

Titolo progetto

"COMPLETAMENTO INTERVENTI SUL PORTO DI ORTONA"

APPROFONDIMENTO DRAGAGGIO, PROLUNGAMENTO DIGA SUD

CIG 7822604907 CUP D74B16000360001

Soggetto attuatore

Azienda Regionale Attività Produttive

Via Nazionale SS 602 km 51+355, Centro Direzionale 2° Piano - 65012 Villanova di Cepagatti (PE) C.F. 91127340684 - P.I. 02083310686 arapabruzzo@pec.it - vasto@arapabruzzo.it

Data Gennaio 2024

2 3

0 0

DR 0

2 | -

2

0 A N

Fase progettuale

- PROGETTO DEFINITIVO -

Titolo elaborato

E.05 STUDIO METEO DIFFUSIONALE PER LA VALUTAZIONE DELLE RICADUTE DEGLI INQUINANTI

Raggruppamento temporaneo di professionisti

Mandataria

MODIMAR s.r.l. Via Monte Zebio 40 00195 Roma 06.3269461 - www.modimar.it

Prof. Ing. Alberto NOLI
Dott. Ing. Paolo CONTINI
Prof. Ing. Paolo DE GIROLAMO
Dott. Ing. Giancarlo MILANA
Dott. Ing. Alessia CURATOLO
Dott. Ing. Giuseppe VELLA

Dott. Ing. Valerio TRULLI

Mandanti

Giovane Professionista
Dott. Ing. Myrta CASTELLINO
Geologo

Dott. Geol. Nicola TULLO

DIPARTIMENTO LAVORI & MANUTENZIONI - DL

Resp: Ing. Nicola BERNABEO

RESPONSABILE UNICO DEL PROCEDIMENTO Arch. Sergio PEPE

IL GRUPPO DI LAVORO

Ing. Tommaso IMPICCIATORE Arch. Lorenzo DI GIROLAMO Geologo Mattia IPPOLITO

D.L. – DIPARTIMENTO LAVORI & MANUTENZIONI DL2 – Servizio lavori Pubblici

Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud)

CUP: D74B16000360001 - CIG: 7822604907

PROGETTO DEFINITIVO

Studio meteo diffusionale per la valutazione delle ricadute degli inquinanti

PROGETTAZIONE:

Dott. Ing. Myrta CASTELLINO

Dott. Geol. Nicola TULLO

ROMA

ATESSA (CH)

Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud) CUP: D74B16000360001 - CIG: 7822604907

E.05 – STUDIO METEO DIFFUSIONALE
INQUINANTI
23 004 DR 022 0 AMB

Indice

Capitolo	1	Premesse	3
	1.1	Descrizione delle lavorazioni e approvvigionamento del cantiere	3
Capitolo	2	Ipotesi di studio	7
Capitolo	3	Descrizione emissioni e ratei emissivi fase di cantiere	8
Capitolo	4	Collocazione dell'area di cantiere	. 11
Capitolo	5	Individuazione punti recettori e distanza dai punti emissivi	. 12
Capitolo	6	Inquinanti analizzati e limiti normativi	. 14
	6.1	Emissioni gassose	14
Capitolo	7	Modello CALPUFF	. 15
	7.1	Caratteristiche di MMS CALPPUFF	15
Capitolo	8	Dati orari metereologici utilizzati nel modello	. 17
	8.1	Caratteristiche dati meteo area impianto	20
Capitolo	9	Valutazione effetto Downwash	. 42
Capitolo	10	Valori di fondo della qualità dell'aria	. 43
Capitolo	11	Dati di ingresso e modellistici	. 44
	11.1	L Fase di cantiere - Parametri di ingresso emissioni pulvirolente	44
	11.2	Pase di cantiere – Impostazioni modellistiche	46
Capitolo	12	Impatto scenario di cantiere	. 48
Capitolo	13	Conclusioni	. 54

ALLEGATO 1 - FILE METEO

Capitolo 1 **Premesse**

Nel presente studio specialistico è analizzato l'impatto sulla qualità dell'aria prodotto durante la fase di cantiere per le opere di completamento del Porto di Ortona, nello specifico il prolungamento della diga sud e la resecazione del molo nord.

Nell'ambito di tale valutazione sono state calcolate le concentrazioni degli inquinanti presso diversi ricettori distribuiti attorno all'impianto di cantiere in un raggio di 1,5 Km. Per ogni inquinante è stato calcolato il massimo valore di concentrazione nel reticolo di calcolo.

È analizzato, inoltre, lo scenario di cantiere con riferimento alle PM₁₀ e PM_{2.5}.

1.1 Descrizione delle lavorazioni e approvvigionamento del cantiere

Si riporta di seguito una breve descrizione delle opere di cantiere e del suo approvvigionamento:

- per il trasporto del tout venant sono previsti 16-25 viaggi verso un punto di carico posto sulla costa per il carico di una bettolina. Sono da considerare 2 bettoline/giorno per coprire 38 mn fino ad Ortona per un totale di 24 mesi;
- per l'approvvigionamento del materiale lapideo, parallelo a quello di tout venant, sono da considerarsi 14 camion/giorno per il porto da effettuarsi su strada per 26 mesi;
- per l'approvvigionamento della mantellata di protezione sono previsti 8 camion/giorno per 10 mesi via strada;
- il tout venant, il materiale lapideo e per la mantellata è verranno dalla cava di Apricena;
- per la fabbricazione di accropodi si prevede la realizzazione di 6 massi per 24 mesi, ovvero 6 betoniere/giorno per 24 mesi (percorso compiuto circa 30 km);
- per la posa in opera, che si sviluppa in 21 mesi, è ingaggiato un pontone con gru a fune e una gru a fune da terra;
- per la resecazione, della durata di 12 mesi, sono ingaggiati:
 - N° 1 escavatore in testata;
 - N°1 pala gommata che gestisce il camion;
 - N° 3 camion (nell'ambito del porto);
 - Un martello demolitore;
- per la resecazione occorrono 6 mesi, che verranno "spalmati" in 12, da non considerarsi continuativi;
- attività di dragaggio effettuata con draga aspirante con pozzo di carico. Durata intervento
 15 gg.

Azienda Regionale	Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud)	E.05 – STUDIO METEO DIFFUSIONAL INQUINANTI				ISIONALE	
Attività	CUP: D74B16000360001 - CIG: 7822604907	23	004	DR	022	0	AMB
Produttive							

Per lo studio dell'impatto sulla qualità dell'aria dalle attività di cantiere si tiene conto del seguente documento *EMEP/EEA air pollutant emission inventory guidebook 2023* e della documentazione tecnica ad esso collegata tra cui la parte relativa a "Construction and demolition".

Quest'ultimo documento è basato sulla linea guida "madre" che prevede 3 metodologie di valutazione:

- Livello 1 Approccio standard
- Livello 2 Approccio specifico
- Livello 3 Approccio con modello diffusionale

Per la specifica tipologia di sorgente (Construction and demolition), il livello 2 non è applicabile.

Di seguito sono illustrate due metodologie di valutazione applicabili:

Livello 1: il metodo di stima delle emissioni distingue quattro principali tipi di costruzione:

- Edilizia residenziale, uni o bifamiliare;
- Edilizia residenziale, appartamenti;
- edilizia non residenziale;
- Costruzione di strada.

Il metodo prevede la moltiplicazione di un fattore di emissione specifico per ciascuna tipologia di costruzione, l'area totale interessata da quella specifica tipologia di costruzione e la durata media della costruzione. Poiché l'area interessata di solito non è direttamente disponibili da fonti statistiche, un metodo per stimare l'area interessata sulla base di altri dati statistici suggerito. Il metodo offre l'ulteriore possibilità di correggere il contenuto di umidità del suolo e la distribuzione granulometrica delle particelle del suolo.

Livello 3: fornisce una metodologia più dettagliata per l'analisi delle emissioni derivanti da costruzioni e demolizioni è fornita dall'US EPA (2011): "AP-42, Compilation of Air Pollutant Emission Factors".

I. Demolition and debris removal	 Demolition of buildings or other (natural) obstacles such as trees, boulders etc. Mechanical dismemberment ("headache ball") of existing structures Implosion of existing structures 	na na AP-42;
	c. Drilling and blasting of soils (general)d. General land clearing	11.9/na AP-42; 11.9
	2. Loading of debris into trucks	AP-42; 13.2.4
	3. Truck transport of debris	AP-42; 13.2.1

Azienda Regionale	Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud)	E.05 – STUDIO METEO DIFFUSIONALE INQUINANTI						
Attività Produttive	CUP: D74B16000360001 - CIG: 7822604907	23	004	DR	022	0	AMB	

		AD 42
		AP-42;
		13.2.2
	4. Truck unloading of debris	AP-42;
	4. Truck unloading of debris	13.2.4
II. Site		
preparation	1. Bulldozing	AP-42; 11.9
(earth removal)		
	2. Scrapers unloading topsoil	AP-42; 11.9
	3. Scrapers in travel	AP-42; 11.9
		AP-42;
	4. Scrapers removing topsoil	13.2.3
		AP-42;
	5. Loading of excavated material into trucks	13.2.4
	C. Truck dumning of fill material, road base, or other materials	AP-42;
	6. Truck dumping of fill material, road base, or other materials	13.2.4
	7. Compacting	AP-42; 11.9
	8. Motor grading	AP-42; 11.9
		AP-42;
III. General	1. Vehicular traffic	13.2.1
construction	1. Venicular tranic	AP-42,
		13.2.2
	2. Portable plants	AP-42;
	a. Crushing	11.19.2
	b. Screening	AP-42;
	c. Material transfers	11.19.2
		AP-42;
		13.2.4
	3. Other operations	AP-42; 11

La metodologia 3 non risulta però applicabile in quanto la tipologia di sorgenti elencate non comprende quelle previste al cantiere in esame, viene pertanto applicato il livello 1, con specifico riferimento al:

2.A.5.b Construction and demolition - 3.2 Tier 1 default approach Table 3-3 Tier 1 emission factors for uncontrolled fugitive emissions for source category 2.A.5.b Construction and demolition – Non-residential construction

L'algoritmo utilizzato è il seguente:

Azienda Regionale	Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud)	E.05 – STUDIO METEO DIFFUSIONALE INOUINANTI							
Attività	CUP: D74B16000360001 - CIG: 7822604907	23	004	DR	022	0	AMB		
Produttive	CUP. D/4B10000300001 - CIG. 7822004907	25	004	אט	022	U	AIVID		

$$EM_{PM_{10}} = EF_{PM_{10}} \cdot A_{affected} \cdot d \cdot (1 - CE) \cdot \left(\frac{24}{PE}\right) \cdot \left(\frac{s}{9\%}\right)$$

PM₁₀ Affected Construc- 1 - control Correction Correction emission area tion efficiency for soil for silt factor duration moisture content

EM PM10 = quantità di PM10 emessa (kg PM10)

EF PM10 = fattore di emissione (kg PM10/[$m^2 \cdot year$])

A affected = area interessata dall'attività (m2)

d = durata dell'attività (year)

CE = efficienza delle misure di controllo delle emissioni (-)

PE = indice di precipitazione evaporazione (-)

s = contenuto di limo (%)

Tabella 1: livello 1 Fattori di emissione per emissioni fuggitive incontrollate per la categoria di sorgenti 2.A.5.b Edilizia e demolizione – Edilizia non residenziale

Tier 1 default emission factors						
	Code	Name				
NFR Source Category	IFR Source Category 2.A.5.b Construction and demolition – Non-residential construction (all					
	construction except residential construction and road construction)					
Fuel	NA	NA				
Not applicable	NOx, CO, SOx, NH ₃ , NMVOC, BC, Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn, HCH, PCBs, PCDD/F, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Indeno(1,2,3-cd)pyrene, HCB					

Not estimated	NA				
Pollutant	Value	Unit	95% confidence		Reference
	interval		rval		
			Lower	Upper	
TSP	3.3	kg/[m²· year]	0.3	10	WRAP 2006, MRI 2006
PM ₁₀	1.0	kg/[m²· year]	0.1	3	WRAP 2006, MRI 2006
PM _{2.5}	0.1	kg/[m²· year]	0.01	0.3	WRAP 2006, MRI 2006

Capitolo 2 Ipotesi di studio

Il presente studio è stato redatto sulla base delle seguenti ipotesi:

- per il calcolo delle concentrazioni degli inquinanti cautelativamente gli algoritmi di calcolo delle deposizioni umide e secche sono stati disattivati;
- i valori di orografia utilizzati sono stati estratti dal DTM NASA SRTM3 mentre i valori di uso del suolo sono stati ottenuti dal Corine Land Cover 2000;
- nella ricostruzione meteorologica effettuata con CALMET relativa al 2022 sono stati impiegati i dati misurati localmente dalle seguenti stazioni:

Stazioni meteorologiche utilizzate

Stazioni sinottiche

- stazioni di superficie SYNOP ICAO (per dati sinottici di copertura nuvolosa e altezza nubi)
 PESCARA LIBP 162300 [42.432000° N 14.181000° E]
- stazione radiosondaggi SYNOP ICAO non disponibili

Profili verticali ricavati dal modello di calcolo europeo ECMWF – Progetto ERA5 21809 - Profilo ECMWF [41.999999°N - 14.899997°E]

Stazioni sito specifiche da reti regionali/provinciali

Non disponibili

Stazioni private fornite da richiedente

Non disponibili

Si è tenuto conto dei valori di fondo di qualità dell'aria relativi al 2021 rilevati dalla seguente stazione:

STAZIONE DI ORTONA VILLA CALDARI (fondo suburbano): PM2.5, PM10,

scelta in quanto è la stazione di monitoraggio più vicina all'impianto di cantiere.

Per il calcolo del contributo dei valori di fondo dei valori orari, giornalieri e di percentile é stato applicato il metodo B (somma dei quadrati) suggerito dall'UK-EA (*UK-EA*, "The Addition of Background Concentrations to Modelled Contributions from Discharge Stacks", Research and Development, Technical Report P361, 2000:

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_dat a/file/290274/strp361-e-e.pdf).

moisture

content

Capitolo 3 Descrizione emissioni e ratei emissivi fase di cantiere

Per la fase di cantiere si terrà conto delle emissioni pulverulente prodotte dalle lavorazioni, e dall'impatto generato dal transito e dal funzionamento dei mezzi di cantiere sulla base dei seguenti documenti di riferimento:

EMEP/EEA AIR POLLUTANT EMISSION INVENTORY GUIDEBOOK 2023

In particolare, sono state valutate le emissioni di polveri prodotte dalle attività di cantiere utilizzando la metodologia "EMEP/EEA AIR POLLUTANT EMISSION INVENTORY GUIDEBOOK 2023 2.A.5.b Construction and demolition - 3.2 Tier 1 default approach Table 3-3 Tier 1 emission factors for uncontrolled fugitive emissions for source category 2.A.5.b Construction and demolition – Non-residential construction".

L'algoritmo utilizzato è il seguente:

$$EM_{PM_{10}} = EF_{PM_{10}} \cdot A_{affected} \cdot d \cdot (1 - CE) \cdot \left(\frac{24}{PE}\right) \cdot \left(\frac{s}{9\%}\right)$$

PM₁₀ Affected Construc- 1 - control Correction Correction emission area tion efficiency for soil for silt

duration

EM PM10 = quantità di PM10 emessa (kg PM10)

factor

EF PM10 = fattore di emissione (kg PM10/[$m^2 \cdot year$])

A affected = area interessata dall'attività (m2)

d = durata dell'attività (year)

CE = efficienza delle misure di controllo delle emissioni (-)

PE = indice di precipitazione evaporazione (-)

s = contenuto di limo (%)

Azienda Regionale	Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud)	E.05 – STUDIO METEO DIFFUSIONAL INQUINANTI				NALE	
Attività Produttive	CUP: D74B16000360001 - CIG: 7822604907	23	004	DR	022	0	AMB

Tabella 2: livello 1 Fattori di emissione per emissioni fuggitive incontrollate per la categoria di sorgenti 2.A.5.b Edilizia e demolizione – Edilizia non residenziale

Tier 1 default emission factors						
	Code	Name				
NFR Source Category	Construction and demolition – Non-residential construction (all					
	construction except residential construction and road construction					
Fuel	NA	NA				
Not applicable	NOx, CO, SOx, NH3, NMVOC, BC, Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn, HCH, PCBs,					
PCDD/F, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene,						
	Indeno(1,2,3-cd)pyrene, HCB					

Not estimated	NA				
Pollutant	Value	Unit	95% confidence		Reference
			inte	rval	
			Lower	Upper	
TSP	3.3	kg/[m²· year]	0.3	10	WRAP 2006, MRI 2006
PM ₁₀	1.0	kg/[m²· year]	0.1	3	WRAP 2006, MRI 2006
PM _{2.5}	0.1	kg/[m²· year]	0.01	0.3	WRAP 2006, MRI 2006

Efficienza di controllo delle misure di riduzione delle emissioni applicate (CE)

L'irrigazione delle strade non asfaltate temporanee è una misura di controllo delle emissioni semplice ed efficace ampiamente utilizzata nell'edilizia in Europa, soprattutto durante i periodi molto siccitosi. L'effetto dell'irrigazione è massimo subito dopo l'irrorazione e poi diminuisce nuovamente quando il manto stradale si asciuga. WRAP, (2006) riporta un'efficienza complessiva di circa il 50% in media. Si presume che in generale l'irrigazione avvenga regolarmente nelle attività di costruzione pesante durante i periodi di siccità, con una conseguente riduzione complessiva delle emissioni del 50%. Ciò si traduce nelle seguenti efficienze di controllo per tipo di costruzione, che possono essere utilizzate come standard per l'Europa nei casi in cui non sono disponibili informazioni specifiche per paese relative alle pratiche edilizie.

Type of construction	Fractional overall control efficiency (-)
Construction of houses (detached single family, detached two family and single family terraced)	0
Construction of apartments (all types)	0
Non-residential construction (all construction except residential construction and road construction)	0.5
Road construction	0.5

Nel presente studio è stato ipotizzato un valore dell'indice CE pari a 0.5%.

Indice di precipitazione-evaporazione di Thornthwaite (PE)

Azienda Regionale	Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud)	E.05 – STUDIO METEO DIFFUSIONA INQUINANTI					
Attività Produttive	CUP: D74B16000360001 - CIG: 7822604907	23	004	DR	022	0	AMB

Uno dei parametri che ha la maggiore influenza sulla sensibilità alla polvere del suolo è il contenuto di umidità del suolo. Il metodo EPA di livello 1 offre un'opzione per una correzione approssimativa per le condizioni climatiche che influenzano il contenuto di umidità del suolo. Come indicatore del contenuto di umidità del suolo viene utilizzato l'indice di precipitazione-evaporazione (PE) di Thornthwaite, che può essere calcolato sulla base delle precipitazioni mensili Pi (in mm) e della temperatura media Ti (in °C) secondo:

PE index = 3.16
$$\sum_{i=0}^{12} \left(\frac{P_i}{1.8 T_i + 22} \right)^{\frac{10}{9}}$$

Per ricavare un valore specifico per paese o regione per PE, è possibile utilizzare la formula precedente oppure è possibile ricavare un valore per PE dalla tabella seguente:

Climate	PE Index
Wet	More than 128
Humid	64 - 127
Sub-humid	32 - 63
Semi-arid	16 - 31
Arid	Less than 16

Nel presente studio è stato ipotizzato un valore dell'indice PE pari a 63%.

Contenuto di limo nel suolo

Il limo è terreno con particelle di dimensioni comprese tra 0,002 e 0,075 mm (o 0,063 mm secondo la definizione ISO) e il contenuto di limo nel suolo è la frazione in peso di queste particelle.

Il limo è la frazione del suolo più sensibile alla polvere e pertanto le emissioni stimate della costruzione devono essere corrette per il contenuto medio di limo del suolo superficiale dell'area interessata. Di seguito sono riportati esempi del contenuto di limo di vari tipi di suolo (EPA, 1999).

Soil type	Silt content (%)
Silt loam	52
Sandy load	33
Sand	12
Loamy sand	12
Clay	29
Clay loam	29
Loam	40

Nel presente studio è stato ipotizzato un contenuto di limo pari al 12%.

Capitolo 4 Collocazione dell'area di cantiere

La seguente immagine illustra l'area portuale.

Azienda

Regionale

Attività

Produttive

Figura 4-1. Area portuale

La seguente figura illustra le aree oggetto di intervento:

- Ampliamento molo sud.
- Resecazione del molo nord.

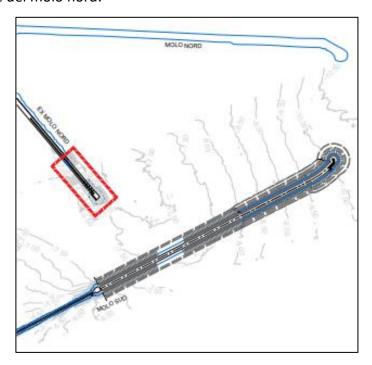


Figura 4-2. Individuazione del progetto

Capitolo 5 Individuazione punti recettori e distanza dai punti emissivi

Di seguito sono riportate le coordinate dei punti recettori considerati, la quota orografica, l'altezza del recettore e la distanza rispetto ai punti emissivi.

La scelta dei recettori è stata fatta tenendo conto dei seguenti aspetti:

- della distribuzione spaziale dei recettori in un raggio di 0.5 Km;
- della destinazione d'uso del territorio;
- della presenza di recettori particolarmente sensibili quali scuole, ospedali ecc.;
- dell'orografia dell'area;
- dei punti di massima ricaduta delle concentrazioni di ciascun inquinante all'interno del reticolo di calcolo.

Sigla	descrizione	X(m)	Y(m)	Z(m)	Zona UTM	Emisfero	H(m) sul suolo	
MAX	Punto di max concentrazione	massima variano dell'inter mediazio concentra	in vallo tem ne	ntrazione funzione porale di della e della	33	N	2	
1	Scuola Media Statale D. Pugliesi	451103	4689705	33	33	N	2	
2	Recettore abitativo	451054	4689603	49	33	N	2	
3	Recettore abitativo	451000	4689513	53	33	N	2	
4	Recettore abitativo	450687	4689386	68	33	N	2	
5	Istituto San Tommaso	450779	4689160	67	33	N	2	
6	Recettore abitativo	450984	4689352	43	33	N	2	
7	Capitaneria di porto Guardia Costiera	451312	4689767	2	33	N	2	
8	Recettore abitativo	451231	4689708	14	33	N	2	

E.05 – STUDIO METEO DIFFUSIONALE						
INQUINANTI						
23	004	DR	022	0	AMB	

Sigla	descrizione	X(m)	Y(m)	Z(m)	Zona UTM	Emisfero	H(m) sul suolo
9	Recettore abitativo	451150	4689610	31	33	N	2
10	Recettore abitativo	451130	4689531	34	33	N	2
11	Recettore abitativo	451101	4689474	36	33	N	2
12	Recettore abitativo	451083	4689082	40	33	N	2
13	Residenza Don Bosco	451084	4688604	60	33	N	2
14	Recettore abitativo	451199	4688389	41	33	N	2
15	Recettore abitativo	450940	4688829	69	33	N	2
16	Scuola Elementare di Primo Grado - Istituto Comprensivo N°1, San Giuseppe Ortona	450638	4688708	73	33	N	2
17	Istituto Tecnico Nautico Statale	450857	4688819	72	33	N	2

Figura 3 - vista dall'alto – sono indicati i recettori discreti sui cui sono stati eseguiti i calcoli e le aree di cantiere

Azienda Regionale	Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud)	E.05 – STUDIO METEO DIFFUSIONALE INQUINANTI							
Attività Produttive	CUP: D74B16000360001 - CIG: 7822604907	23	004	DR	022	0	AMB		

Capitolo 6 Inquinanti analizzati e limiti normativi

6.1 Emissioni gassose

Di seguito si riportano i valori limite utilizzati per ciascun inquinante analizzato:

						Altri valori da letteratura o altre fonti				
Inquinante	u.m.	Media oraria	Media 8h	Media 24 h	Media annua	Media 1h	Media 24 h	Media 7 GG	Media annua	
PM ₁₀	μg/m³			50	40					
PM _{2.5}	μg/m³				25					

Capitolo 7 Modello CALPUFF

Per valutare la ricaduta degli inquinanti al suolo è stato utilizzato MMS.Calpuff (vers. 1.20.0.0), programma di gestione del noto modello a puff CALPUFF sviluppato da Earth Tech inc.

Il modello CALPUFF è un modello gaussiano non stazionario che simula la diffusione di inquinanti attraverso il rilascio di una serie continua di puff seguendone la traiettoria in base alle condizioni meteorologiche (emissioni non continue ma discrete nel tempo ovvero ad intermittenza come accidentali). Il modello è raccomandato dall'EPA (modelli per la qualità dell'aria.) ed è stato sviluppato dalla Earth Tech Inc. per conto del California Air Resources Board (CARB) e dell'EPA. Il modello contiene formulazioni per la modellistica della dispersione, il trasporto e la rimozione secca e umida di inquinanti in atmosfera al variare delle condizioni meteorologiche considerando l'impatto con il terreno e alcuni semplici schemi di trasformazioni chimiche.

Il sistema CALPUFF è composto da tre componenti principali che costituiscono il pre-processore dei dati meteo (CALMET), il modello di calcolo vero e proprio (CALPUFF) e il post-precessore dei risultati (CALPOST).

Sebbene sia possibile utilizzare CALPUFF anche con dati meteorologici orari relativi ad una singola stazione presente sul territorio il modello è stato progettato per essere utilizzato con campi meteorologici variabili su tutto il dominio di calcolo sia orizzontale che verticale.

Il preprocessore CALMET ricostruisce questi campi meteorologici tridimensionali utilizzando dati al suolo, dati profilometrici e dati orografici e di uso suolo al fine per considerare gli effetti del terreno sulla variazione dei campi meteorologici e di conseguenza sulla diffusione di inquinanti.

7.1 Caratteristiche di MMS CALPPUFF

MMS Calpuff implementa la versione 6.42 del modello.

Il programma è pensato per facilitare l'utilizzo di questo complesso sistema modellistico, NON è richiesta la gestione del preprocessore meteorologico CALMET.

Se le dimensioni e le caratteristiche dell'area di studio lo richiedono Maind fornisce direttamente il file prodotto da CALMET utilizzato da CALPUFF come input meteorologico. L'utente non ha la necessità di conoscere il significato delle complesse opzioni necessarie per l'utilizzo di CALMET.

Gestione semplificata della configurazione del modello CALPUFF

L'interfaccia utente semplifica la preparazione della configurazione di CALPUFF e nasconde le opzioni più tecniche e complesse consentendo all'utente di concentrarsi sugli aspetti importanti e significativi del calcolo. Molti dati, soprattutto geografici sono importabili direttamente da Google Earth.

Il file di output prodotto da *MMS Calpuff* è perfettamente compatibile con **MMS.RunAnalyzer** (vers 2.14.0.0) il post processore sviluppato da Maind che consente di analizzare e visualizzare i risultati prodotti da diversi modelli di calcolo consentendone una facile verifica rispetto ai limiti di legge relativamente al D.Lgs n° 155 del 13-08-2010.

Azienda Regionale	Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud)	E.05	– STUE		TEO DII NANTI	FFUSIO	NALE
Attività Produttive	CUP: D74B16000360001 - CIG: 7822604907	23	004	DR	022	0	АМВ

Il programma analizza i file di output prodotti dal modello e valuta il superamento di valori di soglia relativamente a:

- concentrazioni medie orarie;
- concentrazione medie giornaliere sulle otto ore;
- concentrazione medie giornaliere;
- concentrazioni annuali;
- concentrazioni invernali;
- superamenti di valori di soglia per ore consecutive.

Il programma valuta anche il numero di superamenti dal momento che spesso il D.Lgs n° 155 del 13-08-2010 prevede un numero massimo di superamenti ammessi.

Come già premesso il modello permette di considerare l'orografia dell'area.

Capitolo 8 Dati orari metereologici utilizzati nel modello

I calcoli sono stati eseguiti assegnando come dato input meteorologico un file meteo 3D in formato CALMET 6.42 relativo al 2022, il dettaglio del report è riportato in allegato.

Report fornitura dati meteorologici in formato MMS CALPUFF

Località Ortona (CH) Periodo Anno 2022

Caratteristiche del dominio richiesto

Origine SW x = 446665.00 m E - y = 4683731.00 m N UTM fuso 33 – WGS84

Dimensioni orizzontali totali 10.5 km x 10.5 km

Risoluzione orizzontale (dimensioni griglia) dx = dy = 300 m

Risoluzione verticale (quota livelli verticali) 0-20-50-100-200-500-1000-2000-4000 m sul livello del suolo

Caratteristiche del punto richiesto

Coordinate (42.351608 °N, 14.416167°E)

Cella (18,18)

Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud) CUP: D74B16000360001 - CIG: 7822604907

E.05	E.05 – STUDIO METEO DIFFUSIONALE INQUINANTI						
23	004	DR	022	0	AMB		

I dati forniti sono stati ricostruiti per l'area descritta attraverso un'elaborazione "mass consistent" effettuata con il modello meteorologico CALMET con la risoluzione indicata nella pagina precedente, dei dati rilevati nelle stazioni SYNOP ICAO di superficie e profilometriche presenti sul territorio nazionale (vedere i file "elenco stazione superficie ICAO.pdf" e "elenco stazione radiosondaggi ICAO.pdf" allegati al presente Studio).

Il modello CALMET ricostruisce per interpolazione 3D "mass consistent", pesata sull'inverso del quadrato della distanza, un campo iniziale tridimensionale (FIRST GUESS) che viene modificato per incorporare gli effetti geomorfologici ed orografici del sito in esame alla risoluzione spaziale richiesta; su questo campo meteo (STEP 1) vengono infine reinserite le osservabili misurate per ottenere il campo finale (STEP 2) all'interno del quale vengono recuperate le informazioni sitospecifiche delle misure meteo.

Per informazioni più dettagliate sul funzionamento del preprocessore CALMET si deve fare riferimento alla documentazione originale del modello al seguente link (http://www.src.com/calpuff/download/MMS Files/MMS2006 Volume2 CALMET Preprocess ors.pdf).

Poiché il peso di ognuna di queste stazioni meteo usate nella ricostruzione del campo meteo è inversamente proporzionale alla distanza quadratica delle stazioni nell'immagine seguente vengono riportate le stazioni SYNOP-ICAO più vicine/significativa al sito richiesto.

Stazioni meteorologiche utilizzate

Stazioni sinottiche

- stazioni di superficie SYNOP ICAO (per dati sinottici di copertura nuvolosa e altezza nubi)
 PESCARA LIBP 162300 [42.432000° N 14.181000° E]
- stazione radiosondaggi SYNOP ICAO non disponibili

Profili verticali ricavati dal modello di calcolo europeo ECMWF – Progetto ERA5 21809 - Profilo ECMWF [41.999999°N - 14.899997°E]

Stazioni sito specifiche da reti regionali/provinciali Non disponibili

Stazioni private fornite da richiedente Non disponibili

Figura 2 – Stazioni SYNOP-ICAO di superficie, profilometriche e sito specifiche utilizzate

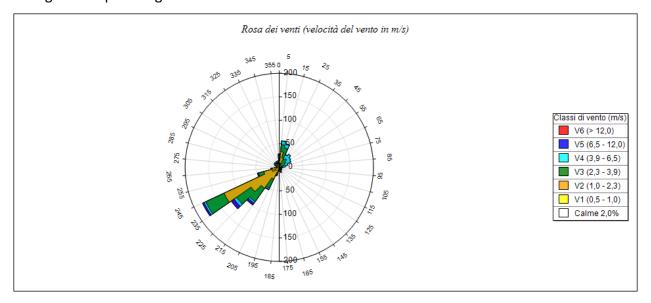
Azienda Regionale	Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud)	E.05 – STUDIO METEO DIFFUSIONA INQUINANTI					NALE	
Attività Produttive	CUP: D74B16000360001 - CIG: 7822604907	23	004	DR	022	0	AMB	1

8.1 Caratteristiche dati meteo area impianto

8.1.1 Regime anemometrico

Le caratteristiche anemometriche del punto del dominio di coordinate del reticolo più vicino all'impianto sono riportate nella tabella sottostante. Di seguito si riporta il grafico della rosa dei venti rispettivamente su base annuale e per ciascuna delle stagioni.

<u>Dati annuali</u>


Z	Valore
Tipologia dati meteorologici	CALMET 3D file meteorologico
Periodo dei dati	01/01/2022 00:00:00 <-> 01/01/2023 00:00:00
Ore totali	8761
Valore limite per determinare le calme di	
vento	0,5 (m/s)
Rosa dei venti fattore di normalizzazione	1000
Calmet File Dataset	Version: 2.1
Meteorological Grid	origine: 446665,0 X(m); 4683731,0 Y(m) 33N; numero punti: 35 x 35; dimensione cella; 300,0 DX(m) x 300,0 DY(m)
Punto selezionato nel dominio	16,19 (i,j); 451315,0 X(m); 4689281,0 Y(m); 1 Q(m)

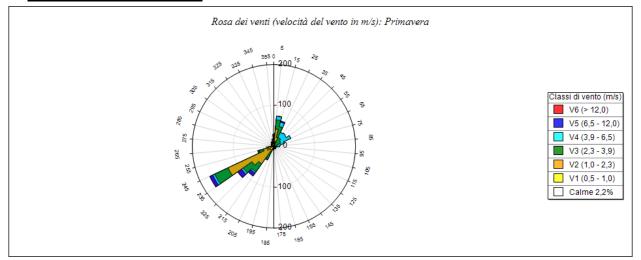
Di seguito si riporta il grafico della rosa dei venti.

Z	Valore
Tipologia dati meteorologici	CALMET 3D file meteorologico
Periodo dei dati	01/01/2022 00:00:00 <-> 01/01/2023 00:00:00
Ore totali	8761
Valore limite per determinare le calme di	
vento	0,5 (m/s)
Rosa dei venti fattore di normalizzazione	1000
Calmet File Dataset	Version: 2.1
Meteorological Grid	origine: 446665,0 X(m); 4683731,0 Y(m) 33N ; numero punti: 35 x 35; dimensione cella; 300,0 DX(m) x 300,0 DY(m)
Punto selezionato nel dominio	16,19 (i,j); 451315,0 X(m); 4689281,0 Y(m); 1 Q(m)

Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud) CUP: D74B16000360001 - CIG: 7822604907 E.05 – STUDIO METEO DIFFUSIONALE
INQUINANTI
23 004 DR 022 0 AMB

Di seguito si riporta il grafico della rosa dei venti.

SECTORS	V1 (0,5 - 1,0)	V2 (1,0 - 2,3)	V3 (2,3 - 3,9)	V4 (3,9 - 6,5)	V5 (6,5 - 12,0)	V6 (> 12,0)	Totale	Vmed (m/s)
355,0 - 5,0	4,22	9,36	6,62	6,28	1,83	0	28,31	3,01
5,0 - 15,0	9,47	24,09	15,07	7,53	0,57	0	56,74	2,36
15,0 - 25,0	2,63	17,81	22,37	8,33	1,14	0	52,28	2,81
25,0 - 35,0	2,63	3,65	13,01	10,27	0,68	0	30,25	3,41
35,0 - 45,0	0,23	5,14	17,12	11,64	0,11	0	34,25	3,41
55,0	0	2,63	14,61	12,1	0,23	0	29,57	3,67
55,0 - 65,0	0	1,94	10,62	14,61	0	0	27,17	3,79
65,0 - 75,0	0	0,46	6,16	12,1	0,11	0	18,84	4,17
75,0 - 85,0	0	0,46	4	8,45	0,11	0	13,01	4,18
85,0 - 95,0	0	0,34	2,28	4,79	0	0	7,42	4,17


SECTORS	V1 (0,5 - 1,0)	V2 (1,0 - 2,3)	V3 (2,3 - 3,9)	V4 (3,9 - 6,5)	V5 (6,5 - 12,0)	V6 (> 12,0)	Totale	Vmed (m/s)
95,0 - 105,0	0	0	1,94	2,05	0,57	0	4,57	4,66
105,0 - 115,0	0,34	0,23	0,68	1,37	0,91	0	3,54	4,61
115,0 - 125,0	0	0,11	1,71	0,8	0	0	2,63	3,47
125,0 - 135,0	0,91	2,85	2,05	1,26	0	0	7,08	2,29
135,0 - 145,0	1,26	0,57	0,46	0,8	0	0	3,08	2,15
145,0 - 155,0	1,03	4,11	1,6	0,11	0	0	6,85	1,82
155,0 - 165,0	5,14	5,37	0,8	0,11	0	0	11,42	1,29
165,0 - 175,0	3,31	3,42	0,57	0	0	0	7,31	1,33
175,0 - 185,0	0,11	0,8	0,68	0,23	0	0	1,83	2,69
185,0 - 195,0	0,11	1,03	1,26	0,68	0	0	3,08	2,69
195,0 - 205,0	2,4	9,13	5,82	1,26	0	0	18,61	2,11
205,0 - 215,0	5,02	22,37	21,46	2,85	1,14	0	52,85	2,41
215,0 - 225,0	8,79	45,66	34,59	3,77	4,91	0,11	97,83	2,55
225,0 - 235,0	8,68	64,27	37,79	6,39	7,42	0,11	124,66	2,63
235,0 - 245,0	16,21	113,36	42,69	4	3,54	0	179,79	2,12
245,0 - 255,0	2,63	31,39	11,42	1,6	0,8	0	47,83	2,12

SECTORS	V1 (0,5 - 1,0)	V2 (1,0 - 2,3)	V3 (2,3 - 3,9)	V4 (3,9 - 6,5)	V5 (6,5 - 12,0)	V6 (> 12,0)	Totale	Vmed (m/s)
255,0 - 265,0	2,28	12,33	2,51	0,57	0,11	0	17,81	1,83
265,0 - 275,0	0,68	4,34	1,03	0,46	0	0	6,51	1,85
275,0 - 285,0	0,34	3,2	1,26	0,34	0	0	5,14	2,22
285,0 - 295,0	0,91	3,88	1,6	0,46	0	0	6,85	2,06
295,0 - 305,0	1,14	4,91	3,31	1,71	0,23	0	11,3	2,52
305,0 - 315,0	1,6	3,88	5,25	2,74	0	0	13,47	2,77
315,0 - 325,0	0,91	3,77	4	2,05	0,23	0	10,96	2,81
325,0 - 335,0	2,51	3,65	4,11	3,2	0,23	0	13,7	2,81
335,0 - 345,0	1,71	3,54	2,28	1,6	0,11	0	9,25	2,52
345,0 - 355,0	1,94	3,08	3,77	4,22	1,37	0	14,38	3,49
Variabili	0	0	0	0	0	0	0	0
Calme < 0,5	19,86	0	0	0	0	0	19,86	0
Totale	109,02	417,12	306,51	140,75	26,37	0,23	1000	0

Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud) CUP: D74B16000360001 - CIG: 7822604907

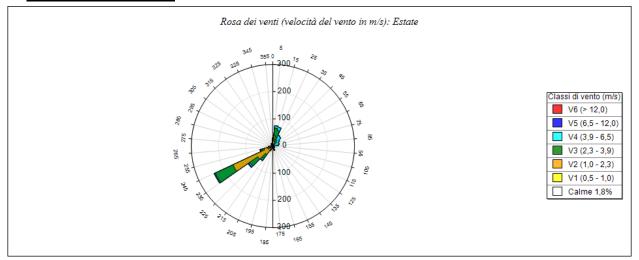
E.05 – STUDIO METEO DIFFUSIONALE
INQUINANTI
23 004 DR 022 0 AMB

Dati stagionali (primavera)

Primaver a	V1 (0,5 - 1,0)	V2 (1,0 - 2,3)	V3 (2,3 - 3,9)	V4 (3,9 - 6,5)	V5 (6,5 - 12,0)	V6 (> 12,0)	Totale	Vmed (m/s)
355,0 - 5,0	3,58	11,65	4,03	8,06	2,24	0	29,57	2,98
5,0 - 15,0	13,44	29,12	22,4	8,96	0,45	0	74,37	2,32
15,0 - 25,0	4,48	17,92	27,78	11,2	2,69	0	64,07	2,92
25,0 - 35,0	2,69	2,69	18,37	13,89	0	0	37,63	3,36
35,0 - 45,0	0,45	2,24	21,06	15,68	0	0	39,43	3,61
45,0 - 55,0	0	1,34	17,92	17,92	0	0	37,19	3,84
55,0 - 65,0	0	1,34	16,58	27,78	0	0	45,7	3,99
65,0 - 75,0	0	0,45	8,51	17,03	0	0	25,99	4,24
75,0 - 85,0	0	0	5,38	9,86	0	0	15,23	4,28
85,0 - 95,0	0	0	4,93	9,41	0	0	14,34	4,38
95,0 - 105,0	0	0	2,24	4,48	0,9	0	7,62	4,73

Primaver a	V1 (0,5 - 1,0)	V2 (1,0 - 2,3)	V3 (2,3 - 3,9)	V4 (3,9 - 6,5)	V5 (6,5 - 12,0)	V6 (> 12,0)	Totale	Vmed (m/s)
105,0 - 115,0	1,34	0,45	0,45	0,45	0,45	0	3,14	2,7
115,0 - 125,0	0	0,45	0,9	0,45	0	0	1,79	3,13
125,0 - 135,0	1,34	2,69	0,9	0,9	0	0	5,82	1,9
135,0 - 145,0	1,79	0,9	1,34	0,45	0	0	4,48	1,88
145,0 - 155,0	1,34	3,58	2,24	0	0	0	7,17	1,87
155,0 - 165,0	1,34	3,58	1,79	0	0	0	6,72	1,64
165,0 - 175,0	3,58	2,69	0	0	0	0	6,27	1,15
175,0 - 185,0	0	0,9	0	0	0	0	0,9	1,8
185,0 - 195,0	0	0,45	0	0	0	0	0,45	2,11
195,0 - 205,0	0,45	6,72	1,79	0,45	0	0	9,41	2
205,0 - 215,0	1,79	12,1	18,37	3,14	1,34	0	36,74	2,79
215,0 - 225,0	11,2	41,22	24,19	3,58	8,51	0	88,71	2,75
225,0 - 235,0	10,3	55,11	26,43	4,93	11,65	0	108,4 2	2,79
235,0 - 245,0	17,47	106,63	35,84	5,38	8,06	0	173,3 9	2,27
245,0 - 255,0	1,34	25,09	11,2	2,24	0,9	0	40,77	2,33
255,0 - 265,0	1,79	11,2	4,03	0,9	0	0	17,92	1,96

Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud) CUP: D74B16000360001 - CIG: 7822604907


E.05	E.05 – STUDIO METEO DIFFUSIONALE									
INQUINANTI										
23	004	DR	022	0	AME					

Primaver a	V1 (0,5 - 1,0)	V2 (1,0 - 2,3)	V3 (2,3 - 3,9)	V4 (3,9 - 6,5)	V5 (6,5 - 12,0)	V6 (> 12,0)	Totale	Vmed (m/s)
265,0 - 275,0	0	1,34	0,9	0,45	0	0	2,69	2,49
275,0 - 285,0	1,34	1,79	0	0,45	0	0	3,58	1,48
285,0 - 295,0	1,79	3,58	0,45	0	0	0	5,82	1,41
295,0 - 305,0	1,79	4,93	0,45	0	0	0	7,17	1,58
305,0 - 315,0	3,14	1,79	3,14	0,45	0	0	8,51	1,83
315,0 - 325,0	0,9	4,03	2,24	1,34	0	0	8,51	2,29
325,0 - 335,0	1,79	4,48	3,14	2,69	0	0	12,1	2,67
335,0 - 345,0	2,69	3,14	1,34	1,34	0	0	8,51	2,18
345,0 - 355,0	3,14	4,48	3,58	5,82	1,34	0	18,37	3,24
Variabili	0	0	0	0	0	0	0	0
Calme < 0,5	21,51	0	0	0	0	0	21,51	0
Totale	117,83	370,07	293,91	179,66	38,53	0	1000	0

Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud) CUP: D74B16000360001 - CIG: 7822604907

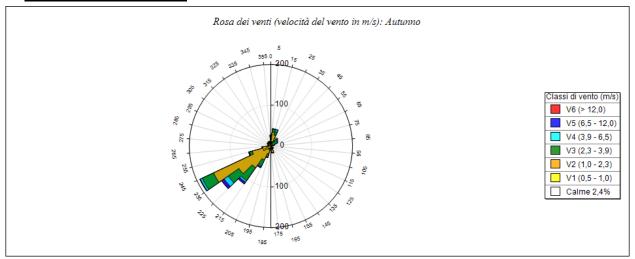
E.05 – STUDIO METEO DIFFUSIONALE
INQUINANTI
23 004 DR 022 0 AMB

Dati stagionali (estate)

Estate	V1 (0,5 - 1,0)	V2 (1,0 - 2,3)	V3 (2,3 - 3,9)	V4 (3,9 - 6,5)	V5 (6,5 - 12,0)	V6 (> 12,0)	Totale	Vmed (m/s)
355,0 - 5,0	6,27	12,1	7,62	3,14	1,34	0	30,47	2,43
5,0 - 15,0	7,17	30,91	28,23	8,51	0,45	0	75,27	2,43
15,0 - 25,0	2,69	15,23	41,67	12,54	0	0	72,13	2,95
25,0 - 35,0	4,03	0,9	19,71	19,27	0,9	0	44,8	3,74
35,0 - 45,0	0	4,48	15,23	21,95	0	0	41,67	3,82
45,0 - 55,0	0	0	7,17	22,85	0,9	0	30,91	4,37
55,0 - 65,0	0	0,9	4,03	18,82	0	0	23,75	4,14
65,0 - 75,0	0	0	3,14	21,06	0,45	0	24,64	4,58
75,0 - 85,0	0	0	5,38	15,23	0,45	0	21,06	4,43
85,0 - 95,0	0	0	1,79	5,38	0	0	7,17	4,3
95,0 - 105,0	0	0	0,9	1,79	0	0	2,69	4,73

Estate	V1 (0,5 - 1,0)	V2 (1,0 - 2,3)	V3 (2,3 - 3,9)	V4 (3,9 - 6,5)	V5 (6,5 - 12,0)	V6 (> 12,0)	Totale	Vmed (m/s)
105,0 - 115,0	0	0	0,45	0,9	0	0	1,34	4,44
115,0 - 125,0	0	0	0,45	1,34	0	0	1,79	4,49
125,0 - 135,0	0,45	4,48	2,69	0	0	0	7,62	1,83
135,0 - 145,0	0,9	0	0	0,45	0	0	1,34	2,16
145,0 - 155,0	0,45	4,48	3,14	0	0	0	8,06	1,97
155,0 - 165,0	7,62	8,96	0,45	0	0	0	17,03	1,21
165,0 - 175,0	0,9	0,9	0	0	0	0	1,79	1,13
175,0 - 185,0	0	0	0,45	0	0	0	0,45	3,6
185,0 - 195,0	0	0	0	0,45	0	0	0,45	4,09
195,0 - 205,0	0	0,9	0,9	1,34	0	0	3,14	3,86
205,0 - 215,0	2,69	9,86	3,58	3,14	0,45	0	19,71	2,45
215,0 - 225,0	10,75	27,33	19,27	6,27	2,69	0	66,31	2,36
225,0 - 235,0	8,51	59,59	35,84	4,93	3,14	0	112,01	2,34
235,0 - 245,0	20,61	141,58	71,68	3,14	1,34	0	238,35	2,08
245,0 - 255,0	4,48	29,57	12,1	2,24	0,9	0	49,28	2,13
255,0 - 265,0	1,34	13,44	1,79	0	0	0	16,58	1,63

Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud) CUP: D74B16000360001 - CIG: 7822604907


E.05	E.05 – STUDIO METEO DIFFUSIONALE									
INQUINANTI										
23	004	DR	022	0	AMB					

Estate	V1 (0,5 - 1,0)	V2 (1,0 - 2,3)	V3 (2,3 - 3,9)	V4 (3,9 - 6,5)	V5 (6,5 - 12,0)	V6 (> 12,0)	Totale	Vmed (m/s)
265,0 - 275,0	0,9	4,03	1,79	0,9	0	0	7,62	2,02
275,0 - 285,0	0	2,24	0,9	0,9	0	0	4,03	2,64
285,0 - 295,0	0,9	2,69	0,45	0,45	0	0	4,48	1,63
295,0 - 305,0	0,9	3,58	1,79	0	0	0	6,27	2,24
305,0 - 315,0	1,79	3,14	2,24	0,45	0	0	7,62	2,16
315,0 - 325,0	0,45	4,03	2,69	0,45	0,45	0	8,06	2,49
325,0 - 335,0	3,58	4,03	2,69	0,45	0,9	0	11,65	2,4
335,0 - 345,0	1,34	2,69	1,79	0	0,45	0	6,27	2,57
345,0 - 355,0	1,34	1,34	2,24	0,9	0	0	5,82	2,72
Variabili	0	0	0	0	0	0	0	0
Calme < 0,5	18,37	0	0	0	0	0	18,37	0
Totale	108,42	393,37	304,21	179,21	14,78	0	1000	0

Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud) CUP: D74B16000360001 - CIG: 7822604907

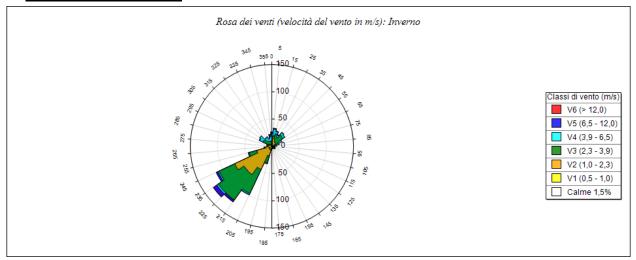
E.05 – STUDIO METEO DIFFUSIONALE
INQUINANTI
23 004 DR 022 0 AMB

<u>Dati stagionali (autunno)</u>

Autunno	V1 (0,5 - 1,0)	V2 (1,0 - 2,3)	V3 (2,3 - 3,9)	V4 (3,9 - 6,5)	V5 (6,5 - 12,0)	V6 (> 12,0)	Totale	Vmed (m/s)
355,0 - 5,0	5,09	9,72	10,19	1,85	0	0	26,85	2,27
5,0 - 15,0	11,57	23,15	6,94	0,93	0	0	42,59	1,71
15,0 - 25,0	2,31	25,46	8,8	5,09	0,93	0	42,59	2,38
25,0 - 35,0	1,39	4,63	4,17	3,24	0,46	0	13,89	2,82
35,0 - 45,0	0,46	5,09	15,28	3,24	0	0	24,07	2,91
45,0 - 55,0	0	0,93	17,13	2,78	0	0	20,83	3,24
55,0 - 65,0	0	2,31	12,5	3,7	0	0	18,52	3,26
65,0 - 75,0	0	0	7,41	2,78	0	0	10,19	3,49
75,0 - 85,0	0	0,46	1,85	4,17	0	0	6,48	3,96
85,0 - 95,0	0	0	1,39	2,31	0	0	3,7	3,8
95,0 - 105,0	0	0	1,85	0,46	0	0	2,31	3,71

Autunno	V1 (0,5 - 1,0)	V2 (1,0 - 2,3)	V3 (2,3 - 3,9)	V4 (3,9 - 6,5)	V5 (6,5 - 12,0)	V6 (> 12,0)	Totale	Vmed (m/s)
105,0 - 115,0	0	0	0	1,85	1,39	0	3,24	5,74
115,0 - 125,0	0	0	1,39	0,46	0	0	1,85	3,23
125,0 - 135,0	0,93	3,24	1,85	1,85	0	0	7,87	2,53
135,0 - 145,0	1,39	0,93	0,46	1,39	0	0	4,17	2,39
145,0 - 155,0	0,46	6,02	0,93	0	0	0	7,41	1,77
155,0 - 165,0	8,33	8,33	0,93	0	0	0	17,59	1,24
165,0 - 175,0	6,48	9,72	0,46	0	0	0	16,67	1,3
175,0 - 185,0	0	0	0,46	0,93	0	0	1,39	4,47
185,0 - 195,0	0	0	3,7	1,39	0	0	5,09	3,24
195,0 - 205,0	4,63	15,74	7,87	1,39	0	0	29,63	1,94
205,0 - 215,0	9,26	28,24	16,2	2,78	2,31	0	58,8	2,19
215,0 - 225,0	6,02	58,8	38,89	4,63	5,09	0	113,43	2,55
225,0 - 235,0	11,57	84,26	31,94	12,5	7,41	0	147,69	2,57
235,0 - 245,0	20,37	134,72	30,56	5,09	1,39	0	192,13	1,96
245,0 - 255,0	4,63	42,59	7,41	0,46	1,39	0	56,48	1,91
255,0 - 265,0	4,17	15,74	1,39	0,46	0,46	0	22,22	1,75

Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud) CUP: D74B16000360001 - CIG: 7822604907


E.05 – STUDIO METEO DIFFUSIONALE								
INQUINANTI								
23	004	DR	022	0	AMB			

Autunno	V1 (0,5 - 1,0)	V2 (1,0 - 2,3)	V3 (2,3 - 3,9)	V4 (3,9 - 6,5)	V5 (6,5 - 12,0)	V6 (> 12,0)	Totale	Vmed (m/s)
265,0 - 275,0	1,85	5,09	0,93	0	0	0	7,87	1,56
275,0 - 285,0	0	3,24	0,93	0	0	0	4,17	1,9
285,0 - 295,0	0,46	5,56	0,93	0,93	0	0	7,87	2,08
295,0 - 305,0	1,39	4,17	0,46	0,46	0	0	6,48	1,51
305,0 - 315,0	0,93	5,56	4,63	0	0	0	11,11	2,03
315,0 - 325,0	0,46	5,09	2,78	0,93	0	0	9,26	2,39
325,0 - 335,0	3,7	5,09	2,31	0,93	0	0	12,04	1,92
335,0 - 345,0	2,78	3,7	0,93	0,46	0	0	7,87	1,63
345,0 - 355,0	2,31	3,24	5,56	0,46	0	0	11,57	2,33
Variabili	0	0	0	0	0	0	0	0
Calme < 0,5	24,07	0	0	0	0	0	24,07	0
Totale	137,04	520,83	251,39	69,91	20,83	0	1000	0

Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud) CUP: D74B16000360001 - CIG: 7822604907

E.05 – STUDIO METEO DIFFUSIONALE
INQUINANTI
23 004 DR 022 0 AMB

Dati stagionali (inverno)

Inverno	V1 (0,5 - 1,0)	V2 (1,0 - 2,3)	V3 (2,3 - 3,9)	V4 (3,9 - 6,5)	V5 (6,5 - 12,0)	V6 (> 12,0)	Totale	Vmed (m/s)
355,0 - 5,0	1,87	3,75	4,68	12,17	3,75	0	26,22	4,53
5,0 - 15,0	5,62	12,64	1,87	11,7	1,4	0	33,24	3,11
15,0 - 25,0	0,94	12,64	10,3	4,21	0,94	0	29,03	2,85
25,0 - 35,0	2,34	6,55	9,36	4,21	1,4	0	23,88	3,2
35,0 - 45,0	0	8,9	16,85	5,15	0,47	0	31,37	2,97
45,0 - 55,0	0	8,43	16,39	4,21	0	0	29,03	2,99
55,0 - 65,0	0	3,28	9,36	7,49	0	0	20,13	3,36
65,0 - 75,0	0	1,4	5,62	7,02	0	0	14,04	3,8
75,0 - 85,0	0	1,4	3,28	4,21	0	0	8,9	3,52
85,0 - 95,0	0	1,4	0,94	1,87	0	0	4,21	3,49
95,0 - 105,0	0	0	2,81	1,4	1,4	0	5,62	4,9

Inverno	V1 (0,5 - 1,0)	V2 (1,0 - 2,3)	V3 (2,3 - 3,9)	V4 (3,9 - 6,5)	V5 (6,5 - 12,0)	V6 (> 12,0)	Totale	Vmed (m/s)
105,0 - 115,0	0	0,47	1,87	2,34	1,87	0	6,55	5,05
115,0 - 125,0	0	0	4,21	0,94	0	0	5,15	3,31
125,0 - 135,0	0,94	0,94	2,81	2,34	0	0	7,02	2,89
135,0 - 145,0	0,94	0,47	0	0,94	0	0	2,34	2,29
145,0 - 155,0	1,87	2,34	0	0,47	0	0	4,68	1,58
155,0 - 165,0	3,28	0,47	0	0,47	0	0	4,21	1,32
165,0 - 175,0	2,34	0,47	1,87	0	0	0	4,68	1,77
175,0 - 185,0	0,47	2,34	1,87	0	0	0	4,68	2,24
185,0 - 195,0	0,47	3,75	1,4	0,94	0	0	6,55	2,2
195,0 - 205,0	4,68	13,58	13,11	1,87	0	0	33,24	2,12
205,0 - 215,0	6,55	40,26	48,69	2,34	0,47	0	98,31	2,38
215,0 - 225,0	7,02	56,18	57,12	0,47	3,28	0,47	124,53	2,51
225,0 - 235,0	4,21	58,52	57,58	3,28	7,49	0,47	131,55	2,83
235,0 - 245,0	6,09	69,29	31,84	2,34	3,28	0	112,83	2,25
245,0 - 255,0	0	28,56	14,98	1,4	0	0	44,94	2,15
255,0 - 265,0	1,87	8,9	2,81	0,94	0	0	14,51	2,01

Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud) CUP: D74B16000360001 - CIG: 7822604907

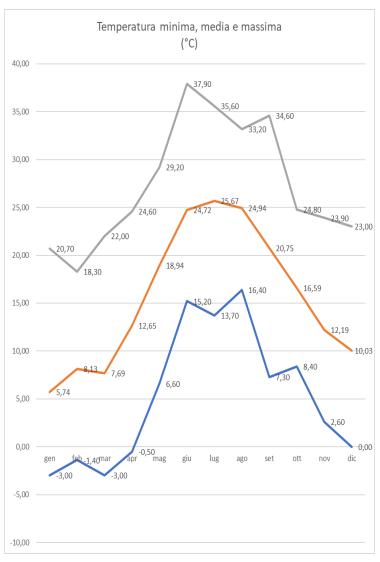
E.05 – STUDIO METEO DIFFUSIONALE								
INQUINANTI								
23	004	DR	022	0	AMB			

Inverno	V1 (0,5 - 1,0)	V2 (1,0 - 2,3)	V3 (2,3 - 3,9)	V4 (3,9 - 6,5)	V5 (6,5 - 12,0)	V6 (> 12,0)	Totale	Vmed (m/s)
265,0 - 275,0	0	7,02	0,47	0,47	0	0	7,96	1,76
275,0 - 285,0	0	5,62	3,28	0	0	0	8,9	2,48
285,0 - 295,0	0,47	3,75	4,68	0,47	0	0	9,36	2,69
295,0 - 305,0	0,47	7,02	10,77	6,55	0,94	0	25,75	3,13
305,0 - 315,0	0,47	5,15	11,24	10,3	0	0	27,15	3,57
315,0 - 325,0	1,87	1,87	8,43	5,62	0,47	0	18,26	3,42
325,0 - 335,0	0,94	0,94	8,43	8,9	0	0	19,19	3,72
335,0 - 345,0	0	4,68	5,15	4,68	0	0	14,51	3,2
345,0 - 355,0	0,94	3,28	3,75	9,83	4,21	0	22	4,55
Variabili	0	0	0	0	0	0	0	0
Calme < 0,5	15,45	0	0	0	0	0	15,45	0
Totale	72,1	386,24	377,81	131,55	31,37	0,94	1000	0

Calme di vento

Le calme di vento hanno un ruolo importante sulla diffusione nell'atmosfera dei gas inquinanti aerodispersi, in quanto limitano il rimescolamento e la diluizione degli inquinanti in atmosfera. Queste situazioni sono spesso causa, in concomitanza con condizioni di stabilità atmosferica e bassa altezza di rimescolamento, dell'instaurarsi di fenomeni di inquinamento acuto.

Per tali ragioni è importante verificarne la frequenza delle occorrenze. Dalla tabella sotto riportata, si evidenzia circa un 4,4% di occorrenze annuali, concentrate con maggiore frequenza in estate ed in primavera.

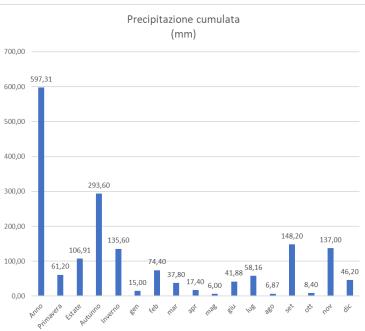

Statistiche velocità del vento		
Paramento	Valore (m/s)	
Dati validi	8760	
Min.	0,00	
Med.	2,59	
Max	12,99	
5° perc.	0,92	
25° perc.	1,49	
50° perc.	2,13	
75° perc.	3,13	
95° perc.	5,70	
Valore soglia calma di vento	0,5	
% Calme	1,99	

Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud) CUP: D74B16000360001 - CIG: 7822604907

E.05 – STUDIO METEO DIFFUSIONALE
INQUINANTI
23 004 DR 022 0 AMB

Regime della temperatutra

Temperatura - (°C)				
Periodo	Minima	Media	Massima	
Anno	-3,00	15,71	37,90	
Primavera	-3,00	13,10	29,20	
Estate	13,70	25,11	37,90	
Autunno	2,60	16,51	34,60	
Inverno	-3,00	7,96	23,00	
gen	-3,00	5,74	20,70	
feb	-1,40	8,13	18,30	
mar	-3,00	7,69	22,00	
apr	-0,50	12,65	24,60	
mag	6,60	18,94	29,20	
giu	15,20	24,72	37,90	
lug	13,70	25,67	35,60	
ago	16,40	24,94	33,20	
set	7,30	20,75	34,60	
ott	8,40	16,59	24,80	
nov	2,60	12,19	23,90	
dic	0,00	10,03	23,00	

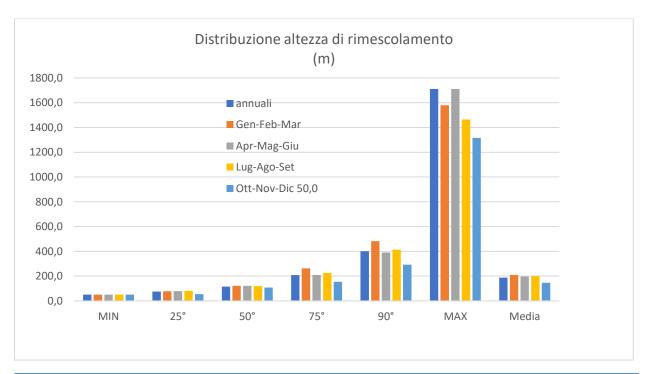


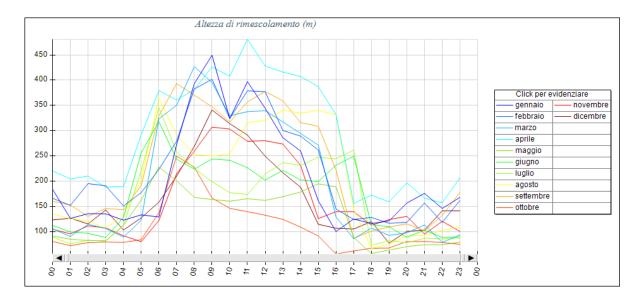
Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud) CUP: D74B16000360001 - CIG: 7822604907

E.05 – STUDIO METEO DIFFUSIONALE
INQUINANTI
23 004 DR 022 0 AMB

Regime delle precipitazioni

Precipitazione (mm/hr)			
Periodo	Media	Massima	Cumulata
Anno	0,07	9,70	597,31
Primavera	0,03	1,80	61,20
Estate	0,05	6,30	106,91
Autunno	0,13	9,70	293,60
Inverno	0,06	5,50	135,60
gen	0,02	0,60	15,00
feb	0,11	5,50	74,40
mar	0,05	1,80	37,80
apr	0,02	1,20	17,40
mag	0,01	0,70	6,00
giu	0,06	2,10	41,88
lug	0,08	6,30	58,16
ago	0,01	0,50	6,87
set	0,21	9,70	148,20
ott	0,01	0,70	8,40
nov	0,19	3,80	137,00
dic	0,06	3,70	46,20




Altezza di rimescolamento

Lo strato di rimescolamento ha un ruolo determinante sulla diffusione nell'atmosfera dei gas inquinanti aerodispersi. In situazioni in cui lo strato presenta altezze dell'ordine dei 100 m, condizione invernale, si crea un effetto di cappa che impedisce il rimescolamento e la diluizione degli inquinanti in atmosfera. Queste situazioni sono spesso causa, in concomitanza con condizioni di stabilità atmosferica, dell'instaurarsi di fenomeni di inquinamento acuto.

Per tali ragioni è importante verificarne la frequenza delle occorrenze. Dalla tabella sotto riportata, si evidenziano altezze di rimescolamento inferiori a 100 m per il 40.1% delle occorrenze annuali, distribuite uniformemente sui quattro trimestri considerati.

Altezza di rimescolamento (m)								
Periodo	MIN	25°	50°	75°	90°	MAX	Media	% occorrenze con altezza rimescolamento < 100m
annuali	50,0	75,7	115,4	208,3	401,3	1711,8	187,6	40,1
Gen-Feb-Mar	50,0	77,0	122,2	262,5	482,6	1578,8	209,5	8,8
Apr-Mag-Giu	50,0	79,3	121,9	209,4	391,0	1711,8	196,8	8,9
Lug-Ago-Set	50,0	81,3	119,6	226,0	413,6	1464,0	198,8	9,3
Ott-Nov-Dic	50,0	54,6	107,5	154,5	292,0	1316,1	146,0	13,1

Classi di stabilità

La classe di stabilità è un indicatore qualitativo dell'intensità della turbolenza atmosferica. La classificazione più comune è quella di Pasquil-Gifford sulla base del gradiente termico verticale e che considera sei possibili condizioni:

- 1. condizione A: fortemente instabile;
- 2. condizione C: leggermente instabile;
- 3. condizione B: moderatamente instabile;
- 4. condizione C: leggermente instabile;
- 5. condizione D: neutra;
- 6. condizione E: leggermente stabile;
- 7. condizione F: stabile.

Vi è poi un'ulteriore classe G che generalmente viene aggregata ed indicata F+G rappresentante una classe estremamente stabile.

Nel caso di condizioni instabili, gli inquinanti sono facilmente dispersi in atmosfera, per effetto della turbolenza convettiva e/o meccanica, mentre, in condizioni stabili gli inquinanti tendono a rimanere confinati in uno stretto strato atmosferico, all'altezza della sorgente che li emette, a causa della scarsa capacità di diluizione dell'atmosfera. Si osserva ingenerale su tutte le stagioni condizioni prevalenti di stabilità (E, F+G), prevalenti nelle ore serali, notturne e di mattina presto.

Si osserva ingenerale su tutte le stagioni condizioni prevalenti di stabilità (D, E, F+G), in genere superiori al 70% nei mesi di gennaio-febbraio-marzo-ottobre-novembre-dicembre, mentre nei restanti mesi sono di poco superiori al 50%. Complessivamente in un anno solare circa il 62.9% delle cadenze orarie prevalgono le classi D, E, F+G.

Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud) CUP: D74B16000360001 - CIG: 7822604907

E.05 – STUDIO METEO DIFFUSIONALE INQUINANTI					
23	004	DR	022	0	AMB

Frequenze annuali delle classi di stabilità atmosferica - (%)							
Periodo	А	В	С	D	Е	F+G	Totali
annuali	0,3	13,5	23,3	17,8	5,4	39,6	100,0
Gen-Feb-Mar	0,0	4,9	20,7	25,0	8,5	40,8	100,0
Apr-Mag-Giu	1,1	21,4	23,9	16,1	3,6	33,9	100,0
Lug-Ago-Set	0,3	20,8	25,8	11,2	3,4	38,5	100,0
Ott-Nov-Dic	0,0	6,6	22,8	19,1	6,2	45,4	100,0

Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud) CUP: D74B16000360001 - CIG: 7822604907

E.05 – STUDIO METEO DIFFUSIONALE
INQUINANTI
23 004 DR 022 0 AMB

Capitolo 9 Valutazione effetto Downwash

La valutazione dell'"effetto scia" si basa sull'inserimento, tra i valori di input associati ad ogni camino emissivo, dei valori effettivi di altezza (BH) e lunghezza (BW) degli ostacoli così come sarebbero effettivamente "percepiti" dal camino per ogni settore angolare di 10 gradi di provenienza del vento lungo tutta la rosa dei venti.

Si tratta quindi di effettuare una valutazione geometrica delle posizioni relative camino/ostacolo lungo piani perpendicolari alla bisettrice di ognuno dei 36 settori angolari in cui è suddivisibile la rosa dei venti.

Per la valutazione automatica dei coefficienti BH e BW é consigliato l'uso del modello BPIP che è scaricabile dal sito EPA.

Il modello BPIP fa riferimento alle indicazioni US-EPA contenute nel documento EPA-450/4-80-023R Guideline for Determination of Good Engineering Practice Stack Height - (GEP) e permette di valutare i 36 valori di BH e BW per ogni camino emissivo anche per sistemi camino-edifici relativamente complessi specificando in input le coordinate dei camini e degli angoli degli edifici.

L'opzione di building downwash non è applicabile alle sorgenti areali.

Nell'attuale versione di MMS.Calpuff (vers. 1.20.0.0) è stato integrato nel software il calcolo dei coefficienti per la valutazione del Building Downwash tramite l'utility BPIP.

Capitolo 10 Valori di fondo della qualità dell'aria

Si è tenuto conto dei valori di fondo di qualità dell'aria relativi al 2021 rilevati dalle seguenti stazioni:

STAZIONE DI ORTONA VILLA CALDARI (fondo suburbano): PM₁₀, PM_{2.5};

scelta in quanto è la stazione di monitoraggio più vicina all'impianto. Gli ultimi dati di riferimento validati e reperibili sono riferiti al 2022.

Gli ultimi dati di riferimento validati e reperibili dal sito della Regione Sicilia sono riferiti al 2020

PM ₁₀	STAZIONE DI ORTONA
	VILLA CALDARI
MEDIA ANNUA (ug/m3)	16,2
MAX VALORE GIORNALIERO (ug/m³)	48,6
90,4° DEI VALORI GIORNALIERI (ug/m³)	27,9

F 1V12.5	STAZIONE DI ORTONA VILLA CALDARI
MEDIA ANNUA (ug/m³)	11,3

Per il calcolo del contributo dei valori di fondo dei valori orari, giornalieri e di percentile é stato applicato il metodo B (somma dei quadrati) suggerito dall'UK-EA (*UK-EA*, "The Addition of Background Concentrations to Modelled Contributions from Discharge Stacks", Research and Development, Technical Report P361, 2000:

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_dat a/file/290274/strp361-e-e.pdf).

Capitolo 11 Dati di ingresso e modellistici

Le simulazioni sono state eseguite utilizzando come dati di input i valori riportati nella tabella di seguito riportata. I calcoli sono stati eseguiti:

- considerando l'orografia dell'area circostante l'impianto e considerando un dominio di calcolo di dimensione 2,7 Km x 3,0 Km con passo 100 m (fattore di nasting 3);
- i valori di orografia utilizzati sono stati estratti dal DTM NASA SRTM3 mentre i valori di uso del suolo sono stati ottenuti dal Corine Land Cover 2000;
- per il calcolo delle concentrazioni odorigene e degli inquinanti in aria sono stati disattivati gli algoritmi di calcolo della deposizione secca ed umida;
- è stato considerando l'effetto di building downwash;
- la velocità di soglia delle calme di vento è pari a 0,5 m/s (il modello Calpuff può simulare le calme di vento, è questo un vantaggio rispetto ai modelli gaussiani).

11.1 Fase di cantiere - Parametri di ingresso emissioni pulvirolente

Di seguito si riportano i parametri di ingresso nel modello, utilizzati per valutare l'impatto delle emissioni pulverulente associate alle lavorazioni del cantiere. Nella tabella è riportato il rateo emissivo prodotto dalla somma delle lavorazioni di cantiere che tengono conto della produzione di polvere dovuta alle lavorazioni di tipo "edile/cantieristico".

Tabella 3: quadro emissivo scenario di cantiere.

SORGENTI AREALI PASSIVE Coordinate geografiche, geometria, caratteristiche effluente		
Id Sorgente	AREA CANTIERE Ex molo nord	
Coordinate vertici X (m) UTM 33	452505,4; 452548,6; 452548,6; 452505,4	
Coordinate vertici Y (m) UTM 33	4688951,6; 4688951,6; 4688908,4; 4688908,4	
Quota base (m s.l.m)	0	
Altezza punto di emissione (m)	0	
Orientamento (rotazione sul piano dalla direzione nord)		
Area superficie emissiva (m2)	1866,24	
Sigma Z (m3/s)	10	
Profilo temporale delle emissioni	Fattori moltiplicativi orari: 0; 0; 0; 0; 0; 0; 0; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0;	

SORGENTI AREALI PASSIVE		
Coordinate geografiche, geometria, caratteristiche effluente		
Temperatura effluente (°K)	Temperatura ambiente	
Velocità effluente (m/s)	0	
Rate di emissione totale (odori in ouE/s, altri in g/s)	PM10: 1,476E-001 PM2.5: 1,476E-002	
Rate di emissione per unità di superficie (odori in ouE/(s*m2), altri in g/(s*m2))	PM10: 7,910E-005 PM2.5: 7,910E-006	
Altro - Note		
Id Sorgente	AREA CANTIERE Molo sud	
Coordinate vertici X (m) UTM 33	452706,4; 452799,6; 452799,6; 452706,4	
Coordinate vertici Y (m) UTM 33	4688809,6; 4688809,6; 4688716,4; 4688716,4	
Quota base (m s.l.m)	0	
Altezza punto di emissione (m)	0	
Orientamento (rotazione sul piano dalla direzione nord)		
Area superficie emissiva (m2)	8686,24	
Sigma Z (m3/s)	10	
Profilo temporale delle emissioni	Fattori moltiplicativi orari: 0; 0; 0; 0; 0; 0; 0; 1; 1; 1; 1; 1; 1; 1; 1; 1; 0; 0; 0; 0; 0; 0; 0; 0;	
Temperatura effluente (°K)	Temperatura ambiente	
Velocità effluente (m/s)	0	
Rate di emissione totale (odori in ouE/s, altri in g/s)	PM10: 6,871E-001 PM2.5: 6,871E-002	
Rate di emissione per unità di superficie (odori in ouE/(s*m2), altri in g/(s*m2))	PM10: 7,910E-005 PM2.5: 7,910E-006	
Altro - Note		

È stata assunta un'operatività del cantiere per 10 ore al giorno.

Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud) CUP: D74B16000360001 - CIG: 7822604907

E.05 – STUDIO METEO DIFFUSIONALE
INQUINANTI
23 004 DR 022 0 AMB

11.2 Fase di cantiere – Impostazioni modellistiche

SIMULAZIONE Input meteorologici		
Tipologia dati	Campi meteorologici 3D calcolati da CALMET	
Dominio temporale (daa)	01/01/2022 00:00:00 <> 01/01/2023 01:00:00	
Nome modello meteo diagnostico	CALMET	
Numero di celle	35 x 35	
Dimensione celle (m)	300 x 300	
Dimensione dominio di calcolo (m)	10500 x 10500	
Coordinata X (m) vertice SO	446665	
Coordinata Y (m) vertice SO	4683731	
Numero di livelli verticali	9 (0 - 20 - 50 - 100 - 200 - 500 - 1000 - 2000 - 4000)	
% dati validi di VV	Dati disponibili nel report fornitura dati meteorologici	
% dati validi di DV	Dati disponibili nel report fornitura dati meteorologici	
% dati di VV < 0.5 m/s (calme di vento)	Dati disponibili nel report fornitura dati meteorologici	
VV min	Dati disponibili nel report fornitura dati meteorologici	
VV max	Dati disponibili nel report fornitura dati meteorologici	
VV media	Dati disponibili nel report fornitura dati meteorologici	
Moda di VV	Dati disponibili nel report fornitura dati meteorologici	
Mediana di VV	Dati disponibili nel report fornitura dati meteorologici	
25° percentile di VV	Dati disponibili nel report fornitura dati meteorologici	
75° percentile di VV	Dati disponibili nel report fornitura dati meteorologici	
Altro - Note		

SIMULAZIONE Tipologia modello e parametrizzazione		
Nome e versione software utilizzato	MMS Calpuff v.1.20.0.0 - CALPUFF version 6.42 level 110325	
Nome del calcolo	CANTIERE SIGMA 50	
Calcolo del Building Down Wash	Calcolato con modello ISC. Vedere le schede delle singole sorgenti per l'utilizzo.	
Calcolo del Plume Rise	Sì	
Calcolo della Deposizione Secca	PM10: No PM2.5: No	
Calcolo della Deposizione Umida	PM10: No PM2.5: No	
Reazioni Chimiche		
Metodo utilizzato per il calcolo dei coefficienti di dispersione	Coefficienti di Pasquill Gifford per aree rurali (equazioni ISC) e coefficienti di McElroy-Pooler per aree urbane.	
ALTRO . NOTE		

SIMULAZIONE Orografia ed uso del suolo							
Risoluzione originaria DTM (m)	Dati disponibili nel report fornitura dati meteorologici						
Fonte dati DTM	Dati disponibili nel report fornitura dati meteorologici						
Risoluzione originaria uso suolo	Dati disponibili nel report fornitura dati meteorologici						
Fonte dati uso del suolo	Dati disponibili nel report fornitura dati meteorologici						
ALTRO – NOTE							

SIMULAZIONE Griglia di calcolo						
Tipologia griglia	Regolare					
Numero di celle	28 x 31					
Dimensione celle	100,0 DX(m) x 100,0 DY(m)					
Dimensione dominio di calcolo	2700,0 (m) x 3000,0 (m)					
Coordinate vertice Sud Ovest	450365 X(m); 4687731 Y(m) 33N					
ALTRO – NOTE						

Azienda
Regionale
Attività
Produttive

Completamento interventi sul porto di Ortona
(approfondimento dragaggio, prolungamento diga sud)
CUP: D74B16000360001 - CIG: 7822604907

Completamento interventi sul porto di Ortona
(approfondimento dragaggio, prolungamento diga sud)
CUP: D74B16000360001 - CIG: 7822604907

E.05 – STUDIO METEO DIFFUSIONALE
INQUINANTI

23 004 DR 022 0 AMB

Capitolo 12 Impatto scenario di cantiere

Nei paragrafi seguenti sono riportati i risultati delle simulazioni.

Azienda
Regionale
Attività
Produttive

Completamento interventi sul porto di Ortona
(approfondimento dragaggio, prolungamento diga sud)
CUP: D74B16000360001 - CIG: 7822604907

Completamento interventi sul porto di Ortona
(approfondimento dragaggio, prolungamento diga sud)
CUP: D74B16000360001 - CIG: 7822604907

E.05 - STUDIO METEO DIFFUSIONALE
INQUINANTI

23 004 DR 022 0 AMB

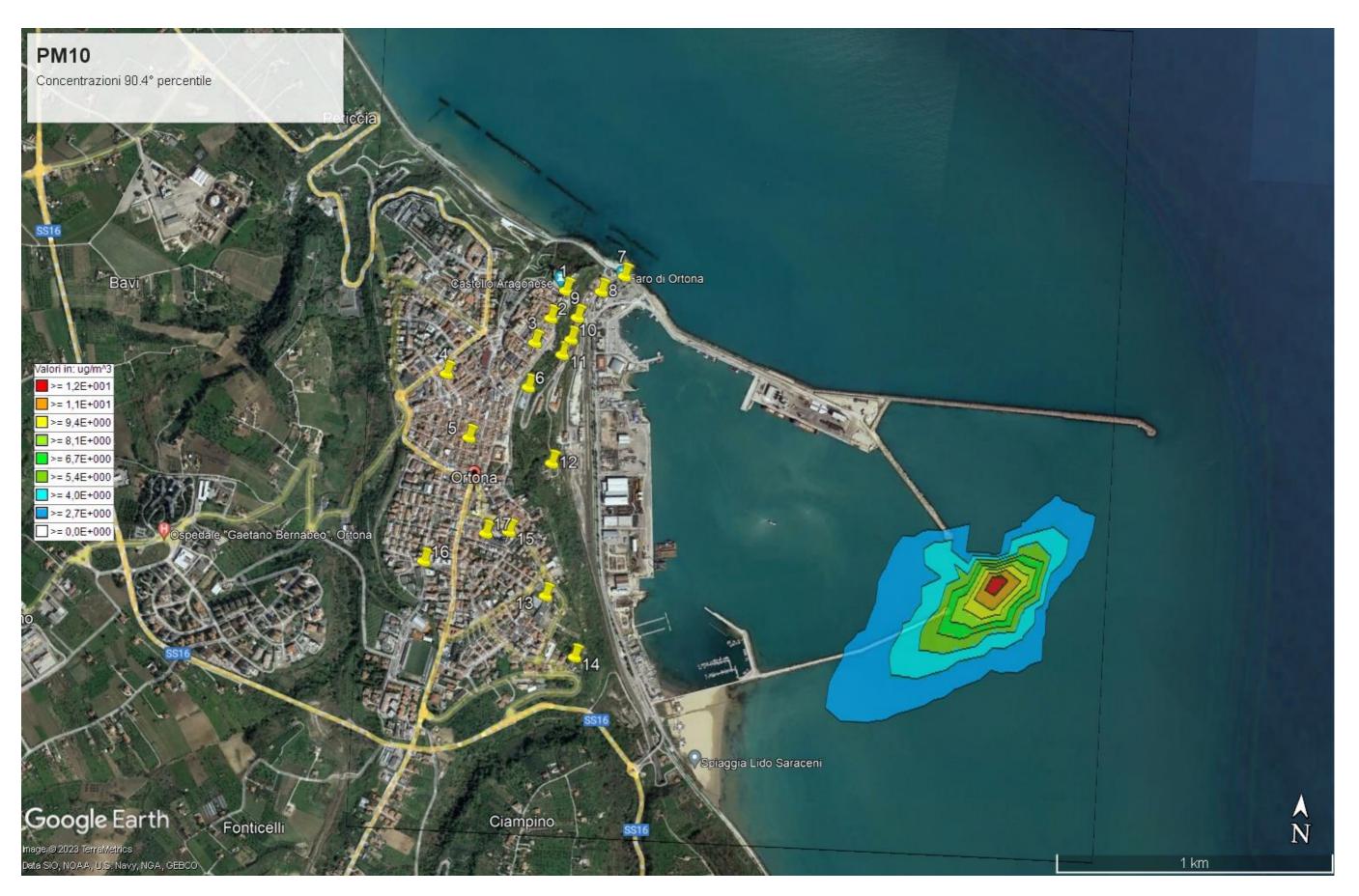
Tabella 4: PM₁₀/PM_{2.5}- Impatto fase di cantiere

SCENARIO DI	CANTIERE																
Descrizione	X (m)	Y (m)	SOLO IMPIANTO 90.4° (ug/m3)	FONDO 90,4° (ug/m3)	IMPIANTO + FONDO 90,4° (ug/m3)	SOLO IMPIANTO MAX GIORNALIERO (ug/m3)	FONDO MAX GIORNALIERO (ug/m3)	IMPIANTO + FONDO MAX GIORNALIERO (ug/m3)	Limite giornaliero (ug/m3)	PM10 SOLO IMPIANTO MEDIA ANNUA (ug/m3)	PM10 FONDO MEDIA ANNUA (ug/m3)	PM10 IMPIANTO + FONDO MEDIA ANNUA (ug/m3)	Limite medio annuale (ug/m3)	PM2,5 SOLO IMPIANTO MEDIA ANNUA (ug/m3)	PM2,5 FONDO MEDIA ANNUA (ug/m3)	PM2,5 IMPIANTO + FONDO MEDIA ANNUA (ug/m3)	Limite medio annuale (ug/m3)
MAX	452665	4688731	13,5	27,9	37,3	28,2	48,6	62,5	50	8,3	16,2	24,5	40	0,8	11,3	12,1	25
1	451103	4689706	0,1	27,9	27,9	1,2	48,6	48,7	50	0,0	16,2	16,2	40	0,0	11,3	11,3	25
2	451054	4689604	0,1	27,9	27,9	1,4	48,6	48,7	50	0,0	10,0	10,0	40	0,0	11,3	11,3	25
3	451000	4689514	0,1	27,9	27,9	1,6	48,6	48,7	50	0,0	16,2	16,2	40	0,0	11,3	11,3	25
4	450687	4689386	0,1	27,9	27,9	0,9	48,6	48,6	50	0,0	16,2	16,2	40	0,0	11,3	11,3	25
5	450779	4689160	0,1	27,9	27,9	0,6	48,6	48,6	50	0,0	16,2	16,2	40	0,0	11,3	11,3	25
6	450984	4689352	0,1	27,9	27,9	1,4	48,6	48,7	50	0,0	16,2	16,2	40	0,0	11,3	11,3	25
7	451312	4689768	0,1	27,9	27,9	1,8	48,6	48,7	50	0,0	16,2	16,2	40	0,0	11,3	11,3	25
8	451231	4689708	0,1	27,9	27,9	0,9	48,6	48,7	50	0,0	16,2	16,2	40	0,0	11,3	11,3	25
9	451150	4689610	0,1	27,9	27,9	1,6	48,6	48,7	50	0,0	16,2	16,2	40	0,0	11,3	11,3	25
10	451130	4689531	0,1	27,9	27,9	1,7	48,6	48,7	50	0,0	16,2	16,2	40	0,0	11,3	11,3	25
11	451101	4689474	0,2	27,9	28,0	1,8	48,6	48,7	50	0,1	16,2	16,3	40	0,0	11,3	11,3	25
12	451083	4689082	0,2	27,9	28,0	1,0	48,6	48,7	50	0,1	16,2	16,3	40	0,0	11,3	11,3	25
13	451084	4688604	0,3	27,9	28,0	1,0	48,6	48,7	50	0,1	16,2	16,3	40	0,0	11,3	11,3	25
14	451199	4688390	0,3	27,9	28,0	1,0	48,6	48,7	50	0,1	16,2	16,3	40	0,0	11,3	11,3	25
15	450940	4688830	0,2	27,9	28,0	0,9	48,6	48,7	50	0,1	16,2	16,3	40	0,0	11,3	11,3	25
16	450638	4688708	0,1	27,9	27,9	0,6	48,6	48,6	50	0,0	16,2	16,2	40	0,0	11,3	11,3	25
17	450857	4688820	0,1	27,9	27,9	0,8	48,6	48,7	50	0,0	16,2	16,2	40	0,0	11,3	11,3	25

Per la fase di cantiere si osserva un impatto compreso entro i valori limite normativi, considerando i valori di fondo, su tutto il reticolo di calcolo compreso il punto in cui si realizzano le massime concentrazioni.

Azienda
Regionale
Attività
Produttive

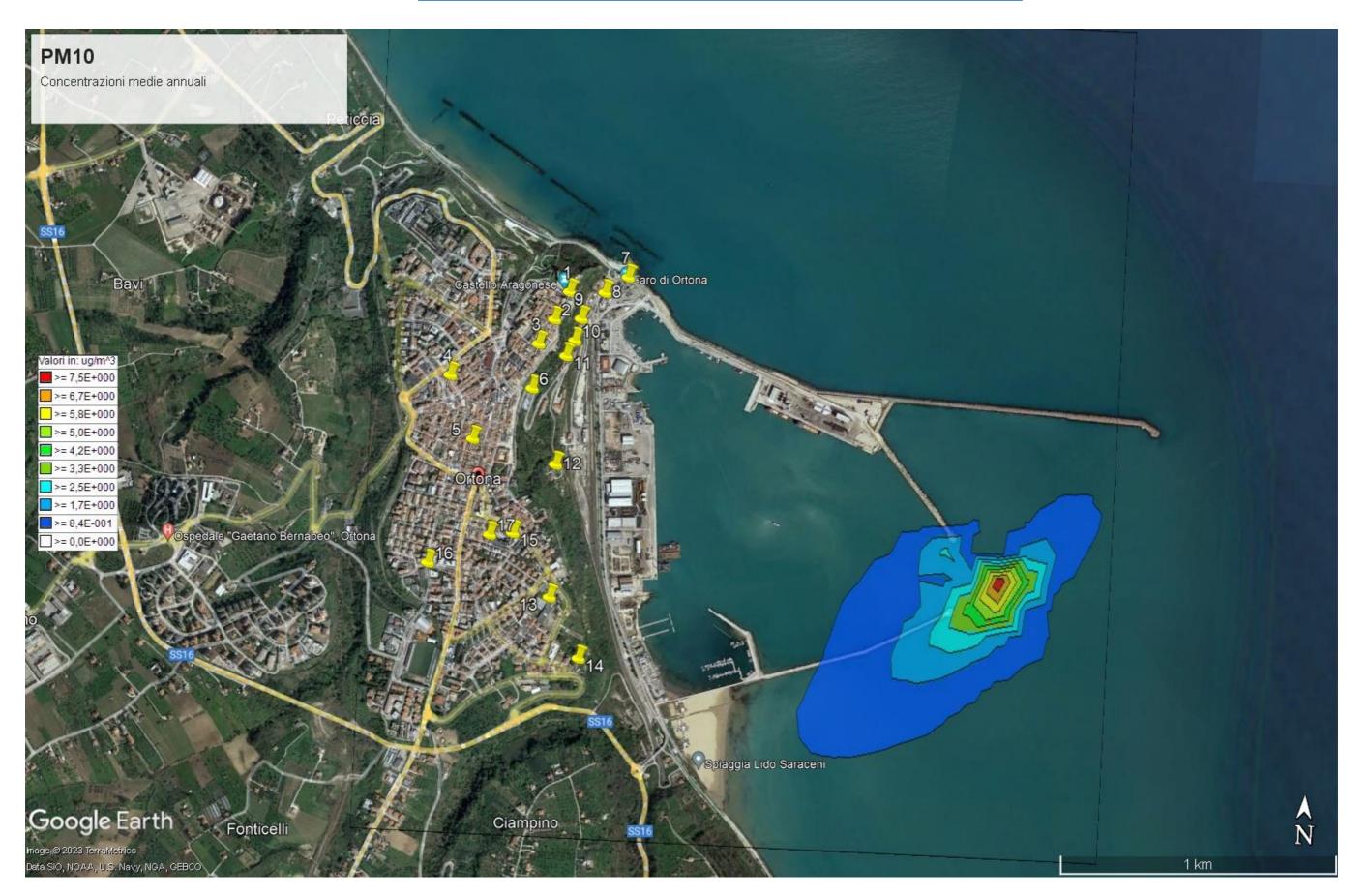
Completamento interventi sul porto di Ortona
(approfondimento dragaggio, prolungamento diga sud)
CUP: D74B16000360001 - CIG: 7822604907


Completamento interventi sul porto di Ortona
(approfondimento dragaggio, prolungamento diga sud)
CUP: D74B16000360001 - CIG: 7822604907

23 004 DR 022 0 AMB

Azienda Regionale Attività Produttive CUP: D74B16000360001 - CIG: 7822604907 E.05 - STUDIO METEO DIFFUSIONALE INQUINANTI

CUP: D74B16000360001 - CIG: 7822604907 23 004 DR 022 0 AMB

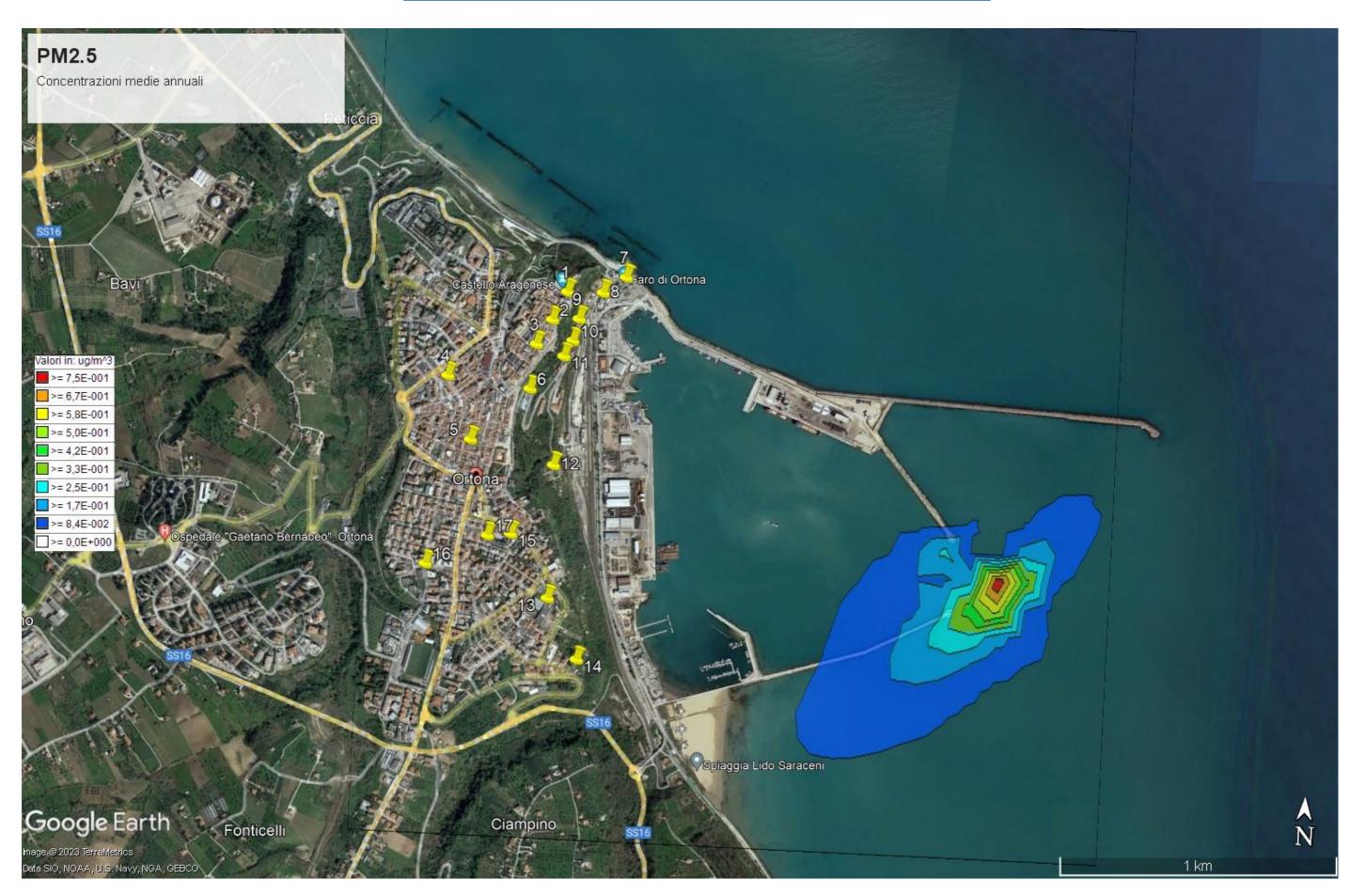


Azienda
Regionale
Attività
Produttive

Completamento interventi sul porto di Ortona
(approfondimento dragaggio, prolungamento diga sud)
CUP: D74B16000360001 - CIG: 7822604907

Completamento interventi sul porto di Ortona
(approfondimento dragaggio, prolungamento diga sud)
CUP: D74B16000360001 - CIG: 7822604907

23 004 DR 022 0 AMB



Azienda
Regionale
Attività
Produttive

Completamento interventi sul porto di Ortona
(approfondimento dragaggio, prolungamento diga sud)
CUP: D74B16000360001 - CIG: 7822604907

Completamento interventi sul porto di Ortona
(approfondimento dragaggio, prolungamento diga sud)
CUP: D74B16000360001 - CIG: 7822604907

23 004 DR 022 0 AMB

Completamento interventi sul porto di Ortona (approfondimento dragaggio, prolungamento diga sud) CUP: D74B16000360001 - CIG: 7822604907

E.05	– STU	OIO ME	TEO DII	FFUSIO	NALE
		INQUI	NANTI		
23	004	DR	022	0	AMB

Capitolo 13 Conclusioni

Per la fase di cantiere, dalle simulazioni effettuate, saranno rispettati tutti i limiti normativi previsti per gli inquinanti trattati (PM_{10} , $PM_{2.5}$) considerando anche i valori di fondo.

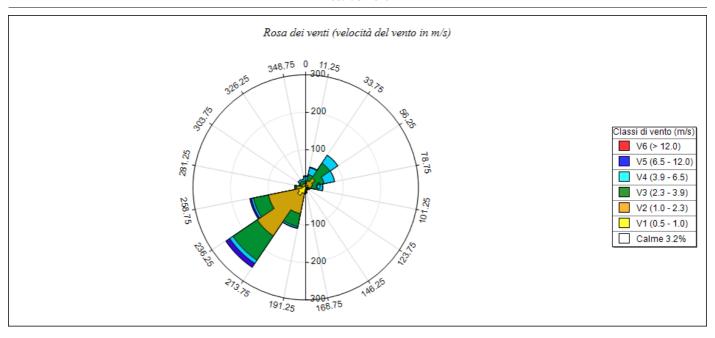
Si evidenzia che l'impatto delle lavorazioni avrà durata temporanea in quanto legata esclusivamente allo svolgimento delle operazioni di cantiere prevista (si veda la durata delle rispettive lavorazioni nel cronoprogramma allegato al progetto), e che non sono stati considerati interventi mitigativi di bagnatura, che permetteranno di ridurre in maniera significativo l'impatto della fase di cantiere in particolare per la componente pulverulenta.

Alla luce delle precedenti considerazioni si ritiene che l'impatto della fase di cantiere, risulti ampiamente compatibile con i limiti normativi previsti dall'attuale legislazione a protezione dell'ambiente. L'unico punto in cui si potranno registrare superamenti è collocato in mare in un'area distante dai ricettori residenziali e sensibili individuati.

Dunque, presso l'area abitata di Ortona saranno rispettati tutti i limiti normativi previsti per le PM10 e PM2.5.

Azienda Regionale	Regionale Attività CLIP: D74B16000360001 - CLG: 7822604907	E.05	E.05 – STUDIO METEO DIFFUSIONALE INQUINANTI					
Attività Produttive	711	23	004	DR	022	0	AMB	

ALLEGATO 1 - FILE METEO

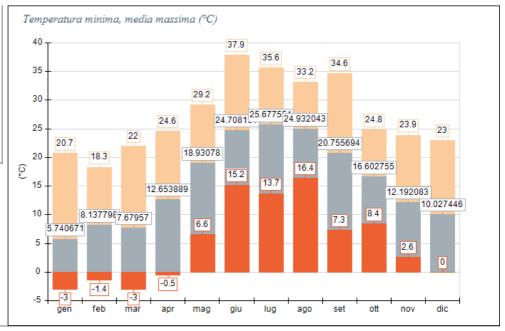


Rapporto generato dal software MMS Calpuff prodotto da Maind S.r.l. (01/06/2023)

Informazioni di base

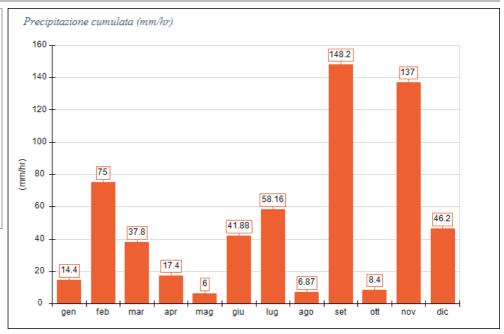
Elemento Valore CALMET file di input stazione al suolo Tipologia dati meteorologici Periodo dei dati 01/01/2022 00:00:00 <-> 01/01/2023 00:00:00 8761 Ore totali Valore limite per determinare le calme di vento 0.5 (m/s) Rosa dei venti fattore di normalizzazione 1000 PESCARA LIBP 162300 Stazione Posizione della stazione di misura 42.431997°N - 14.180990°E File con i dati utilizzati $\underline{C:\ ProgramData\ Maind\ MeteoReport\ meteodata.txt}$

Rosa dei venti



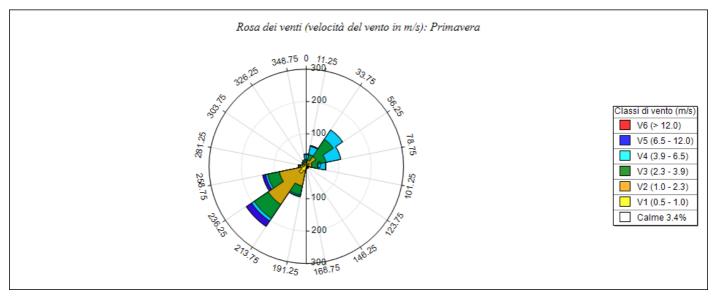
SECTORS	V1 (0.5 - 1.0)	V2 (1.0 - 2.3)	V3 (2.3 - 3.9)	V4 (3.9 - 6.5)	V5 (6.5 - 12.0)	V6 (> 12.0)	Totale	Vmed (m/s)
348.8 - 11.3	2.74	6.05	8.22	11.64	1.94	0.00	30.59	3.64
11.3 - 33.8	3.99	14.04	16.55	18.72	1.83	0.00	55.13	3.33
33.8 - 56.3	7.65	22.49	47.60	25.00	0.34	0.00	103.07	3.05
56.3 - 78.8	4.68	14.15	31.05	28.54	0.11	0.00	78.53	3.30
78.8 - 101.3	3.99	10.62	14.38	15.98	0.68	0.00	45.66	3.25
101.3 - 123.8	2.28	3.08	2.74	2.17	0.91	0.00	11.19	2.99
123.8 - 146.3	2.40	1.94	2.51	2.05	0.00	0.00	8.90	2.50
146.3 - 168.8	1.37	2.97	0.91	0.23	0.00	0.00	5.48	1.84
168.8 - 191.3	5.14	6.51	2.85	0.91	0.00	0.00	15.41	1.83
191.3 - 213.8	16.21	55.24	34.70	4.11	1.14	0.00	111.40	2.15
213.8 - 236.3	25.91	129.32	78.07	10.39	12.33	0.23	256.25	2.50
236.3 - 258.8	19.86	81.04	40.86	5.36	4.34	0.00	151.47	2.28
258.8 - 281.3	9.02	14.27	4.79	1.37	0.11	0.00	29.56	1.87
281.3 - 303.8	4.91	5.94	4.91	2.17	0.23	0.00	18.15	2.32
303.8 - 326.3	4.11	6.16	9.25	4.79	0.23	0.00	24.54	2.77
326.3 - 348.8	4.91	6.51	6.28	4.79	0.34	0.00	22.83	2.69
Variabili	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Calme < 0.5	31.85	0.00	0.00	0.00	0.00	0.00	31.85	0.00
Totale	151.01	380.32	305.67	138.23	24.54	0.23	1000.00	0.00

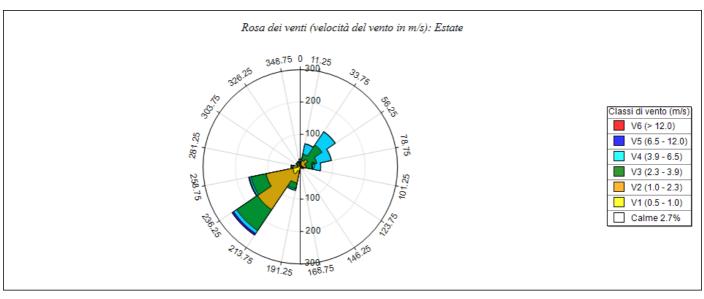
Temperatura (°C)


Periodo	Minima	Media	Massima
Anno	-3.00	15.71	37.90
Primavera	-3.00	13.09	29.20
Estate	13.70	25.11	37.90
Autunno	2.60	16.52	34.60
Inverno	-3.00	7.96	23.00

Periodo	Minima	Media	Massima
gen	-3.00	5.74	20.70
feb	-1.40	8.14	18.30
mar	-3.00	7.68	22.00
apr	-0.50	12.65	24.60
mag	6.60	18.93	29.20
giu	15.20	24.71	37.90
lug	13.70	25.68	35.60
ago	16.40	24.93	33.20
set	7.30	20.76	34.60
ott	8.40	16.60	24.80
nov	2.60	12.19	23.90
dic	0.00	10.03	23.00

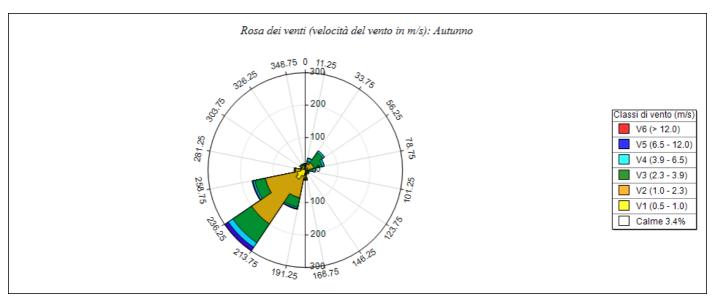
Precipitazione (mm/hr)


Periodo	Media	Massima	Cumulata
Anno	0.07	9.70	597.31
Primavera	0.03	1.80	61.20
Estate	0.05	6.30	106.91
Autunno	0.13	9.70	293.60
Inverno	0.06	5.50	135.60
gen	0.02	0.60	14.40
feb	0.11	5.50	75.00
mar	0.05	1.80	37.80
apr	0.02	1.20	17.40
mag	0.01	0.70	6.00
giu	0.06	2.10	41.88
lug	0.08	6.30	58.16
ago	0.01	0.50	6.87
set	0.21	9.70	148.20
ott	0.01	0.70	8.40
nov	0.19	3.80	137.00
dic	0.06	3.70	46.20

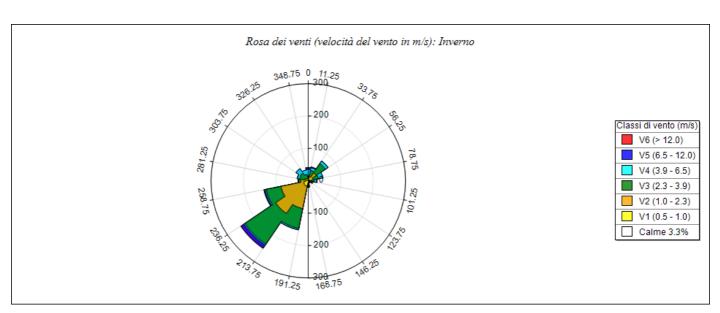

Percentuale dati validi

Periodo	Dir. vento	Vel. vento	Temp. aria	Precip.	Pres.	UR
Periodo Completo	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
Primavera	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
Estate	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
Autunno	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
Inverno	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
gen	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
feb	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
mar	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
apr	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
mag	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
giu	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
lug	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
ago	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
set	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
ott	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
nov	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
dic	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%

Rose dei venti stagionali



Primavera	V1 (0.5 - 1.0)	V2 (1.0 - 2.3)	V3 (2.3 - 3.9)	V4 (3.9 - 6.5)	V5 (6.5 - 12.0)	V6 (> 12.0)	Totale	Vmed (m/s)
348.8 - 11.3	3.14	7.62	10.75	14.34	1.79	0.00	37.63	3.56
11.3 - 33.8	5.38	13.89	17.92	25.54	2.69	0.00	65.41	3.39
33.8 - 56.3	11.65	24.19	64.52	34.50	0.00	0.00	134.86	3.08
56.3 - 78.8	4.48	12.99	44.35	46.59	0.00	0.00	108.42	3.55
78.8 - 101.3	5.38	10.75	19.27	24.19	0.90	0.00	60.48	3.48
101.3 - 123.8	1.79	3.14	1.34	0.90	0.45	0.00	7.62	2.46
123.8 - 146.3	0.90	1.79	4.03	1.34	0.00	0.00	8.06	2.71
146.3 - 168.8	1.79	0.90	0.90	0.00	0.00	0.00	3.58	1.71
168.8 - 191.3	2.69	5.82	0.45	0.00	0.00	0.00	8.96	1.46
191.3 - 213.8	14.34	47.49	29.12	3.58	1.34	0.00	95.88	2.19
213.8 - 236.3	26.43	115.14	51.97	9.41	20.16	0.00	223.12	2.68
236.3 - 258.8	16.13	68.55	36.74	6.72	8.96	0.00	137.10	2.57
258.8 - 281.3	7.62	10.30	4.93	1.79	0.00	0.00	24.64	1.90
281.3 - 303.8	5.38	6.72	0.90	0.00	0.00	0.00	12.99	1.49
303.8 - 326.3	7.17	2.69	5.38	1.79	0.00	0.00	17.03	2.05
326.3 - 348.8	4.48	7.62	4.48	4.03	0.00	0.00	20.61	2.46
Variabili	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Calme < 0.5	33.60	0.00	0.00	0.00	0.00	0.00	33.60	0.00
Totale	152.33	339.61	297.04	174.73	36.29	0.00	1000.00	0.00



Estate	V1 (0.5 - 1.0)	V2 (1.0 - 2.3)	V3 (2.3 - 3.9)	V4 (3.9 - 6.5)	V5 (6.5 - 12.0)	V6 (> 12.0)	Totale	Vmed (m/s)
348.8 - 11.3	2.69	4.48	6.72	9.41	0.45	0.00	23.75	3.34
11.3 - 33.8	3.58	16.13	20.16	31.81	0.90	0.00	72.58	3.53
33.8 - 56.3	6.27	21.51	52.87	48.84	0.90	0.00	130.38	3.43
56.3 - 78.8	4.48	11.20	36.29	45.25	0.45	0.00	97.67	3.61
78.8 - 101.3	3.58	14.78	19.71	24.64	0.45	0.00	63.17	3.34
101.3 - 123.8	2.24	4.93	1.34	2.24	0.00	0.00	10.75	2.60
123.8 - 146.3	3.58	1.79	0.00	0.45	0.00	0.00	5.82	1.52
146.3 - 168.8	0.45	2.69	0.45	0.00	0.00	0.00	3.58	1.80
168.8 - 191.3	0.45	1.34	0.45	0.45	0.00	0.00	2.69	2.40
191.3 - 213.8	13.89	37.19	18.37	4.48	0.45	0.00	74.37	2.10
213.8 - 236.3	26.43	132.62	77.51	11.20	5.82	0.00	253.58	2.30
236.3 - 258.8	23.30	84.23	47.04	5.38	2.24	0.00	162.19	2.19
258.8 - 281.3	7.17	14.78	4.48	1.79	0.00	0.00	28.23	1.86
281.3 - 303.8	3.58	4.48	2.24	0.45	0.00	0.00	10.75	1.97

Estate	V1 (0.5 - 1.0)	V2 (1.0 - 2.3)	V3 (2.3 - 3.9)	V4 (3.9 - 6.5)	V5 (6.5 - 12.0)	V6 (> 12.0)	Totale	Vmed (m/s)
303.8 - 326.3	3.14	6.27	5.38	0.90	0.45	0.00	16.13	2.33
326.3 - 348.8	6.27	5.38	4.03	0.45	1.34	0.00	17.47	2.46
Variabili	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Calme < 0.5	26.88	0.00	0.00	0.00	0.00	0.00	26.88	0.00
Totale	137.99	363.80	297.04	187.72	13.44	0.00	1000.00	0.00

Autunno	V1 (0.5 - 1.0)	V2 (1.0 - 2.3)	V3 (2.3 - 3.9)	V4 (3.9 - 6.5)	V5 (6.5 - 12.0)	V6 (> 12.0)	Totale	Vmed (m/s)
348.8 - 11.3	3.70	5.56	9.72	1.39	0.00	0.00	20.37	2.41
11.3 - 33.8	4.63	14.81	8.80	8.33	1.39	0.00	37.96	2.81
33.8 - 56.3	9.26	18.06	37.96	6.02	0.00	0.00	71.30	2.58
56.3 - 78.8	6.02	20.83	26.39	6.48	0.00	0.00	59.72	2.55
78.8 - 101.3	1.39	11.57	10.65	6.94	0.00	0.00	30.56	2.78
101.3 - 123.8	3.70	2.31	2.31	2.31	1.39	0.00	12.04	2.86
123.8 - 146.3	3.70	4.17	3.24	3.24	0.00	0.00	14.35	2.44
146.3 - 168.8	1.85	6.48	2.31	0.00	0.00	0.00	10.65	1.77
168.8 - 191.3	10.65	12.96	5.09	2.31	0.00	0.00	31.02	1.81
191.3 - 213.8	19.44	67.13	30.09	4.17	2.31	0.00	123.15	2.09
213.8 - 236.3	34.26	164.81	69.91	17.13	12.50	0.00	298.61	2.41
236.3 - 258.8	25.93	99.54	33.33	5.56	2.78	0.00	167.13	2.11
258.8 - 281.3	13.43	16.67	3.24	0.46	0.46	0.00	34.26	1.70
281.3 - 303.8	6.48	5.09	1.39	1.39	0.00	0.00	14.35	1.80
303.8 - 326.3	2.78	9.72	6.94	0.93	0.00	0.00	20.37	2.18
326.3 - 348.8	7.41	7.87	3.24	1.39	0.00	0.00	19.91	1.80
Variabili	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Calme < 0.5	34.26	0.00	0.00	0.00	0.00	0.00	34.26	0.00
Totale	188.89	467.59	254.63	68.06	20.83	0.00	1000.00	0.00

Inverno	V1 (0.5 - 1.0)	V2 (1.0 - 2.3)	V3 (2.3 - 3.9)	V4 (3.9 - 6.5)	V5 (6.5 - 12.0)	V6 (> 12.0)	Totale	Vmed (m/s)
348.8 - 11.3	1.40	6.55	5.62	21.53	5.62	0.00	40.71	4.52
11.3 - 33.8	2.34	11.23	19.19	8.42	2.34	0.00	43.52	3.35
33.8 - 56.3	3.28	26.20	34.16	9.36	0.47	0.00	73.47	2.75
56.3 - 78.8	3.74	11.70	16.38	14.51	0.00	0.00	46.33	3.01
78.8 - 101.3	5.62	5.15	7.49	7.49	1.40	0.00	27.14	3.06
101.3 - 123.8	1.40	1.87	6.08	3.28	1.87	0.00	14.51	3.68

Inverno	V1 (0.5 - 1.0)	V2 (1.0 - 2.3)	V3 (2.3 - 3.9)	V4 (3.9 - 6.5)	V5 (6.5 - 12.0)	V6 (> 12.0)	Totale	Vmed (m/s)
123.8 - 146.3	1.40	0.00	2.81	3.28	0.00	0.00	7.49	3.18
146.3 - 168.8	1.40	1.87	0.00	0.94	0.00	0.00	4.21	2.16
168.8 - 191.3	7.02	6.08	5.62	0.94	0.00	0.00	19.65	1.95
191.3 - 213.8	17.31	70.19	62.24	4.21	0.47	0.00	154.42	2.20
213.8 - 236.3	16.38	104.82	114.18	3.74	10.76	0.94	250.82	2.67
236.3 - 258.8	14.04	72.06	46.33	3.74	3.28	0.00	139.45	2.29
258.8 - 281.3	7.96	15.44	6.55	1.40	0.00	0.00	31.35	2.05
281.3 - 303.8	4.21	7.49	15.44	7.02	0.94	0.00	35.10	2.98
303.8 - 326.3	3.28	6.08	19.65	15.91	0.47	0.00	45.39	3.48
326.3 - 348.8	1.40	5.15	13.57	13.57	0.00	0.00	33.69	3.49
Variabili	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Calme < 0.5	32.76	0.00	0.00	0.00	0.00	0.00	32.76	0.00
Totale	124.94	351.90	375.29	119.33	27.61	0.94	1000.00	0.00

Maind S.r.I Milano | P.za L. Da Vinci, 7 20133 Milano | C.F. e P.IVA 09596850157 | Informazioni: info@maindsupport.it Reg.Imprese Milano n. 09596850157 | REA 1305211 | Cap.Soc.12.480,00 EURO (interamente versato) |