
snam // /	PROGETTISTA TECHNIP TECHNIP TECHNIP Human 6 Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 1 di 176	Rev. 0

METANODOTTO: SESTINO-MINERBIO DN 1200 (48"), DP 75 bar

RELAZIONE SULLA DEFINIZIONE DELL'INPUT SISMICO

0	Emissione	A. ARIONE G. MONGIU M.CAIANIELLO A. CALLERIO	F. CULTRERA	P. RUSSO G. BRIA	Novembre 2023
Rev.	Descrizione	Elaborato	Verificato	Approvato	Data

INDICE

1	PREMESSA3	
2	DOCUMENTI DI RIFERIMENTO 4	
2.1	Documenti di progetto4	
2.2	Normativa4	
2.3	Bibliografia tecnica5	
3	ZONAZIONE DEL TRACCIATO SU BASE GEOTECNICA E GEODINAMICA 6	
3.1	Generalità6	
3.2	Punti di interesse per la definizione dell'azione sismica di base8	
4	INDAGINI DISPONIBILI	
4.1	Generalità12	
4.2	Campagna di Indagini Pregresse – 2008-201012	
4.3	Campagna di indagine 202319	
5	DEFINIZIONE DELL'AZIONE SISMICA DI PROGETTO	
5.1	Premessa34	
5.2	Vita nominale, classe d'uso, periodo di riferimento per l'azione sismica34	
5.3	Stati Limite e Relative Probabilità di Superamento36	
5.4 5.4.1	Accelerazione di riferimento su suolo rigido a _g	
	Approfondimento RSL su base regionale75.Approfondimento di II livello77.Approfondimento di III livello85	
5.6	Azione sismica di progetto145	
6	DEFINIZIONE DELLA MAGNITUDO DI RIFERIMENTO PER VERIFICHE ALIQUEFAZIONE	4
APPE	NDICE A – DATI DI INPUT E METODO DI ANALISI DI RISPOSTA SISMICA LOCALE (RSL)165	4

snam	PROGETTISTA TECHNIP TECHNIP TECHNIP Human 6 Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 3 di 176	Rev.

1 PREMESSA

Il progetto del metanodotto "Dorsale Adriatica", per la tratta "Sestino-Minerbio DN 1200 (48"), DP 75 bar" oggetto del presente documento, prevede una nuova linea di lunghezza pari a circa 141 km transitante all'interno dei confini amministrativi dei comuni compresi tra Sestino (Regione Toscana), a Sud-Est, e Minerbio (Regione Emilia-Romagna), a Nord-Ovest.

Il tracciato dell'opera si snoda per il primo tratto attraverso settori dell'Appennino centrale (ed in particolare dell'Appenino Romagnolo) interessati dalla presenza di elementi tettonico-strutturali attivi, traducibili nei concetti di sorgenti sismogenetiche composite e/o individuali, ritenute dalla comunità scientifica come il quadro di origine dell'intensa sismicità storica e strumentale dell'area. A seguire, il tracciato discende verso la pianura Emiliana, percorrendola in aree prossime alle sorgenti dei terremoti Emiliani più recenti.

Il presente studio ha come scopo la definizione dell'azione sismica di verifica per l'opera sulla base di quanto disposto dalle Norme Tecniche in vigore (DM 17 gennaio 2018. Approvazione delle Nuove Norme tecniche per le Costruzioni – Supplemento Ordinario alla G.U. n. 42 del 20.02.2018). Ad integrazione, si considererà nel seguito il corpo normativo Regionale vigente nelle regioni attraversate dalla condotta in oggetto (ossia, Toscana ed Emilia-Romagna).

snam	PROGETTISTA TECHNIP TECHNIP TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 4 di 176	Rev. 0

2 DOCUMENTI DI RIFERIMENTO

2.1 Documenti di progetto

- [1] Technip Techfem, Metanodotto Sestino-Minerbio, Relazione Geologica e Geotecnica. Doc. n. 10-LA-E-80004 rev. 0, 21/04/2008.
- [2] Technip Techfem, Metanodotto Sestino-Minerbio, Relazione Geologica e Geotecnica. Doc. n. 10-LA-E-80004 rev. 2, 10/08/2023.
- [3] Technip Techfem, Metanodotto Sestino-Minerbio, Indagini geognostiche. Doc. n. 10-LA-E-80005, 29/07/2008.
- [4] Technip Techfem, Metanodotto Sestino-Minerbio, Integrazione ad Indagini geognostiche. Doc. n. 10-LA-E-80006, 30/03/2009.
- [5] Technip Techfem, Metanodotto Sestino-Minerbio, Ulteriori Integrazioni ad Indagini geognostiche a seguito varianti di tracciato. Doc. n. 10-LA-E-80007, 30/11/2010.
- [6] Saipem, Metanodotto Sestino-Minerbio, Ulteriori Integrazioni ad Indagini geognostiche a seguito varianti di tracciato. Doc. n. 08-134SE.
- [7] Technip Techfem, Metanodotto Sestino-Minerbio, Report indagini geognostiche. Doc. n. 10-LA-E-80308
- [8] Technip Techfem, Metanodotto Sestino-Minerbio, Tracciato di progetto con indagini geognostiche pregresse ed integrative. Doc. n. 10-LB-D-85349

2.2 Normativa

- [9] Decreto Ministeriale del 17 gennaio 2018: "Approvazione delle Nuove Norme Tecniche per le Costruzioni", G.U. n.29 del 20.2.2018, Supplemento Ordinario n.30.
- [10] Circolare del Ministero delle infrastrutture e dei trasporti 21 gennaio 2019, n. 7 del Consiglio superiore del Lavori Pubblici recante "Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018".
- [11] DGR 476/2021 e DGR integrativa n. 564/2021, Atto di coordinamento tecnico degli studi di microzonazione sismica per la pianificazione territoriale e urbanistica (artt. 22 e 49, LR 24/2017).

snam // /	PROGETTISTA TECHNIP TECHNIP TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 5 di 176	Rev. 0

- [12] D.G.R.T. 977/21, MICROZONAZIONE SISMICA REGIONALE-Redazione delle specifiche tecniche regionali per l'elaborazione di indagini e studi di microzonazione sismica e prescrizioni per le analisi della Condizione Limite per l'Emergenza.
- [13] GdL DPC/Regioni (2008) Indirizzi e Criteri generali per la Microzonazione Sismica.

2.3 Bibliografia tecnica

- [14] Electric Power Research Institute (EPRI) (1993). Guidelines for Site Specific Ground Motions, Palo Alto, California. November. TR-102293.
- [15] Idriss IM (1990) Response of soft soil sites during earthquakes. In: Duncan JM (ed) Proceedings in H. Bolton seed memorial symposium, vol 2, pp 273–290.
- [16] Convenzione INGV-DPC 2004 2006, Progetto S1, Proseguimento della assistenza al DPC per il completamento e la gestione della mappa di pericolosità sismica prevista dall'Ordinanza PCM 3274 e progettazione di ulteriori sviluppi, Coordinatore: Carlo Meletti (INGV). Sito web: http://esse1.mi.ingv.it/.
- [17] Locati M., Camassi R., Rovida A., Ercolani E., Bernardini F., Castelli V., Caracciolo C.H., Tertulliani A., Rossi A., Azzaro R., D'Amico S., Conte S., Rocchetti E., Antonucci A. (2022). Database Macrosismico Italiano (DBMI15), versione 4.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/dbmi/dbmi15.4.
- [18] DISS Working Group (2021). Database of Individual Seismogenic Sources (DISS), Version 3.3.0: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. Istituto **Nazionale** Geofisica Vulcanologia (INGV). https://doi.org/10.13127/diss3.3.0
- [19] Rovida, A., Locati, M., Camassi, R., Lolli, B., Gasperini P. e Antonucci, A., 2022. CPTI15, Catalogo Parametrico dei Terremoti Italiani. Milano, https://emidius.mi.ingv.it/CPTI15-DBMI15/description CPTI15.htm.

snam //	PROGETTISTA TECHNIP ENERGIES (F) techfem Human 8 Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 6 di 176	Rev. 0

3 ZONAZIONE DEL TRACCIATO SU BASE GEOTECNICA E GEODINAMICA

3.1 Generalità

Il tracciato di progetto del metanodotto "Sestino-Minerbio" si estende per una lunghezza pari a circa 141 km all'interno dei confini amministrativi di alcuni comuni compresi tra Sestino (Regione Toscana), e Minerbio (Regione Emilia-Romagna), vedi Figura 3-1.

Il tracciato origina dall'impianto di interconnessione con il metanodotto esistente denominato "Rimini - San Sepolcro DN 650 (26") - P 70 bar" ubicato in località "Castelnuovo", nel territorio comunale di Sestino, in provincia di Arezzo. Sviluppandosi inizialmente con direzione prevalente Sud-Nord, il metanodotto interessa il territorio montuoso e collinare della catena appenninica al confine tra le regioni Toscana e Marche. Successivamente il tracciato approda in Emilia-Romagna percorrendo prima il fondovalle del Fiume Savio fino a raggiungere località "Monte Tiglio", ad Ovest della città di Cesena, per poi portarsi in direzione Sud-Est Nord-Ovest, sino ad affiancarsi all'esistente "Metanodotto Ravenna-Minerbio DN 750 (30")". Nel tratto finale il tracciato attraversa la porzione meridionale della Pianura Padana arrivando in corrispondenza della Centrale Snam Rete Gas situata nel comune di Minerbio (Città Metropolitana di Bologna).

I comuni attraversati dall'infrastruttura sono elencati in Tabella 3-1.

COOM	PROGETTISTA TECHNIP ENERGIES (F) techfem Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam // /	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 7 di 176	Rev. 0

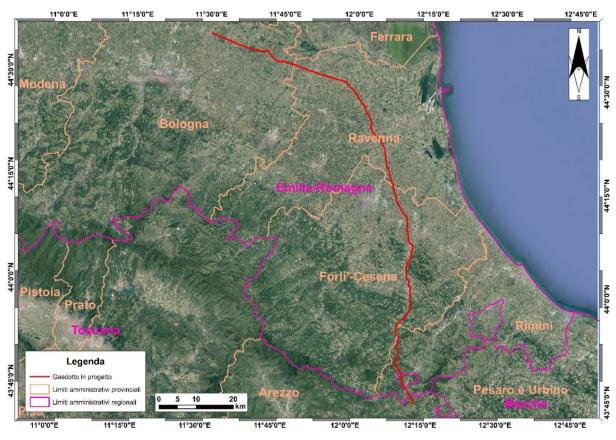


Figura 3-1: Tracciato di progetto del metanodotto – inquadramento territoriale.

Tabella 3-1: Comuni attraversati dal tracciato di progetto.

Progressiva		Pagiona	Comuna	
da (km)	a (km)	Regione	Comune	
0+000	2+649	Toscana	Sestino	
2+649	4+510	Emilia-Romagna (ex Marche)	Pennabilli	
4+510	4+863	Emilia-Romagna (ex Marche)	Casteldelci	
4+863	9+982	Toscana	Badia Tedalda	
9+982	10+264	Emilia-Romagna (ex Marche)	Sant'Agata Feltria	
10+264	12+676	Emilia-Romagna (ex Marche)	Casteldelci	
12+676	21+780	Emilia-Romagna (ex Marche)	Sant'Agata Feltria	
21+780	24+071	Emilia-Romagna	Sarsina	
24+071	25+055	Emilia-Romagna (ex Marche)	Sant'Agata Feltria	
25+055	26+347	Emilia-Romagna	Sarsina	
26+347	27+727	Emilia-Romagna	Sogliano al Rubicone	
27+727	30+885	Emilia-Romagna	Mercato Saraceno	
30+885	31+858	Emilia-Romagna	Sogliano al Rubicone	
31+858	36+179	Emilia-Romagna	Mercato Saraceno	

snam	PROGETTISTA TECHNIP TECHNIP TECHNIP THUMA 6 Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 8 di 176	Rev. 0

Progr	essiva	Dominuo	Camuna
da (km)	a (km)	Regione	Comune
36+179	37+947	Emilia-Romagna	Sogliano al Rubicone
37+947	39+424	Emilia-Romagna	Roncofreddo
39+424	40+201	Emilia-Romagna	Mercato Saraceno
40+201	59+550	Emilia-Romagna	Cesena
59+550	61+827	Emilia-Romagna	Bertinoro
61+827	63+214	Emilia-Romagna	Forlimpopoli
63+214	68+767	Emilia-Romagna	Forlì
68+767	81+080	Emilia-Romagna	Ravenna
81+080	81+704	Emilia-Romagna	Russi
81+704	82+980	Emilia-Romagna	Ravenna
82+980	87+287	Emilia-Romagna	Russi
87+287	90+780	Emilia-Romagna	Ravenna
90+780	97+073	Emilia-Romagna	Bagnacavallo
97+073	99+940	Emilia-Romagna	Fusignano
99+940	101+948	Emilia-Romagna	Alfonsine
101+948	109+055	Emilia-Romagna	Lugo
109+055	116+113	Emilia-Romagna	Conselice
116+113	117+538	Emilia-Romagna	Imola
117+538	124+917	Emilia-Romagna	Medicina
124+917	134+052	Emilia-Romagna	Molinella
134+052	137+698	Emilia-Romagna	Budrio
137+698	140+691	Emilia-Romagna	Minerbio

3.2 Punti di interesse per la definizione dell'azione sismica di base

Con il fine di fornire un inquadramento della variazione della azione sismica lungo il tracciato di progetto (Figura 3-1), è stata individuata una serie di punti di calcolo di interesse, distanziati in modo tale da evidenziare la variabilità della sollecitazione sismica stesso all'interno della griglia di valori quadro di pericolosità fornito dalle tabelle allegate alle NTC2018.

In Figura 3-2 e Tabella 3-2 sono riportati i punti individuati in base a collocazione e morfologia del territorio; per ognuno di essi, sono altresì riportate Latitudine e Longitudine. Sulla base di questa prima zonazione, il tracciato è stato poi suddiviso in una serie di tratti individuati sulla base dei seguenti criteri:

- Sostanziale uniformità della pericolosità sismica di base;
- Andamento omogeneo della morfologia del territorio, con riferimento alla eventuale amplificazione topografica;

snam // /	PROGETTISTA TECHNIP TECHNIP TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 9 di 176	Rev. 0

- Relativa uniformità stratigrafica da dati geotecnici, con particolare riferimento al comportamento dei terreni sotto azione sismica ciclica, distinguendo l'alternanza delle formazioni più frequentemente incontrate: strati di riporto, argille limose con sabbie sciolte, sabbie fini medie, ghiaie fini e sabbie grossolane, ghiaia grossolana;
- Coerenza dei valori misurati di velocità di propagazione delle onde di taglio V_S ottenuti a partire dalle prove geofisiche condotte.

snam	PROGETTISTA TECHNIP TECHNIP Numan & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 10 di 176	Rev. 0

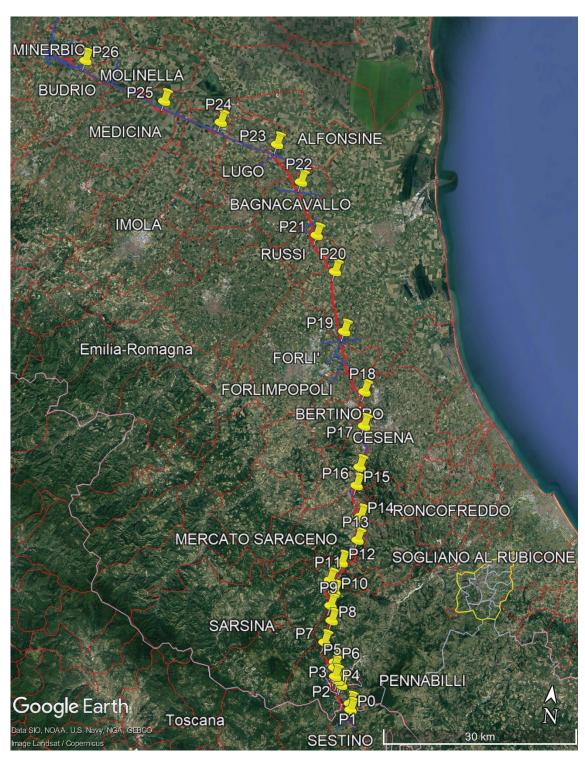


Figura 3-2: Posizione dei punti di interesse lungo il tracciato di progetto del metanodotto.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP RUBBIN Statishable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA'		
	REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO		Rev.
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 11 di 176	0

Tabella 3-2: Identificazione e localizzazione dei punti di interesse per la definizione dell'azione sismica di progetto lungo il tracciato.

ID	Progressiva di riferimento	Latitudine	Longitudine	Morfologia
(-)	(km)	(°)	(°)	(-)
0	0+000	43.735983	12.224183	Montuoso
1	00+985	43.744391	12.221709	Montuoso
2	04+252	43.767889	12.201301	Montuoso
3	05+150	43.773278	12.193276	Montuoso
4	06+000	43.779376	12.187765	Montuoso
5	07+624	43.791508	12.184681	Montuoso
6	08+560	43.799125	12.184791	Montuoso
7	12+500	43.825422	12.160332	Montuoso
8	16+635	43.855764	12.169715	Montuoso
9	19+151	43.875972	12.164708	Montuoso
10	21+589	43.895056	12.169121	Collinare
11	23+715	43.910677	12.158179	Collinare
12	27+243	43.936782	12.177241	Collinare
13	32+348	43.970462	12.202893	Collinare
14	36+223	44.00362	12.204012	Collinare
15	41+642	44.04578	12.189709	Collinare
16	44+786	44.071806	12.191581	Collinare
17	52+731	44.129213	12.191616	Pianura
18	58+305	44.176631	12.185445	Pianura
19	68+509	44.256942	12.133526	Pianura
20	78+195	44.338594	12.103099	Pianura
21	84+962	44.386133	12.059998	Pianura
22	94+278	44.457618	12.018136	Pianura
23	101+311	44.506061	11.963625	Pianura
24	110+747	44.528082	11.849426	Pianura
25	120+346	44.548527	11.734929	Pianura
26	135+000	44.592353	11.572537	Pianura

snam //	PROGETTISTA TECHNIP ENERGIES TECHNIP RUMAN & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 12 di 176	Rev. 0

4 INDAGINI DISPONIBILI

4.1 Generalità

Con il fine di analizzare le caratteristiche geologiche, idrogeologiche e geotecniche dell'area attraversata dal tracciato di progetto sono state eseguite alcune campagne di indagini tra il 2008 e il 2010, oltre ad una campagna di indagine integrativa condotta nel 2023. Nel seguito si riportano i dettagli delle indagini disponibili distinguendole fra pregresse (2008 e 2010) e recenti (2023).

4.2 Campagna di Indagini Pregresse – 2008-2010

La campagna di indagine 1 (Doc. Rif. [4]) eseguita nel 2008 ha compreso:

- n. 79 sondaggi (S1-S75) con esecuzione di prove penetrometriche dinamiche SPT;
- Prelievo di campioni ed esecuzione di prove di laboratorio;
- n. 6 prove di permeabilità Lefranc.

La campagna di indagine 2 (Doc. Rif. [5]) include:

- n. 8 sondaggi (A5-A12) con esecuzione di prove penetrometriche dinamiche SPT;
- Prelievo di campioni ed esecuzione di prove di laboratorio;
- n. 6 prospezioni geofisiche: sismica a rifrazione superficiale.

La campagna di indagine 3 (Doc. Rif. [6]) comprende:

- n. 10 sondaggi con esecuzione di prove penetrometriche dinamiche SPT;
- Prelievo di campioni ed esecuzione di prove di laboratorio.

La campagna di indagine 4 (Doc. Rif. [7]) è costituita da:

n. 7 sondaggi.

Le verticali di indagini delle campagne pregresse sono riassunte in Tabella 4-1. Da Figura 4-1 a Figura 4-4 è riportata l'ubicazione delle indagini eseguite nelle campagne di indagini pregresse in relazione al tracciato attuale.

snam //	PROGETTISTA TECHNIP ENERGIES TECHNIP Rusan & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA'		
	REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO		Rev.
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 13 di 176	0

Tabella 4-1: Indagini disponibili da campagne di indagine pregresse (2008-2010).

Campagna n°	CODICE Sondaggio/Prova	Progressiva	Latitudine	Longitudine	Profondità sondaggio
		(km)	(°)	(°)	(m da p.c.)
1	S2	4+000	44°45'57.55"	12°12′10.38"	10
1	S3	4+245	44°46'3.81"	12°12'4.04''	20
1	S4	4+373	44°46'7.48"	12°12'1.26"	10
1	S6	5+343	43°46'28.62"	12°11'32.07"	40
1	S11	12+301	43°49'27.45"	12°9'43.56"	35
1	S12	14+133	43°50'10.73"	12°9'57.09"	10
1	S13	14+317	43°50'16.19"	12°10'1.31"	10
1	S14	15+285	43°50'39.18''	12°9'52.85"	10
1	S16	15+783	43°50'55.3''	12°10'1.86"	10
1	S17	16+311	43°51'10.27"	12°10 8.66 "	60
1	S22	24+822	43°55'13.33"	12°9'36.31"	30
1	S23	25+325	43°55'26.42''	12°9'43.26"	30
1	S28	27+945	43°56'21.21''	12°11'4.82"	10
1	S32A	31+368	43°57'45.32"	12°12'11.22"	35
1	S33	31+838	43°57'57.31"	12°12'12.39"	10
1	S38	37+878	44°1'3.40"	12°12'7.23"	10
1	S40	40+862	44°2'21.57"	12°11'24.82"	20
1	S41	41+263	44°2'33.48''	12°11'20.18"	10
1	S48	56+807	44°9'48.57''	12°11'9.15''	10
1	S53	69+612	44°15'56.60''	12°7'49.24"	10
1	S54	74+000	44°18'9.45''	12°6'47.76"	10
1	S54A	74+134	44°6'42.82''	12°6'42.82"	10
1	S56	80+700	44°21'32.10"	12°5'33.14"	10
1	S56A	80+817	44°21'35.54"	12°5'30.40"	10
1	S60	90+639	44°25'47.80"	12°2'25.83"	15
1	S60A	90+828	44°25'50.91"	12°2'18.50''	10
1	S62	96+989	44°28'39.38"	11°59'56.28''	8
1	S64	107+648	44°31'10.36"	11°53'10.34''	10
1	S64A	107+886	44°31'13.72"	11°53'1.57''	10
1	S67	117+791	44°32'46.40"	11°45'57.26''	10
1	S67A	118+000	44°32'47.70"	11°45'47.84''	10

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	80190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 14 di 176	Rev. 0

Tabella 4-1: Indagini disponibili da campagne di indagine pregresse (2008-2010).

Campagna n°	CODICE Sondaggio/Prova	Progressiva	Latitudine	Longitudine	Profondità sondaggio
"	Jonaaggion Tova	(km)	(°)	(°)	(m da p.c.)
1	S69	123+691	44°32'58.13''	11°43'51.12"	10
1	S70	123+048	44°33'42.12''	11°42'26.72''	10
1	S71	124+479	44°34'21.97''	11°41'53''	10
1	S71A	124+768	44°34'29.24''	11°41'46.11''	10
1	S72	129+962	44°34'42.56''	11°37'56.8 ''	8
2	A5	80+600	44°21'29.41''	12°5ì35.04"	30
2	A6	80+810	44°21'35.46''	12°5'30.78"	30
2	A7	97+000	44°28'39.27''	11°59'54.57"	30
2	A9	120+564	44°32'57.40''	11°43′56.60"	30
2	A10	120+691	44°32'58.13''	11°43'51.12"	30
2	A11	123+062	44°33'42.15''	11°42'25.47"	30
2	A12	123+142	44°33'45.22''	11°42'25.72"	30
3	S2bis	25+09	43°55'18.33''	12°09'37.25''	15
3	S3bis	25+730	43°55'34.05''	12°09'55.23''	10
3	S4bis	26+165	43°55'43.45''	12°10′13.83"	15
3	S5bis	32+610	43°58'23.34''	12°12'10.53''	15
3	S6bis	32+779	43°58'28.33'	12°12′10.71"	15
3	S9bis	20+533	43°53'15.97''	121°9'59.67''	35
3	S10bis	6+403	43°46'56.64''	12°11'4.25''	55
4	S1	41+922	44°2'54''	12°11'20.49''	9.4
4	S2	41+947	44°2′54.73″	12°11'19.66''	10

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 15 di 176	Rev.

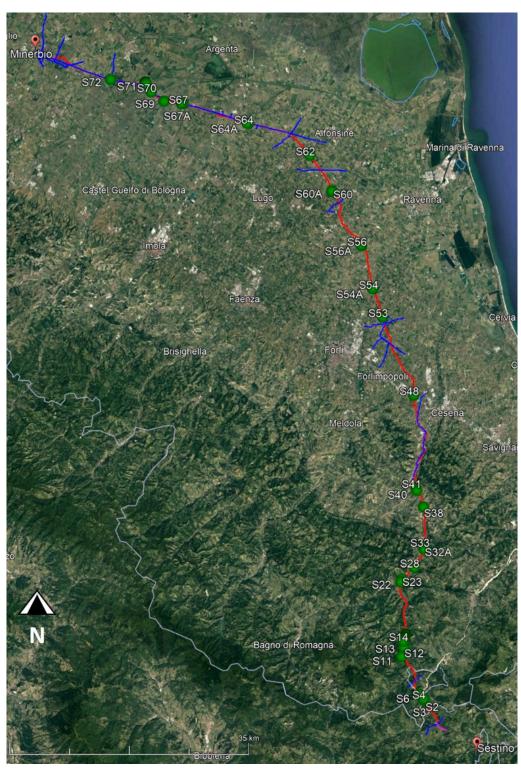


Figura 4-1: Ubicazione indagini pregresse - Campagna di indagine 1 (in rosso il tracciato di progetto).

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP FUND 15 TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 16 di 176	Rev.

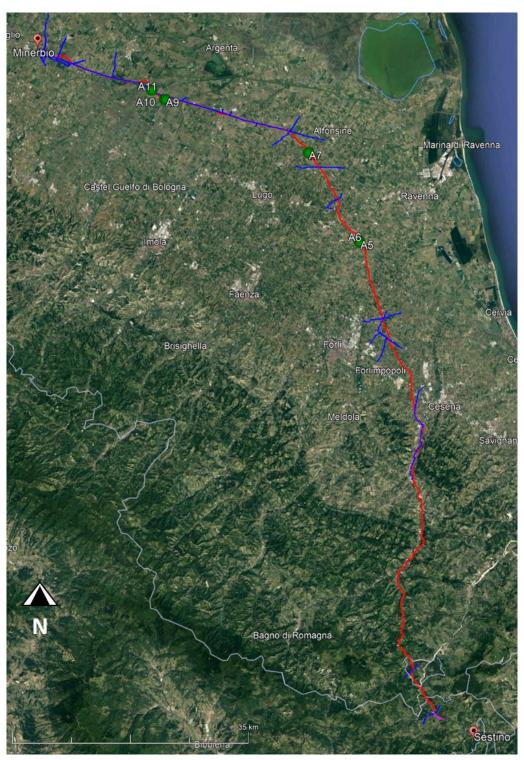


Figura 4-2: Ubicazione indagini pregresse - Campagna di indagine 2 (in rosso il tracciato di progetto).

snam //	PROGETTISTA TECHNIP ENERGIES TECHNIP FOR TECHNIP Ruman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 17 di 176	Rev. 0

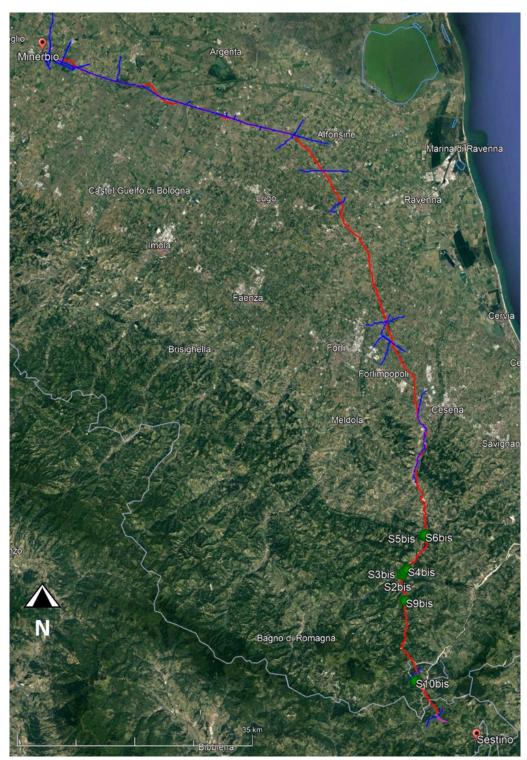


Figura 4-3: Ubicazione indagini pregresse - Campagna di indagine 3 (in rosso il tracciato di progetto).

snam //	PROGETTISTA TECHNIP ENERGIES TECHNIP FUNE AS Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 18 di 176	Rev. 0



Figura 4-4: Ubicazione indagini pregresse - Campagna di indagine 4 (in rosso il tracciato di progetto).

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP FUND 15 Sutainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 19 di 176	Rev. 0

4.3 Campagna di indagine 2023

La campagna di indagine condotta nel 2023 ha incluso le seguenti tipologie di prove:

- n. 31 indagini sismiche di tipo MASW.
- n. 5 indagini sismiche di tipo HVSR.
- n. 38 stendimenti ERT (tomografia geoelettrica).
- n. 1 prospezione sismica diretta Down-Hole.
- n. 13 prove penetrometriche statiche con piezocono (CPTu).
- n. 106 sondaggi a carotaggio continuo/a distruzione di nucleo (di cui 100 disponibili ad Ottobre 2023).
- Esecuzione in foro di prove penetrometriche dinamiche SPT.
- Prove di laboratorio (determinazione dei limiti di Atterberg, determinazione delle principali grandezze fisiche del campione, analisi granulometriche, prove di taglio diretto, prove triassiali, prove edometriche) sui campioni prelevati nei sondaggi.
- Installazione di piezometri per il monitoraggio della profondità di falda.

I sondaggi e le prove penetrometriche disponibili sono riassunte rispettivamente in Tabella 4-2 e Tabella 4-3, mentre da Figura 4-5 a Figura 4-9 ne viene mostrata l'ubicazione in relazione al tracciato di progetto del metanodotto.

La posizione delle indagini geofisiche è invece riportata dalla Figura 4-10 alla Figura 4-14.

snam	PROGETTISTA TECHNIP TECHNIP TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 20 di 176	Rev. 0

Tabella 4-2: Campagna 2023. Sondaggi eseguiti.

CODICE Sondaggio	Progressiva	Latitudine	Longitudine	Profondità sondaggio	Profondità falda in piezometro*
	(km)	(N)	(E)	(m da p.c.)	(m da p.c.)
S_001 _SM_L	0+850	43°44'35.02"	12°13'21.34"	30	2.46
S_002 _SM_L	1+150	43°44'44.83"	12°13'16.75"	30	3.52
S_004 _SM_L	3+500	43°45'40.84"	12°12'16.12"	50	-
S_005 _SM_L	3+750	43°45'48.41"	12°12'10.25"	75	-
S_006 _SM_L	4+000	43°45'56.18"	12°12'9.99"	20	2.26
S_007 _SM_L	4+250	43°46'4.43"	12°12'5.61"	28.5	-
S_008 _SM_L	4+600	43°46'9.50"	12°11'51.45"	20	12.00
S_009 _SM_L	5+200	43°46'24.96"	12°11'37.38"	60	-
S_010 _SM_L	6+350	43°46'55.73"	12°11'6.40"	70	-
S_011 _SM_L	7+300	43°47'24.80"	12°10'57.17"	15	-
S_012 _SM_L	7+850	43°47'35.07"	12°11'11.11"	30	21.65
S_013 _SM_L	8+500	43°47'55.24"	12°11'5.26"	25	17.80
S_014 _SM_L	8+700	43°48'1.53"	12°11'3.80"	22.5	4.80
S_015 _SM_L	9+300	43°48'18.62"	12°10'54.59"	40	1.10
S_017 _SM_L	12+450	43°49'30.06"	12° 9'37.54"	35	-
S_018 _SM_L	13+650	43°49'59.77"	12° 9'43.19"	15	-
S_021 _SM_L	18+400	43°52'11.35"	12° 9'59.44"	40	31.20
S_022 _SM_L	18+800	43°52'23.93"	12° 9'54.59"	50	-
S_023 _SM_L	19+150	43°52'33.60"	12° 9'53.48"	30	-
S_024 _SM_L	20+800	43°53'19.48"	12°10'9.45"	30	9.40
S_025 _SM_L	21+600	43°53'42.71"	12°10'8.02"	30	4.20
S_026 _SM_L	22+300	43°53'56.74"	12° 9'45.23"	20	6.60
S_027 _SM_L	22+850	43°54'11.28"	12° 9'33.68"	20	2.40
S_028 _SM_L	23+250	43°54'23.48"	12°9'23.59"	40	2.00
S_029 _SM_L	24+450	43°55'1.68"	12° 9'32.96"	40	3.80
S_030 _SM_L	25+300	43°55'28.3"	12°9'43"	55	7.90
S_031 _SM_L	25+650	43°55'35.53"	12°9'57.55"	40	
S_032 _SM_L	25+850	43°55'38.12"	12°10'2.77"	80	18.00
S_033 _SM_L	26+150	43°55'43.36"	12°10'12.23"	30	9.15
S_034 _SM_L	26+350	43°55'49.14"	12°10'19.44"	15	1.70
S_035 _SM_L	27+260	43°56'12.85"	12°10'38.32"	30	3.28
S_036 _SM_L	28+030	43°56'23.03"	12°11'8.13"	70	-
S_037 _SM_L	28+200	43°56'27"	12°11'12.7"	95	-
S_038 _SM_L	29+000	43°56'50.01"	12°11'20.91"	75	-

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Ruman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 21 di 176	Rev. 0

Tabella 4-2: Campagna 2023. Sondaggi eseguiti.

CODICE Sondaggio	Progressiva	Latitudine	Longitudine	Profondità sondaggio	Profondità falda in piezometro*
	(km)	(N)	(E)	(m da p.c.)	(m da p.c.)
S_039 _SM_L	29+260	43°56'55.60"	12°11'29.56"	35	-
S_040 _SM_L	29+800	43°57'4.85"	12°11'44.36"	40	8.00
S_041 _SM_L	30+000	43°57'9.69"	12°11'50.07"	50	21.10
S_042 _SM_L	30+340	43°57'19.85"	12°11'57.93"	70	24.20
S_044 _SM_L	31+000	43°57'45.02"	12°12'9.60"	80	30.46
S_045 _SM_L	31+800	43°57'56.78"	12°12'13.49"	50	14.90
S_047 _SM_L	32+650	43°58'23.11"	12°12'10.90"	30	-
S_051 _SM_L	36+180	44° 0'12.02"	12°12'14.60"	30	3.1
S_052 _SM_L	40+850	44° 2'21.64"	12°11'25.58"	40	-
S_054 _SM_L	44+750	44° 4'17.42"	12°11'29.48"	30	2.00
S_058 _SM_L	57+550	44°10'11.53"	12°11'8.67"	30	2.3
S_059 _SM_L	59+200	44°11'3.76"	12°11'2.96"	30	1.9
S_060 _SM_L	68+550	44°15'25.91"	12° 8'0.50"	30	-
S_063 _SM_L	74+180	44°18'12.55"	12° 6'41.26"	30	-
S_064 _SM_L	78+180	44°20'17.87"	12° 6'12.10"	30	2.2
S_066 _SM_L	85+260	44°23'15.32"	12° 3'24.20"	30	-
S_067 _SM_L	90+700	44°25'49.21"	12° 2'20.90"	30	-
S_068 _SM_L	93+400	44°27'4.43"	12° 1'29.60"	30	-
S_069 _SM_L	94+300	44.57776°	12.017259°	30	-
S_070 _SM_L	101+280	44.506153°	11.964300°	25	1.8
S_071 _SM_L	107+800	44°31'11.45"	11°53'4.15"E	30	-
S_072 _SM_L	110+600	44.527680°	11.850872°	25	0.9
S_073 _SM_L	110+900	44.528629°	11.847767°	25	1
S_074 _SM_L	117+900	44.546215°	11.764412°1	20	-
S_075 _SM_L	120+350	44.549002°	11.735453°	25	1.6
S_076 SM_L	124+650	44.574083°	11.697441°	30	-
S_077 _SM_L	129+650	44°34'40.06"	11°38'10.51"	40	-
S_078 SM_L	129+750	44.577952°	11.632482°	40	-
S_079 SM_L	134+720	44.591381°	11.575337°	25	2.5
S_080 _SM_L	135+200	44°35'36.18"	11°34'13.63"	30	-
S_081 _SM_L	138+700	44°36'12.29"	11°31'58.67"	40	-
S_082 _SM_L	38+250	44° 1'8.50"	12°11'52.65"	30	-
S_085 _SM_L	47+230	44.089646°	12.204678°	30	-
S_086 _SM_L	42+000	44° 2'56.79"	12°11'18.11"	20	-

snam // /	PROGETTISTA TECHNIP ENERGIES (F) techfem Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 22 di 176	Rev. 0

Tabella 4-2: Campagna 2023. Sondaggi eseguiti.

CODICE Sondaggio	Progressiva	Latitudine	Longitudine	Profondità sondaggio	Profondità falda in piezometro*
	(km)	(N)	(E)	(m da p.c.)	(m da p.c.)
S_087 _SM_L	80+940	44°21'38.39"	12° 5'26.59"	20	-
S_088 _SM_L	96+800	44°28'33.24"	12° 0'0.43"	20	-
S_090 _SM_L	117+700	44°32'44.89"	11°46'0.32"	20	-
S_091 _SM_L	120+400	44°32'54.18"	11°44'2.88"	20	-
S_092 _SM_L	124+400	44°34'20.13"	11°41'55.99"	20	-
S_093 _SM_L	20+800	43°53'19.26"	12°10'11.00"	30	-
S_094 _SM_L	137+950	44°36'27.70"	11°32'34.43"	30	-
S_095 _SM_L	138+600	44°36'25.24"	11°32'6.42"	30	1.90
S_097 _SM_GZ	8+640	43°47'58.27"	12°11'4.72"	25	6.50
S_098 _SM_GZ	25+450	43°55'30.72"	12° 9'50.01"	20	12.50
S_099 _SM_PMA	24+400	43°55'0.75"	12° 9'32.98"	15	3.00
S_100 _SM_PMA	25+600	43°55'31.57	12° 9'51.07"	15	13.50
S_101 _SM_PMA	73+980	44°18'0.69"	44°18'0.69"	15	3.50
S_102 _SM_PMA	74+000	44°18'14.58''	12° 6'51.04"	15	1.70
S_103 _SM_PMA	80+720	44°21'29.25"	12° 5'23.85"	15	4.30
S_104 _SM_PMA	80+650	44°21'32.78"	12° 5'40.18"	15	4.70
S_106 _SM_PMA	91+000	44°25'56.92"	12° 2'21.56"	15	4.10
S_107 _SM_PMA	97+100	44°28'40.28"	11°59'48.03"	15	1.80
S_108 _SM_PMA	97+100	44°28'45.20"	12° 0'0.88"	15	1.65
S_109 _SM_PMA	107+900	44°31'5.13"	11°53'1.55"	15	2.60
S_110 _SM_PMA	107+950	44°31'15.03"	11°53'2.47"	15	3.80
S_117 _SM_IDRO	29+050	43°56'49.8403"	2°11'25.0977"	50	10.20
S_118 _SM_IDRO	29+350	43°56'57.70"	12°11'32.54"	30	7.10
S_119 _SM_IDRO	29+070	43°56'48.90"	12°11'35.35"	50	7.70
S_120 _SM_IDRO	37+870	44° 1'4.76"	12°12'10.71"	25	-
S_121 _SM_IDRO	38+000	44° 1'7.79"	12°12'6.39"	25	10.50
S_122 _SM_IDRO	38+300	44° 1'11.14"	12°11'52.18"	25	-
S_126 _SM_PMA	37+650	44° 0'57.50"	12°12'12.89"	20	3.50
S_127 _SM_PMA	38+370	44° 1'11.18"	12°11'45.95"	20	3.00
S_128 _SM_PMA	46+710	44° 5'6.35"	12°12'1.70"	20	5.50
S_129 _SM_PMA	47+630	44° 5'29.34"	12°12'18.77"	25	4.50
S_130 _SM_PMA	138+700	44°36'19.39"	11°32'2.59"	25	1.80

^{*}La profondità di falda in piezometro è riportata nei sondaggi in cui è stata misurata. L'ultima misurazione risale a Settembre 2023. **L'ubicazione dei sondaggi non è nota al momento

snam	PROGETTISTA TECHNIP TECHNIP TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 23 di 176	Rev. 0

Tabella 4-3: Campagna 2023. Verticali CPT eseguite.

CODICE Prova	Progressiva	Latitudine	Longitudine	Profondità prova	Profondità falda
	(km)	(°)	(°)	(m da p.c.)	(m da p.c.)
CPTU_1_SM_L	45+790	44°4'44.24"	12°11'38.06"	30	-
CPTU_2_SM_L	49+900	44° 6'35.15"	12°12'27.62"	30	5.00
CPTU_3_SM_L	53+850	44° 8'20.84"	12°11'29.77"	30	4.10
CPTU_4_SM_L	60+740	44°11'37.54	12°10'12.10"	30	3.10
CPTU_5_SM_L	64+251	44°13'15.79"	12° 8'56.47"	30	3.00
CPTU_6_SM_L	71+880	44°17'6.00"	12° 7'17.21"	30	1.50
CPTU_7_SM_L	76+803	44°19'34.70"	12° 6'18.63"	30	2.10
CPTU_8_SM_L	80+820	44°21'35.42"	12° 5'29.85"	30	2.40
CPTU_9_SM_L	81+440	44°21'52.71"	12° 5'16.46"	30	2.50
CPTU_10_SM_L	83+730	44°22'40.49"	12° 4'9.19"	30	2.30
CPTU_11_SM_L	84+812	44°23'8.21"	12° 3'42.18"	30	2.00
CPTU12_SM_L	86+056	44°23'39.48"	12° 3'21.25"	30	1.40
CPTU_13_SM_L	99+236	44°29'30.49"	11°58'48.86"	30	1.90

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 24 di 176	Rev.

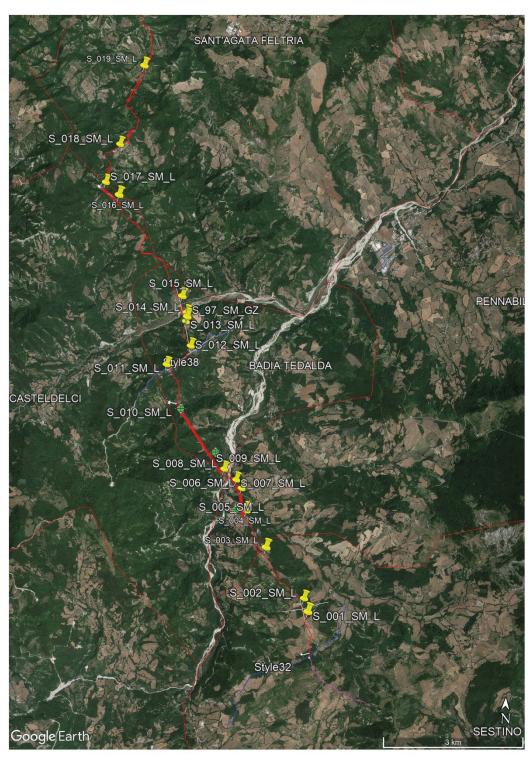


Figura 4-5: Ubicazione sondaggi e prove CPTU Tratto 0-17km (in rosso tracciato di progetto).

CDOM	PROGETTISTA TECHNIP TECHNIP NUMBER 8 Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam V/	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 25 di 176	Rev. 0

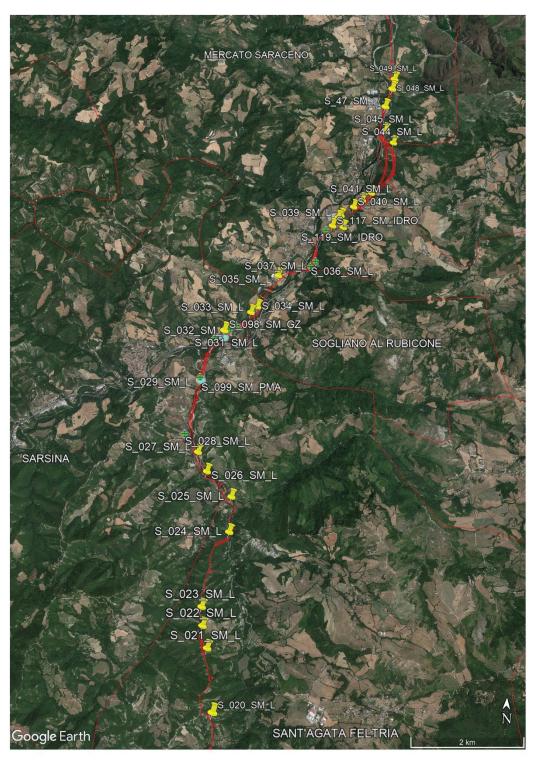


Figura 4-6: Ubicazione sondaggi e prove CPTU Tratto 17-34km (in rosso tracciato di progetto).

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 26 di 176	Rev.

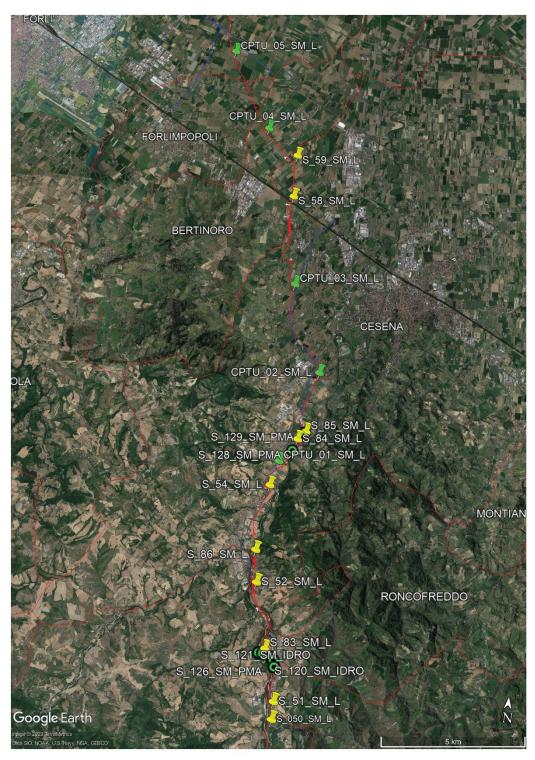


Figura 4-7: Ubicazione sondaggi e prove CPTU Tratto 34-65km (in rosso tracciato di progetto).

CDOM	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam V/	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 27 di 176	Rev.

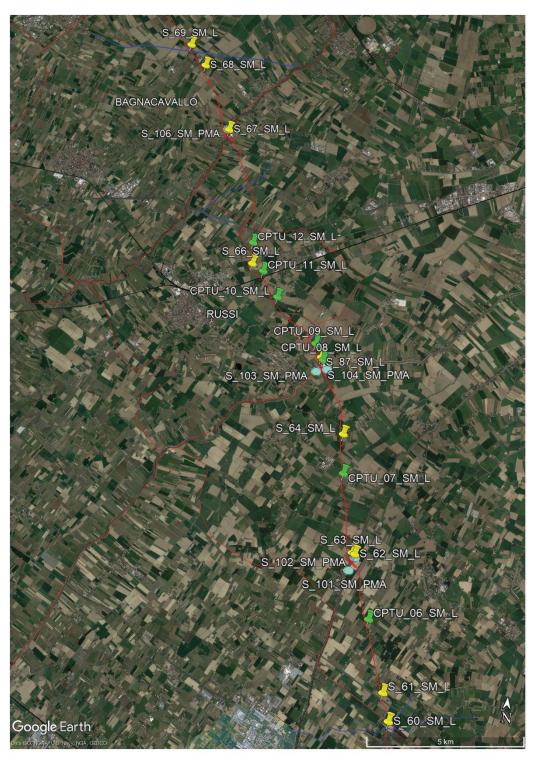


Figura 4-8: Ubicazione sondaggi e prove CPTU Tratto 65-95km (in rosso tracciato di progetto).

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP FOR TECHNIP Ruman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildill	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 28 di 176	Rev. 0

Figura 4-9: Ubicazione sondaggi e prove CPTU Tratto 95-140km (in rosso tracciato di progetto).

CD2M	PROGETTISTA TECHNIP TECHNIP Numan & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam V/	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 29 di 176	Rev. 0

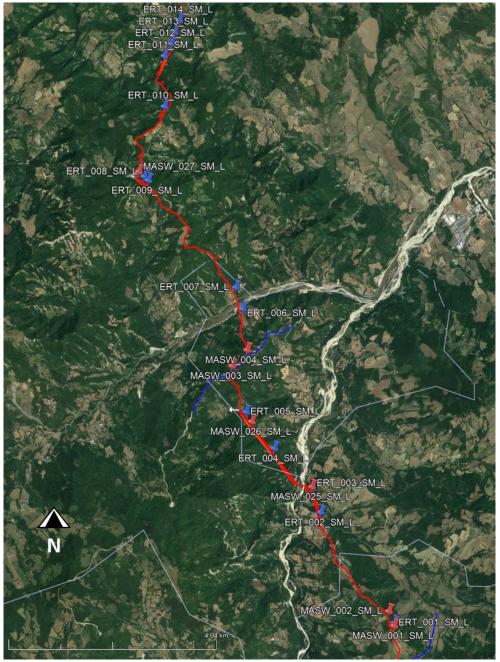


Figura 4-10: Ubicazione indagini geofisiche Tratto 0-17km (in rosso tracciato di progetto, le icone blu, gialle rosse e azzurre indicano rispettivamente le prove ERT, DH, MASW e HVSR.

PROGETTISTA TECHNIP ENERGIES TECHNIP FUND TECHNIP Ruman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	80190
PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP – 75 bar	Pag. 30 di 176	Rev.

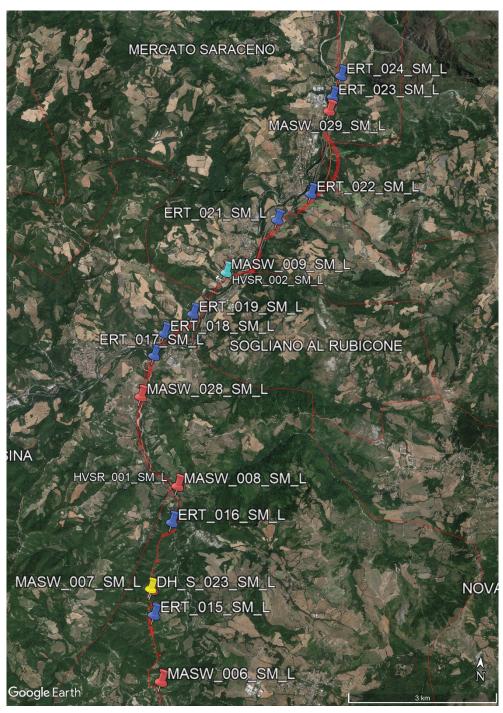


Figura 4-11: Ubicazione indagini geofisiche Tratto 17-34km (in rosso tracciato di progetto, le icone blu, gialle rosse e azzurre indicano rispettivamente le prove ERT, DH, MASW e HVSR.

CDOM	PROGETTISTA TECHNIP ENERGIES TECHNIP Ruman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 31 di 176	Rev.

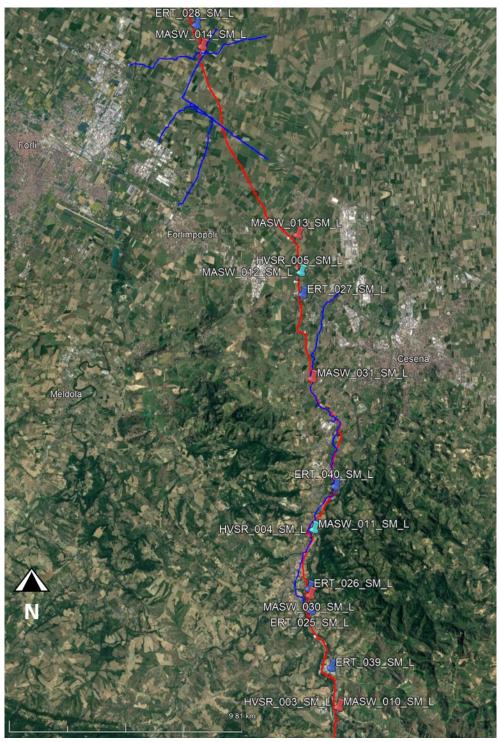


Figura 4-12: Ubicazione indagini geofisiche Tratto 34-65km (in rosso tracciato di progetto, le icone blu, gialle rosse e azzurre indicano rispettivamente le prove ERT, DH, MASW e HVSR.

CDOM	PROGETTISTA TECHNIP TECHNIP TECHNIP THUMAN 8 SUSTAINABLE Engineering	COMMESSA NQ/R22358	UNITÀ -
snam V/	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 32 di 176	Rev.

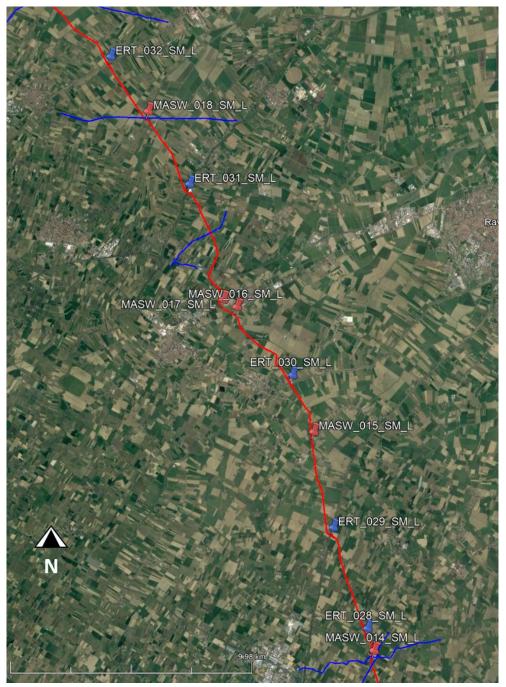


Figura 4-13: Ubicazione indagini geofisiche Tratto 65-95km (in rosso tracciato di progetto, le icone blu, gialle rosse e azzurre indicano rispettivamente le prove ERT, DH, MASW e HVSR.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP RUMAN & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildill	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 33 di 176	Rev. 0

Figura 4-14: Ubicazione indagini geofisiche Tratto 95-140km (in rosso tracciato di progetto, le icone blu, gialle rosse e azzurre indicano rispettivamente le prove ERT, DH, MASW e HVSR.

co.m.	PROGETTISTA TECHNIP ENERGIES (F) techfem Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam V/	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 34 di 176	Rev. 0

5 DEFINIZIONE DELL'AZIONE SISMICA DI PROGETTO

5.1 Premessa

La definizione dell'azione sismica di progetto per il tracciato è stata condotta secondo quanto disposto dalle Norme Tecniche in vigore assunte alla base della progettazione (DM 17 gennaio 2018. Approvazione delle Nuove Norme tecniche per le Costruzioni – Supplemento Ordinario alla G.U. n.42 del 20.2.2018), nel rispetto anche del corpo normativo regionale vigente.

In generale, l'azione sismica in base alla quale va valutato il rispetto dei diversi stati limite per le strutture in progetto deve essere definita a partire dalla "pericolosità sismica di base" del sito di costruzione, a sua volta espressa in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale.

La definizione dell'azione sismica di progetto comprende la determinazione delle ordinate dello spettro di risposta elastica in accelerazione Se(T) "ancorato" al valore di a_g, facendo riferimento a prefissate probabilità di eccedenza PVR nel periodo di riferimento VR per la vita utile della struttura. Data la probabilità di superamento nel periodo di riferimento considerato, funzione dello Stato Limite considerato per la verifica, la forma spettrale è definita a partire dai valori dei seguenti parametri relativi ad un sito di riferimento rigido e orizzontale:

- a_q accelerazione orizzontale massima su sito rigido e superficie topografica orizzontale.
- F_o valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale.
- \bullet T_{c^*} periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

5.2 Vita nominale, classe d'uso, periodo di riferimento per l'azione sismica

La Vita Nominale V_N di un'opera, intesa come il numero di anni in cui essa possa essere usata per lo scopo al quale è destinata, purché soggetta alla manutenzione ordinaria, è così definita dalle NTC2018:

- V_N = 10 anni, per costruzioni temporanee e provvisorie.
- V_N = 50 anni, per costruzioni con livelli di prestazioni ordinari.
- V_N = 100 anni, per costruzioni con livelli di prestazioni elevati.

Nel caso in oggetto, ai fini della definizione dell'azione sismica per le finalità dello studio in esame per l'infrastruttura, si è assunto:

 $V_N = 50$ anni

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP RUBBIN Statishable Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildill	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 35 di 176	Rev. 0

Con riferimento alle conseguenze di un'interruzione di operatività o di un eventuale collasso in presenza di azioni sismiche, le opere sono suddivise dalle NTC2018 in classi d'uso, la cui appartenenza è stabilità sulla base dell'importanza dell'opera rispetto alle esigenze di operatività a valle di un evento sismico. In particolare, le classi d'uso sono così definite:

- Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli. Per le quali si ha un coefficiente d'uso $C_U=0.7$.
- Classe II: ... omissis ... Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o Classe d'uso IV, salvo casi particolari per i quali sia necessaria la classe d'uso III o IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza ... omissis Per le quali C_U = 1.0.
- Classe III: ... omissis ... Reti viarie extraurbane non ricadenti in Classe d'uso IV, salvo casi particolari per i quali sia necessaria la classe d'uso IV, e reti ferroviarie la cui interruzione provochi situazioni di emergenza ... omissis ... Per le quali C_U = 1.5.
- Classe IV: ... omissis ... Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade" e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico ... omissis ... Per le quali C_U = 2.

In accordo alle specifiche di progetto SNAM, l'opera viene fatta appartenere alla Classe IV e, pertanto, sulla base delle indicazioni NTC2018 si ha C_U = 2. L'azione sismica di verifica delle opere viene definita in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di opera, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_U :

$$V_R = V_N \bullet C_U$$

Alla luce di quanto sopra, si ha:

$$V_R = 50 \cdot 2 = 100 \text{ anni}$$

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP LUMAN & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildin	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 36 di 176	Rev.

5.3 Stati Limite e Relative Probabilità di Superamento

L'azione sismica di progetto deve essere determinata in funzione degli Stati Limite relativi all'opera da verificare ed alle corrispondenti probabilità P_{VR} di realizzarsi nel periodo di riferimento V_R . Gli Stati Limite di riferimento per verifiche in presenza di sisma, così come definiti nelle NTC2018 al par. 3.2.1 sono:

- Stati limite di Esercizio (SLE):
 - Stato Limite di immediata Operatività SLO per le strutture ed apparecchiature che debbono restare operative a seguito dell'evento sismico.
 - Stato Limite di Danno SLD definito come lo stato limite da rispettare per garantire la sostanziale integrità dell'opera ed il suo immediato utilizzo.
- Stati Limite Ultimi (SLU):
 - Stato Limite di Salvaguardia della Vita umana, SLV, definito come lo stato limite in cui la struttura subisce una significativa perdita della rigidezza nei confronti dei carichi orizzontali ma non nei confronti dei carichi verticali. Permane un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali.
 - Stato Limite di Prevenzione del Collasso, SLC, stato limite nel quale la struttura subisce gravi danni strutturali, mantenendo comunque un margine di sicurezza per azioni verticali ed un esiguo margine di sicurezza a collasso per carichi orizzontali.

Le probabilità di superamento cui riferirsi per individuare l'azione sismica agente per ciascuno degli stati limite considerati sono (cfr Tab 3.2.I NTC2018):

Stato Li	mite	P _{VR} : Probabilità di superamento in V _R
Farminia	SLO	81 %
Esercizio	SLD	63 %
1.04::	SLV	10 %
Ultimi	SLC	5 %

Il tempo di ritorno T_R dell'azione sismica di verifica è legato al periodo di riferimento V_R ed alla probabilità di superamento P_{VR} dalla relazione:

$$T_R = V_R / ln(1-P_{VR})$$

co.am	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam V	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 37 di 176	Rev. 0

Nel caso specifico (V_R = 100 anni) si ha:

Stato Limite		P _{VR} (%)	T _R (anni)
SLE	SLO	81%	60
	SLD	63%	101
SLU	SLV	10%	949
	SLC	5%	1950

5.4 Accelerazione di riferimento su suolo rigido aq

In allegato al testo delle Norme Tecniche è presente una tabella nella quale vengono assegnati i valori a_g (accelerazione orizzontale massima su sito rigido e superficie topografica orizzontale), F_o (valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale) e T_{c^*} (periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale), in corrispondenza di una griglia di punti distribuiti sull'intero territorio nazionale. I valori di pericolosità sismica situati in punti intermedi della griglia (individuati dalle loro coordinate, cfr. Tabella 3-2) vengono ottenuti per interpolazione sui quattro punti di griglia più prossimi.

In Tabella 5-1 si riporta, per ogni punto di interesse, uno schema di localizzazione del punto rispetto ai nodi della griglia dei valori di pericolosità ottenuto attraverso l'impiego del foglio di calcolo Spettri di Risposta SPETTRI-NTC v. 1.0.3, distribuito dal Consiglio Superiore dei Lavori Pubblici (2009). Il risultato dell'interpolazione per i parametri a_g, F_o e T_{c*} è riportato in Tabella 5-2.

I punti così individuati sono elencati in Tabella 5-3 con Latitudine e Longitudine e, per ognuno di essi, è stata definita l'azione sismica su suolo rigido e superficie topografica orizzontale. Da Figura 5-1 a Figura 5-6 ne è riportato l'andamento in funzione della progressiva. Sempre nelle stesse figure, si collocano i diversi tratti di opera all'interno dei comuni attraversati.

Come anticipato ai paragrafi precedenti, tenuto conto dell'azione sismica di base così definita, il tracciato è stato suddiviso in una serie di intervalli di progressiva omogenei dalla prospettiva dell'azione sismica di progetto, individuati sulla base dei seguenti criteri:

- Andamento omogeneo dell'azione sismica di base lungo il tracciato;
- Relativa uniformità stratigrafica, soprattutto con riferimento alla risposta attesa sotto azione sismica, distinguendo l'alternanza di strati di riporto, argille limose con sabbie

	PROGETTISTA TECHNIP ENERGIES TECHNIP Rusan & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 38 di 176	Rev. 0

sciolte, sabbie fini medie, ghiaie fini e sabbie grossolane, ghiaia grossolana, e roccia (argilliti, argille marnose, marne);

 Coerenza dei valori misurati di velocità di propagazione delle onde di taglio V_s attraverso prove geofisiche, integrati da correlazioni sui risultati delle prove CPT sempre in termini di V_s.

Relativamente alla definizione dell'azione sismica all'interno di ogni singola porzione di tracciato, è stata assunta cautelativamente la condizione più gravosa lungo il tratto considerato, in un quadro di variabilità comunque non sostanziale.

Sulla base dei criteri sopra esposti si è ottenuta la zonazione riportata in Tabella 5-4: per ognuna delle zone è stata definita un'azione sismica di riferimento. Nei paragrafi successivi, sulla base degli approfondimenti di II e III livello della microzonazione sismica, verrà eseguita un'ulteriore sottozonazione sulla base della risposta sismica locale nei diversi punti del tracciato di progetto.

Tabella 5-1: Associazione dei punti di interesse di Tabella 3-2, ai nodi della griglia di rappresentazione dei valori di pericolosità sismica secondo le tabelle allegate alle NTC2018.

ID	Progressiva di riferimento (km)	Latitudine (°)	Longitudine (°)	Punti della griglia adiacenti (da Spettri-NTCver.1.0.3.xls, CSLLPP, 2009)
0	0+000	43.735983	12.224183	Nodi del reticolo intorno al sito -7.5
1	00+985	43.744391	12.221709	Nodi del reticolo intorno al sito -7.5 -20294 20295 7.5 km

COOM	PROGETTISTA TECHNIP TECHNIP TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 39 di 176	Rev. 0

Tabella 5-1: Associazione dei punti di interesse di Tabella 3-2, ai nodi della griglia di rappresentazione dei valori di pericolosità sismica secondo le tabelle allegate alle NTC2018.

ID	Progressiva di riferimento (km)	Latitudine (°)	Longitudine (°)	Punti della griglia adiacenti (da Spettri-NTCver.1.0.3.xls, CSLLPP, 2009)
2	04+252	43.77889	12.201301	Nodi del reticolo intorno al sito km7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5
3	05+150	43.773278	12.193276	Nodi del reticolo intorno al sito km ^{7.5} -7.5 -20072 20073 -7.5 km
4	06+000	43.779376	12.187765	Nodi del reticolo intorno al sito Mm7.5
5	07+624	43.791508	12.184681	Nodi del reticolo intorno al sito Mm7.5

COOM	PROGETTISTA TECHNIP ENERGIES TECHNIP Ruman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam V	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 40 di 176	Rev. 0

Tabella 5-1: Associazione dei punti di interesse di Tabella 3-2, ai nodi della griglia di rappresentazione dei valori di pericolosità sismica secondo le tabelle allegate alle NTC2018.

ID	Progressiva di riferimento (km)	Latitudine (°)	Longitudine (°)	Punti della griglia adiacenti (da Spettri-NTCver.1.0.3.xls, CSLLPP, 2009)
6	08+560	43.799130	12.184790	Nodi del reticolo intorno al sito km ^{7,5} 19850 19851 -7.5 20072 20073 km
7	12+500	43.825422	12.160332	Nodi del reticolo intorno al sito km7.5 19849 19850 7.5 7.5 7.5
8	16+635	43.855764	12.169715	Nodi del reticolo intorno al sito km ^{7.5} 19627 19628 -7.5 19850 -7.5
9	19+151	43.875972	12.164708	Nodi del reticolo intorno al sito km7.5 -7.5 19627 19628 7.5 km

SO ON	PROGETTISTA TECHNIP ENERGIES TECHNIP Ruman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
<u>snam</u>	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 41 di 176	Rev. 0

Tabella 5-1: Associazione dei punti di interesse di Tabella 3-2, ai nodi della griglia di rappresentazione dei valori di pericolosità sismica secondo le tabelle allegate alle NTC2018.

ID	Progressiva di riferimento (km)	Latitudine (°)	Longitudine (°)	Punti della griglia adiacenti (da Spettri-NTCver.1.0.3.xls, CSLLPP, 2009)
10	21+589	43.895056	12.169121	Nodi del reticolo intorno al sito Mm7.5
11	23+715	43.910677	12.158179	Nodi del reticolo intorno al sito km ^{7.5} 19406 -7.5 19628
12	27+243	43.936782	12.177241	Nodi del reticolo intorno al sito Mm7.5
13	32+348	43.970462	12.202893	Nodi del reticolo intorno al sito km ^{7.5} 19184 19185 7.5 km 19407 -7.5

COOM)	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 42 di 176	Rev. 0

Tabella 5-1: Associazione dei punti di interesse di Tabella 3-2, ai nodi della griglia di rappresentazione dei valori di pericolosità sismica secondo le tabelle allegate alle NTC2018.

ID	Progressiva di riferimento (km)	Latitudine (°)	Longitudine (°)	Punti della griglia adiacenti (da Spettri-NTCver.1.0.3.xls, CSLLPP, 2009)
14	36+223	44.00362	12.204012	Nodi del reticolo intorno al sito km7.5 -7.5 18962 18963 7.5 km -7.5
15	41+642	44.04578	12.189709	Nodi del reticolo intorno al sito Mm7.5
16	44+786	44.071806	12.191581	Nodi del reticolo intorno al sito km7.5 -7.5 -18740 18741 -7.5 km -18962 18963 -7.5
17	52+731	44.129213	12.191616	Nodi del reticolo intorno al sito km ^{7.5} -18296 18297 -7.5 -7.5 km 18519 7.5 km

SD2M	PROGETTISTA TECHNIP ENERGIES TECHNIP Ruman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
<u>snam</u>	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 43 di 176	Rev. 0

Tabella 5-1: Associazione dei punti di interesse di Tabella 3-2, ai nodi della griglia di rappresentazione dei valori di pericolosità sismica secondo le tabelle allegate alle NTC2018.

ID	Progressiva di riferimento (km)	Latitudine (°)	Longitudine (°)	Punti della griglia adiacenti (da Spettri-NTCver.1.0.3.xls, CSLLPP, 2009)
18	58+305	44.176631	12.185445	Nodi del reticolo intorno al sito Mm7.5
19	68+509	44.256942	12.133526	Nodi del reticolo intorno al sito Mm7.5
20	78+195	44.338594	12.103099	Nodi del reticolo intorno al sito km ^{7.5} 17407 -
21	84+962	44.386133	12.059998	Nodi del reticolo intorno al sito km7.5 17184 17185 -7.5

Spam	PROGETTISTA TECHNIP TECHNIP NUMBER & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
<u>snam</u>	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 44 di 176	Rev. 0

Tabella 5-1: Associazione dei punti di interesse di Tabella 3-2, ai nodi della griglia di rappresentazione dei valori di pericolosità sismica secondo le tabelle allegate alle NTC2018.

ID	Progressiva di riferimento (km)	Latitudine (°)	Longitudine (°)	Punti della griglia adiacenti (da Spettri-NTCver.1.0.3.xls, CSLLPP, 2009)
22	94+278	44.457618	12.018136	Nodi del reticolo intorno al sito km7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5
23	101+311	44.506061	11.963625	Nodi del reticolo intorno al sito km7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5
24	110+747	44.528082	11.849426	Nodi del reticolo intorno al sito km7.5 16515 16516 -7.5
25	120+346	44.548527	11.734929	Nodi del reticolo intorno al sito km ^{7.5} -16513 16514 -7.5 km

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Rusan & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildill	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	80190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 45 di 176	Rev. 0

Tabella 5-1: Associazione dei punti di interesse di Tabella 3-2, ai nodi della griglia di rappresentazione dei valori di pericolosità sismica secondo le tabelle allegate alle NTC2018.

ID	Progressiva di riferimento (km)	Latitudine (°)	Longitudine (°)	Punti della griglia adiacenti (da Spettri-NTCver.1.0.3.xls, CSLLPP, 2009)		
26	135+000	44.592353	11.572537	Nodi del reticolo intorno al sito km7.5 -16289 -7.5 -7.5 -7.5 km		

COOM	PROGETTISTA TECHNIP ENERGIES TECHNIP Ruman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam V	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 46 di 176	Rev.

Tabella 5-2: Valori dei parametri ag, F_0 , T_{c^*} per i periodi di ritorno T_R di riferimento (ottenuti attraverso l'impiego del foglio di calcolo Spettri-NTCver.1.0.3.xls, CSLLPP (2009)).

ID	Progressive di riferimento (km)	Tabella valori					
		SL	T _R (anni)	a _g (g)	F ₀ (-)	T _C * (s)	
		SLO	60	0.088	2.421	0.281	
0	00+000	SLD	101	0.110	2.405	0.289	
		SLV	949	0.249	2.503	0.319	
		SLC	1950	0.311	2.557	0.331	
		SL	T _R (anni)	a _g (g)	F ₀ (-)	T _C * (s)	
		SLO	60	0.088	2.423	0.281	
1	00+985	SLD	101	0.110	2.407	0.289	
		SLV	949	0.248	2.501	0.320	
		SLC	1950	0.309	2.554	0.331	
		SL	T _R (anni)	a _g (g)	F ₀ (-)	Tc* (s)	
		SLO	60	0.088	2.423	0.281	
2	04+252	SLD	101	0.109	2.411	0.289	
		SLV	949	0.246	2.497	0.321	
		SLC	1950	0.307	2.557	0.331	
		SL	T _R (anni)	a _g (g)	F ₀ (-)	Tc* (s)	
		SLO	60	0.088	2.423	0.280	
3	05+150	SLD	101	0.109	2.412	0.289	
		SLV	949	0.246	2.500	0.321	
		SLC	1950	0.306	2.565	0.331	
		SL	T _R (anni)	a _g (g)	F ₀ (-)	T _C * (s)	
		SLO	60	0.088	2.423	0.280	
4	06+000	SLD	101	0.109	2.413	0.289	
		SLV	949	0.245	2.504	0.321	
		SLC	1950	0.305	2.574	0.331	
		SL	T _R (anni)	a _g (g)	F ₀ (-)	T _C * (s)	
5	07+624	SLO	60	0.088	2.424	0.280	
	01 · 32·	SLD	101	0.109	2.414	0.289	
		SLV	949	0.245	2.499	0.322	

(nam	PROGETTISTA TECHNIP ENERGIES TECHNIP Ruman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -	
snam V	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190		
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 47 di 176	Rev. 0	

Tabella 5-2: Valori dei parametri ag, F_0 , T_{c^*} per i periodi di ritorno T_R di riferimento (ottenuti attraverso l'impiego del foglio di calcolo Spettri-NTCver.1.0.3.xls, CSLLPP (2009)).

ID	Progressive di riferimento (km)	Tabella valori					
		SLC	1950	0.305	2.567	0.331	
		SL	T _R (anni)	a _g (g)	F ₀ (-)	T _C * (s)	
		SLO	60	0.088	2.424	0.280	
6	08+560	SLD	101	0.109	2.414	0.289	
		SLV	949	0.244	2.496	0.322	
		SLC	1950	0.304	2.561	0.331	
		SL	T _R (anni)	a _g (g)	F ₀ (-)	Tc* (s)	
		SLO	60	0.089	2.422	0.280	
7	12+500	SLD	101	0.110	2.413	0.288	
		SLV	949	0.245	2.489	0.323	
		SLC	1950	0.306	2.550	0.331	
		SL	T _R (anni)	a _g (g)	F ₀ (-)	Tc* (s)	
	16+635	SLO	60	0.088	2.422	0.280	
8		SLD	101	0.110	2.412	0.289	
		SLV	949	0.245	2.490	0.323	
		SLC	1950	0.305	2.549	0.331	
		SL	T _R (anni)	a _g (g)	F ₀ (-)	T _C * (s)	
		SLO	60	0.089	2.420	0.280	
9	19+151	SLD	101	0.110	2.411	0.289	
		SLV	949	0.245	2.494	0.323	
		SLC	1950	0.305	2.553	0.330	
		SL	T _R (anni)	a _g (g)	F ₀ (-)	T _C * (s)	
		SLO	60	0.089	2.417	0.280	
10	21+589	SLD	101	0.110	2.409	0.289	
		SLV	949	0.245	2.497	0.323	
		SLC	1950	0.305	2.556	0.330	
		SL	T _R (anni)	a _g (g)	F ₀ (-)	T _C * (s)	
11	23+715	SLO	60	0.090	2.413	0.279	
		SLD	101	0.111	2.406	0.288	

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -	
Sildili	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190		
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 48 di 176	Rev .	

Tabella 5-2: Valori dei parametri ag, F_0 , T_{c^*} per i periodi di ritorno T_R di riferimento (ottenuti attraverso l'impiego del foglio di calcolo Spettri-NTCver.1.0.3.xls, CSLLPP (2009)).

ID	Progressive di riferimento (km)	Tabella valori					
		SLV	949	0.247	2.504	0.322	
		SLC	1950	0.306	2.562	0.329	
		SL	T _R (anni)	a _g (g)	F ₀ (-)	Tc* (s)	
		SLO	60	0.089	2.412	0.279	
12	27+243	SLD	101	0.111	2.404	0.288	
		SLV	949	0.246	2.504	0.322	
		SLC	1950	0.304	2.563	0.329	
		SL	T _R (anni)	a _g (g)	F ₀ (-)	T _C * (s)	
		SLO	60	0.088	2.410	0.279	
13	32+348	SLD	101	0.109	2.402	0.288	
		SLV	949	0.244	2.500	0.323	
		SLC	1950	0.303	2.558	0.329	
		SL	T _R (anni)	a _g (g)	F ₀ (-)	T _C * (s)	
		SLO	60	0.088	2.405	0.279	
14	36+223	SLD	101	0.110	2.400	0.287	
		SLV	949	0.246	2.496	0.322	
		SLC	1950	0.304	2.560	0.330	
		SL	T _R (anni)	a _g (g)	F ₀ (-)	Tc* (s)	
		SLO	60	0.089	2.397	0.278	
15	41+642	SLD	101	0.111	2.403	0.285	
		SLV	949	0.250	2.483	0.321	
		SLC	1950	0.308	2.551	0.330	
		SL	T _R (anni)	a _g (g)	F ₀ (-)	Tc* (s)	
		SLO	60	0.089	2.395	0.278	
16	44+786	SLD	101	0.111	2.410	0.284	
		SLV	949	0.253	2.456	0.322	
		SLC	1950	0.311	2.528	0.331	
17	52+731	SL	T _R (anni)	a _g (g)	F ₀ (-)	Tc* (s)	
.,	32.701	SLO	60	0.087	2.401	0.277	

CO.	PROGETTISTA TECHNIP ENERGIES TECHNIP Rusan & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam V	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 49 di 176	Rev .

Tabella 5-2: Valori dei parametri ag, F_0 , T_{c^*} per i periodi di ritorno T_R di riferimento (ottenuti attraverso l'impiego del foglio di calcolo Spettri-NTCver.1.0.3.xls, CSLLPP (2009)).

ID	Progressive di riferimento (km)	Tabella valori						
			SLD	101	0.109	2.408	0.283	
			SLV	949	0.253	2.433	0.320	
			SLC	1950	0.312	2.502	0.332	
			SL	T _R (anni)	a _g (g)	F ₀ (-)	T _C * (s)	
			SLO	60	0.085	2.406	0.278	,
18	58+305		SLD	101	0.107	2.407	0.285	
			SLV	949	0.251	2.411	0.323	
			SLC	1950	0.311	2.469	0.332	
			SL	T _R (anni)	a _g (g)	F ₀ (-)	T _C * (s)	
			SLO	60	0.082	2.413	0.278	,
19	68+509		SLD	101	0.102	2.429	0.287	
			SLV	949	0.243	2.433	0.318	
			SLC	1950	0.304	2.475	0.329	
			SL	T _R (anni)	a _g (g)	F ₀ (-)	T _C * (s)	
			SLO	60	0.076	2.437	0.279	,
20	78+195		SLD	101	0.095	2.432	0.289	
			SLV	949	0.236	2.407	0.308	
			SLC	1950	0.300	2.415	0.320	
			SL	T _R (anni)	a _g (g)	F ₀ (-)	T _C * (s)	
			SLO	60	0.073	2.449	0.279	,
21	84+962		SLD	101	0.092	2.438	0.288	
			SLV	949	0.231	2.419	0.300	
			SLC	1950	0.297	2.401	0.315	
			SL	T _R (anni)	a _g (g)	F ₀ (-)	T _C * (s)	
			SLO	60	0.068	2.473	0.279	•
22	94+278		SLD	101	0.086	2.468	0.285	
			SLV	949	0.220	2.482	0.288	
			SLC	1950	0.285	2.430	0.307	
23	101+311		SL	T _R (anni)	a _g (g)	F ₀ (-)	T _C * (s)	

	PROGETTISTA TECHNIP ENERGIES TECHNIP Ruman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam V	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 50 di 176	Rev. 0

Tabella 5-2: Valori dei parametri ag, F_0 , T_{c^*} per i periodi di ritorno T_R di riferimento (ottenuti attraverso l'impiego del foglio di calcolo Spettri-NTCver.1.0.3.xls, CSLLPP (2009)).

ID	Progressive di riferimento (km)	Tabella valori						
			SLO	60	0.067	2.474	0.279	
			SLD	101	0.085	2.452	0.282	
			SLV	949	0.216	2.495	0.286	
			SLC	1950	0.281	2.441	0.299	
			SL	T _R (anni)	a _g (g)	F ₀ (-)	T _C * (s)	
			SLO	60	0.068	2.473	0.278	,
24	110+747		SLD	101	0.087	2.453	0.283	
			SLV	949	0.220	2.481	0.286	
			SLC	1950	0.285	2.422	0.305	
			SL	T _R (anni)	a _g (g)	F ₀ (-)	T _C * (s)	
			SLO	60	0.069	2.473	0.276	
25	120+346		SLD	101	0.088	2.457	0.282	
			SLV	949	0.224	2.465	0.288	
			SLC	1950	0.289	2.414	0.307	
			SL	T _R (anni)	a _g (g)	F ₀ (-)	Tc* (s)	
			SLO	60	0.067	2.478	0.276	
26	135+000		SLD	101	0.086	2.451	0.280	
			SLV	949	0.219	2.485	0.286	
			SLC	1950	0.283	2.435	0.300	

Sparm	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -	
snam	LOCALITA'	40.01.50	0.100	
	REGIONI Toscana – Emilia-Romagna	10-CI-E80190		
	PROGETTO		Rev.	
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 51 di 176	0	

Tabella 5-3: Valori di $a_{\rm g}$ su suolo rigido (SLV) per i punti di interesse lungo il tracciato.

ID	Latitudine	Longitudine	Progressiva	a _g
(-)	(°)	(°)	(km)	(SLV)
0	43.735983	12.224183	00+000	0.249
1	43.744391	12.221709	00+985	0.248
2	43.767889	12.201301	04+252	0.246
3	43.773278	12.193276	05+150	0.248
4	43.779376	12.187765	06+000	0.245
5	43.791508	12.184681	07+624	0.245
6	43.79913	12.18479	08+560	0.244
7	43.825422	12.160332	12+500	0.245
8	43.855764	12.169715	16+635	0.245
9	43.875972	12.164708	19+151	0.245
10	43.895056	12.169121	21+589	0.245
11	43.910677	12.158179	23+715	0.247
12	43.936782	12.177241	27+243	0.246
13	43.970462	12.202893	32+348	0.244
14	44.00362	12.204012	36+223	0.246
15	44.04578	12.189709	41+642	0.25
16	44.071806	12.191581	44+786	0.253
17	44.129213	12.191616	52+731	0.253
18	44.176631	12.185445	58+305	0.251
19	44.256942	12.133526	68+509	0.243
20	44.338594	12.103099	78+195	0.236
21	44.386133	12.059998	84+962	0.231
22	44.457618	12.018136	94+278	0.220
23	44.506061	11.963625	101+311	0.216
24	44.528082	11.849426	110+747	0.220
25	44.548527	11.734929	120+346	0.224
26	44.592353	11.572537	135+000	0.219

	PROGETTISTA TECHNIP ENERGIES TECHNIP TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam //	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 52 di 176	Rev. 0

Tabella 5-4: Zonazione tracciato sulla base dei valori di ag su suolo rigido (SLV)

60	Progre	essiva		
Comune	da [km]	a [km]	a _g suolo rigido	
Sestino	0+000	2+649		
Pennabilli	2+649	4+510	0.240	
Casteldelci	4+510	4+863	0.249	
Dodio Todoldo	4+863	6+000		
Badia Tedalda —	6+000	9+982		
Sant'Agata Feltria	9+982	10+264	0.245	
Casteldelci	10+264	12+676	0.245	
Sant'Agata Feltria	12+676	21+780		
Sarsina	21+780	24+071		
Sant'Agata Feltria	24+071	25+055		
Sarsina	25+055	26+347		
Sogliano al Rubicone	26+347	27+727	0.247	
Mercato Saraceno	27+727	30+885		
Sogliano al Rubicone	30+885	31+858		
Mercato Saraceno	31+858	36+179		
Sogliano al Rubicone	36+179	37+947		
Roncofreddo	37+947	39+424		
Mercato Saraceno	39+424	40+201		
Cesena	40+201	59+550	0.253	
Bertinoro	59+550	61+827		
Forlimpopoli	61+827	63+214		
Forlì	63+214	68+767		
Ravenna	68+767	81+080		
Russi	81+080	81+704	0.242	
Ravenna	81+704	82+980	0.243	
Durai	82+980	84+900		
Russi	84+900	87+287		
Ravenna	87+287	90+780	0.224	
Bagnacavallo	90+780	97+073	0.231	
Fusignano	97+073	101+311	1	
Alfonsine 2	101+311	105+000	0.330	
			0.220	
Lugo	105+000	111+780		
	105+000 111+780	111+780 116+113	0.224	

COOM	PROGETTISTA TECHNIP ENERGIES TECHNIP Rusan & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 53 di 176	Rev. 0

Comuno	Progr	essiva	a suolo rigido
Comune	da [km]	a [km]	a _g suolo rigido
Medicina	117+538	124+917	
Molinella	124+917	134+700	
Dudria	134+700	135+560	
Budrio	135+560	137+698	0.310
Minerbio	137+698	140+691	0.219

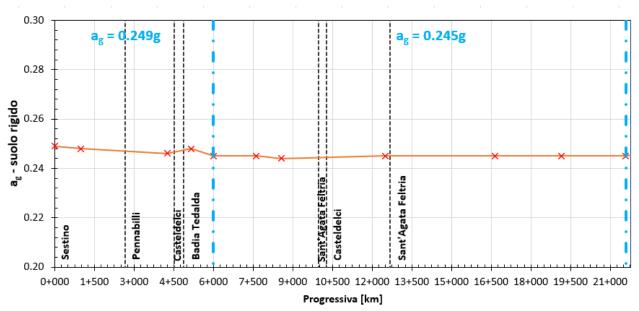


Figura 5-1: Andamento di a_g lungo il tracciato (PK 0+000 \div 21+780). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido con superficie topografica orizzontale, la linea azzurra la zonazione sulla base di a_g , mentre le linee tratteggiate nere individuano i confini comunali.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP LUMB A 5 Sostainable Engineering	COMMESSA NQ/R22358	UNITÀ -	
V/V	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190		
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 54 di 176	Rev.	

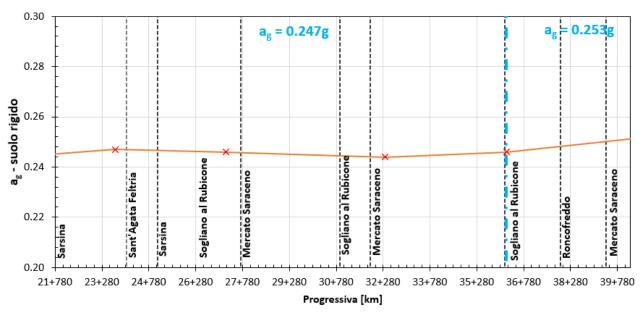


Figura 5-2: Andamento di a_g lungo il tracciato (PK 21+780 ÷ 40+201). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido con superficie topografica orizzontale, la linea azzurra la zonazione sulla base di a_g , mentre le linee tratteggiate nere individuano i confini comunali.

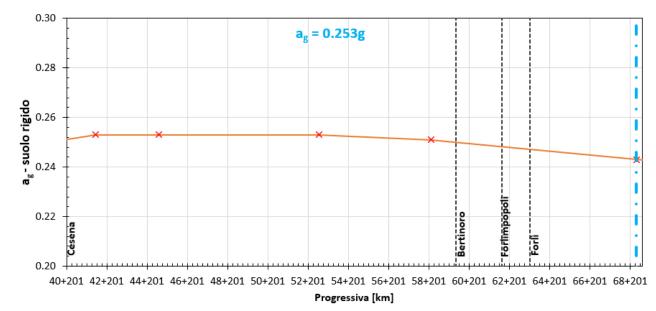


Figura 5-3: Andamento di a_g lungo il tracciato (PK 40+201 ÷ 68+780). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale, la linea azzurra la zonazione sulla base di a_g , mentre le linee tratteggiate nere individuano i confini comunali.

COOM	PROGETTISTA TECHNIP ENERGIES TECHNIP FUND 15 TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam V/	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 55 di 176	Rev .

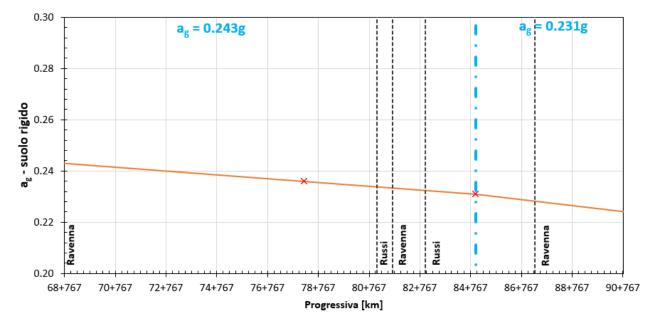


Figura 5-4: Andamento di a_g lungo il tracciato (PK 68+780 ÷ 90+780). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale, la linea azzurra la zonazione sulla base di a_g , mentre le linee tratteggiate nere individuano i confini comunali.

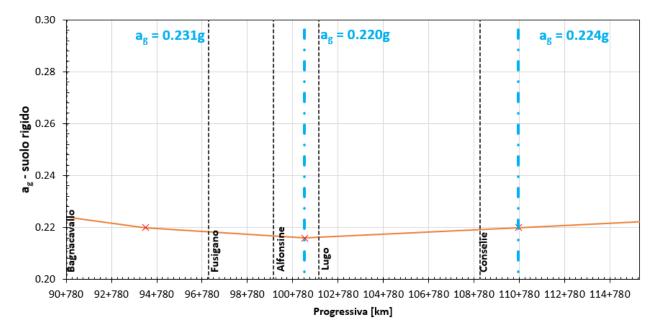


Figura 5-5: Andamento di a_g lungo il tracciato (PK 90+780 \div 116+113). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale, la linea azzurra la zonazione sulla base di a_g , mentre le linee tratteggiate nere individuano i confini comunali.

	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam	LOCALITA' REGIONI Toscana – Emilia-Romagna	ilia-Romagna 10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 56 di 176	Rev .

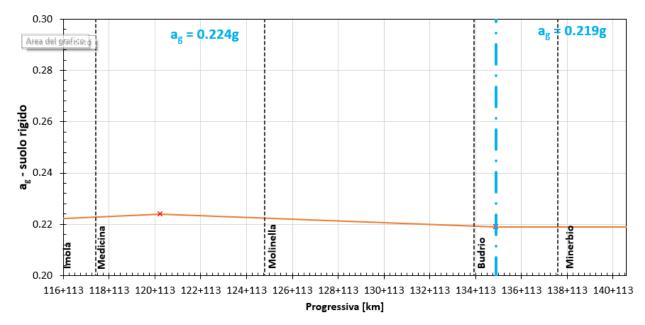


Figura 5-6: Andamento di a_g lungo il tracciato (PK 116+113 \div 140+691). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale, la linea azzurra la zonazione sulla base di a_g , mentre le linee tratteggiate nere individuano i confini comunali.

5.4.1 Risposta Sismica Locale su base NTC2018

Le NTC2018 definiscono il fattore di sito S come funzione sia della categoria di sottosuolo (S_s), sia dell'andamento della superficie topografica (S_T), come segue:

$$S = S_s \cdot S_T$$

La zonazione del tracciato di progetto rispetto alla risposta sismica locale dei terreni presenti è stata condotta innanzitutto identificando la Categoria di Sottosuolo sulla base dei dati delle indagini condotte in sito, con particolare riferimento alle indagini geofisiche (cfr. 5). In particolare, la determinazione della categoria di sottosuolo è stata condotta in funzione del valore medio della velocità di propagazione delle onde di taglio. (V_{S,eq}):

$$V_{S,eq} = \frac{H}{\sum_{i=1,N} \frac{h_i}{V_{S,i}}} [m/s]$$

dove:

- H = profondità del tetto del bedrock sismico (i.e. strato con V_s ≥ 800 m/s)
- hi = spessore (in metri) dell'i-esimo strato.

	PROGETTISTA TECHNIP ENERGIES TECHNIP RUMAN & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 57 di 176	Rev. 0

V_{S,i} = velocità delle onde di taglio nell'i-esimo strato.

Qualora non si riscontri nei primi 30 m di profondità la presenza di un bedrock sismico vero e proprio, la determinazione della categoria di sottosuolo è stata condotta sempre in accordo alle NTC2018 in funzione del valore medio calcolato sui primi 30 m di profondità.

I profili di V_S di riferimento per ogni tratto sono stati determinati per via diretta dai risultati delle prove geofisiche di tipo MASW, disponibili lungo il tracciato. Inoltre, è stata eseguita una prospezione sismica in foro Down-Hole in corrispondenza del sondaggio $S_023_SM_L$ allo scopo di verificare il dato della MASW 7.

Da Tabella 5-5 a Tabella 5-36 si riportano i valori di V_S riferiti ai profili delle prospezioni geofisiche ed il corrispettivo valore $V_{S,eq}$ per le prove eseguite lungo il tracciato. Si noti che al bedrock sismico è stato associato un valore di V_S pari a 800 m/s. Nei successivi paragrafi sono presentati gli approfondimenti relativi alla risposta sismica locale (e quindi all'azione sismica di progetto).

Sulla base delle informazioni disponibili, il tracciato può essere classificato generalmente in categoria B, C, D ed E. Nel dettaglio (NTC2018):

- Cat. B: "Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s."
- Cat. C: "Depositi di terreni a grana grossa mediamente addensati o di terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di V_{s,30} compresi tra 180 m/s e 360 m/s."
- Cat. D: "Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fine scarsamente consistenti, con profondità del substrato superiori a 30m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s."
- Cat. E: "Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m."

In Tabella 5-38 si riportano i coefficienti di amplificazione stratigrafica S_S da NTC2018 per i diversi tratti individuati.

snam	PROGETTISTA TECHNIP TECHNIP Ruman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 58 di 176	Rev. 0

Tabella 5-5: MASW1 – pk 0+850. Profilo di riferimento Valori di Vs per intervallo di profondità

Profondità (m)		Vs (m/s)
da	а	V _{S,30} = 259 m/s
0.0	3.40	213
3.40	7.00	324
7.00	30.00	800

Tabella 5-6: MASW2 - pk 1+150. Profilo di riferimento Valori di Vs per intervallo di profondità

Profondità (m)		Vs (m/s)
da	а	V _{S,30} = 498 m/s
0.0	3.80	366
3.80	10.00	640
10.00	30.00	800

Tabella 5-7: MASW3 – pk 7+325. Profilo di riferimento Valori di Vs per intervallo di profondità

Profondità (m)		Vs (m/s)
da	а	V _{S,30} = 460 m/s
0.0	7.60	380
7.60	14.00	613
14.00	30.00	800

Tabella 5-8: MASW4 – pk 7+730. Profilo di riferimento Valori di Vs per intervallo di profondità

Profondità (m)		Vs (m/s)
da	а	V _{S,30} = 488 m/s
0.0	3.60	350
3.60	4.80	455
4.80	9.20	760
9.20	30.00	800

	PROGETTISTA TECHNIP ENERGIES TECHNIP Human 8 Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam V/	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 59 di 176	Rev. 0

Tabella 5-9: MASW5 – 16+100. Profilo di riferimento Valori di Vs per intervallo di profondità

Profondità (m)		V _S (m/s)
da	а	V _{S,30} = 316 m/s
0.0	2.00	182
2.00	2.80	170
2.80	6.00	309
6.00	12.00	504
12.00	800	800

Tabella 5-10: MASW6 – 11+100. Profilo di riferimento Valori di Vs per intervallo di profondità

Profondità (m)		V _S (m/s)
da	а	V _{S,30} = 432 m/s
0.0	4.80	375
4.80	7.20	400
7.20	12.20	534
12.20	30.00	800

Tabella 5-11: MASW7 – 19+150. Profilo di riferimento Valori di Vs per intervallo di profondità

Profondità (m)		Vs (m/s)
da	а	V _{S,30} = 463 m/s
0.0	3.60	379
3.60	5.60	463
5.60	10.00	565
10.00	30.00	800

	PROGETTISTA TECHNIP TECHNIP TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam //	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 60 di 176	Rev . 0

Tabella 5-12: MASW8 – 21+600. Profilo di riferimento Valori di Vs per intervallo di profondità

Profondità (m)		V _S (m/s)	
da	а	V _{S,30} = 382 m/s	
0.0	2.80	245	
2.80	5.00	272	
5.00	8.20	380	
8.20	15.20	598	
15.20	30.00	800	

Tabella 5-13: MASW9 – 27+260. Profilo di riferimento Valori di Vs per intervallo di profondità

Profondità (m)		V _S (m/s)	
da	а	V _{S,30} = 344 m/s	
0.0	2.00	270	
2.00	5.40	410	
5.40	11.40	860	
11.40	30.00	>=860	

Tabella 5-14: MASW10 - 36+200. Profilo di riferimento Valori di Vs per intervallo di profondità

Profondità (m)		Vs (m/s)
da	а	V _{S,30} = 324 m/s
0.0	4.00	217
4.00	9.60	291
9.60	14.40	346
14.40	22.40	462
22.40	30.00	800

COOM	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -	
V//V	LOCALITA' REGIONI Toscana – Emilia-Romagna		10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 61 di 176	Rev. 0	

Tabella 5-15 :MASW11 - 44+770. Profilo di riferimento Valori di Vs per intervallo di profondità

Profondità (m)		V _S (m/s)
da	а	V _{S,30} = 454 m/s
0.0	4.00	302
4.00	7.50	444
7.50	13.00	652
13.00	30.00	800

Tabella 5-16: MASW12 - pk. 57+550km. Profilo di riferimento Valori di Vs per intervallo di profondità.

Profondità (m)		V _S (m/s)
da	а	V _{S,30} = 238 m/s
0.0	4.30	146
4.30	8.30	176
8.30	21.50	270
21.50	30.0	351

Tabella 5-17: MASW13 – pk. 59+220km. Profilo di riferimento Valori di Vs per intervallo di profondità.

Profondità (m)		V _S (m/s)
da	а	V _{S,30} = 201 m/s
0.0	6.50	141
6.50	11.50	158
11.50	16.50	203
16.50	30.0	290

COOM	PROGETTISTA TECHNIP TECHNIP TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -	
Sildili	LOCALITA' REGIONI Toscana – Emilia-Romagna		10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 62 di 176	Rev. 0	

Tabella 5-18: MASW14 – pk. 68+525km. Profilo di riferimento Valori di Vs per intervallo di profondità.

Profondità (m)		V _S (m/s)	
da	а	V _{S,30} = 210 m/s	
0.0	4.00	166	
4.00	6.00	120	
6.00	11.20	165	
11.20	22.10	243	
22.10	30.0	308	

Tabella 5-19: MASW15 – pk. 78+160km. Profilo di riferimento Valori di Vs per intervallo di profondità.

Profondità (m)		Vs (m/s)
da	а	V _{S,30} = 183 m/s
0.0	2.00	136
2.00	13.00	146
13.00	28.00	224
28.00	30.0	298

Tabella 5-20: MASW16 – pk. 84+620km. Profilo di riferimento Valori di Vs per intervallo di profondità.

Profondità (m)		Vs (m/s)
da	а	V _{S,30} = 189 m/s
0.0	2.20	137
2.20	6.70	140
6.70	11.90	159
11.90	18.30	192
18.30	30.0	261

COOM	PROGETTISTA TECHNIP TECHNIP TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
LOCALITA' REGIONI Toscana – Emilia-Romagna		10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 63 di 176	Rev. 0

Tabella 5-21: MASW17 – pk. 85+280km. Profilo di riferimento Valori di Vs per intervallo di profondità.

Profondità (m)		V _S (m/s)
da	а	V _{S,30} = 191 m/s
0.0	3.50	140
3.50	14.50	155
14.50	19.00	218
19.00	30.0	270

Tabella 5-22: MASW18 - pk. 94+250km. Profilo di riferimento Valori di Vs per intervallo di profondità.

Profondità (m)		V _S (m/s)
da	а	V _{S,30} = 167 m/s
0.0	5.00	105
5.00	10.50	123
10.50	23.00	210
23.00	30.0	250

Tabella 5-23: MASW19 – pk. 101+265km. Profilo di riferimento Valori di Vs per intervallo di profondità.

Profondità (m)		V _S (m/s)
da	а	V _{S,30} = 206 m/s
0.0	4.50	107
4.50	9.50	175
9.50	16.00	219
16.00	26.50	300
26.50	30.0	351

COOM	PROGETTISTA TECHNIP TECHNIP TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildili	LOCALITA' REGIONI Toscana – Emilia-Romagna		
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 64 di 176	Rev .

Tabella 5-24: MASW20 – pk. 110+580km. Profilo di riferimento Valori di Vs per intervallo di profondità.

Profondità (m)		V _S (m/s)	
da	а	V _{S,30} = 174 m/s	
0.0	5.50	106	
5.50	11.50	147	
11.50	19.00	187	
19.00	30.0	280	

Tabella 5-25: MASW21 – pk. 110+900km. Profilo di riferimento Valori di Vs per intervallo di profondità.

Profondità (m)		Vs (m/s)	
da	а	V _{S,30} = 194 m/s	
0.0	2.00	106	
2.00	7.50	116	
7.50	22.50	232	
22.50	30.00	313	

Tabella 5-26: MASW22 – 120+230. Profilo di riferimento Valori di Vs per intervallo di profondità.

Profondità (m)		V _s (m/s)	
da	а	V _{S,30} = 175 m/s	
0.0	2.50	118	
2.50	6.50	121	
6.50	12.50	150	
12.50	22.00	201	
22.00	29.00	258	
29.00	30.0	358	

COOM	PROGETTISTA TECHNIP TECHNIP TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -	
Sildili	LOCALITA' REGIONI Toscana – Emilia-Romagna		10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 65 di 176	Rev. 0	

Tabella 5-27: MASW23 – pk. 134+730km. Profilo di rifer5-28imento Valori di Vs per intervallo di profondità.

Profondità (m)		V _S (m/s)
da	а	V _{s,30} = 246 m/s
0.0	2.00	150
2.00	9.00	192
9.00	16.00	237
16.00	22.00	291
22.00	30.0	360

Tabella 5-29: MASW24 – pk. 135+220km. Profilo di riferimento Valori di Vs per intervallo di profondità.

Profondità (m)		Vs (m/s)
da	а	V _{S,30} = 198 m/s
0.0	3.00	134
3.00	16.00	170
16.00	28.00	260
28.00	30.0	300

Tabella 5-30: MASW25 – 4+240 Profilo di riferimento Valori di Vs per intervallo di profondità

Profondità (m)		V _S (m/s)
da	а	355 m/s
0.0	4.00	285
4.00	6.40	408
6.40	8.80	463
8.80	30.00	800

COOM	PROGETTISTA TECHNIP TECHNIP TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildili	LOCALITA' REGIONI Toscana – Emilia-Romagna		
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 66 di 176	Rev. 0

Tabella 5-31: MASW26 - 6+100. Profilo di riferimento Valori di Vs per intervallo di profondità

Profondità (m)		V _S (m/s)
da	а	V _{S,30} = 400 m/s
0.0	8.30	301
8.30	16.30	437
16.30	23.30	577
23.30	30.00	800

Tabella 5-32: MASW27 – 12+640. Profilo di riferimento Valori di Vs per intervallo di profondità

Profondità (m)		V _S (m/s)
da	а	V _{S,30} = 465 m/s
0.0	2.60	285
2.60	6.90	600
6.90	9.00	685
9.00	30.00	800

Tabella 5-33: MASW28 - 23+810. Profilo di riferimento Valori di Vs per intervallo di profondità

Profondità (m)		V _S (m/s)
da	а	V _{S,30} = 224 m/s
0.0	2.80	134
2.80	9.00	203
9.00	19.00	298
19.00	30.00	800

CDOM	PROGETTISTA TECHNIP TECHNIP TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
<u>snam</u>	LOCALITA' REGIONI Toscana – Emilia-Romagna	NI Toscana – Emilia-Romagna 10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 67 di 176	Rev. 0

Tabella 5-34: MASW29 - 32+340. Profilo di riferimento Valori di Vs per intervallo di profondità

Profondità (m)		Vs (m/s)
da	а	V _{S,30} = 333 m/s
0.0	2.40	266
2.40	5.60	306
5.60	8.10	525
8.10	30.00	800

Tabella 5-35: MASW30 - 41+630. Profilo di riferimento Valori di Vs per intervallo di profondità

Profondità ((m)	Vs (m/s)
da	а	V _{S,30} = 305 m/s
0.0	5.40	250
5.40	9.40	339
9.40	11.90	305
11.90	15.10	407
15.10	30.00	800

Tabella 5-36: MASW31 – pk 52+720km. Profilo di riferimento Valori di Vs per intervallo di profondità

Profondità (V _S (m/s)	
da	а	V _{S,30} = 245 m/s
0.0	9.90	170
9.90	14.40	249
14.40	26.40	324
26.40	30.0	388

Tabella 5-37: DH S_023_SM_L – pk 19+150km. Profilo di riferimento Valori di Vs per intervallo di profondità

Profondità (m)		Vs (m/s)
da	а	V _{S,30} = 552,48 m/s
0.0	7.00	338
7.00	29.00	669

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Rusan & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
SIIdiii	LOCALITA'		
	REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO		Rev.
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 68 di 176	0

Tabella 5-38: Coefficienti di amplificazione stratigrafica $S_{\rm S}$ lungo il tracciato.

_	Progr	essiva	Punto di	Categoria di	Coefficiente di
Comune	da [km]	a [km]	riferimento	Sottosuolo	amplificazione stratigrafica S _s
Sestino	0+000	2+649			
Pennabilli	2+649	4+510	2	F	1 224
Casteldelci	4+510	4+863	2	E	1.324
Dadia Tadalda	4+863	6+000			
Badia Tedalda	6+000	9+982			
Sant'Agata Feltria	9+982	12+676	7	В	1.156
Casteldelci	12+250	12+500			
Casteldeici	12+500	12+676			
Sant'Agata Feltria	12+676	21+780	9	В	1.155
Consisso	21+780	23+715			
Sarsina	23+715	24+071			
Sant'Agata Feltria	24+071	25+055			
Sarsina	25+055	26+347	15	F	1 216
Sogliano al Rubicone	26+347	27+727	15	Е	1.316
Sogliano al Rubicone	30+885	31+858			
Mercato Saraceno	31+858	36+465			
Sogliano al Rubicone	36+465	37+492			
Roncofreddo	37+947	39+424			
Mercato Saraceno	39+424	40+201			
_	40+201	41+642		_	
Cesena	41+642	59+550	17	С	1.330
Bertinoro	59+550	61+827			
Forlimpopoli	61+827	63+214			
Forlì	63+214	68+767			
Ravenna	68+767	81+080			
Russi	81+080	81+704		_	
Ravenna	81+704	82+980	19	С	1.346
D	82+980	84+900			
Russi	84+900	87+287			
Ravenna	87+287	90+780	24		4.564
Bagnacavallo	90+780	97+073	21	D	1.561
Fusignano	97+073	101+311			
Alfonsine	101+311	105+000	24	D	1.581

CDOM	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam	LOCALITA' REGIONI Toscana – Emilia-Romagna	NI Toscana – Emilia-Romagna 10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 69 di 176	Rev. 0

	Progr	essiva	Punto di	Categoria di Sottosuolo	Coefficiente di amplificazione stratigrafica S _s	
Comune	da [km]	a [km]	riferimento			
Lugo	105+000	111+780				
Conselice	111+780	116+113				
Imola	116+113	117+538				
Medicina	117+538	124+917	25	D	1.573	
Molinella	124+917	134+700				
Dudria	134+700	135+560				
Budrio	135+560	137+698	26	C	1 274	
Minerbio	137+698	140+691	26	С	1.374	

Per quanto riguarda le modifiche all'azione sismica conseguenti a effetti di natura topografica, con riferimento alle prescrizioni di NTC2018 riportate in Tabella 5-39 ed in funzione dei siti attraversati dal tracciato di progetto, sono stati valutati i coefficienti di amplificazione S_T per i diversi tratti. In particolare, nel primo tratto del metanodotto dal km 0+000 al km 23+715 la morfologia del territorio richiede di tenere in conto gli effetti di amplificazione topografica con i fattori riportati di seguito. Per la parte di opera da pk 23+201 sino a fine tratta, settore in cui l'opera passa da fondovalle a pianura, si è generalmente in condizioni di categoria topografica T1 con S_T pari a 1.

Sulla base di quanto sopra in Tabella 5-40 si riportano i fattori S_s , S_T e l'azione sismica di progetto a_{max} per il periodo di ritorno di SLV (V_R =100 anni, T_R =949 anni) per ciascun tratto individuato.

Quale riassunto, da Figura 5-9 a Figura 5-12 viene mostrato, oltre alla variazione del parametro a_g su suolo rigido, le categorie di suolo e le categorie topografiche per ciascun punto di interesse, fino al valore di a_{max} calcolato su base NTC2018 per ciascun tratto.

Tabella 5-39: Valori coefficiente di amplificazione topografica S_T, da Tab.3.2.V NTC2018.

Categoria Topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	-	1.0
T2	In corrispondenza della sommità del pendio	1.2
Т3	In corrispondenza della cresta di un rilievo con pendenza media minore o uguale a 30°	1.2
T4	In corrispondenza della cresta di un rilievo con pendenza media maggiore a 30°	1.4

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP FUND 15 TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 70 di 176	Rev. 0

Tabella 5-40: Coefficienti di sito S e accelerazione di progetto a_{max} per lo stato limite di salvaguardia della vita SLV (V_R = 100 anni, T_R = 949 anni).

Constitution	Progressiva		Punto di Cate	Categoria di	a _g (g) su			
Comune	da [km]	a [km]	riferimento	Sottosuolo	suolo rigido	S _s	S _T	a _{max} (g)
Sestino	0+000	2+649						
Pennabilli	2+649	4+510	2	E	0.249	1.324	Т3	0.391
Casteldelci	4+510	4+863			0.249	1.324	13	0.331
Badia Tedalda	4+863	6+000						
Daula Tedalda	6+000	9+982						
Sant'Agata Feltria	9+982	12+676	7	В	0.245	1.156	Т3	0.340
Casteldelci	12+250	12+500						
Castelucici	12+500	12+676						
Sant'Agata Feltria	12+676	21+780	9	В	0.245	1.155	T4	0.396
Carcina	21+780	23+715						
Sarsina	23+715	24+071		E	0.247	1.316	T1	0.333
Sant'Agata Feltria	24+071	25+055						
Sarsina	25+055	26+347	15					
Sogliano al Rubicone	26+347	27+727	15					
Sogliano al Rubicone	30+885	31+858						
Mercato Saraceno	31+858	36+465						
Sogliano al Rubicone	36+465	37+492			0.353	1.330	T1	0.336
Roncofreddo	37+947	39+424						
Mercato Saraceno	39+424	40+201						
Casana	40+201	41+642	17					
Cesena	41+642	59+550	17	С	0.253			
Bertinoro	59+550	61+827						
Forlimpopoli	61+827	63+214						
Forlì	63+214	68+767						
Ravenna	68+767	81+080			0.243	1.346	T1	0.327
Russi	81+080	81+704	19	С				
Ravenna	81+704	82+980						
D	82+980	84+900						
Russi	84+900	87+287						
Ravenna	87+287	90+780	21	D	0.213	1.561	T1	0.361
Bagnacavallo	90+780	97+073						

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP FOR TECHNIP RUman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 71 di 176	Rev. 0

Tabella 5-40: Coefficienti di sito S e accelerazione di progetto a_{max} per lo stato limite di salvaguardia della vita SLV (V_R = 100 anni, T_R = 949 anni).

Comune	Progressiva		Punto di	Categoria di	a _g (g) su	_	_	
	da [km]	a [km]	riferimento	Sottosuolo	suolo rigido	S₅	S⊤	a _{max} (g)
Fusignano	97+073	101+311						
Alfonsine	101+311	105+000	2.4	-	0.220	1 501	T1	0.240
Lugo	105+000	111+780	24	D	0.220	1.581	T1	0.348
Conselice	111+780	116+113						
Imola	116+113	117+538						
Medicina	117+538	124+917	25	D	0.224	1.573	T1	0.352
Molinella	124+917	134+700						
Dudrio	134+700	135+560						
Budrio	135+560	137+698	26		0.310	1 274	T1	0.201
Minerbio	137+698	140+691	26	С	0.219	1.374	T1	0.301

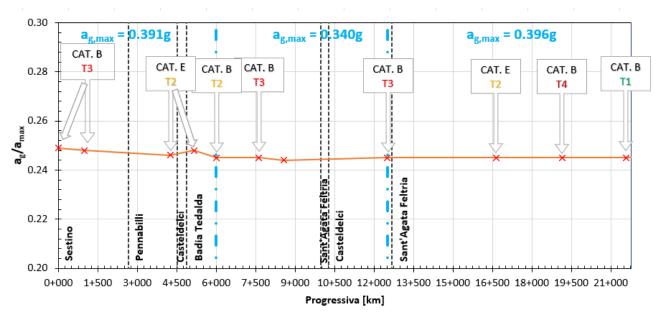


Figura 5-7: Andamento di a_{max} (NTC2018) lungo il tracciato (PK 0+000 \div 21+780). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale. La linea azzurra la zonazione sulla base di a_g . Le linee nere tratteggiate individuano i limiti comunali. Si riportano le categorie di sottosuolo e topografiche e, in azzurro, il valore di a_{max} di riferimento per il tratto calcolato su base NTC2018.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP LUMAN & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -	
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190		
	REGIONI Toscana – Emilia-Romagna			
	PROGETTO		Rev.	
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 72 di 176	0	

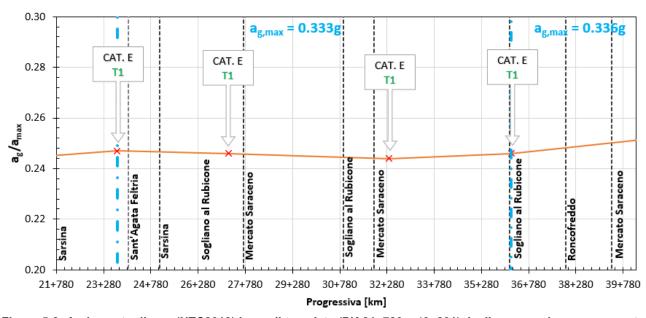


Figura 5-8: Andamento di a_{max} (NTC2018) lungo il tracciato (PK 21+780 \div 40+201). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale. La linea azzurra la zonazione sulla base di a_g . Le linee nere tratteggiate individuano i limiti comunali. Si riportano le categorie di sottosuolo e topografiche e, in azzurro, il valore di a_{max} di riferimento per il tratto calcolato su base NTC2018.

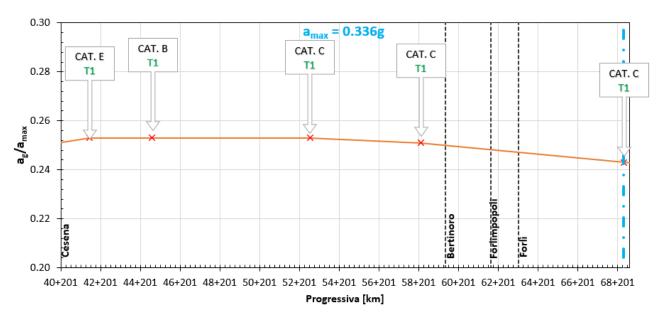


Figura 5-9: Andamento di a_{max} (NTC2018) lungo il tracciato (PK 40+201 \div 68+767). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale. La linea azzurra la zonazione sulla base di a_g . Le linee nere tratteggiate individuano i limiti comunali. Si riportano le categorie di sottosuolo e topografiche e, in azzurro, il valore di a_{max} di riferimento per il tratto calcolato su base NTC2018.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
V	LOCALITA'	10-CI-E-8	80190
	REGIONI Toscana – Emilia-Romagna		
	PROGETTO		Rev.
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 73 di 176	0

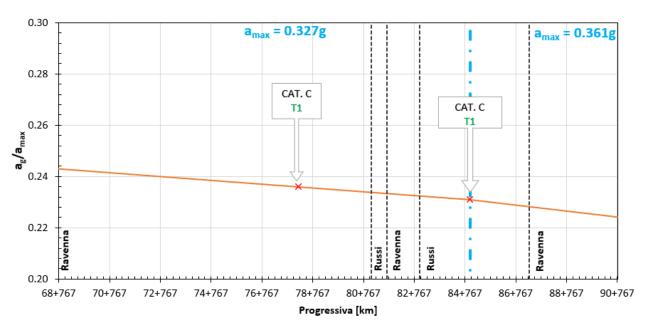


Figura 5-10: Andamento di a_{max} (NTC2018) lungo il tracciato (PK 68+767 \div 90+780). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale. La linea azzurra la zonazione sulla base di a_g . Le linee nere tratteggiate individuano i limiti comunali. Si riportano le categorie di sottosuolo e topografiche e, in azzurro, il valore di a_{max} di riferimento per il tratto calcolato su base NTC2018.

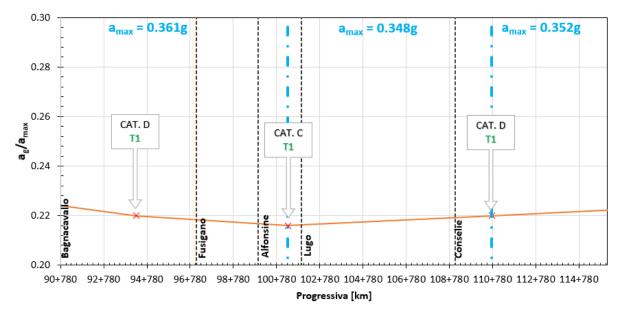


Figura 5-11: Andamento di a_{max} (NTC2018) lungo il tracciato (PK 90+780 \div 116+113). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale. La linea azzurra la zonazione sulla base di a_g . Le linee nere tratteggiate individuano i limiti comunali. Si riportano le categorie di sottosuolo e topografiche e, in azzurro, il valore di a_{max} di riferimento per il tratto calcolato su base NTC2018.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP FURNICATION AS Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
Silaili	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 74 di 176	Rev. 0

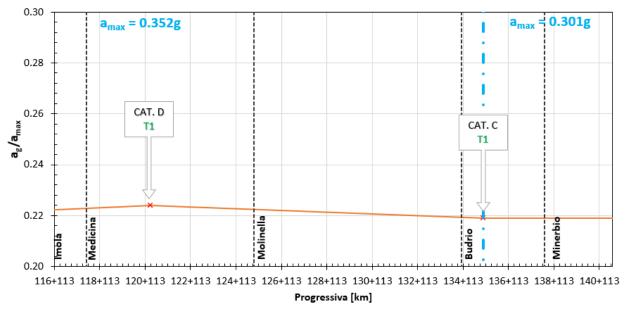


Figura 5-12: Andamento di a_{max} (NTC2018) lungo il tracciato (PK 116+113 \div 140+691). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale. La linea azzurra la zonazione sulla base di a_g . Le linee nere tratteggiate individuano i limiti comunali. Si riportano le categorie di sottosuolo e topografiche e, in azzurro, il valore di a_{max} di riferimento per il tratto calcolato su base NTC2018

	PROGETTISTA TECHNIP ENERGIES TECHNIP Ruman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam //	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 75 di 176	Rev. 0

5.5 Approfondimento RSL su base regionale

Nella valutazione dell'effetto della risposta sismica locale sulla azione sismica di progetto, oltre a quanto definito nel paragrafo precedente con riferimento alle NTC2018, deve essere fatto riferimento al corpo normativo delle Regioni Emilia Romagna e Toscana.

In particolare, per il tratto di opera transitante nel territorio della Regione Toscana, con Delibera di GRT n. 977 del 27 settembre 2021 [15] vengono definite le specifiche tecniche per l'elaborazione di indagini e studi di Microzonazione Sismica (MS) e prescrizione per le analisi della Condizione Limite per l'Emergenza e relative Appendici.

Per quanto riguarda il tratto di metanodotto afferente alla Regione Emilia-Romagna, va considerato il DGR 476/2021 e DGR integrativa n. 564/2021 [14], con i seguenti allegati:

- Allegato A1: Indicazioni per l'elaborazione della cartografia delle aree suscettibili di effetti locali (Livello I di approfondimento).
- Allegato A2: Tabelle e formule per la stima dei fattori di amplificazione sismica per la microzonazione sismica (Livello II di approfondimento).
- Allegato A3: Procedure di riferimento per le analisi di Livello III di approfondimento.
- Allegato A4: Segnali di riferimento per la stima della risposta sismica locale negli studi di microzonazione sismica di Livello III di approfondimento.

Generalmente, si identificano a livello normativo due fasi e tre livelli di approfondimento della risposta sismica locale da seguire nella predisposizione degli strumenti di governo del territorio, ma di fatto cogenti:

- La prima fase di analisi è diretta a definire gli scenari di pericolosità sismica locale, ovvero a identificare le parti di territorio suscettibili di effetti locali (Livello I). È basata su osservazioni geologiche, geomorfologiche e sismiche a scala territoriale. Viene attuata nell'ambito della pianificazione a scala di area vasta provinciale e recepita in maggior dettaglio a livello comunale;
- La seconda fase di analisi ha come obbiettivo la microzonazione sismica (MS) del territorio indagato, secondo due ulteriori livelli di approfondimento:
 - O Analisi semplificata (Livello II di approfondimento) applicabile nel caso di aree pianeggianti e sub-pianeggianti, con stratificazione orizzontale e sub-orizzontale, ovvero in tutte le zone in cui il modello stratigrafico possa essere assimilato ad un modello fisico monodimensionale. Questo livello di analisi prevede l'analisi della

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP FUND 15 Sutainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 76 di 176	Rev. 0

pericolosità sismica locale attraverso prove geofisiche e geotecniche in sito. L'amplificazione del moto sismico viene determinata attraverso l'impiego di tabelle e formule;

 Analisi approfondita (Livello III di approfondimento), da applicare nelle zone in cui l'analisi semplificata non risulti sufficiente per la microzonazione sismica. L'analisi approfondita si basa sull'esecuzione di una analisi di risposta sismica locale attraverso metodi numerici.

In particolare, la Regione Emilia-Romagna (cfr. par. 2.1 della Rif. Doc. [14]) prevede i seguenti livelli di approfondimento:

- Livello II di approfondimento si applica a tutto il territorio (a scala provinciale o metropolitana) attraversato dall'infrastruttura (per la quale il livello II è obbligatorio).
- Livello III di approfondimento per:
 - o Aree suscettibili di liquefazione o densificazione;
 - Aree di versante instabili o potenzialmente instabili (non presenti lungo il tracciato afferente il territorio della Regione Emilia-Romagna).

La Regione Toscana fa invece riferimento al DPC-CRPA 2008 [16] che prevede una valutazione di II livello con caratterizzazione quantitativa dei fenomeni di amplificazione attesa nella zone "stabili suscettibili di amplificazione", per le quali (genericamente) un approccio semplificato possa avere significato (situazioni litostratigrafiche caratterizzate da alternanza di formazioni lungo superfici di discontinuità con buona approssimazione piane e orizzontali). Il Livello III di approfondimento viene applicato invece nelle zone stabili suscettibili di amplificazioni locali, nei casi di situazioni geologiche e geotecniche complesse, non risolvibili con l'uso degli abachi, o qualora l'estensione della zona in studio renda conveniente un'analisi globale di dettaglio o, infine, per opere di particolare importanza e nelle zone suscettibili di instabilità particolarmente gravose per complessità del fenomeno e/o diffusione areale, non risolvibili con l'uso di metodologie speditive.

Nel seguito si entra nel merito dei suddetti approfondimenti.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP FOR TECHNIP HUMAN & SUSTAINABLE Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildill	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 77 di 176	Rev.

5.5.1 Approfondimento di Il livello

L'approfondimento di II livello è richiesto da tutti i comuni attraversati dall'opera in progetto, data la classe dell'opera. Innanzitutto, sono stati reperiti i seguenti documenti e informazioni dai Piani di Governo del Territorio emessi dai comuni:

- Carta delle velocità delle onde di taglio.
- Carta di microzonazione sismica, con stima dell'amplificazione sismica eseguita tramite procedure semplificate in termini di PGA, SA1, SA2, SA3, SA4, SI1, SI2 e SI3, associate all'amplificazione stratigrafica.
- Carta della distribuzione sul territorio dei valori di HSM, che esprime lo scuotimento atteso al sito.
- Perimetrazione di dettaglio delle aree da assoggettare a approfondimenti di III livello.

Per i tratti attraversati dall'infrastruttura prive della suddetta documentazione, è stata eseguita nel presente studio una analisi di II livello mediante approccio semplificato, in accordo alle indicazioni delle Norme Regionali in vigore. Le due regioni interessate dal metanodotto adottano una procedura affine che è descritta nel dettaglio nei seguenti documenti:

- Emilia-Romagna: par. 4.1 della Rif. Doc. [14], assieme a tabelle, formule e procedure indicate in Allegato A2.
- Toscana: si fa riferimento al Rif. Doc. [15], assieme agli abachi regionali riportati in Appendice 5.

Le tabelle riportate negli allegati sopra citati permettono di calcolare i fattori di amplificazione sismica (FA) rispetto al suolo rigido di riferimento. I valori di FA rappresentano il rapporto fra lo scuotimento sismico valutato per la condizione geo-litologica specifica e il corrispondente scuotimento relativo alla categoria di sottosuolo A $(V_{s,eq} \ge 800 \text{ m/s})$ per diverse ordinate spettrali. Qui si farà diretto riferimento al fattore di amplificazione dell'accelerazione di picco orizzontale (FA_{PGA}) .

Regione Emilia-Romagna

La regione Emilia-Romagna ha prodotto le tabelle con i valori FA considerando un periodo di ritorno $T_R = 475$ anni (corrispondente ad una probabilità di eccedenza del 10% in 50 anni) ed uno smorzamento $\zeta = 5\%$. Si considera qui l'utilizzo di tali tabelle cautelativo per periodi di ritorno più lunghi.

La scelta delle tabelle per la stima dell'amplificazione sismica non dipende dalle sole caratteristiche litologiche e morfologiche dell'area, ma deve essere attentamente valutata sulla base delle

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 78 di 176	Rev. 0

caratteristiche stratigrafiche del sottosuolo come profondità e tipo di substrato. Per l'utilizzo di tali tabelle è stato necessario determinare la stratigrafia del sottosuolo, con particolare riferimento allo spessore H del deposito di copertura e quindi alla profondità del *bedrock* sismico, e alla velocità equivalente delle onde di taglio per lo spessore considerato (V_{sH} e V_{s30}) del deposito di copertura. Determinati i due valori, è immediato ricavare il fattore di amplificazione da applicare.

È richiesta inoltre la valutazione degli effetti topografici, secondo quanto indicato nell'Allegato A2, punto A2.2.

Regione Toscana

La regione Toscana ha realizzato nell'ambito degli Indirizzi e Criteri per la Microzonazione Sismica [16] degli abachi finalizzati alla caratterizzazione quantitativa dei fenomeni di amplificazione attesa nelle zone "stabili suscettibili di amplificazione". In tali tabelle vengono indicati i valori attesi dell'amplificazione del moto sismico (FA, ovvero "Fattore di Amplificazione"), relativi ad un periodo di ritorno T_R = 475 anni, associati alla macroarea in cui è stato suddiviso il territorio regionale ed alla profondità del basamento sismico, distinguendo le zone con bedrock sismico di riferimento a profondità maggiore o minore a 30m. Gli abachi, inoltre, tengono in considerazione della tipologia di input sismico, con riferimento a differenti classi di accelerazione di picco media.

I comuni attraversati dall'infrastruttura rientrano nella cosiddetta area "Toscana Appenninica".

La scelta dell'abaco più idoneo al contesto sismo-stratigrafico necessita di due parametri di input: il periodo fondamentale di vibrazione del sito (T_0 , o la corrispondente frequenza fondamentale f_0) e il valore della velocità media delle Onde S nei primi 30 metri di sottosuolo ($V_{s,30}$), o il valore della velocità media delle onde S fino al tetto del bedrock sismico (V_{SH}), se questo è riscontrato a meno di 30 m dalla superficie.

I valori dei coefficienti di amplificazione stratigrafica estratti dalle carte di microzonazione di II livello in termini di Fa,PGA (fattore di amplificazione della accelerazione di picco) o calcolati secondo la procedura indicata dalle normative regionali sono riportati in Tabella 5-41. Il coefficiente di amplificazione topografica varia lungo il tracciato di progetto per le caratteristiche morfologiche e topografiche del sito attraversato.

Da Figura 5-15 a Figura 5-18 è riportato l'andamento di a_{max} calcolato sulla base dell'analisi di Il livello per il tracciato.

(Dam)	PROGETTISTA TECHNIP ENERGIES TECHNIP FUNDA 6 Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam //	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 79 di 176	Rev. 0

Tabella 5-41: Valori dei coefficienti di amplificazione stratigrafica ${\sf FA}_{\sf ,PGA}.$

Comune	da	а	Fa _{PGA}	a _{g,max}
Comune	[km]		Тарда	II livello
Sestino	0+000	1+000	1.9	0.568
Sestino	1+000	2+649	1.7	0.508
	2+649	4+000	1.5	0.448
Pennabilli	4+000	4+200	2.1	0.627
	4+200	4+510	1.5	0.448
Casteldelci	4+510	4+863	1.4	0.418
	4+863	5+000	1.7	0.508
Badia Tedalda	5+000	5+360	1.7	0.508
baula reualua	5+360	7+000	1.7	0.508
	7+000	9+982	1.7	0.500
Sant'Agata Feltria	9+982	12+676	1.2	0.353
Casteldelci	12+250	12+500	1.2	0.353
Castelueici	12+500	12+676	1.2	0.353
	12+676	15+260	1.2	0.353
	15+260	16+360	1.8	0.529
Sant'Agata Feltria	16+360	18+000	1.4	0.412
	18+000	20+700	1.2	0.412
	20+700	21+780	1.6	0.392
	21+780	23+000	1.6	0.395
Sarsina	23+000	23+715	2.0	0.494
Sarsina	23+715	24+071	2.0	0.494
6 14 1 5 11 1	24+071	25+000	2.0	0.490
Sant'Agata Feltria	25+000	25+055	1.4	0.346
Constant	25+055	25+720	2.0	0.494
Sarsina	25+720	26+347	1.4	0.346
Sogliano al Rubicone	26+347	27+727	2.2	0.543
	27+727	28+410	1.8	0.445
	28+410	28+830	1.6	0.395
Margata Caracara	28+830	29+280	1.8	0.445
Mercato Saraceno	29+280	29+530	2.0	0.494
	29+530	30+000	1.8	0.445
	30+000	30+885	2.0	0.494
Sogliano al Rubicone	30+885	31+858	2.2	0.543
Mercato Saraceno	31+858	32+660	1.7	0.420

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP FUNDA 6 Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
<u>snam</u>	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 80 di 176	Rev.

Tabella 5-41: Valori dei coefficienti di amplificazione stratigrafica ${\sf FA}_{\sf ,PGA}.$

Comune	da	а	Fa _{PGA}	$a_{g,max}$
Comune	[k	m]	I GPGA	II livello
	32+660	35+980	2.2	0.543
	35+980	36+465	1.9	0.469
	36+465	36+940	2.2	0.557
Sogliano al Rubicone	36+940	37+250	1.6	0.405
Sognano ai Nubicone	37+250	37+480	2.2	0.557
	37+947	37+492	1.6	0.405
Roncofreddo	37+947	39+424	2.2	0.557
Mercato Saraceno	39+424	40+201	2.0	0.506
	40+201	41+642	1.6	0.405
Cocono	40+201	55+141	1.6	0.405
Cesena	55+141	55+481	1.8	0.455
	55+481	59+550	1.6	0.405
Bertinoro	59+550	61+827	1.7	0.430
Forlimpopoli	61+827	63+214	1.6	0.405
Forlì	63+214	68+767	1.5	0.380
	68+767	69+518	1.3	0.316
	69+518	70+300	1.7	0.413
Ravenna	70+300	73+740	1.3	0.316
	73+740	76+700	1.7	0.413
	76+700	81+080	1.3	0.316
Russi	81+080	81+704	1.3	0.316
Ravenna	81+704	82+980	1.3	0.316
	82+980	84+000	1.3	0.316
Russi	84+000	84+900	1.8	0.437
Mussi	84+900	86+000	1.8	0.416
	86+000	87+287	1.3	0.300
Ravenna	87+287	90+780	1.3	0.300
	90+780	91+000	1.4	0.323
Do suo serrelle	91+000	92+523	1.3	0.300
Bagnacavallo	92+523	93+000	1.4	0.323
	93+000	97+073	1.3	0.300
Finale	97+073	97+193	1.3	0.300
Fusignano	97+193	101+311	1.3	0.300
Alfonsine	101+311	105+000	1.7	0.374

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
V//V	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 81 di 176	Rev .

Tabella 5-41: Valori dei coefficienti di amplificazione stratigrafica FA,_{PGA}.

Comune	da	а	Fa _{PGA}	a _{g,max}
Comune	[kı	m]	I GPGA	II livello
Lugo	105+000	107+735	1.4	0.308
Lugo	107+735	111+780	1.7	0.374
Conselice	111+780	116+113	1.7	0.381
Imola	116+113	117+538	1.7	0.381
Medicina	117+538	124+917	1.7	0.381
	124+917	127+000	1.7	0.381
Molinella	127+000	127+830	1.8	0.403
	127+830	134+700	1.7	0.381
Budrio	134+700	135+560	1.8	0.403
Buario	135+560	137+698	1.7	0.372
	137+698	139+470	1.7	0.372
Minerbio	139+470	140+180	1.4	0.307
	140+180	140+691	1.7	0.372

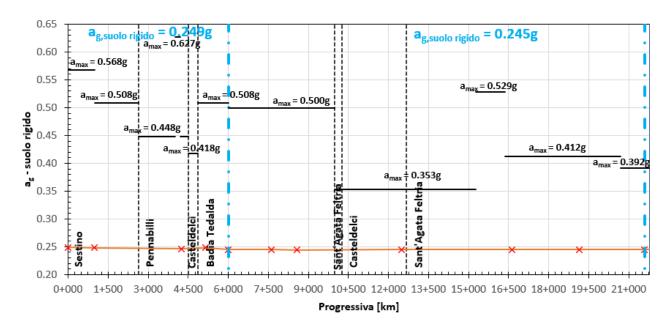


Figura 5-13: Andamento di a_{max} (Il livello) lungo il tracciato (PK 0+000 \div 21+720). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale. La linea azzurra la zonazione sulla base di ag. I tratti orizzontali neri rappresentano la a_{max} calcolata sulla base dell'analisi di Il livello. Con linea tratteggiata la suddivisione dei territori comunali attraversati.

	PROGETTISTA TEN TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam	LOCALITA'	40.01.	
	REGIONI Toscana – Emilia-Romagna	10-CI-E-8	80190
	PROGETTO		Rev.
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 82 di 176	0

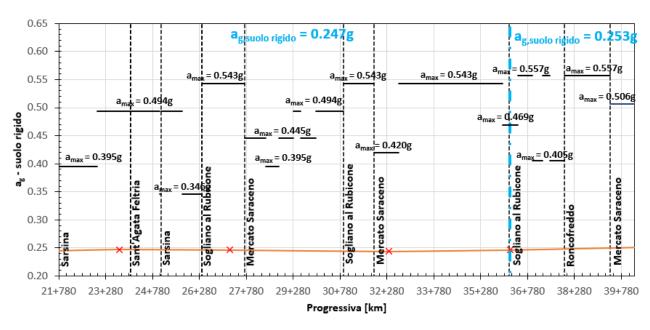


Figura 5-14: Andamento di a_{max} (II livello) lungo il tracciato (PK 24+720 \div 40+201). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale. La linea azzurra la zonazione sulla base di ag. I tratti orizzontali neri rappresentano la a_{max} calcolata sulla base dell'analisi di II livello. Con linea tratteggiata la suddivisione dei territori comunali attraversati.

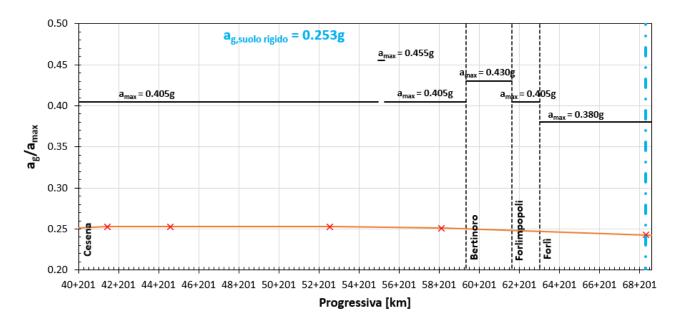


Figura 5-15: Andamento di a_{max} (II livello) lungo il tracciato (PK 40+201 \div 68+767). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale. La linea azzurra la zonazione sulla base di ag. I tratti orizzontali neri rappresentano la a_{max} calcolata sulla base dell'analisi di II livello. Con linea tratteggiata la suddivisione dei territori comunali attraversati.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP LUMAN & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	80190
	REGIONI Toscana – Emilia-Romagna		
	PROGETTO		Rev.
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 83 di 176	0

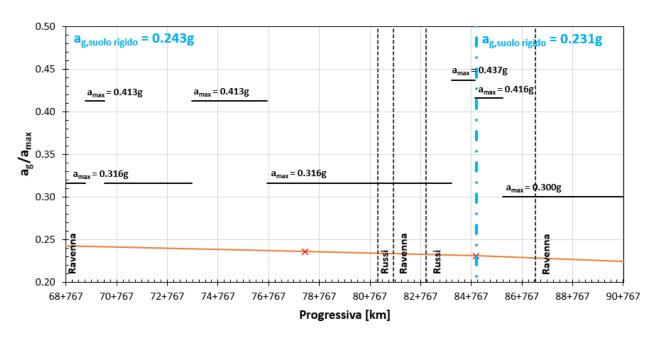


Figura 5-16: Andamento di a_{max} (Il livello) lungo il tracciato (PK 68+767 ÷90+780). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale. La linea azzurra la zonazione sulla base di ag. I tratti orizzontali neri rappresentano la a_{max} calcolata sulla base dell'analisi di Il livello. Con linea tratteggiata la suddivisione dei territori comunali attraversati.

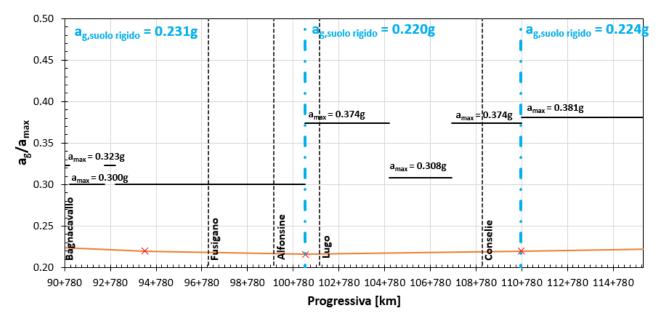


Figura 5-17: Andamento di a_{max} (Il livello) lungo il tracciato (PK 90+780 ÷116+113 La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale. La linea azzurra la zonazione sulla base di ag. I tratti orizzontali neri rappresentano la a_{max} calcolata sulla base dell'analisi di Il livello. Con linea tratteggiata la suddivisione dei territori comunali attraversati.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	80190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 84 di 176	Rev.

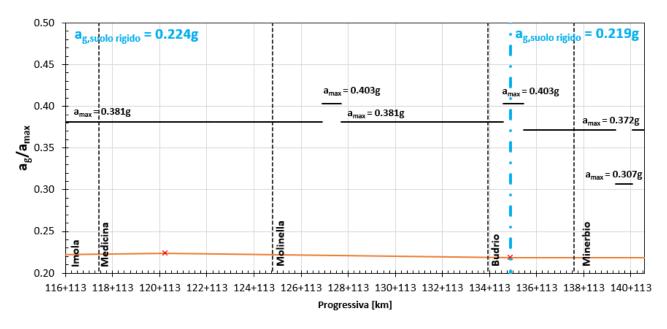


Figura 5-18: Andamento di a_{max} (Il livello) lungo il tracciato (PK 116+113÷140+691). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale. La linea azzurra la zonazione sulla base di ag. I tratti orizzontali neri rappresentano la a_{max} calcolata sulla base dell'analisi di Il livello. Con linea tratteggiata la suddivisione dei territori comunali attraversati.

snam	PROGETTISTA TECHNIP TECHNIP TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 85 di 176	Rev. 0

5.5.2 Approfondimento di III livello

L'approfondimento di III livello della risposta sismica locale (RSL) è lo strumento che consente la valutazione della pericolosità sismica al sito per le aree soggette a instabilità e/o prone a liquefazione/densificazione, così come individuate a seguito degli approfondimenti di I e II livello, direttamente come requisito di Norma (per particolari categorie di opere) oppure nei siti identificati lungo il tracciato come soggetti a instabilità dei pendii (Ref.[11]). Per le aree soggette all'approfondimento di III livello, all'interno del presente studio sono state eseguite analisi numeriche di risposta sismica locale 1D con metodo lineare equivalente.

Da Figura 5-19 a Figura 5-24 vengono indicati i punti suscettibili ad instabilità di versante con linee magenta, oggetto di analisi di risposta sismica locale 1D. L'eventuale estensione dell'area soggetta ad instabilità del pendio è evidenziata con un campo rosa. Con un campo giallo invece vengono evidenziati i tratti per i quali, a partire dagli strumenti urbanistici vigenti, risulta necessario un approfondimento di III livello, essendo individuate come aree suscettibili a liquefazione. Nelle stesse figure, con le linee verdi sono indicate le progressive in corrispondenza delle quali sono stati eseguiti all'interno del presente studio i relativi approfondimenti di III livello (RSL).

Ove risultato possibile (Figura 5-19), si individuano, con riquadri in testa al grafico, possibili estensioni (su base geolitologica e geofisica) dell'applicabilità dei risultati delle analisi RSL condotte. In particolare, i riquadri rosa ed i riquadri verdi indicano estensioni delle RSL implementate nell'ambito del presente studio, mentre con riquadri blu si estendono i risultati delle analisi di III livello condotte all'interno della redazione dei Piani di Governo del Territorio. L'estendibilità dei risultati locali è stata valutata sulla base dell'analisi dei sondaggi e delle prove CPT disponibili, individuando aree ragionevolmente omogenee dal punto di vista stratigrafico e di presunto comportamento sotto azione sismica.

Quanto ottenuto nell'ambito dell'approfondimento di III livello nei termini di azione sismica di progetto è stato confrontato in termini di ampiezze dello spettro elastico in accelerazione con il corrispondente risultato da analisi di II livello e dalle indicazioni di NTC2018. Sulla base di tale confronto, si procede con l'approccio più cautelativo in termini di azione sismica di progetto, come descritto ai sotto-paragrafi seguenti.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP FURNICATION AS Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	80190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 86 di 176	Rev. 0

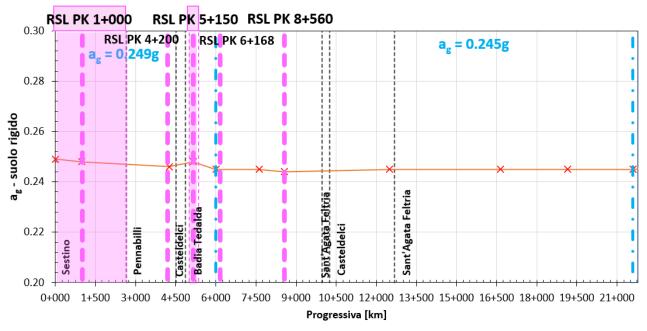


Figura 5-19: Andamento di ag lungo il tracciato (PK 0+000 ÷ 21+780). La linea arancione rappresenta l'andamento di ag in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale. La linea azzurra la zonazione sulla base di ag. Le linee magenta localizzano i punti suscettibili di instabilità di versante in cui è stata analizzata la risposta sismica locale e l'area di estensione della stessa è evidenziata in rosa. Le aree evidenziate in giallo rappresentano le zone di attenzione per effetti locali di liquefazione: le linee verdi indicano il punto in cui è stata analizzata la risposta sismica locale ed i riquadri in rosa sopra i grafici rappresentano l'intervallo di applicabilità delle RSL.

snam	PROGETTISTA TECHNIP ENERGIES (7: techfem Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	80190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 87 di 176	Rev. 0

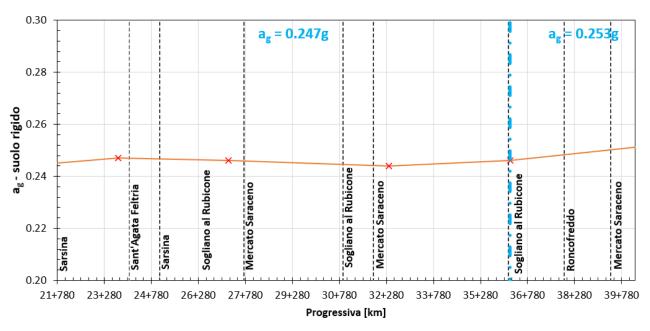


Figura 5-20: Andamento di ag lungo il tracciato (PK 21+780 ÷ 40+201). La linea arancione rappresenta l'andamento di ag in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale. La linea azzurra la zonazione sulla base di ag. Le linee magenta localizzano i punti suscettibili di instabilità di versante in cui è stata analizzata la risposta sismica locale e l'area di estensione della stessa è evidenziata in rosa. Le aree evidenziate in giallo rappresentano le zone di attenzione per effetti locali di liquefazione: le linee verdi indicano il punto in cui è stata analizzata la risposta sismica locale ed i riquadri in rosa sopra i grafici rappresentano l'intervallo di applicabilità delle RSL.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP LUMB & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	80190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 88 di 176	Rev .

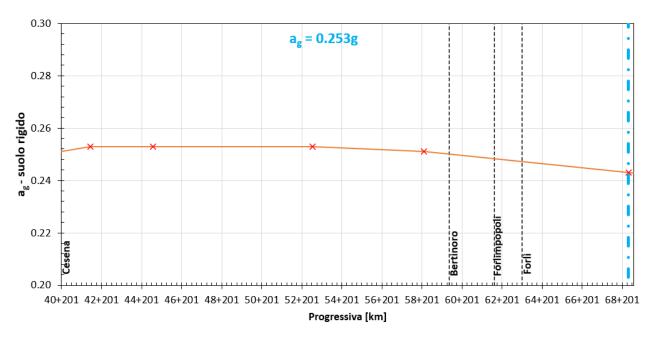


Figura 5-21: Andamento di a_g lungo il tracciato (PK 40+201 \div 68+767). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale. La linea azzurra la zonazione sulla base di a_g .

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP FURNICATION AS Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	80190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 89 di 176	Rev. 0

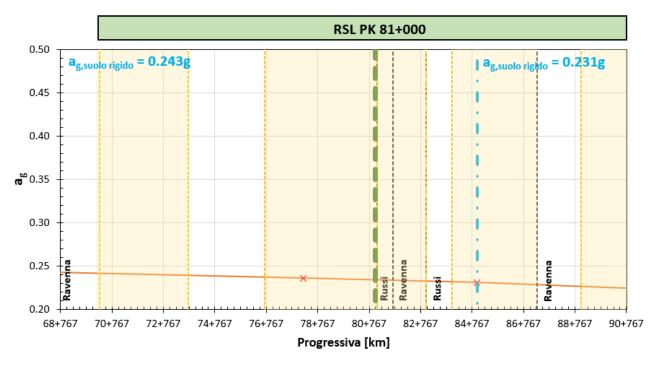


Figura 5-22: Andamento di a_g lungo il tracciato (PK 68+767 \div 90+780). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale. La linea azzurra la zonazione sulla base di a_g . Le aree evidenziate in giallo rappresentano le zone di attenzione per effetti locali di liquefazione: le linee verdi indicano il punto in cui è stata analizzata la risposta sismica locale.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP FURNICATION AS Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	80190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 90 di 176	Rev. 0

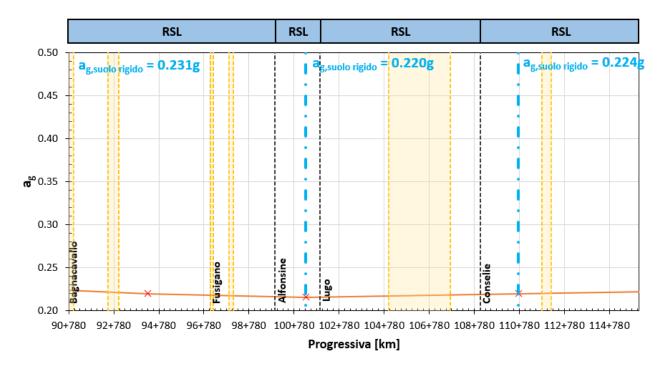


Figura 5-23: Andamento di ag lungo il tracciato (PK 90+780 ÷ 116+113). La linea arancione rappresenta l'andamento di ag in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale. La linea azzurra la zonazione sulla base di ag. Le linee magenta localizzano i punti suscettibili di instabilità di versante in cui è stata analizzata la risposta sismica locale e l'area di estensione della stessa è evidenziata in rosa. Le aree evidenziate in giallo rappresentano le zone di attenzione per effetti locali di liquefazione: le linee verdi indicano il punto in cui è stata analizzata la risposta sismica locale ed i riquadri sopra i grafici rappresentano l'intervallo di applicabilità delle RSL.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP FUNE AS Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	80190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 91 di 176	Rev.

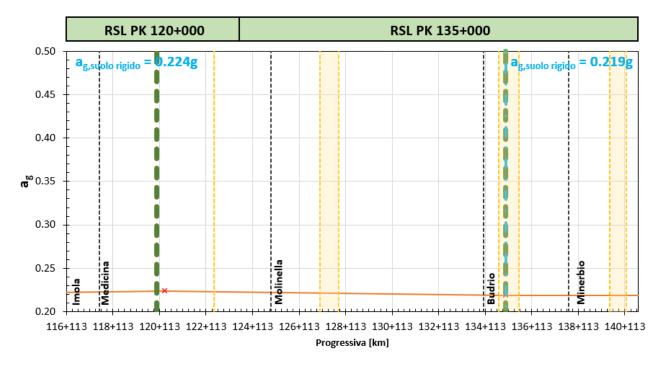


Figura 5-24: Andamento di ag lungo il tracciato (PK 116+113 ÷ 140+691). La linea arancione rappresenta l'andamento di ag in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale. La linea azzurra la zonazione sulla base di ag. Le linee magenta localizzano i punti suscettibili di instabilità di versante in cui è stata analizzata la risposta sismica locale e l'area di estensione della stessa è evidenziata in rosa. Le aree evidenziate in giallo rappresentano le zone di attenzione per effetti locali di liquefazione: le linee verdi indicano il punto in cui è stata analizzata la risposta sismica locale ed i riquadri sopra i grafici rappresentano l'intervallo di applicabilità delle RSL.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP RUMAN & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 92 di 176	Rev. 0

Di seguito si riportano gli approfondimenti di III livello (RSL) eseguiti sul tracciato.

Al fine di eseguire analisi di risposta sismica locale è stato necessario ottenere un set accelerogrammi formato da 7 registrazioni di terremoti reali in corrispondenza di stazioni su suolo di Categoria A, in media compatibili con gli spettri elastici in accelerazione definiti dalle NTC2008/2018.

La Regione Toscana mette a disposizione il software SCALCONA-3.0 che consente di ottenere un set di 7 accelerogrammi che soddisfano i requisiti di sito (categoria di terreno A secondo le NTC2018) e di spettro-compatibilità allo spettro di risposta di normativa (NTC2018) per un qualsiasi sito ricadente all'interno dei confini regionali per il periodo di ritorno di 50, 75, 101, 475, 712 e 949 anni, secondo quanto indicato nelle specifiche tecniche regionali di cui alla Del. GRT n. 977 del 27 Settembre 2021 [15].

Per quanto riguarda la Regione Emilia Romagna, il set è fornito in allegato al DGR 476/2021 e DGR integrativa n. 564/2021 per ogni nodo del reticolo di riferimento della mappa di definizione della pericolosità sismica di base (NTC2008/2018) ed NTC18 (D.M. 17.01.2018), per due valori di periodo di ritorno (475 e 975 anni).

5.5.2.1 TRATTO RSL km 1+000

L'analisi RSL è stata eseguita al km 1+000 in corrispondenza del punto identificato per la verifica della stabilità del pendio nel comune di Sestino, dal km 0+820 e 1+130; il risultato della risposta sismica viene esteso dal km 0+000 al km 2+649. Le indagini eseguite all'interno dell'area sono le seguenti:

- MASW 1 e 2 (campagna 2023);
- Sondaggi S_001_SM_L e S_002_SM_L della campagna d'indagine 2023.

Il set di accelerogrammi è stato selezionato mediante l'utilizzo del software SCALCONA 3.0 fornito dalla Regione Toscana, in funzione delle coordinate del sito di interesse. Data la vicinanza del punto al confine tra le due Regioni, il dataset accelerometrico è stato integrato attraverso l'estrazione degli accelerogrammi riferibili al nodo del reticolo ID20295 ottenuti del portale Eucentre indicato quale riferimento dalla Regione Emilia-Romagna.

In Figura 5-25 viene mostrato il profilo di velocità delle onde di taglio di calcolo costruito sull'insieme delle prove geofisiche rappresentative della zona di interesse (dal profilo si ottiene V_{s.eq} = 412 m/s).

In base ai risultati delle prove geofisiche e dalla stratigrafia ottenuta dai sondaggi eseguiti nell'area di interesse, il bedrock sismico risulta localizzabile a 10m di profondità.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP FOR TECHNIP Ruman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 93 di 176	Rev.

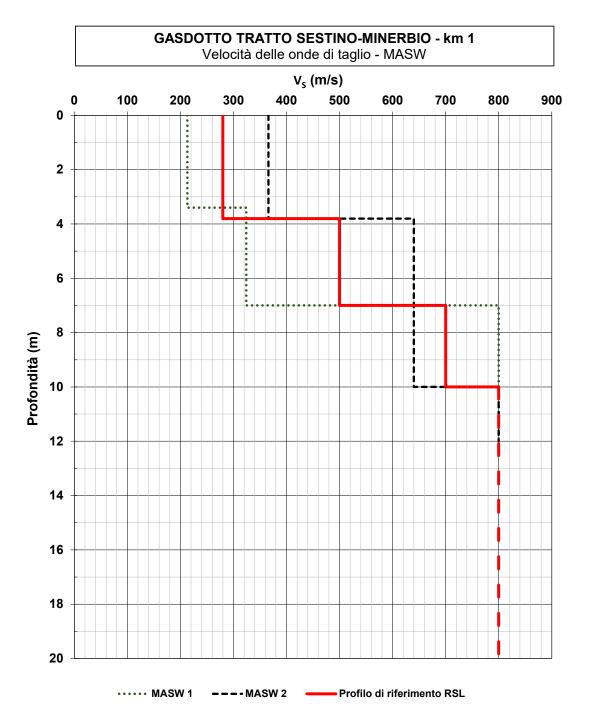


Figura 5-25: Profilo di Vs di calcolo individuato sulla base delle indagini eseguite all'interno dell'area di riferimento.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP RUBBIN Statishable Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildill	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 94 di 176	Rev. 0

Sulla base di quanto sopra delineato, il modello stratigrafico ed i valori del profilo di V_s di riferimento per l'analisi di risposta sismica locale sono riportati in Tabella 5-42. La litologia e le curve di degrado del modulo di taglio e smorzamento di letteratura (EPRI (93)) associate ad ogni formazione sono riportate in Tabella 5-43.

Tabella 5-42: Modello stratigrafico – RSL km 1+000.

Profondità (Profondità (m)		Tip o di tannono
Da	а	V _{S,H} = 412 m/s	Tipo di terreno
0	3.8	280	Argilla
3.8	7.00	500	Argilla
7.00	10.00	700	Argilla Profonda
10.00	-	800	Bedrock

Tabella 5-43: Curve di degrado ciclico – RSL km km 1+000.

Tipo di terreno	G/G _{max}	Damping
Argilla	EPRI(93), 0-6 m	EPRI(93), 0-6 m
Argilla profonda	EPRI(93), 6-15 m	EPRI(93), 6-15 m

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP LUMAN & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildin	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 95 di 176	Rev.

Il software utilizzato, la procedura di analisi e le curve di degrado adottate nel modello sono dettagliati in **Appendice A**. Il risultato delle analisi RSL è mostrato in Figura 5-27 in termini di spettro di risposta elastico in accelerazione (smorzamento 5%) ottenuto come media delle risposte in superficie ottenute sulla base dell'input fornito dal'intero set di accelerogrammi scelto. Si osserva in Figura 5-27 il confronto tra spettro medio RSL e lo spettro NTC2018 per suolo di classe B ($a_{max} = 0.248g$). In particolare, si nota come lo spettro di RSL risulti superiore per alte frequenze a quello ottenuto di NTC, mentre è ben al di sotto dello stesso aumentando il periodo.

Gli effetti topografici sulla risposta sismica locale sono stati tenuti in conto applicando allo spettro di risposta elastico il fattore di amplificazione calcolato in accordo alle NTC2018. In particolare, il sito ricade in categoria T3 della classificazione da NTC2018 ed il punto di interesse si trova in cresta al pendio come mostra Figura 5-26. Pertanto, il coefficiente di amplificazione risulta pari a 1.2.

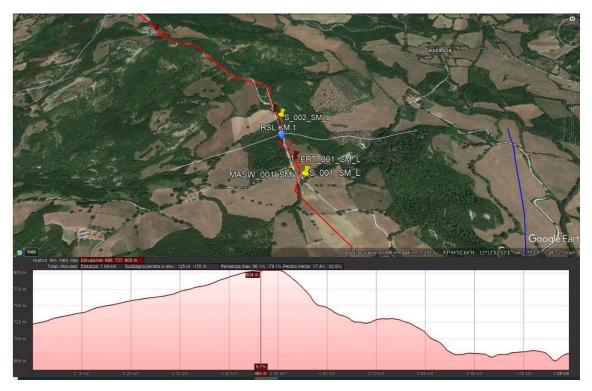


Figura 5-26: RSL km 1+000 – Profilo elevazione del pendio in corrispondenza del punto di analisi.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP FUNE AS Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA'		
	REGIONI Toscana – Emilia-Romagna	10-CI-E-8	80190
	PROGETTO		Rev.
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 96 di 176	0

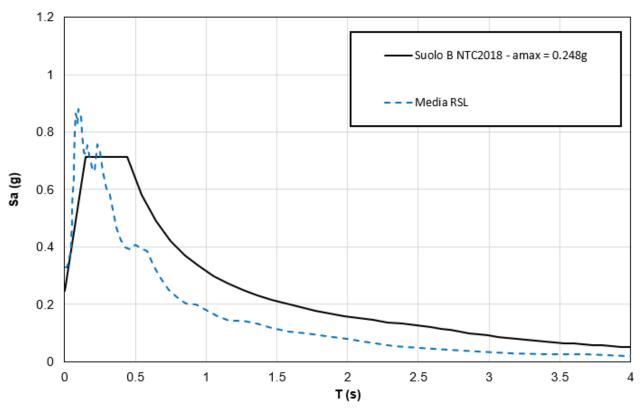


Figura 5-27: RSL km 1+000 – Spettro medio risultato dell'analisi di risposta sismica locale, a confronto con lo spettro di risposta NTC2018 calcolato per Categoria di suolo C (a_{max} = 0.248g).

A partire dallo spettro medio risultato dall'analisi di Risposta Sismica Locale è stato costruito lo spettro elastico di progetto. Lo spettro elastico di progetto è stato determinato adottando una forma spettrale da NTC2018 compatibile con il risultato RSL. In Figura 5-28 si riporta il confronto tra lo spettro NTC2018 e i risultati dell'analisi RSL, e lo spettro calibrato su questi ultimi utilizzando i seguenti parametri:

$$\begin{array}{lll} - & a_{max} & = 0.33 \ g \\ - & T_B & = 0.08 \ s \\ - & T_C & = 0.25 \ s \\ - & T_D & = 2.91 \ s \end{array}$$

= 2.30

 F_0

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP LUMB & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
Silain	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	80190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 97 di 176	Rev .

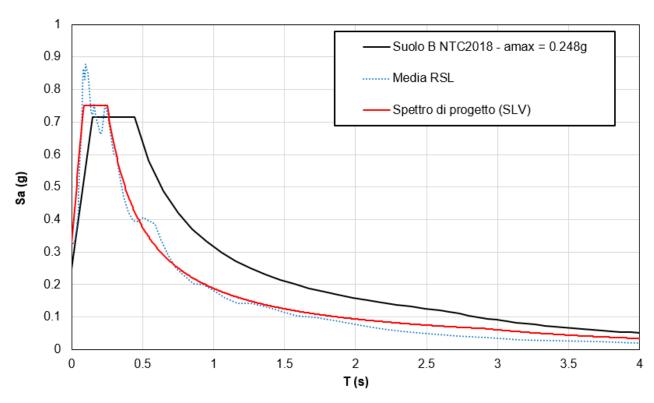


Figura 5-28: RSL km 1+000 – Spettro elastico di progetto (smorzamento pari al 5%) a confronto con media RLS e spettro NTC per suoli di tipo B.

In conclusione, in Figura 5-29 viene rappresentato lo spettro elastico di progetto (smorzamento pari al 5%) definito al passo precedente, applicando il fattore di amplificazione topografica. I parametri dello spettro di progetto sono i seguenti:

$$\begin{array}{lll} - & a_{max} & = 0.39 \ g \\ - & T_B & = 0.08 \ s \\ - & T_C & = 0.25 \ s \\ - & T_D & = 3.17 \ s \\ - & F_0 & = 2.30 \end{array}$$

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP LUMAN & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildill	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 98 di 176	Rev.

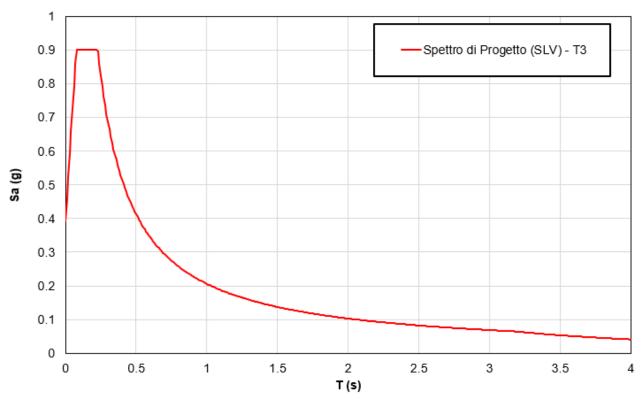


Figura 5-29: RSL km 1+000 – Spettro elastico di progetto (smorzamento pari al 5%), incluso il fattore di amplificazione topografica.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam V/	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 99 di 176	Rev .

5.5.2.2 TRATTO RSL km 4+200

L'analisi RSL è stata eseguita al km 4+200 in corrispondenza del punto identificato per la verifica della stabilità del pendio nel comune di Pennabilli. Le indagini all'interno dell'area sono le seguenti:

- MASW 25 (campagna 2023).
- I sondaggi S_007_SM_L della campagna d'indagine 2023 e S3 della campagna indagini pregressa del 2008.

Il set di accelerogrammi è stato selezionato mediante l'utilizzo del software SCALCONA 3.0 fornito dalla Regione Toscana, in funzione delle coordinate del sito di interesse, unitamente all'estrazione degli accelerogrammi dal nodo del reticolo ID20072 del portale Eucentre fornito dalla Regione Emilia-Romagna, data la vicinanza del punto al confine tra le due regioni.

In Figura 5-30 viene mostrato il profilo di velocità delle onde di taglio di calcolo costruito sull'insieme delle prove geofisiche rappresentative della zona di interesse (dal profilo si ottiene V_{s.eq} = 351 m/s).

Il bedrock sismico è posizionato a 8.8 m di profondità sulla base ai risultati delle prove geofisiche e dalla stratigrafia ottenuta dai sondaggi eseguiti nell'area di interesse.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
V/V	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP – 75 bar	Pag. 100 di 176	Rev. 0

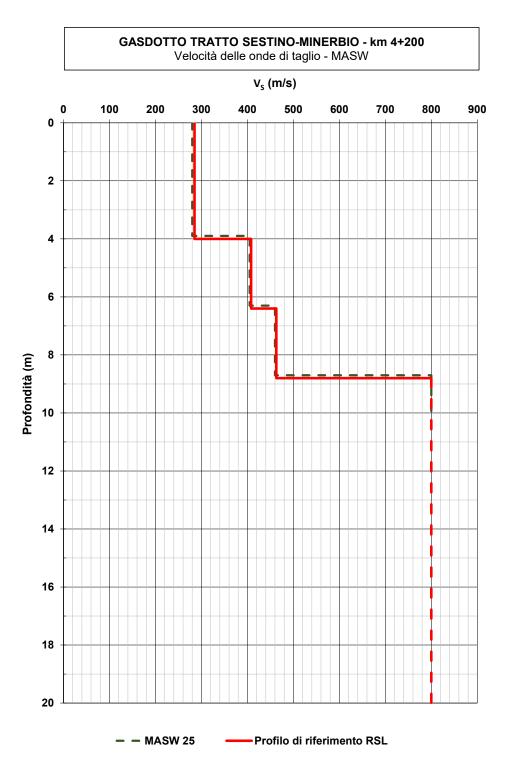


Figura 5-30: Profilo caratteristico individuato sulla base delle prove in sito all'interno dell'area di riferimento.

co.am	PROGETTISTA TECHNIP ENERGIES TECHNIP FUNCTION OF TECHNIP HUMAN & SUSTAINABLE Engineering	COMMESSA NQ/R22358	UNITÀ -
snam	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 101 di 176	Rev.

Sulla base di quanto sopra delineato, il modello stratigrafico ed i valori del profilo di V_s di riferimento per l'analisi di risposta sismica locale sono indicati in Tabella 5-44. La litologia e le curve di degrado del modulo di taglio e smorzamento di letteratura (EPRI (93)) associate ad ogni formazione sono riportate in Tabella 5-45.

Tabella 5-44: Modello stratigrafico – RSL km 4+200.

Profondità ((m)	Vs (m/s)	Tip o di tamana
Da	а	V _{S,H} = 351 m/s	Tipo di terreno
0	4.00	285	Argilla, limo
4.00	6.40	408	Argilla, limo
6.40	8.80	463	Argilla, limo
8.80	-	800	Bedrock

Tabella 5-45: Curve di degrado ciclico – RSL km 4+200.

Tipo di terreno	G/G _{max}	Damping
Argilla, limo	EPRI(93), 0-6 m	EPRI(93), 0-6 m

Il software utilizzato, la procedura di analisi e le curve di degrado adottate nel modello sono dettagliati in **Appendice A**.

Il risultato delle analisi RSL è mostrato in Figura 5-32 in termini di spettro di risposta elastico in accelerazione (smorzamento 5%) ottenuto come media della risposta in superficie calcolata sull'intero set di accelerogrammi scelto. Si osserva il confronto in figura tra lo spettro medio RSL e lo spettro NTC per suolo di classe E ($a_{max} = 0.326g$). In particolare, si nota come lo spettro RSL risulti superiore per alte frequenze rispetto a quello di Norma, mentre è ben al di sotto dello stesso per periodi crescenti.

Gli effetti morfologici di sito sulla risposta sismica locale sono stati tenuti in conto applicando allo spettro di risposta elastico il fattore di amplificazione calcolato in accordo alle norme tecniche. In particolare, il sito ricade in categoria T2 della classificazione da NTC2018 ed il punto di interesse si trova a metà al pendio come mostra Figura 5-31, pertanto è stata considerata una riduzione del 50% del coefficiente indicato che risulta pari a 1.1.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildill	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 102 di 176	Rev. 0

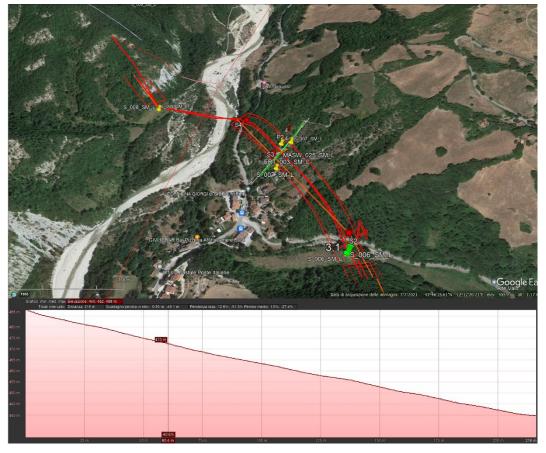


Figura 5-31: RSL km 4+200 – Profilo elevazione del pendio in corrispondenza del punto di analisi.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP LUMB & Statistish Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA'	40.01.5.0	0400
	REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO		Rev.
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 103 di 176	0

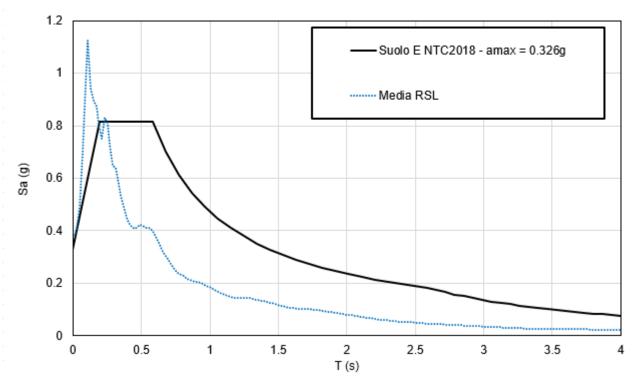


Figura 5-32: RSL km 4+200 – Spettro medio risultato dell'analisi di risposta sismica locale, a confronto con lo spettro di risposta NTC2018 calcolato per Categoria di suolo E (a_{max} = 0.326g).

A partire dallo spettro medio risultato dall'analisi di Risposta Sismica Locale è stato costruito lo spettro elastico di progetto. Lo spettro elastico di progetto è stato determinato adottando una forma spettrale da NTC2018, come mostrato in Figura 5-33 a confronto con i dati NTC2018 e i risultati dell'analisi RSL, utilizzando i seguenti parametri:

- $a_{max} = 0.38 g$
- T_B = 0.06 s
- $T_{\rm C}$ = 0.19 s
- T_D = 3.14 s
- $F_0 = 2.70$

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP THE	COMMESSA NQ/R22358	UNITÀ -
VIV	LOCALITA'	10-CI-E-8	0100
	REGIONI Toscana – Emilia-Romagna	10-01-2-0	130
	PROGETTO		Rev.
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 104 di 176	0

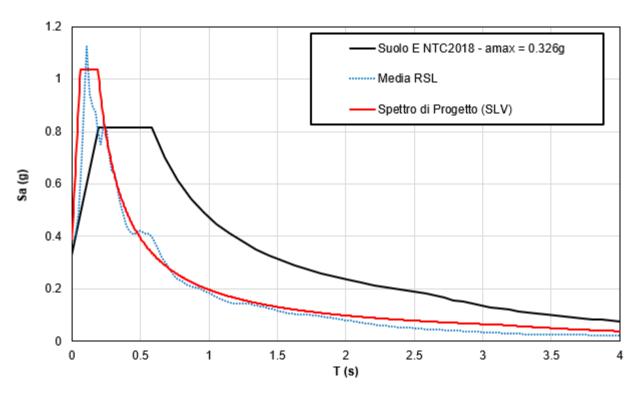


Figura 5-33: RSL km 4+200 – Spettro elastico di progetto (smorzamento pari al 5%) a confronto con media RLS e spettro NTC per suoli di tipo E.

In conclusione, in Figura 5-34 viene rappresentato lo spettro elastico di progetto (smorzamento pari al 5%) con fattore di amplificazione topografica applicato. I parametri dello spettro di progetto sono i seguenti:

$$\begin{array}{lll} - & a_{max} & = 0.42 \ g \\ - & T_B & = 0.06 \ s \\ - & T_C & = 0.19 \ s \\ - & T_D & = 3.29 \ s \\ - & F_0 & = 2.70 \end{array}$$

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
Silain	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 105 di 176	Rev. 0

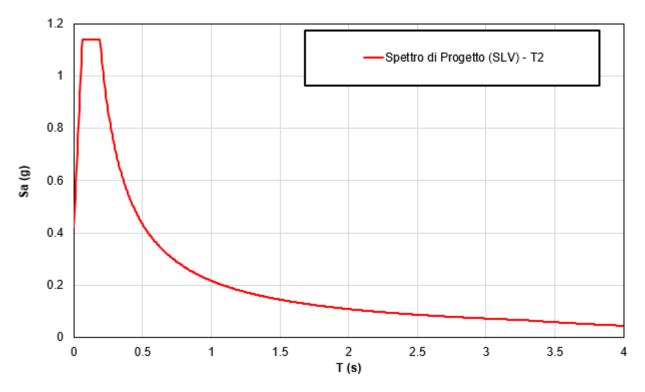


Figura 5-34: RSL km 4+200 – Spettro elastico di progetto (smorzamento pari al 5%) con fattore di amplificazione topografica.

spam	PROGETTISTA TECHNIP ENERGIES TECHNIP FUNCTION OF TECHNIP HUMAN & SUSTAINABLE Engineering	COMMESSA NQ/R22358	UNITÀ -
snam	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 106 di 176	Rev.

5.5.2.3 TRATTO RSL km 5+150

L'analisi RSL è stata eseguita al km 5+150 in corrispondenza di una zona identificata per la verifica della stabilità del pendio nel comune di Pennabilli che comprende il tratto del metanodotto dal km 5+000 al km 5+360. Le indagini all'interno dell'area sono le seguenti:

 Sondaggi S_009_SM_L della campagna d'indagine 2023 e S6 della campagna indagini pregressa del 2008.

Il set di accelerogrammi è stato selezionato mediante l'utilizzo del software SCALCONA 3.0 fornito dalla Regione Toscana, in funzione delle coordinate del sito di interesse, unitamente all'estrazione degli accelerogrammi dal nodo del reticolo ID20072 del portale Eucentre fornito dalla Regione Emilia-Romagna, data la vicinanza del punto al confine tra le due regioni.

In Figura 5-45 viene mostrato il profilo di velocità delle onde di taglio di calcolo ricostruito a partire dalla correlazione sui risultati delle prove SPT eseguite all'interno dei sondaggi localizzati nella zona di interesse (dal profilo di calcolo si ottiene $V_{S,eq}$ = 275 m/s).

Il bedrock sismico è posizionato a 12 m di profondità, in base alla stratigrafia ottenuta dai sondaggi eseguiti nell'area di interesse.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP ENERGIES TECHNIP ENERGIES TECHNIP ENERGIES	COMMESSA NQ/R22358	UNITÀ -
Sildin	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 107 di 176	Rev.

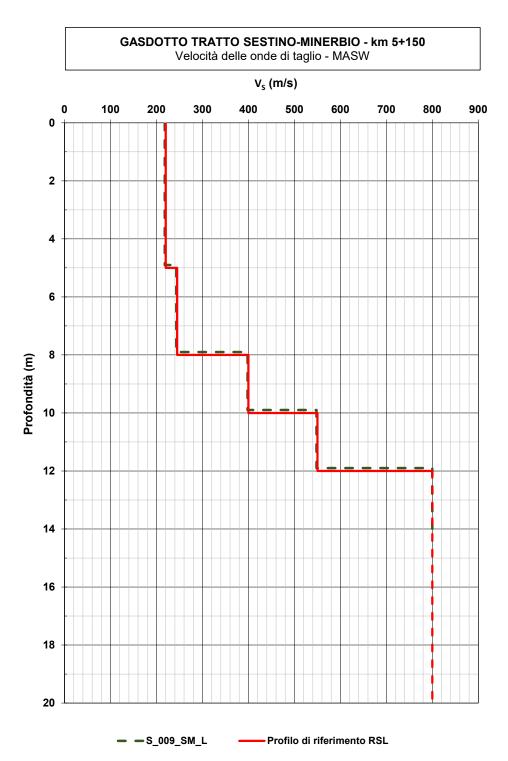


Figura 5-35: Profilo di calcolo individuato sulla base delle prove in sito all'interno dell'area di riferimento.

Sp.am.	PROGETTISTA TECHNIP ENERGIES TECHNIP ENERGIES TECHNIP ENERGIES TECHNIP ENERGIES	COMMESSA NQ/R22358	UNITÀ -
snam V/	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP – 75 bar	Pag. 108 di 176	Rev. 0

Sulla base di quanto sopra, il modello stratigrafico ed i valori del profilo di V_s di riferimento per l'analisi di risposta sismica locale sono indicati in Tabella 5-44. La litologia e le curve di degrado del modulo di taglio e smorzamento di letteratura associate ad ogni formazione sono riportate in Tabella 5-45.

Tabella 5-46: Modello stratigrafico – RSL km 5+000 ÷ 5+360.

Profondità (m)		Vs (m/s)	Tip o di tamana	
Da	а	V _{S,H} = 275 m/s	Tipo di terreno	
0	5.00	220	Argilla	
5.00	8.00	245	Argilla	
8.00	10.00	400	Argilla	
10.00	12.00	550	Roccia fratturata	
12.00	-	800	Bedrock	

Tabella 5-47: Curve di degrado ciclico – RSL km 5+000 \div 5+360.

Tipo di terreno	G/G _{max}	Damping
Argilla	Idriss (1990), Clay	Idriss (1990), Clay
Roccia fratturata	Weathered rock	Weathered rock

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP RUMAN & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 109 di 176	Rev.

Il software utilizzato, la procedura di analisi e le curve di degrado adottate nel modello sono dettagliati in **Appendice A**.

Il risultato delle analisi RSL è mostrato in Figura 5-47 in termini di spettro di risposta elastico in accelerazione (smorzamento 5%) ottenuto come media della risposta in superficie calcolata sull'intero set di accelerogrammi scelto. Si osserva il confronto in figura tra spettro medio RSL e lo spettro NTC per suolo di classe E ($a_{max} = 0.326g$). In particolare, si nota come lo spettro RSL risulti superiore per alte frequenze a quello di Norma, mentre è ben al di sotto dello stesso aumentando il periodo.

Gli effetti morfologici di sito sulla risposta sismica locale sono stati presi in conto applicando allo spettro di risposta elastico il fattore di amplificazione calcolato in accordo alle norme tecniche. In particolare, il sito ricade in categoria T2 della classificazione da NTC2018 ed il punto di interesse si trova a metà al pendio come mostra Figura 5-36, pertanto è stata considerata una riduzione del 50% del coefficiente ivi indicato, che risulta pari a 1.1.

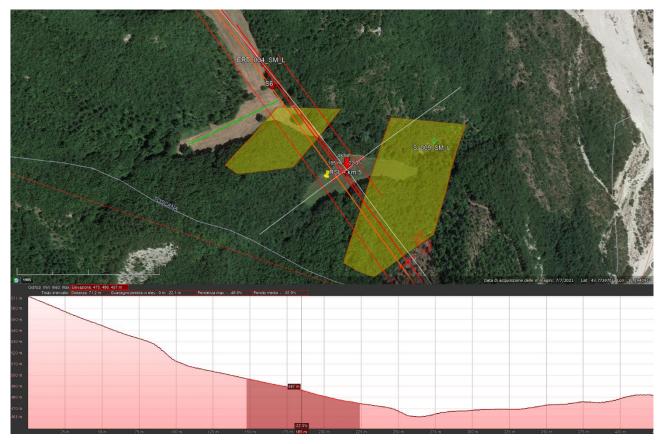


Figura 5-36: RSL km 5+000 ÷ 5+360 Profilo elevazione del pendio in corrispondenza del punto di analisi.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Luman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP – 75 bar	Pag. 110 di 176	Rev. 0

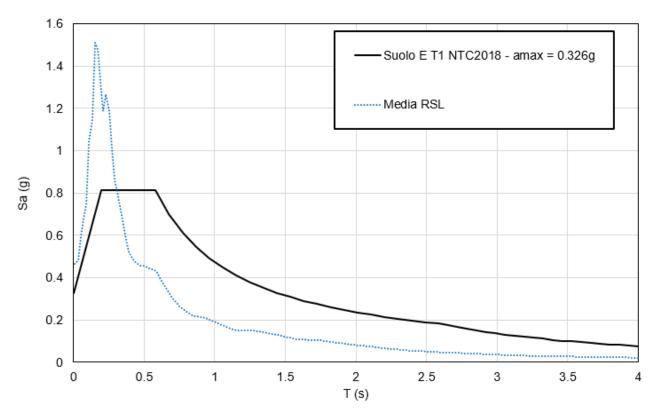


Figura 5-37: RSL km 5+000 ÷ 5+360 – Spettro medio risultato dell'analisi di risposta sismica locale, a confronto con lo spettro di risposta NTC2018 calcolato per Categoria di suolo E (a_{max} = 0.326g).

A partire dallo spettro medio risultato dall'analisi di Risposta Sismica Locale è stato costruito lo spettro elastico di progetto. Lo spettro elastico di progetto è stato determinato adottando una forma spettrale da NTC2018, come mostrato in Figura 5-48 a confronto con i dati NTC2018 e i risultati dell'analisi RSL, utilizzando i seguenti parametri:

- $a_{max} = 0.46 g$
- T_B = 0.06 s
- T_{C} = 0.19 s
- T_D = 3.44 s
- F₀ = 3.05

snam //	PROGETTISTA TECHNIP ENERGIES TECHNIP RUMAN & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 111 di 176	Rev.

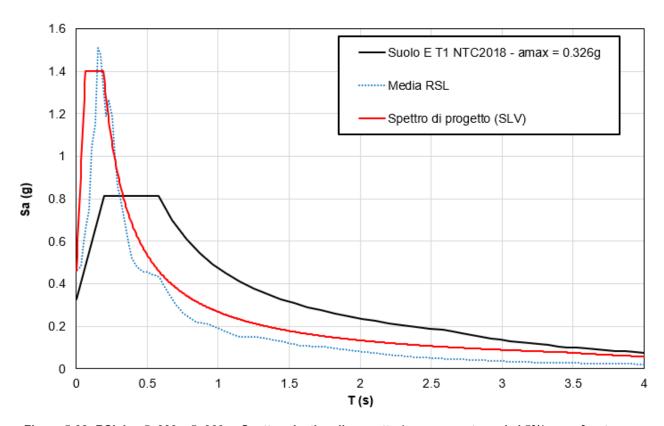


Figura 5-38: RSL km 5+000 ÷ 5+360 – Spettro elastico di progetto (smorzamento pari al 5%) a confronto con media RLS e spettro NTC per suoli di tipo E.

In conclusione, in Figura 5-49 viene rappresentato lo spettro elastico di progetto (smorzamento pari al 5%) con fattore di amplificazione topografica applicato. I parametri dello spettro di progetto sono i seguenti:

$$\begin{array}{lll} - & a_{max} & = 0.50 \ g \\ - & T_B & = 0.06 \ s \\ - & T_C & = 0.19 \ s \\ - & T_D & = 3.44 \ s \\ - & F_0 & = 3.05 \end{array}$$

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP FUNE AS Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 112 di 176	Rev.

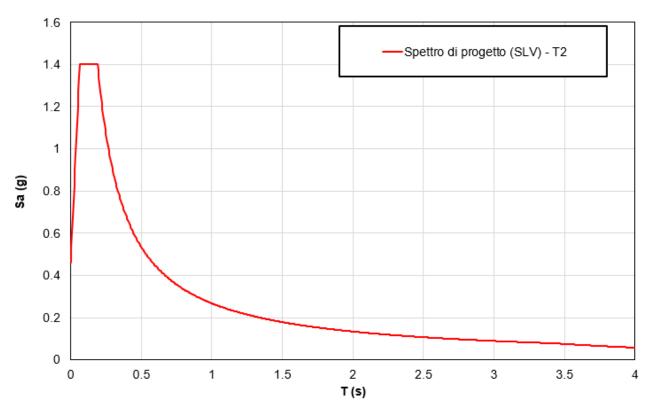


Figura 5-39: RSL km 5+000 ÷ 5+360 – Spettro elastico di progetto (smorzamento pari al 5%) con fattore di amplificazione topografica.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP RUMAN & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 113 di 176	Rev.

5.5.2.4 TRATTO RSL km 6+168

L'analisi RSL è stata eseguita al km 6+168 in corrispondenza del punto identificato per la verifica della stabilità del pendio nel comune di Badia Tedalda. L'indagine geofisica eseguita nei dintorni è la seguente:

• MASW 26 (campagna 2023);

La stratigrafia di riferimento per l'analisi è definita a partire da quanto indicato nel Doc. Rif. [10] ed è riportata in Tabella 5-48.

Tabella 5-48: Modello geotecnico – RSL km 6+168.

MODELLO GEOTECNICO pk 6+168 circa

Coordinate: (x: 273659, y: 4851260)			
Livello	Profondità (m)	Vs (m/s)	
Deposito di frana	0,00 – 10,00	335	
Alternanza pelitico- sabbiosa	10,00 – 25,00	495	
Alternanza arenacea- marnosa	25,00 – 70,00	1100	

Il set di accelerogrammi è stato selezionato mediante l'utilizzo del software SCALCONA 3.0 fornito dalla Regione Toscana, in funzione delle coordinate del sito di interesse, unitamente all'estrazione degli accelerogrammi dal nodo del reticolo ID20072 del portale Eucentre fornito dalla Regione Emilia-Romagna, data la vicinanza del punto al confine tra le due regioni.

In Figura 5-45 viene mostrato il profilo di velocità delle onde di taglio caratteristico costruito sull'insieme delle prove geofisiche rappresentative della zona di interesse (dal profilo si ottiene $V_{S,eq}$ = 398 m/s).

Il bedrock sismico è posizionato a 25m di profondità, in base ai risultati delle prove geofisiche e dalla stratigrafia disponibile.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP TECHNIP Numan & Sortainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP – 75 bar	Pag. 114 di 176	Rev. 0

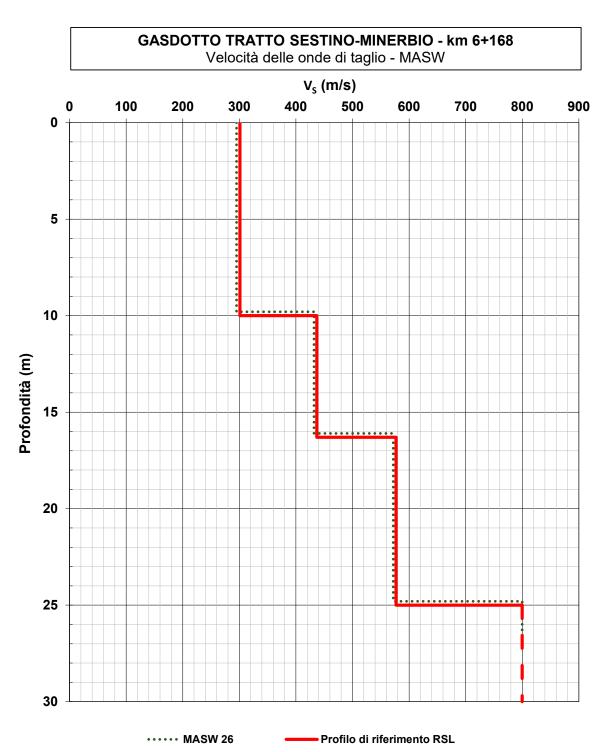


Figura 5-40: Profilo caratteristico individuato sulla base delle prove in sito all'interno dell'area di riferimento.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 115 di 176	Rev. 0

Sulla base di quanto sopra, il modello stratigrafico ed i valori del profilo di V_s di riferimento per l'analisi di risposta sismica locale sono indicati in Tabella 5-44. La litologia e le curve di degrado del modulo di taglio e smorzamento di letteratura (EPRI (93)) associate ad ogni formazione sono riportate in Tabella 5-45.

Tabella 5-49: Modello stratigrafico - RSL km 6+168.

Profondità	(m)	Vs (m/s)	Tip o di tamana
Da	а	V _{S,H} = 398 m/s	Tipo di terreno
0	10.00	301	Deposito di frana
10.00	16.30	437	Alternanza pelitico- sabbiosa (1)
16.30	25.00	577	Alternanza pelitico- sabbiosa (2)
25.00	-	800	Bedrock

Tabella 5-50: Curve di degrado ciclico - RSL km 6+168.

Tipo di terreno	G/G _{max}	Damping
Deposito di frana	EPRI(93), 0-6 m	EPRI(93), 0-6 m
Alternanza pelitico- sabbiosa (1)	EPRI(93), 6-15 m	EPRI(93), 6-15 m
Alternanza pelitico- sabbiosa (2)	EPRI(93), 15-30 m	EPRI(93), 15-30 m

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP RUMAN & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 116 di 176	Rev.

Il software utilizzato, la procedura di analisi e le curve di degrado adottate nel modello sono dettagliati in **Appendice A**.

Il risultato delle analisi RSL è mostrato in Figura 5-42 in termini di spettro di risposta elastico in accelerazione (smorzamento 5%) ottenuto come media della risposta in superficie calcolata sull'intero set di accelerogrammi scelto. Si osserva il confronto in figura tra spettro medio RSL e lo spettro NTC per suolo di classe B ($a_{max} = 0.245g$). In particolare, si nota come lo spettro RSL risulti superiore per alte frequenze a quello di Norma, mentre è al di sotto dello stesso aumentando il periodo.

Gli effetti morfologici di sito sulla risposta sismica locale sono stati tenuti in conto applicando allo spettro di risposta elastico il fattore di amplificazione calcolato in accordo alle norme tecniche. In particolare, il sito ricade in categoria T2 della classificazione da NTC2018 ed il punto di interesse si trova a metà al pendio come mostra Figura 5-41, pertanto è stata considerata una riduzione del 50% del coefficiente indicato che risulta pari a 1.1.

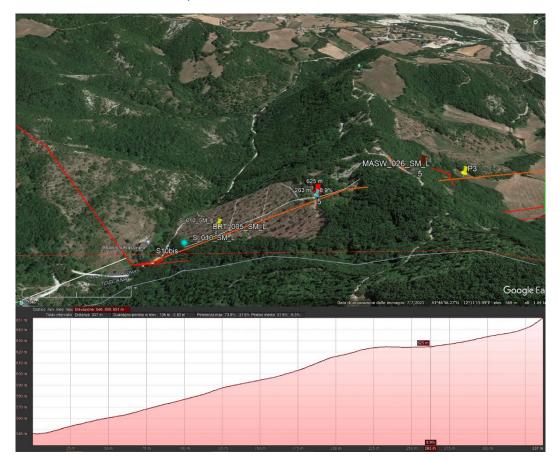


Figura 5-41: RSL km 6+168 - Profilo elevazione del pendio in corrispondenza del punto di analisi.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP LUMAN & Sortainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP – 75 bar	Pag. 117 di 176	Rev. 0

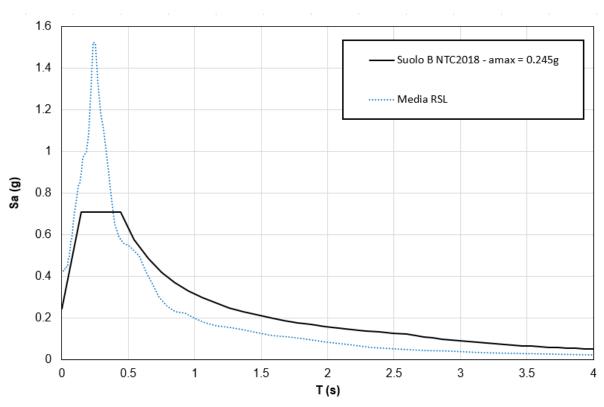


Figura 5-42: RSL km 6+168 – Spettro medio risultato dell'analisi di risposta sismica locale, a confronto con lo spettro di risposta NTC2018 calcolato per Categoria di suolo E (a_{max} = 0.245g).

A partire dallo spettro medio risultato dall'analisi di Risposta Sismica Locale è stato costruito lo spettro elastico di progetto. Lo spettro elastico di progetto è stato determinato adottando una forma spettrale da NTC2018, come mostrato in Figura 5-43 a confronto con i dati NTC2018 e i risultati dell'analisi RSL, utilizzando i seguenti parametri:

$$\begin{array}{lll} - & a_{max} & = 0.42 \ g \\ - & T_B & = 0.09 \ s \\ - & T_C & = 0.28 \ s \\ - & T_D & = 3.28 \ s \\ - & F_0 & = 3.0 \end{array}$$

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Luman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA'	10-CI-E-8	80190
	REGIONI Toscana – Emilia-Romagna		
	PROGETTO		Rev.
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 118 di 176	0

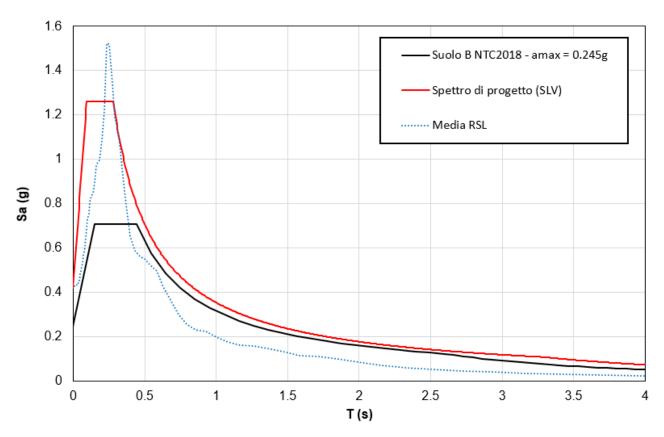


Figura 5-43: RSL km 6+168 – Spettro elastico di progetto (smorzamento pari al 5%) a confronto con media RLS e spettro NTC per suoli di tipo B.

In conclusione, in Figura 5-44 viene rappresentato lo spettro elastico di progetto (smorzamento pari al 5%) con fattore di amplificazione topografica applicato. I parametri dello spettro di progetto sono i seguenti:

$$- a_{max} = 0.46 g$$

 $- T_{B} = 0.09 s$

$$-$$
 T_C = 0.28 s

$$T_D$$
 = 3.45 s

$$- F_0 = 3.0$$

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP LUman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 119 di 176	Rev. 0

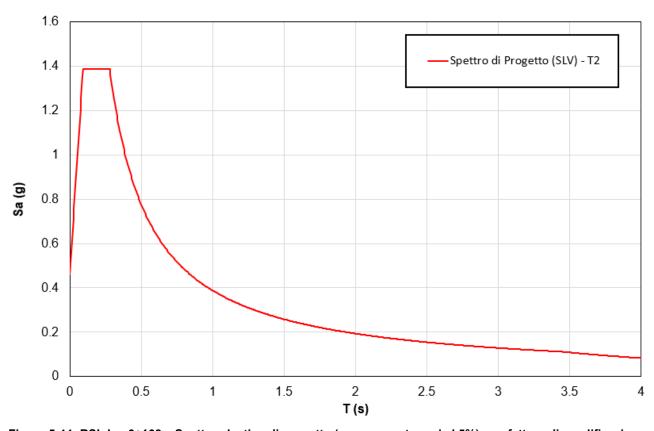


Figura 5-44: RSL km 6+168 – Spettro elastico di progetto (smorzamento pari al 5%) con fattore di amplificazione topografica.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 120 di 176	Rev.

5.5.2.5 TRATTO RSL km 8+560

L'analisi RSL è stata eseguita al km 8+560 in corrispondenza del punto identificato per la verifica della stabilità del pendio nel comune di Badia Tedalda. Le indagini all'interno dell'area sono le seguenti:

• I sondaggi S 97 GM Z, S 013 SM L e S 014 SM L della campagna d'indagine 2023.

Il set di accelerogrammi è stato selezionato mediante l'utilizzo del software SCALCONA 3.0 fornito dalla Regione Toscana, in funzione delle coordinate del sito di interesse, unitamente all'estrazione degli accelerogrammi dal nodo del reticolo ID20072 del portale Eucentre fornito dalla Regione Emilia-Romagna, data la vicinanza del punto al confine tra le due regioni.

In Figura 5-45 viene mostrato il profilo di velocità delle onde di taglio caratteristico costruito a partire dalla correlazione dei risultati delle prove SPT eseguite nelle verticali presenti nella zona di interesse (dal profilo si ottiene $V_{S,eq} = 448 \text{ m/s}$).

Il bedrock sismico è posizionato a 10m di profondità, come si evince dalla stratigrafia ottenuta dai sondaggi eseguiti nell'area di interesse.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP FUNCTION AS Socializable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 121 di 176	Rev.

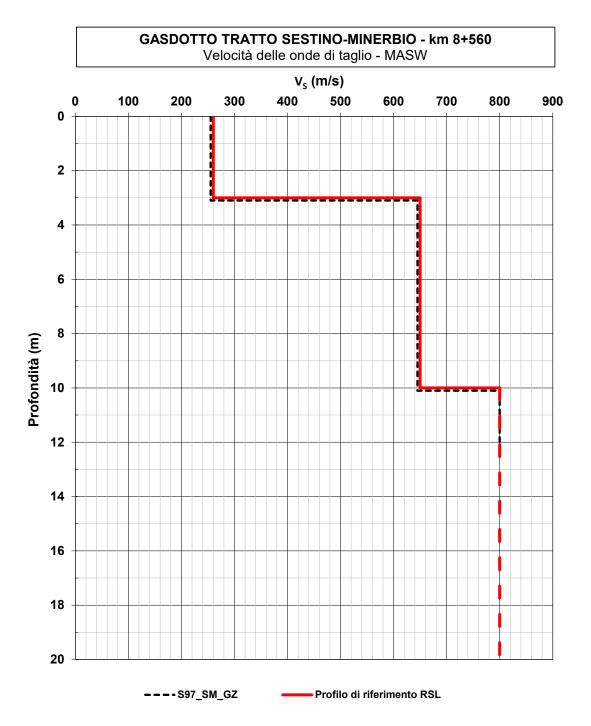


Figura 5-45: Profilo caratteristico individuato sulla base delle prove in sito all'interno dell'area di riferimento.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA'	10-CI-E-8	0190
	REGIONI Toscana – Emilia-Romagna	10 01 10	
	PROGETTO		Rev.
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 122 di 176	0

Sulla base di quanto sopra, il modello stratigrafico ed i valori del profilo di V_s di riferimento per l'analisi di risposta sismica locale sono indicati in Tabella 5-51. La litologia e le curve di degrado del modulo di taglio e smorzamento di letteratura (EPRI (93)) associate ad ogni formazione sono riportate in Tabella 5-52.

Tabella 5-51: Modello stratigrafico – RSL km 1+000.

Profondità (Profondità (m)		Tip o di torroro
Da	а	V _{S,H} = 448 m/s	Tipo di terreno
0	3.00	260	Argilla
3.00	10.00	650	Argilla
10.00	-	800	Bedrock

Tabella 5-52: Curve di degrado ciclico – RSL km km 1+000.

Tipo di terreno	G/G _{max}	Damping
Argilla	EPRI(93), 0-6 m	EPRI(93), 0-6 m

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP LUMB & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 123 di 176	Rev.

Il software utilizzato, la procedura di analisi e le curve di degrado adottate nel modello sono dettagliati in **Appendice A**.

Il risultato delle analisi RSL è mostrato in Figura 5-47in termini di spettro di risposta elastico in accelerazione (smorzamento 5%) ottenuto come media della risposta in superficie calcolata sull'intero set di accelerogrammi scelto. Si osserva il confronto in figura tra spettro medio RSL e lo spettro NTC per suolo di classe B ($a_{max} = 0.244g$). In particolare, si nota come lo spettro RSL risulti di poco superiore a quello di Norma per periodi inferiori a 0.2 secondi circa, mentre è ben al di sotto dello stesso aumentando il periodo.

Gli effetti morfologici di sito sulla risposta sismica locale sono stati tenuti in conto applicando allo spettro di risposta elastico il fattore di amplificazione calcolato in accordo alle norme tecniche. In particolare, il sito ricade in categoria T2 della classificazione da NTC2018 ed il punto di interesse si trova a metà al pendio come mostra Figura 5-46, pertanto è stata considerata una riduzione del 50% del coefficiente indicato che risulta pari a 1.1.

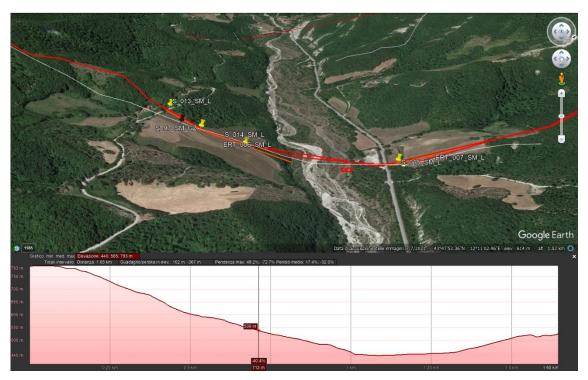


Figura 5-46: RSL km 8+560 - Profilo elevazione del pendio in corrispondenza del punto di analisi.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP LUman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	80190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 124 di 176	Rev .

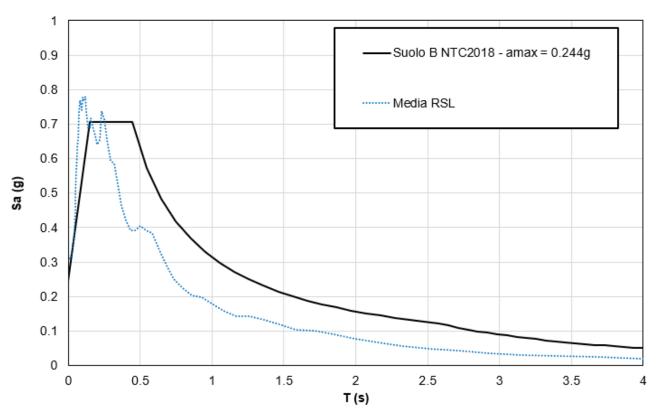


Figura 5-47: RSL km 8+560 – Spettro medio risultato dell'analisi di risposta sismica locale, a confronto con lo spettro di risposta NTC2018 calcolato per Categoria di suolo B (a_{max} = 0.244g).

A partire dallo spettro medio risultato dall'analisi di Risposta Sismica Locale è stato costruito lo spettro elastico di progetto. Lo spettro elastico di progetto è stato determinato adottando una forma spettrale da NTC2018, come mostrato in Figura 5-48 a confronto con i dati NTC2018 e i risultati dell'analisi RSL, utilizzando i seguenti parametri:

$$a_{max} = 0.31 g$$

 $T_{B} = 0.08 s$
 $T_{C} = 0.25 s$

- T_D = 2.84 s

 $- F_0 = 2.30$

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Luman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 125 di 176	Rev. 0

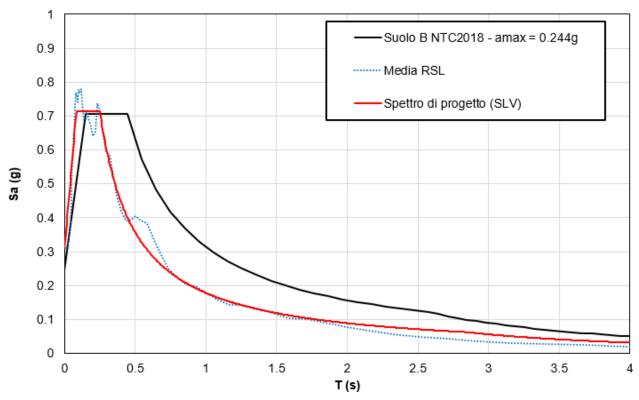


Figura 5-48: RSL km 8+560 – Spettro elastico di progetto (smorzamento pari al 5%) a confronto con media RLS e spettro NTC per suoli di tipo B.

In conclusione, in Figura 5-49 viene rappresentato lo spettro elastico di progetto (smorzamento pari al 5%) con fattore di amplificazione topografica applicato. I parametri dello spettro di progetto sono i seguenti:

$$- a_{max} = 0.34 g$$

$$T_B$$
 = 0.08 s

$$-$$
 T_C = 0.25 s

$$T_D$$
 = 2.96 s

$$- F_0 = 2.30$$

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP ENERGIES TECHNIP ENERGIES	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	80190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 126 di 176	Rev. 0

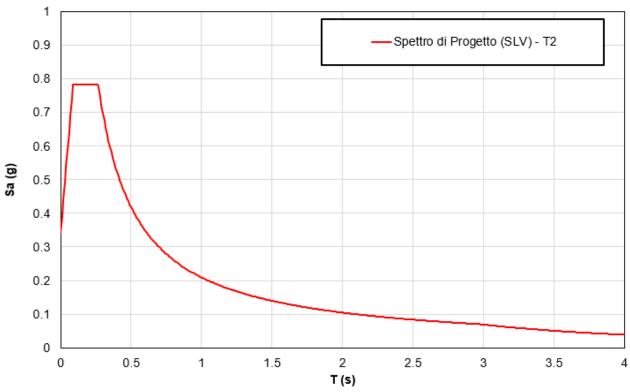


Figura 5-49: RSL km 8+560 – Spettro elastico di progetto (smorzamento pari al 5%) con fattore di amplificazione topografica.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP FUNCTION TECHNIP HUMAN & SUSTAINABLE Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 127 di 176	Rev.

5.5.2.6 TRATTO RSL km 81

L'analisi RSL è stata eseguita al km 81 in corrispondenza del sondaggio S_087_SM_L tra il comune di Ravenna e il comune di Russi e poi estesa per omogeneità delle caratteristiche della zona dal km 70+300 al km 90+767. Le indagini all'interno dell'area sono le seguenti:

- MASW 15,16 e 17 (campagna 2023);
- CPTU 6 e 12 (campagna 2023);
- I sondaggi S62, 63, 64, 65, 66, 67 della campagna d'indagine 2023 e i sondaggi A5, A6, S54A, S56 e S56A della campagna d'indagine pregressa.

Il nodo del reticolo da cui è stato estratto il set di accelerogrammi è il n. 17407, che risulta il più vicino al punto di riferimento per il tratto considerato.

In Figura 5-50 viene mostrato il profilo di velocità delle onde di taglio caratteristico costruito sull'insieme delle prove geofisiche e sui valori di velocità ottenuti attraverso correlazioni dalle prove CPTU disponibili e rappresentative della zona di interesse (dal profilo si ottiene $V_{S,eq}$ = 189 m/s).

L'estensione del profilo di riferimento di V_S (porzione tratteggiata in Figura 5-51) fino al bedrock sismico è stata condotta mediante una estrapolazione basata su curva analitica funzione di σ'_v , calibrata sulle indagini disponibili.

Dalle caratteristiche geologiche del sito, nell'area vasta di progetto, il bedrock sismico definito da formazioni risalenti al Pleistocene medio (con Vs > 800 m/s) è ragionevolmente riscontrabile a profondità dell'ordine dei 300 m (cfr. Figura 5-51).

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildill	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP – 75 bar	Pag. 128 di 176	Rev.

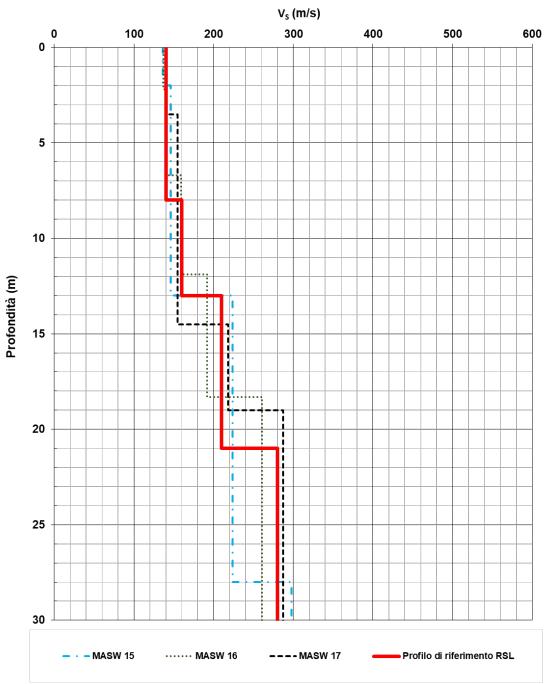


Figura 5-50: Profilo caratteristico individuato sulla base delle prove in sito all'interno dell'area di riferimento.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP RUMAN & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildin	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 129 di 176	Rev.

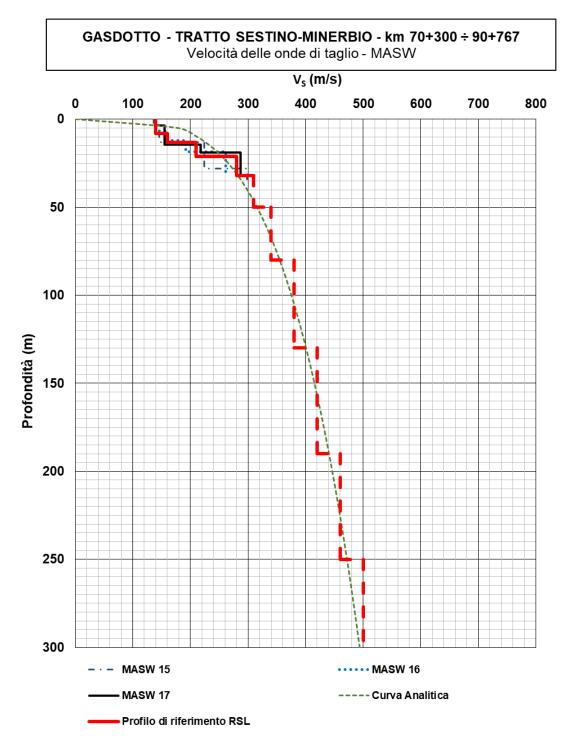


Figura 5-51: Estrapolazione del profilo di Vs di riferimento fino al bedrock sismico.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA'	10-CI-E-8	0190
	REGIONI Toscana – Emilia-Romagna		
	PROGETTO		Rev.
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 130 di 176	0

Sulla base di quanto sopra, il modello stratigrafico ed i valori del profilo di V_s di riferimento per l'analisi di risposta sismica locale sono indicati in Tabella 5-53. La litologia e le curve di degrado del modulo di taglio e smorzamento di letteratura (Idriss, Clay (1990)) associate ad ogni formazione sono riportate in Tabella 5-54.

Tabella 5-53: Modello stratigrafico – RSL km 70+300 ÷ 90+767.

Profondità ((m)	V _S (m/s)	Tipo di tarrana
Da	а	V _{S,30} = 189 m/s	Tipo di terreno
0	8.0	140	Riporto
8.0	13.0	160	Argilla
13.0	21.0	210	Argilla
21.0	32.0	280	Argilla
32.0	50.0	310	Argilla
50.0	80.0	340	Argilla profonda
80.0	130.0	380	Argilla profonda
130.0	190.0	420	Argilla profonda
190.0	250.0	460	Argilla profonda
250.0	300.0	500	Argilla profonda
300.0	-	800	Bedrock

Tabella 5-54: Curve di degrado ciclico – RSL km 70+300 ÷ 90+767.

Tipo di terreno	G/G _{max}	Damping
Riporto	Idriss (1990), Clay	Idriss (1990), Clay
Argilla	Idriss (1990), Clay	Idriss (1990), Clay
Argilla profonda	EPRI(93), 150-300m	EPRI(93), 150-300m

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Luman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildill	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO		
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP – 75 bar	Pag. 131 di 176	Rev . 0

Il software utilizzato, la procedura di analisi e le curve di degrado adottate nel modello sono dettagliati in **Appendice A**.

Il risultato delle analisi RSL è mostrato in Figura 5-52 in termini di spettro di risposta elastico in accelerazione (smorzamento 5%) ottenuto come media della risposta in superficie calcolata sull'intero set di accelerogrammi scelto. Si osserva il confronto in figura tra spettro medio RSL e spettro NTC per suolo di classe C ($a_{max} = 0.317g$). In particolare, si nota come lo spettro di Norma risulti superiore a quello ottenuto dalla RSL. Il valore di a_{max} risultante dalla RSL è $a_{max} = 0.298g$ che risulta altresì minore del valore ricavato con l'approccio semplificato di NTC2018 che, essendo più cautelativo rispetto al Livello II ($F_{a,PGA}$ < Ss) può essere adottato per la definizione dell'azione sismica.

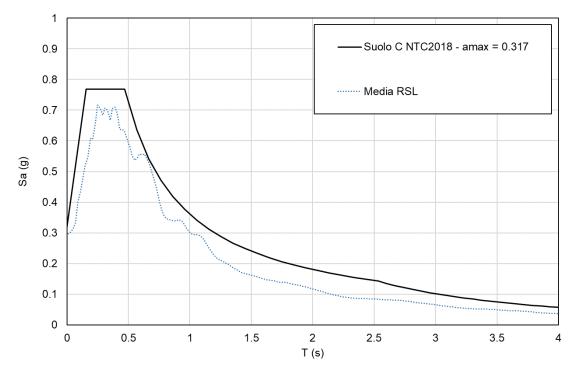


Figura 5-52: RSL km 70+300 ÷ 90+767 – Spettro medio risultato dell'analisi di risposta sismica locale, a confronto con lo spettro di risposta NTC2018 calcolato per Categoria di suolo C (a_{max} = 0.317g).

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP ENERGIES TECHNIP ENERGIES TECHNIP ENERGIES	COMMESSA NQ/R22358	UNITÀ -
Sildill	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 132 di 176	Rev. 0

5.5.2.7 TRATTO RSL km 120

L'analisi RSL è stata eseguita al km 120 in corrispondenza della MASW 22 localizzata nel Comune di Medicina e poi estesa per omogeneità delle caratteristiche della zona dal km 116+113 al km 124+000. Le indagini all'interno dell'area sono le seguenti:

- MASW 22 (campagna 2023);
- I sondaggi S75, 76, 90 e 91 della campagna d'indagine 2023 e i sondaggi A9, A10, A11, A12, S67A, S69 e S70 della campagna d'indagine pregressa.

Il nodo del reticolo da cui è stato estratto il set di accelerogrammi è il n. 16514, che risulta il più vicino al punto di riferimento per il tratto considerato.

In Figura 5-53 viene mostrato il profilo di velocità delle onde di taglio di calcolo costruito sull'insieme delle prove geofisiche (dal profilo si ottiene $V_{S,eq}$ = 175 m/s).

L'estensione del profilo di riferimento di V_S (porzione tratteggiata in Figura 5-54) fino al bedrock sismico è stata condotta mediante una estrapolazione basata su curva analitica funzione di σ'_v , calibrata sulle indagini disponibili.

Dalle caratteristiche geologiche del sito, nell'area vasta di progetto, il bedrock sismico definito da formazioni risalenti al Pleistocene medio (con $V_s > 800$ m/s) è ragionevolmente riscontrabile a profondità non inferiori a 250 m (cfr. Figura 5-54).

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildill	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP – 75 bar	Pag. 133 di 176	Rev. 0

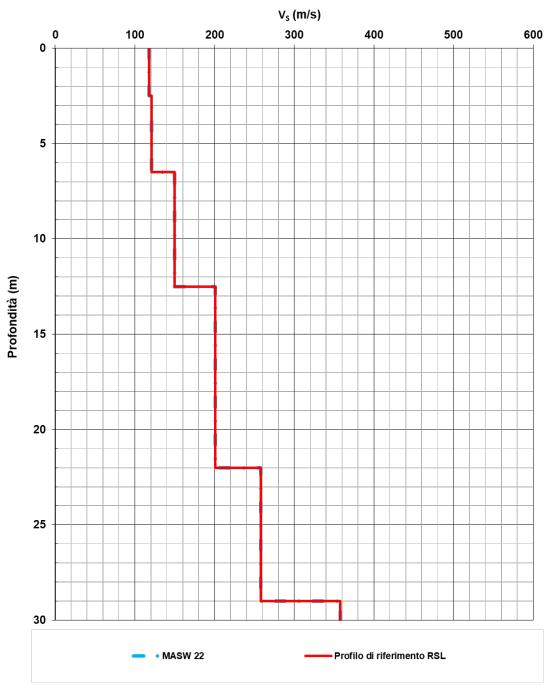


Figura 5-53: Profilo di calcolo costruito sulla base delle prove in sito all'interno dell'area di riferimento.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP FUND 15 TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
V/V	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 134 di 176	Rev.

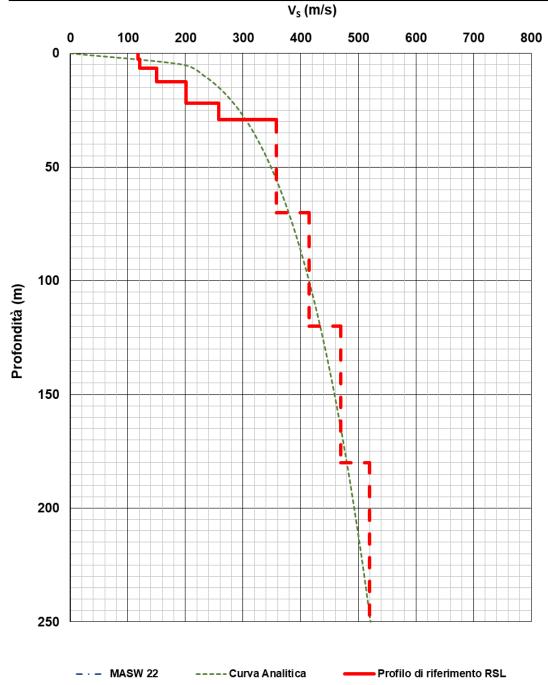


Figura 5-54: Estrapolazione del profilo di Vs di calcolo fino al bedrock sismico.

CDOM	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 135 di 176	Rev. 0

Sulla base di quanto sopra, il modello stratigrafico ed i valori del profilo di V_s di riferimento per l'analisi di risposta sismica locale sono indicati in Tabella 5-55. La litologia e le curve di degrado del modulo di taglio e smorzamento di letteratura (Idriss, Clay (1990)) associate ad ogni formazione sono riportate in Tabella 5-56.

Tabella 5-55: Modello stratigrafico - RSL km 116+113 ÷ 124+000.

Profondità ((m)	V _S (m/s)	Tine di terrene
Da	а	V _{S,30} = 175 m/s	Tipo di terreno
0.0	2.5	118	Argilla
2.5	6.5	121	Argilla
6.5	12.5	150	Argilla
12.5	22.0	201	Argilla
22.0	29.0	258	Argilla
29.0	70.0	358	Argilla profonda
70.0	120.0	415	Argilla profonda
120.0	180.0	470	Argilla profonda
180.0	250.0	520	Argilla profonda
250.0	-	800	Bedrock

Tabella 5-56: Curve di degrado ciclico - RSL km 116+113 ÷ 124+000.

Tipo di terreno	G/G _{max}	Damping
Argilla	Idriss (1990), Clay	Idriss (1990), Clay
Argilla profonda	EPRI(93), 150-300m	EPRI(93), 150-300m

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Luman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildill	LOCALITA' REGIONI Toscana – Emilia-Romagna	gna 10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP – 75 bar	Pag. 136 di 176	Rev.

Il software utilizzato, la procedura di analisi e le curve di degrado adottate nel modello sono dettagliati in **Appendice A**.

Il risultato delle analisi RSL è mostrato in Figura 5-55 in termini di spettro di risposta elastico in accelerazione (smorzamento 5%) ottenuto come media delle risposte in superficie calcolate sull'intero set di accelerogrammi scelto. Si osserva il confronto in figura tra spettro medio RSL e spettro NTC per suolo di classe D ($a_{max} = 0.352g$). In particolare, si nota come lo spettro di Norma risulti superiore a quello ottenuto dalla RSL. Il valore di a_{max} risultante dalla RSL è $a_{max} = 0.318g$ che risulta minore del valore ricavato con l'approccio semplificato di NTC2018. Essendo però più cautelativo il Livello II ($F_{a,PGA} = 1.7$), fornendo un valore di $a_{max} = 0.380g$, questo può essere adottato per la definizione dell'azione sismica.

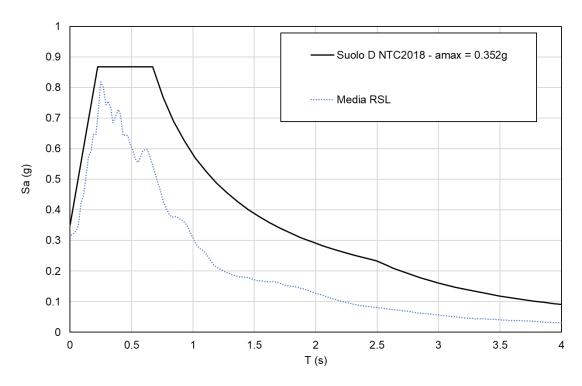


Figura 5-55: RSL km 116+113 ÷ 124+000 - Spettro medio risultato dell'analisi di risposta sismica locale, a confronto con lo spettro di risposta NTC2018 calcolato per Categoria di suolo C (a_{max} = 0.352g).

Spam	PROGETTISTA TECHNIP ENERGIES TECHNIP FUNCTION OF TECHNIP HUMAN & SUSTAINABLE Engineering	COMMESSA NQ/R22358	UNITÀ -
snam	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 137 di 176	Rev.

5.5.2.8 TRATTO RSL km 135

L'analisi RSL è stata eseguita al km 135 in corrispondenza delle MASW 23 e 24 localizzata nel Comune di Budrio e poi stesa per omogeneità delle caratteristiche della zona dal km 124+000 al km 140+691. Le indagini all'interno dell'area sono le seguenti:

- MASW 23 e 24 (campagna 2023);
- I sondaggi S76, 77, 78, 79, 80, 82, 94 e 95 della campagna d'indagine 2023 e i sondaggi S71, 71A e 72 della campagna d'indagine pregressa.

Il nodo del reticolo da cui è stato estratto il set di accelerogrammi è il n. 16290, che risulta il più vicino al punto di riferimento per il tratto considerato.

In Figura 5-56 viene mostrato il profilo di velocità delle onde di taglio caratteristico costruito sull'insieme delle prove geofisiche (dal profilo si ottiene $V_{S,eq}$ = 221 m/s).

L'estensione del profilo di riferimento di V_S (porzione tratteggiata in Figura 5-57) fino al bedrock sismico è stata condotta mediante una estrapolazione basata su curva analitica funzione di σ'_v , calibrata sulle indagini disponibili.

Dalle caratteristiche geologiche del sito, nell'area vasta di progetto, il bedrock sismico definito da formazioni risalenti al Pleistocene medio (con $V_S > 800$ m/s) è ragionevolmente riscontrabile a profondità dell'ordine dei 200 m (cfr. Figura 5-57).

COOM	PROGETTISTA TECHNIP ENERGIES TECHNIP RUMAN & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam V/	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 138 di 176	Rev. 0

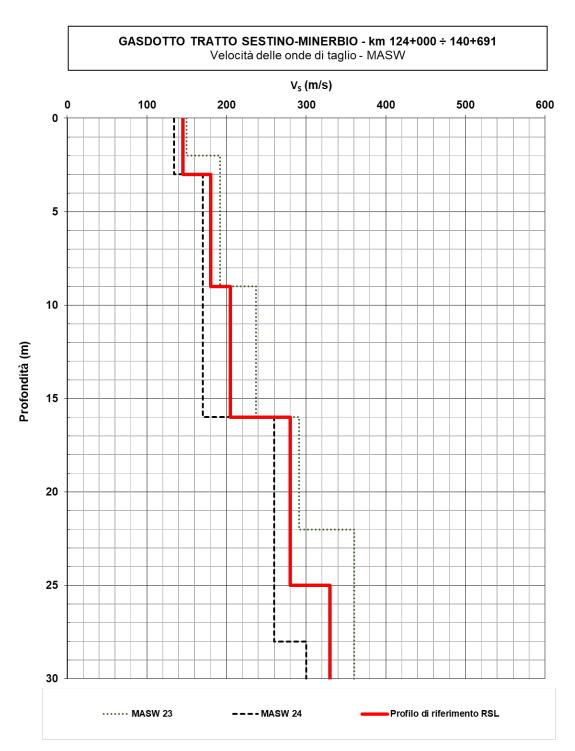


Figura 5-56: Profilo caratteristico individuato sulla base delle prove in sito all'interno dell'area di riferimento.

COOM	PROGETTISTA TECHNIP ENERGIES TECHNIP RUMAN & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 139 di 176	Rev. 0

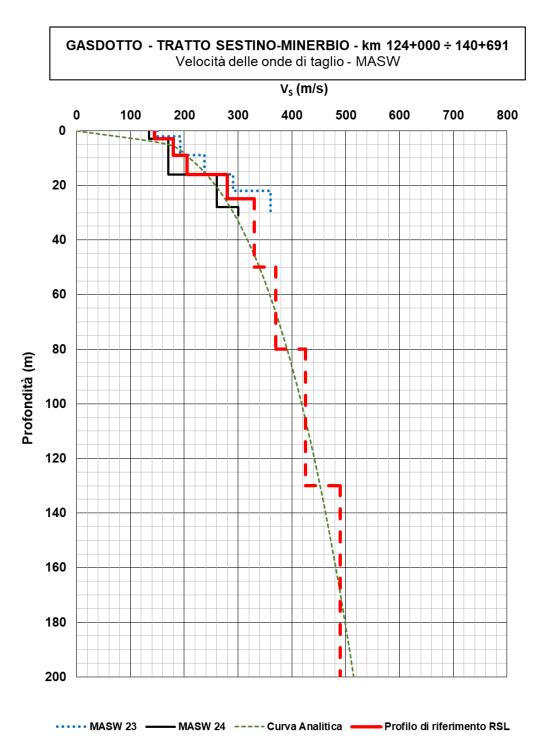


Figura 5-57: Estrapolazione del profilo di Vs di riferimento fino al bedrock sismico.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 140 di 176	Rev.

Sulla base di quanto sopra, il modello stratigrafico ed i valori del profilo di Vs di riferimento per l'analisi di risposta sismica locale sono indicati in Tabella 5-57. La litologia e le curve di degrado del modulo di taglio e smorzamento di letteratura (Idriss, Clay (1990)) associate ad ogni formazione sono riportate in Tabella 5-58.

Tabella 5-57: Modello stratigrafico - RSL km 124+000 ÷ 140+691.

Profondità (m)		V _S (m/s)	T:
Da	а	V _{S,30} = 211 m/s	Tipo di terreno
0	3.0	145	Riporto
3.0	9.0	180	Sabbia limosa
9.0	16.0	205	Argilla
16.0	25.0	280	Argilla
25.0	50.0	330	Argilla
50.0	80.0	370	Argilla profonda
80.0	130.0	425	Argilla profonda
130.0	200.0	490	Argilla profonda
200.0	-	800	Bedrock

Tabella 5-58: Curve di degrado ciclico - RSL km 124+000 ÷ 140+691.

Tipo di terreno	G/G _{max}	Damping
Riporto	Idriss (1990), Clay	Idriss (1990), Clay
Sabbia limosa	EPRI(93), 15-35m	EPRI(93), 15-35m
Argilla	Idriss (1990), Clay	Idriss (1990), Clay
Argilla profonda	EPRI(93), 150-300m	EPRI(93), 150-300m

(nam)	PROGETTISTA TECHNIP ENERGIES TECHNIP FOR TECHNIP Ruman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 141 di 176	Rev.

Il software utilizzato, la procedura di analisi e le curve di degrado adottate nel modello sono dettagliati in Appendice A.

Il risultato delle analisi RSL è mostrato in Figura 5-58 in termini di spettro di risposta elastico in accelerazione (smorzamento 5%) ottenuto come media della risposta in superficie calcolata sull'intero set di accelerogrammi scelto. Si osserva il confronto in figura tra spettro medio RSL e spettro NTC per suolo di classe C ($a_{max} = 0.301g$). Il valore di a_{max} risultante dalla RSL è $a_{max} = 0.320g$ che risulta maggiore del valore ricavato con l'approccio semplificato di NTC2018. Essendo però più cautelativo il Livello II ($F_{a,PGA} = 1.8$), fornendo un valore di $a_{max} = 0.394g$, questo può essere adottato per la definizione dell'azione sismica.

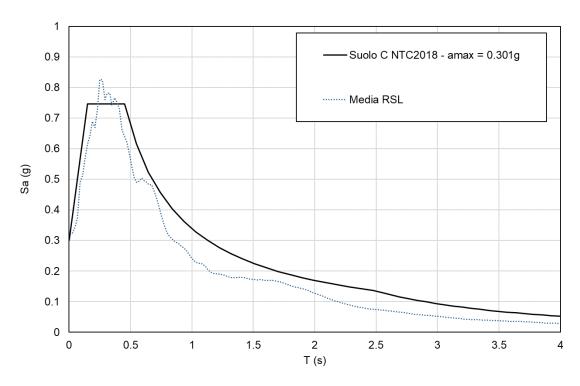


Figura 5-58: RSL km 124+000 ÷ 140+691 - Spettro medio risultato dell'analisi di risposta sismica locale, a confronto con lo spettro di risposta NTC2018 calcolato per Categoria di suolo C (a_{max} = 0.301g).

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP RUMAN & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA'	10-CI-E-8	0190
	REGIONI Toscana – Emilia-Romagna	10-01-2-0	0 130
	PROGETTO		Rev.
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 142 di 176	0

5.5.2.9 RIEPILOGO RISULTATI RSL

Di seguito si riporta in Tabella 5-59 il riepilogo dei risultati in termini di a_{max} ottenuti dalle analisi di risposta sismica locale condotte all'interno del presente studio.

Nei comuni di Bagnacavallo, Fusignano, Alfonsine, Lugo e Conselice, appartenenti all'unione della Bassa Romagna, risulta essere già presente un approfondimento di III livello. Per questo motivo, dove possibile, ai fini della caratterizzazione sismica di III livello, sono stati considerati i valori di azione sismica definiti dagli studi RSL riportati all'interno della documentazione di PGT.

Tabella 5-59: Riepilogo risultati studio RSL sul tracciato.

Comune	da	а	a _{g,max}
Comune	[kı	m]	RSL – III livello
	0+000	0+650	0.200
Sestino	0+650	1+000	0.390 (km1+000)
	1+000	2+649	(KIII1+000)
	2+649	4+000	-
Pennabilli	4+000	4+200	0.420
remabili	4+000	4+200	(km4+200)
	4+200	4+510	-
Casteldelci	4+510	4+863	-
	4+863	5+000	-
	5+000	5+360	0.500
	5+360	7+000	0.460
Badia Tedalda			(km6+168)
Badia Tedalaa	7+000	9+982	-
	7+600	8+050	-
	8+050	9+982	0.340
	01030		(km8+560)
Sant'Agata Feltria	9+982	12+676	-
Casteldelci	12+250	12+500	-
Casterderer	12+500	12+676	-
	12+676	15+260	-
	15+260	16+360	-
Sant'Agata Feltria	16+360	18+000	-
	18+000	20+700	-
	20+700	21+780	-
Carcina	21+780	23+000	-
Sarsina	23+000	23+715	-

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildill	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP – 75 bar	Pag. 143 di 176	Rev. 0

Tabella 5-59: Riepilogo risultati studio RSL sul tracciato.

Comune	da	а	a _{g,max}
Comune	[km]		RSL – III livello
Sarsina	23+715	24+071	-
Cant'Agata Faltria	24+071	25+000	-
Sant'Agata Feltria	25+000	25+055	-
Carcina	25+055	25+720	-
Sarsina	25+720	26+347	-
Sagliano al Rubicano	26+370	27+727	-
Sogliano al Rubicone	26+540	27+727	-
	27+727	28+410	-
	28+410	28+830	-
Mercato Saraceno	28+830	29+280	-
IVIEICALO SAFACERO	29+280	29+530	-
	29+530	30+000	-
	30+000	30+885	-
Sogliano al Rubicone	30+885	31+858	-
	31+858	32+660	-
Mercato Saraceno	32+660	35+980	-
	35+980	36+465	-
	36+465	36+940	-
Sogliano al Rubicone	36+940	37+250	-
Sognatio at Rubicotte	37+250	37+480	-
	37+947	37+492	-
Roncofreddo	37+947	39+424	-
Mercato Saraceno	39+424	40+201	-
	40+201	55+141	-
Cesena	55+141	55+481	-
	55+481	59+550	-
	59+550	60+000	-
Bertinoro	60+000	60+743	-
	60+743	61+827	-
Forlimpopoli	61+827	63+214	-
Forlì	63+214	68+767	-
	68+767	69+518	-
D.	69+518	70+300	-
Ravenna	70+300	73+740	0.298
	73+740	76+700	0.298

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP ENERGIES TECHNIP ENERGIES TECHNIP ENERGIES	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP – 75 bar	Pag. 144 di 176	Rev. 0

Tabella 5-59: Riepilogo risultati studio RSL sul tracciato.

Comune	da	а	a _{g,max}	
Comune	[km]		RSL – III livello	
	76+700	81+080	0.298	
Russi	81+080	81+704	0.298	
Ravenna	81+704	82+980	0.298	
	82+980	84+000	0.298	
Russi	84+000	84+900	0.298	
NU331	84+900	86+000	0.298	
	86+000	87+287	0.298	
Deverse	87+287	89+000	0.298	
Ravenna	89+000	90+780	0.298	
	90+780	91+000	0.242	
Dagnagavalla	91+000	92+523	0.242	
Bagnacavallo	92+523	93+000	0.242	
	93+000	97+073	0.242	
Fusignana	97+073	97+193	0.212	
Fusignano	97+193	101+311	0.212	
Alfonsine	101+311	105+000	0.262	
Lugo	105+000	107+735	0.255	
Lugo	107+735	111+780	0.255	
Conselice	111+780	112+190	0.248	
Consence	112+190	116+113	0.248	
Imola	116+113	117+538	0.381	
	117+538	122+460	0.318	
Medicina	122+460	122+470	0.318	
	122+470	124+917	0.318	
	124+917	127+000	0.318	
Molinella	127+000	127+830	0.320	
	127+830	134+700	0.320	
Budrio	134+700	135+560	0.320	
Duulio	135+560	137+698	0.320	
	137+698	139+470	0.320	
Minerbio	139+470	140+180	0.320	
	140+180	140+691	0.320	

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP RUMAN & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 145 di 176	Rev.

5.6 Azione sismica di progetto

In Tabella 5-60 si riporta il confronto in termini di a_{max} calcolata con i diversi approcci lungo il tracciato. A favore di sicurezza, per determinare l'azione sismica di progetto, si può assumere il valore di a_{max} maggiore tra i valori risultanti dai tre approcci (i.e. NTC2018, Analisi di II livello, Analisi di III livello quando disponibile). Va comunque precisato che in corrispondenza dei punti in cui è stata eseguita un'analisi sismica di terzo livello, sarà onere del progettista scegliere quale azione sismica di progetto utilizzare nelle analisi. In particolare, in tali ambiti, potrebbe ritenersi opportuno adottare quale azione sismica di progetto quella derivante dall'analisi di III livello, in quanto sicuramente più sito-specifica di quella ricavata da analisi di II livello.

Da Figura 5-61 a Figura 5-64 sono indicati graficamente i valori di a_{max} lungo il tracciato.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -	
Sildill	LOCALITA'			
	REGIONI Toscana – Emilia-Romagna	10-CI-E-80190		
	PROGETTO		Rev.	
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 146 di 176	0	

Tabella 5-60: Azione sismica di progetto individuata a valle degli studi di I, II e III livello trattati nei paragrafi precedenti.

	da	а	a _g	(Classe) /	a _{g,max}		2	_			
Comune	[kı	m]	suolo rigido	S	NTC 2018	Fa _{PGA}	a _{g,max} II livello	a _{g,max} RSL – III livello	a _{g,max}		
Sestino	0+000	1+000				1.9	0.568	0.390	0.568		
	1+000	2+649				1.7	0.508	(km1+000)	0.508		
	2+649	4+000				1.5	0.448	-	0.448		
Pennabilli	4+000	4+200	0.249	(E)	0.391	2.1	0.627	0.420 (km4+200)	0.627		
	4+200	4+510		S= 1.589		1.5	0.448	-	0.448		
Casteldelci	4+510	4+863				1.4	0.418	-	0.418		
	4+863	5+000				1.7	0.508	-	0.508		
	5+000	5+360				1.7	0.508	0.500	0.508		
Badia Tedalda	5+360	7+000				1.7	0.508	0.460(km6+168)	0.508		
	7+000	9+982		(D)		1.7	0.500	0.340 (km8+560)	0.500		
Sant'Agata Feltria	9+982	12+676		(B) S= 1.387		0.340	1.2	0.353	-	0.353	
Castaldalai	12+250	12+500				1.2	0.353	-	0.353		
Casteldelci	12+500	12+676	0.245	245		1.2	0.353	-	0.396		
	12+676	15+260		(E) S= 1.617		1.2	0.353	-	0.396		
	15+260	16+360	S=					1.8	0.529	-	0.529
Sant'Agata	16+360	18+000			0.396	1.4	0.412	-	0.412		
Feltria	18+000	20+700				1.2	0.412	-	0.412		
	20+700	21+780						1.6	0.392	-	0.396
6 .	21+780	23+000				1.6	0.395	-	0.396		
Sarsina	23+000	23+715	1			2.0	0.494	-	0.494		
Sarsina	23+715	24+071	1			2.0	0.494	-	0.494		
Sant'Agata	24+071	25+000				2.0	0.494	-	0.494		
Feltria	25+000	25+055				1.4	0.346	-	0.346		
Carcina	25+055	25+720				2.0	0.494	-	0.494		
Sarsina	25+720	26+347	0.247			1.4	0.346	-	0.346		
Sogliano al Rubicone	26+347	27+727	0.247	/ (E) S= 1.316	0.333	2.2	0.543	-	0.543		
	27+727	28+410				1.8	0.445	-	0.445		
Morasta	28+410	28+830				1.6	0.395	-	0.395		
Mercato	28+830	29+280]			1.8	0.445	-	0.445		
Saraceno	29+280	29+530				2.0	0.494	-	0.494		
	29+530	30+000				1.8	0.445	-	0.445		

SD2m	PROGETTISTA TECHNIP ENERGIES TECHNIP RUMAN & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -	
snam	LOCALITA'			
	REGIONI Toscana – Emilia-Romagna	10-CI-E-80190		
	PROGETTO		Rev.	
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 147 di 176	0	

Tabella 5-60: Azione sismica di progetto individuata a valle degli studi di I, II e III livello trattati nei paragrafi precedenti.

	da	а	a _g	(Classe) /	$\mathbf{a}_{g,max}$		a _{g,max}	a _{g,max}		
Comune	[k	m]	suolo rigido	S	NTC 2018	Fa _{PGA}	II livello	RSL – III livello	a _{g,max}	
	30+000	30+885				2.0	0.494	-	0.494	
Sogliano al Rubicone	30+885	31+858				2.2	0.543	-	0.543	
Maranta	31+858	32+660				1.7	0.420	-	0.420	
Mercato	32+660	35+980				2.2	0.543	-	0.543	
Saraceno	35+980	36+465				1.9	0.469	-	0.469	
	36+465	36+940				2.2	0.557	-	0.557	
Sogliano al	36+940	37+250				1.6	0.405	-	0.405	
Rubicone	37+250	37+480				2.2	0.557	-	0.557	
	37+947	37+492				1.6	0.405	-	0.405	
Roncofreddo	37+947	39+424				2.2	0.557	-	0.557	
Mercato Saraceno	39+424	40+201	0.253	(C)	0.336	2.0	0.506	-	0.506	
	40+201	41+642	0.255	S=1.330	0.556	1.6	0.405	-	0.405	
Casana	40+201	55+141				1.6	0.405	-	0.405	
Cesena	55+141	55+481				1.8	0.455	-	0.455	
	55+481	59+550				1.6	0.405	-	0.405	
Bertinoro	59+550	61+827				1.7	0.430	-	0.430	
Forlimpopoli	61+827	63+214					1.6	0.405	-	0.405
Forlì	63+214	68+767							1.5	0.380
	68+767	69+518				1.3	0.316	-	0.327	
	69+518	70+300				1.7	0.413	-	0.413	
Ravenna	70+300	73+740				1.3	0.316	0.298	0.327	
	73+740	76+700		(6)		1.7	0.413	0.298	0.413	
	76+700	81+080	0.243	(C)	0.327	1.3	0.316	0.298	0.327	
Russi	81+080	81+704		S=1.346		1.3	0.316	0.298	0.327	
Ravenna	81+704	82+980				1.3	0.316	0.298	0.327	
	82+980	84+000				1.3	0.316	0.298	0.327	
Ducci	84+000	84+900				1.8	0.437	0.298	0.437	
Russi	84+900	86+000		(D)		1.8	0.416	0.298	0.416	
	86+000	87+287	0.231	(D)		1.3	0.300	0.298	0.361	
Ravenna	87+287	90+780		S=1.561		1.3	0.300	0.298	0.361	
	90+780	91+000			0.361	1.4	0.323	0.242	0.361	
D	91+000	92+523	0 224	(D)		1.3	0.300	0.242	0.361	
Bagnacavallo	92+523	93+000	0.231	S=1.561		1.4	0.323	0.242	0.361	
	93+000	97+073				1.3	0.300	0.242	0.361	

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP RUMAN & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -	
	LOCALITA'	40.01.5.0		
	REGIONI Toscana – Emilia-Romagna	10-CI-E-80190		
	PROGETTO		Rev.	
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 148 di 176	0	

Tabella 5-60: Azione sismica di progetto individuata a valle degli studi di I, II e III livello trattati nei paragrafi precedenti.

	da	а	ag	(Classe) /	a _{g,max}		_		
Comune	[kı	m]	suolo rigido	(Classe) /	NTC 2018	Fa _{PGA}	a _{g,max} II livello	a _{g,max} RSL – III livello	$\mathbf{a}_{g,max}$
Fusignano	97+073	97+193				1.3	0.300	0.212	0.361
rusignano	97+193	101+311				1.3	0.300	0.212	0.361
Alfonsine	101+311	105+000		(0)		1.7	0.374	0.262	0.374
Lugo	105+000	107+735	0.220	(D) S=1.573	0.348	1.4	0.308	0.255	0.348
Lugo	107+735	111+780		3-1.373		1.7	0.374	0.255	0.374
Conselice	111+780	116+113	0.224	(D) S=1.573		1.7	0.381	0.248	0.381
Imola	116+113	117+538				1.7	0.381	0.318	0.381
Medicina	117+538	124+917			0.352	1.7	0.381	0.318	0.381
	124+917	127+000	0.224	(D)	0.552	1.7	0.381	0.318	0.381
Molinella	127+000	127+830	0.224	S=1.573		1.8	0.403	0.320	0.403
	127+830	134+700				1.7	0.381	0.320	0.381
Dudria	134+700	135+560				1.8	0.403	0.320	0.403
Budrio	135+560	137+698				1.7	0.372	0.320	0.372
	137+698	139+470	0.310	(C)	0.201	1.7	0.372	0.320	0.372
Minerbio	139+470	140+180	0.219	S=1.374	0.301	1.4	0.307	0.320	0.320
	140+180	140+691				1.7	0.372	0.320	0.372

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP RUMAN & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -	
	LOCALITA'			
	REGIONI Toscana – Emilia-Romagna	10-CI-E-80190		
	PROGETTO		Rev.	
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 149 di 176	0	

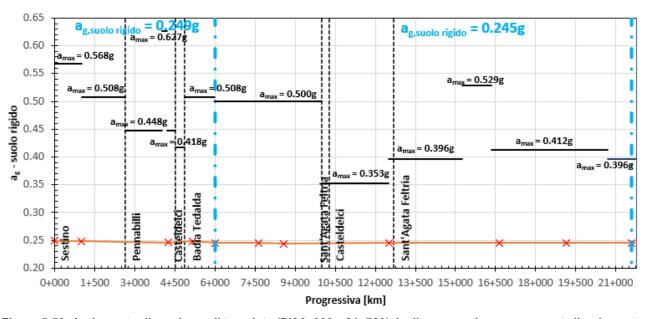


Figura 5-59: Andamento di a_{max} lungo il tracciato (PK 0+000 \div 21+780). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale. La linea azzurra la zonazione sulla base di a_g . Le aree evidenziate in giallo rappresentano le zone di attenzione per effetti locali. I tratti orizzontali neri rappresentano la a_{max} adottata per la definizione dell'azione sismica di progetto.

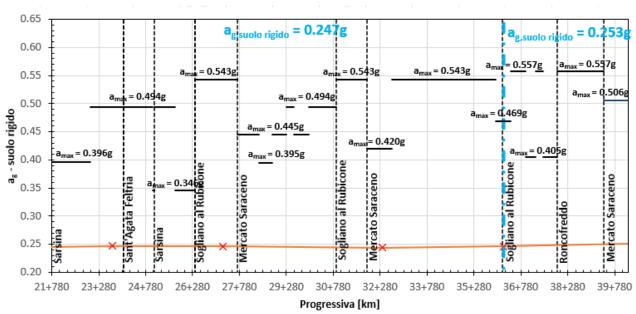


Figura 5-60: Andamento di a_{max} lungo il tracciato (PK 21+780 \div 41+201). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale. La linea azzurra la zonazione sulla base di a_g . Le aree evidenziate in giallo rappresentano le zone di attenzione per effetti locali. I tratti orizzontali neri rappresentano la a_{max} adottata per la definizione dell'azione sismica di progetto.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Luman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA'	10-CI-E-8	20190
	REGIONI Toscana – Emilia-Romagna	10-01-2-0	130
	PROGETTO		Rev.
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 150 di 176	0

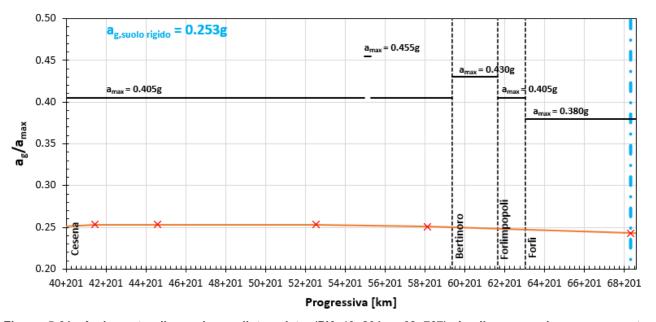


Figura 5-61: Andamento di a_{max} lungo il tracciato (PK 40+201 \div 68+767). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale. La linea azzurra la zonazione sulla base di a_g . Le aree evidenziate in giallo rappresentano le zone di attenzione per effetti locali. I tratti orizzontali neri rappresentano la a_{max} adottata per la definizione dell'azione sismica di progetto.

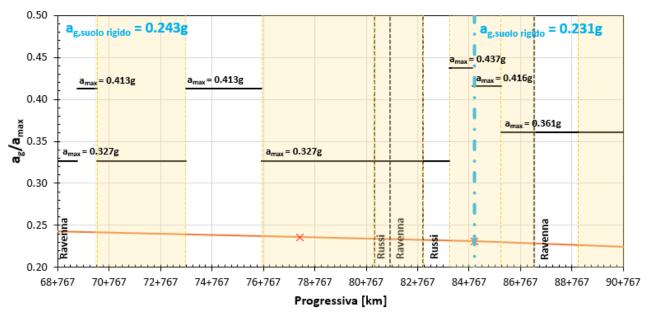


Figura 5-62: Andamento di a_g lungo il tracciato (PK 68+767 \div 90+780). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale. La linea azzurra la zonazione sulla base di a_g . Le aree evidenziate in giallo rappresentano le zone di attenzione per effetti locali. I tratti orizzontali neri rappresentano la a_{max} adottata per la definizione dell'azione sismica di progetto.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Luman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA'	40.01.5.0	0400
	REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO		Rev.
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 151 di 176	0

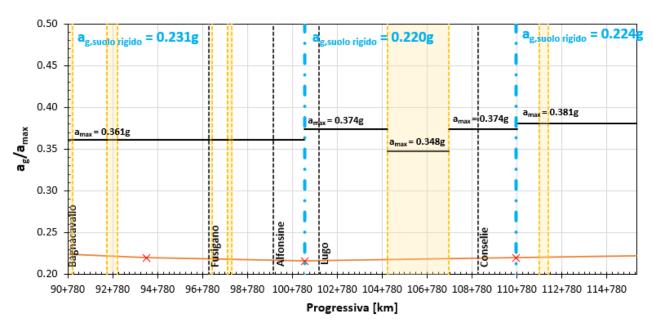


Figura 5-63: Andamento di a_g lungo il tracciato (PK 90+780 ÷ 116+113). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale, la linea azzurra la zonazione sulla base di a_g . Le aree evidenziate in giallo rappresentano le zone di attenzione per effetti locali. I tratti orizzontali neri rappresentano la $a_{g,max}$ adottata per la definizione dell'azione sismica di progetto.

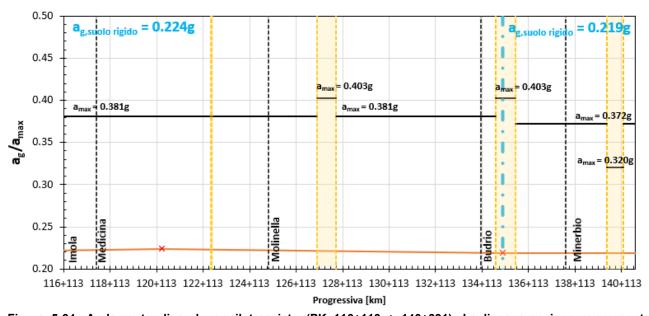


Figura 5-64: Andamento di a_g lungo il tracciato (PK 116+113 \div 140+691). La linea arancione rappresenta l'andamento di a_g in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale. La linea azzurra la zonazione sulla base di a_g . Le aree evidenziate in giallo rappresentano le zone di attenzione per effetti locali. I tratti orizzontali neri rappresentano la a_{max} adottata per la definizione dell'azione sismica di progetto.

snam	PROGETTISTA TECHNIP TECHNIP TECHNIP Numan & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -	
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190		
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 152 di 176	Rev.	

6 DEFINIZIONE DELLA MAGNITUDO DI RIFERIMENTO PER VERIFICHE A LIQUEFAZIONE

Il valore di magnitudo necessario per la valutazione della pericolosità a liquefazione viene qui determinato tenendo conto di quattro differenti fonti di dati, ossia:

- a) L'analisi di disaggregazione dei valori di pericolosità sismica (accelerazione su suolo rigido orizzontale) di cui alle NTC2018/2008, fornita quale elaborazione aggiuntiva direttamente dal progetto INGV-DPC S1, per un periodo di ritorno pari a 975 anni.
- b) Analisi dei dati di magnitudo da terremoti storici con risentimenti ai siti di progetto caratterizzati da una intensità I al sito maggiore di 6 MCS, derivati dal database delle osservazioni macrosismiche DBMI15 (Locati et al. 2022).
- c) Magnitudo attesa per un periodo di ritorno pari almeno a 975 anni valutata sulla base del modello delle zone sismogenetiche ZS9 (riportato in Figura 1), alla base delle mappe di pericolosità sismica del territorio italiano allegate alle NTC2018/2008 e distribuzione dei valori di magnitudo associati ai massimi terremoti storici.
- d) Magnitudo associata alle singole sorgenti sismogenetiche più prossime al sito di progetto, derivata dalle informazioni contenute nel database DISS 3.3.0 (DISS wkgp, 2021).

A riguardo del punto a), in Figura 6-1 si indicano i punti per i quali è stata desunto dai dati di progetto S1 INGV il dato di disaggregazione per TR = 975 anni mostrato da Figura 6-2 a Figura 6-6, dove viene indicato altresì il nodo di griglia di valori di pericolosità di riferimento. Si osserva come prevalgano generalmente magnitudo tra 5.5 e 6, con distanze inferiori ai 20 km dal sito.

L'analisi dei terremoti storici Tabella 6-1 è stata condotta per alcuni dei comuni attraversati dal tracciato ossia Ravenna, Cesena, Forlimpopoli, Rimini e Forlì. Il dato riportato e estratto dal database DBMI15, che include dati fino al 2020, a comprendere la serie di terremoti dell'Emilia del 2012. L'analisi mostra come risentimenti significativi ai siti (in termini di dato macrosismico) siano da far risalire:

- Per il tratto compreso tra Sestino e Cesena (sino a circa pk. 60+000) a eventi con magnitudo massime comprese tra 5.5 e 6.51
- Per il tratto compreso tra Bertinoro e Minerbio (da pk. 60+000) a eventi con magnitudo massime comprese tra 5.5 e 5.7-6.05.

Il modello a zone di ZS9, seppur datato, è alla base del dato di pericolosità sismica di NTC2018/2008. Figura 6-7 mostra il tracciato del metanodotto all'interno del modello a zone ZS9. I valori di magnitudo massima degli eventi aventi epicentro all'interno delle aree sismogenetiche

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 153 di 176	Rev. 0

dell'Appennino Settentrionale e Centrale attraversate dall'infrastruttura (ovvero 912, 914 e 918) sono compresi:

- Zona 918 Questa fascia che continua a Nord verso Parma con le zone 913 e 914 è
 caratterizzata da terremoti storici di magnitudo elevate. La magnitudo massima associata è
 6.37;
- Zona 914 (Forlivese) La zona 914 insieme alle 913 e 918 sono il risultato della scomposizione della fascia che da Parma si estende sino all'Abruzzo. rappresenta la porzione più esterna della compressione dell'arco appennino settentrionale. La magnitudo massima registrata è M=5.91.
- Zona 912 La zona 912 rappresenta la porzione più esterna della compressione dell'arco appennino settentrionale. La profondità degli ipocentri è prevalentemente compresa tra 5 e 15 km; la magnitudo massima registrata è M=6.1.

Il database delle sorgenti sismogenetiche DISS 3.3.0 è stato incluso nella presente analisi facendo riferimento alle cosiddette sorgenti individuali. In Figura 6-8 viene mostrato il tracciato dell'infrastruttura rapportato alle sorgenti più prossime, incluse quelle offshore.

Sulla base dell'analisi sopra descritta, è stato considerato ragionevole assumere per il tracciato di progetto un valore di magnitudo di riferimento da adottare nelle verifiche a liquefazione pari a:

- 6.5 per il tratto compreso tra pk. 0+000 e 50+000km;
- 6 per il tratto compreso tra pk 50.000 e 140+691km.

COOM	PROGETTISTA TECHNIP ENERGIES TECHNIP RUMAN & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam V/	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 154 di 176	Rev.

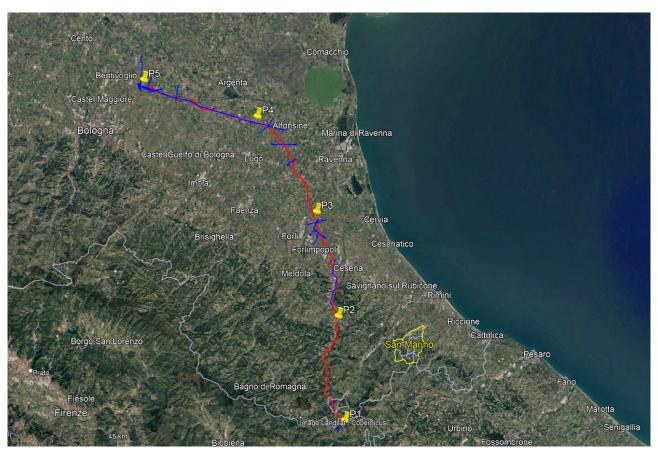


Figura 6-1: Punti di riferimento scelti per la disaggregazione del valore di pericolosità sismica.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP FOR TECHNIP Ruman & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 155 di 176	Rev.

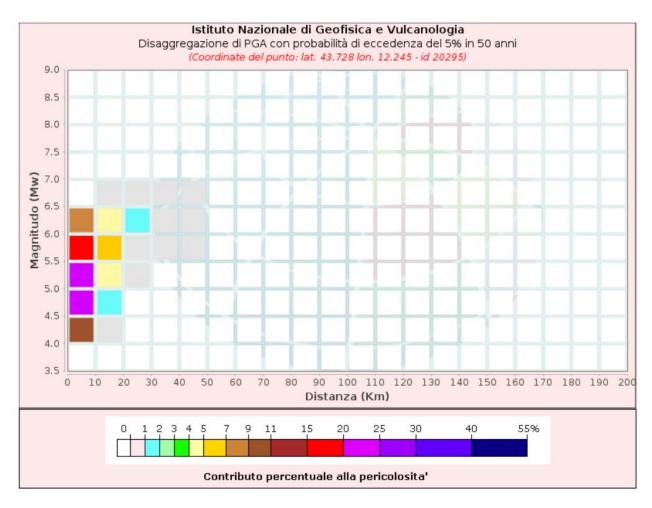


Figura 6-2: Punto P1 (Figura 6-1) – Disaggregazione del valore di pericolosità sismica di base NTC2018 per T_R = 975 anni (punto di griglia N. 20295). Da elaborazioni del progetto S1 (Meletti et al., 2007). Valori medi: Magnitudo 5.3, Distanza 6.83 Km)

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP FUND 15 TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA'	10-CI-E-8	0190
	REGIONI Toscana – Emilia-Romagna	10 01 2 0	.0100
	PROGETTO		Rev.
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 156 di 176	0

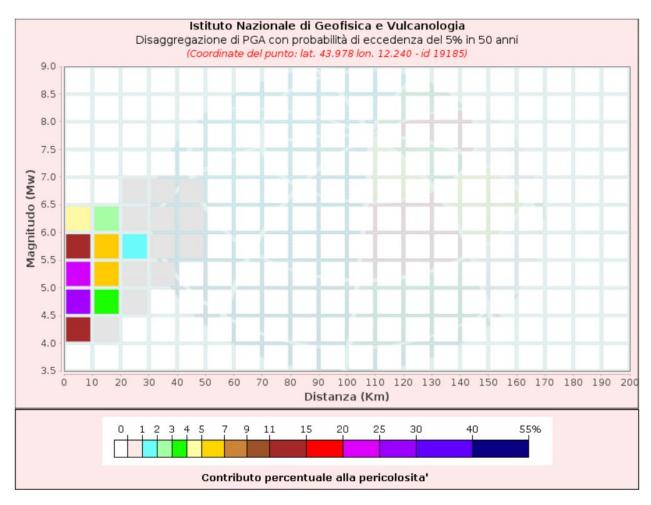


Figura 6-3: Punto P2 (Figura 6-1) – Disaggregazione del valore di pericolosità sismica di base NTC2018 per T_R = 975 anni (punto di griglia N. 19185). Da elaborazioni del progetto S1 (Meletti et al., 2007). Valori medi: Magnitudo 5.15, Distanza 6.95 Km)

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildiff	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 157 di 176	Rev.

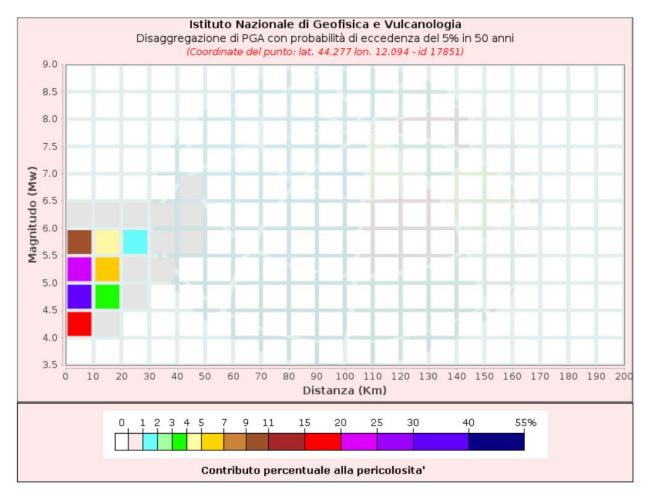


Figura 6-4: Punto P3 (Figura 6-1) – Disaggregazione del valore di pericolosità sismica di base NTC2018 per T_R = 975 anni (punto di griglia N. 17851). Da elaborazioni del progetto S1 (Meletti et al., 2007). Valori medi: Magnitudo 4.99, Distanza 6.21 Km)

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP FUND 15 TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA'	10-CI-E-80190	
	REGIONI Toscana – Emilia-Romagna		
	PROGETTO		Rev.
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 158 di 176	0

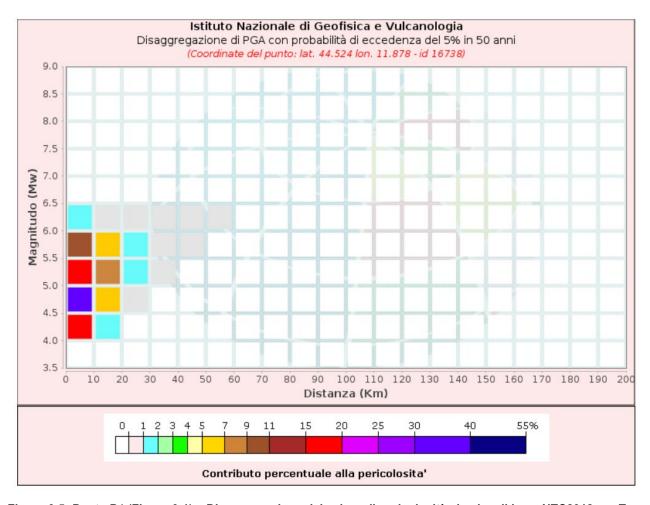


Figura 6-5: Punto P4 (Figura 6-1) – Disaggregazione del valore di pericolosità sismica di base NTC2018 per T_R = 975 anni (punto di griglia N. 16738). Da elaborazioni del progetto S1 (Meletti et al., 2007). Valori medi: Magnitudo 5.03, Distanza 7.49 Km)

snam	PROGETTISTA TECHNIP ENERGIES (F) techfem Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 159 di 176	Rev.

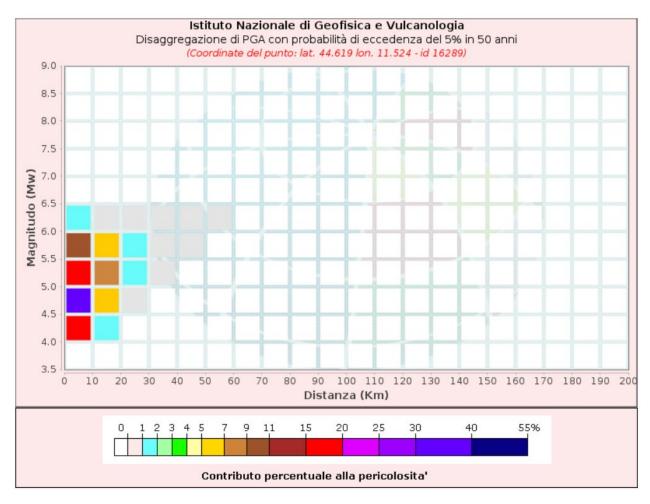
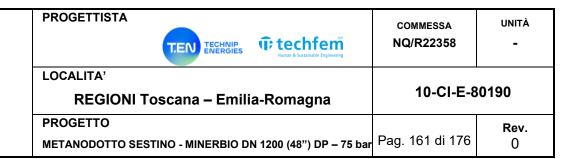


Figura 6-6: Punto P5 (Figura 6-1) – Disaggregazione del valore di pericolosità sismica di base NTC2018 per T_R = 975 anni (punto di griglia N. 16289). Da elaborazioni del progetto S1 (Meletti et al., 2007). Valori medi: Magnitudo 5.02, Distanza 7.51 Km)

snam	PROGETTISTA TECHNIP TECHNIP RUMAN & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildili	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 160 di 176	Rev. 0

Tabella 6-1: Terremoti registrati con intensità al sito maggiore o uguale a 6 MCS (da DBMI15) nei comuni attraversati dall'infrastruttura.

Sestino					
Intensità al sito	Anno	Mese	Giorno	Area epicentrale	Magnitudo
				Appennino	
6-7	1918	11	10	forlivese	5.96
6-7	1919	06	29	Mugello	6.38
7-8	1781	03	03	Cagliese	6.51


Pennabilli					
Intensità al sito	Anno	Mese	Giorno	Area epicentrale	Magnitudo
6	1987	07	05	Montefeltro	4.44
7	1919	06	29	Mugello	6.38
7	1781	03	03	Cagliese	6.51

	Casteldelci						
Intensità al sito	Anno	Mese	Giorno	Area epicentrale	Magnitudo		
				Appennino			
6	1918	11	10	forlivese	5.96		
6	1948	06	13	Alta Valtiberina	5.04		
6	1987	07	05	Montefeltro	4.44		
6-7	1919	06	29	Mugello	6.38		

Badia Tedalda					
Intensità al sito	Anno	Mese	Giorno	Area epicentrale	Magnitudo
6	1917	04	26	Alta Valtiberina	5.99
				Appennino	
6	1918	11	10	forlivese	5.96
6	1919	10	25	Alta Valtiberina	5.03
6-7	1919	06	29	Mugello	6.38
7-8	1781	03	03	Cagliese	6.51

Badia Tedalda					
Intensità al sito	Anno	Mese	Giorno	Area epicentrale	Magnitudo
				Marche	
6	1897	09	21	settentrionali	5.40
6	1911	02	19	Forlivese	5.26
6-7	1919	06	29	Mugello	6.38
7	1781	03	03	Cagliese	6.51

Sogliano al Rubicone								
Intensità al sito	Anno	Mese	Giorno	Area epicentrale	Magnitudo			
6	1916	08	16	Riminese	5.82			
6-7	1919	06	29	Mugello	6.38			

Mercato Saraceno									
Intensità al sito	Anno	Mese	Giorno	Area epicentrale	Magnitudo				
	Forlivese	5.26							
6-7	1919	06	29	Mugello	6.38				
				Appennino					
7-8	1661	03	22	forlivese	6.05				
				Appennino					
7-8	1918	11	10	forlivese	5.96				

Roncofreddo								
Intensità al sito	Anno	Mese	Giorno	Area epicentrale	Magnitudo			
6	1786	12	25	Riminese	5.66			
7	1916	08	16	Riminese	5.82			
7	1919	06	29	Mugello	6.38			

	Cesena								
Intensità al sito	Anno	Mese	Giorno	Area epicentrale	Magnitudo				
6-7	1194			Galeata	4.86				
6-7	1653	8	15	Romagna	4.4				
6-7	1786	12	25	Riminese	5.66				
6-7	1813	9	21	Romagna	5.28				
6-7	1861	10	16	Romagna	5.13				
				Costa					
6-7	1875	3	17	romagnola	5.74				
7	1428	07	03	Forlivese	5.47				
				Appennino					
7	1661	03	22	forlivese	6.05				
7	1870	10	30	Forlivese	5.61				
7	1881	09	28	Cesena	4.71				
7	1911	02	19	Forlivese	5.26				
8	1483	08	11	Romagna	5.69				

	Forlimpopoli									
Intensità al sito	Anno	Mese	Giorno	Area epicentrale	Magnitudo					
6	1911	02	19	Forlivese	5.26					
6	1916	05	17	Riminese	5.82					
				Appennino						
6-7	1661	3	22	forlivese	6.05					
6-7	1861	10	16	Romagna	5.13					
7	1870	10	30	Forlivese	5.61					

Forlì								
				Area				
Intensità al sito	Anno	Mese	Giorno	epicentrale	Magnitudo			
7-8	1383	8	4	Forlì	5.33			
7-8	1483	8	11	Romagna	5.69			
7-8	1688	4	11	Romagna	5.84			

PROGETTISTA TEN TECHNIP PROGETS THE COMMESSA NQ/R22358 LOCALITA' REGIONI Toscana – Emilia-Romagna PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP – 75 bar COMMESSA NQ/R22358 10-CI-E-80190 Rev. Pag. 162 di 176 0

6-7	1279	4	30	Appennino forlivese	5.52
6-7	1492	1		Forlì	4.86
6-7	1591	7	10	Romagna	5.13
6-7	1778	6	11	Forlì	4.4
6-7	1813	9	21	Romagna	5.28
6-7	1844	3	10	Forlivese	4.4

	Ravenna								
Intensità al sito	Anno	Mese	Giorno	Area epicentrale	Magnitudo				
7-8	1620	6	22	Ravennate	4.86				
6-7	1483	8	11	Romagna	5.69				
6-7	1870	10	30	Forlivese	5.61				
6-7	1861	10	16	Romagna	5.13				
6-7	1780	5	25	Romagna	4.4				
7	1688	4	11	Romagna	5.84				
7	1781	7	17	Faentino	5.61				
7-8	1620	6	22	Ravennate	4.86				

Fusignano								
Intensità al sito	Anno	Mese	Giorno	Area epicentrale	Magnitudo			
6	1688	4	11	Romagna	5.84			
				Emilia				
				Romagna				
6	1967	12	30	orientale	5.05			

	Medicina								
Intensità al sito	Anno	Mese	Giorno	Area epicentrale	Magnitudo				
6	1688	4	11	Romagna	5.84				
6	1779	6	04	Bolognese	5.22				
				Emilia					
				Romagna					
7	1796	10	22	orientale	5.45				

	Budrio							
Intensità al sito	Anno	Mese	Giorno	Area epicentrale	Magnitudo			
				Emilia				
				Romagna				
6	1909	01	13	orientale	5.36			

Minerbio								
Intensità al sito	Anno	Mese	Giorno	Area epicentrale	Magnitudo			
<6								

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP FUNE AS Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildill	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 163 di 176	Rev.

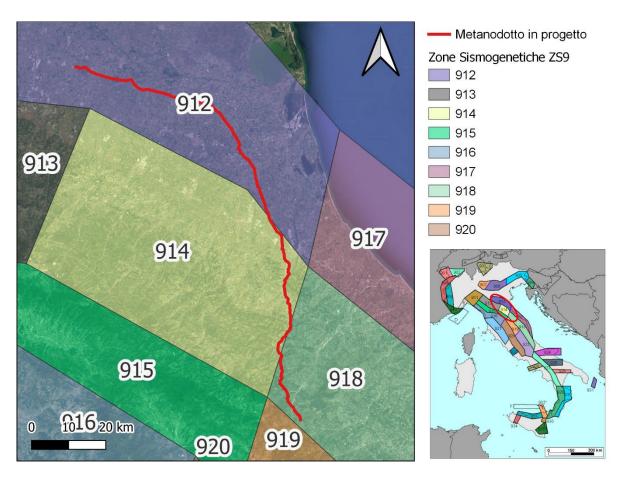


Figura 6-7: Collocazione delle opere in progetto (linea rossa) rispetto alla zonazione sismogenetica ZS9 (INGV).

snam	PROGETTISTA TECHNIP TECHNIP Numan & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildill	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 164 di 176	Rev .

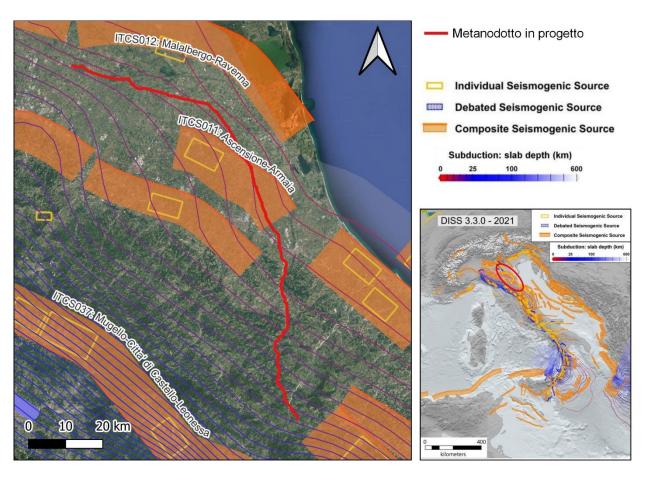


Figura 6-8: Collocazione delle opere in progetto (linea rossa) rispetto alle sorgenti sismogeniche individuali definite in DISS 3.3.0.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP FUNCTION OF TECHNIP HUMAN & SUSTAINABLE Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildill	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 165 di 176	Rev. 0

APPENDICE A - DATI DI INPUT E METODO DI ANALISI DI RISPOSTA SISMICA LOCALE (RSL)

A.1 METODO DI ANALISI

Le analisi di risposta sismica locale, previste nel par. 3.2.2 delle NTC2018, sono simulazioni numeriche della propagazione delle onde nei depositi di terreno presenti al sito. Esse mirano a calcolare, a partire dall'input di accelerazione alla base di modello, lo scuotimento (risposta) in superficie e a diverse profondità in forma di segnale in accelerazione e conseguente spettro di risposta. Pertanto, tali analisi permettono di stimare i fattori di amplificazione del moto legati alla presenza dei depositi, oltre agli sforzi e deformazioni (di taglio) che il passaggio delle onde sismiche induce nel terreno investigato.

Giocano in tale stima quattro fonti di variabilità, ossia:

- La definizione dell'input sismico a livello di substrato (bedrock).
- La definizione del profilo locale di velocità di propagazione delle onde di taglio, allungato dove possibile fino al substrato rigido e sua variabilità, trattata nel par. A.2 (e meglio specificata nel corpo principale della relazione per i diversi tratti analizzati).
- La descrizione delle proprietà non lineari del terreno in campo dinamico, trattata nel Cap. A.3.
- La modellazione del comportamento del terreno nell' analisi di propagazione (Idriss, 2004).
- La scelta di un trattamento lineare equivalente (LEQ) delle non linearità del terreno è giustificata dai valori di accelerazione di base su suolo rigido in gioco e confermata dai valori di deformazione a taglio ciclico osservati nelle analisi effettuate.

I calcoli di propagazione 1D sono stati effettuati con il programma STRATA (Kottke and Rathje 2008) usando come input accelerogrammi definiti al bedrock affiorante, distribuiti in allegato DPRG della regione Emilia-Romagna sulla piattaforma WebGIS realizzata da EUCENTRE oppure selezionati mediante il software SCALCONA-3.0 che consente di ottenere un set di 7 accelerogrammi naturali registrati su roccia affiorante (categoria di terreno A secondo le NTC,2018) e soddisfacenti al requisito della spettro-compatibilità allo spettro di risposta di normativa (NTC,2018) per un qualsiasi sito ricadente all'interno della Regione Toscana per il periodo di ritorno di interesse (cfr.[15]). La procedura di de-convoluzione dal bedrock affiorante (dove sono stati registrati gli accelerogrammi) alla base del profilo di terreno è eseguita automaticamente dal programma STRATA. La variabilità del input sismico è stata presa in considerazione, effettuando 7 analisi di RSL con diversi accelerogrammi di input (cfr. corpo della relazione).

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildill	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 166 di 176	Rev. 0

A.2 PROFILI DI VS DI RIFERIMENTO

I profili di velocità delle onde di taglio sono descritti nel corpo principale della relazione. Si osserva qui come il bedrock sismico, non individuato dalle indagini condotte all'interno delle profondità indagate (spinte fino alla profondità di circa 30m dal piano campagna), venga valutato sulla base dello studio della documentazione geologica disponibile sul portale della regione. La profondità del bedrock risulta variabile lungo il tracciato, in particolare tra i 200 e 300 m da piano campagna per il tratto in pianura, mentre risulta molto più superficiale (in alcuni punti affiorante) nei tratti di fondovalle e in cresta.

Nelle analisi, al bedrock sismico è stato assegnato un valore di riferimento compreso tra $V_S = 600-800$ m/s circa ed un valore di smorzamento rispetto al valore critico pari all'1%.

A.3 CURVE DI DEGRADO DEL MODULO DI TAGLIO E SMORZAMENTO

Nelle analisi di risposta sismica locale di tipo "standard" quali quelle in esame, dove le deformazioni cicliche indotte dal sisma rimangono ragionevolmente limitate (<1%) e il metodo di analisi è il cosiddetto lineare equivalente, le proprietà dinamiche dei terreni con maggiore influenza sui risultati, oltre al valore di velocità di propagazione delle onde di taglio in sito, sono costituite dalle cosiddette curve sperimentali di degrado, atte a descrivere la dipendenza non lineare del modulo di taglio normalizzato G/Gmax e del fattore di smorzamento intrinseco del terreno in funzione dell'ampiezza di deformazione ciclica a taglio g.

Nel caso in esame, per descrivere le curve di degrado del modulo a taglio dei materiali incontrati lungo la tratta si è fatto riferimento a curve di letteratura (EPRI, 93, Doc. Ref. [8] e Idriss IM, 90, Doc. Ref. [2]) già implementate nel programma *STRATA* (cfr. Figura A.1 e Figura A.2). E' stata inoltre utilizzata una curva denominata "Weathered rock" per il modulo di taglio e per definire lo smorzamento, riportata in Figura A.1 e Figura A.2. Le assegnazioni tra materiale e curve è presentata nei capitoli dedicati alle analisi di risposta sismica locale nel corpo della relazione, in particolare cfr.5.5.2.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP LUMB & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
Sildill	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 167 di 176	Rev. 0

Figura A.1: Curve di degrado del modulo di taglio.

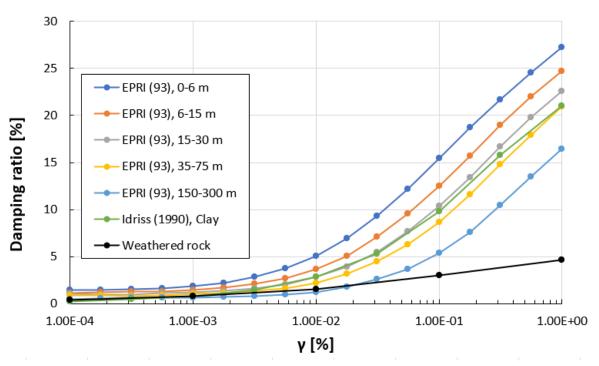


Figura A.2: Curva di smorzamento in funzione della deformazione a taglio ciclica.

Spam	PROGETTISTA TECHNIP TECHNIP RUBBIG TECHNIP RUBBIG Sostaliable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam //	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 168 di 176	Rev. 0

A.4 SCELTA DEGLI ACCELEROGRAMMI E TRATTAMENTO

L'input sismico utilizzato è acquisito dal nodo del reticolo di riferimento considerato dalla NTC08 (D.M. 14.01.2008) ed NTC18 (D.M. 17.01.2018). L'input sismico è espresso mediante un set di 7 accelerogrammi reali, registrati su sito rigido, spettro-compatibili in media agli spettri di normativa definiti nelle NTC08 e con un periodo di ritorno di 975 anni. Gli accelerogrammi di input sono stati ottenuti secondo la procedura descritta in cfr. [14] dal portale WebGIS reso disponibile da EUCENTRE per la Regione Emilia-Romagna, oppure ottenuti mediante il software SCALCONA-3.0 per i punti ricadenti all'interno dei confini della Regione Toscana secondo quanto indicato nelle specifiche tecniche regionali di cui alla Del. GRT n. 977 del 27 Settembre 2021 [15].

Da Tabella A.1 a Tabella A.7 sono riportati i dati degli accelerogrammi utilizzati rispettivamente per la RSL km 1+000, km 4+200, km 5+000 \div 5+360, km 6+168, km 8+560, km 70+300 \div 90+767, RSL km 116+113 \div 124+000, RSL km 124+000 \div 140+69.

Da Figura A.3 a Figura A.9 viene mostrata media e scarto degli spettri degli accelerogrammi selezionati e confrontati con lo spettro NTC su suolo rigido (cat. A) rispettivamente per la RSL km 1+000, km 4+200, km $5+000 \div 5+360$, km 6+168, km 8+560, km $70+300 \div 90+767$, RSL km $116+113 \div 124+000$, RSL km $124+000 \div 140+69$.

Tabella A.1: Dati del set di accelerogrammi rappresentativi selezionato (km 1+000).

ID registrazione	Sorgente	Mw	R _{epi} (km)	Fattore scala (%)	Classe sito NTC2018
EU.HRZHNE.D.19790524.172317.C.ACC.ASC	ESM	6.2	29.90	2.66	А
RSN146_COYOTELK_G01320.AT2	NGA-West2	5.74	12.57	2.83	А
RSN804_LOMAP_SSF115.AT2	NGA-West2	6.93	83.53	4.57	А
RSN797_LOMAP_RIN090.AT2	NGA	6.93	94.31	2.8	Α
SMNH100010061330.EW2	KiK-net	6.6	31.00	0.93	А
IT.LRSHNE.D.19980909.112800.C.ACC.ASC	ESM	5.6	18.00	1.63	А
IT.AQPHNN.D.20090409.005259.C.ACC.ASC	ESM	5.2	11.80	3.68	А

Spam	PROGETTISTA TECHNIP TECHNIP RUBBIS TECHNIP RUBBIS Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 169 di 176	Rev. 0

Tabella A.2: Dati del set di accelerogrammi rappresentativi selezionato (km 4+200 e km 5+000 ÷ 5+360).

ID registrazione	Sorgente	Mw	R _{epi} (km)	Fattore scala (%)	Classe sito NTC2018
EU.HRZHNE.D.19790524.172317.C.ACC.ASC	ESM	6.2	29.9	2.66	Α
RSN146_COYOTELK_G01320.AT2	NGA-West2	5.74	12.57	2.82	Α
RSN804_LOMAP_SSF115.AT2	NGA-West2	6.93	83.53	4.56	А
IT.LRSHNE.D.19980909.112800.C.ACC.ASC	ESM	5.6	18	1.63	Α
SMNH100010061330.EW2	KiK-net	6.6	31	0.93	А
RSN797_LOMAP_RIN090.AT2	NGA-West2	6.93	94.31	2.79	А
IT.AQPHNN.D.20090409.005259.C.ACC.ASC	ESM	5.2	11.8	3.67	А

Tabella A.3: Dati del set di accelerogrammi rappresentativi selezionato (km 6+168).

ID registrazione	Sorgente	Mw	R _{epi} (km)	Fattore scala (%)	Classe sito NTC2018
EU.HRZHNE.D.19790524.172317.C.ACC.ASC	ESM	6.2	29.9	2.66	Α
RSN146_COYOTELK_G01320.AT2	NGA-West2	5.74	12.57	2.82	Α
RSN804_LOMAP_SSF115.AT2	NGA-West2	6.93	83.53	4.56	Α
IT.LRSHNE.D.19980909.112800.C.ACC.ASC	ESM	5.6	18	1.63	Α
SMNH100010061330.EW2	KiK-net	6.6	31	0.93	Α
RSN797_LOMAP_RIN090.AT2	NGA	6.93	94.31	2.79	Α
IT.AQPHNN.D.20090409.005259.C.ACC.ASC	ESM	5.2	11.8	3.67	Α

COOM	PROGETTISTA TECHNIP TECHNIP Numa 8 Sustanable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam //	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E8	0190
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 170 di 176	Rev. 0

Tabella A.4: Dati del set di accelerogrammi rappresentativi selezionato (km 8+560).

ID registrazione	Sorgente	M _W	R _{epi} (km)	Fattore scala (%)	Classe sito NTC2018
EU.HRZHNE.D.19790524.172317.C.ACC.ASC	ESM	6.2	29.9	2.66	Α
RSN146_COYOTELK_G01320.AT2	NGA-West2	5.74	12.57	2.82	Α
RSN804_LOMAP_SSF115.AT2	NGA-West2	6.93	83.53	4.56	Α
SMNH100010061330.EW2	Kik-net	6.6	31	0.93	Α
IT.AQPHNN.D.20090409.005259.C.ACC.ASC	ESM	5.2	11.8	3.67	Α
RSN797_LOMAP_RIN090.AT2	NGA	6.93	94.31	2.8	Α
IT.LRSHNE.D.19980909.112800.C.ACC.ASC	ESM	5.6	18	1.63	Α

Tabella A.5: Dati del set di accelerogrammi rappresentativi selezionato (km 70+300 ÷ 90+767, ID punto 17407).

ID registrazione	Sorgente	Mw	R _{epi} (km)	Fattore scala (%)	Classe sito NTC2018
EU.HRZHNE.D.19790524.172317.C.ACC.ASC	ESM	6.2	29.9	3.1	Α
RSN146_COYOTELK_G01320.AT2	NGA	5.74	12.57	2.04	А
RSN804_LOMAP_SSF205.AT2	NGA	6.93	83.53	2.25	А
RSN1091_NORTHR_VAS090.AT2	NGA	6.69	38.07	1.71	А
SMNH100010061330.EW2	KiKnet	6.6	31	0.96	А
SAGH010503201053.NS2	KiKnet	6.6	37	1.84	А
IT.AQPHNE.D.20090407.174737.C.ACC.ASC	ESM	5.5	13.2	2.53	А

Spam	PROGETTISTA TECHNIP ENERGIES TECHNIP LUMBA & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam V/	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP – 75 bar	Pag. 171 di 176	Rev. 0

Tabella A.6: Dati del set di accelerogrammi rappresentativi selezionato (km 116+113 ÷ 124+000, ID punto 16514).

ID registrazione	Sorgente	Mw	R _{epi} (km)	Fattore scala (%)	Classe sito NTC2018
EU.HRZHNE.D.19790524.172317.C.ACC.ASC	ESM	6.2	29.9	2.9	А
RSN146_COYOTELK_G01320.AT2	NGA	5.74	12.57	1.91	Α
RSN804_LOMAP_SSF205.AT2	NGA	6.93	83.53	2.11	А
RSN1091_NORTHR_VAS090.AT2	NGA	6.69	38.07	1.6	А
SMNH100010061330.EW2	KiKnet	6.6	31	0.9	А
SAGH010503201053.NS2	KiKnet	6.6	37	1.72	А
IT.AQPHNE.D.20090407.174737.C.ACC.ASC	ESM	5.5	13.2	2.36	А

Tabella A.7: Dati del set di accelerogrammi rappresentativi selezionato (km 124+000 ÷ 140+691, ID punto 16290).

ID registrazione	Sorgente	Mw	R _{epi} (km)	Fattore scala (%)	Classe sito NTC2018
EU.HRZHNE.D.19790524.172317.C.ACC.ASC	ESM	6.2	29.9	2.86	Α
RSN146_COYOTELK_G01320.AT2	NGA	5.74	12.57	1.88	Α
RSN804_LOMAP_SSF205.AT2	NGA	6.93	83.53	2.08	Α
RSN1091_NORTHR_VAS090.AT2	NGA	6.69	38.07	1.58	А
SMNH100010061330.EW2	KiKnet	6.6	31	0.88	Α
SAGH010503201053.NS2	KiKnet	6.6	37	1.7	А
IT.AQPHNE.D.20090407.174737.C.ACC.ASC	ESM	5.5	13.2	2.33	Α

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP ENERGIES TECHNIP ENERGIES	COMMESSA NQ/R22358	UNITÀ -	
	LOCALITA'	10-CI-E-80190		
	REGIONI Toscana – Emilia-Romagna	10-01-2-00190		
	PROGETTO		Rev.	
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 172 di 176	0	

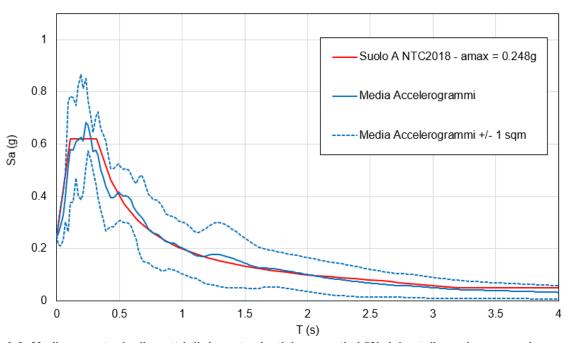


Figura A.3: Media e scarto degli spettri di risposta elastici smorzati al 5% del set di accelerogrammi, a confronto con lo spettro elastico NTC2008 per a_g = 0.248g (pk 1+000) su suolo di tipo A.

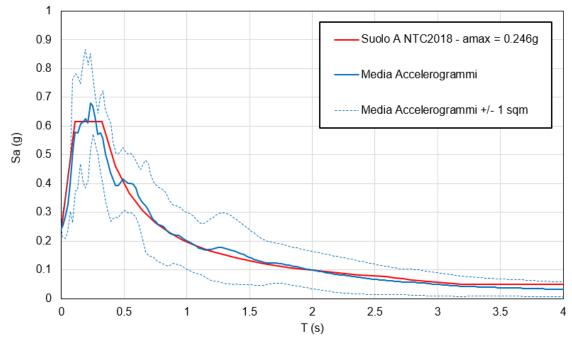


Figura A.4: Media e scarto degli spettri di risposta elastici smorzati al 5% del set di accelerogrammi, a confronto con lo spettro elastico NTC2008 per a_g = 0.248g (pk 4+200 e tratto da pk 5+000 a pk 5+360) su suolo di tipo A.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP ENERGIES TECHNIP ENERGIES TECHNIP ENERGIES	COMMESSA NQ/R22358	UNITÀ -
Sildill	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 173 di 176	Rev.

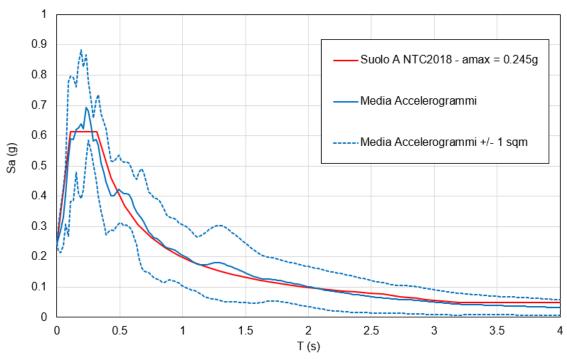


Figura A.5: Media e scarto degli spettri di risposta elastici smorzati al 5% del set di accelerogrammi, a confronto con lo spettro elastico NTC2008 per $a_g = 0.245g$ (tratto da pk 6+168) su suolo di tipo A.

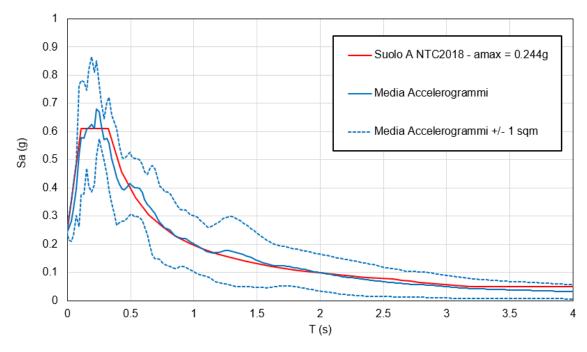


Figura A.6: Media e scarto degli spettri di risposta elastici smorzati al 5% del set di accelerogrammi, a confronto con lo spettro elastico NTC2008 per $a_g = 0.244g$ (tratto da pk 8+560) su suolo di tipo A.

snam	PROGETTISTA TECHNIP ENERGIES TECHNIP ENERGIES TECHNIP TECHN	COMMESSA NQ/R22358	UNITÀ -	
	LOCALITA'	40.01.5.0	2422	
	REGIONI Toscana – Emilia-Romagna	10-CI-E-80190		
	PROGETTO		Rev.	
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 174 di 176	0	

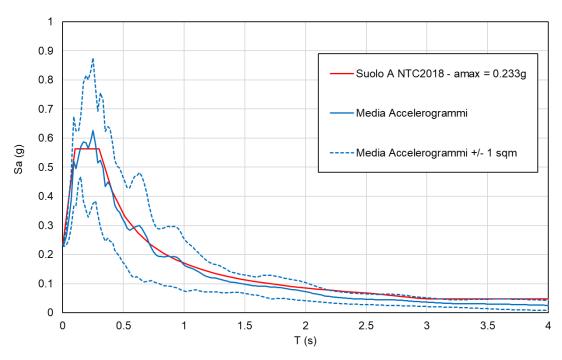


Figura A.7: Media e scarto degli spettri di risposta elastici smorzati al 5% del set di accelerogrammi, a confronto con lo spettro elastico NTC2008 per a_g = 0.233g (tratto da pk 70+300 a pk 90+767) su suolo di tipo A.

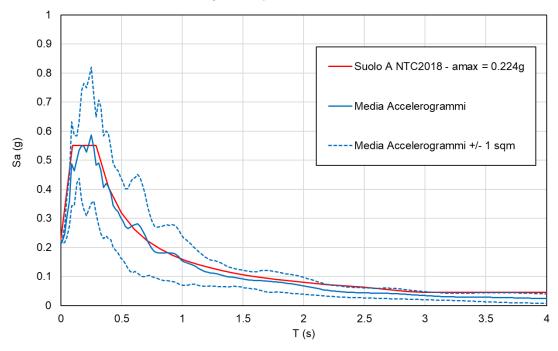


Figura A.8: Media e scarto degli spettri di risposta elastici smorzati al 5% del set di accelerogrammi, a confronto con lo spettro elastico NTC2008 per a_g = 0.224g (tratto da km 116+113 a km 124+000) su suolo di tipo A.

snam	PROGETTISTA TEN TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA UNIT. NQ/R22358 -	
	LOCALITA'	10-CI-E-80190	
	REGIONI Toscana – Emilia-Romagna		
	PROGETTO		Rev.
	METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 175 di 176	0

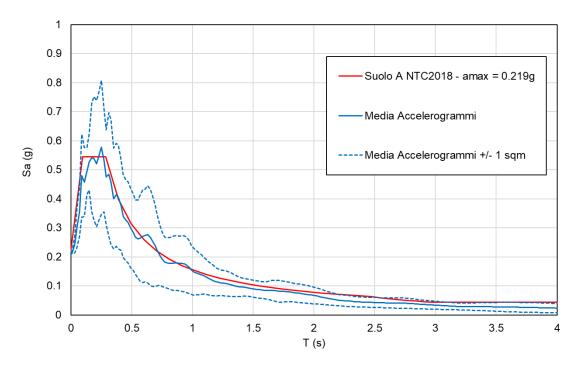


Figura A.9: Media e scarto degli spettri di risposta elastici smorzati al 5% del set di accelerogrammi, a confronto con lo spettro elastico NTC2008 per $a_g = 0.219g$ (tratto da km 124+000 a km 140+691) su suolo di tipo A.

COOM	PROGETTISTA TECHNIP ENERGIES TECHNIP Human & Sustainable Engineering	COMMESSA NQ/R22358	UNITÀ -
snam	LOCALITA' REGIONI Toscana – Emilia-Romagna	10-CI-E-80190	
	PROGETTO METANODOTTO SESTINO - MINERBIO DN 1200 (48") DP - 75 bar	Pag. 176 di 176	Rev. 0

A.5 BIBLIOGRAFIA

- [1] Abrahamson N.A. (1992) "Non-stationary spectral matching," Seismological Research Letters, Vol. 63, No. 1, p. 30.
- [2] Idriss IM (1990) Response of soft soil sites during earthquakes. In: Duncan JM (ed) Proceedings in H. Bolton seed memorial symposium, vol 2, pp 273–290.
- [3] Hancock J., Watson-Lamprey J., Abrahamson N.A., Bommer J.J., Markatis A., McCoy E., Mendis R. (2006) "An improved method of matching response spectra of recorded earthquake ground motion using wavelets." Journal of Earthquake Engineering, Vol. 10 pp. 67–89.
- [4] Kottke, A. R., Wang, X. e Rathje, E. M., Strata Technical Manual, October 16, 2019.
- [5] Rollins K.M., Evans M.D., Diehl N.B., and Daily III W.D., Members, ASCE (1998). Shear Modulus and Damping Relationships for Gravels. J. Geotech. Geoenviron. Eng., 1998, 124(5): 396-405.
- [6] Seed H. B., Idriss I. M. (1970). Soil Moduli and Damping Factors for Dynamic Response Analysis. Report No. UCB/EERC-70/10, Earthquake Engineering Research Center, University of California, Berkeley, December, 48 p. (as cited in the EERA Manual, Bardet et al., 2000).
- [7] Sgobba, S., Puglia, R., Pacor F., Luzi, L., Russo, E., Felicetta, C., Lanzano, G., D'Amico, M., Baraschino, R., Baltzopoulos, G., Iervolino, I. REXELweb: a tool for selection of ground-motion records from the Engineering Strong Motion database (ESM). 7th International Conference on Earthquake Geotechnical Engineering (ICEGE) 17 20 June 2019, Roma, Italy.
- [8] Electric Power Research Institute (EPRI) (1993). Guidelines for Site Specific Ground Motions, Palo Alto, California.November.TR-102293