XC2 o 2a per i pali.

Per ogni classe di esposizione ambientale, la normativa impone il rispetto di alcuni requisiti minimi (norma UNI 11140). Tali requisiti sono:

- classe di resistenza caratteristica a compressione minima;
- rapporto acqua/cemento;
- dosaggio minimo di cemento.

4.5 Classi di resistenza

La resistenza a compressione del calcestruzzo è espressa in termini di resistenza caratteristica, definita come quel valore di resistenza al di sotto del quale si può attendere di trovare il 5% della popolazione di tutte le misure di resistenza.

La resistenza caratteristica cubica R_{ck} viene dedotta sulla base dei valori ottenuti da prove a compressione a 28 giorni effettuate su cubi di 150 mm di lato, per aggregati con diametro massimo fino a 32 mm, o di 200 m di lato per aggregati con diametro massimo maggiore.

La resistenza caratteristica cilindrica f_{ck} viene dedotta sulla base dei valori ottenuti da prove a compressione a 28 giorni effettuate su cilindri di 150 mm di diametro e 300 mm di altezza. Per indicare la classe di resistenza si utilizza la simbologia Cxx/yy ove xx individua il valore della resistenza caratteristica cilindrica fck e yy il valore della resistenza caratteristica cubica Rck, entrambi espressi in N/mm^2 (1 $N/mm^2 \approx 10 \ Kg/cm^2$).

Tabella - Classi di resistenza del calcestruzzo

Classe di resistenza	f_{ck} (N/mm ²)	R _{ck} (N/mm ²)	Categoria del calcestruzzo
C8/10	8	10	NON
C12/15	12	15	STRUTTURALE
C16/20	16	20	
C20/25	20	25	
C25/30	25	30	
C30/37	30	37	ORDINARIO
C35/45	35	45	
C40/50	40	50	
C45/55	45	55	

Tabella- Caratteristiche del calcestruzzo (UNI EN 206)

Classe di esposizione ambientale	R _{ck} minima (N/mm ²)
XS2 XS3 XA3 XD3 XA3	45
XC3 XC4 XS1 XA1 XA2 XD1 XD2 XF1 XF3 XF4 XA1	37
XC2 XF2	30
XC1	25
X0	15

(1) Per ambiente molto secco (U.R. \leq 45%, classe di esposizione X0) è ammesso l'uso di calcestruzzo Rck 20.

Tabella- Caratteristiche del calcestruzzo (UNI EN 206)

Classe di esposizione ambientale	Rapporto a/c massimo
XS2 XS3 XA3 XD3 XA3 XF4	0.45
XC4 XS1 XF3 XA2	0.50
XC3 XA1 XD1 XD2 XF1 XF2 XA1	0.55
XC2	0.60
XC1	0.65

X0 -	
------	--

Le resistenze caratteristiche Rck di tabella sono da considerarsi quelle minime in relazione agli usi indicati nella tabella. La definizione di una soglia minima per il dosaggio di cemento risponde all'esigenza di garantire in ogni caso una sufficiente quantità di pasta di cemento, condizione essenziale per ottenere un calcestruzzo indurito a struttura chiusa e poco permeabile. Nelle normali condizioni operative il rispetto dei valori di Rck e a/c di tabella 3.4 possono comportare dosaggi di cemento anche sensibilmente più elevati del valore minimo indicato.

Tabella- Contenuto minimo in cemento

Classe di esposizione ambientale	Contenuto minimo in cemento [Kg/m³]	
XC1	260	
XC2 XC3	280	
XC4 XS1 XD1 XD2 XF1 XF2 XA1	300	
XD3 XS2 XF3 XA2	320	
XS3 XF4	340	
XA3	360	

In conseguenza di quanto detto sopra, per garantire la stabilità e la durabilità dell'opere in oggetto la loro realizzazione dovrà avvenire utilizzando le seguenti classi di resistenza, distinte in funzione dell'ubicazione:

- Pali di fondazione: classe di resistenza C25/30 rapporto acqua/cemento minore o uguale a 0,60 contenuto minimo di cemento 280 kg/m³;
- Plinto di fondazione: classe di resistenza C30/37

 (escluso colletto) rapporto acqua/cemento minore o uguale a 0,50

 contenuto minimo di cemento 300 kg/m³;
- Plinto di fondazione: classe di resistenza C45/55

 (colletto) rapporto acqua/cemento minore o uguale a 0,50

 contenuto minimo di cemento 300 kg/m³.

4.6 Consistenza

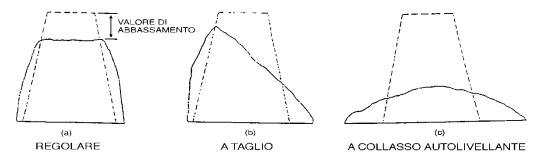
La lavorabilità, indice delle proprietà e del comportamento del calcestruzzo nell'intervallo di

tempo tra la produzione e la compattazione dell'impasto nella cassaforma, viene comunemente valutata attraverso la misura della consistenza.

La consistenza, come la lavorabilità, è il risultato di più proprietà reologiche: di conseguenza può essere valutata solo in modo relativo, sulla base del comportamento dell'impasto fresco a determinate modalità di prova. Per la classificazione della consistenza del calcestruzzo si fa riferimento ai seguenti metodi:

- abbassamento del cono (UNI 9418);
- spandimento (UNI 8020 metodo B).

I valori di riferimento per ciascun metodo di prova sono indicati nelle tabelle 3.5 e 3.6.


Classi di consistenza - misura dell'abbassamento al cono

Classe di consistenza	Abbassamento mm	Denominazione corrente
S3	da 100 a 150	Semifluida
S4	da 160 a 210	Fluida
S5	> 210	Superfluida

Classi di consistenza - misura dello spandimento

Classe	Spandimento
di consistenza	mm
FB3	da 420 a 480
FB4	da 490 a 550
FB5	da 560 a 620
FB6	≥ 630

Nella misura dell'abbassamento al cono si hanno tre principali forme di abbassamento:

La prima forma, con abbassamento uniforme senza alcuna rottura della massa, indica comportamento regolare. La seconda forma, con abbassamento asimmetrico (a taglio), spesso indica mancanza di coesione; essa tende a manifestarsi con miscele facili alla segregazione. In caso di persistenza, a prova ripetuta, il calcestruzzo è da ritenere non idoneo al getto.

La terza forma, con abbassamento generalizzato (collasso), indica miscele magre oppure molto umide o, nel caso di calcestruzzi autolivellanti, additivate con superfluidificanti.

Per miscele magre tendenti alla rigidità un abbassamento regolare facilmente si può tramutare in uno di tipo a taglio o a collasso. In tal caso ci si dovrà accertare del fenomeno, onde evitare che si indichino valori diversi di abbassamento per campioni della stessa miscela.

La classe di consistenza del calcestruzzo al momento della posa dovrà essere distinto in funzione dell'ubicazione secondo quanto appresso indicato:

- Pali di fondazione: classe di consistenza S4

classe di spandimento F5

- Fondazione: classe di consistenza S5 (escluso colletto) classe di spandimento F6 - Fondazione: classe di consistenza S4

(colletto) classe di spandimento F5

4.7 Specifiche per la produzione del calcestruzzo

Come detto in precedenza, per poter garantire la durabilità delle opere in c.a. ed i livelli di sicurezza prefissati, è fondamentale la scelta accurata delle materie prime con cui realizzare il calcestruzzo, quali:

- acqua;
- cemento;
- aggregati;
- additivi.

4.8 Acqua d'impasto

L'acqua ha un ruolo fondamentale nella produzione del calcestruzzo, poiché una sua errata scelta o dosaggio può dare origine a fenomeni di ritardo o di accelerazione nel processo di presa e di indurimento, con un possibile conseguente degrado delle strutture. Al fine di evitare tali inconvenienti è necessario che l'acqua di impasto possegga i requisiti previsti dalla norma UNI EN 1008.

Malgrado la normativa consenta l'uso di acque di riciclo, se ne sconsiglia l'uso poiché essa può contenere sostanze solide in sospensione che potrebbero compromettere la reologia del calcestruzzo.

4.9 Cemento

Per il confezionamento del calcestruzzo devono essere usati i cementi che posseggono marcatura CE e siano conformi alle prescrizioni definite dalla norma UNI EN 197-1. Tale norma individua 162 classi di cemento suddivisi per composizione e prestazione.

Nel caso di strutture massive, come nel caso in oggetto, al fine di ridurre i gradienti termici tra la superficie e l'interno della struttura, si devono usare cementi con ridotto sviluppo di calore.

Per tale motivo per il plinto si raccomanda l'uso di cemento provvisto di marcature CE di tipo "Low Heat" a basso sviluppo di calore (LH) conforme ai requisiti specificati al punto 7 e al punto 9.2.3 della UNI EN 197-1 di classe 32.5R.

Mentre per i pali si raccomanda l'uso di cemento CEM II/A-LL 42.5R o CEM II/A-S 42.5R nel caso il getto sia eseguito nei mesi invernali, CEM II/A o II/B-LL 32.5N o 32.5R nel caso il getto sia eseguito nei mesi estivi, oppure cemento pozzolanico alle ceneri volanti (CEM IV/A-V o IV/B-V) o d'altoforno (CEM III/A o CEM III/B). In ogni caso il cemento dovrà essere provvisto di marcatura CE e conforme alla norma UNI-EN 197-1.

4.10 Aggregati

Sono idonei alla produzione di calcestruzzo per uso strutturale gli aggregati ottenuti dalla lavorazione di materiali naturali, artificiali, ovvero provenienti da processi riciclo, ottenuti da frantumazione di macerie provenienti dalla demolizione di edifici, di strutture in calcestruzzo armato o dagli scarti di produzione degli stabilimenti di calcestruzzo, conformi alla Norma Europea UNI EN 12620 e della UNI EN 8520-2 e, per gli aggregati leggeri, alla Norma Europea UNI EN 13055-1. I limiti per l'uso di aggregati di riciclo è riportato nella tabella seguente:

Aggregati di riciclo provenienti da	Classe di resistenza del calcestruzzo	Percentuale massima di impiego
Demolizione di edifici	C8/10	Fino al 100%
Demolizione di solo calcestruzzo o c.a.	≤ C30/37	≤ 30%
Demonzione di solo carcestruzzo o c.a.	≤ C20/27	Fino al 60%

Il sistema di attestazione della conformità di tali aggregati, ai sensi del DPR n°246/93, della Direttiva 89/106/CEE e del D.M. 17/01/2018, è indicato nella seguente tabella:

Specifica tecnica Europea armonizzata di riferimento	Uso previsto	Sistema di attestazione di conformità
Aggregati per calcestruzzo UNI EN 12620 e UNI EN 13055-1	Calcestruzzo strutturale	2+

Gli aggregati dovranno comunque presentare una massa volumica non inferiore a 2600 Kg/m³, al fine di evitare l'uso di materiale poroso che può compromettere la resistenza caratteristica a compressione del calcestruzzo.

Nella realizzazione della malta cementizia dovranno essere usate:

- Sabbia viva con grani assortiti da 0 a 7 mm, non proveniente da rocce in decomposizione, scricchiolante alla mano, pulita, priva di materiale organico o di salsedine;
- Ghiaia, non friabile, priva di sostanze estranee, terra o salsedine. Se sporca, dovrà essere accuratamente lavata.

Gli aggregati usati dovranno, inoltre, essere non gelivi, cioè la capacità di assorbimento di acqua dovrà essere inferiore all'1% in peso, in modo tale da evitare eventuali fenomeni di congelamento interno alla struttura.

4.11 Additivi

Gli additivi per calcestruzzo sono classificati dalla norma UNI EN 934-2 in base all'azione che essi hanno sulle proprietà dell'impasto.

Nel caso in studio si dovrà ricorrere a:

- additivi superfluidificanti provvisti di marcature CE conforme ai prospetti 3.1 ed 3.2 della norma UNI EN 934-2, nel caso in cui il getto sia effettuato nei mesi invernali;
- additivo superfluidificante ritardante provvisto di marcatura CE conforme ai prospetti 11.1 ed 11.2 della norma UNI EN 934-2; nel caso in cui il getto sia realizzato nei mesi estivi.

Data la natura delle opere di fondazione, per le quali è complessa la vibratura del getto, e vista la notevole quantità di armatura metallica, si consiglia anche l'uso di:

additivo modificatore di viscosità, che consenta di ottenere impasti fluidi, tipo
 RHEOMATRIX o similari, dosato in misura di 0,5 – 1,5 l/mc.

4.12 Copriferro e dimensione degli inerti

Ai fini di preservare le armature dai fenomeni di aggressione ambientale, dovrà essere previsto un idoneo copriferro il cui valore va misurato tra la parete interna del cassero e la generatrice dell'armatura metallica più vicina. Vale pertanto: $c_{nom} = c_{min} + \Delta h$.

In accordo con il D.M. 17/01/2018, il valore minimo del copriferro dovrà essere scelto come il valore massimo tra:

- $c_{min,b}$ = copriferro minimo necessario per l'aderenza delle armature;
- $c_{min,dur} + \Delta c_{dur,\gamma}$ $\Delta c_{dur,st}$ $\Delta c_{dur,add}$ essendo:

c_{min,dur} = copriferro minimo necessario per la durabilità dell'opera;

 $\Delta c_{dur,\gamma}$ = valore aggiuntivo del copriferro legato alla sicurezza, in genere posto pari a zero;

 $\Delta c_{dur,st}$ = riduzione del copriferro quando si usa acciaio inossidabile, in genere posto pari a zero;

 $\Delta c_{dur,add}$ = riduzione del copriferro quando si ricorre a protezioni aggiuntive, in genere posto pari a zero;

- 10 mm.

La tolleranza di posizionamento delle armature Δh , visto le particolari opere in esame, è stato assunto pari a 10 mm.

4.13 Copriferro minimo necessario per l'aderenza delle armature

Tale copriferro è quello necessario per garantire un corretto trasferimento degli sforzi tra l'armatura metallica ed il calcestruzzo ed è pari al diametro delle barre aumentato di 5 mm. Facendo riferimento all'armatura di base, costituita da ferri di diametro 32 mm:

$$c_{min,b} = \phi + 5 = 32 + 5 = 37 \text{ mm}$$

4.14 Copriferro minimo per garantire la durabilità

L'Eurocodice 2 fornisce i valori minimi del copriferro in funzione del tipo di armatura, della classificazione strutturale e della classe di esposizione ambientale, come riportato nella tabella seguente, relativamente a c.a.o.

	Classe di esposizione ambientale						
Classe strutturale	X0	XC1	XC2/XC3	XC4	XD1/XS1	XD2/XS2	XD3/XS3
S1	10	10	10	15	20	25	30
S2	10	10	15	20	25	30	35
S3	10	10	20	25	30	35	40
S4	10	15	25	30	35	40	45
S5	15	20	30	35	40	45	50
S6	20	25	35	40	45	50	55

L'Eurocodice 2 stabilisce che le opere con vita nominale minore o uguale a 50 anni, ricadono in classe S4. Per le opere per le quali è prevista una vita nominale maggiore ai 100 anni, quali le opere strategiche, la UNI EN 1992-1-1 raccomanda di aumentare di due valori la classe strutturale, considerando di fatto la classe S6. Quindi, per una classe di esposizione XC4, si ha un valore di $c_{min,dur} = 40 \text{ mm}$.

In base alle considerazioni precedenti, il valore minimo del copriferro dovrà essere, quindi, posto pari al valore massimo tra i seguenti:

$$c_{min,b} = 37 \text{ mm};$$

-
$$c_{min,dur} + \Delta c_{dur,\gamma} - \Delta c_{dur,st} - \Delta c_{dur,add} = 40 \text{ mm}$$

- 10 mm.

Si ricava, infine, il valore nominale del copriferro che dovrà essere, pari a:

$$c_{nom} = c_{min} + \Delta h = 40 + 10 = 50 \text{ mm}$$

Il copriferro nominale così calcolato è specificato in tutte le tavole di progetto e nei documenti di calcolo.

4.15 Dimensione massima degli aggregati

La dimensione massima degli inerti è scelta in modo tale da soddisfare contemporaneamente le seguenti disequazioni:

- $D_{\text{max}} \leq \frac{1}{4}$ * sezione minima dell'elemento strutturale;
- $D_{\text{max}} \leq \text{interferro} 5 \text{ mm};$
- $D_{\text{max}} \leq \text{copriferro nominale * 1,3.}$

Per quanto riguarda la sezione minima dell'elemento strutturale, essa è posta pari a 1,00 m. Per valutare l'interferro, si fa riferimento all'armatura radiale inferiore della fondazione in prossimità del colletto formata da ϕ 32 posti ogni 7 cm: interferro pari a 3,8 cm.

Di conseguenza:

-
$$D_{\text{max}} \le \frac{1}{4}$$
* sezione minima dell'elemento strutturale = $\frac{1}{4}$ * 1600 = 400 mm;

-
$$D_{\text{max}} \le \text{interferro} - 5 \text{ mm} = (30-5) - 5 = 30-5 = 25 \text{ mm};$$

-
$$D_{\text{max}} \le \text{copriferro nominale} * 1,3 = 50 * 1,3 = 65 \text{ mm}.$$

Il soddisfacimento delle disequazioni sopra riportate ha come obiettivo quello di usare inerti che permettano:

- un corretto riempimento della cassaforma;
- al calcestruzzo di fluire attraverso l'armatura;
- garantire che parte del copriferro sia occupato dagli inerti più grossi.

Vista la notevole quantità di armatura metallica presente e vista la distanza molto piccola tra le barre d'armatura, soprattutto nella parte inferiore della fondazione, la dimensione massima degli inerti nella miscela cementizia non dovrà essere superiore a:

- 16 mm per la parte di fondazione in cui è presente lo strato superiore ed inferiore di armatura (per uno spessore di almeno 10 cm);
- 20 mm per il resto della fondazione.

4.16 Modalità di messa in opera e disarmo

I getti saranno opportunamente stipati e vibrati e la loro superficie verrà tenuta umida per almeno tre giorni. Sarà comunque vietata l'esecuzione di getti quando la temperatura esterna è minore di zero gradi.

Il disarmo delle casseformi, nelle costruzioni in cemento armato normale, nelle migliori

condizioni atmosferiche, dovrà avvenire:

non prima di tre giorni.

4.17 Calcestruzzo non strutturale

Al di sotto di tutte le opere di fondazione delle strutture in cemento armato, per livellare nel miglior modo possibile il piano di posa delle fondazioni, si dovrà eseguire un getto di calcestruzzo magro. Poiché tale calcestruzzo non ha nessuna funzione strutturale, si potrà eseguire il getto con un calcestruzzo di classe C20/25.

4.18 Prescrizioni sulle tipologie di acciaio

Nel presente progetto dovrà essere usato acciaio saldabile tipo B450C, qualificato secondo le Norme riportate in premessa. L'acciaio B450C dovrà essere caratterizzato dai seguenti valori nominali di tensioni caratteristiche di snervamento e rottura:

f _{y,nom}	450	N/mm ²
$f_{t,nom}$	540	N/mm ²

Tali tensioni sono poste a base dei calcoli. Inoltre deve rispettare i requisiti riportati nella tabella seguente:

Caratteristiche	Requisiti	
Tensione caratteristica di snervamento	f_{yk}	$\geq f_{y,nom}$
Tensione caratteristica di rottura f_{tk}		$\geq f_{t,nom}$
$(f_{\rm t}/f_{\rm y})_{\rm k}$		≥ 1,15
		≤ 1,35
$(\mathrm{f_y}/\mathrm{f_{y,nom}})_\mathrm{k}$		≤ 1,25
Allungamento		≥ 7,5%

L'acciaio per cemento armato deve essere prodotto in stabilimento sotto forma di barre o rotoli, reti e tralicci. Prima della fornitura in cantiere i singoli elementi possono essere saldati, presagomati o preassemblati sotto la vigilanza del Direttore dei Lavori o in centri di trasformazione.

Tutti gli acciai usati come ferri d'armatura per il calcestruzzo devono essere ad aderenza migliorata.

4.19 Giunzioni

La sovrapposizione dei ferri d'armatura dovrà essere pari almeno a quanto riportate nella seguente tabella:

LUNGHEZZA SOVRAPPOSIZIONE MINIMA (mm) CEMENTO C30/37 - ACCIAIO B450 C				
Diametro della barra	condizione favorevole	condizione sfavorevole		
32	1550	2250		
28	1400	1950		
26	1300	1800		
24	1200	1700		
22	1100	1550		
20	1000	1400		

L'interferro nelle sovrapposizioni non dovrà essere superiore a 6 volte il diametro dei ferri usati. Inoltre, secondo quanto previsto dalla normativa vigente, le superfici delle singole barre d'armatura dovranno essere distanziate di almeno una volta il loro diametro e comunque poste ad una distanza non inferiore a 30 mm.

4.20 Diametri ammissibili nei mandrini per barre piegate

Il diametro minimo di piegatura di una barra deve conforme a quanto disposto dalla UNI EN 1992-1, così come riportato nella seguente tabella:

Diametro della barra	Diametro minimo del mandrino
$\emptyset \le 16 \text{ mm}$	4 Ø
$\emptyset \ge 16 \text{ mm}$	7 Ø
Diametro della barra	Diametro minimo del mandrino
32	224
28	196
26	182
24	168
22	154
20	140

STRADE DI ACCESSO E VIABILITÀ DI SERVIZIO

5.1 Generalità

5

All'interno del parco è presente una significativa rete di viabilità esistente. Essa, opportunamente modificata sarà utilizzata per accedere ad ognuna delle piattaforme degli aerogeneratori, sia durante la fase di esecuzione delle opere che nella successiva manutenzione del parco eolico e costituiranno peraltro spesso una utile viabilità aperta a tutti per la fruizione del territorio. Nella definizione del layout dell'impianto è stata sfruttata la viabilità esistente onde contenere gli interventi. La viabilità del parco serve tutti gli aerogeneratori ed è costituita dagli assi viari le cui caratteristiche dimensionali sono riportati nella tabella seguente.

Nome asse	L tot (m)	L strada esistente (m)	L strada nuova (m)	Pend. Max.
asse WTG-01	247,786	0,000	247,786	7,6%
asse WTG-02	1.543,282	1.325,000	218,282	3,9%
asse WTG-03	936,335	826,335	110,000	4,5%
asse WTG-04	779,476	611,000	168,476	2,6%
asse WTG-05	295,741	130,000	165,741	6,2%
asse WTG-06	370,688	0,000	370,688	9,7%
asse giro	135,665	0,000	135,665	2,1%
Totali	4.308,973	2.892,335	1.416,638	
%	100,00%	67,12%	32,88%	

Tab.- Tabella con individuazioni degli assi stradali e relative lunghezze

Complessivamente la lunghezza della viabilità del parco eolico è pari a 4.308,973 m di cui 2.892,335 m, pari al 67.12%, riguardano modifiche a viabilità esistente mentre 1.416,638 m pari al 32,88 % riguardano nuove viabilità; dunque, nel complesso per realizzare 37,2 MW circa di impianto occorrerà realizzare appena 1.416,638 m di nuove strade sterrate.

Le nuove strade sterrate, ove possibile, saranno realizzate in modo tale da interessare marginalmente i fondi agricoli; essi avranno lunghezze e pendenze delle livellette tali da seguire, per quanto possibile, la morfologia propria del terreno evitando eccessive opere di scavo o riporto.

La costruzione delle strade ed il rinnovo di quelle esistenti non sono solo a vantaggio del parco eolico ma permette anche un migliore accesso a chi le utilizza per l'agricoltura e per la pastorizia, nonché per i mezzi antincendio, fondamentali in una zona arida ed a volte soggetta a incendi specie nel periodo estivo. La progettazione della viabilità è stata condotta secondo le specifiche tecniche tipiche dei maggiori fornitori di aerogeneratori con dimensioni e pesi compatibili.

Viabilità				
Larghezza carreggiata per R>Rmin	5,00 m			
Pendenza trasversale	2% a schiena d'asino			
Raggio planimetrico minimo (Rmin)	120 m			
Allargamenti per R <rmin< td=""><td>Caso per caso con simulazione mezzo</td></rmin<>	Caso per caso con simulazione mezzo			
Pendenza max livelletta (rettifilo)	18%			
Pendenza max livelletta (curva con R<120m)	10%			
Pendenza livelletta con traino	>14%			
Raccordo verticale minimo convesso	550 m			
Raccordo verticale minimo concavo	550 m			
Pendenza max livelletta per stazionamento	2%			
camion				
Carico max assiale sul piano stradale (t)	19,4t/asse			
Piazzole				
Dimensioni standard per piazzola intermedia	La piazzola per un montaggio standard è costituita da un trapezio rettangolo B=61,00 (m); b=30,00(m); h=38,00(m) oltre ad un quadrato 22,00(m) x 16,00(m) ove sarà allocato l'aerogeneratore e un ulteriore rettangolo 5,00(m) x 88,00(m).			
Piazzola ausiliari per il montaggio del braccio gru straliciata	n.2 da 18.00 x 7.00			
Pendenze max longitudinali	0,50 %			

Tab 3 -Specifiche principali di viabilità e piazzole

La sezione stradale, con larghezza di 5,00 m più due banchine laterali di 0,5 m, sarà realizzata in massicciata composta da uno strato di fondazione in misto calcareo di 40 cm, eventualmente steso su geotessile disteso alla base del cassonetto stradale a diretto contatto con il terreno, allo scopo di limitare al massimo le deformazioni e i cedimenti localizzati; superiormente sarà previsto uno strato di finitura/usura in misto stabilizzato, dello spessore di 20 cm.

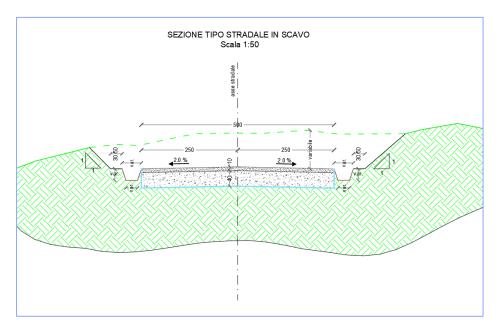


Fig 2: Sezione tipo di strada in scavo

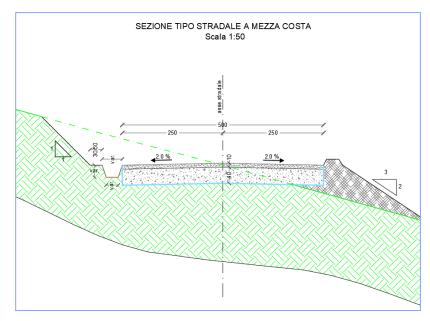


Fig 3: Sezione tipo di strada a mezzacosta

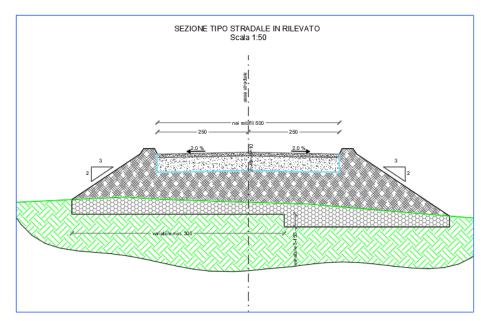


Fig 4: Sezione tipo di strada in rilevato

o granulometrico con materiale classificato come "A1" ondo - UNI CNR 10006:2002 to di fondazione con materiale classificato come "A1" ondo - UNI CNR 10006:2002 vato con materiale appartenente alla classe A1 ntuale bonifica di spessore cm. 50 se il terreno sottostante è di ne caratteristiche; di spessore cm. 100 se il terreno è di
ondo - UNI CNR 10006:2002 /ato con materiale appartenente alla classe A1 intuale bonifica di spessore cm. 50 se il terreno sottostante è di ne caratteristiche; di spessore cm. 100 se il terreno è di
ntuale bonifica di spessore cm. 50 se il terreno sottostante è di ne caratteristiche; di spessore cm. 100 se il terreno è di
ne caratteristiche; di spessore cm. 100 se il terreno è di
tteristiche scadenti; la bonifica sarà fatta con materiale calcareo o di pezzatura variabile da 5 a 10 cm.
mpimento terre rinforzate con eriale calcareo pulito proveniente da cava classificato come "A1" ondo- UNI CNR 1006:2002 di pezzatura da 0 a 3 cm
eno naturale

Nel rispetto delle pendenze e dei raggi di curvatura di progetto, la nuova viabilità è stata tracciata ponendo per quanto possibile le livellette sul profilo del terreno, al fine di minimizzare scavi e rinterri.

5.2 Materiali per rilevati e sovrastrutture – bonifiche e sottofondi

Di seguito si riportano le caratteristiche principali dei materiali necessari per la costruzione di

strade e piazzole.

5.2.1 Rilevati aridi e soprastrutture per piazzole e strade

L'esecuzione dei corpi di rilevato e delle soprastrutture (ossatura di sottofondo) per strade e per le piazzole di alloggiamento degli aerogeneratori deve avvenire coerentemente ai disegni ed alle prescrizioni di progetto.

È richiesta particolare attenzione nella preliminare "gradonatura" dei piani di posa, nella profilatura esterna dei rilevati e nella conformazione planimetrica delle soprastrutture, specie nelle piazzole.

Ove queste ultime si posano su sottofondo ottenuto mediante scavo di sbancamento, allorché la compattazione del terreno in sito non raggiunge il valore prefissato si deve provvedere alla bonifica del sottofondo stesso mediante sostituzione di materiale, come previsto al successivo punto "Bonifica dei piani di posa".

I materiali da utilizzare per la formazione dei rilevati delle strade e, o delle piazzole dovranno appartenere alle categorie A1, A2.1, A2.2, A2.3, A2.4, A.2.5, A3 secondo la classificazione della norma UNI CNR 10006:2002.

L'esecuzione del rilevato può iniziare solo quando il terreno in sito risulta scoticato, gradonato e costipato con uso di rullo compressore adatto alle caratteristiche del terreno; il costipamento può ritenersi sufficiente quando viene raggiunto il valore di capacità portante corrispondente ad un Modulo di deformazione "Md" di almeno 30 N/mm², da determinarsi mediante prove di carico su piastra, con le modalità riportate nel seguito, e con frequenza di una prova ogni 500 m² di area trattata o frazione di essa.

5.2.2 Sovrastrutture per piazzole e strade

Per la formazione della sovrastruttura per piazzole e strade si deve utilizzare esclusivamente il misto granulare di cava classificato A1 secondo la classificazione della norma UNI CNR 10006:2002.

L'esecuzione della soprastruttura può avvenire solo quando il relativo piano di posa risulta regolarizzato, privo di qualsiasi materiale estraneo, costipato fino ai previsti valori di capacità portante (pari ad un "Md" di almeno 30 N/mm² per piani di sbancamento o bonifica, e pari ad un "Md" di almeno 80 N/mm² per piani ottenuti con rilevato) da determinarsi mediante prove di carico su piastra con la frequenza sopra definita.

Sia nell'esecuzione dei rilevati che delle soprastrutture il materiale deve essere steso a strati di 20-25 cm d'altezza, secondo quanto stabilito nei disegni di progetto, compattati, fino al raggiungimento del 95% della densità AASHO modificata, inclusi tutti i magisteri per

portare il materiale all'umidità ottima, tenendo presente che l'ultimo strato costipato consenta il deflusso delle acque meteoriche verso le zone di compluvio, e rifilato secondo progetto.

Il costipamento di ogni strato di materiale deve essere eseguito con adeguato rullo compressore previo eventuale innaffiamento o ventilazione fino all'ottimo di umidità.

Il corpo di materiale può dirsi costipato al raggiungimento del 95% della densità AASHO modificata e comunque quando ai vari livelli viene raggiunto il valore di "Md" pari almeno a quello richiesto, da determinarsi mediante prova di carico su piastra con le modalità di seguito descritte.

Per l'eventuale primo strato della soprastruttura è richiesto un Md di almeno 80 N/mm² mentre per lo strato finale della soprastruttura è richiesto un Md di almeno 100 N/mm².

Il controllo delle compattazioni in genere viene eseguito su ogni strato, mediante una prova di carico su piastra ogni 500 m² di area trattata o frazione di essa, e comunque con almeno n. 4 prove per strato di materiale.

A costipamento avvenuto, se i controlli risultano favorevoli, si dà luogo a procedere allo stendimento ed alla compattazione dello strato successivo.

5.2.3 Sistemazione del piano di posa

Il piano di posa è costituito dall'intera area di appoggio dell'opera in terra ed è rappresentato da un piano ideale al disotto del piano di campagna ad una quota non inferiore a 30 cm, che viene raggiunto mediante un opportuno scavo di sbancamento che allontani tutto il terreno vegetale superficiale; lo spessore dello sbancamento dipenderà dalla natura e consistenza dell'ammasso che dovrà rappresentare il sito d'impianto dell'opera.

Qualora, al disotto della coltre vegetale, si rinvenga un ammasso costituito da terreni Al, A3, A2 (secondo la classificazione C.N.R.) sarà sufficiente eseguire la semplice compattazione del piano di posa così che il peso del secco in sito (massa volumica apparente secca nelle unità S.I.) risulti pari al 90% del valore massimo ottenuto in laboratorio nella prova A.A.S.H.T.O. Mod. su un campione del terreno.

Per raggiungere tale grado di addensamento si potrà intervenire, prima dell'operazione di compattazione, modificando l'umidità in sito per modo che questa risulti prossima al valore ottimo rilevabile dalla prova A.A.S.H.T.O. Mod.

Se, invece, tolto il terreno superficiale (50 cm di spessore minimo) l'ammasso risulta costituito da terreni dei gruppi A4, A5, A6, A7 sarà opportuno svolgere una attenta indagine che consenta di proporre la soluzione più idonea alla luce delle risultanze dei rilevamenti geognostici che occorrerà estendere in profondità.

I provvedimenti da prendere possono risultare i seguenti:

- o approfondimento dello scavo di sbancamento, fino a profondità non superiori a 1,50÷2,00 m dal piano di campagna, e sostituzione del terreno in sito con materiale granulare Al (Ala od Alb), A3 od A2, sistemato a strati e compattato così che il peso secco di volume risulti non inferiore al 90% del valore massimo della prova A.A.S.H.T.O. Mod. di laboratorio; si renderà necessario compattare anche il fondo dello scavo mediante rulli a piedi di montone;
- o approfondimento dello scavo come sopra indicato completato, dove sono da temere risalite di acque di falda per capillarità, da drenaggi longitudinali con canalette di scolo o tubi drenanti che allontanino le acque raccolte dalla sede stradale;
- o sistemazione di fossi di guardia, soprattutto per raccogliere le acque superficiali lato monte, di tombini ed acquedotti in modo che la costruzione della sede stradale non modifichi il regime idrogeologico della zona.

Qualora si rinvengano strati superficiali di natura torbosa di modesto spessore (non superiore a 2,00 m) è opportuno che l'approfondimento dello scavo risulti tale da eliminare completamente tali strati.

Per spessori elevati di terreni torbosi o limo-argillosi fortemente imbibiti d'acqua, che rappresentano ammassi molto compressibili, occorrerà prendere provvedimenti più impegnativi per accelerare l'assestamento (con pali di sabbia o mediante precompressione statica per mezzo di un sovraccarico) ovvero sostituire l'opera in terra (rilevato) con altra più idonea alla portanza dell'ammasso.

Nei terreni acclivi la sistemazione del piano di posa dovrà essere realizzata a gradoni facendo in modo che la pendenza trasversale dello scavo non superi il 5%; in questo caso risulta sempre necessaria la costruzione lato monte di un fosso di guardia e di un drenaggio longitudinale se si accerta che il livello della falda è superficiale.

Per individuare la natura meccanica dei terreni dell'ammasso si consiglia di eseguire, dapprima, semplici prove di caratterizzazione e di costipamento:

- o umidità propria del terreno;
- o granulometria;
- o limiti ed indici di Atterberg;
- o prova di costipamento A.A.S.H.T.O. Mod.

Nei terreni che si giudicano molto compressibili si procederà ad ulteriori accertamenti mediante prove edometriche (su campioni indisturbati) o prove penetrometriche in sito.

Per i terreni granulari di apporto (tipo A1, A3, A2) saranno sufficienti le analisi di caratterizzazione e la prova di costipamento.

I controlli della massa volumica in sito negli strati ricostituiti con materiale granulare idoneo dovranno essere eseguiti ai vari livelli (ciascuno strato non dovrà avere spessore superiore a

30 cm a costipamento avvenuto) ed estesi a tutta la larghezza della fascia interessata.

Ad operazioni di sistemazione ultimate potranno essere ulteriormente controllate la portanza del piano di posa mediante la valutazione del modulo di compressibilità Me, secondo le norme CNR, eventualmente a doppio ciclo:

- o per rilevati fino a 4 m di altezza, il campo delle pressioni si farà variare da 0,5 a 1,5 daN/cm²;
- o per rilevati da 4 a 10 m, si adotterà il Δp compreso fra 1,5 e 2,5 daN/cm²•.

In ogni caso dovrà risultare Me≥300 daN/cm².

Durante le operazioni di costipamento dovrà accertarsi l'umidità propria del materiale; non potrà procedersi alla stessa e perciò dovrà attendersi la naturale deumidificazione se il contenuto d'acqua è elevato; si eseguirà, invece, il costipamento previo innaffiamento se il terreno è secco, in modo da ottenere, in ogni caso, una umidità prossima a quella ottima predeterminata in laboratorio (prova A.A.S.H.T.O. Mod.), la quale dovrà risultare sempre inferiore al limite di ritiro.

Prima dell'esecuzione dell'opera dovrà essere predisposto un tratto sperimentale così da accertare, con il materiale che si intende utilizzare e con le macchine disponibili in cantiere, i risultati che si raggiungono in relazione all'umidità, allo spessore ed al numero dei passaggi dei costipatori.

Durante la costruzione ci si dovrà attenere alle esatte forme e dimensioni indicate nei disegni di progetto, e ciascuno strato dovrà presentare una superficie superiore conforme alla sagoma dell'opera finita.

Le scarpate saranno perfettamente profilate e, ove richiesto, saranno rivestite con uno spessore (circa 20 cm) di terra vegetale per favorire l'inerbimento.

Il volume compreso fra il piano di campagna ed il piano di posa del rilevato (definito come il piano posto 30 cm al disotto del precedente) sarà eseguito con lo stesso materiale con cui si completerà il rilevato stesso.

I piani di posa in corrispondenza di piazzole o sedi stradali ottenuti per sbancamento ed atti a ricevere la soprastruttura, allorché il terreno di imposta non raggiunge nella costipazione il valore di Md pari a 30 N/mm², o i piani di posa dei plinti di fondazione il cui terreno costituente è ritenuto non idoneo a seguito di una prova di carico su piastra, devono essere oggetti di trattamento di "bonifica", mediante sostituzione di uno strato di terreno con equivalente in misto granulare arido proveniente da cava di prestito.

Detto materiale deve avere granulometria "B" (pezzatura max 30 mm) come risulta dalla norma CNR-UNI 10006 e deve essere steso a strati e compattato con criteri e modalità già definiti al precedente punto "Rilevati aridi e soprastrutture per piazzole e strade".

Nel caso di piazzole e strade, la bonifica può ritenersi accettabile quando a costipamento

avvenuto viene raggiunto il valore di capacità portante corrispondente ad un Md di almeno 30 N/mm², da determinarsi mediante prove di carico su piastra - con le modalità già definite in precedenza - con la frequenza di una prova ogni 500 m² di area bonificata, o frazione di essa.

Nel caso di plinti di fondazione, per l'accettazione della bonifica devono essere raggiunti i valori di capacità portante corrispondenti ad un Md di almeno 30 N/mm².

5.2.4 Pavimentazione con materiale arido

Il pacchetto stradale avrà uno spessore complessivo di cm 60 e dovrà essere realizzata con materiale classificato come A1.

I primi 30 cm a contatto con il terreno naturale saranno realizzati con materiali provenienti dagli scavi, previa classificazione tipo A1 secondo la classificazione UNI 10006 mentre i rimanenti 30 cm saranno realizzati con misto granulometrico, proveniente da cava, tipo A1 avente dimensioni massima degli inerti pari a 30 mm, rullato fino all'ottenimento di un Md>100 N/mm².

6 OPERE IDRAULICHE

La durabilità delle strade e delle piazzole di un parco eolico è garantita da un efficace sistema idraulico di allontanamento e drenaggio delle acque meteoriche.

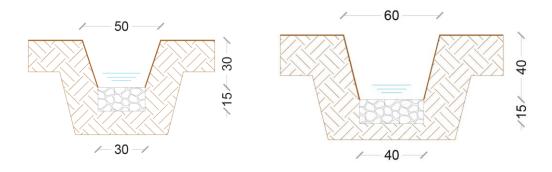
La viabilità esistente sarà interessata da un'analisi dello stato di consistenza delle opere idrauliche già presenti: <u>laddove necessario</u>, tali opere idrauliche verranno ripristinate e/o riprogettate per garantire la corretta raccolta ed allontanamento delle acque defluenti dalla sede stradale, dalle piazzole o dalle superfici circostanti.

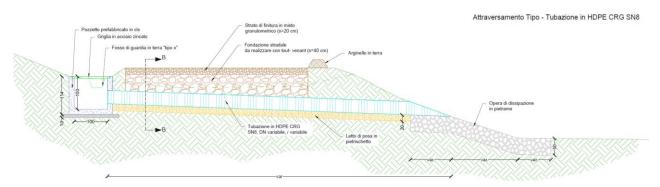
Le acque defluenti dalla sede stradale, dalle piazzole o dalle superfici circostanti verranno raccolte ed allontanate dalle opere idrauliche in progetto, costituite dai seguenti elementi:

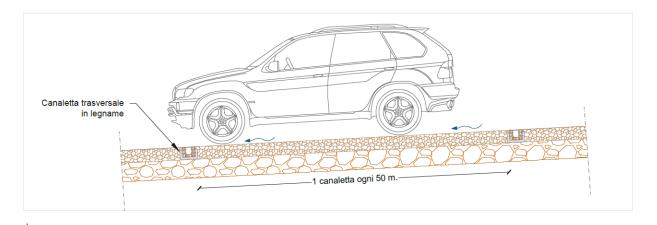
- o Fossi di guardia in terra "Tipo A" (per Q≤0,1 m³/s), eventualmente con fondo rivestito in pietrame (i≥7,00%) e con briglie filtranti in legname (i≥12,00%);
- o Fossi di guardia in terra "Tipo B" (per Q≥0,1 m³/s), eventualmente con fondo rivestito in pietrame (i≥7,00%) e con briglie filtranti in legname (i≥12,00%);
- o Opere di dissipazione in pietrame;
- Pozzetti in cls prefabbricato;
- o Arginello in terra;
- o Attraversamenti in HDPE CRG SN8;
- o Canalette in legname per tagli trasversali alla viabilità (*i*≥15%).

La tipologia di strade da realizzarsi permette di affermare che non vi è alcuna modifica apprezzabile dell'equilibrio della circolazione idrica superficiale preesistente. Le opere idrauliche tendono da una parte a garantire l'equilibrio idrico e dall'altra a mantenere agibili le suddette strade.

I fossi di guardia, a sezione trapezoidale, hanno un duplice ruolo di protezione della scarpata lungo la sede stradale e di allontanamento delle acque dalla sede stradale agli impluvi naturali. Nel primo caso, i fossi di guardia sono posti alla base della scarpata nel caso di sezione stradale in rilevato, mentre sono in testa alla scarpata nel caso di sezione in trincea.


Pur trattandosi di opere idrauliche modeste si è preferito non tralasciare nulla e supportare le scelte progettuali da appositi calcoli idraulici riportati nella apposita relazione.


Si rimanda alla *relazione idraulica* ed alla *relazione idrologica* per tutti i dettagli dello studio e delle opere di protezione idraulica.


Di seguito sono riportate alcune immagini dei i manufatti idraulici utilizzati per la regimentazione idraulica stradale e per lo scarico delle acque presso il reticolo idrografico naturale.

7 CAVIDOTTI

7.1 GENERALITÀ

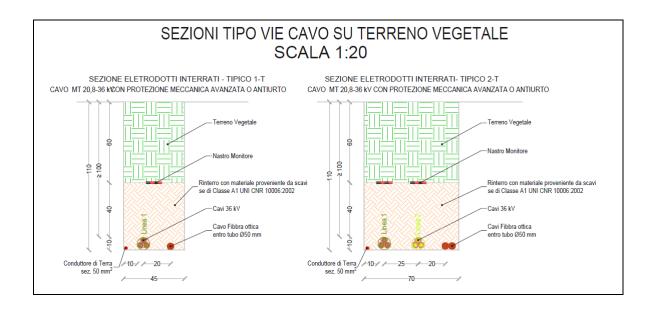
Il parco eolico avrà una potenza complessiva di 37,20 MW, data dalla somma delle potenze elettriche di n. 6 aerogeneratori della potenza unitaria massima di 6,2 MW. Dal punto di vista elettrico, gli aerogeneratori sono collegati fra di loro in due gruppi di 3 aerogeneratori e, costituendo così n. 2 distinti sottocampi, come di seguito meglio rappresentato.

Sottocampo	Aerogeneratori	Potenza	Comune
LINEA 1	WTG02-WTG01-WTG06-SE	18,6 MW	Mazara del Vallo
LINEA 2	WTG03-WTG04-WTG05-SE	18,.6 MW	Mazara del Vallo

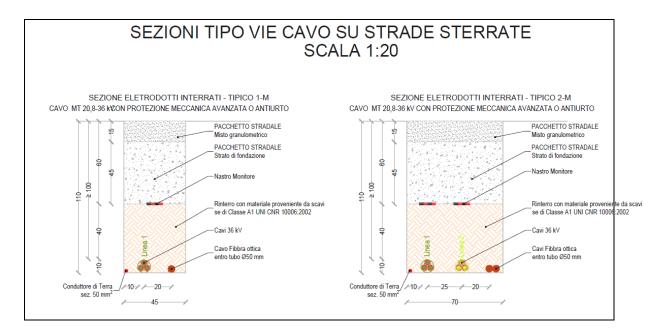
Analogamente, gli aerogeneratori di ciascun sotto campo sono collegati fra loro in entra-esce con una linea elettrica in cavo interrato MT 36 kV, di sezione pari a crescente dal primo all'ultimo aerogeneratore. Tutti i cavi di cui si farà utilizzo, sia per il collegamento interno dei sottocampi che per la connessione alla SSE, saranno del tipo standard con schermo elettrico. Nella tabella che segue si riporta calcolo preliminare delle linee elettriche di collegamento da rivalutare in fase esecutiva.

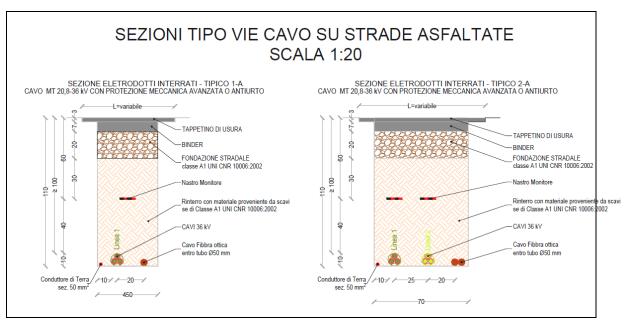
LINEA	PARTENZA	ARRIVO	Sezione cavo [mm²]	Lunghezza cavo [m]	Potenza attiva [MW]	N. circuiti nella sez. di scavo
LINEA 1	WTG02	WTG01	3x1x185	2.075	6,2	2
	WTG01	WTG06	3x1x300	1.225	12,4	2
	WTG06	EDIFICIO CONSEGNA	3x1x630	15.195	18,6	2
LINEA 2	WTG03	WTG04	3x1x185	1.975	6,2	2
	WTG04	WTG05	3x1x300	2.685	12,4	2
	WTG05	EDIFICIO CONSEGNA	3x1x630	15.270	18,6	2
LINEA 1	EDIFICIO CONSEGNA	SE TERNA PARTANNA 3	3x1x630	100	18,6	2
LINEA 2	EDIFICIO CONSEGNA	SE TERNA PARTANNA 3	3x1x630	100	18,6	2
			POTENZA COMPLESSIVA		37,200	

Tab 5 Identificazione dei sottocampi, e delle caratteristiche dei cavidotti



In generale, per tutte le linee elettriche, si prevede la posa direttamente interrata dei cavi, con protezioni meccaniche ove necessario, ad una profondità di 1,10 m dal piano di calpestio. In caso di particolari attraversamenti o di risoluzione puntuale di interferenze, le modalità di posa saranno modificate in conformità a quanto previsto dalla norma CEI 11-17 e dagli eventuali regolamenti vigenti relativi alle opere interferite, mantenendo comunque un grado di protezione delle linee non inferiore a quanto garantito dalle normali condizioni di posa.


7.2 SISTEMA DI POSA CAVI


In generale, per tutte le linee elettriche, si prevede la posa direttamente interrata dei cavi, senza ulteriori protezioni meccaniche, ad una profondità di 1,10 m dal piano di calpestio. In caso di particolari attraversamenti o di risoluzione puntuale di interferenze, le modalità di posa saranno modificate in conformità a quanto previsto dalla norma CEI 11-17 e dagli eventuali regolamenti vigenti relativi alle opere interferite, mantenendo comunque un grado di protezione delle linee non inferiore a quanto garantito dalle normali condizioni di posa. Le trincee, all'interno delle quali saranno collocati i cavi, avranno profondità non inferiore a 1.10 m e larghezza compresa tra 0,40 m per una terna, 0,60 per due terne e 0,80 m per tre terne come riportato nelle figure seguenti che riportano le sezioni di scavo con i ripristini variabili in finzione della tipologia di strade:

Le modalità di esecuzione dei cavidotti su strade di parco, nell'ipotesi in cui vengano realizzati contestualmente, saranno le seguenti:

FASE 1 (apertura delle piste laddove necessario):

apertura delle piste e stesura della fondazione stradale per uno spessore di cm 40;

FASE 2 (posa cavidotti);

• Scavo a sezione obbligata fino alla profondità relativa di -1,20 m dalla quota di

- progetto stradale finale;
- collocazione della corda di rame sul fondo dello scavo e costipazione della stessa con terreno vagliato proveniente dagli scavi;
- collocazione delle terne di cavo MT, nel numero previsto come da schemi di collegamento;
- collocazione della fibra ottica;
- rinterro con materiale granulare classifica A1 secondo la UNI CNR 10001 e s.m.i.
- rinterro con materiale proveniente dagli scavi compattato, per uno spessore di 25 cm;
- collocazione di nastro segnalatore della presenza di cavi di media tensione;
- rinterro con materiale proveniente dagli scavi del pacchetto stradale precedentemente steso (in genere 40 cm);

FASE 3 (finitura del pacchetto stradale):

Stesura dello strato di finitura stradale pari a 20 cm fino al piano stradale di progetto finale con materiale proveniente da cava o da riutilizzo del materiale estratto in situ (vedi piano di utilizzo in situ delle terre e rocce da scavo).

Le modalità di esecuzione dei cavidotti su strade di parco, qualora i cavidotti vengano posati precedentemente alla realizzazione della viabilità, saranno suddivise nelle seguenti fasi.

FASE 1 (posa dei cavidotti):

- Scavo a sezione obbligata fino alla profondità relativa di -1,20 m dalla quota di progetto stradale finale;
- collocazione della corda di rame sul fondo dello scavo e costipazione della stessa con terreno vagliato proveniente dagli scavi;
- collocazione delle terne di cavo MT, nel numero previsto come da schemi di collegamento;
- collocazione della fibra ottica;
- rinterro con sabbia o misto granulare stabilizzato con legante naturale, vagliato con pezzatura idonea come da specifiche tecniche, per uno spessore di 20 cm;
- rinterro con materiale degli scavi compattato, per uno spessore di 25 cm;
- collocazione di nastro segnalatore della presenza di cavi di media tensione;
- collocazione di fondazione stradale con materiale proveniente dagli scavi se idoneo

(Classe A1 UNICNR10006) fino al raggiungimento della quota della strada esistente.

FASE 2 (finitura del pacchetto stradale):

- Collocazione di fondazione stradale con materiale proveniente dagli scavi se idoneo (Classe A1 UNICNR10006) fino alla profondità relativa di -0,20 m dalla quota di progetto stradale finale;
- stesura dello strato di finitura stradale pari a 20 cm fino al piano stradale di progetto finale con materiale proveniente da cava o da riutilizzo del materiale estratto in situ (vedi piano di utilizzo in situ delle terre e rocce da scavo);

7.3 FIBRA OTTICA DI COLLEGAMENTO

Per permettere il monitoraggio e controllo dei singoli aerogeneratori, il presente progetto prevede la realizzazione di un nuovo sistema di telecontrollo, il quale sovrintenderà al funzionamento del parco eolico in esame.

Per la realizzazione del sistema si farà uso di un collegamento in fibra ottica, in configurazione entra-esce da ciascun aerogeneratore.

Lo schema di collegamento del sistema di monitoraggio segue la stessa logica dello schema di collegamento elettrico riportato nel capitolo precedente.

In particolare, si farà uso di un cavo in fibra ottica mono-modale da 12 fibre, idoneo alla posa interrata, di caratteristiche prestazionali tali da garantire una attenuazione del segnale minima, così da permettere la migliore qualità nella trasmissione delle informazioni.

Le fibre devono essere corredate di tutti gli accessori necessari alla loro giunzione ed attestazione.

7.4 SISTEMA DI TERRA

Il sistema di terra del parco eolico è costituito da una maglia di terra formata dai sistemi di dispersori dei singoli aerogeneratori e dal conduttore di corda nuda che li collega. La maglia complessiva che si viene così a creare consente di ottenere un valore di resistenza di terra tale da garantire un sufficiente margine di sicurezza, adeguato alla normativa vigente.

Il sistema di terra di ciascun aerogeneratore consisterà in più anelli dispersori concentrici, collegati radialmente fra loro, e collegati in più punti anche all'armatura del plinto di fondazione.

Il conduttore di terra di collegamento tra i vari aerogeneratori consiste invece in una corda di

rame nudo da 50 mmq, posta in intimo contatto con il terreno.

Particolare attenzione va posta agli attraversamenti lungo il tracciato del cavidotto.

Per evitare infatti che in caso di guasto si possa verificare il trasferimento di potenziali dannosi agli elementi sensibili circostanti, quali altri sotto-servizi, acquedotti, tubazioni metalliche, ecc. ecc., verrà utilizzato in corrispondenza di tutti gli attraversamenti, da 5 m prima e fino a 5 m dopo il punto di interferenza, un cavo Giallo/Verde di diametro 95mm² del tipo FG7(O)R, opportunamente giuntato al conduttore di rame nudo, tale da garantire una resistenza pari a quella della corda di rame nudo di 50 mm².

