

IMPIANTO EOLICO "NULVI"

COMUNE DI NULVI

PROPONENTE

Sardegna Nulvi 1 Srl Via Nazionale n. 39 09024 - Nuraminis (SU)

IMPIANTO EOLICO "NULVI" NEL COMUNE DI NULVI

OGGETTO:

Relazione di compatibilità idrogeologica

CODICE ELABORATO

NL_SIA_A017

COORDINAMENTO

BIA srl

P.IVA 03983480926 cod. destinatario KRRH6B9 + 39 347 596 5654 energhiabia@gmail.com energhiabia@pec.it piazza dell'Annunziata n. 7 09123 Cagliari (CA) | Sardegna

GRUPPO DI LAVORO S.I.A.

Dott.ssa Geol. Cosima Atzori
Dott. Gullo Casu
Dott. Archeol. Fabrizio Delussu
Dott. Ing. Ivano Distinto
Dott.ssa Ing. Silvia Exana
Dott. Nat. Vincenzo Ferri
Dott. Ing. Carlo Foddis
Dott.ssa Ing. Ilaria Giovagnorio
Dott. Nat. Giorgio Lai
Dott. Federico Loddo
Dott. Ing. Glovannl Lovlgu
Dott. Ing. Glovannl Lovlgu
Dott. Ing. Bruno Manca
Dott. Nat. Micola Manis
Dott. Nat. Maurizio Medda
Dott. ssa Ing. Alessandra Scalas
Federica Zaccheddu

REDATTORE

Dott.ssa Geol. Cosima Atzori

00	Novembre 2023	Emissione per procedura VIA
DEV/	DATA	DESCRIZIONE DEVISIONE

Sommario

1.	PREMESSA E FINALITÀ DELLO STUDIO	3
2.	NORMATIVA DI RIFERIMENTO	3
3.	STUDI ED INDAGINI DI RIFERIMENTO	4
4.	INQUADRAMENTO GEOGRAFICO GENERALE	5
5.	CARATTERISTICHE DI PROGETTO DELL'OPERA	10
6.	INQUADRAMENTO GEOLOGICO	15
	DESCRIZIONE DEL CONTESTO GEOLOGICO DELL'AREA VASTA OGGETTO DI INTERVENTO	15
	SITUAZIONE GEOLOGICA E LITOSTRATIGRAFICA DELL'AREA INTERESSATA DALL'INTERVENTO	
	ANALISI DELLE CONDIZIONI GEOSTRUTTURALI DELL'AREA E CARATTERISTICHE DELLE DISCONTINUITA'	
	Analisi Qualitativa di Stabilità dell'ammasso roccioso	
7.	INQUADRAMENTO GEOMORFOLOGICO	23
8.	INQUADRAMENTO IDROLOGICO E IDROGEOLOGICO	25
	SCHEMA DELLA CIRCOLAZIONE IDRICA SUPERFICIALE	25
	SCHEMA DELLA CIRCOLAZIONE IDRICA SOTTERRANEA	
	Analisi della vulnerabilità degli acquiferi	
9.	INQUADRAMENTO CLIMATICO	32
	PRECIPITAZIONI	33
	TEMPERATURE	
	Stima dell'evapotraspirazione	
10.	. INQUADRAMENTO PEDOLOGICO	41
11.	. USO DEL SUOLO	43
12.	. ANALISI DEI VINCOLI GRAVANTI SUI TERRENI	45
	Piano Stralcio D'assetto Idrogeologico Della Sardegna (P.A.I.)	45
	INVENTARIO DEI FENOMENI FRANOSI – PROGETTO I.F.F.I.	
	PIANO STRALCIO DELLE FASCE FLUVIALI (P.S.F.F.)	
	PIANO DI GESTIONE DEL RISCHIO ALLUVIONI (PGRA)	51
13.	. INDAGINI GEOGNOSTICHE	55
	GENERALITÀ SUL METODO SISMICO A RIFRAZIONE	56
(CARATTERISTICHE DELLE STESE SISMICHE	57
(CARATTERISTICHE DELLA STRUMENTAZIONE IMPIEGATA	57
	ELABORAZIONE DEI DATI	57
	INDAGINI SISMICHE: MASW	
	Specifiche delle indagini svolte	
	Caratteristiche della strumentazione impiegata	
	Interpretazione dei segnali acquisiti	
	CATEGORIE DI SOTTOSUOLO - D.M. 19.01.2018 (NTC 2018)	
	UBICAZIONE DELLE INDAGINI ESEGUITE	
	RISULTATI DELLE INDAGINI DEL SITO NU_SISM_01-TURBINA AG02	
	M1- NU_SISM_01-AG02: MASW M1- NU_SISM_01-AG02: SISMICA A RIFRAZIONE	
	RISULTATI DELLE INDAGINI SITO NU_SISM_02-TURBINA AG05	
	MISSELTATI DELEE INDAGINI SITO NO_SISIN_02-TONDINA AGOS	

M2- NU_SISM_02-AG05: MASW	66
SM2- NU_SISM_02-AG05: SISMICA A RIFRAZIONE	
SM3- NU_SISM_03-AG09: SISMICA A RIFRAZIONE	
SM4- NU_SISM_04-AG12: SISMICA A RIFRAZIONE	69
14. MODELLAZIONE GEOLOGICA	71
CARATTERIZZAZIONE GEOSTRUTTURALE DEGLI AMMASSI ROCCIOSI	71
Modello geologico di sito	77
Modello Geologico 01	77
Modello Geologico 02	78
15. AMMISSIBILITÀ E COMPATIBILITÀ IDROGEOLOGICA	80
Ammissibilità degli interventi alle prescrizioni del PAI	80
Analisi sulle variazioni della risposta idrologica, gli effetti sulla stabilità	E L'EQUILIBRIO DEI VERSANTI E SULLA PERMEABILITÀ
(ART.3 C.7 NTA PAI)	82
Risposta idrologica e permeabilità	82
Effetti sulla stabilità e l'equilibrio dei versanti	82
COMPATIBILITÀ IDRALLICA DEGLI INTERVENTI E ASSEVERAZIONI	83

1. Premessa e finalità dello studio

La presente relazione è parte integrante del procedimento di **Valutazione d'Impatto Ambientale** ai sensi del Decreto Legislativo numero 152 del 2006, e di Autorizzazione Unica Regionale ai sensi dell'articolo 12 del Decreto Legislativo numero 387 del 2003 e del D. G. R. 3/15 del 23 Gennaio 2018.

Nell'ambito della redazione del Progetto Definitivo che prevede la realizzazione di un impianto eolico per la produzione di energia elettrica, di potenza nominale pari a 74.400 kW denominato "Nulvi" e dislocato nel territorio comunale di Nulvi nella Provincia di Sassari, al fine di avere un quadro completo del contesto geologico è stata redatta la presente Relazione di Compatibilità Idrogeologica e Relazione Asseverata idraulica (ai sensi dell'art. 27 comma 3 lett. g e h delle N.A. PAI), secondo quanto previsto dalle NTA 2023 del PAI in supporto al progetto, con l'obiettivo di asseverare la compatibilità idraulica dell'intervento e, in generale, di quanto prescritto dalla normativa vigente in materia di rischio idrogeologico.

Nella fattispecie l'asseverazione idraulica riguarda dei tratti di cavidotto che interessano aree a pericolosità idraulica Hi4 ai sensi dell'art.30ter NTA PAI sulle aste fluviali incontrate.

Gli interventi, che saranno descritti più diffusamente nei successivi paragrafi, consistono nella realizzazione di nuove linee elettriche e sono comunque consentiti tra quelli previsti dall'articolo 27, comma 3, lettera g) o lettera h) delle N.A. PAI, essendo riconducibili a «nuove infrastrutture a rete o puntuali previste dagli strumenti di pianificazione territoriale e dichiarate essenziali e non altrimenti localizzabili....omissis», ovvero ad «allacciamenti a reti principali e nuovi sottoservizi a rete interrati lungo tracciati stradali esistenti, ed opere connesse compresi i nuovi attraversamenti....omissis».

Essi sono ammissibili previa predisposizione di apposito Studio di compatibilità idraulica da redigere ai sensi dell'Art. 24 delle N.A. del PAI, ovvero della Relazione asseverata nelle casistiche di cui all'Art.27 delle N.A. del PAI.

2. Normativa di riferimento

La presente è redatta in osservanza a quanto stabilito dalla vigente normativa in materia, con particolare riferimento a:

- Circ. Min. LL.PP. n° 30483 del 24.09.1988 Istruzioni pe l'applicazione del D.M. LL.PP.11.03.1988.
- Raccomandazioni, programmazione ed esecuzione delle indagini geotecniche, 1975 Associazione
 Geotecnica Italiana.
- D.M. Infrastrutture 17.01.2018 Norme Tecniche per le Costruzioni. (6.2.1 Caratterizzazione e modellazione geologica del sito, 6.4.2 Fondazioni superficiali)

Rev. 00 – ottobre 2023 Pag. 3 di 86

- D.lgs. n. 152/2006 Norme in materia ambientale
- DPR 59/2013 Regolamento recante la disciplina dell'autorizzazione unica ambientale e la semplificazione di adempimenti amministrativi in materia ambientale gravanti sulle piccole e medie imprese e sugli impianti non soggetti ad autorizzazione integrata ambientale
- Deliberazione n. 6/16 del 14 febbraio 2014- Direttive in materia di autorizzazione unica ambientale. Raccordo tra la L.R. n. 3/2008, art.1, commi 16-32 e il D.P.R. n. 59/2013.
- Norme Tecniche di Attuazione PAI Testo coordinato Del. C. I. n. 15 del 22 novembre 2022, rettificata con Del. C.I. n. 19 del 27 dicembre 2022.

3. Studi ed indagini di riferimento

Le informazioni topografiche e geologiche dell'area oggetto della presente sono state ricavate dalle pubblicazioni ufficiali e cartografia tematica esistente. Si elencano di seguito:

- Carta Topografica I.G.M. scala in 1:25000
- Carta Tecnica Regionale in scala 1:10000 nel foglio 442 "Sedini" sezioni 442090 Tergu, 442100 Sedini, nel foglio 430 "Osilo" sezioni 442130 Monte Eri, 442140 Su Sassu e nel foglio 460 "Ploaghe" sezioni 460010 Nulvi, 460020 Martis.
- Carta Geologica dell'Italia in scala 1:100000, nel foglio n°180 "Sassari"
- Carta Geologica dell'Italia in scala 1:50.000 (CARG) nel foglio n°459 "Sassari".
- Cartografia Geologica di base della R.A.S. in scala 1:25.000
- RAS Carta dell'Uso del Suolo della Regione Sardegna, 2008
- I.S.P.R.A. Archivio nazionale delle indagini nel sottosuolo (legge 464/84)
- RAS Studio dell'Idrologia Superficiale della Sardegna, annali idrologici 1922-2009
- RAS Autorità di Bacino Piano Stralcio d'Assetto Idrogeologico
- RAS Autorità di Bacino Piano di Tutela delle Acque
- RAS Autorità di Bacino Piano Stralcio delle Fasce Fluviali
- Foto aeree, Regione Sardegna

I dati a disposizione sono stati integrati con le informazioni derivanti dai sopralluoghi effettuati dalla scrivente in sito e dagli esiti della campagna delle indagini geofisiche eseguita in data 8-9 agosto 2023 nella zona di interesse.

Rev. 00 – ottobre 2023 Pag. 4 di 86

4. Inquadramento geografico generale

Nulvi è un Comune della provincia di Sassari situato nella zona nord-occidentale della Sardegna, a 470 metri sul livello del mare, situato nella regione storica dell'Anglona. Nulvi è stata per secoli il centro principale dell'Anglona, regione storica del nord Sardegna; vi erano presenti il carcere, la pretura, il Comando della tenenza dei carabinieri, il consiglio di leva per il nord Sardegna, la scuola superiore di agraria (la prima nata in Sardegna). Con il passare degli anni Nulvi ha perso tutti i servizi sopraindicati e, con essi, il ruolo di principale centro dell'area.

L'inquadramento cartografico di riferimento è il seguente:

- Cartografia ufficiale dell'Istituto Geografico Militare I.G.M scala 1:25 000. Serie 25 –Fogli: 442 "Sedini" sez. III, e 460 "Osilo" sez. IV.
- Carta Tecnica Regionale scala 1:10 000 Sezioni: 442130, 442140, 460010,460020.

L'area produttiva dell'impianto dista circa 1,88 km dalla periferia centro abitato di Nulvi, circa 2,72 km da quella di Martis, circa 4,44 km da quella di Sedini e circa 4,11 km da quella di Tergu, l'ambiente è prevalentemente collinare, con quote di posa degli aerogeneratori comprese tra 380 a 575 metri s.l.m.

Le turbine, posizionate tra i 400m slmm e i 500m slmm, verranno posizionate su pianori (Piantasi per AG01, Tana Mazzone per AG02, Su Sassu per AG03 e AG04, Ruspina per AG05, AG06, Sos Nodos Deui per AG07e Sena Manna per AG08, AG09, AG10 mentre AG11e AG12 sono posizionate lungo il versante sudoccidentale del Monte Alma (496m).

Rev. 00 – ottobre 2023 Pag. 5 di 86

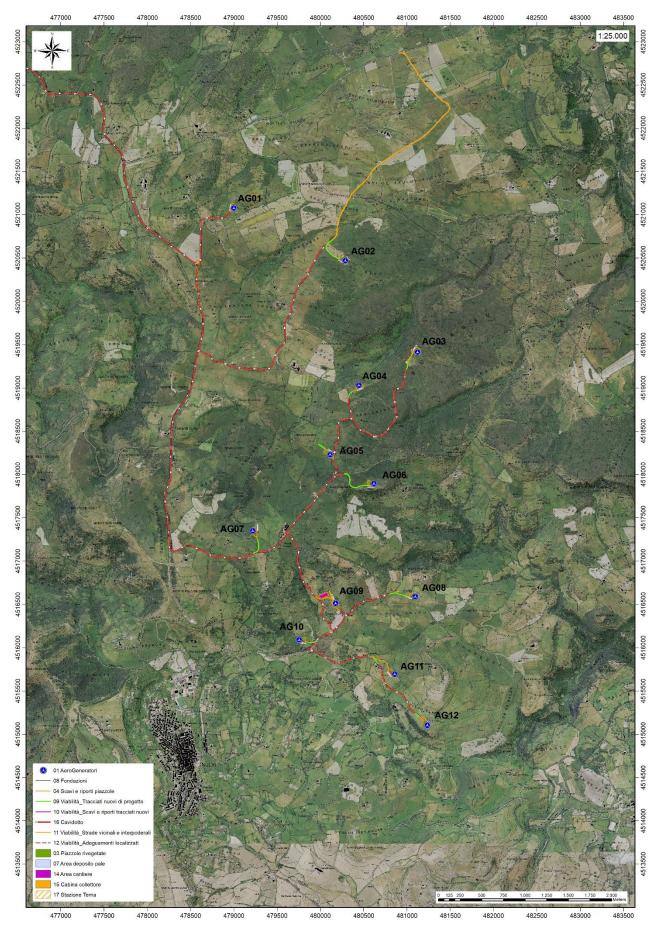
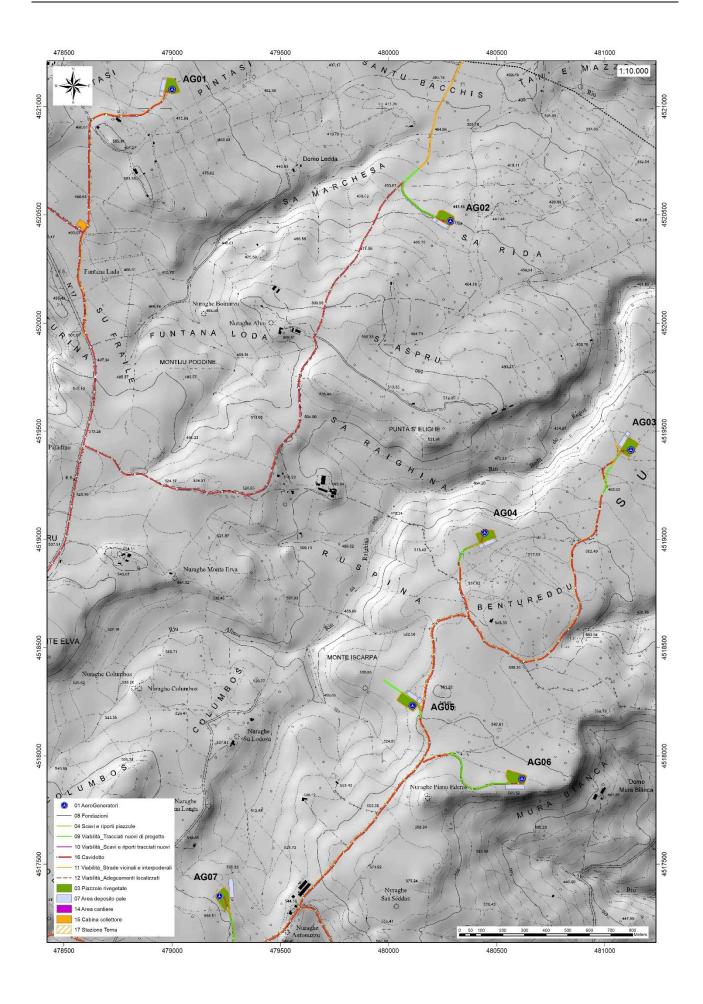



Figura 1 Localizzazione su foto aerea (Fonte RAS, 2016) dell'area interessata dal progetto

Rev. 00 – ottobre 2023 Pag. 6 di 86

Rev. 00 – ottobre 2023 Pag. 7 di 86

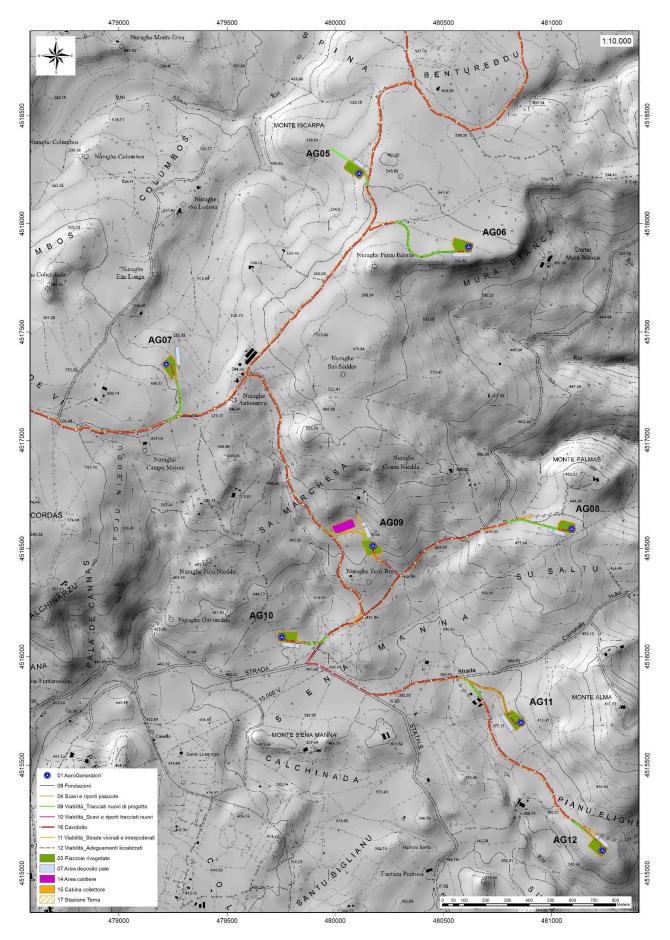


Figura 2 Inquadramento topografico su Carta Tecnica Regionale C.T.R. scala 1:10000

Rev. 00 – ottobre 2023 Pag. 8 di 86

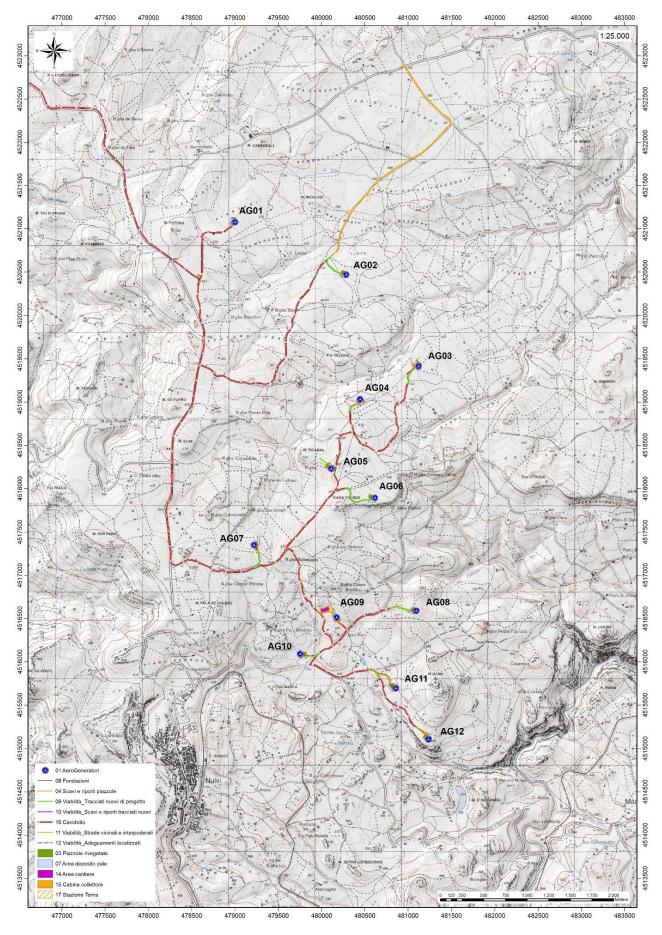


Figura 3 Inquadramento topografico su Carta IGM scala 1:25000

Rev. 00 – ottobre 2023 Pag. 9 di 86

5. Caratteristiche di progetto dell'opera

È prevista l'installazione di 12 aerogeneratori con potenza nominale di 6200 kW sono posti in cima a torri tronco coniche in acciaio con un'altezza massima fuori terra, misurata al mozzo, di 119 m; il generatore è azionato da elica tripala con diametro di 162 m.

Le coordinate relative ai punti di installazione degli aerogeneratori sono riportate nella tabella di seguito:

	Italy GAUS	S-BOAGA	Geografich	QUOTA	ALTEZZA		
WTG	EST	NORD	EST	NORD	base torre m s.l.m.	HUB torre m	
AG_01	1479029,0464	4521087,3576	8°45'3,41"	40°50'25.67"	466,25	119	
AG_02	1480315,7332	4520479,3516	8°45'58,42"	40°50'6.06"	448,50	119	
AG_03	1481235,1736	4519411,4791	8°46'37,79"	40°49'31,50"	470,00	119	
AG_04	1480473,4608	4519040,1343	8°46'5,32"	40°49'19,40"	519,00	119	
AG_05	1480139,7388	4518240,4325	8°45'51,17"	40°48'53,44"	541,22	119	
AG_06	1480646,0344	4517902,9167	8°46'12,82"	40°48'42,54"	560,50	119	
AG_07	1479247,9582	4517359,9487	8°45'13.21"	40°48'24.81"	544,75	119	
AG_08	1481122,5731	4516599,2794	8°46'33,30"	40°48'0,30"	458,00	119	
AG_09	1480203,4876	4516520,6146	8°45'54,08"	40°47'57,67"	453,00	119	
AG_10	1479782,8548	4516099,0329	8°45'36,18"	40°47'43,96"	403,45	119	
AG_11	1480888,1393	4515704,4094	8°46'23,39"	40°47'31,26"	395,40	119	
AG_12	1481263,0676	4515113,0583	8°46'39,45"	40°47'12,11"	384,55	119	

L'aerogeneratore è essenzialmente costituito da:

- rotore a tre pale che capta l'energia del vento, avente il mozzo collegato ad una navicella in cui avviene il processo di trasformazione dell'energia cinetica del vento in energia elettrica;
- torre o sostegno che ha il compito di sostenere l'apparato di produzione (navicella+rotore) alla quota individuata come ideale attraverso le simulazioni di produttività.

L'aerogeneratore ipotizzato per le valutazioni progettuali è stato scelto tra quelli maggiormente efficienti e sofisticati presenti attualmente sul mercato; tuttavia, in fase di installazione si potranno avere variazioni tipologiche con macchine simili per caratteristiche dimensionali e tecnico-produttive, ferme restando le caratteristiche dimensionali massime dell'aerogeneratore.

Rev. 00 – ottobre 2023 Pag. 10 di 86

DATI TIPOLOGICI E DIMENSIONALI AEROGENERATORI								
NUMERO TOTALE AEROGENERATORI IN PROGETTO	12							
POTENZA GENERATORE	6200 KW							
ALTEZZA MASSIMA HUB	119 m							
DIAMETRO ROTORE	162 m							
ALTEZZA MASSIMA RAGGIUNGIBILE	200 m							
AREA SPAZZATA DAL ROTORE	20611 mq							
NUMERO PALE	3							
LUNGHEZZA PALE	79,35 m							

Figura 4 Aerogeneratore tipo Vestas V162 da 6,2MW

Potenza nominale: 6200 kW e tensione nominale di 800 volt;

- Potenza unitaria generatore: 6250 kW;

- Frequenza: 0 - 138 Hz;

- Numero pale: 3;

- Lunghezza pale: 79,35 m;

- Raggio del rotore: 81 m;

- Area spazzata: 20611 m2;

- Tipo di sostegno: tubolare metallico;

- Altezza da terra del rotore: max 119 m;

- Fondazioni: piastra in C.A. dimensioni di circa 26 m di diametro; completamente interrata ad una profondità massima di 4,09 m;

- Piazzola di servizio: circa 3700 m2 (variabile da 3465 a 3893 m2);
- Superficie impronta fondazione 530,9 m2;
- Ingombro scavo fondazione: circa 849,09 m2.

Il collegamento elettrico tra gli aerogeneratori e la Cabina Collettore avverrà mediante un elettrodotto interrato che seguirà in gran parte il tracciato delle strade esistenti e in piccola parte di quelle di nuova realizzazione necessarie per l'accesso ad alcune piazzole.

Il collegamento tra la Cabina Collettore e stazione elettrica Terna sarà realizzato attraverso la costruzione di un raccordo di lunghezza di circa 3799 m in cavo MT interrato.

Con riferimento a quanto documentato nel progetto redatto dai tecnici incaricati, le figure seguenti mostrano le modalità di risoluzione delle interferenze per i corsi d'acqua attraversati dalla linea elettrica in progetto ed elencati di seguito:

Rev. 00 – ottobre 2023 Pag. 11 di 86

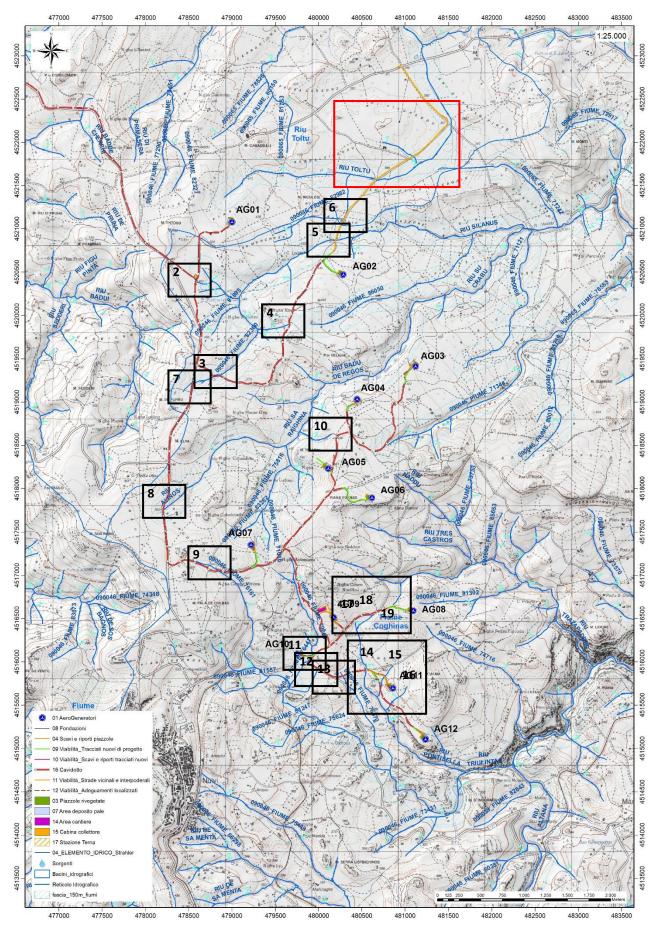


Figura 5 Pericolosità idraulica vigente e interferenze degli elementi di progetto con il reticolo idrografico

Rev. 00 – ottobre 2023 Pag. 12 di 86

500

id	nome	n.strahler	id	nome	n.strahler
1	090086_FIUME_72124	(ordine 1)	11	090046_FIUME_76447	(ordine 2)
2	090046_FIUME_78415	(ordine 1)	12	090046_FIUME_74014	(ordine 1)
3	090046_FIUME_71402	(ordine 2)	13	090046_FIUME_76470	(ordine 1)
4	RIU SILANUS	(ordine 1)	14	RIU PONTISELLA	(ordine 2)
5	RIU SILANUS	(ordine 3)	15	090046_FIUME_85190	(ordine 1)
6	090046_FIUME_82982	(ordine 2)	16	090046_FIUME_71478	(ordine 1)
7	090046_FIUME_71402	(ordine 2)	17	RIU PONTISELLA	(ordine 1)
8	RIU ALINOIS	(ordine 1)	18	090046_FIUME_83074	(ordine 1)
9	090046_FIUME_76161	(ordine 1)	19	090046_FIUME_80234	(ordine 1)
10	090046_FIUME_78567	(ordine 1)	20		

ATTRAVERSAMENTO DI STRADA ASFALTATA TRAVERSAMENTO DI STRADA ASFALTATA ATTRAVERSAMENTO DI STRADA ASFALTATA tritubo in PEAD per ausiliari Ø50 tritubo in PEAD per ausiliari Ø50 100 tubo in PVC per cavi di potenza Ø200 tubo in PVC per cavi di potenza Ø200 tubo in PVC per cavi di potenza Ø200 ATTRAVERSAMENTO DI RIGOLO O ATTRAVERSAMENTO DI RIGOLO O ATTRAVERSAMENTO DI RIGOLO O RUSCELLO CON CAVI AIRBAG RUSCELLO CON UN CAVO AIRBAG RUSCELLO CON UN CAVO AIRBAG rigolo-o ruscello a carattere stagionale

Figura 6 tipici delle sezioni di scavo dei cavidotti in corrispondenza degli attraversamenti

Corda in rame 50 mmq

Cavo MT tipo airbag

tritubo in PEAD per ausiliari Ø50

Cavo MT tipo airbag

Le strade di accesso al parco sono state previste secondo le specifiche di curva, inclinazione longitudinale e pendenza previste dal produttore delle componenti del generatore eolico, così da permettere ai mezzi pesanti che opereranno durante la fase di cantiere di manovrare e percorrere la viabilità.

erra di scavo

e 50 mmq

Cavo MT tipo airbag

La carreggiata stradale prevista in progetto, in accordo con quanto richiesto dai costruttori delle turbine eoliche, ha una larghezza pari a 5.0 m. Sui tratti rettilinei, quando per svariati motivi è necessario ridurre gli

Rev. 00 - ottobre 2023 Pag. 13 di 86 interventi sulla viabilità, essa può essere ridotta a 4,5 m. La pendenza longitudinale massima della viabilità per strade con fondo sterrato o ghiaioso deve essere in condizioni ordinarie del 10% circa, la pendenza può essere del 14-15% per strade con fondo sterrato ad aderenza migliorata, per pendenze superiori il fondo dovrà essere cementato o rivestito con pavimentazione ecologica (costituita da una miscela di inerti, cemento, acqua, opportuni additivanti e specifici pigmenti atti a conferire al piano stradale una colorazione il più possibile naturale e coerente con il contesto). I dati dimensionali per le manovre si riducono notevolmente e i raggi di curvatura di riferimento diventano quelli del trasporto dell'elemento di torre più lungo e non più quello delle pale che viaggeranno con alza pala a velocità ridotte, si passa quindi da una lunghezza del convoglio di circa 80m a circa 40 metri con un raggio di curvatura tra i 40 e 50 m.

Le componenti con il maggiore ingombro che percorreranno il tragitto dal porto di Porto Torres ai luoghi d'intervento sono le navicelle dei generatori, i tronchi delle torri di sostegno e le pale.

La viabilità di arrivo prevista è composta da Strade Statali, Provinciali e Comunali. La viabilità esistente è per lo più in condizioni idonee, e saranno necessari adeguamenti solo nell'ultimo tratto di accesso al sito di progetto, limitando gli interventi a modifiche temporanee del tracciato per permettere il transito in sicurezza delle componenti e dei mezzi.

Per ulteriori specifiche si rimanda agli elaborati tecnici di progetto.

Rev. 00 – ottobre 2023 Pag. 14 di 86

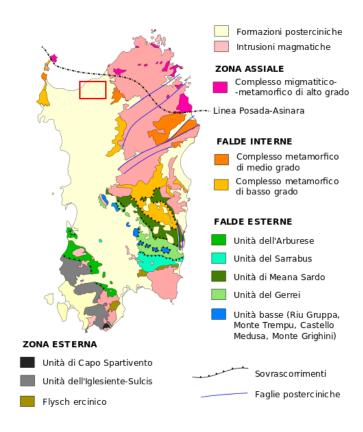
6. Inquadramento geologico

L'obiettivo dell'analisi dell'assetto geologico è quella di caratterizzare geologicamente e geotecnicamente l'area ove verrà installato il parco eolico e quella geomorfologicamente significativa, con particolare riferimento alle condizioni del substrato roccioso di fondazione, agli scavi ed ai riporti necessari per la realizzazione del sistema di fondazione e delle sue potenziali interazioni con le condizioni al contorno (dinamica geomorfologica, circolazione idrica superficiale e sotterranea, rapporti fra le componenti litologiche interessate) attraverso:

- Definizione dell'assetto geologico-strutturale e idrogeologico di area vasta e dell'area geomorfologicamente significativa;
- Definizione dell'assetto stratigrafico dell'area di sedime delle opere;
- Definizione del modello geologico di sito;

Descrizione del contesto geologico dell'area vasta oggetto di intervento

A partire dal Paleozoico si sono susseguiti una serie di eventi geologici sviluppatisi nell'arco di circa mezzo miliardo di anni, che hanno reso la Sardegna una delle regioni geografiche più antiche del Mediterraneo centrale e, morfologicamente e cronologicamente eterogenea.


L'isola riflette pertanto una storia geologica molto articolata, che testimonia, in maniera più o meno completa, alcuni dei grandi eventi geodinamici degli ultimi 400 milioni di anni.

L'orogenesi Caledoniana, la più antica, le cui tracce si rinvengono principalmente nel nord della Gran Bretagna e nella Scandinavia occidentale, fu causata dalla progressiva chiusura dell'oceano Giapeto, a seguito della collisione dei continenti Laurentia, Baltica e Avalonia, dando così origine al super continente Laurussia. La successiva fase dell'orogenesi Ercinica (o Varisica) ha avuto corso a partire dal Carbonifero, circa 350 Ma fa e si è protratta fino al Permiano determinando un'estesa catena montuosa ubicata tra il Nord America e l'Europa.

Quest'orogenesi ha prodotto in Sardegna tre zone metamorfiche principali. Procedendo dal nucleo orogenetico verso l'avanfossa si trovano le zone dette: Assiale (Sardegna NE) – a Falde interne (Sardegna centrale) - a Falde esterne (Sardegna SW).

Successivamente, tra il Carbonifero Sup. e il Permiano Inf., il basamento paleozoico è soggetto magmatismo, intrusioni di differente composizione, che danno luogo a un batolite granitico composito, la cui ossatura fondamentale affiora in continuità nella Sardegna Settentrionale e nella Corsica Occidentale. Nel resto dell'Isola affiorano plutoni isolati, anch'essi compositi, di minori dimensioni, quali quelli dell'Iglesiente e del Sarrabus.

Rev. 00 – ottobre 2023 Pag. 15 di 86

Il territorio di Sassarese, si sviluppa sul margine occidentale di un semi-graben, colmato da vulcaniti e sedimenti di ambiente marino di età compresa tra l'Oligocene sup ed il Miocene sup. Costituito in prevalenza da terre emerse, il territorio comprende buona parte del bacino cenozoico noto come "Fossa di Sassari", e gli alti strutturali che lo delimitano sia ad E che a W. Nell'area vasta la successione stratigrafica parte dal Mesozoico, con successioni riferite all'intero eratema.

A partire dall'Oligocene sup. fino al Miocene inf., si è sviluppata nella Sardegna un'intensa e diffusa attività vulcanica che ha dato luogo alla messa in posto di vulcaniti a chimismo basico e vulcaniti a chimismo acido. La serie delle vulcaniti a

Figura 7 Schema tettonico-strutturale della Sardegna

chimismo acido è composta da rioliti, riodaciti e daciti in espandimenti ignimbritici.

Queste rocce vulcaniche effusive sono state prodotte da un'intensa attività magmatica in un arco di tempo compreso tra 29 M.a e 19 M.a, intervallate da periodi di stasi vulcanica, durante i quali l'attività erosiva delle acque torrentizie, ha portato alla sedimentazione di intercalazioni di depositi arenacei comglomeratici, a elementi clastici prevalentemente vulcanici.

I depositi recenti sono rappresentati dai prodotti di disfacimento della roccia madre e dei suoi derivati e vanno a colmare le vallecole e/o i piccoli impluvi presenti. Sono generalmente costituiti da sabbie argillose e argille sabbiose o limose di colore dal giallo ocra al bruno al rosso-violaceo, particolarmente plastiche e con probabili caratteristiche di suscettività all'acqua (rigonfianti).

Il vulcanismo oligo-miocenico sardo rappresenta uno degli eventi geologici terziari più importanti del Mediterraneo occidentale. L'importanza di questo ciclo vulcanico è testimoniata dalla grande estensione degli affioramenti e dai cospicui spessori delle successioni vulcaniche che raggiungono parecchie centinaia di metri. Lo studio petrografico e geochimico dei prodotti vulcanici della Sardegna indica una genesi dei magmi per fusione parziale di rocce mantelliche lungo zone di subduzione oceanica (COULON, 1977). Questi prodotti andesitici, assieme a quelli più differenziati, si sarebbero evoluti da un magma primario per frazionamento a deboli pressioni, in camere magmatiche situate a circa 15-20 km di profondità e con possibili contaminazioni crostali. Secondo COULON (1977), i dati petrogenetici provenienti da prodotti più evoluti con chimismo riodacitico-riolitico, spesso in facies ignimbritica ("Serie ignimbritica inferiore" e "Serie ignimbritica superiore", Auct.) indicano processi anatettici con fusione parziale di rocce metamorfiche o granitoidi nella

Rev. 00 – ottobre 2023 Pag. 16 di 86

crosta continentale. L'anatessi sarebbe stata favorita dalle precedenti e prolungate risalite di magmi basici di derivazione mantellica con conseguenti fenomeni di mixing (COULON, 1977; BECCALUVA et a/ii, 1985; 1987). Secondo MORRA et a/ii (1994), invece, l'intera successione vulcanica deriverebbe da una progressiva evoluzione petrogenetica per frazionamento di magmi mantellici, fino a liquidi residuali peralcalini.

Da un punto di vista geodinamico questo ciclo vulcanico è comunemente associato ad un modello di subduzione oceanica con formazione di un bacino di retroarco che sarebbe rappresentato dal Bacino balearico¹.

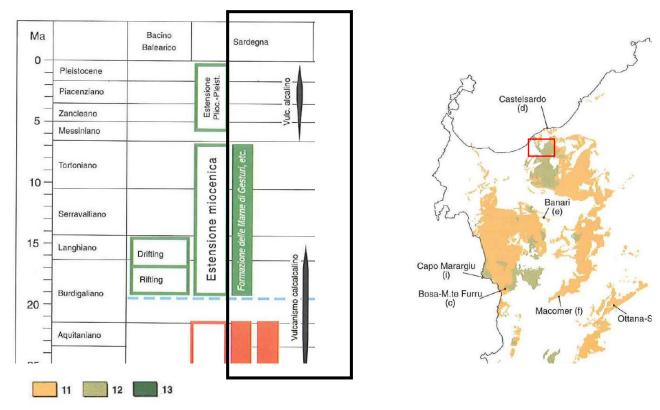


Figura 8 Schema cronologico relativo ai principali eventi stratigrafico-strutturali cenozoici in Sardegna e nelle aree limitrofe. Ubicazione degli affioramenti di Rioliti (11), Andesiti (12) e Filoni (13) del ciclo calcalcalino oligo-miocenico.

Nell'area vasta affiorano le seguenti litologie, di seguito riportate con la nomenclatura adottata dalla RAS nella stesura della cartografia geologica in scala 1:25000:

- **a1 Depositi di frana**. Accumuli caotici di blocchi derivanti da frane di crollo, ribaltamento e scivolamento, attive, talora con pedosuoli intercalati. OLOCENE.
- **b2 Coltri eluvio-colluviali.** Sabbie limo-argillose con clasti detritici medio-fini, massive, più o meno intensamente pedogenizzate. Spessore da 1m a 3m.

(RESa) Litofacies nella Formazione di Mores: nota come "calcari inferiori", è costituita da una successione di calcareniti, calcari bioclastici fossiliferi, e calcari a componente terrigena variabile, con faune a gasteropodi "Turritelle", ostreidi ed echinidi (Scutella, Amphiope), riferibili al Miocene inferiore (Burdigaliano). Il

Rev. 00 – ottobre 2023

¹ Memorie Descrittive della Carta Geologica d'Italia, vol. LX, 2001

passaggio alla soprastante formazione di Borutta (RTU) presenta spesso caratteri eteropici, infatti può esser sormontata direttamente dalla Formazione di Monte Santo (NST). Burdigaliano superiore. Spessore variabile fino a 40-50m.

Figura 9 AG12 vista verso Monte Alma su Formazione di Mores

HRM – UNITA' DI CHIARAMONTI. Depositi di flusso piroclastico pomiceo-cineritici in facies ignimbritica a chimismo riodacitico, debolmente saldati, talora argillificati e/o silicizzati, con cristalli liberi di Pl, Sa, Qtz.

Figura 10 Unità di Logulentu su AG08 - vista verso Su Sassu

LGU – UNITÀ DI LOGULENTU. Depositi di flusso piroclastico fortemente saldati, da violacei a rossastri, a chimismo riolitico, con tessitura macroeutaxitica con fiamme che possono raggiungere il metro di lunghezza, presenza di cristalli di plagioclasio e biotite. Spessore fino a 25m. BURDIGALIANO.

Rev. 00 – ottobre 2023 Pag. 18 di 86

Su questa litologia poggeranno le turbine AG01, AG02, AG03, AG04, AG09, AG11 e AG12 e parte del cavidotto di connessione.

OSL - UNITÀ DI OSILO. Andesiti porfiriche per fenocristalli di Pl, Am, e Px; in cupole di ristagno e colate. Lave andesitiche grigio scure, spesso porfiriche per plagioclasio e pirosseno, in genere massive, talvolta con foliazione da flusso marcata da fratturazione play jointing. Intercalati alle colate, depositi piroclastici di caduta, con spessori di alcuni metri. Spessore in affioramento oltre i 500m. BURDIGALIANO.

Su questa litologia poggeranno le turbine AG05, AG06, AG07, AG08, AG09, AG10 e parte del cavidotto di connessione.

Figura 11 AG08 su Unità di Osilo - Vista verso Monte Palmas

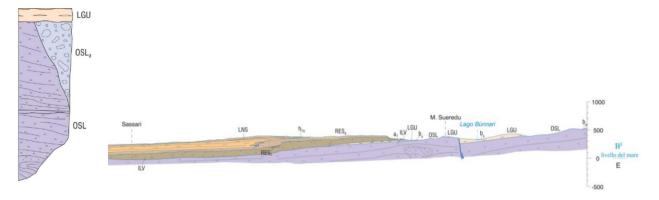


Figura 12 Sezione stratigrafica e geologica rappresentativa dell'assetto geologico dell'area di interesse - Carta Geologica d'Italia Fg. 459 "Sassari", progetto CARG.

Rev. 00 – ottobre 2023 Pag. 19 di 86

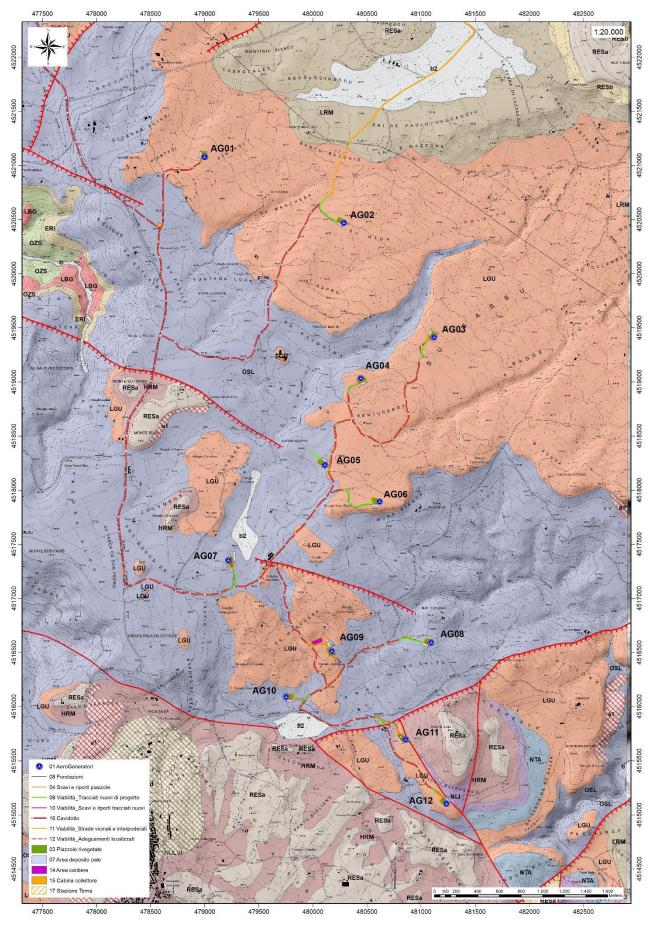


Figura 13 Carta geologica dell'area di interesse

Rev. 00 – ottobre 2023 Pag. 20 di 86

Situazione geologica e litostratigrafica dell'area interessata dall'intervento

Le turbine in progetto poggeranno sulla Formazione di Osilo costituita da depositi di flussi lavici andesitici porfiriche, fratturate e alterate sulla parte sommitale (AG05, AG06, AG07, AG08, AG10) e sui depositi di flusso piroclastico in facies ignimbritica pomiceo cineritiche dell'Unità di Logulentu (AG01, AG02, AG03, AG04, AG09).

Analisi delle condizioni geostrutturali dell'area e caratteristiche delle discontinuita'

La maggior parte delle importanti strutture tettoniche presenti nell'area determinano il controllo tettonico delle principali valli incise. L'area vasta è caratterizzata da faglie normali con direzione principale ENE – WSW. Le lineazioni presenti alla mesoscala seguono queste direttrici principali definendo uno o più sistemi di giunti che portano ad isolare di singoli blocchi rocciosi di dimensioni variabili dal metro cubo e più fino poche decine di cm cubici. La giacitura dei piani è variabile.

Figura 14 Rappresentazione tridimensionale schematica del Bacino oligo-miocenico

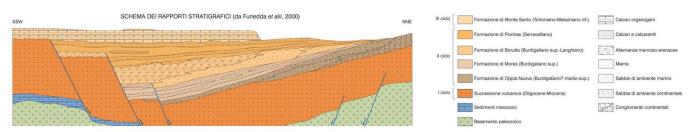


Figura 15 Schema dei rapporti stratigrafici del Bacino del Logudoro (tratto da Funedda et alii, 2000)

L'area interessata dal progetto è pertanto caratterizzata da un'intensa fratturazione a blocchi secondo famiglie di giunti di diversa direzione e con spaziatura dalle poche decine di centimetri al metro. Le fratture

Rev. 00 – ottobre 2023 Pag. 21 di 86

hanno aperture di poche a decine di centimetri e sono pressoché tutte riempite di materiali fini derivanti dall'alterazione chimica della roccia madre e sostanzialmente costituite da frazione argillosa.

Analisi qualitativa di stabilità dell'ammasso roccioso

L'intensa fratturazione produce sulla roccia una geometria estremamente variabile in termini di direzione e immersione, nelle tre direzioni principali dello spazio. Ciò che varia in relazione alla composizione granulometrica dei singoli strati originari è la spaziatura tra i giunti e il grado di fissilità. Pertanto, è estremamente difficile se non impossibile definire l'assetto a piccola scala per quanto appena descritto.

Si può definire un range di spaziatura alla mesoscala, tale da individuare una potenziale compagine di blocchi in grado di staccarsi dall'ammasso se le condizioni geostrutturali lo permettono (piani a franapoggio o intersezione di piani con direttrice a franapoggio).

Tali dimensioni possono essere individuate tra il decimo di metro cubo a qualche metro cubo. La variabilità direzionale delle famiglie di giunti che individuano i blocchi è piuttosto marcata e diversificata in funzione, come detto, della competenza degli strati soggetti agli sforzi.

Ne deriva di fatto, una difficile previsione delle potenziali propensioni a fenomeni di crollo e/o scivolamento, ma si tratta di caratteri locali la cui eteropia laterale risulta sempre molto marcata.

In generale si può affermare che versanti come questi sono oggetto di due fenomeni di scivolamento distinti in relazione al dominio di famiglie di giunti.

Alla piccola scala laddove il materiale originario è costituito da granulometrie medie e fini, sono più frequenti fenomeni di sfaldamento e distacco di lamine da centimetriche a decimetriche. Queste ultime divengono più simili a piccoli blocchi la dove la granulometria aumenta.

A scala media le spaziature nella stessa famiglia sono maggiori, anche oltre metro ed interessano blocchi più grandi ma che rispondono alle medesime dinamiche di quelli pocanzi analizzati.

Di fatto quindi, non potendo generalizzare alla piccola scala è sempre d'obbligo un rilievo puntuale sugli affioramenti ove possibile. Il materiale distaccato si raccoglie ai piedi del pendio, in accumuli più o meno estesi in funzione della pendenza.

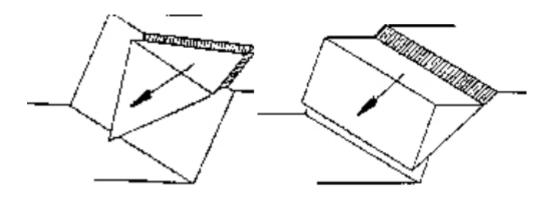


Figura 16 Tipologie di scivolamento di blocchi rocciosi lungo piani di fratturazione

Rev. 00 – ottobre 2023 Pag. 22 di 86

Gli ammassi rocciosi costituiti in litologie andesitiche e piroclastiche, ovvero quelle su cui poggeranno tutte le turbine, presentano le medesime caratteristiche per quanto riguarda instabilità, ovvero tendono a formare scarpate che arretrano per crollo ribaltamento e per scivolamento planare o di cunei. La differenza con le formazioni carbonatiche sta nella natura dei giunti, ovvero, mentre nelle prime sono dovuti anche a stratificazione, in queste ultime sono di tipo platy joints, presentano in ogni caso una forte regolarità anche alla scala dell'ammasso, è pertanto prevedibile, almeno in parte, come vari la stabilità dell'ammasso al variare dell'orientazione e della pendenza del versante.

7. Inquadramento geomorfologico

Il territorio indagato è caratterizzato principalmente dalla presenza di altopiani, con rilievi tabulari e dislivelli massimi dell'ordine di 250 m circa tra monte e valle, e morfologie a cuestas dovute alla presenza di versanti con pendenze talvolta differenti, che individuano valli a orientamento SW-NE e NW-SE. I rilievi presentano altezze massime di 490-540 m s.l.m., mentre le valli si trovano da quote minime di 320m fino a 450 m circa. I fenomeni di sollevamento tettonico hanno ridefinito la morfologia del paesaggio operando un ringiovanimento del rilievo, innescando una nuova azione geomorfogenetica ad opera degli agenti atmosferici (acqua, vento in primis) che hanno rimodellato l'altopiano determinato dallea deposizione delle andesiti prima e delle piroclastiti successivamente così come lo conosciamo, ovvero solcato da profonde incisioni vallive che riprendono le linee di fratturazione tettoniche, che isolano il settore montano distinguendolo nettamente dalle aree pianeggianti circostanti.

I prodotti di erosione vengono trasportati dall'acqua e dal vento e si depositano in relazione alla loro dimensione e all'energia di trasporto delle acque lungo le pendici dei versanti e nelle valli andando a costituire le coperture sedimentarie.

Le morfologie osservabili in quest'area sono strettamente connesse alle caratteristiche di messa in posto e dalle caratteristiche fisico-chimiche delle litologie presenti e dalla tipologia ed intensità degli agenti modellanti predominanti.

Il settore oggetto di studio è contraddistinto essenzialmente da due unità geomorfologiche:

1. i rilievi di natura vulcanica, dati dalle colate di flusso piroclastico nel caso della Formazione di Logulentu che domina la parte orientale dell'area del parco in progetto nelle località sa Rida, Su Sassu, Pintasi, Bentureddu e localmente dai rilievi testimone risparmiati dall'erosione come Sa Marchesa o Columbus e dalle

Rev. 00 – ottobre 2023 Pag. 23 di 86

andesiti porfiriche talora in cupole come Monte Palmas o generalmente il colate a loro volta incise dalla dinamica fluviale a formare ancora rilievi dalla sommità tabulare come Pedra Ulpu, Su Fraile o Ruspina.

2. le coperture sedimentarie mioceniche date dalla Formazione di Mores ancora presenti in rilevi testimone come Monte Elvi o monte Alma.

I primi rappresentano la manifestazione di un vulcanismo appartenente al ciclo calco-alcalino oligomiocenico, che produsse flussi piroclastici e in subordine lavici. Il paesaggio è dominato da rilievi tabulari costituiti dalla sovrapposizione di bancate estese e generalmente inclinate; sono costituite prevalentemente da piroclastiti a chimismo acido e intermedio, di aspetto massivo e con fessurazioni di raffreddamento colonnari irregolari e prismatiche, talvolta anche tabulari.

Alla fratturazione da raffreddamento si sovrappongono frequenti fratturazioni legate alla successiva attività tettonica o a cedimenti puramente gravitativi. L'alternanza tra le bancate con facies meno coerenti, essenzialmente tufacee, e quelle decisamente litoidi e resistenti, ossia ignimbritiche o laviche, determina il profilo a "gradinata" che caratterizza i versanti dei rilievi. Questa morfologia, nota in letteratura col termine di cuestas, è particolarmente evidente nei rilievi ove sorgeranno le AG01, AG02, AG03 e l'AG04. Meno diffuse che nei territori circostanti, le lave, di composizione prevalentemente andesitica, si rinvengono a Sud-Ovest in una sequenza di colate sub-orizzontali e di aspetto massivo, con ritrazioni per consolidamento indicate da fessurazioni prismatiche e macrostrutture colonnari.

Figura 17 particolare dei rilievi tipo "cuestas" - pressi turbina AG08

Rev. 00 – ottobre 2023 Pag. 24 di 86

8. Inquadramento idrologico e idrogeologico

Schema della circolazione idrica superficiale

Secondo la classificazione dei bacini sardi riportata nel Piano di Assetto Idrogeologico, il comune di Nulvi è incluso nel Sub – Bacino n° 3 "Coghinas – Mannu di P.Torres – Temo", che si estende per una superficie di 5402 Km2, pari al 23% del territorio regionale.

Il Sub-Bacino Coghinas-Mannu-Temo può essere suddiviso in tre grandi sottoinsiemi: il settore Orientale e Sud-Orientale prevalentemente paleozoico, il settore centrale prevalentemente terziario, e il settore Nord-Occidentale, in cui ricade il progetto, costituito dallo zoccolo cristallino dell'horst della Gallura paleozoico e dalle formazioni carbonatiche mesozoiche che culminano con i rilievi del Doglia e del sistema di Punta Cristallo e di Capo Caccia.

Dal punto di vista idrografico, i corsi d'acqua principali sono i seguenti:

Figura 18 Suddivisione dei bacini idrografici sardi

- 1. Rio Mannu di Porto Torres, sul quale confluiscono, nella parte più montana, il Rio Bidighinzu con il Rio Funtana Ide (detto anche Rio Binza 'e Sea).
- 2. Il Rio Minore che si congiunge al Mannu in sponda sinistra. Rio Carrabusu affluente dalla sinistra idrografica.
- 3. Rio Mascari, affluente del Mannu di Porto Torres in sponda destra, si innesta nel tratto mediano del rio presso la fermata San Giorgio delle Ferrovie Complementari.
- 4. Fiume Temo, regolato dall'invaso di Monteleone Roccadoria, riceve i contributi del Rio Santa Lughia, Rio Badu 'e Ludu, Rio Mulino, Rio Melas, affluenti di sinistra che si sviluppano nella parte montana del bacino. Negli ultimi chilometri il Temo, unico caso in Sardegna, è navigabile con piccole imbarcazioni; il suo sbocco al mare, sulla spiaggia di Bosa Marina, avviene tramite un ampio estuario.

Lo sviluppo del reticolo idrografico è strettamente connesso alle caratteristiche chimico-fisiche delle rocce costituenti il substrato, e al controllo tettonico che si manifesta molto evidente su alcune linee di deflusso. Le rocce vulcaniche, rispetto alle calcaree che nell'area di studio sono presenti solo nella parte meridionale, sono generalmente caratterizzate da fratturazione che influenza la circolazione superficiale, più importante

Rev. 00 – ottobre 2023 Pag. 25 di 86

di quella profonda. importanti sistemi di giunti e discontinuità, spesso visibili ad occhio nudo, che influenzano Nelle rocce carbonatiche invece, l'aliquota d'acqua di infiltrazione è maggiore dell'acqua che prende parte al ruscellamento superficiale.

I corsi d'acqua principali presenti nell'area vasta sono il **Riu Toltu** che scorre nella porzione nord-orientale dell'area di studio, insieme ai suoi affluenti Riu Primasera, Riu Badde Cherchi. Sullo spartiacque centrale al parco sul versante ovest nascono il Rio De Priuna, il Rio Figu Pinta e il Riu Sedderi. Sul versante orientale (bacino del **fiume Coghinas**) una fitta organizzazione di linee di deflusso concentrato mostrano l'evidente bassa permeabilità dei terreni perciò le acque si organizzano a scorrere superficialmente in rivoli via via sempre più organizzati. Si trovano il Riu Silanus, il Riu Badu de Regos, il Riu Sa Raighina, il Riu Naddu, il Riu Anlinos, il Riu Tres Castros e il Riu Trazapadres. A sud il Riu Pontisella e il Riu Triulintas.

Gli impluvi costituiscono essenzialmente le aste tributarie di primo e secondo ordine dei torrenti che scorrono più a valle: essi presentano carattere essenzialmente torrentizio con deflussi stagionali legati strettamente alle precipitazioni. Lungo i versanti a maggiore pendenza i corsi d'acqua assumono un elevato potere erosivo, mentre solamente a valle, in corrispondenza di aste di ordine intermedio sono evidenti fenomeni di deposizione di coltri alluvionali di spessore molto modesto.

Schema della circolazione idrica sotterranea

Uno studio idrogeologico ha lo scopo di identificare lo schema di circolazione idrica sotterranea relativo ad una determinata area per poter ricavare informazioni circa i rapporti tra litotipi presenti, la presenza di acqua e le possibili conseguenze derivanti dalla realizzazione di un'opera.

Nell'area di interesse sono presenti rocce di diversa natura, anche se principalmente sono da riferire al Cenozoico. Le coperture terziarie, per via della loro composizione, non sono particolarmente favorevoli all'assorbimento delle acque, eccetto per le componenti carbonatiche della Formazione di Mores.

Al contatto tra le coperture carbonatiche, più permeabili, e quelle vulcaniche alla base, meno permeabili, si possono sviluppare delle risorgive che hanno carattere prettamente stagionale legato all'andamento pluviometrico generale. Di seguito viene illustrato in uno schema il processo di infiltrazione accumulo e circolazione legato al regime delle piogge.

Gli afflussi che arrivano sul terreno sotto forma per lo più di piogge, più raramente e poco tempo di neve, in parte scorrono lungo la superficie in genere a lamina d'acqua per poi organizzarsi in deboli rivoli che si concentrano lungo gli impluvi fino a raggiungere le valli, mentre la frazione di acqua che non scorre in superficie in parte evapora e in parte si infiltra nel terreno e nella roccia sottostante scorrendo lungo le fratturazioni in maniera più o meno efficace in funzione del grado di apertura delle stesse.

Maggiore è la presenza di fratture e la porosità del mezzo, maggiore è la possibilità che l'acqua prosegua il suo percorso in profondità.

Rev. 00 – ottobre 2023 Pag. 26 di 86

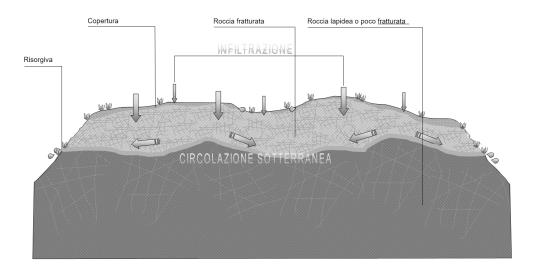


Figura 19 Schema esemplificativo, non in scala, dei processi di infiltrazione e deflusso sotterraneo

Da un punto di vista idrogeologico le formazioni dell'area di studio possono essere divise in due gruppi principali:

- Coperture vulcaniche oligo-mioceniche (Unità vulcaniche di Logulentu e di Osilo) Affiorano nella quasi totalità dell'area di interesse, e sono costituite da depositi caratterizzati da porosità medio bassa medio bassa per fratturazione (MF e MBF).
- Coperture sedimentarie oligo-mioceniche (Fm. Mores). Affiorano nella porzione meridionale dell'area di interesse, a S della faglia, e sono costituite da depositi caratterizzati da porosità medio alta per carsismo e fratturazione (MACF).

Dalla carta dei sistemi idrogeologici del foglio 459 "Sassari", si possono osservare le isopieze relative al complesso calcareo, le quali presentano direzioni di deflusso da sud-ovest verso nord-est, che si suppone continuino verso E nel Foglio 460 "Ploaghe". Lo schema idrogeologico sopra descritto suddivide in diverse unità idrogeologiche:

Al complesso piroclastico e lavico delle vulcaniti terziarie viene attribuita una conducibilità idraulica di $\mathbf{k} = \mathbf{10}^{-6}$ e $\mathbf{k} = \mathbf{10}^{-6}$, mentre al complesso marnoso-calcareo (Fm. Mores) una conducibilità idraulica di $\mathbf{k} = \mathbf{10}^{-6}$.

Rev. 00 – ottobre 2023 Pag. 27 di 86

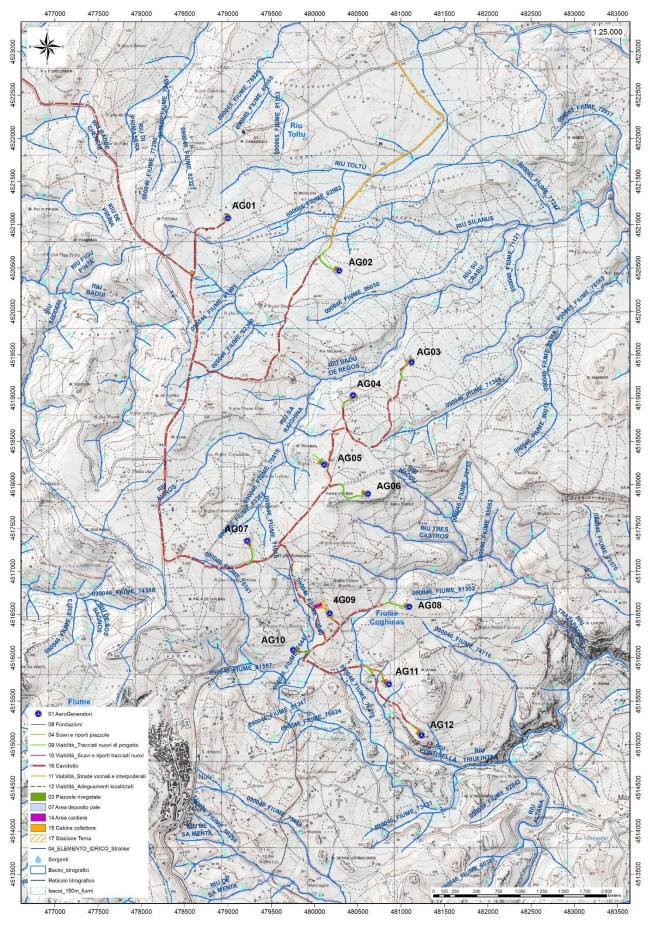


Figura 20 Carta dell'idrografia superficiale

Rev. 00 – ottobre 2023 Pag. 28 di 86

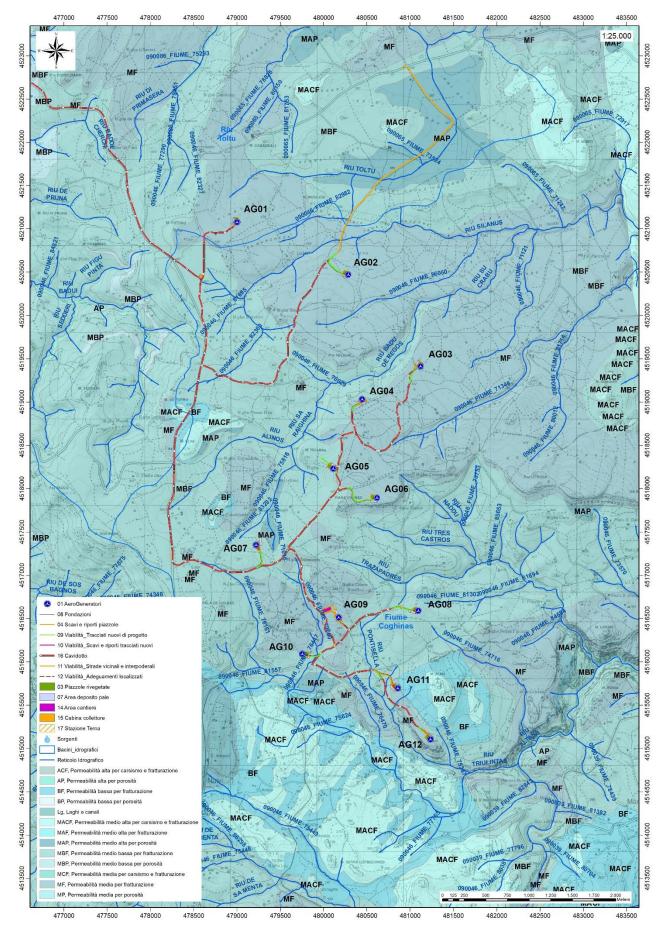


Figura 21 Carta delle permeabilità dei substrati

Rev. 00 – ottobre 2023 Pag. 29 di 86

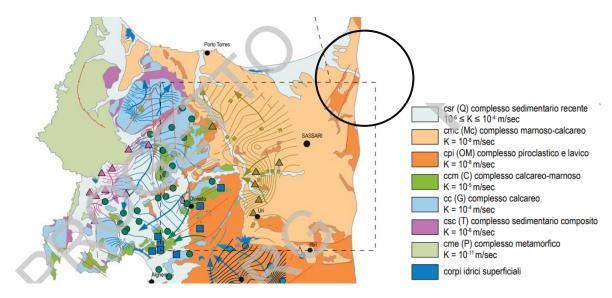


Figura 22 Sistemi idrogeologici dell'area occidentale del foglio 459 "Sassari"

Analisi della vulnerabilità degli acquiferi

Ai fini della tutela della riscorsa idrica si è operata una valutazione qualitativa della vulnerabilità degli acquiferi presenti in relazione alle opere da realizzare e in relazione alle varie attività di cantiere.

Sono presenti sorgenti nei pressi delle opere che prevedono gli scavi più profondi (fondazioni degli aerogeneratori, piazzole e aree di deposito temporaneo) per lo più stagionali e con bacini idrogeologici molto piccoli per le quali in fase esecutiva si opererà uno studio specifico volto a preservarne con monitoraggio e misura della qualità e della quantità delle acque.

Analogamente per quanto concerne il controllo della qualità delle acque in corrispondenza degli attraversamenti degli impluvi e dei piccoli rii qualora si intervenga con la trivellazione orizzontale controllata T.O.C. verranno monitorate le componenti suolo e acqua attraverso un programma di attività di seguito sintetizzati: saranno definiti dei punti di monitoraggio a monte e a valle dell'asta fluviale interessata dalla T.O.C. finalizzati alla raccolta dei dati necessari al monitoraggio ambientale, geotecnico e topografico.

In prima analisi verrà definito lo stato di fatto ovverosia verranno misurati tali parametri prima dell'inizio lavori e/o, se lo si riterrà opportuno, verranno eseguite più misurazioni per definire le condizioni ante-operam. Successivamente, in corso d'opera verranno monitorati i parametri topografici, geochimici e geotecnici ritenuti significativi al controllo delle matrici suolo, sottosuolo e acqua e se necessario verranno disposte misure correttive delle fasi di perforazione al fine di minimizzare eventuali variazioni del sistema ambiente.

Al termine delle opere il monitoraggio proseguirà per un tempo e per i parametri che dovranno essere definiti in concerto con gli Enti preposti.

Rev. 00 – ottobre 2023 Pag. 30 di 86

Nello specifico, in ogni caso singolo verranno realizzati almeno due sondaggi, a monte e a valle dell'opera attrezzati a piezometro di Casagrande per il monitoraggio del livello di falda e verosimilmente attrezzati con inclinometri per il controllo delle eventuali deformazioni connesse al passaggio della condotta. Verrà istituito un protocollo di prelievo campioni delle acque superficiali e sotterranee per il controllo dei parametri geochimici. Altresì verranno posizionate delle mire e per il monitoraggio di eventuali deformazioni della superficie topografica da porre in correlazione con i dati geotecnici.

Tale programma di monitoraggio in relazione al passaggio di un cavidotto in un'asta fluviale può consentire di valutare gli effetti dell'attività di costruzione sull'ecosistema fluviale. Può fornire informazioni sul possibile rilascio di sostanze inquinanti nell'acqua e sulla qualità complessiva dell'acqua durante e dopo la costruzione e conseguentemente prendere misure preventive o correttive al fine di minimizzare gli impatti ambientali e garantire la sostenibilità dell'asta fluviale e delle risorse idriche.

Le caratteristiche e la profondità dell'acquifero così come deriva dalle informazioni geologiche sono tale che quest'ultimo non venga influenzato dalle opere in possesso e con il normale deflusso delle acque sotterranee. Altresì le opere in progetto non determinano per loro natura produzione di agenti inquinanti che possono riversarsi nella circolazione idrica sotterranea se non per accidentale guasto meccanico che andrà trattato con le opportune misure di salvaguardia dettate dal T.U. sull'Ambiente.

Occorre segnalare la possibile presenza di ristagni d'acqua dovuti verosimilmente alla scarsa permeabilità del terreno per presenza d'argilla dovuta all'alterazione delle rocce vulcaniche.

Rev. 00 – ottobre 2023 Pag. 31 di 86

9. Inquadramento climatico

La definizione del clima è basata sull'analisi dei parametri meteorologici più comunemente studiati, quali la temperatura e le precipitazioni, il cui andamento è legato alle variazioni stagionali della circolazione atmosferica, considerando inoltre la ventosità, la nuvolosità e l'umidità relativa.

Il clima della Sardegna viene generalmente classificato come "Mediterraneo Interno", caratterizzato da inverni miti e relativamente piovosi ed estati secche e calde, con valori minimi invernali di alcuni gradi al di sotto dello zero e massimi estivi anche superiori ai +40 C.

Lungo le zone costiere, grazie alla presenza del mare, si hanno inverni miti con temperature che scendono raramente sotto lo zero. Anche nelle zone interne pianeggianti e collinari il clima è tipicamente mediterraneo, anche se a causa della maggior lontananza dal mare si registrano temperature invernali più basse ed estive più alte rispetto alle aree costiere.

Nelle zone più interne, come gli altopiani e le vallate spesso incastonate tra i rilievi, il clima acquista caratteri continentali con forti escursioni termiche, risultando particolarmente basse le minime invernali in caso di inversione termica, con temperature che possono scendere anche al di sotto dei -10/-12 C. Sui massicci montuosi nei mesi invernali nevica frequentemente e le temperature scendono sotto lo zero, mentre nella stagione estiva il clima si mantiene fresco, soprattutto durante le ore notturne, e raramente fa caldo per molti giorni consecutivi.

La Sardegna inoltre è una regione molto ventosa; i venti dominanti sono quelli provenienti dal settore occidentale (Maestrale e Ponente) e, in minor misura quelli provenienti da quello meridionale (Scirocco). Le precipitazioni sono distribuite in maniera variabile ed irregolare, con medie comprese tra i 400 e i 600 mm annui lungo le coste e valori pluviometrici che raggiungono e superano i 1000 mm annui (con locali picchi superiori ai 1300–1400 mm) in prossimità dei rilievi montuosi.

A causa del dominio sulla regione dei venti provenienti dai quadranti occidentali, mediamente la maggior frequenza di giorni di pioggia si riscontra nelle zone occidentali dell'isola, mentre in quelle orientali, trovandosi sottovento a questo tipo di circolazione a causa dell'orografia, si ha una minore frequenza di giornate piovose.

Tuttavia, le zone orientali sono spesso soggette a fortissime piogge, per cui gli accumuli medi annuali sono simili tra i due versanti.

L'andamento climatico del territorio di Nulvi e le risorse idriche disponibili sono stati valutati sulla base dei dati forniti dalle stazioni meteorologiche dell'ARPAS presenti nel territorio comunale di Ploaghe, Sassari e Osilo, localizzate rispettivamente circa 17 km e 8-10km a W del settore in esame.

L'andamento pluviometrico dell'area oggetto di studio è stato ricavato dai dati pluviometrici relativi all'intervallo 2008-2021 estratti dagli Annali Idrologici dell'ARPAS reperibili dal Geoportale della R.A.S., così come i dati termometrici, entrambi per le stazioni meteorologiche di Ploaghe, Sassari e Osilo.

Rev. 00 – ottobre 2023 Pag. 32 di 86

Tabella 1 Andamento pluviometrico dell'area vasta (espresso in mm) ricavato dalle stazioni pluviometriche di Ploaghe (2008-2012) di Osilo (anno 2013-2021).

Periodo	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic	Totale annuale
2021	150,8	51,6	49,6	35	51	11,6	2	0,6	22,8	37,4	115,2	108,6	636,2
2020	23,6	2,6	53	48	36,6	27,4	0	26,6	172,6	113,4	49,2	185,8	738,8
2019	103	36,4	27,6	82,8	57,8	0,6	24	23,4	6	99	327,6	60,6	848,8
2018	31	94	102,6	21,8	210,2	41	0	85,8	51,8	80	156,2	51,4	925,8
2017	75,6	59,8	18,6	18,6	4	40,2	0,8	0	46,2	5,2	110,2	124,4	503,6
2016	54,6	158	90,6	22,4	40,4	3,8	25,4	0,2	63,2	14,2	41,6	34,6	579
2015	57	126,6	70,6	43,6	5,6	18,8	4,4	18,4	21,8	110,6	62	5,8	545,2
2014	112,8	88,8	94	49	30,2	47,4	18,6	1,8	10	1,8	104,2	108,6	667,2
2013	163,8	118,2	164,6	87,4	65,2	2,4	4,2	5,2	34,6	24	122	31,4	823
2012	32,8	53,8	11,6	79,7	84,1	0	5,2	0	62,9	112,6	100,7	59,2	602,6
2011	80,4	58,2	59,2	39,4	1,6	58,2	14,8	0	71,6	17,6	102,4	129,2	632,6
2010	124,3	48,6	72,2	40,4	58,7	57,2	0	1,6	14,8	84,2	267,4	114,6	894
2009	140,6	59,6	36	73,4	6,2	54	0	22,2	88	34,6	114,6	121,2	750,4
2008	62,6	20,6	93,8	27,8	140,2	32,4	0	1	37	79,4	135,6	168,6	799

Per quanto riguarda i dati sull'evapotraspirazione, sono stati utilizzati i valori pubblicati dal Dipartimento Specialistico Regionale Idroclimatico (I.M.C.) dell'ARPAS.

Alla stazione di Ozieri sono riferiti i dati sulla ventosità ricavati dai riepiloghi meteorologici reperibili presso il Dipartimento Meteoclimatico dell'ArpaS, mentre la nuvolosità è stata ricavata dagli archivi del Servizio Meteo dell'Aeronautica Militare per la stazione di Fertilia (per il periodo 1961-1990), e l'umidità relativa è stata estrapolata dal Dipartimento Meteoclimatico dell'ArpaS per il periodo ottobre 2020 – marzo 2021 e aprile 2021 – settembre 2021 per la Sardegna.

Precipitazioni

Nella tabella raffigurante i dati relativi alle precipitazioni nell'intervallo 2008-2012 registrati nella stazione di Ploaghe e nell'intervallo 2013-2021 in quella di Osilo, sono riportati il valore medio mensile e il totale annuale di precipitazioni (espresso in mm) nei periodi considerati. Per il periodo 2008-2021 si osserva che i valori di precipitazioni presentano valori inferiori nei mesi autunnali e invernali, e superiori per il periodo compreso tra maggio e agosto.

Nell'area studiata, la piovosità media annuale è pari a circa 710 mm per il periodo compreso tra il 2008 e il 2021.

L'andamento pluviometrico dell'area di interesse nell'arco dell'anno è caratterizzato dal minimo assoluto di piovosità nel periodo estivo e da un massimo in autunno e inverno, per cui i mesi più secchi sono quelli estivi mentre quelli più piovosi sono quelli invernali.

Rev. 00 – ottobre 2023 Pag. 33 di 86

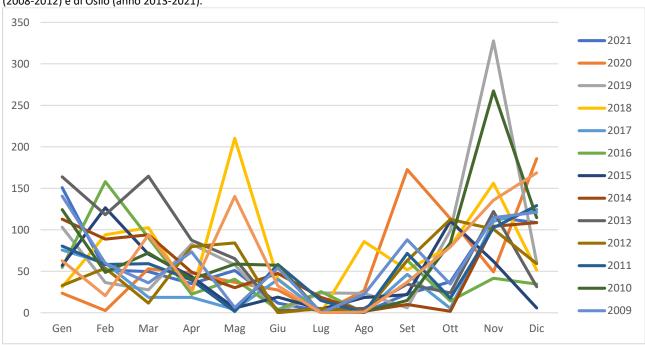


Tabella 2 Andamento della pluviometria mensile e annuale (nell'asse delle ordinate, in mm) per le stazioni pluviometriche di Ploaghe (2008-2012) e di Osilo (anno 2013-2021).

Temperature

I valori termometrici della stazione meteo di Sassari, ricavati dal Dipartimento Specialistico Regionale Idroclimatico (I.M.C.) dell'ARPAS, sono illustrati nella tabella sottostante e sono relativi alla stazione di Ploaghe per il periodo 1995-2011, alla stazione di Sassari per gli anni dal 2012 al 2019, e alla stazione di Osilo per il periodo 2020-2021. La temperatura media annua, calcolata con i valori medi mensili per il periodo 1995-2018, è di circa 15,8 °C.

Tabella 3 Temperature mensili (in °C) registrate nella stazione di Ploaghe per il periodo 1995-2011, in quella di Sassari per gli anni 2012-2019, e nella stazione di Osilo per il periodo 2020-2021.

Periodo	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic	media
2021	5,8	9,8	9,1	11	14,6	21,9	23,9	23,6	21,5	15,3	10,5	7,9	14,58
2020	8,4	9,3	8,9	13,3	17	19,3	23,9	24	19,4	13,6	12,4	7,6	14,76
2019	6,9	9,2	11,4	12,5	14	23,8	25,6	25,8	22,4	18,7	11,9	11,6	16,15
2018	10,8	7,2	10,5	15,8	16,8	21,4	25,5	25	22,3	18,1	13,3	10,3	16,42
2017	7,3	10,9	12,1	13,8	18,8	24,2	25,7	27,5	19,5	17,6	11,5	8,2	16,43
2016	9,6	10,3	10,7	15,1	16,8	21,4	25	24,2	21,8	17,9	13,5	11,1	16,45
2015	8,4	7,6	10,3	13,5	18	22,6	26,5	24,7	21,1	16,5	13,3	11	16,13
2014	9,3	9,7	10,4	13,7	16,2	22,2	22,6	23,6	22,2	19,7	15,2	9,7	16,21
2013	8	6,3	10,5	13,6	14,8	19,6	25	24,7	20,8	19,8	11,4	9,9	15,37
2012	8,5	5,4	12	13,3	16,7	23,6	24,8	26,9	21	17,6	13,8	9,1	16,06
1995-2011	7,6	7,8	10,3	13,1	17,9	22,1	24,9	25	20,6	16,9	11,7	8,5	15,53

Rev. 00 – ottobre 2023 Pag. 34 di 86

Il mese più freddo è gennaio con una media di circa 8,2°C mentre le temperature più elevate si riscontrano a Luglio e Agosto con circa 25 °C.

Il grafico sottostante illustra l'andamento delle temperature medie mensili per il periodo 1995-2011 registrate nella stazione di Ploaghe, nella stazione di Sassari per gli anni dal 2012 al 2019, e in quella di Osilo per gli anni 2020-2021.

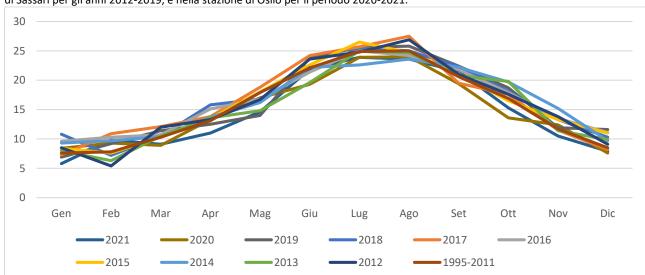


Tabella 4 Temperature mensili (in °C, nell'asse delle ordinate) registrata nella stazione di Ploaghe per il periodo 1995-2011, in quella di Sassari per gli anni 2012-2019, e nella stazione di Osilo per il periodo 2020-2021.

Stima dell'evapotraspirazione

L' evapotraspirazione è uno dei parametri più significativi nell'ambito di un bilancio idrologico e rappresenta la perdita di una parte delle acque di precipitazione, per evaporazione dal suolo e per traspirazione della vegetazione. Viene calcolata tenendo conto della temperatura e delle precipitazioni, e viene influenzata dalla nuvolosità, dall'umidità relativa e dalla ventosità.

Nelle figure seguenti sono illustrati i bilanci idro-meteorologici mensili rispettivamente per il periodo ottobre 2020 – marzo 2021 e aprile 2021 – settembre 2021 per la Sardegna, ricavati dal Dipartimento Meteoclimatico dell'ArpaS. Il bilancio idro-meteorologico si esprime come differenza tra il cumulato di precipitazione ed il cumulato dell'evapotraspirazione di riferimento (ETO) stimata con il metodo Hargreaves-Samani.

Rev. 00 – ottobre 2023 Pag. 35 di 86

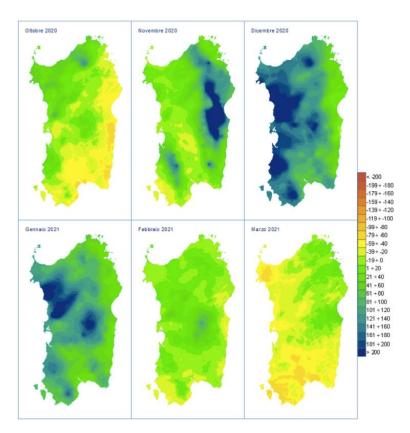


Figura 23 Bilancio idro-meteorologico (espresso in mm) per il periodo ottobre 2020-marzo 2021 con la zona oggetto di interesse delimitata in rosso.

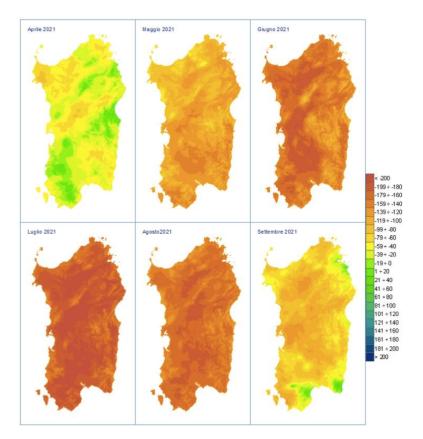


Figura 24 Bilancio idro-meteorologico (espresso in mm) per il periodo aprile 2021-settembre 2021 con la zona oggetto di interesse delimitata in rosso.

Rev. 00 – ottobre 2023 Pag. 36 di 86

La nuvolosità influenza il clima in quanto da essa dipende l'irraggiamento solare. Nella tabella sottostante sono rappresentati i valori mensili di condizioni di sereno (nuvolosità < 2/8), nuvoloso (2/8 < nuvolosità < 6/8) e coperto (nuvolosità > 6/8), espressi in okta (stima di quanti ottavi di cielo sono oscurati dalle nuvole) e riferiti al periodo 1961 – 1990 per la stazione di Fertilia.

Tabella 5 Media mensile dei giorni di sereno, nuvoloso e coperto per il periodo 1961-1990, relativa alla stazione di Fertilia, espressa in okta.

Gen	<u>Feb</u>	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
4,7	4,7	4,6	4,5	3,8	3	1,7	2	2,9	3,6	4,4	4,6
coperto	coperto	coperto	coperto	coperto	sereno	sereno	sereno	sereno	coperto	coperto	coperto

Dall'esame dei valori della tabella si evince che il massimo di giorni sereni si ha tra Giugno e Agosto mentre durante gli altri mesi è sempre presenta una certa copertura. Il valore minimo di giornate nuvolose si ha nel mese di Luglio e il massimo si osserva nei mesi di Gennaio e Febbraio. Le giornate in condizioni di coperto raggiungono il massimo a Gennaio e minimo a Luglio.

Il clima è influenzato anche dall'andamento del vento al suolo (ventosità), che viene definito analizzandone l'intensità, la direzione e la frequenza.

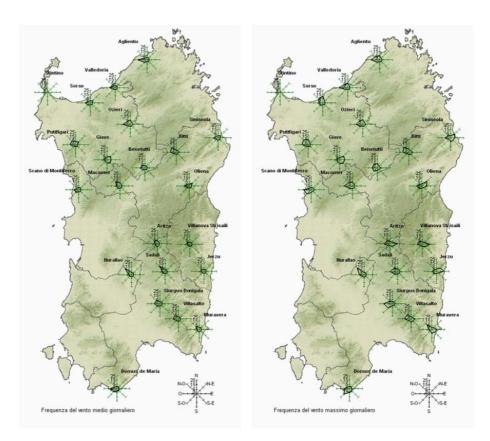


Figura 25 Ventosità media giornaliera e frequenza del vento massimo giornaliero rilevata presso la stazione meteorologica di Ozieri relativa all'anno 2017 (mese giugno).

Rev. 00 – ottobre 2023 Pag. 37 di 86

Dai riepiloghi meteorologici reperibili presso il Dipartimento Meteoclimatico dell'ArpaS si possono evincere le direzioni dominanti del vento nelle diverse stazioni dell'Isola, in particolare quelle rilevate presso la stazione di Ozieri nel mese di giugno 2016 che raffigura la frequenza e la direzione del vento.

Dall'analisi dei dati disponibili dalla Rete Mareografica dell'ISPRA, si possono evincere anche i dati annuali della ventosità, in tal caso relativi alla stazione di Porto Torres.

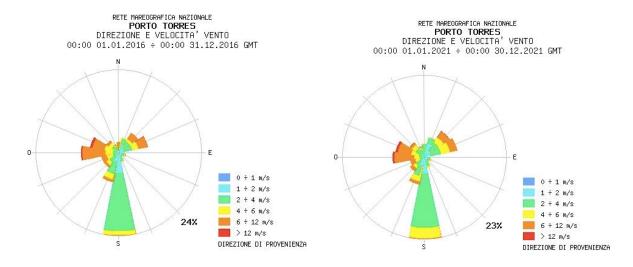


Figura 26 Ventosità annuale espressa come intensità e direzione rilevata presso la stazione meteorologica di Porto Torres relative all'anno 2016 e 2021.

Analizzando tali dati per diverse annualità (anni 2016 e 2021), risulta che i venti provenienti dai quadranti meridionali sono generalmente in netta dominanza come frequenza, in particolare quello più frequente è l'ostro. Il vento proveniente da S è il più frequente ma anche il meno intenso, mentre i venti provenienti da WNW (ponente e maestrale) pur spirando meno frequentemente, sono più intensi, così come i venti provenienti da ENE (grecale).

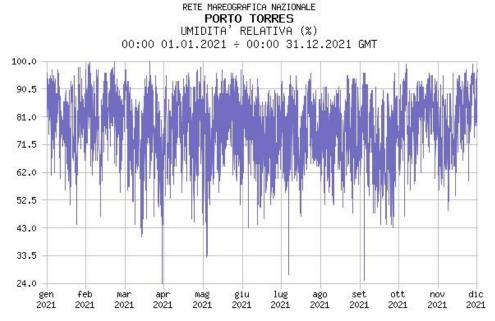


Figura 27 Umidità relativa per la stazione di Porto Torres, per l'anno 2021.

Rev. 00 – ottobre 2023 Pag. 38 di 86

L'ultima variabile significativa che condiziona l'evapotraspirazione è l'umidità relativa, ossia il rapporto tra la quantità di vapore d'acqua contenuta in una massa d'aria rispetto e quella massima potenziale in relazione alla sua temperatura. La tabella soprastante riporta i valori dell'umidità relativa media mensile ed annuale della stazione di Fertilia per il periodo 1971-2000, si nota che tale valore raggiunge valori più elevati nei mesi invernali (Novembre - Febbraio) e valori minimi nel mese di Luglio

Figura 28 Diagramma ombrotermico (Walter e Lieth) per il settore in studio.

Il diagramma ombrotermico elaborato per l'area di interesse a partire dai dati sulla temperatura media e precipitazioni medie permette di comparare contemporaneamente i regimi medi mensili termici e pluviometrici nell'arco del periodo considerato. L'andamento delle curve consente di visualizzare che nei mesi estivi, dove la temperatura media mensile raggiunge valori superiori ai 24 °C, si hanno i valori di piovosità inferiori, mentre nei mesi invernali, dove le temperature medie mensili sono pari a 9°C, si raggiungono le piovosità più elevate.

Il clima è caratterizzato da un periodo caldo con scarsa piovosità e uno più freddo e piovoso. Nel grafico di si nota che la curva delle precipitazioni giace al di sotto di quella delle temperature nei mesi estivi, che rappresentano il periodo secco in quanto prevale l'evapotraspirazione rispetto agli apporti idrici.

Rev. 00 – ottobre 2023 Pag. 39 di 86

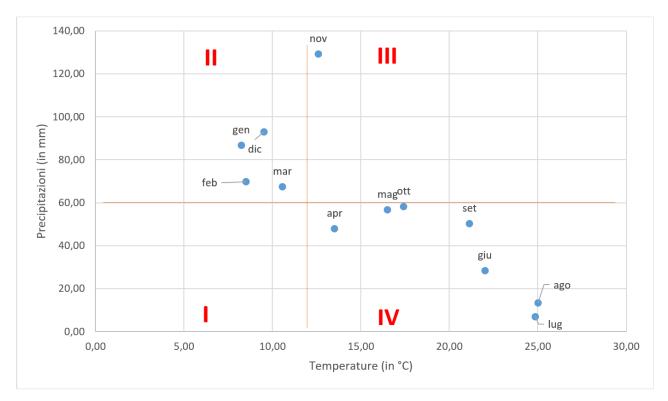


Figura 29 Climogramma relativo all'area di Nulvi

L'analisi delle medie mensili di temperatura e piovosità relative al periodo 2012-2021 permette di classificare il clima dell'area di interesse come "mediterraneo con estate calda", nel quale la temperatura media annua (16 °C), non scende mai sotto agli 8 °C, e per quattro mesi (Giugno - Settembre) supera i 22 °C, e le precipitazioni sono superiori ai 700 mm annui.

Dal climogramma realizzato a partire dai valori medi di precipitazioni e temperature relativi al periodo 2012-20121 per l'area di interesse, nel quale i quadranti definiscono le diverse tipologie di climi, ossia freddo arido (I), freddo umido (II), caldo umido (III) e caldo arido (IV), è evidente che il settore in studio è caratterizzato da due periodi, uno lungo di caldo arido ed uno limitato freddo umido.

La classificazione fatta sul clima della regione, è confermata anche dall'indice di aridità medio di Demartonne stimato per l'area in oggetto che ricade nel settore da "secco – sub-umido" a "subumido" per il periodo considerato.

L'analisi dei parametri meteorologici permette di confermare l'andamento climatico rilevato in quasi tutta la Sardegna, nettamente bistagionale con le stagioni caldo arida e fresca umida che si alternano nel corso dell'anno, intervallate da due brevi stagioni a carattere intermedio.

Rev. 00 – ottobre 2023 Pag. 40 di 86

10. Inquadramento pedologico

Le tipologie di suolo sono legate per genesi alle caratteristiche delle formazioni geo-litologiche presenti e all'assetto idraulico di superficie nonché ai diversi aspetti morfologici, climatici e vegetazionali.

Poiché la litologia del substrato o della roccia madre ha una importanza fondamentale quale fattore nella pedogenesi dei suoli, le unità principali sono state delimitate in funzione delle formazioni geologiche prevalenti, e successivamente all'interno di esse sono state individuate unità, distinte dalla morfologia del rilievo, dall'acclività e dall'uso del suolo prevalente.

Le turbine AG01, AG02, AG03, AG04, AG11 e AG12 ricadono nell' **Unità D3 - Rocce effusive acide** (andesiti, rioliti, riodaciti, ecc.) e intermedie (fonoliti) del Cenozoico e loro depositi di versante e colluviali con profilo: Roccia affiorante e suoli a profilo A-C, A-R e subordinatamente A-Bw-C, poco profondi, da sabbioso franchi a franco argillosi, da permeabili a mediamente permeabili, neutri, saturi. TASSONOMIA: ROCK OUTCROP, LITHIC XERORTHENTS, subordinatamente XEROCHREPTS in aree prevalentemente prive di copertura arbustiva ed arborea. Rocciosita' e pietrosita' elevate, scarsa profondita', eccesso di scheletro, drenaggio lento. Forte pericolo di erosione.

Le turbine AG05, AG06, AG07, AG08, AG09 e AG10 ricadono nell' **Unità D1 - Rocce effusive acide** (andesiti, rioliti, riodaciti, ecc.) e intermedie (fonoliti) del Cenozoico e loro depositi di versante e colluviali con profilo Roccia affiorante e suoli a profilo A-C e subordinatamente A-Bw-C, poco profondi, da franco argillosi ad argillosi, da mediamente a poco permeabili, neutri, saturi. TASSONOMIA: ROCK OUTCROP, LITHIC XERORTHENTS, subordinatamente LITHIC XEROCHREPTS in aree prevalentemente prive di copertura arbustiva ed arborea. Rocciosita' e pietrosita' elevate, scarsa profondita', eccesso di scheletro, forte pericolo di erosione.

Rev. 00 – ottobre 2023 Pag. 41 di 86

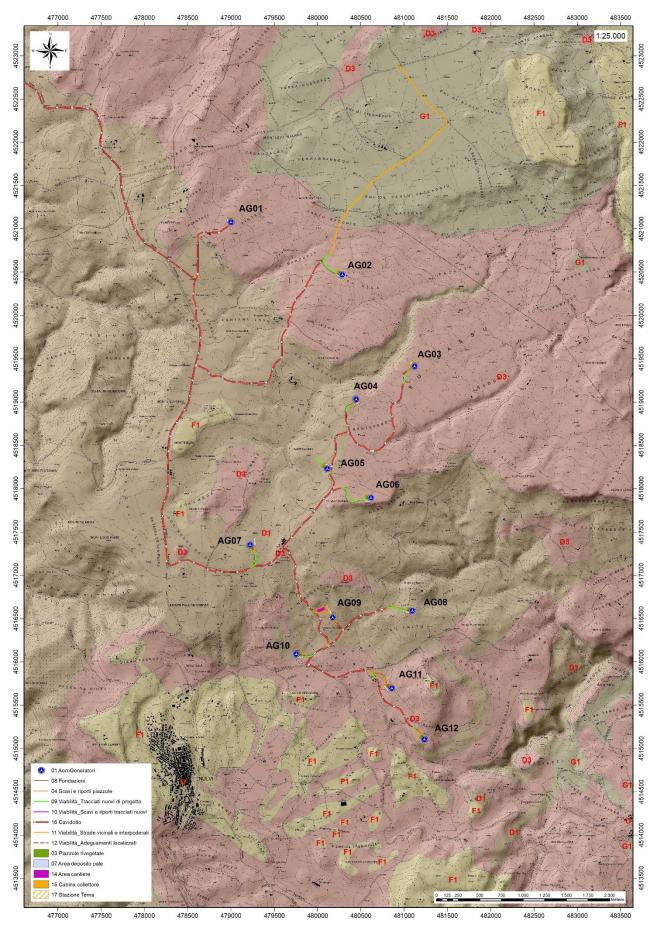


Figura 30 Stralcio della Carta dei Suoli della Sardegna (Fonte RAS).

Rev. 00 – ottobre 2023 Pag. 42 di 86

11. Uso del Suolo

Dalla Carta dell'Uso del Suolo, resa disponibile dalla Regione Sardegna, si evince che l'ambito di progetto del Parco eolico "Nulvi" si inserisce in un contesto in cui il suolo ricade in vari livelli.

Intorno al lotto di interesse, nello specifico dell'area di installazione delle turbine, le destinazioni d'uso ricadono in ambiti quali Colture temporanee associate ad altre colture permanenti (2413), Prati artificiali (2112), Sugherete (31122), e Seminativi in aree non irrigue (2111).

In particolare, dall'analisi della cartografia esistente, si evince che:

- ricadono nel livello 2413, classificato come "Colture temporanee associate ad altre colture permanenti", i punti di installazione della turbina AG09;
- ricadono nel livello 2112, classificato come "Prati artificiali", i punti di installazione delle turbine AG02, AG06;
- nel livello 31122, classificato come "Sugherete", i punti di installazione delle turbine AG01, AG03, AG04;
- nel livello 2111, classificato come "Seminativi in aree non irrigue", ", i punti di installazione delle turbine AG05, AG07, AG08, AG10, AG11, AG12.

Rev. 00 – ottobre 2023 Pag. 43 di 86

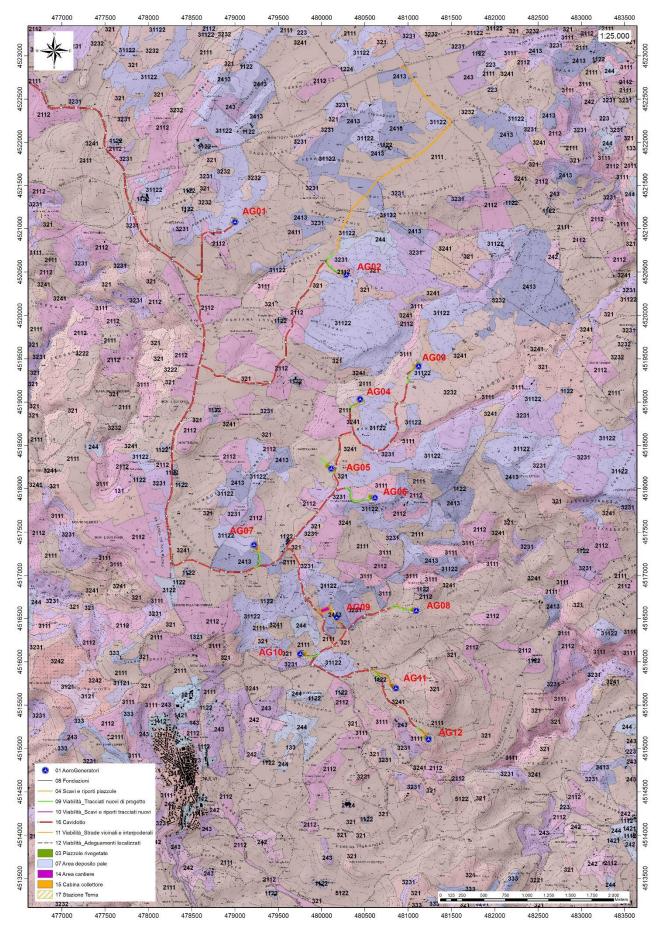


Figura 31 Stralcio della Carta dell'Uso del Suolo della Sardegna (2008, Fonte RAS).

Rev. 00 – ottobre 2023 Pag. 44 di 86

12. Analisi dei vincoli gravanti sui terreni

Piano Stralcio D'assetto Idrogeologico Della Sardegna (P.A.I.)

Per quanto riguarda gli aspetti legati alla pericolosità idrogeologica, si sintetizzano gli esiti del Piano Stralcio per l'Assetto Idrogeologico (PAI), che è stato redatto dalla Regione Sardegna ai sensi del comma 6 ter dell'art. 17 della Legge 18 maggio 1989 n. 183 e ss.mm.ii., adottato con Delibera della Giunta Regionale n. 2246 del 21 luglio 2003, approvato con Delibera n. 54/33 del 30 dicembre 2004 e reso esecutivo dal Decreto dell'Assessore dei Lavori Pubblici n. 3 del 21 febbraio 2005.

Il PAI ha valore di piano territoriale di settore e, in quanto dispone con finalità di salvaguardia di persone, beni, ed attività dai pericoli e dai rischi idrogeologici, prevale sui piani e programmi di settore di livello regionale (Art. 4 comma 4 delle Norme Tecniche di Attuazione del PAI). Inoltre (art. 6 comma 2 lettera c delle NTA), "le previsioni del PAI [...] prevalgono: [...] su quelle degli altri strumenti regionali di settore con effetti sugli usi del territorio e delle risorse naturali, tra cui i [...] piani per le infrastrutture, il piano regionale di utilizzo delle aree del demanio marittimo per finalità turistico-ricreative".

Nello specifico del progetto, né le turbine né la viabilità sono interessate da pericolosità da frana, fatto salvo un tratto di viabilità esistente in località M.te Elva prossimo ad un'area a pericolosità Hg3. Le turbine sono posizionate su un pianoro sufficientemente ampio da garantire la non influenza dell'opera con la dinamica del versante attiguo. Dai sopralluoghi effettuati in sito non si ha inoltre evidenza per quest'area di fenomeni franosi in atto o potenziali. La dinamica geomorfologica di versante è naturalmente presente ma senza manifestazioni importanti. Per quanto concerne la pericolosità idraulica, l'area è interessata da perimetrazioni PAI solo nel tratto corrispondente alla viabilità esistente in corrispondenza del Riu Toltu che genera una pericolosità Hi4 e dove sono previste solo opere di adeguamento e manutenzione. Analizzando la cartografia IGM 25 e il reticolo idrografico ufficiale reso disponibile dalla Regione Sardegna sono stati valutate le interferenze con gli elementi di progetto ai sensi dell'articolo 30ter delle NTA PAI. Nella tavola seguente viene riportata la pericolosità idraulica vigente e il reticolo della RAS con la gerarchizzazione Horton – Strahler ed evidenziati i punti di interferenza, riassunti di seguito:

id	nome	n.strahler	id	nome	n.strahler
1	090086_FIUME_72124	(ordine 1)	11	090046_FIUME_76447	(ordine 2)
2	090046_FIUME_78415	(ordine 1)	12	090046_FIUME_74014	(ordine 1)
3	090046_FIUME_71402	(ordine 2)	13	090046_FIUME_76470	(ordine 1)
4	RIU SILANUS	(ordine 1)	14	RIU PONTISELLA	(ordine 2)
5	RIU SILANUS	(ordine 3)	15	090046_FIUME_85190	(ordine 1)
6	090046_FIUME_82982	(ordine 2)	16	090046_FIUME_71478	(ordine 1)

Rev. 00 – ottobre 2023 Pag. 45 di 86

7	090046_FIUME_71402	(ordine 2)	17	RIU PONTISELLA	(ordine 1)
8	RIU ALINOS	(ordine 1)	18	090046_FIUME_83074	(ordine 1)
9	090046_FIUME_76161	(ordine 1)	19	090046_FIUME_80234	(ordine 1)
10	090046_FIUME_78567	(ordine 1)	20		

Rev. 00 – ottobre 2023 Pag. 46 di 86

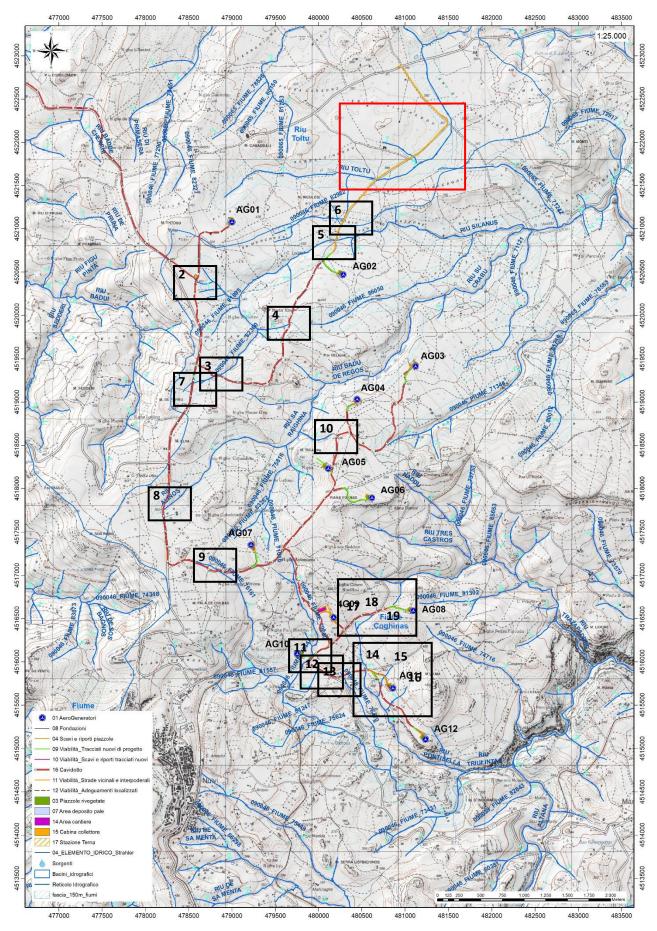


Figura 32 Pericolosità idraulica vigente e interferenze degli elementi di progetto con il reticolo idrografico

Rev. 00 – ottobre 2023 Pag. 47 di 86

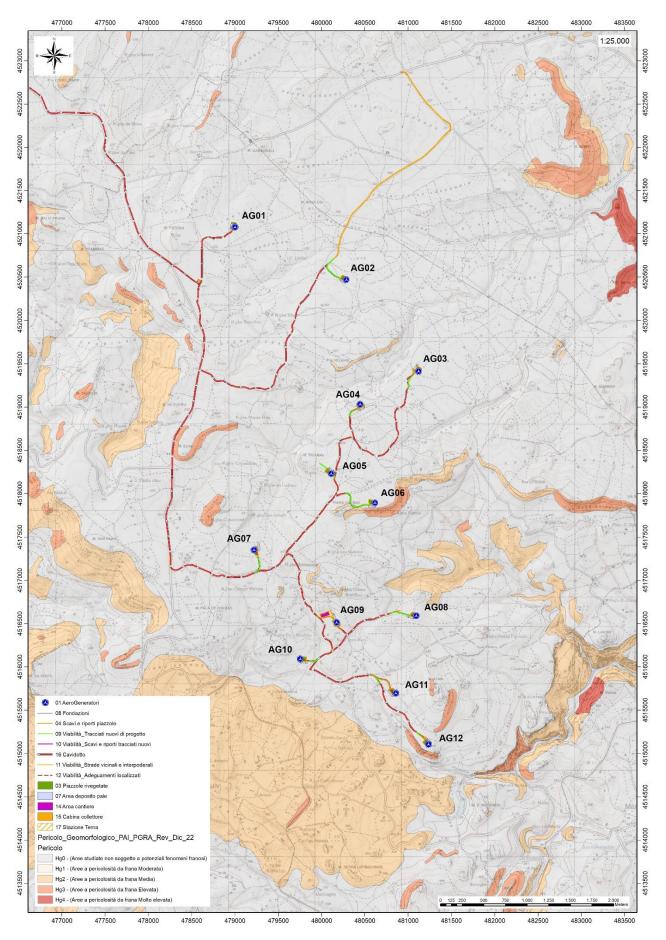


Figura 33 Pericolosità da frana vigente (fonte RAS)

Rev. 00 – ottobre 2023 Pag. 48 di 86

Inventario dei Fenomeni Franosi – Progetto I.F.F.I.

Per quanto riguarda il censimento dei siti franosi nell'ambito del Progetto IFFI, nell'inventario non sono menzionate aree che ricadono nell'ambito territoriale dell'area di interesse.

L'area urbana di Nulvi e la sua parte in valle è interessata da un fenomeno franoso stabilizzato (paleofrana) anche se localmente per le caratteristiche geologiche del piano di scivolamento, si hanno locali smottamenti. Nel territorio interessato dal progetto non sono censiti fenomeni franosi.

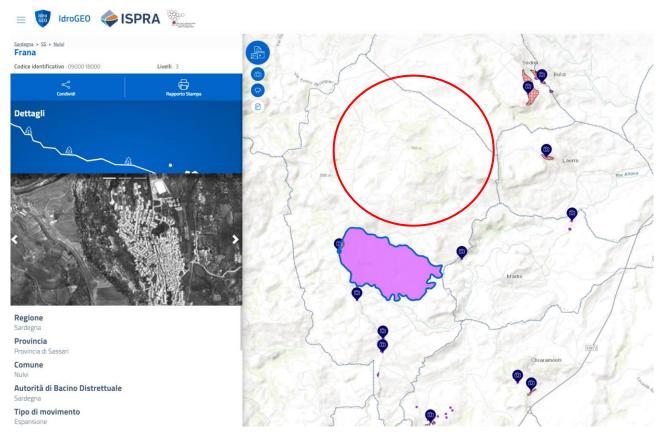


Figura 34 Archivio IFFI (Fonte ISPRA) in rosso l'area di intervento

Rev. 00 – ottobre 2023 Pag. 49 di 86

	Classificazione					
PRIMO LIVELLO						
Tipo Movimento:	Espansione					
SECONDO LIVELLO						
Tipo Movimento:	1° ordine: espansione	2° ordine: espansione				
Velocità	1° ordine: estremamente lento (< 16 mm/anno)	2° ordine: estremamente lento (< 16 mm/anno)				
Materiale:	1° ordine: roccia	2° ordine: terra				
Acqua:	1° ordine: Secco	2° ordine: umido				
Altri fenomeni ass	sociati:					

	Attività
Stato Attività: PRIMO LIVELLO Relitto	SECONDO LIVELLO n.d.
Data osservazione: Certa: 29/04/2005	Incerta:
Distribuzione: retrogressivo	Stile: multiplo

Figura 35 monografia della paleofrana ID 0900018000, (Archivio IFFI, Fonte Ispra)

Rev. 00 – ottobre 2023 Pag. 50 di 86

Piano Stralcio Delle Fasce Fluviali (P.S.F.F.)

Il Piano Stralcio delle Fasce Fluviali (PSFF) definisce, per i principali corsi d'acqua della Sardegna, le aree inondabili e le misure di tutela per le fasce fluviali. A seguito dello svolgimento delle conferenze programmatiche, tenute nel mese di gennaio 2013, il Comitato Istituzionale dell'Autorità di Bacino della Regione Sardegna, con Delibera n.1 del 20.06.2013, ha adottato in via definitiva il Progetto di Piano Stralcio delle Fasce Fluviali. Il Piano Stralcio delle Fasce Fluviali costituisce un approfondimento ed una integrazione necessaria al Piano di Assetto Idrogeologico (P.A.I.) in quanto è lo strumento per la delimitazione delle regioni fluviali funzionale a consentire, attraverso la programmazione di azioni (opere, vincoli, direttive), il conseguimento di un assetto fisico del corso d'acqua compatibile con la sicurezza idraulica, l'uso della risorsa idrica, l'uso del suolo (ai fini insediativi, agricoli ed industriali) e la salvaguardia delle componenti naturali ed ambientali. Con Delibera n. 2 del 17.12.2015, il Comitato Istituzionale dell'Autorità di bacino della Regione Sardegna ha approvato in via definitiva, per l'intero territorio regionale, ai sensi dell'art. 9 delle L.R. 19/2006 come da ultimo modificato con L.R. 28/2015.

Per quanto riguarda le delimitazioni presenti nella cartografia del Piano Stralcio Fasce Fluviali, si evince che nel territorio circostante l'area di interesse è presente un'area di fascia C (Fascia Geomorfologica) individuabile nella parte orientale del territorio lungo l'alveo del Riu Toltu.

Piano di Gestione del Rischio Alluvioni (PGRA)

L'articolo 7 del D.Lgs. 23 febbraio 2010 n. 49 "Attuazione della Direttiva Comunitaria 2007/60/CE, relativa alla valutazione e alla gestione dei rischi di alluvioni", che recepisce in Italia la Direttiva comunitaria 2007/60/CE, prevede che in ogni distretto idrografico, di cui all'art. 64 del D.Lgs.152/2006, sia predisposto il Piano di Gestione del Rischio di Alluvioni (di seguito indicato come PGRA).

L'obiettivo generale del PGRA è la riduzione delle conseguenze negative derivanti dalle alluvioni sulla salute umana, il territorio, i beni, l'ambiente, il patrimonio culturale e le attività economiche e sociali. Esso coinvolge pertanto tutti gli aspetti della gestione del rischio di alluvioni, con particolare riferimento alle misure non strutturali finalizzate alla prevenzione, protezione e preparazione rispetto al verificarsi degli eventi alluvionali; tali misure vengono predisposte in considerazione delle specifiche caratteristiche del bacino idrografico o del sottobacino interessato. Il PGRA individua strumenti operativi e di governance (quali linee guida, buone pratiche, accordi istituzionali, modalità di coinvolgimento attivo della popolazione) finalizzati alla gestione del fenomeno alluvionale in senso ampio, al fine di ridurre quanto più possibile le conseguenze negative.

Il territorio in studio risulta essere interessato da perimetrazioni per rischio alluvioni in corrispondenza delle arre di esondazione del Riu Toltu tra le località La Serra di Lazzaggiu, Eni de Paulu Vaccaggiu e Eni di Vilgheddu.

Rev. 00 – ottobre 2023 Pag. 51 di 86

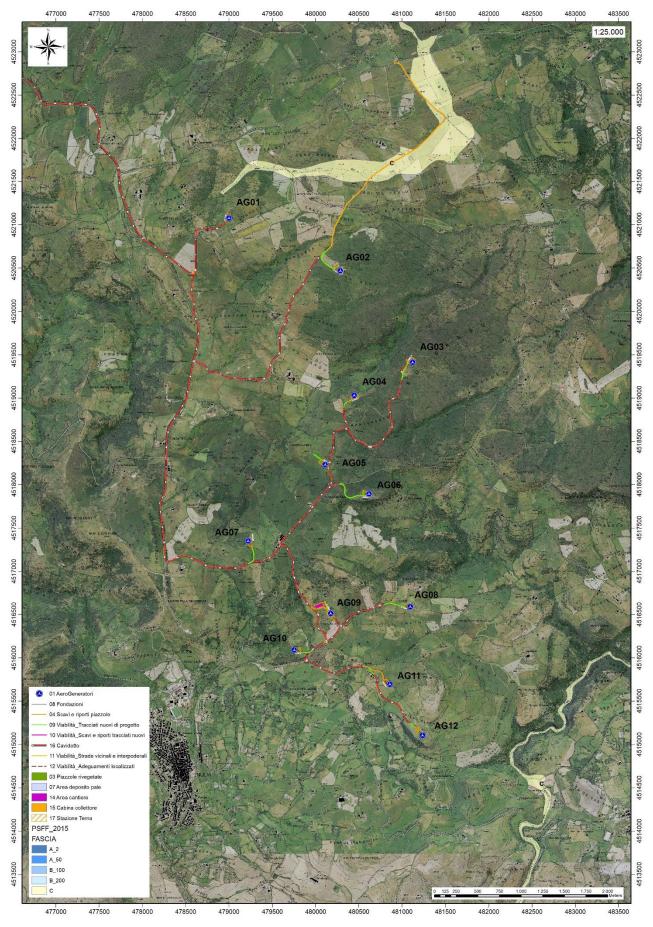


Figura 36 Carta delle perimetrazioni PSFF

Rev. 00 – ottobre 2023 Pag. 52 di 86

Rev. 00 – ottobre 2023 Pag. 53 di 86

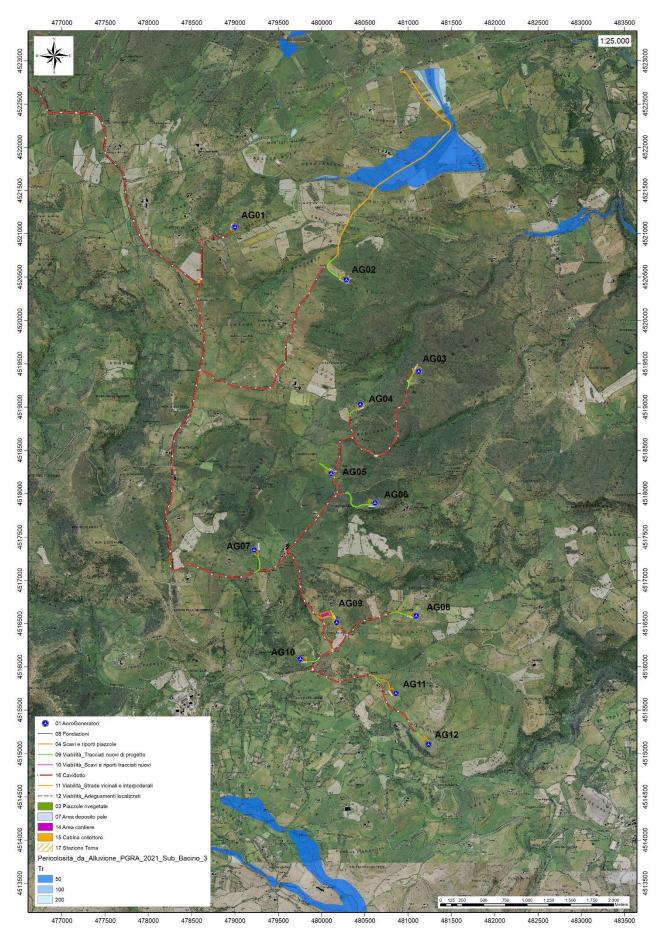


Figura 37 PGRA (Fonte RAS)

Rev. 00 – ottobre 2023 Pag. 54 di 86

13. Indagini geognostiche

La necessità di integrare le informazioni di tipo geologico e geotecnico derivanti da studi pregressi, dalla letteratura di settore e dai rilievi geologici e geostrutturali in sito, ha reso necessario predisporre un piano di indagini geognostiche propedeutiche alla definizione del modello geologico di riferimento di sito funzionale alle opere previste in progetto così come richiamato dalle Norme Tecniche sulle Costruzioni (NTC2018 - §Cap. 6.2.1).

L'obiettivo delle indagini realizzate è stato:

- 1. Definire la stratigrafia ed i rapporti tra le formazioni geologiche interessate dagli interventi;
- 2. Definire le caratteristiche fisico-meccaniche degli ammassi rocciosi coinvolti nelle opere in progetto;
- 3. Individuare la presenza di circolazione d'acqua sotterranea alle profondità di interesse in relazione ai volumi significativi delle opere (fondazioni, piazzole, trincee e rilevati stradali, stabilità dei pendii)

La metodica utilizzata è quella indiretta in sito, ovvero l'indagine geofisica, questa costituisce parte integrante delle indagini geognostiche dirette e indirette legate alla caratterizzazione dei terreni di fondazione. In particolare, si pone come obbiettivo la ricostruzione dell'assetto sismo-stratigrafico dei terreni sede di posa delle opere di fondazione nonché la classificazione del suolo di fondazione per le categorie semplificate indicate nel Decreto 17 gennaio 2018 - NTC 2018 aggiornamento delle "Norme tecniche per le costruzioni". Sono stati eseguiti di n°4 stendimenti di sismica con tecnica MASW e rifrazione in onde P e n°2 stendimenti di sismica con tecnica MASW. Tutte le basi sismiche MASW ricadono lungo il medesimo allineamento delle rifrazioni, i quali hanno il medesimo centro degli allineamenti sismici ma sono leggermente più lunghi (69,0 m).

È stato inoltre eseguito il Rilievo topografico tramite GPS (geofoni, punti di shot, elettrodi /picchetti) e restituzione dei profili altimetrici da impiegare nelle sezioni di sismica.

Sono stati infine elaborati i dati ottenuti tramite analisi delle prospezioni acquisite in campagna, applicazione filtri, e restituzione grafica delle sezioni sismiche con l'impiego di software specialistici.

Stendimento	Metodologie	Orientamento	Geofoni	Interdistanza (m)	Lunghezza (m)
R1 (SM01)	Rifrazione	NO-SE	24	3,0	69,0
R2 (SM02)	Rifrazione	N-S	24	3,0	69,0
R3 (SM03)	Rifrazione	NO-SE	24	3,0	69,0
R4 (SM04)	Rifrazione	NO-SE	24	3,0	69,0
M1 (SM01)	MASW	NO-SE	24	3,0	69,0
M2 (SM02)	MASW	N-S	24	3,0	69,0

Figura 38 Quadro riassuntivo delle indagini svolte

Rev. 00 – ottobre 2023 Pag. 55 di 86

Generalità sul metodo sismico a rifrazione

Il metodo sismico a rifrazione studia la velocità di propagazione delle onde sismiche nel sottosuolo quando il terreno è sottoposto a sollecitazioni artificiali. La determinazione delle velocità si ottiene misurando i tempi di primo arrivo delle onde sismiche generate in diversi punti sulla superficie topografica. Operativamente i profili sismici si eseguono disponendo sul terreno una serie di sensori (geofoni), posti ad un intervallo costante, collegati ad un sismografo mediante un cavo multipolare.

Dopo l'allestimento del dispositivo di ricezione si provvede a generare artificialmente vibrazioni impulsive in corrispondenza di punti prestabiliti lungo i profili: Nello stesso istante di partenza della vibrazione viene trasmesso al sismografo il comando di avvio della registrazione (trigger). Da questo istante inizia l'acquisizione digitale, con campionamento ad intervallo costante e predeterminato, dei segnali ricevuti dai sensori. L'interpretazione dei segnali e la ricostruzione del profilo di velocità delle onde P consiste di almeno due fasi ben distinte, e cioè l'interpretazione dei sismogrammi e l'interpretazione dei diagrammi tempiistanze (dromocrone).

Nella prima fase i tempi di primo arrivo dei segnali sismici vengono letti direttamente sui sismogrammi di campagna visualizzati a monitor. I tempi letti in corrispondenza di ciascun canale (geofono), vengono memorizzati in appositi files che costituiscono i dati in input del software utilizzato. Per ciascun tiro, quindi, si ricostruisce un diagramma dei tempi di arrivo in funzione della distanza dal punto di tiro stesso.

L'interpretazione delle dromocrone consiste, quindi, nel suddividere la funzione tempi/distanze in segmenti a pendenza differente, indicativi della presenza di variazioni di velocità nel sottosuolo. Questa operazione viene eseguita ad un terminale videografico dove è possibile eseguire modifiche ed aggiustamenti continui dell'interpretazione.

Il numero di segmenti per ciascuna funzione equivale al numero di strati che costituiranno il modello interpretativo finale; modello che consiste in una stratigrafia del terreno basata sulle variazioni di velocità delle onde compressionali.

Nella maggior parte dei casi, comunque, si riscontrano variazioni stratigrafiche che non corrispondono a variazioni di tipo litologico in senso stretto, ma alla naturale variazione di compattezza dello stesso materiale che, per alterazione superficiale o per semplice decompressione, si presenta più allentato in prossimità della superficie rispetto alle zone più profonde.

In questi casi per la modellizzazione del sottosuolo, risulta più adatta un'altra tecnica di elaborazione: la tecnica di elaborazione tomografica.

Con questa tecnica il sottosuolo viene suddiviso in elementi finiti di forma quadrata e di dimensioni estremamente piccole (dell'ordine di grandezza di decimetri) un software specifico, (nel nostro caso si è utilizzato il software RAYFRACT vers 4.01), che stima le velocità sismiche compatibili con ogni singolo elemento affinché i tempi di percorso dei vari fronti d'onda, generati nei punti di tiro disposti lungo il profilo, risultino il più possibile simili ai tempi misurati e letti sui sismogrammi. Il risultato che si ottiene è una griglia

Rev. 00 – ottobre 2023 Pag. 56 di 86

di valori di velocità dalla superficie fino alle massime profondità di indagine che caratterizzano i vari elementi in cui è stato suddiviso il sottosuolo.

Questa griglia di valori può essere, quindi utilizzata per rappresentare l'andamento nel sottosuolo delle varie litologie presenti mediante variazioni cromatiche associate alle variazioni di velocità o mediante linee di isovelocità.

Caratteristiche delle stese sismiche

Per tutte le basi sismiche sono state eseguite 9 energizzazioni intervallate ogni 3 geofoni secondo lo schema di acquisizione definito dalle specifiche tecniche.

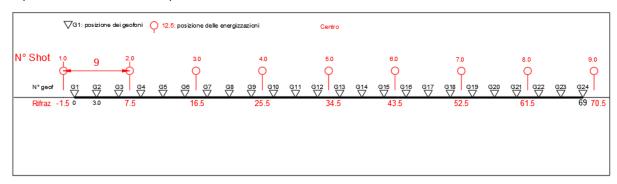


Figura 39 Geometria di acquisizione - sismica a rifrazione in onde P con 24 geofoni, interdistanza di 3,0 m, lunghezza complessiva 69.0

Caratteristiche della Strumentazione impiegata

Per l'esecuzione delle indagini è stato impiegato un sismografo DoReMi, prodotto dalla SARA electronicinstruments, 24bit con frequenza di campionamento 5000 Hz per ognuno dei canali registrati, ciascuno attrezzato con geofoni verticali SARA electronics con frequenza propria di 4.5 Hz.

Per l'energizzazione è stata usata una mazza battente da 10 kg impattante su piastra di battuta in duralluminio, diametro 18 cm, spessore 4 cm, peso 2 kg.

La quota relativa di ciascun geofono-shot è stata rilevata tramite una livella digitale e GPS differenziale marca Stonex in modo da poter ricostruire la morfologia del terreno e utilizzarla in fase di elaborazione dei dati acquisiti.

Elaborazione dei dati

I dati delle prospezioni sono costituiti dalla geometria d'acquisizione (posizioni e quote relative dei punti scoppio e dei geofoni) e dai tempi di primo arrivo delle onde elastiche di compressione (onde P), determinati manualmente sulle registrazioni riprodotte a schermo (picking dei primi arrivi). La qualità dei dati è risultata nel complesso buona e il picking è stato realizzato facilmente per tutte le basi sismiche. L'inversione dei dati

Rev. 00 – ottobre 2023 Pag. 57 di 86

è stata eseguita secondo i criteri della tomografia sismica, mediante apposito software specialistico basato su tecniche di ottimizzazione non lineare.

In particolare, l'elaborazione dei dati di sismica a rifrazione è stata eseguita secondo il metodo tomografico impiegando il software Rayfract 4.01, che parte da un modello iniziale

generato con la tecnica Deltat-V. Successivamente viene effettuata l'inversione iterativa del modello con la tecnica WET (Wavepath Eikonal Traveltime tomography processing) che analizza la propagazione dei vari fronti d'onda generati nei punti di tiro fino ad ogni geofono. Il modello stratigrafico ottenuto come insieme di elementi caratterizzati da una specifica velocità viene quindi rappresentato mediante il contour a linee di isovelocità. La colorazione dei vari elementi secondo una scala cromatica riferita a specifici intervalli di velocità facilità l'immediata visione dei risultati.

Indagini sismiche: MASW

Metodologia

La geofisica osserva il comportamento delle onde che si propagano all'interno dei materiali. Un segnale sismico, infatti, si modifica in funzione delle caratteristiche del mezzo che attraversa. Le onde possono essere generate in modo artificiale attraverso l'uso di masse battenti, di scoppi, etc.

Moto del segnale sismico

Il segnale sismico può essere scomposto in più fasi ognuna delle quali identifica il movimento delle particelle investite dalle onde sismiche. Le fasi possono essere:

- P-Longitudinale: onda profonda di compressione;
- S-Trasversale: onda profonda di taglio;
- L-Love: onda di superficie, composta da onde P e S;
- R-Rayleigh: onda di superficie composta da un movimento ellittico e retrogrado.

Onde di Rayleigh – "R"

In passato gli studi sulla diffusione delle onde sismiche si sono concentrati sulla propagazione delle onde profonde (P,S) considerando le onde di superficie come un disturbo del segnale sismico da analizzare. Recenti studi hanno consentito di creare dei modelli matematici avanzati per l'analisi delle onde di superficie in mezzi a differente rigidezza.

Analisi del segnale con tecnica MASW

Secondo l'ipotesi fondamentale della fisica lineare (Teorema di Fourier) i segnali possono essere rappresentati come la somma di segnali indipendenti, dette armoniche del segnale. Tali armoniche, per analisi monodimensionali, sono funzioni trigonometriche seno e coseno, e si comportano in modo indipendente non interagendo tra di loro. Concentrando l'attenzione su ciascuna componente armonica il risultato finale in analisi lineare risulterà equivalente alla somma dei comportamenti parziali corrispondenti

Rev. 00 – ottobre 2023 Pag. 58 di 86

alle singole armoniche. L'analisi di Fourier (analisi spettrale FFT) è lo strumento fondamentale per la caratterizzazione spettrale del segnale. L'analisi delle onde di Rayleigh, mediante tecnica MASW, viene eseguita con la trattazione spettrale del segnale nel dominio trasformato dove è possibile, in modo abbastanza agevole, identificare il segnale relativo alle onde di Rayleigh rispetto ad altri tipi di segnali, osservando, inoltre, che le

onde di Rayleigh si propagano con velocità che è funzione della frequenza. Il legame velocità frequenza è detto spettro di dispersione. La curva di dispersione individuata nel dominio f-k è detta curva di dispersione sperimentale, e rappresenta in tale dominio le massime ampiezze dello spettro.

Modellizzazione

E' possibile simulare, a partire da un modello geotecnico sintetico caratterizzato da spessore, densità, coefficiente di Poisson, velocità delle onde S e velocità delle Onde P, la curva di dispersione teorica la quale lega velocità e lunghezza d'onda secondo la relazione:

$$v = \lambda \times v$$

Modificando i parametri del modello geotecnico sintetico, si può ottenere una sovrapposizione della curva di dispersione teorica con quella sperimentale: questa fase è detta di inversione e consente di determinare il profilo delle velocità in mezzi a differente rigidezza.

Modi di vibrazione

Sia nella curva di inversione teorica che in quella sperimentale è possibile individuare le diverse configurazioni di vibrazione del terreno. I modi per le onde di Rayleigh possono essere: deformazioni a contatto con l'aria, deformazioni quasi nulle a metà della lunghezza d'onda e deformazioni nulle a profondità elevate.

Profondità di indagine

Le onde di Rayleigh decadono a profondità circa uguali alla lunghezza d'onda. Piccole lunghezze d'onda (alte frequenze) consentono di indagare zone superficiali mentre grandi lunghezze d'onda (basse frequenze) consentono indagini a maggiore profondità.

Specifiche delle indagini svolte

L'indagine si sviluppa mediante la materializzazione sul terreno di una linea retta mediante la posa di una fettuccia metrica. A seguire vengono posizionati i geofoni intervallati ad una distanza pari a 3,0 m in funzione anche della disponibilità di spazio. Esternamente alla stesa geofonica, da ora base sismica, a distanza di interesse che può essere pari ad un multiplo della distanza intergeofonica ma anche variabile (in funzione delle disponibilità di cantiere), sia in andata (ovvero in prossimità del geofono 1) che al ritorno (ovvero all'ultimo geofono posizionato sulla base sismica), vengono svolte delle energizzazioni mediante massa battente pari a Kg 10,0. Nel caso in esame, sono state svolte le energizzazioni in "andata" e in "ritorno" con

Rev. 00 – ottobre 2023 Pag. 59 di 86

distanza dal geofono 1 e dal geofono 24 crescente e pari a multipli della distanza intergeofonica (v. schema), oltre che una battuta al centro della base sismica.

Il numero di geofoni utile all'esecuzione ottimale di un'indagine M.A.S.W. è risultato, per il cantiere svolto, di 24 geofoni dei quali sono state utilizzate tutte le tracce. Il tempo dell'acquisizione è stato definito tra 1.00 e 2.00 secondi.

Figura 40 Geometria di acquisizione - MASW con 24 geofoni, interdistanza di 3,0 m, lunghezza complessiva 69,0

Caratteristiche della strumentazione impiegata

Per l'esecuzione del cantiere d'interesse, è stata utilizzata una strumentazione di acquisizione DoReMi, prodotto dalla SARA electronicinstruments, 24bit con frequenza di campionamento 1000 Hz per ognuno dei canali registrati, ciascuno attrezzato con geofoni verticali SARA electronics con frequenza propria di 4.5 Hz.Per l'energizzazione è stata utilizzata una mazza battente da 10 kg impattante su piastra di battuta in duralluminio, diametro 18 cm, spessore 4 cm, peso 2 kg.

Interpretazione dei segnali acquisiti

Il metodo interpretativo della M.A.S.W. si compone dei seguenti passaggi di analisi dei segnali acquisiti:

- individuazione della variazione del segnale acquisito nel tempo;
- analisi di Fourier con definizione dei contenuti spettrali acquisiti nei segnali;
- stacking dello spostamento di fase con definizione delle velocità di rotazione retrograda compatibile con il campo di frequenza definita.

A posteriori dell'analisi matematica del segnale acquisito, definito un modello stratigrafico compatibile con la geologia locale, si provvede all'inversione della curva di dispersione ottenendo la sismo-stratigrafia.

L'elaborazione dei dati che ha prodotto il profilo di velocità è stata realizzata grazie all'impiego del software ZondST2D.

Rev. 00 – ottobre 2023 Pag. 60 di 86

Categorie di sottosuolo - D.M. 19.01.2018 (NTC 2018)

Le "Norme Tecniche per le Costruzioni" – Decreto del 19/01/2018 definiscono le regole per progettare l'opera sia in zona sismica che in zona non sismica. La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

con:

hi spessore dell'i-esimo strato;

VS,i velocità delle onde di taglio nell'i-esimo strato;

N numero di strati;

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Per le fondazioni superficiali, la profondità del substrato H è riferita al piano di imposta delle stesse, mentre per le fondazioni su pali è riferita alla testa dei pali. Nel caso di opere di sostegno di terreni naturali, la profondità è riferita alla testa dell'opera. Per muri di sostegno di terrapieni, la profondità è riferita al piano di imposta della fondazione.

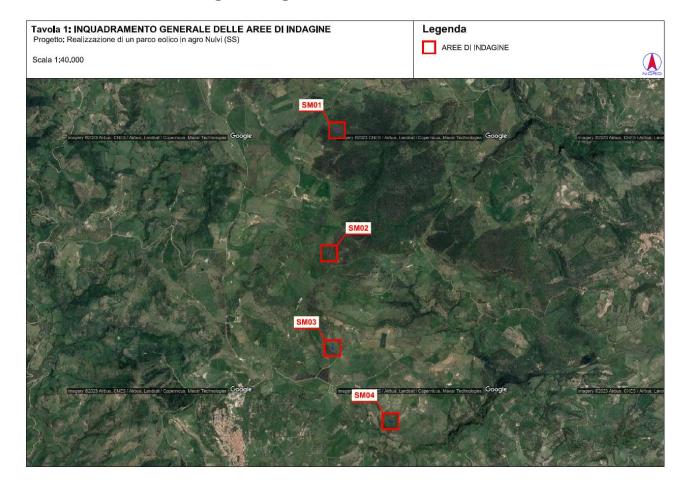

Le categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato sono definite in Tab. 3.2.II. Per queste cinque categorie di sottosuolo, le azioni sismiche sono definibili come descritto al § 3.2.3 delle NTC 2018. Per qualsiasi condizione di sottosuolo non classificabile nelle categorie precedenti, è necessario predisporre specifiche analisi di risposta locale per la definizione delle azioni sismiche.

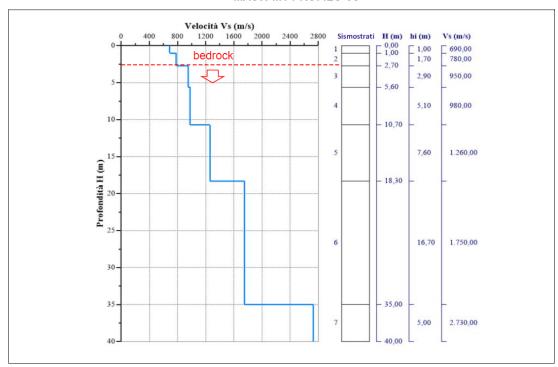
Tabella 3.2.II. Categorie di sottosuolo (Fonte NTC 2018)

Categoria	Descrizione
А	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
E	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

Rev. 00 – ottobre 2023 Pag. 61 di 86

Ubicazione delle indagini eseguite

Rev. 00 – ottobre 2023 Pag. 62 di 86


Risultati delle indagini del sito NU SISM 01-TURBINA AG02

M1- NU_SISM_01-AG02: MASW

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs dello stendimento NU_SISM_01-AG02, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs..

Profondità [m sotto il pc]	Descrizione
0,0 - 1,0	1° sismostrato con Vs di 690 m/s Terre estremamente addensate
1,0 - 2,7	2° sismostrato con Vs di 780 m/s Terre estremamente addensate
2,7 - 5,6	3° sismostrato con Vs di 950 m/s Substrato roccioso fratturato
5,6 - 10,7	4° sismostrato con Vs di 980 m/s Substrato roccioso fratturato
10,7 - 18,3	5° sismostrato con Vs di 1260 m/s Substrato roccioso da fratturato a sano
18,3 - 35,0	6° sismostrato con Vs di 1750 m/s Substrato roccioso da fratturato a sano
35,0 - 40,0	7° sismostrato con Vs di 2730 m/s Substrato roccioso sano

MASW M1-PROFILO Vs

Sismostratigrafia e calcolo Vs eq

Nr.	Profondità (m)	Spessori (m)	Vs (m/s)	Hcalc (m)	hi calc (m)	Hi/Vs (s)
1	1,00	1,00	690,00	1,00	1,00	0,00144
2	2,70	1,70	780,00	2,70	1,70	0,00217
3	5,60	2,90	950,00	5,60	2,90	
4	10,70	5,10	980,00	10,70	5,10	
5	18,30	7,60	1260,00	18,30	7,60	
6	35,00	16,70	1750,00	30,00	11,70	
7	40,00	5,00	2730,00	0,00	0,00	

Rev. 00 – ottobre 2023 Pag. 63 di 86

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

con:

hi spessore dell'i-esimo strato;

V_{S,i} velocità delle onde di taglio nell'i-esimo strato;

N numero di strati;

H profondità del substrato, definito come quella formazione costituita da roccia

o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Esaminato il profilo delle Vs si evince come profondità del substrato **2,70** m (Vs>800 m/s); la velocità equivalente di propagazione delle onde di taglio calcolata per il substrato posto a 2,70 m di profondità dal p.c. è pari a Vs_{eq}>800 m/s che dà luogo ad una categoria A, ossia:

Categoria A: Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.

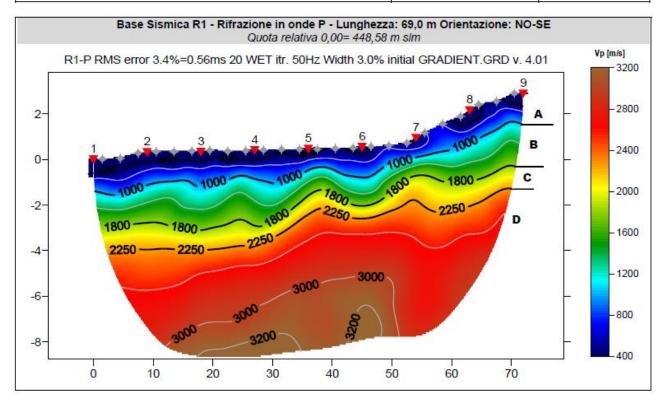
Nella **tabella seguente** si illustrano i parametri di deformazione dinamici medi calcolati tramite correlazione bibliografica dei parametri di input Vs, e Vp e densità (da bibliografia/correlazione) per ciascun sismostrato definito dalle indagini eseguite.

Sismo strato	Prof/ zona	CT*	Densità γ	Vp	Vs	Coefficiente di Poisson v	Modulo di Young dinamico Ed	Modulo di Young statico Ed	Modulo di taglio G₀	Modulo di comprimibil ità o di Bulk - K
			[Kg/m ³]	[m/s]	[m/s]	[adim]	[MPa]	[MPa]	[MPa]	[MPa]
1	0,0 - 1,0	terre	1.800	1.380	690	0,33	2.285	276	853	2.285
2	1,0 - 2,7	terre	2.000	1.560	780	0,33	3.246	391	1.216	3.246
3	2,7 - 5,6	10%	2.100	1.900	950	0,33	5.051	608	1.893	5.051
4	5,6 - 10,7	12%	2.200	1.960	980	0,33	5.639	677	2.108	5.639
5	10,7 - 18,3	15%	2.350	2.520	1260	0,33	9.954	1.493	3.727	9.954
6	18,3 - 35,0	22%	2.400	3.500	1750	0,33	19.604	4.313	7.345	19.604
7	35,0 - 40,0	25%	2.450	5.460	2730	0,33	48.691	12.173	18.260	48.691

*CT: coefficiente di trasformazione (per la roccia)

Figura 41 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche

M1- NU SISM 01-AG02: SISMICA A RIFRAZIONE


Dall'esame della sezione si riconoscono 4 unità sismostratigrafiche principali caratterizzate da velocità crescente delle onde P all'aumentare della profondità, con un range che varia dai 400 m/s ai 3200 m/s. Il sismostrato A caratterizzato dalle terre di copertura (facilmente rippabile) presenta spessori compresi tra 1,6 e 1,8 metri da p.c e un andamento leggermente irregolare rispetto al piano campagna. Il sismostrato B caratterizzato da terre molto addensate e/o rocce tenere e/o intensamente fratturate (rippabili) presenta un andamento simile al sismostrato precedente e si rileva fino a profondità comprese tra 1,9 e 3,5 m dal p.c. Il sismostrato C costituito da rocce poco fratturate e sane (rippabili con difficoltà) si osserva invece fino a profondità comprese tra 2,5 e 4,1 m di profondità dal p.c. Il sismostrato D rappresenta invece un substrato lapideo non rippabile caratterizzato da velocità Vp medie e si riscontra fino alle massine profondità di

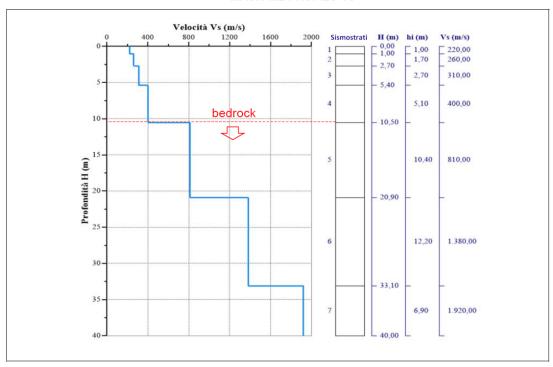
Rev. 00 – ottobre 2023 Pag. 64 di 86

indagine comprese tra 10,0/12,0 m dal p.c. Dall'osservazione della sezione sismica si può notare un aumento abbastanza graduale delle Vp con leggere variazioni di equidistanza generate dalla maggiore o minore densità del materiale roccioso.

In termini di grado di rippabilità si evidenzia che a partire da profondità comprese tra 1,9 e 3,5 m dal p.c i terreni risultano già difficilmente rippabili, mentre a partire dalle profondità comprese tra 2,5 e 4,1 m dal p.c si riscontra la presenza di materiale non rippabile.

Stendimento R1	ONDE P			
Sismostrati	Profondità da pc (m)	Velocità in m/s		
A: Unità delle terre di copertura (facilmente rippabili)	Da 0,0 a 1,6/1,8	400-1000		
B: Unità delle terre molto addensate e/o rocce tenere e/o intensamente fratturate (rippabili)	Da 1,6/1,8 a 1,9/3,5	1000-1800		
C: Unità delle rocce da poco fratturate a sane (rippabili con difficoltà)	Da 1,9/3,5 a 2,5/4,1	1800-2250		
D: Unità delle rocce sane (non rippabili)	Da 2,5/4,1 a 10,0-12,0	2400-3200		

Rev. 00 – ottobre 2023 Pag. 65 di 86


RISULTATI DELLE INDAGINI SITO NU SISM 02-TURBINA AG05

M2- NU_SISM_02-AG05: MASW

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs dello stendimento NU_SISM_02-AG05, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs.

Profondità [m sotto il pc]	Descrizione
0,0 - 1,0	1° sismostrato con Vs di 220 m/s Terre moderatamente addensate
1,0 - 2,7	2° sismostrato con Vs di 260 m/s Terre moderatamente addensate
2,7 - 5,4	3° sismostrato con Vs di 310 m/s Terre addensate
5,4 - 10,5	4° sismostrato con Vs di 400 m/s Terre da addensate a molto addensate
10,5 - 20,9	5° sismostrato con Vs di 810 m/s Substrato roccioso fratturato
20,9 - 33,1	6° sismostrato con Vs di 1380 m/s Substrato roccioso da fratturato a sano
33,1 - 40,0	7° sismostrato con Vs di 1920 m/s Substrato roccioso da fratturato a sano

MASW M2-PROFILO Vs

Sismostratigrafia e calcolo Vs eq

Nr.	Profondità (m)	Spessori (m)	Vs (m/s)	Hcalc (m)	hi calc (m)	Hi/Vs (s)
1	1,00	1,00	220,00	1,00	1,00	0,00455
2	2,70	1,70	260,00	2,70	1,70	0,00654
3	5,40	2,70	310,00	5,40	2,70	0,00871
4	10,50	5,10	400,00	10,50	5,10	0,01275
5	20,90	10,40	810,00	20,90	10,40	
6	33,10	12,20	1380,00	30,00	9,10	
7	40,00	6,90	1920,00	0,00	0,00	

Rev. 00 – ottobre 2023 Pag. 66 di 86

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs.eq (in m/s), definita dall'espressione

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

con:

hi spessore dell'i-esimo strato;

V_{S,i} velocità delle onde di taglio nell'i-esimo strato;

N numero di strati;

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Esaminato il profilo delle Vs si pone come profondità del substrato 10,50 m (Vs>800 m/s).

La velocità equivalente di propagazione delle onde di taglio calcolata per il substrato posto a **10,50** m di profondità dal p.c. è pari a: Vs_{eq} = **10,5/0,03254=322,6** m/s che dà luogo ad una categoria E, ossia:

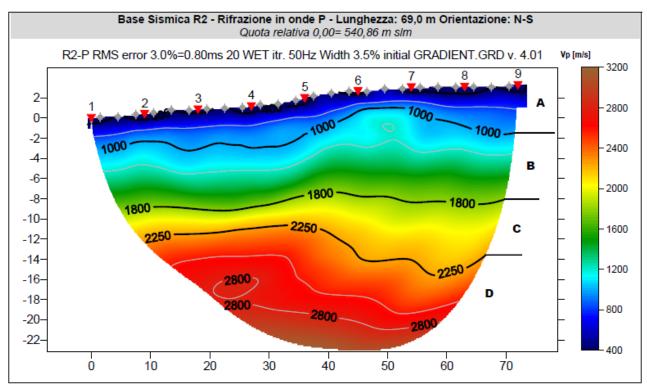
Categoria E: Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

Nella **tabella seguente** si illustrano i parametri di deformazione dinamici medi calcolati tramite correlazione bibliografica dei parametri di input Vs, e Vp e densità (da bibliografia/correlazione) per ciascun sismostrato definito dalle indagini eseguite.

Sismo strato	Prof/ zona	CT*	Densità γ	Vp	Vs	Coefficiente di Poisson v	Modulo di Young dinamico Ed	Modulo di Young statico Ed	Modulo di taglio G₀	Modulo di comprimibil ità o di Bulk - K
			[Kg/m ³]	[m/s]	[m/s]	[adim]	[MPa]	[MPa]	[MPa]	[MPa]
1	0,0 - 1,0	terre	1.800	440	220	0,33	235	28	88	235
2	1,0 - 2,7	terre	2.000	520	260	0,33	363	44	137	363
3	2,7 - 5,4	terre	2.100	620	310	0,33	539	65	206	539
4	5,4 - 10,5	terre	2.200	800	400	0,33	941	114	353	941
5	10,5 - 20,9	15%	2.350	1.620	810	0,33	4.109	616	1.540	4.109
6	20,9 - 33,1	22%	2.400	2.760	1380	0,33	12.190	2.682	4.570	12.190
7	33,1 - 40,0	25%	2.450	3.840	1920	0,33	24.086	6.021	9.032	24.086

*CT: coefficiente di trasformazione (per la roccia)

Figura 42 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche


SM2- NU SISM 02-AG05: SISMICA A RIFRAZIONE

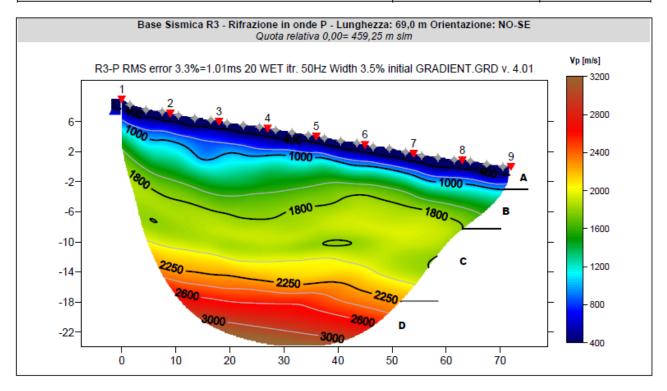
Dall'esame della sezione si riconoscono 4 unità sismostratigrafiche principali caratterizzate da velocità crescente delle onde P all'aumentare della profondità, con un range che varia dai 400 m/s ai 2800 m/s. Il sismostrato A caratterizzato dalle terre di copertura (facilmente rippabile) presenta spessori compresi tra 1,8 e 4,2 metri da p.c e un andamento leggermente irregolare rispetto al piano campagna. Il sismostrato B caratterizzato da terre molto addensate e/o rocce tenere e/o intensamente fratturate (rippabili) presenta leggere variazioni di spessore e si rileva fino a profondità comprese tra 9,0 e 11,5 m dal p.c. Il sismostrato C costituito da rocce poco fratturate e sane (rippabili con difficoltà) si osserva invece fino a profondità comprese tra 12,2 e 18,5 m di profondità dal p.c. Il sismostrato D rappresenta invece un substrato lapideo non rippabile caratterizzato da velocità alte e si riscontra fino alle massine profondità di indagine comprese

Rev. 00 – ottobre 2023 Pag. 67 di 86

tra 23,0/26,0 m dal p.c. Dall'osservazione della sezione sismica si può notare un aumento graduale delle Vp con leggere variazioni di equidistanza generate dalla maggiore o minore densità del materiale roccioso. In termini di grado di rippabilità si evidenzia che a partire da profondità comprese tra 9,0 e 11,5 m dal p.c i terreni risultano già difficilmente rippabili, mentre a partire dalle profondità comprese tra 12,2 e 18,5 m dal p.c si riscontra la presenza di materiale non rippabile.

Stendimento R2	ONDE P		
Sismostrati	Profondità da pc (m)	Velocità in m/s	
A: Unità delle terre di copertura (facilmente rippabili)	Da 0,0 a 1,8/4,2	400-1000	
B: Unità delle terre molto addensate e/o rocce tenere e/o intensamente fratturate (rippabili)	Da 1,8/4,2 a 9,0/11,5	1000-1800	
C: Unità delle rocce da poco fratturate a sane (rippabili con difficoltà)	Da 9,0/11,5 a 12,2/18,5	1800-2250	
D: Unità delle rocce sane (non rippabili)	Da 12,2/18,5 a 23,0-26,0	2250-2800	

SM3- NU_SISM_03-AG09: SISMICA A RIFRAZIONE


Dall'esame della sezione si riconoscono 4 unità sismostratigrafiche principali caratterizzate da velocità crescente delle onde P all'aumentare della profondità, con un range che varia dai 400 m/s ai 3000 m/s. Il sismostrato A caratterizzato dalle terre di copertura (facilmente rippabile) presenta spessori compresi tra 3,2 e 5,0 metri da p.c e un andamento leggermente irregolare rispetto al piano campagna. Il sismostrato B caratterizzato terre molto addensate e/o rocce tenere e/o intensamente fratturate (rippabili) presenta leggere variazioni di spessore e si rileva fino a profondità comprese tra 6,2 e 12,2 m dal p.c. Il sismostrato C composto da rocce poco fratturate e sane (rippabili con difficoltà) si osserva invece fino a profondità comprese tra 19,0 e 20,5 m di profondità dal p.c. Il sismostrato D rappresenta invece un substrato lapideo

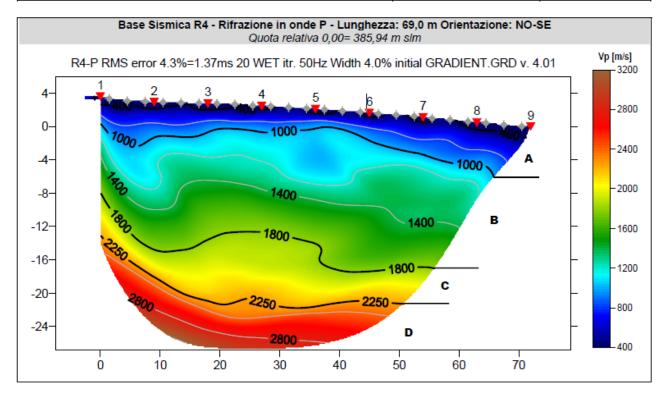
Rev. 00 – ottobre 2023 Pag. 68 di 86

non rippabile caratterizzato da velocità medio-alte e si riscontra fino alle massine profondità di indagine comprese tra 23,5/32,0 m dal p.c. Dall'osservazione della sezione sismica si può notare un aumento abbastanza graduale delle Vp con leggere variazioni di equidistanza generate dalla maggiore o minore densità del materiale roccioso.

In termini di grado di rippabilità si evidenzia che a partire da profondità comprese tra 6,2 e 12,2 m dal p.c i terreni risultano già difficilmente rippabili, mentre a partire dalle profondità comprese tra 19,0 e 20,5 m dal p.c si riscontra la presenza di materiale non rippabile.

Stendimento R3	ONDE P		
Sismostrati	Profondità da pc (m)	Velocità in m/s	
A: Unità delle terre di copertura (facilmente rippabili)	Da 0,0 a 3,2/5,0	400-1000	
B: Unità delle terre molto addensate e/o rocce tenere e/o intensamente fratturate (rippabili)	Da 3,2/5,0 a 6,2/12,2	1000-1800	
C: Unità delle rocce da poco fratturate a sane (rippabili con difficoltà)	Da 6,2/12,2 a 19,0/20,5	1800-2250	
D: Unità delle rocce sane (non rippabili)	Da 19,0/20,5 a 23,5-32,0	2250-3000	

SM4- NU_SISM_04-AG12: SISMICA A RIFRAZIONE


Dall'esame della sezione si riconoscono 4 unità sismostratigrafiche principali caratterizzate da velocità crescente delle onde P all'aumentare della profondità, con un range che varia dai 400 m/s ai 2800 m/s. Il sismostrato A caratterizzato dalle terre di copertura (facilmente rippabile) presenta spessori compresi tra 2,0 e 5,0 metri da p.c e un andamento leggermente irregolare rispetto al piano campagna. Il sismostrato B caratterizzato da terre molto addensate e/o rocce tenere e/o intensamente fratturate (rippabili) presenta un andamento simile al precedente, con spessore maggiori e leggere variazioni rispetto ai sismostrati adiacenti,

Rev. 00 – ottobre 2023 Pag. 69 di 86

riscontrabile fino a profondità comprese tra 11,5 e 19,0 m dal p.c. Il sismostrato C costituito da rocce poco fratturate e sane (rippabili con difficoltà) si osserva invece fino a profondità comprese tra 16,5 e 23,8 m di profondità dal p.c. Il sismostrato D rappresenta invece un substrato lapideo non rippabile caratterizzato da velocità medio-alte e si riscontra fino alle massime profondità di indagine comprese tra 13,0/15,2 m dal p.c. Dall'osservazione della sezione sismica si può notare un aumento abbastanza graduale delle Vp con leggere variazioni di equidistanza generate dalla maggiore o minore densità del materiale roccioso.

In termini di grado di rippabilità si evidenzia che a partire da profondità comprese tra 11,5 e 19,0 m dal p.c i terreni risultano già difficilmente rippabili, mentre a partire dalle profondità comprese tra 16,5 e 23,8 m dal p.c si riscontra la presenza di materiale non rippabile.

Stendimento R4	ONDE P		
Sismostrati	Profondità da pc (m)	Velocità in m/s	
A: Unità delle terre di copertura (facilmente rippabili)	Da 0,0 a 2,0/5,0	400-1000	
B: Unità delle terre molto addensate e/o rocce tenere e/o intensamente fratturate (rippabili)	Da 2,0/5,0 a 11,5/19,0	1000-1800	
C: Unità delle rocce da poco fratturate a sane (rippabili con difficoltà)	Da 11,5/19,0 a 16,5/23,8	1800-2250	
D: Unità delle rocce sane (non rippabili)	Da 16,5/23,8 a 26,0-30,0	2250-2800	

Rev. 00 – ottobre 2023 Pag. 70 di 86

14. Modellazione geologica

Caratterizzazione geostrutturale degli ammassi rocciosi

Per la definizione dei parametri geotecnici del substrato roccioso al quale la fondazione delle turbine si appoggia, è stato adoperato il criterio di caratterizzazione dell'ammasso roccioso di Hoek-Brown generalizzato (1995), supportato dai dati geostrutturali rilevati in sito in pareti esposte, laddove disponibili, e dai dati derivanti dai sondaggi geognostici.

Sulla base di tale classificazione, il cui criterio di rottura è definito dalla relazione seguente:

$$\sigma'_1 = \sigma'_3 + \sigma_{ci} \text{ (mb } (\sigma'_3/\sigma_{ci}) + s)^a$$

dove:

 $\sigma'_1 e \sigma'_3$ = sforzi efficaci principali rispettivamente massimo e minimo a rottura; mb = costante d'ammasso

s ed a = costanti d'ammasso

 σ_{ci} = resistenza a compressione monoassiale della roccia intatta

è stato possibile risalire ai parametri di coesione e angolo di attrito interno secondo Mohr- Coulomb.

Tale metodologia si basa su caratteristiche proprie dell'ammasso, valutabili tramite osservazioni in sito o con l'ausilio di tabelle sviluppate sulla base di una vasta raccolta di dati pubblicati in letteratura, attraverso cui è possibile stimare con una certa precisione i parametri di coesione e angolo di attrito interno necessari alle verifiche di stabilità, valutando i seguenti parametri:

- Resistenza a compressione monoassiale (Intact Uniaxial Compressive Strength IUCS) stimata su base empirica (Fig.56) e su valori di Point Load.
- Stima dell'indice GSI (Geological Strength Index) in base alle caratteristiche geologiche dell'ammasso: tale indice, introdotto da Hoek, Kaiser e Bawden (1995), può esser definito sulla base delle caratteristiche dell'ammasso (Fig. 57) o sulla base di un controllo diretto con l'indice RMR della classificazione di Bieniawski.
- **Determinazione della costante mi** (Funzione del tipo di roccia): i valori delle costanti caratteristiche della roccia (σci e mi) vengono generalmente definiti sulla base di apposite prove di laboratorio, ma in assenza delle suddette, è possibile fare riferimento alla tabella di Fig.58, che riassume i valori della costante *mi* per diversi tipi di roccia.

Rev. 00 – ottobre 2023 Pag. 71 di 86

CLASSE [*]	DESCRIZIONE	RESISTENZA A COMPRESSIONE MONOASSIALE (MPA)	INDICE DI RESISTENZA (POINT LOAD) (MPA)	VALUTAZIONE DELLA RESISTENZA IN SITO	ESEMPI
R6	Resistenza estremamente elevata	> 250	> 10	Un campione può essere scheggiato solamente con un martello geologico	Basalto intatto, silice, selce, diabase, gneiss granito, quarzite
R5	Resistenza molto elevata	100-250	4-10	Un campione richiede molti colpi di un martello geologico per essere fratturato	Anfibolite, arenaria basalto, gabbro, gneiss, granodiorite calcare, marna riolite, tufi
R4	Resistenza elevata	50-100	2-4	Un campione richiede più di un martello geologico per essere fratturato	Calcare, marna, fillite, arenaria, scisto, argillite
R3	Resistenza media	25-50	1-2	Non può essere raschiato o spellato con un coltellino, un campione può essere fratturato con un solo colpo mediante un martello geologico	Argillite, carbone, calcestruzzo, scisto, siltite
R2	Resistenza bassa	5-25	m	Con difficoltà può essere spellato con un coltellino, una intaccatura superficiale può essere procurata con un colpo inferto mediante la punta di un martello geologico	Calcare bianco, salgemma
R1	Resistenza molto bassa	1-5	[**]	Si frantuma per effetto di alcuni colpi con la punta di un martello geologico, può essere spellato mediante un coltellino	Rocce estremamente alterate o alterate
R0	Resistenza estremamente bassa	0.25-1	[**]	Intagliato con l'unghia di un pollice	Miloniti, cataclasi

Figura 43 - Resistenza a compressione monoassiale per diversi tipi di roccia

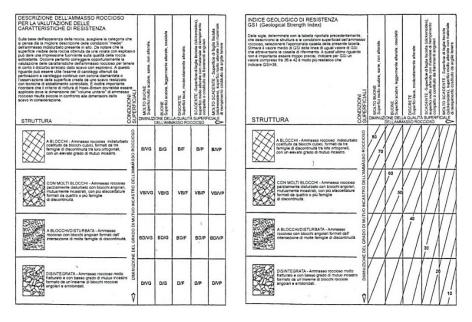


Figura 44 Abaco per la determinazione di GSI sulla base delle caratteristiche geologiche e strutturali dell'ammasso

Sulla base di queste caratteristiche si ottengono i seguenti valori di mb, s, a :

mb = mi [(GSI-100)/28] s = e [(GSI-100)/(9-3D)]a = 0.5 (per GSI > 25)

tramite i quali si stimano coesione e angolo di attrito interno secondo il criterio di rottura di Mohr-Coulomb:

Rev. 00 – ottobre 2023 Pag. 72 di 86

$\sigma'1 = (2c'\cos \phi'/1-\sin \phi') + (1+\sin \phi'/1-\sin \phi') \sigma'3$

I valori coesione e di angolo di attrito interno ottenuti attraverso l'applicazione di tale classificazione sono in generale rispondenti alla tipologia litologica interessata.

È utile sottolineare che esistono delle correlazioni dirette fra i valori di GSI e il valore RMR del sistema di classificazione di Bieniawski

TIPO	CLASSE	GRUPPO	TESSITURA						
DI ROCCIA			GROSSOLANA	MEDIA	FINE	MOLTO FINE			
SEDIMENTARIE	Clastiche		Conglomerato (22)	Arenaria 19 Grova		Argillite 4			
		Organogene	Calcare bianco (7) Carbone (8-21)						
SS	Non clastiche	Carbonatiche	Breccia(20)	Calcare Sparitico (10) Calcare Micritico 8					
		Chimiche		Gesso 16	Anidride 13				
	Non foliate		Marmo 9	Hornfels (19)	Quarzite 24				
METAMORFICHE	Leggermente foliate		Migmatite (30)	Anfibolite 25-31	Miloniti (6)				
	Foliate*		Gneiss 33	Scisti 4-8	Filliti (10)	Scisti argillosi			
KGNEE	Chiare		Granito 33		Riolite (16)	Ossidiana (19			
			Granodiorite (30)		Dacite (17)				
			Diorite (28)		Andesite 19				
		cure	Gabbro 27	Dolerite (19)	Basalto (17)				
			Norite 22						
	Effusive piroclastiche		Agglomerato (20)	Breccia (18)	Tufo (15)				

di m_i sarà sensibilmente inferiore se la rottura avviene lungo un piano di debolezza

Figura 45 Valori della costante mi per diversi tipi di roccia

L'analisi delle caratteristiche geomeccaniche in sito degli ammassi rocciosi interessati dal progetto e l'applicazione del metodo di Hoek-Brown per la definizione dei parametri geotecnici del substrato roccioso ha portato alla classificazione di nr.2 tipologie tra le litologie che caratterizzano le formazioni presenti, due delle quali appartenenti alla Formazione di Logulentu, e una appartenente alla Formazione di Osilo.

Per il calcolo degli indici e della relativa trasformazione in parametri di coesione e angolo di attrito interno secondo Mohr- Coulomb è stato utilizzato il software RocData vers.3.0 della Rocscience Inc.

Rev. 00 – ottobre 2023 Pag. 73 di 86

Criterio di rottura empirico $\sigma_1' = \sigma_3' + \sqrt{m\sigma_{u(r)}\sigma_3' + s\sigma^2_{u(r)}}$ $\sigma_1' = \text{tensione efficace principale massima}$ $\sigma_3' = \text{tensione efficace principale minima}$ $\sigma_{u(r)}' = \text{resistenza a compressione monoassiale}$ m ed s: costanti empiriche	COSTANTI DEL MATERIALE: m, s	ROCCE CARBONATICHE CON CLIVAGGIO CRISTALLINO BEN SVILUPPATO Dolomite, calcare e marmo.	ROCCE ARGILLOSE LITIFICATE Argilite, sultite, soisti argillosi con cilvaggio ben marcato.	ROCCE ARENACEE CON ELEVATA CRISTALLIZZAZIONE E LIMITATO SVILUPPO DI CLIVAGGIO PER CRISTALLIZZAZIONE Arenaria e quarzite	FOCCE CRISTALLINE IGNEE E GRANA FINE Andesite, dolerite, disbase e rioite	ROCCE IGNEE A GRANA GROSSOLANA E ROCCE CRISTALLINE METAMOFICHE Antibolite, gabbro, gneiss, norite, quarzo-diorite
CAMPIONI DI ROCCIA INTATTA Campioni di laboratorio senza discontinuità (matrice rocciosa) Indice CSIR: RMR = 100 Indice NGI: Q = 500	m s	7.00 1.00	10.00	15.00 1.00	17.00 1.00	25.00 1.00
AMMASSO ROCCIOSO DI OTTIMA QUALITÀ Ammasso roccioso indisturbato con giunti non alterati di spaziatura compresa fra 1 e 3 m Indice CSIR: RMR = 85 Indice NGI: Q = 100	m	2.40	3.43	5.14	5.82	8.56
	s	0.082	0.082	0.082	0.082	0.082
AMMASSO ROCCIOSO DI BUONA QUALITÀ Roccia sana o leggermente alterata, leggermente distur- bato con giunti di spaziatura compresa fra 1 e 3 m. Indice CSIR: RMR = 65 Indice NGI: Q = 10	m	0.575	0.821	1.231	1.395	2.052
	s	0.00293	0.00293	0.00293	0.00293	0.00293
AMMASSO ROCCIOSO DI DISCRETA QUALITÀ Numerose famiglie di giunti moderatamente alterati, con spaziature comprese fra 0.3 e 1 m. Indice CSIR: EMR = 44 Indice NGI: Q = 1	m	0.128	0.183	0.275	0.311	0.458
	s	0.00009	0.00009	0.00009	0.00009	0.00009
AMMASSO ROCCIOSO DI QUALITÀ SCADENTE Numerosi giunti alterati con spaziatura compresa fra 30 e 500 mm, alcuni con riempimento. Detrito di roccia puli- ta compattata. Indice CSIR: RMR = 23 Indice NGI: Q = 0.1	m s	0.029 0.000003	0.041 0.000003	0.061 0.000003	0.069	0.102 0.000003
AMMASSO ROCCIOSO DI QUALITÀ MOLTO SCADENTE Numerosi giunti molto alterati con spaziatura inferiore a 50 mm e con riempimento. Detrito di roccia con mate- riale fine. Indice CSIR: RMR = 3 Indice NGI: Q = 0.01	m	0.007	0.010	0.015	0.017	0.025
	s	0.0000001	0.0000001	0.0000001	0.0000001	0.0000001

CSIR (Commonwealth Scientific and Industrial Research Organization) Organizzazione Scientifica ed Industriale di Ricerca (Bieniawski 1974) NGI Norway Geotechnical Institute (Barton 1974)

Figura 46 Correlazione fra valori di mi, s, indice RMR, ed il tipo di roccia.

Di seguito si riportano gli schemi di analisi degli ammassi rocciosi e i relativi diagrammi di Mohr -Coulomb:

Rev. 00 – ottobre 2023 Pag. 74 di 86

Formazione di Logulentu

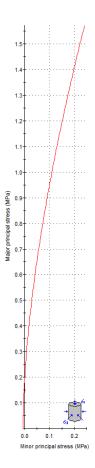
Standard ISRM = R4 Un campione richiede pochi colpi di martello per essere fratturato

Instabilità= scivolamenti planari e a cuneo

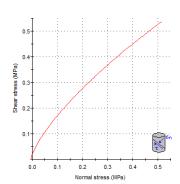
Ammasso roccioso= da mediamente fratturato a molto fratturato

Struttura= massiva, a blocchi

Alterazione= mediamente alterata


Spaziatura totale delle discontinuità (s)=0,1 m

Lunghezza media del giunto = >2 m


Pareti – mediamente alterate

Riempimento – sciolto, argilloso

Roccia – asciutta

Rev. 00 – ottobre 2023 Pag. 75 di 86

Formazione di Osilo

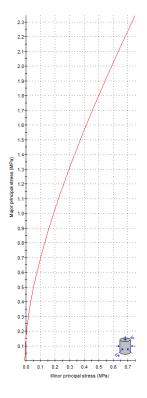
Standard ISRM = R4 Un campione richiede pochi colpi di martello per essere fratturato

Instabilità= scivolamenti planari e a cuneo

Ammasso roccioso= da mediamente fratturato a molto fratturato

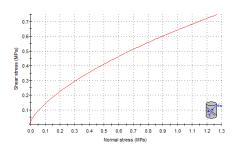
Struttura= massiva, a blocchi

Alterazione= mediamente alterata


Spaziatura totale delle discontinuità (s)=0,2 m

Lunghezza media del giunto = >2,5m

Pareti – mediamente alterate


Riempimento – sciolto, argilloso o assente

Roccia – asciutta

Analysis of Rock/Soil Strength using RocDa

Hoek-Brown Classification intact uniaxial compressive strength = 3 MPa GSI = 49 mi = 7 Disturbance factor = 0 Hoek-Brown Criterion mb = 1,133 = 0.0035 a = 0.506 Mohr-Coulomb Fit cohesion = 0.152 MPa friction angle = 27 25 deg Rock Mass Parameters tensies strength = -0.009 MPa uniaxial compressive strength = 0.170 MPa gibbal strength = 0.433 MPa gibbal strength = 0.433 MPa gibbal strength = 0.430 MPa

Rev. 00 – ottobre 2023 Pag. 76 di 86

Modello geologico di sito

Sulla base di quanto emerso dai rilievi e dalle indagini in sito, nell'approccio progettuale, stante il contesto geologico si evidenziano le seguenti criticità a cui sarà necessario prestare la opportuna attenzione nella progettazione esecutiva dell'opera e nelle varie fasi di realizzazione.

L'analisi di tali fattori è funzionale alla progettazione e ha lo scopo di valutare la risposta del terreno ai nuovi carichi ed individuare azioni correttive o accorgimenti tali da limitarne gli effetti. Nello specifico:

- 1. Azioni sulle pareti e stabilità dei fronti. Lo scavo stesso, in quanto genera depressione, può innescare locali smottamenti in corrispondenza degli orizzonti meno competenti a causa di fenomeni di detensionamento determinati dall'asportazione del materiale durante l'escavazione, sia in relazione ai livelli meno competenti sia alle direzioni del sistema di fratturazione che può generare componenti a franapoggio. I sistemi di fratturazione presenti generano variazioni di giacitura anche nell'ordine del metro, pertanto, si ritiene importante in fase di realizzazione degli scavi di fondazione eseguire un dettagliato rilievo geostrutturale finalizzato all'esclusione di ogni possibile rischio di crollo e/o slittamento di porzioni di parete.
- 2. Circolazione idrica sotterranea secondaria o indotta e/o stagnazione di acque di pioggia pur se non è stata rilevata in fase di indagine, vanno considerati gli effetti dell'eventuale presenza d'acqua alla quota di imposta delle fondazioni in relazione ad una possibile circolazione idrica indotta dai fenomeni di detensionamento dovuti agli scavi, con particolare riferimento alla stagionalità degli apporti idrici e del relativo flusso negli ambiti più superficiali. In tal caso, in fase esecutiva, sarà opportuno provvedere a mantenere lo scavo asciutto mediante l'installazione di pompe adeguatamente dimensionate per la portata da emungere.

L'analisi ha permesso di fatto di definire il modello geologico del sito ed in particolare, in relazione alle diverse condizioni geologiche e geostrutturali rilevate, è stato individuato **nr.02 modelli geologici rappresentativi** dei due domini geologici principali e descritti di seguito:

Modello Geologico 01

Sulla base dei dati ricavati dalle indagini geognostiche e dalla classificazione degli ammassi rocciosi si definiscono i parametri geotecnici rappresentativi del modello geologico che andrà confermato in sede di progettazione esecutiva con indagini più dettagliate sui singoli siti di imposta delle fondazioni. Pertanto, nell'ottica dell'individuazione di un modello geologico rappresentativo del sito per le turbine AG02, AG03, AG04, AG09, AG11, AG12 si propone il seguente schema:

0,00 - 2,70m depositi eluvio-colluviali / roccia da addensata a fortemente addensata (S1)

2,70 - 10,70m substrato roccioso fratturato (S2)

10,70 -35,00m substrato roccioso da fratturato a sano (S3)

35,00m -40,00m substrato roccioso sano (S4)

Rev. 00 – ottobre 2023 Pag. 77 di 86

MODELLO GEOLOGICO 01 (AG02, AG03, AG04, AG09, AG11, AG12)								
Dati Parametri Resistenza								
Tipo di Terreno		S1	S2	S 3	S4			
Descrizione		depositi eluvio- colluviali / roccia da addensata a fortemente addensata	substrato roccioso fratturato	substrato roccioso da fratturato a sano	substrato roccioso sano			
Peso di volume**	eso di volume** [kg/mc]		2.000	2.350	2.450			
Peso di volume saturo**	[kg/mc]	1.900	2.100	2.350	2.450			
Angolo di attrito* interno	[°]	43.52	45.63	47.23	49.54			
Coesione*	[Mpa]	0.075	0,524	1,072	1,254			
Modulo elastico **	[Mpa]	276	608	1493	12173			
Coefficiente di Poisson**	[]	0,33	0,33	0,33	0,33			
Modulo di taglio (G)**	[Mpa]	853	1893	3727	18260			
Velocità onde di taglio Vs**	[m/sec]	690	950	1260	2730			

^{*}Valori ricavati da interpolazioni empiriche su ROCDATA da confermare con indagini dirette e puntuali

Modello Geologico 02

Sulla base dei dati ricavati dalle indagini geognostiche e dalla classificazione degli ammassi rocciosi si definiscono i parametri geotecnici rappresentativi del modello geologico che andrà confermato in sede di progettazione esecutiva con indagini più dettagliate sui singoli siti di imposta delle fondazioni. Pertanto, nell'ottica dell'individuazione di un modello geologico rappresentativo del sito per le turbine AG05, AG06,

AG07, AG08, AG10 si propone il seguente schema:

0,00 - 2,70m depositi eluvio-colluviali / terre moderatamente addensate (S1)

2,70 – 10,50m terre da addensate a molto addensate (S2)

10,50 -33,10m substrato roccioso da fratturato a sano (S3)

33,10m -40,00m substrato roccioso sano (S4)

Rev. 00 – ottobre 2023 Pag. 78 di 86

^{**} Valori ricavati da dati derivati dalle indagini geofisiche da confermare con indagini dirette e puntuali

MODELLO GEOLOGICO 02 (AG05, AG06, AG07, AG08, AG10)							
Dati Parametri Resistenza							
Tipo di Terreno S1 S2 S3 S4							
Descrizione		depositi eluvio- colluviali / terre moderatamente addensate	terre da addensate a molto addensate	substrato roccioso da fratturato a sano	substrato roccioso sano		
Peso di volume**	[kg/mc]	1.800	2.000	2.350	2.450		
Peso di volume saturo**	[kg/mc]	1.900	2.100	2.350	2.450		
Angolo di attrito* interno	[°]	27,25	29,54	40,45	46,74		
Coesione*	[Mpa]	0.132	0,250	1,034	1,120		
Modulo elastico **	[Mpa]	28	65	616	6021		
Coefficiente di Poisson**	[]	0,33	0,33	0,33	0,33		
Modulo di taglio (G)**	[Mpa]	88	206	1540	9032		
Velocità onde di taglio Vs**	[m/sec]	220	310	810	1920		

^{*}Valori ricavati da interpolazioni empiriche su ROCDATA da confermare con indagini dirette e puntuali

Rev. 00 – ottobre 2023 Pag. 79 di 86

^{**} Valori ricavati da dati derivati dalle indagini geofisiche da confermare con indagini dirette e puntuali

15. Ammissibilità e compatibilità idrogeologica

Ammissibilità degli interventi alle prescrizioni del PAI

La condizione di ammissibilità delle opere in progetto è contemplata nelle norme di attuazione del PAI ai seguenti articoli per i quali sono richiamati gli elementi essenziali:

Articolo 23 - Prescrizioni generali per gli interventi ammessi nelle aree di pericolosità idrogeologica

comma 7. Nel caso di interventi per i quali non è richiesto lo studio di compatibilità idraulica o geologica e geotecnica i proponenti garantiscono comunque che i progetti verifichino le variazioni della risposta idrologica, gli effetti sulla stabilità e l'equilibrio dei versanti e sulla permeabilità delle aree interessate alla realizzazione degli interventi, prevedendo eventuali misure compensative.

PERICOLOSITA' IDRAULICA

Gli aerogeneratori non sono soggetti a pericolosità idraulica per la loro posizione morfologica. Il tracciato del cavidotto e la viabilità di impianto, si snodano lungo aree pianeggianti non interessate da perimetrazione idraulica, fatta salva l'area nei pressi del Rio Toltu.

Facendo riferimento ai criteri di ammissibilità previsti per tali aree gli interventi sono ammessi anche in aree a pericolosità molto elevata Hi4, secondo il combinato disposto:

Art. 27 - Disciplina delle aree di pericolosità idraulica molto elevata (Hi4)

comma 3. In materia di infrastrutture a rete o puntuali pubbliche o di interesse pubblico nelle aree di pericolosità idraulica molto elevata sono consentiti esclusivamente:

lettera g. le nuove infrastrutture a rete o puntuali previste dagli strumenti di pianificazione territoriale e dichiarate essenziali e non altrimenti localizzabili; nel caso di condotte e di cavidotti, non è richiesto lo studio di compatibilità idraulica di cui all'articolo 24 delle presenti norme a condizione che, con apposita relazione asseverata del tecnico incaricato venga dimostrato che gli scavi siano effettuati a profondità limitata ed a sezione ristretta, comunque compatibilmente con le situazioni locali di pericolosità idraulica e, preferibilmente, mediante uso di tecniche a basso impatto ambientale; che eventuali manufatti connessi alla gestione e al funzionamento delle condotte e dei cavidotti emergano dal piano di campagna per un'altezza massima di un metro e siano di ingombro planimetrico strettamente limitato alla loro funzione; che i componenti tecnologici, quali armadi stradali prefabbricati, siano saldamente ancorati al suolo o agli edifici, in modo da evitare scalzamento e trascinamento, abbiano ridotto ingombro planimetrico e altezza massima strettamente limitata alla loro funzione tecnologica e, comunque, siano tali da non ostacolare, in maniera significativa il deflusso delle acque; che, nelle situazioni di parallelismo, le condotte e i cavidotti non ricadano in alveo, né in area golenale; che il soggetto attuatore provveda a sottoscrivere un atto con il quale si impegna a rimuovere a proprie spese tali elementi qualora sia necessario per la realizzazione di opere di mitigazione del rischio idraulico;

Rev. 00 – ottobre 2023 Pag. 80 di 86

Per gli attraversamenti in sub-alveo, ai sensi dell'art. 21 comma 2, lett. c) delle N.A. del PAI non è richiesto lo studio di compatibilità idraulica di cui all'articolo 24 delle stesse norme a condizione che tra fondo alveo ed estradosso della tubazione di alloggiamento dei cavi ci sia almeno un metro di ricoprimento e che il soggetto attuatore sottoscriva un atto con il quale si impegna a rimuovere a proprie spese le condotte qualora sia necessario per la realizzazione di opere di mitigazione del rischio idraulico.

Riguardo all'eventualità di sviluppare l'analisi idraulica prevista dall'Art. 30 ter comma 2, si segnala che i corsi d'acqua attraversati dalla linea in progetto, per i quali non sono state determinate le aree di pericolosità idraulica, sono di ordine 1 e pertanto non è dovuta la suddetta analisi idraulica.

PERICOLOSITA' GEOMORFOLOGICA

Facendo quindi riferimento ai criteri di ammissibilità previsti in aree a pericolosità geologico-geotecnica bassa Hg1 e alta Hg4, l'intervento è ammesso secondo il combinato disposto:

Art. 31 Disciplina delle aree di pericolosità molto elevata da frana (Hg4)

- 1. Fermo restando quanto stabilito negli articoli 23 e 25, in materia di interventi strutturali e non strutturali per il controllo dei dissesti individuati dal PAI, dal programma triennale di attuazione o dalle competenti autorità regionali in osservanza di quanto stabilito dal PAI nelle aree di pericolosità molto elevata da frana sono consentiti esclusivamente:
- 3. In materia di infrastrutture a rete o puntuali pubbliche o di interesse pubblico nelle aree di pericolosità molto elevata da frana sono consentiti esclusivamente:
- b. gli interventi di manutenzione straordinaria;
- c gli interventi di adeguamento per l'integrazione di innovazioni tecnologiche;
- e. allacciamenti a reti principali e nuovi sottoservizi a rete interrati lungo tracciati stradali esistenti, ed opere connesse compresi i nuovi attraversamenti;
- i. gli ampliamenti, le ristrutturazioni e le nuove realizzazioni di infrastrutture riferibili a servizi pubblici essenziali non altrimenti localizzabili o non delocalizzabili, a condizione che non esistano alternative tecnicamente ed economicamente sostenibili, che tali interventi siano coerenti con i piani di protezione civile, e che ove necessario siano realizzate preventivamente o contestualmente opere di mitigazione dei rischi specifici.

Art. 34 Disciplina delle aree di pericolosità moderata da frana (Hg1)

1. Fermo restando quanto stabilito negli articoli 23 e 25, nelle aree di pericolosità moderata da frana compete agli strumenti urbanistici, ai regolamenti edilizi ed ai piani di settore vigenti disciplinare l'uso del territorio e delle risorse naturali, ed in particolare le opere sul patrimonio edilizio esistente, i mutamenti di destinazione, le nuove costruzioni, la realizzazione di nuovi impianti, opere ed infrastrutture a rete e puntuali pubbliche o di interesse pubblico, i nuovi insediamenti produttivi commerciali e di servizi, le ristrutturazioni urbanistiche e tutti gli altri interventi di trasformazione urbanistica ed edilizia, salvo in ogni caso l'impiego di tipologie e tecniche costruttive capaci di ridurre la pericolosità ed i rischi.

Rev. 00 – ottobre 2023 Pag. 81 di 86

Analisi sulle variazioni della risposta idrologica, gli effetti sulla stabilità e l'equilibrio dei versanti e sulla permeabilità (Art.3 c.7 NTA PAI)

Risposta idrologica e permeabilità.

L'intervento prevede una minima occupazione di suolo dovuta all'impronta dei sostegni delle turbine e degli elementi fondanti delle stesse che non determina una sostanziale variazione al regime di deflusso idrico superficiale o sulla permeabilità relativamente alle condizioni ante intervento.

Le piazzole di cantiere previste per la realizzazione dei singoli aerogeneratori avranno un impatto temporaneo e strettamente legato al tempo di realizzazione dell'impianto successivamente verranno rinaturalizzate ripristinando lo stato dei luoghi.

Gli interventi successivi e quelli sulla viabilità esistente incidono in maniera poco significativa sull'assetto idraulico andando a adattare tracciati già presenti che verranno interessati da sole opere di adeguamento funzionale alle esigenze operative di realizzazione e di esercizio.

Gli interventi siffatti non interrompono o ostacolano il normale deflusso superficiale in quanto non sono previste in elevazione e non vi è sottrazione incidente di suolo, nel caso specifico già quasi del tutto assente per le caratteristiche geologiche e morfologiche del sito.

Analogamente la rete di connessione, trovandosi interrata ad una profondità non inferiore ad 1 m da p.c., non determina variazioni sostanziali all'attuale regime di deflusso delle acque superficiali.

Al fine di garantire il corretto smaltimento delle acque superficiali afferenti a quest'area, in fase di progettazione esecutiva, verrà predisposto un piano di regimazione delle acque superficiali il cui bilancio idraulico, riferito al recettore finale, rispetterà il criterio dell'invarianza idraulica richiamato all'art.47 delle NTA PAI.

Ne consegue che, in relazione ai criteri di valutazione del PAI, l'intervento è compatibile e non determina aumento del livello di pericolosità idraulica ex ante.

Effetti sulla stabilità e l'equilibrio dei versanti.

Le turbine verranno installate in aree sub pianeggianti con inclinazioni medie inferiori al 15%, la maggior parte della viabilità e dei cavidotti si sviluppa su strade già esistenti, i brevi tratti di viabilità di nuova costruzione si snoderanno su aree HgO e localmente Hg1, nelle quali non sono stati rilevati in fase di progettazione evidenze di dissesto da frana né quiescenti né attivi.

La realizzazione del cavidotto prevede l'esecuzione di uno scavo temporaneo poco profondo che verrà ricoperto subito dopo il posizionamento degli strati di allettamento, la stesura del cavo e i relativi rinfianchi.

Rev. 00 – ottobre 2023 Pag. 82 di 86

Verrà eseguito per porzioni, pertanto non esiste la possibilità della permanenza di scavi aperti per lungo tempo, garantendo di fatto, il mantenimento delle condizioni di stabilità ex ante ed ex post.

Gli scavi per la realizzazione delle fondazioni delle turbine verranno eseguiti verificando di volta in volta la stabilità delle pareti di scavo in relazione agli esiti della campagna di indagine puntuale realizzata per il progetto esecutivo ed in base alla quale verranno previste opere provvisionali quali rinforzi al piede dello scavo, puntellature o palancolate o gradonature per garantire la sicurezza degli operatori ed evitare l'innescarsi di eventuali smottamenti. La stabilità dei versanti in fase di apertura dello scavo è stata studiata attraverso simulazioni in funzione dei modelli geologico-geotecnici individuati in relazione alla verifica delle opere fondanti.

I movimenti terra previsti sono sostanzialmente tutti riferibili allo scavo e successivo riutilizzo di materiale finalizzato al rinterro lungo la viabilità e al riempimento successivo alla realizzazione delle fondazioni delle turbine; pertanto, non si evidenziano condizioni di scavo esposto per lungo tempo e conseguenti fattori potenziali tali da ingenerare fenomeni di instabilità. Il materiale di rinterro/riempimento verrà steso e rullato/compattato secondo i criteri di buona regola d'arte al fine di conferire la giusta stabilità per i carichi previsti per la durata dell'impianto.

Ne consegue che, in relazione ai criteri di valutazione del PAI, l'intervento è compatibile e non determina aumento del livello di pericolosità da frana ex ante.

Compatibilità idraulica degli interventi e asseverazioni

Il presente studio ha permesso di verificare la compatibilità idrogeologica ulica delle opere connesse alla realizzazione del parco eolico denominato "Nulvi" in agro di Nulvi (SS) con le prescrizioni del PAI.

Dall'analisi delle caratteristiche delle opere, della sua ubicazione e delle interazioni con lo strumento normativo del PAI, le stesse è ammissibile secondo quanto disposto dall'art 23 comma 7 delle NTA PAI:

PERICOLOSITA' IDRAULICA

Art. 27 - Disciplina delle aree di pericolosità idraulica molto elevata (Hi4)

comma 3. In materia di infrastrutture a rete o puntuali pubbliche o di interesse pubblico nelle aree di pericolosità idraulica molto elevata sono consentiti esclusivamente:

lettera g. le nuove infrastrutture a rete o puntuali previste dagli strumenti di pianificazione territoriale e dichiarate essenziali e non altrimenti localizzabili; nel caso di condotte e di cavidotti, non è richiesto lo studio di compatibilità idraulica di cui all'articolo 24 delle presenti norme a condizione che, con apposita relazione asseverata del tecnico incaricato venga dimostrato che gli scavi siano effettuati a profondità limitata ed a sezione ristretta, comunque compatibilmente con le situazioni locali di pericolosità idraulica e, preferibilmente, mediante uso di tecniche a basso impatto ambientale; che eventuali manufatti connessi alla gestione e al funzionamento delle condotte e dei cavidotti emergano dal piano di campagna per un'altezza massima di un metro e siano di ingombro planimetrico strettamente limitato alla loro funzione; che i componenti tecnologici, quali armadi

Rev. 00 – ottobre 2023 Pag. 83 di 86

stradali prefabbricati, siano saldamente ancorati al suolo o agli edifici, in modo da evitare scalzamento e trascinamento, abbiano ridotto ingombro planimetrico e altezza massima strettamente limitata alla loro funzione tecnologica e, comunque, siano tali da non ostacolare, in maniera significativa il deflusso delle acque; che, nelle situazioni di parallelismo, le condotte e i cavidotti non ricadano in alveo, né in area golenale; che il soggetto attuatore provveda a sottoscrivere un atto con il quale si impegna a rimuovere a proprie spese tali elementi qualora sia necessario per la realizzazione di opere di mitigazione del rischio idraulico;

Per gli attraversamenti in sub-alveo, ai sensi dell'art. 21 comma 2, lett. c) delle N.A. del PAI non è richiesto lo studio di compatibilità idraulica di cui all'articolo 24 delle stesse norme a condizione che tra fondo alveo ed estradosso della tubazione di alloggiamento dei cavi ci sia almeno un metro di ricoprimento e che il soggetto attuatore sottoscriva un atto con il quale si impegna a rimuovere a proprie spese le condotte qualora sia necessario per la realizzazione di opere di mitigazione del rischio idraulico.

Riguardo all'eventualità di sviluppare l'analisi idraulica prevista dall'Art. 30 ter comma 2, si segnala che i corsi d'acqua attraversati dalla linea in progetto, per i quali non sono state determinate le aree di pericolosità idraulica, sono di ordine 1 e pertanto non è dovuta la suddetta analisi idraulica.

PERICOLOSITA' GEOMORFOLOGICA

Facendo quindi riferimento ai criteri di ammissibilità previsti in aree a pericolosità geologico-geotecnica bassa Hg1 e alta Hg4, l'intervento è ammesso secondo il combinato disposto:

Art. 31 Disciplina delle aree di pericolosità molto elevata da frana (Hg4)

- 1. Fermo restando quanto stabilito negli articoli 23 e 25, in materia di interventi strutturali e non strutturali per il controllo dei dissesti individuati dal PAI, dal programma triennale di attuazione o dalle competenti autorità regionali in osservanza di quanto stabilito dal PAI nelle aree di pericolosità molto elevata da frana sono consentiti esclusivamente:
- 3. In materia di infrastrutture a rete o puntuali pubbliche o di interesse pubblico nelle aree di pericolosità molto elevata da frana sono consentiti esclusivamente:
- b. gli interventi di manutenzione straordinaria;
- c gli interventi di adeguamento per l'integrazione di innovazioni tecnologiche;
- e. allacciamenti a reti principali e nuovi sottoservizi a rete interrati lungo tracciati stradali esistenti, ed opere connesse compresi i nuovi attraversamenti;
- i. gli ampliamenti, le ristrutturazioni e le nuove realizzazioni di infrastrutture riferibili a servizi pubblici essenziali non altrimenti localizzabili o non delocalizzabili, a condizione che non esistano alternative tecnicamente ed economicamente sostenibili, che tali interventi siano coerenti con i piani di protezione civile, e che ove necessario siano realizzate preventivamente o contestualmente opere di mitigazione dei rischi specifici.

Art. 34 Disciplina delle aree di pericolosità moderata da frana (Hg1)

1. Fermo restando quanto stabilito negli articoli 23 e 25, nelle aree di pericolosità moderata da frana compete agli strumenti urbanistici, ai regolamenti edilizi ed ai piani di settore vigenti disciplinare l'uso del territorio e delle risorse naturali, ed in particolare le opere sul patrimonio

Rev. 00 – ottobre 2023 Pag. 84 di 86

edilizio esistente, i mutamenti di destinazione, le nuove costruzioni, la realizzazione di nuovi impianti, opere ed infrastrutture a rete e puntuali pubbliche o di interesse pubblico, i nuovi insediamenti produttivi commerciali e di servizi, le ristrutturazioni urbanistiche e tutti gli altri interventi di trasformazione urbanistica ed edilizia, salvo in ogni caso l'impiego di tipologie e tecniche costruttive capaci di ridurre la pericolosità ed i rischi.

i sottoscritti **Ing. Bruno Manca**, iscritto all'Ordine degli Ingegneri della Provincia di Cagliari sez. A al n. 4933 ve **Geol. Cosima Atzori** iscritta all'Ordine dei Geologi della regione Sardegna sez. A al n° 656, in qualità di Tecnici incaricati per la compatibilità idraulica degli interventi connessi alla realizzazione del parco eolico denominato "Nulvi" in agro di Nulvi (SS)", con la presente relazione asseverata prendono atto di assumere la qualità di persona esercente un servizio di pubblica necessità ai sensi degli articoli 359 e 481 del Codice penale, e sono consapevoli delle penalità previste in caso di dichiarazioni mendaci o che affermano fatti non conformi al vero, pertanto sotto la propria responsabilità:

ASSEVERANO CHE

- gli scavi saranno effettuati a profondità limitata e a sezione ristretta (v. sezione tipo al capitolo 4),
 anche mediante uso di tecniche a basso impatto ambientale e, nello specifico, con perforazione orizzontale teleguidata (TOC);
- gli scavi sono compatibili con le situazioni locali di pericolosità idraulica. Si sottolinea che è garantito il ricoprimento minimo pari a 1 metro.;

Inoltre, secondo quanto previsto dall'Art. 23 comma 9 vengono rispettate le seguenti indicazioni:

- a. migliorare in modo significativo o comunque non peggiorare le condizioni di funzionalità del regime idraulico del reticolo principale e secondario, non aumentando il rischio di inondazione a valle;
- b. migliorare in modo significativo o comunque non peggiorare le condizioni di equilibrio statico dei versanti e di stabilità dei suoli attraverso trasformazioni del territorio non compatibili;
- c. non compromettere la riduzione o l'eliminazione delle cause di pericolosità o di danno potenziale nè la sistemazione idrogeologica a regime;
- d. non aumentare il pericolo idraulico con nuovi ostacoli al normale deflusso delle acque o con riduzioni significative delle capacità di invasamento delle aree interessate;
- e. limitare l'impermeabilizzazione dei suoli e creare idonee reti di regimazione e drenaggio;
- f. favorire quando possibile la formazione di nuove aree esondabili e di nuove aree permeabili;
- l. non incrementare le condizioni di rischio specifico idraulico o da frana degli elementi vulnerabili interessati ad eccezione dell'eventuale incremento sostenibile connesso all'intervento espressamente assentito;
- m. assumere adeguate misure di compensazione nei casi in cui sia inevitabile l'incremento sostenibile delle condizioni di rischio o di pericolo associate agli interventi consentiti;

Rev. 00 – ottobre 2023 Pag. 85 di 86

n. garantire condizioni di sicurezza durante l'apertura del cantiere, assicurando che i lavori si svolgano senza creare, neppure temporaneamente, un significativo aumento del livello di rischio o del grado di esposizione al rischio esistente;

o. garantire coerenza con i piani di protezione civile.

p. non incrementa la pericolosità idraulica definita negli strumenti pianificatori vigenti;

q. non influisce significativamente sul regime di deflusso del reticolo idrografico dell'area;

r. non produce effetti erosivi in caso di piena;

s. non impedisce la realizzazione di interventi di mitigazione del rischio idrogeologico nel settore di territorio in esame.

Si raccomanda comunque che le opere di realizzazione della linea elettrica siano eventualmente sospese in fase realizzativa in caso di "allerta meteo" diramato dal Sistema della Protezione Civile della Regione Autonoma della Sardegna.

Come prescritto dalle nuove Norme di attuazione del PAI, in corrispondenza delle interferenze col reticolo idrografico, il soggetto attuatore, nella persona giuridica di **Sardegna Nulvi 1 srl**, è tenuto a rimuovere a proprie spese le opere in progetto qualora sia necessario per la realizzazione di opere di mitigazione del rischio idraulico.

Ing. Bruno Manca

Geol. Cosima Atzori

Rev. 00 – ottobre 2023 Pag. 86 di 86