

ANAS S.p.A.

LAVORI DI COLLEGAMENTO TRA LA S.S.11 A MAGENTA E LA TANGENZIALE OVEST DI MILANO

VARIANTE DI ABBIATEGRASSO E ADEGUAMENTO IN SEDE DEL TRATTO ABBIATEGRASSO-VIGEVANO FINO AL PONTE SUL FIUME TICINO

1° STRALCIO DA MAGENTA A VIGEVANO - TRATTA C

PROGETTO ESECUTIVO - COD. MI608

VISTO: IL RESPONSABILE

Dott. Ing. Giuseppe Danilo MALGERI

HO03

DESCRIZIONE

RFV

INTEGRATORE DELLE PRESTAZIONI SPECIALISTICHE

Prof. Ing. Matteo Ranieri

Ing. Fabrizio BAJETTI

Ing. Gioacchino Angarano

Prof. Ing. Luigi Monterisi

Nº 610 Prof. Ing. Geol. Luigi MONTERISI Dott. Geol. Danilo Gallo

H - PROGETTO STRUTTURALE OPERE PRINCIPALI

HO - VI03 - VIADOTTO N.03 - SVINCOLO 10 RELAZIONE DI CALCOLO SOTTOSTRUTTURE

REDATTO

VERIFICATO

APPROVATO

CODICE PR	OGETTO LIV. PROG. N. PROG.	NOME FILE HO03-P00VI03STRRE03_A.d	lwg	REVISIONE	SCALA:	
LO20	3 E 2301	CODICE POOVIO	STRRE0	3 A		
С						
В						
Α	EMISSIONE		Ottobre 2023	ING. ELISABETTA ROMANO	ING. GAETANO RANIERI	ING. FABRIZIO BAJETTI

DATA

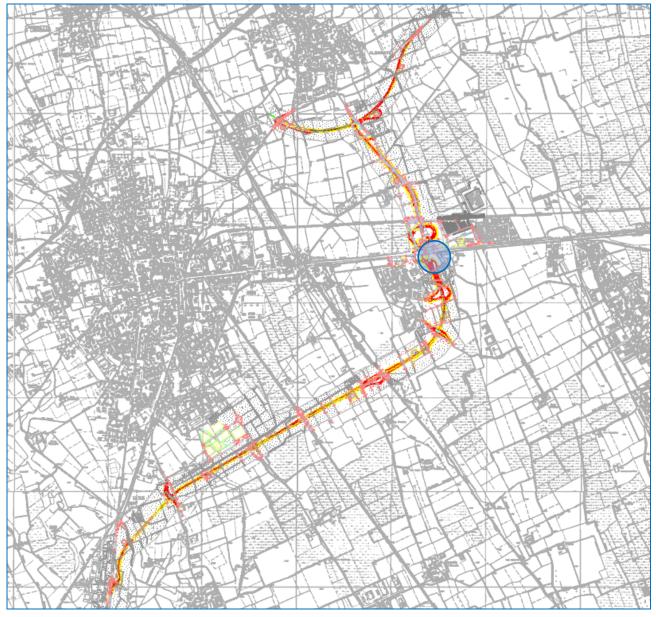
SOMMARIO

1	PKE	MESSA	
2	NOF	RMATIVA	6
3	UNI	ΓΑ' DI MISURA	6
4	_	ERIALI	
	4.1.		
	4.1.2	· ·	
	4.1.3		
	4.1.4		
		Acciai	
	4.2.		
		Calcolo dei copriferri minimi	
	4.3.	·	
	4.3.2		
	4.3.3		
5		ATTERIZZAZIONE GEOTECNICA DEI TERRENI	
J		Definizione della stratigrafia e dei parametri geotecnici di calcolo	
6		Approccio di calcoloIIZZAZIONE SISMICA	
6			
		dentificazione della località e dei parametri sismici generali	
		Definizione della strategia progettuale	
		Parametri di calcolo	
	6.3.		
	6.3.2	0 1 0	
	6.3.3	5 1 5	
	6.3.4		
		Definizione dello spettro di progetto elastico per lo SLV	
		Definizione dello spettro di progetto smorzato per lo SLV	
		Definizione dello spettro di progetto smorzato per lo SLC	
7		LISI DEI CARICHI	
		Peso proprio delle strutture in cemento armato	
		Peso proprio delle strutture metalliche	
	7.3	Peso proprio delle lastre prefabbricate tralicciate in cemento armato	23
	7.4	Peso proprio della soletta in cemento armato	23
	7.5	Peso proprio della pavimentazione stradale	23
	7.6	Peso proprio dei cordoli laterali in cemento armato	24
	7.7	Peso proprio delle barriere guard - rail	24
	7.8	Peso proprio delle velette laterali prefabbricate in cemento armato	24
	7.9	Azione del ritiro sulla soletta	25
	7.10	Carichi accidentali	26
	7.10	.1 Carichi viaggianti da traffico	26
	7.10	.2 Carico accidentale folla	36
	7.10	.3 Incremento dinamico dei carichi mobili (q2)	36
	7.10		
	7.10	_	
	7.10	.6 Azione trasversale del vento	46
	7.11	Azione sismica	47

7.11.1 Azione inerziale delle masse	47
8 COMBINAZIONI DI CARICO	
8.1 Combinazioni di carico allo Stato Limite di Esercizio – Combinazioni quasi- pe	
8.2 Combinazioni di carico allo Stato Limite di Esercizio – Combinazioni frequenti.	
8.3 Combinazioni di carico allo Stato Limite di Esercizio – Combinazioni caratterisi	
8.4 Combinazioni di carico allo Stato Limite Ultimo statiche	
8.5 Combinazione di carico sismiche	
9 MODELLO DI CALCOLO	
9.1 Validazione e taratura dei dati di predimensionamento del sistema di isolamen	
10 SPALLE – VALUTAZIONE DELLE AZIONI SOLLECITANTI ALLO SPICCA	
ELEVAZIONI	
10.1 Spalla "A" - Elevazione sinistra	
10.2 Spalla "A" - Elevazione destra	
10.3 Spalla "B" - Elevazione sinistra	
10.4 Spalla "B" - Elevazione destra	
11 SPALLE- VERIFICHE STRUTTURALI DELLA SEZIONE DI SPICCATO DELLE E	
63	LLVAZIONI
11.1 Sezione e armatura di verifica	63
11.2 Verifica allo Stato Limite di limitazione delle tensioni	
11.2.1 Combinazione SLE – Quasi Permanente	
11.2.2 Combinazione SLE – Quasi Fernialiente	
11.2.3 Combinazione SLE – Frequente	
11.3 Verifica allo Stato Limite di fessurazione	
the first terms of the first ter	
11.4.1 Combinazione SLU – STR	
11.4.2 Combinazione SLV	
11.5 Verifica allo Stato Limite Ultimo per taglio	
11.5.1 Direzione longitudinale	
11.5.2 Direzione trasversale	
12 SPALLE- VALUTAZIONE DELLE AZIONI SOLLECITANTI SULLA TRAVATA PO	STERIORE
70	70
12.1 Definizione del modello di calcolo e dei carichi agenti	
12.2 Diagrammi delle azioni sollecitanti	
12.2.1 Combinazione allo Stato Limite di Esercizio – Quasi Permanente	
12.2.2 Combinazione allo Stato Limite di Esercizio – Frequente	
12.2.3 Combinazione allo Stato Limite di Esercizio – Caratteristica	
12.2.4 Combinazione allo Stato Limite Ultimo - STR	
13 SPALLE – VERIFICHE STRUTTURALI DELLA TRAVATA POSTERIORE	
13.1 Definizioni delle sezioni di verifica	
13.2 Riepilogo delle azioni sollecitanti sulle sezioni di verifica	
13.3 Sezione A-A - Sezione ed armatura di verifica	
13.4 Sezione A-A - Verifica allo Stato Limite di limitazione delle tensioni	
13.4.1 Combinazione SLE - Quasi Permanente	
13.4.2 Combinazione SLE - Frequente	
13.4.3 Combinazione SLE - Caratteristica	
13.5 Sezione A-A - Verifica allo Stato Limite di fessurazione	
13.5.1 Combinazione SLE – Quasi Permanente	
13.5.2 Combinazione SLE – Frequente	87

1	3.6 S	ezione A-A - Verifica allo Stato Limite Ultimo per flessione semplice	88
1	3.7 S	ezione A-A - Verifica allo Stato Limite Ultimo per taglio	89
1	3.8 S	ezione B-B - Sezione ed armatura di verifica	90
1	3.9 S	ezione B-B - Verifica allo Stato Limite di limitazione delle tensioni	90
	13.9.1	Combinazione SLE - Quasi Permanente	90
	13.9.2	Combinazione SLE - Frequente	91
	13.9.3	Combinazione SLE - Caratteristica	92
1	3.10 S	ezione B-B - Verifica allo Stato Limite di fessurazione	93
	13.10.1	Combinazione SLE – Quasi Permanente	93
	13.10.2	Combinazione SLE – Frequente	94
1	3.11 S	ezione B-B - Verifica allo Stato Limite Ultimo per flessione semplice	95
1	3.12 S	ezione B-B - Verifica allo Stato Limite Ultimo per taglio	96
1	3.13 S	ezione C-C - Sezione ed armatura di verifica	97
1	3.14 S	ezione C-C - Verifica allo Stato Limite di limitazione delle tensioni	97
	13.14.1	Combinazione SLE - Quasi Permanente	97
	13.14.2	Combinazione SLE - Frequente	98
	13.14.3	Combinazione SLE - Caratteristica	99
1	3.15 S	ezione C-C - Verifica allo Stato Limite di fessurazione	100
	13.15.1	Combinazione SLE – Quasi Permanente	100
	13.15.2	Combinazione SLE – Frequente	101
1	3.16 S	ezione C-C - Verifica allo Stato Limite Ultimo per flessione semplice	102
14	SPALLE	E– VALUTAZIONE DELLE AZIONI SOLLECITANTI SUI PALI DI FONDAZIONE	103
1	4.1 S	palla "A" - Azioni sollecitanti desunte dal modello di calcolo	103
	14.1.1	Zattera sinistra	103
	14.1.2	Zattera destra	116
	14.1.3	Riepilogo delle azioni sollecitanti desunte dal modello di calcolo	129
1	4.2 S	palla "B" - Azioni sollecitanti desunte dal modello di calcolo	130
	14.2.1	Zattera sinistra	130
		Zattera destra	
	14.2.3	Riepilogo delle azioni sollecitanti desunte dal modello di calcolo	156
1	4.3 S	palla "A" - Azioni sollecitanti sul singolo palo connesse alla deformabilità orizzo	ontale
d	el terrend)	157
	14.3.1	Valutazione della costante di reazione orizzontale del terreno	157
	14.3.2	Zattera sinistra	159
	14.3.3	Zattera destra	164
	14.3.4	Riepilogo delle azioni sollecitanti di verifica	169
1	4.4 S	palla "B" - Azioni sollecitanti sul singolo palo connesse alla deformabilità orizzo	ontale
d	el terrend)	170
	14.4.1	Valutazione della costante di reazione orizzontale del terreno	170
	14.4.2	Zattera sinistra	172
	14.4.3	Zattera destra	177
	14.4.4	Riepilogo delle azioni sollecitanti di verifica	182
15	SPALLE	E – VERIFICHE STRUTTURALI DEI PALI DI FONDAZIONE	183
1	5.1 S	ezione ed armatura di verifica	183
1	5.2 V	erifica allo Stato Limite di limitazione delle tensioni	183
	15.2.1	Combinazione SLE - Quasi Permanente - N _{max}	183
	15.2.2	Combinazione SLE - Quasi Permanente – N _{min}	184
	15.2.3	Combinazione SLE - Frequente - N _{max}	185

	15.2.4	Combinazione SLE - Frequente – N _{min}	186
	15.2.5	5 Combinazione SLE - Caratteristica - N _{max}	187
	15.2.6	Combinazione SLE - Caratteristica – N _{min}	188
•	15.3	Verifica allo Stato Limite di fessurazione	189
	15.3.1	Combinazione SLE – Quasi Permanente - N _{max}	189
	15.3.2	2 Combinazione SLE – Quasi Permanente – N _{min}	190
	15.3.3	Combinazione SLE – Frequente - N _{max}	191
	15.3.4	Combinazione SLE – Frequente - N _{min}	192
•	15.4	Verifica allo Stato Limite Ultimo per pressoflessione	193
	15.4.1	Condizione statica SLU - STR - N _{max}	193
	15.4.2	2 Condizione statica SLU - STR – N _{min}	194
	15.4.3	B Condizione sismica SLV - N _{max}	195
	15.4.4	Condizione sismica SLV – N _{min}	196
	15.5	Verifica allo Stato Limite Ultimo per taglio	
16	SPAL	LE – VERIFICHE STRUTTURALI DELLE ZATTERE DI FONDAZIONE	198
•	16.1	Zattera di fondazione – Verifiche strutturali	198
17	SPAL	LE – VERIFICHE GEOTECNICHE DEI PALI DI FONDAZIONE	200
•	17.1	Formulazioni adottate per la verifica del carico limite ultimo	200
	17.1.1	Palo in terreno coesivo saturo	200
	17.1.2	Palo in terreno incoerente	201
•	17.2	Valutazione del coefficiente di capacità portante alla punta N _q	202
•	17.3	Verifiche di portanza verticale (carico limite ultimo) e laterale del palo	203
•	17.4	Valutazione dell'efficienza dei pali in gruppo	210
•	17.5	Validazione manuale dei risultati del software	211
•	17.6	Calcolo dei cedimenti verticali allo Stato Limite di Esercizio - Comb	inazione
		stica	
		FICHE STRUTTURALI DEI BAGGIOLI DI APPOGGIO E DEI RITEGNI	
TR	ASVER	SALI	
•	18.1	Valutazione delle azioni sollecitanti sugli appoggi	215
•	18.2	Baggioli di appoggio	
	18.2.1	•	
		2 Verifica nei confronti delle azioni orizzontali	
•	18.3	Ritegni sismici trasversali	219
	18.3.1	Verifica nei confronti delle azioni orizzontali	219



La presente relazione riporta il dimensionamento e le verifiche strutturali delle sottostrutture del viadotto VI-03 nell'ambito della Tratta "C" del "Collegamento tra la S.S. 11 "Padana Superiore" a Magenta e la Tangenziale ovest di Milano, con variante di Abbiategrasso e adeguamento in sede del tratto del Tratto Abbiategrasso-Vigevano fino al ponte sul fiume Ticino".

2 NORMATIVA

Nella redazione dei calcoli statici ci si è attenuti alle prescrizioni della Normativa vigente; in particolare:

- Legge n°1086 del 05/11/1971 "Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica"
- Legge n°64 del 02/02/1974 "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche"
- Decreto Ministeriale 17/01/2018 "Norme Tecniche per le Costruzioni"
- Circolare Min. 21/01/2019, n°7 "Istruzioni per l'applicazione dell'aggiornamento delle Nuove Norme Tecniche per le Costruzioni di cui al D.M. 17/01/2018"
- UNI EN 1991-2 (Eurocodice 1 Parte 2) → Azioni sulle strutture Carichi da traffico sui ponti
- UNI EN 1992-1 (Eurocodice 2 Parte 1) → Progettazione delle strutture in calcestruzzo -Regole generali
- UNI EN 1992-2 (Eurocodice 2 Parte 2) → Progettazione delle strutture in calcestruzzo Ponti
- UNI EN 1998-2 (Eurocodice 8 Parte 2) → Progettazione delle strutture per la resistenza sismica Ponti
- UNI EN 206-1:2006 → Calcestruzzo Specificazione, prestazione e conformità
- **UNI 11104** → Calcestruzzo Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 2016-1

3 UNITA' DI MISURA

Nei calcoli è stato fatto uso delle seguenti unità di misura:

• per i carichi: kN/m², kN/m, kN

per i momenti: kNm
 per i tagli e sforzi normali: kN
 per le tensioni: N/mm²
 per le accelerazioni: m/sec²

4

MATERIALI

4.1.1 CALCESTRUZZO PER OPERE DI SOTTOFONDAZIONE

Per le opere di sottofondazione è stato previsto un calcestruzzo con classe di resistenza **C12/15** e classe di esposizione **X0**.

Tale calcestruzzo non ha valenza strutturale e quindi non se ne riportano le caratteristiche meccaniche.

4.1.2 CALCESTRUZZO PER PALI DI FONDAZIONE (UNI 11104-2016)

Per i pali di fondazione è stato previsto un calcestruzzo con classe di resistenza **C25/30** con le seguenti caratteristiche meccaniche:

CARATTERISTICHE MECCANICHE DEI CALCESTRUZZI - D.M. 17.01.2018				
Classe di resistenza del calcestruzzo	C25/30		•	
Resistenza caratteristica cubica a compressione	R _{ck}	30,00	[N/mm ²]	
Resistenza caratteristica cilindrica a compressione	f_{ck}	24,90	[N/mm ²]	
Resistenza cilindrica media a compressione a 28 gg	f_{cm}	32,90	$[N/mm^2]$	
Resistenza di calcolo a compressione	f_{cd}	14,11	[N/mm ²]	
Resistenza media a trazione	f_{ctm}	2,56	[N/mm ²]	
Resistenza caratteristica a trazione	f_{ctk}	1,79	[N/mm ²]	
Resistenza di calcolo a trazione	f_{ctd}	1,19	[N/mm ²]	
Modulo elastico istantaneo	E_c	31.220,19	[N/mm ²]	
Modulo elastico medio	E_{cm}	30.440,77	[N/mm ²]	

Classe di esposizione: XC2

Classe di consistenza: S4

Rapporto minimo acqua / cemento: 0,60

Contenuto minimo di cemento: 300 kg/mc

Diametro massimo degli inerti: 30 mm

• Copriferro netto minimo: 60 mm

4.1.3 CALCESTRUZZO PER ZATTERE DI FONDAZIONE (UNI 11104-2016)

Per le zattere di fondazione è stato previsto un calcestruzzo con classe di resistenza **32/40** con le seguenti caratteristiche meccaniche:

CARATTERISTICHE MECCANICHE DEI CALCESTRUZZI - D.M. 17.01.2018				
Classe di resistenza del calcestruzzo	C32/40		-	
Resistenza caratteristica cubica a compressione	R _{ck}	40,00	[N/mm ²]	
Resistenza caratteristica cilindrica a compressione	f_{ck}	33,20	[N/mm ²]	
Resistenza cilindrica media a compressione a 28 gg	$f_{\sf cm}$	41,20	[N/mm ²]	
Resistenza di calcolo a compressione	f_{cd}	18,81	[N/mm ²]	
Resistenza media a trazione	f_{ctm}	3,10	[N/mm ²]	
Resistenza caratteristica a trazione	f_{ctk}	2,17	[N/mm ²]	
Resistenza di calcolo a trazione	f_{ctd}	1,45	[N/mm ²]	
Modulo elastico istantaneo	Ec	36.049,97	[N/mm ²]	
Modulo elastico medio	E _{cm}	32.811,24	[N/mm ²]	

Classe di esposizione: XC2

Classe di consistenza: S4

Rapporto minimo acqua / cemento: 0,60
Contenuto minimo di cemento: 300 kg/mc
Diametro massimo degli inerti: 30 mm

Copriferro netto minimo: 40 mm

4.1.4 CALCESTRUZZO PER ELEVAZIONI (UNI 11104-2016)

Per le elevazioni è stato previsto un calcestruzzo con classe di resistenza C32/40 con le seguenti caratteristiche meccaniche:

CARATTERISTICHE MECCANICHE DEI CALCESTRUZZI - D.M. 17.01.2018				
Classe di resistenza del calcestruzzo	C32/40		-	
Resistenza caratteristica cubica a compressione	R _{ck}	40,00	[N/mm ²]	
Resistenza caratteristica cilindrica a compressione	f_{ck}	33,20	$[N/mm^2]$	
Resistenza cilindrica media a compressione a 28 gg	$f_{\sf cm}$	41,20	[N/mm ²]	
Resistenza di calcolo a compressione	f_{cd}	18,81	[N/mm ²]	
Resistenza media a trazione	$f_{\sf ctm}$	3,10	$[N/mm^2]$	
Resistenza caratteristica a trazione	f_{ctk}	2,17	$[N/mm^2]$	
Resistenza di calcolo a trazione	f_{ctd}	1,45	[N/mm ²]	
Modulo elastico istantaneo	E_c	36.049,97	[N/mm ²]	
Modulo elastico medio	E_{cm}	32.811,24	[N/mm ²]	

Classe di esposizione: XF2Classe di consistenza: S6

Rapporto minimo acqua / cemento: 0,50
Contenuto minimo di cemento: 340 kg/mc
Diametro massimo degli inerti: 20 mm
Copriferro netto minimo: 40 mm

Copinerio netto minimo.

4.2 ACCIAI

4.2.1 ACCIAIO PER ARMATURA LENTA

Per le armature lente è stato previsto un acciaio del tipo **B450C**, con le seguenti caratteristiche meccaniche:

- $f_{t,k}$ = 540,00 N/mm² (resistenza caratteristica a rottura)

- $f_{y,k}$ = 450,00 N/mm² (tensione caratteristica di snervamento)

- $f_{y,d}$ = 391,30 N/mm² (resistenza di calcolo – γ_s =1,15) - E_s = 210.000,00 N/mm² (modulo elastico istantaneo)

4.3 CALCOLO DEI COPRIFERRI MINIMI

Ai sensi delle prescrizioni di cui alla normativa vigente e con riferimento alla procedura di calcolo prevista dalla Circolare Applicativa (riferita alla normativa del 2008 ma a tutt'oggi valida) si riporta di seguito il calcolo del copriferro minimo inteso come ricoprimento delle barre.

4.3.1 PALI DI FONDAZIONE

T	CODICE FILE	MAT-02
Ingegneria del Territorio s.r.l.	OGGETTO:	CALCOLO COPRIFERRO

Definizione della condiizoni ambientali (TABELLA 4.1.IV - Descrizione delle condizioni ambientali)				
Condizioni ambientali	Classe di esposizione	Classe di esposizione di progetto		
Ordinarie	X0,XC1,XC2,XC3,XF1	XC2 ▼		
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3	Condizioni ambientali di progetto		
Molto Aggressive	XD2, XD3, XS2, XS3, XA3, XF4	Ordinario		

Definizione della classi di resistenza rispetto alla Tabelle C4.1.IV					
Classe minima Cmin	Classe di resistenza del calcestruzzo	Classe di resistenza del calcestruzzo			
C25/30	Barre da c.a. altri elemen ▼	C25/30 ▼			
Classe C0	Vita Nominale dell'opera	Produzioni sottoposte a controllo qualità			
C45/55	50 Anni	NO 🔻			

Determinazione del copriferro minimo (Tab. C4.1.IV)			
Copriferro minimo ai sensi della tabella e delle precisazioni di cui al capitolo C4.1.6.1.3 lella Circolare Applicativa			
Tolleranza costruttiva	5	mm	
COPRIFERRO MINIMO DI PROGETTO	30	mm	

4.3.2 **Z**ATTERE DI FONDAZIONE

T	CODICE FILE	MAT-02
Ingegneria del Territorio s.r.l.	OGGETTO:	CALCOLO COPRIFERRO

Definizione della condiizoni ambientali (TABELLA 4.1.IV - Descrizione delle condizioni ambientali)							
Condizioni ambientali	Classe di esposizione	Classe di esposizione di progetto					
Ordinarie	X0,XC1,XC2,XC3,XF1	XC2 ▼					
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3	Condizioni ambientali di progetto					
Molto Aggressive	XD2, XD3, XS2, XS3, XA3, XF4	Ordinario					

Definizione della classi di resistenza rispetto alla Tabelle C4.1.IV								
Classe minima Cmin	Classe di resistenza del calcestruzzo	Classe di resistenza del calcestruzzo						
C25/30	Barre da c.a. elementi a p ▼	C32/40 ▼						
Classe C0	Vita Nominale dell'opera	Produzioni sottoposte a controllo qualità						
C45/55	50 Anni	NO 🔻						

Determinazione del copriferro minimo (Tab. C4.1.IV)					
Copriferro minimo ai sensi della tabella e delle precisazioni di cui al capitolo C4.1.6.1.3 della Circolare Applicativa	20	mm			
Tolleranza costruttiva	5	mm			
COPRIFERRO MINIMO DI PROGETTO	25	mm			

4.3.3 **ELEVAZIONI**

នា	CODICE FILE	MAT-02
Ingegneria del Territorio s.r.l.	OGGETTO:	CALCOLO COPRIFERRO

Definizione della condiizoni ambientali (TABELLA 4.1.IV - Descrizione delle condizioni ambientali)							
Condizioni ambientali	Classe di esposizione	Classe di esposizione di progetto					
Ordinarie	X0,XC1,XC2,XC3,XF1	XF2 ▼					
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3	Condizioni ambientali di progetto					
Molto Aggressive	XD2, XD3, XS2, XS3, XA3, XF4	Aggressivo					

Definizione della classi di resistenza rispetto alla Tabelle C4.1.IV								
Classe minima Cmin	Classe di resistenza del calcestruzzo	Classe di resistenza del calcestruzzo						
C28/35	Barre da c.a. elementi a p ▼	C32/40 ▼						
Classe C0	Vita Nominale dell'opera	Produzioni sottoposte a controllo qualità						
C45/55	50 Anni	NO 🔻						

Determinazione del copriferro minimo (Tab. C4.1.IV)					
Copriferro minimo ai sensi della tabella e delle precisazioni di cui al capitolo C4.1.6.1.3 della Circolare Applicativa	30	mm			
Tolleranza costruttiva	5	mm			
COPRIFERRO MINIMO DI PROGETTO	35	mm			

5

CARATTERIZZAZIONE GEOTECNICA DEI TERRENI

5.1 DEFINIZIONE DELLA STRATIGRAFIA E DEI PARAMETRI GEOTECNICI DI CALCOLO

In relazione a quanto riportato all'interno della relazione geologica e geotecnica per la verifica geotecnica dei pali di fondazione delle spalle e delle pile si farà riferimento alla seguente stratigrafia:

Strato 1 – Unità litotecnica G3 (da p.c. a quota -0,70 m da p.c.)

 $\gamma = 18,50 \text{ kN/m}^3$ Peso specifico: $\gamma' = 8.50 \text{ kN/m}^3$ Peso specifico efficace: $\varphi = 30.90^{\circ}$ Angolo di attrito interno: $c' = 0.00 \text{ kN/m}^2$ Coesione drenata: Densità relativa: $D_r = 49,60\%$ Modulo elastico: $E = 22,30 \text{ N/mm}^2$

Strato 2 – Unità litotecnica L5 (da quota -0,70 a quota -2,20 m da p.c.)

 $\gamma = 19,00 \text{ kN/m}^3$ Peso specifico: $\gamma' = 9.00 \text{ kN/m}^3$ Peso specifico efficace: Coesione non drenata: $c_u = 26,60 \text{ kN/m}^2$

Strato 3 – Unità litotecnica G3 (da quota -2,20 a quota -9,85 m da p.c.)

Peso specifico: $\gamma = 18,50 \text{ kN/m}^3$ $\gamma' = 8,50 \text{ kN/m}^3$ Peso specifico efficace: Angolo di attrito interno: $\varphi = 30,90^{\circ}$ Coesione drenata: $c' = 0.00 \text{ kN/m}^2$ $D_r = 49,60\%$ Densità relativa: Modulo elastico: $E = 22,30 \text{ N/mm}^2$

Strato 4 – Unità litotecnica S1 (quota > -9,85 m da p.c.)

Peso specifico: $\gamma = 19,00 \text{ kN/m}^3$ Peso specifico efficace: $\gamma' = 9,00 \text{ kN/m}^3$ $\varphi = 31,70^{\circ}$ Angolo di attrito interno: Coesione drenata: $c' = 0.00 \text{ kN/m}^2$ Densità relativa: $D_r = 50,00\%$ Modulo elastico: $E = 21,70 \text{ N/mm}^2$

La falda è posta a quota – 1,00 m di profondità dal piano di campagna.

Poiché il piano di posa delle zattere di fondazione è disposto a una quota massima pari a -2,80 m da p.c. (1,00 m di ricoprimento superiore + 1,80 m di spessore delle zattere), la stratigrafia considerata per le verifiche geotecniche e strutturali è la seguente:

Strato 3 – Unità litotecnica G3 (da quota 0,00 a quota -7,05 m da piano di posa delle zattere)

Peso specifico: $\gamma = 18,50 \text{ kN/m}^3$ $\gamma' = 8,50 \text{ kN/m}^3$ Peso specifico efficace: Angolo di attrito interno: $\phi = 30.90^{\circ}$ Coesione drenata: $c' = 0.00 \text{ kN/m}^2$ Densità relativa: $D_r = 49.60\%$ Modulo elastico: $E = 22,30 \text{ N/mm}^2$

Strato 4 – Unità litotecnica **S1** (quota > -7,05 m dal piano di posa delle zattere)

Peso specifico: $\gamma = 19,00 \text{ kN/m}^3$ Peso specifico efficace: $\gamma' = 9,00 \text{ kN/m}^3$ Angolo di attrito interno: $\varphi = 31,70^{\circ}$ Coesione drenata: $c' = 0.00 \text{ kN/m}^2$ Densità relativa: $D_r = 50.00\%$ Modulo elastico: $E = 21,70 \text{ N/mm}^2$

La falda di calcolo è assunta a quota 0,00 m di profondità dal piano posa delle zattere di fondazione.

5.2 **APPROCCIO DI CALCOLO**

Le verifiche geotecniche di carico limite ultimo e di portanza laterale vengono condotte secondo l'approccio 2 previsto dal D.M.17.01.2018 "Norme Tecniche per le Costruzioni" - Combinazione A1 - M1 - R3.

Resistenza	Simbolo	Pali infissi			Pali trivellati			Pali ad elica continua		
	γ_{R}	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)
Base	Υþ	1,0	1,45	1,15	1,0	1,7	1,35	1,0	1,6	1,3
Laterale in compressione	Υs	1,0	1,45	1,15	1,0	1,45	1,15	1,0	1,45	1,15
Totale (*)	Υt	1,0	1,45	1,15	1,0	1,6	1,30	1,0	1,55	1,25
Laterale in trazione	γ st	1,0	1,6	1,25	1,0	1,6	1,25	1,0	1,6	1,25

Tabella 6.4.II – Coefficienti parziali γ_R da applicare alle resistenze caratteristiche. È stata considerata la presenza di un'unica verticale indagata al fine di determinare il valore dei fattori di riduzione delle resistenze caratteristiche ξ_3 e ξ_4 :

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ ₃	1,70	1,65	1,60	1,55	1,50	1,45	1,40
پرغ	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Tabella 6.4.IV – Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate.

Sulla base di quanto riportato all'interno della relazione geotecnica è possibile considerare un numero di verticali indagate pari a 7.

6

ZONIZZAZIONE E CARATTERIZZAZIONE SISMICA

6.1 **IDENTIFICAZIONE DELLA LOCALITÀ E DEI PARAMETRI SISMICI GENERALI**

Il sito è definito dalle seguenti coordinate geografiche:

Longitudine: 8,953306 Latitudine: 45,401149

6.2 **DEFINIZIONE DELLA STRATEGIA PROGETTUALE**

In riferimento al D.M. 17.01.2018 "Norme Tecniche per le Costruzioni", le opere sono progettate (in funzione dell'importanza strategica dell'infrastruttura) secondo i seguenti parametri:

Vita Nominale dell'opera:

50 anni

Tab. 2.4.I – Valori minimi della Vita nominale V_N di progetto per i diversi tipi di costruzioni

	TIPI DI COSTRUZIONI				
1	Costruzioni temporanee e provvisorie	10			
2	Costruzioni con livelli di prestazioni ordinari	50			
3	Costruzioni con livelli di prestazioni elevati	100			

Classe d'uso dell'opera: IV

2.4.2. CLASSI D'USO

Con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso così definite:

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Coefficiente di utilizzo dell'opera: 2,00

Tab. 2.4.II – Valori del coefficiente d'uso C _U							
CLASSE D'USO I II III IV							
COEFFICIENTE C _U	0,7	1,0	1,5	2,0			

Vita di riferimento dell'opera: 100 anni

PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA 2.4.3.

Le azioni sismiche sulle costruzioni vengono valutate in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale di progetto V_N per il coefficiente d'uso C_U:

 $V_R = V_N \cdot C_U$

Qui di seguito si riporta la sintesi delle scelte progettuali adottati con i tempi di ritorno dell'azione sismica identificati in funzione del singolo stato limite.

6.3 **PARAMETRI DI CALCOLO**

PARAMETRI NUMERICI SISMICI

Sono stati definiti e utilizzati nei calcoli 3 differenti spettri di risposta di progetto:

- Spettro di progetto elastico valutato per lo Stato Limite di Salvaguardia della Vita (SLV) per la valutazione delle azioni sismiche dovute alla massa delle sottostrutture e del terreno e dei sovraccarichi direttamente gravanti su di esse.
- Spettro di progetto "smorzato" (per la presenza dell'isolamento sismico alla base dell'impalcato) valutato per lo Stato Limite di Salvaguardia della Vita (SLV) per la valutazione delle azioni sismiche dovute alla massa dell'impalcato e ai sovraccarichi su esso agenti e trasmessi dagli isolatori sismici alle sottostrutture inferiori.
- Spettro di progetto "smorzato" (per la presenza dell'isolamento sismico alla base dell'impalcato) valutato allo Stato Limite di Collasso per il dimensionamento degli isolatori sismici e la verifica dello spostamento di progetto degli stessi.

Nella tabella successiva sono riportati i parametri numerici sismici per i periodi di ritorno associati ai diversi Stati Limite:

SLAT0	T_R	a _g	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SL0	60	0,023	2,546	0,194
SLD	101	0,028	2,591	0,211
SLV	949	0,051	2,730	0,303
SLC	1950	0,060	2,820	0,318

6.3.2 CATEGORIA DEI TERRENI DI FONDAZIONE E CATEGORIA TOPOGRAFICA

Ai sensi di quanto riportato nella Relazione Geotecnica e all'interno dei profili geotecnici allegati al presente progetto esecutivo il terreno di fondazione è classificato simicamente come di **categoria C**.

Гаb. 3.2.II – Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.		
Categoria	Caratteristiche della superficie topografica	
	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde	
A	di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteri-	
	stiche meccaniche più scadenti con spessore massimo pari a 3 m.	
	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consi-	
В	stenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da	
	valori di velocità equivalente compresi tra 360 m/s e 800 m/s.	
	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi-	
C	stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del-	
C	le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra	
	180 m/s e 360 m/s.	
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consi-	
	stenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del-	
	le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra	
	100 e 180 m/s.	
Е	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le catego-	
	rie C o D, con profondità del substrato non superiore a 30 m.	

6.3.3 CATEGORIA DEI TERRENI DI FONDAZIONE E CATEGORIA TOPOGRAFICA

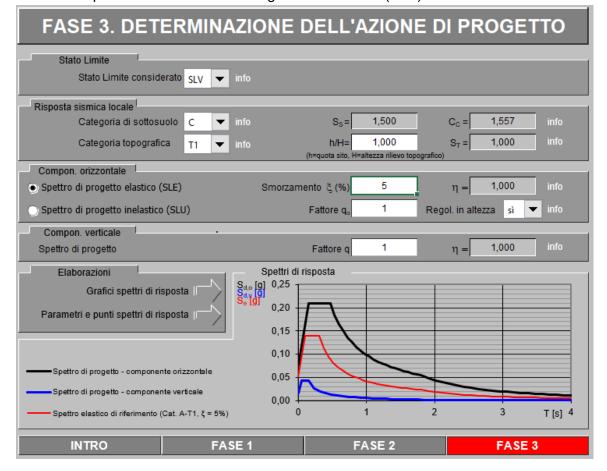
Considerando che il territorio si presenta essenzialmente pianeggiante e privo di significati salti di quota la categoria topografica del sito è stata assunta pari a **categoria T**₁.

Tab. 3.2.III – Categorie topografiche			
Categoria	Caratteristiche della superficie topografica		
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°		
T2	Pendii con inclinazione media i > 15°		
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°		
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°		

6.3.4 FATTORI DI STRUTTURA

A favore di sicurezza il calcolo e le verifiche sono stati effettuati in campo elastico.

Il fattore di struttura è stato pertanto posto pari a q = 1,00.


Lo spettro di progetto adottato sarà pertanto identico allo spettro elastico.

6.4 DEFINIZIONE DELLO SPETTRO DI PROGETTO ELASTICO PER LO SLV

Nell'immagine successiva è riportata la determinazione dei parametri dello spettro di risposta elastico valutato per lo Stato Limite di Salvaguardia della Vita (SLV):

Nella tabella successiva sono riportati analiticamente i parametri sismici ed i valori delle accelerazioni normalizzate in funzione del periodo di vibrazione:

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV

Parametri indipendenti

STATO LIMITE	SLV
a _o	0,051 g
F _o	2,730
T _c *	0,303 s
Ss	1,500
C _C	1,557
S _T	1,000
q	1,000

Parametri dipendenti

S	1,500
η	1,000
T _B	0,157 s
T _C	0,472 s
T _D	1,804 s

Espressioni dei parametri dipendenti

$$S = S_{c_1} \cdot S_{c_2}$$
 (NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_n = T_c/3$$
 (NTC-07 Eq. 3.2.8)

$$T_{c} = C_{c} \cdot T_{c}^{*}$$
 (NTC-07 Eq. 3.2.7)

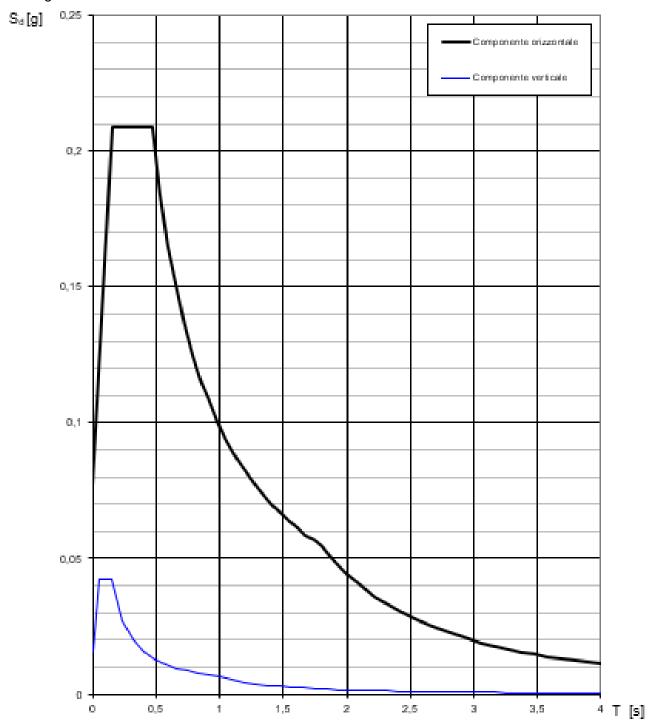
$$T_0 = 4.0 \cdot a_c / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

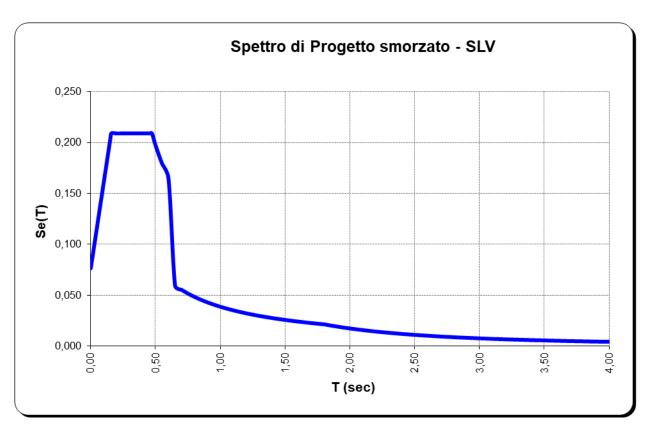
$$\begin{split} 0 &\leq T < T_B \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_c}{T} \right) \\ T_D &\leq T \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_c T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto S₄(T) per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico S,(T) sostituendo n con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta


	T [s]	Se [g]
	0,000	0,077
T₀◀	0,157	0,209
Tℯ ⋖	0,472	0,209
	0,535	0,184
	0,599	0,165
	0,662	0,149
	0,725	0,136
	0,789	0,125
	0,852	0,116
	0,916	0,108
	0,979	0,101
	1,043	0,095
	1,106	0,089
	1,170	0,084
	1,233	0,080
	1,297	0,076
	1,360	0,072
	1,423	0,069
	1,487	0,066
	1,550	0,064
	1,614	0,061
	1,677	0,059
_	1,741	0,057
T₽◀─	1,804	0,055
	1,909	0,049
	2,013	0,044
	2,118	0,040
	2,222	0,036
	2,327	0,033
	2,432	0,030
	2,536	0,028
	2,641	0,026
	2,745	0,024
	2,850	0,022
	2,954	0,020
	3,059	0,019
	3,163	0,018
	3,268	0,017
	3,373	0,016
	3,477	0,015
	3,582	0,014
	3,686	0,013
	3,791	0,012
	3,895	0,012
	4,000	0,011

Nell'immagine successiva è riportato il diagramma dello spettro di risposta per lo Stato Limite di Salvaguardia della Vita:



6.5 DEFINIZIONE DELLO SPETTRO DI PROGETTO SMORZATO PER LO SLV

Nell'immagine successiva è riportata la determinazione dei parametri dello spettro di risposta smorzato valutato per lo Stato Limite di Salvaguardia della Vita (SLV):

	PARAMETRI SI	SMICI
a_g	0,051	
F_0	2,730	
T _C *	0,303	sec
Ss	1,500	
Cc	1,557	
S _T	1,000	
s	1,500	
T _B	0,157	sec
T _C	0,472	sec
T_D	1,804	sec
T _{iso}	0,804	sec
ξ	0,596	

Nell'immagine successiva è riportato il diagramma dello spettro di risposta smorzato per lo Stato Limite di Salvaguardia della Vita:

6.6 DEFINIZIONE DELLO SPETTRO DI PROGETTO SMORZATO PER LO SLC

Nell'immagine successiva è riportata la determinazione dei parametri dello spettro di risposta smorzato valutato per lo Stato Limite di Collasso (SLC):

	PARAMETRI SI	SMICI
a_g	0,060	
F_0	2,820	
T _C *	0,318	sec
Ss	1,500	
Cc	1,533	
S _T	1,000	
s	1,500	
T _B	0,162	sec
T _C	0,487	sec
T_D	1,839	sec
T _{iso}	0,804	sec
ξ	0,596	

Nell'immagine successiva è riportato il diagramma dello spettro di risposta smorzato per lo Stato Limite di Salvaguardia della Vita:

ANALISI DEI CARICHI

7.1 PESO PROPRIO DELLE STRUTTURE IN CEMENTO ARMATO

Il peso proprio delle strutture in cemento armato delle spalle viene attribuito automaticamente dal programma di calcolo in relazione alle dimensioni reali delle sezioni strutturali.

Il peso per unità di volume del cemento armato è assunto pari a 25,00 kN/m³.

7.2 PESO PROPRIO DELLE STRUTTURE METALLICHE

Il peso proprio delle strutture metalliche viene attribuito automaticamente dal programma di calcolo e viene opportunamente maggiorato per tener conto di irrigidenti, minuteria, bulloneria e saldature. Il peso per unità di volume dell'acciaio è assunto pari a **78,50 kN/m**³.

7.3 PESO PROPRIO DELLE LASTRE PREFABBRICATE TRALICCIATE IN CEMENTO ARMATO

Lo spessore della lastra prefabbricata tralicciata è assunto pari a **5 cm**. Assunto il peso per unità di volume del calcestruzzo armato pari a **25,00 kN/m³**, il peso per unità di superficie della lastra prefabbricata tralicciata vale pertanto:

$$p_{lastra} = 0.05 \times 25.00 = 1.25 \text{ kN/m}^2$$

La larghezza di influenza in corrispondenza della spalla A risulta pari a 3,00 m per le travi T1, T2 e T3 e pari a 4,08 m per la trave T4.

La larghezza di influenza in corrispondenza della spalla B risulta pari a **3,00 m** per tutte le quattro travi

A tali larghezze di influenza corrispondono i seguenti carici per unità di lunghezza dovuti al peso proprio delle lastre:

Travi T1, T2 e T3

- Spalla A \rightarrow p_{lastra,A} = 1,25 x 3,00 = 3,75 kN/m
- Spalla B \rightarrow p_{lastra,B} = 1,25 x 3,00 = 3,75 kN/m

Trave T4

- Spalla A \rightarrow p_{lastra,A} = 1,25 x 4,08 = 5,01 kN/m
- Spalla B → p_{lastra,B} = 1,25 x 3,00 = 3,75 kN/m

7.4 PESO PROPRIO DELLA SOLETTA IN CEMENTO ARMATO

Lo spessore della soletta è assunto pari a **25 cm**. Assunto il peso per unità di volume del cemento armato pari a **25,0 kN/m³**, il peso per unità di superficie della soletta vale pertanto:

$p_{\text{getto.soletta}} = 0.25 \times 25.00 = 6.25 \text{ kN/m}^2$

La larghezza di influenza in corrispondenza della spalla A risulta pari a 3,00 m per le travi T1, T2 e T3 e pari a 4,08 m per la trave T4.

La larghezza di influenza in corrispondenza della spalla B risulta pari a **3,00 m** per tutte le quattro travi.

A tali larghezze di influenza corrispondono i seguenti carici per unità di lunghezza dovuti al peso proprio delle lastre:

Travi T1, T2 e T3

- Spalla A \rightarrow p_{soletta,A} = 6,25 x 3,00 = 18,75 kN/m
- Spalla B \rightarrow p_{soletta,B} = 6,25 x 3,00 = 18,75 kN/m

Trave T4

- Spalla A \rightarrow p_{soletta,A} = 6,25 x 4,08 = 25,50 kN/m
- Spalla B \rightarrow p_{soletta,B} = 6,25 x 3,00 = 18,75 kN/m

7.5 PESO PROPRIO DELLA PAVIMENTAZIONE STRADALE

Il peso per unità di volume della pavimentazione stradale è assunto pari a 22,00 kN/m³.

In corrispondenza della spalla A lo spessore della pavimentazione è variabile da un minimo di **11 cm** a un massimo di **25 cm**. Lo spessore medio risulta dunque pari a **18,00 cm**.

In corrispondenza della spalla B lo spessore della pavimentazione è variabile da un minimo di **11 cm** a un massimo di **24 cm**. Lo spessore medio risulta dunque pari a **17,50 cm**.

Il peso per unità di superficie dovuto alla pavimentazione stradale risulta pertanto pari:

- Spalla A \rightarrow p_{pav} = 0,175 x 22,00 = 3,85 kN/m²
- Spalla B \rightarrow p_{pav} = 0,18 x 22,00 = 3,96 kN/m²

La larghezza di influenza delle travi in corrispondenza della spalla A risulta pari a:

- Trave di bordo T1 → L_{infl} = 2,25 m
- Travi centrali T2 e T3 → L_{infl} = 3,00 m
- Trave di bordo T4 → L_{infl} = 3,33 m

La larghezza di influenza delle travi in corrispondenza della spalla B risulta pari a:

- Travi di bordo T1 e T4 → L_{infl} = 2,25 m
- Travi centrali T2 e T3 → L_{infl} = 3,00 m

Il carico per unità di lunghezza dovuto al peso della pavimentazione stradale sulle travi metalliche risulta dunque pari a:

Spalla A

- Trave di bordo T1 \rightarrow p_{pav} = 3,96 x 2,25 = 8,91 kN/m
- Travi centrali T2 e T3 → p_{pav} = 3,96 x 3,00 = 11,88 kN/m
- Trave di bordo T4 \rightarrow p_{pav} = 3,96 x 3,33 = 13,19 kN/m

Spalla B

- Travi di bordo T1 e T2 → p_{pav} = 3,85 x 2,25 = 8,66 kN/m
- Travi centrali T2 e T3 → p_{pav} = 3,85 x 3,00 = 11,55 kN/m

7.6 PESO PROPRIO DEI CORDOLI LATERALI IN CEMENTO ARMATO

Lo spessore dei cordoli laterali risulta pari a 16 cm, mentre la loro larghezza è di 75 cm.

Assunto il peso per unità di volume del calcestruzzo armato pari a **25,00 kN/m³**, il peso per unità di lunghezza del singolo cordolo vale pertanto:

$$p_{cordolo} = 0.75 \times 0.16 \times 25.00 = 3.00 \text{ kN/m}$$

Il carico per unità di lunghezza dovuto al peso proprio dei cordoli laterali è stato applicato, a favore di sicurezza, esclusivamente e interamente alle travi metalliche di bordo.

7.7 PESO PROPRIO DELLE BARRIERE GUARD - RAIL

Il carico per unità di lunghezza dovuto alla barriera guard – rail (singola barriera) è assunto pari a **2,00 kN/m**.

Il carico per unità di lunghezza dovuto al peso proprio delle barriere guard - rail è stato applicato, a favore di sicurezza, esclusivamente e interamente alle travi metalliche di bordo.

7.8 PESO PROPRIO DELLE VELETTE LATERALI PREFABBRICATE IN CEMENTO ARMATO

Lo spessore delle velette laterali risulta pari a 5 cm, mentre la loro altezza è di 56 cm.

Assunto il peso per unità di volume del calcestruzzo armato pari a **25,00 kN/m³**, il peso per unità di lunghezza del singolo cordolo vale pertanto:

$p_{\text{velette}} = 0.56 \times 0.05 \times 25.00 = 0.70 \text{ kN/m}$

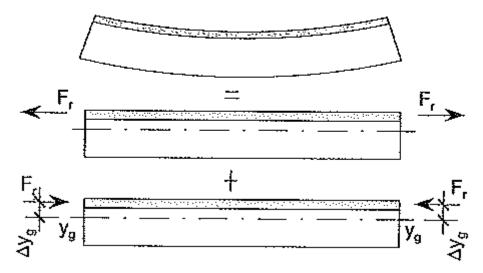
Il carico per unità di lunghezza dovuto al peso proprio delle velette laterali è stato applicato, a favore di sicurezza, esclusivamente e interamente alle travi metalliche di bordo.

7.9 **AZIONE DEL RITIRO SULLA SOLETTA**

L'azione del ritiro è stata valutata sulla larghezza media della soletta:

 $L_{\text{media}} = (12,00 + 13,08) / 2 = 12,54 \text{ m}$

Calcestruzzo a indurimento normale o rapido $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	L _{media} = (12,00 + 13,08) / 2 = 12,54 m VALUTAZIONE D	DELLE AZIONI DA RITITRO (EC2 A 1.1.3)			
Classe di resistenza del calcestruzzo: C32/40					
Tipologia del calcestruzzo: Calcestruzzo a indurimento normale o rapido Tipologia del calcestruzzo: Coefficiente $β_{xc}$ funzione della tipologia del calcestruzzo: Coefficiente che tiene conto dell'effetto della resistenza del cls sul ritiro $ε_x(f_{em})$: O.000404 Imidità relativa ambientale RH (~40 %): Toeff. che tiene conto dell'effetto dell'umidità relativa sul coeff. nominale di ritiro $β_{aRH}$: O.578125 Caratteristiche della maturazione del cls: Calcestruzzo esposto all'aria Coefficiente funzione della tipologia di maturazione del calcestruzzo $β_{RH}$: O.000362 Atta utile della struttura: 100 anni Van delle sezione di calcestruzzo A_c : Perimetro della sezione di calcestruzzo A_c : 2. Perimetro della sezione di calcestruzzo a contatto con l'atmosfera u : 12,54 m Dimensione fittizia h_o : Coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $β_x(t-t_a)$: O.000325 2. VALUTAZIONE DEL COEFFICIENTE DI OMOGENEIZZAZIONE PER L'AZIONE DI RITIRO Coeffi. che tiene conto dell'effetto dell'umidità relativa sul coeff. nom. di viscosità $Φ_{RH}$: 1,315 Coefficiente nominale di viscosità $Φ_o$: 2,0007 Coefficiente nominale di viscosità $Φ_o$: 3,129 Coefficiente nominale di viscosità $Φ_o$: 3,129 Coefficiente tenzione dell'umidità relativa RH e dalla dimensione fittizia $h_o β_H$: 112,571 Coefficiente che tiene conto dello sviluppo della viscosità nel tempo $β_x(t-t_o)$: 3,101 Modulo elastico dell'acciaio E_a : Modulo elastico dell'acciaio E_a : Modulo elastico medio del calcestruzzo E_{am} : Ocefficiente di viscosità $Φ_o(t-t_o)$: Coefficiente di viscosità $Φ_o(t-t_o)$: Ocefficiente di omogeneizzazione per gli effetti del ritiro n_{rh} : 17,316 D. VALUTAZIONE DELL'AZIONE ASSIALE TOTALE DOVUTA AL RITIRO Tensione di trazione agente sul calcestruzzo dovuta al ritiro n_{rh} : Valutazione totale di trazione agente sul calcestruzzo dovuta al ritiro N_{rh} : Valutazione totale di trazione agente sul calcestruzzo dovuta al ritiro N_{rh} : Valutazione tot	Classe di resistenza del calcestruzzo:				
Tipologia del calcestruzzo: Calcestruzzo a indurimento normale o rapido Tipologia del calcestruzzo: Coefficiente $β_{xc}$ funzione della tipologia del calcestruzzo: Coefficiente che tiene conto dell'effetto della resistenza del cls sul ritiro $ε_x(f_{em})$: O.000404 Imidità relativa ambientale RH (~40 %): Toeff. che tiene conto dell'effetto dell'umidità relativa sul coeff. nominale di ritiro $β_{aRH}$: O.578125 Caratteristiche della maturazione del cls: Calcestruzzo esposto all'aria Coefficiente funzione della tipologia di maturazione del calcestruzzo $β_{RH}$: O.000362 Atta utile della struttura: 100 anni Van delle sezione di calcestruzzo A_c : Perimetro della sezione di calcestruzzo A_c : 2. Perimetro della sezione di calcestruzzo a contatto con l'atmosfera u : 12,54 m Dimensione fittizia h_o : Coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $β_x(t-t_a)$: O.000325 2. VALUTAZIONE DEL COEFFICIENTE DI OMOGENEIZZAZIONE PER L'AZIONE DI RITIRO Coeffi. che tiene conto dell'effetto dell'umidità relativa sul coeff. nom. di viscosità $Φ_{RH}$: 1,315 Coefficiente nominale di viscosità $Φ_o$: 2,0007 Coefficiente nominale di viscosità $Φ_o$: 3,129 Coefficiente nominale di viscosità $Φ_o$: 3,129 Coefficiente tenzione dell'umidità relativa RH e dalla dimensione fittizia $h_o β_H$: 112,571 Coefficiente che tiene conto dello sviluppo della viscosità nel tempo $β_x(t-t_o)$: 3,101 Modulo elastico dell'acciaio E_a : Modulo elastico dell'acciaio E_a : Modulo elastico medio del calcestruzzo E_{am} : Ocefficiente di viscosità $Φ_o(t-t_o)$: Coefficiente di viscosità $Φ_o(t-t_o)$: Ocefficiente di omogeneizzazione per gli effetti del ritiro n_{rh} : 17,316 D. VALUTAZIONE DELL'AZIONE ASSIALE TOTALE DOVUTA AL RITIRO Tensione di trazione agente sul calcestruzzo dovuta al ritiro n_{rh} : Valutazione totale di trazione agente sul calcestruzzo dovuta al ritiro N_{rh} : Valutazione totale di trazione agente sul calcestruzzo dovuta al ritiro N_{rh} : Valutazione tot	Resistenza media compressione (a 28 gg) f		41 2	N/mm ²	
Coefficiente β_{sc} funzione della tipologia del calcestruzzo: Coefficiente che tiene conto dell'effetto della resistenza del cls sul ritiro $\varepsilon_{s}(f_{em})$: Operationale della tipologia del calcestruzzo: Coefficiente che tiene conto dell'effetto dell'umidità relativa sul coeff. nominale di ritiro β_{uRH} : Operationale della maturazione del cls: Calcestruzzo esposto all'aria Coefficiente funzione della tipologia di maturazione del calcestruzzo β_{RH} : Operationale di ritiro ε_{cso} : -0,89609375 Coefficiente nominale di ritiro ε_{cso} : -0,000362 Atta utile della struttura: 100 anni vera della sezione di calcestruzzo A_c : 20erimetro della sezione di calcestruzzo a contatto con l'atmosfera u : 12,54 m Coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $\beta_{s}(t-t_{s})$: Operazione fintizia h_o : 0.898126 Coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $\beta_{s}(t-t_{s})$: 0.900325 0.404LUTAZIONE DEL COEFFICIENTE DI OMOGENIEZZAZIONE PER L'AZIONE DI RITIRO Coefficiente conto dell'effetto dell'umidità relativa sul coeff. nom. di viscosità $\phi_{(t-s)}$: 0.9009 Coefficiente nominale di viscosità $\phi_{(t-t_o)}$: 0.9009 Coefficiente funzione dell'umidità relativa RH e dalla dimensione fittizia h_o , h_o : 1112,571 Coefficiente che tiene conto dello sviluppo della viscosità nel tempo $\phi_c(t-t_o)$: 0.9091 Coefficiente di viscosità $\phi(t-t_o)$: 0.9091 Coefficiente di omogeneizzazione per gli effetti del ritiro n_m : 17,316 Coefficiente di trazi	resistenza media compressione (a 20 gg) 1.	m·	71,2		
Coefficiente che tiene conto dell'effetto della resistenza del cls sul ritiro $\varepsilon_s(f_{cm})$: O,000404 75 % Coeff. che tiene conto dell'effetto dell'umidità relativa sul coeff. nominale di ritiro β_{sRH} : O,578125 Caratteristiche della maturazione del cls: Calcestruzzo esposto all'aria Coefficiente funzione della tipologia di maturazione del calcestruzzo β_{RH} : O,89609375 Coefficiente nominale di ritiro ε_{cso} : O,000362 Alta utile della struttura: 100 anni vera delle sezione di calcestruzzo A_c : 20rimento della sezione di calcestruzzo A_c : 20rimensione fittizia h_o : Coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $\beta_s(t-t_s)$: 0.898126 Coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $\beta_s(t-t_s)$: 0.900325 2. VALUTAZIONE DEL COEFFICIENTE DI OMOGENEIZZAZIONE PER L'AZIONE DI RITIRO Coefficiente nominale di viscosità $\phi(t-t_s)$: Coefficiente conto dell'età del cls sul coefficiente nominale di viscosità $\beta(t-t_s)$: Coefficiente funzione dell'umidità relativa RH e dalla dimensione fittizia $h_o \beta_H$: 1112,571 Coefficiente di viscosità $\phi(t-t_s)$: Coefficiente d	Tipologia del calcestruzzo:	Calcestruzzo a indurimento normale o rap	oido		
Omidità relativa ambientale RH (>40 %): Coeff. che tiene conto dell'effetto dell'umidità relativa sul coeff. nominale di ritiro $β_{aRH}$: Coefficiente funzione della tipologia di maturazione del calcestruzzo $β_{RH}$: Coefficiente nominale di ritiro $ε_{cao}$: Coefficiente odella sezione di calcestruzzo A_c : Perimetro della sezione di calcestruzzo a contatto con l'atmosfera u : 12,54 m Coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $β_s(t-t_s)$: Coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $β_s(t-t_s)$: Coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $β_s(t-t_s)$: Coefficiente atto a descrivere lo MOGENEIZZAZIONE PER L'AZIONE DI RITIRO Coeffi. che tiene conto dell'effetto dell'umidità relativa sul coeff. nom. di viscosità $φ_{RH}$: Coeffi. che tiene conto dell'effi. della resist. del cls sul coeffi. nom. di viscosità $φ_{RH}$: Coefficiente nominale di viscosità $φ_o$: Coefficiente nominale di viscosità $φ_o$: Coefficiente funzione dell'umidità relativa RH e dalla dimensione fittizia $h_o β_H$: 1112,571 Coefficiente di viscosità $φ_o$: 210000,00 N/mm² Adodulo elastico dell'acciaio $ε_s$: 210000,00 N/mm² Adodulo elastico medio del calcestruzzo $ε_{cm}$: 210000,00 N/mm² Coefficiente di omogeneizzazione per gli effetti del ritiro n_m : 17,316 32811,24 N/mm² Coefficiente di trazione agente sul calcestruzzo dovuta al ritiro N_m : -12362,13 kN Numero di travi che costituiscono l'impalcato:	Coefficiente $oldsymbol{eta}_{sc}$ funzione della tipologia del ca	llcestruzzo:	5		
Coeff. che tiene conto dell'effetto dell'umidità relativa sul coeff. nominale di ritiro β_{aRH} : Coefficiente funzione della maturazione del cls: Calcestruzzo esposto all'aria Coefficiente funzione della tipologia di maturazione del calcestruzzo β_{RH} : Coefficiente nominale di ritiro ε_{cso} : Coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $\beta_{s}(t-t_{s})$: Coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $\beta_{s}(t-t_{s})$: Coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $\beta_{s}(t-t_{s})$: Coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $\beta_{s}(t-t_{s})$: Coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $\beta_{s}(t-t_{s})$: Coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $\beta_{s}(t-t_{s})$: Coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $\beta_{s}(t-t_{s})$: Coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $\beta_{s}(t-t_{s})$: Coefficiente conto dell'effetto dell'umidità relativa sul coeffi. nom. di viscosità ϕ_{RH} : Coefficiente conto dell'effetto dell'umidità relativa sul coeffi. nom. di viscosità $\beta(t_{co})$: Coefficiente nominale di viscosità $\phi(t-t_{o})$: Coefficiente funzione dell'umidità relativa RH e dalla dimensione fittizia $h_{o}\beta_{H}$: 11112,571 Coefficiente di viscosità $\phi(t-t_{o})$: Coefficiente di omogeneizzazione per gli effetti del ritiro n_{Rt} : 17,316 32811,24 N/mm² Avalutazione di trazione agente sul calcestruzzo dovuta al ritiro n_{Rt} : 1-2362,13 kN Numero di travi che costituiscono l'impalcato:	Coefficiente che tiene conto dell'effetto della re	esistenza del cls sul ritiro $\varepsilon_s(f_{cm})$:	0,000404		
Caratteristiche della maturazione del cls: Calcestruzzo esposto all'aria Coefficiente funzione della tipologia di maturazione del calcestruzzo β_{RH} : -0,89609375 Coefficiente nominale di ritiro ε_{cso} : -0,000362 //ta utile della struttura: 100 anni Area delle sezione di calcestruzzo A_c : 21,54 m Coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $\beta_s(t-t_s)$: -0,000325 22, VALUTAZIONE DEL COEFFICIENTE DI OMOGENEIZZAZIONE PER L'AZIONE DI RITIRO Coeff. che tiene conto dell'effetto dell'umidità relativa sul coeff. nom. di viscosità β_{fam} : Coefficiente nominale di viscosità ϕ_{cl} : -0,000 Coefficiente funzione dell'umidità relativa RH e dalla dimensione fittizia $h_o \beta_H$: 11112,571 Coefficiente di viscosità $\phi(t-t_o)$: -0,000 Coefficiente di	Umidità relativa ambientale RH (>40 %):		75 %		
Coefficiente funzione della tipologia di maturazione del calcestruzzo β_{RH} : -0,89609375 Coefficiente nominale di ritiro ε_{cso} : -0,000362 Alta utile della struttura: 100 anni Avea delle sezione di calcestruzzo A_c : 212,54 m Dimensione fittizia h_o : 500 mm Coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $\beta_s(t \cdot t_s)$: 0,898126 Deformazione finale dovuta al ritiro $\varepsilon_{cs}(t \cdot t_s)$: 224 235 245 246 247 257 267 267 267 267 267 267 26	Coeff. che tiene conto dell'effetto dell'umidità r	elativa sul coeff. nominale di ritiro $oldsymbol{eta_{sRH}}$:	0,578	125	
Coefficiente nominale di ritiro ε_{cso} : $-0,000362$ Arita utile della struttura: 100 anni Area delle sezione di calcestruzzo A_c : 211,54 m 212,54 m 212,54 m 213,14 m ² 224,000325 235,00 mm 236,14- t_s): 236,14- t_s): 237,14 m 238,12- t_s 248,12- t_s 250,00 mm 250,000325 250,000325 260,000325 270,00	Caratteristiche della maturazione del cls:	Calcestruzzo esposto all'aria		-	
Action with a utile della struttura: 100 anni Area delle sezione di calcestruzzo A_c : 20 Perimetro della sezione di calcestruzzo a contatto con l'atmosfera u : 12,54 m 12,54 m 12,54 m 12,54 m 12,54 m 12,54 m 13,15 coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $\beta_s(t-t_s)$: 13,898126 14,398126 15,000 perimetro della edovuta al ritiro $\varepsilon_{cs}(t-t_s)$: 15,000 perimetro della devita al ritiro $\varepsilon_{cs}(t-t_s)$: 16,000325 17,315 coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $\beta_s(t-t_s)$: 17,315 coeffi. che tiene conto dell'effetto dell'umidità relativa sul coeff. nom. di viscosità ϕ_{RH} : 17,315 coeffi. che tiene conto dell'eff. della resist. del cls sul coeffi. nom. di viscosità $\beta(t_{cm})$: 18,000 coefficiente nominale di viscosità ϕ_s : 19,000 coefficiente nominale di viscosità ϕ_s : 20,000 coefficiente nominale di viscosità ϕ_s : 20,000 coefficiente funzione dell'umidità relativa RH e dalla dimensione fittizia ϕ_s : 20,000 coefficiente che tiene conto dello sviluppo della viscosità nel tempo $\phi_s(t-t_o)$: 20,000 doulo elastico dell'acciaio ε_s : 21,0000,00 N/mm² 21,000,00 N/mm² 21,000,00 N/mm² 22,000 di viscosità ϕ_s : 21,000,00 N/mm² 22,000 di viscosità ell'acciaio ε_s : 21,000,00 N/mm² 22,000 di viscosità ell'acciaio ε_s : 21,000,00 N/mm² 22,000 di viscosità ell'acciaio ell'acciaio e gene ell'acciaio e gene: 22,000 di viscosità ell'acciaio e gene ell'acciaio e gene: 23,000 di viscosità ell'acciaio e gene el	Coefficiente funzione della tipologia di matura	zione del calcestruzzo β _{RH} :	-0,8960	09375	
Perimetro della sezione di calcestruzzo A_c : 12,54 m 25 Perimetro della sezione di calcestruzzo a contatto con l'atmosfera u : 12,54 m 26 Perimetro della sezione di calcestruzzo a contatto con l'atmosfera u : 12,54 m 27 Perimetro della sezione di calcestruzzo a contatto con l'atmosfera u : 12,54 m 28 Perimetro della sezione di calcestruzzo a contatto con l'atmosfera u : 12,54 m 12,54 m 12,54 m 13,50 mm 14 Perimetro della sezione di calcestruzzo a contatto con l'atmosfera u : 15 Perimetro della sezione di calcestruzzo a contatto con l'atmosfera u : 16 Perimetro della sezione di calcestruzzo dovuta al ritiro a_{i} : 17,315 mm 18,315 mm 19,315 mm 19,315 mm 19,315 mm 19,315 mm 19,315 mm 10,315 mm 10,315 mm 10,909 mm 10,000325 mm	Coefficiente nominale di ritiro $\boldsymbol{\varepsilon}_{cso}$:		-0,000	0362	
Perimetro della sezione di calcestruzzo a contatto con l'atmosfera u : 12,54 m Dimensione fittizia h_o : 500 mm Coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $\beta_s(t-t_s)$: 0,898126 Deformazione finale dovuta al ritiro $\varepsilon_{cs}(t-t_s)$: 2. VALUTAZIONE DEL COEFFICIENTE DI OMOGENEIZZAZIONE PER L'AZIONE DI RITIRO Coeff. che tiene conto dell'effetto dell'umidità relativa sul coeff. nom. di viscosità Φ_{RH} : Coeff. che tiene conto dell'eff. della resist. del cls sul coeff. nom. di viscosità $\beta(t_{cm})$: Coeff. che tiene conto dell'età del cls sul coefficiente nominale di viscosità $\beta(t_{cm})$: Coefficiente nominale di viscosità Φ_o : 3,129 Coefficiente funzione dell'umidità relativa RH e dalla dimensione fittizia $h_o \beta_H$: 11112,571 Coefficiente che tiene conto dello sviluppo della viscosità nel tempo $\beta_c(t-t_o)$: 0,991 Coefficiente di viscosità $\Phi(t-t_o)$: 3,101 Modulo elastico dell'acciaio E_a : 210000,00 N/mm² Odedilo elastico medio del calcestruzzo E_{cm} : 32811,24 N/mm² Coefficiente di omogeneizzazione per gli effetti del ritiro n_{rit} : 17,316 3. VALUTAZIONE DELL'AZIONE ASSIALE TOTALE DOVUTA AL RITIRO Tensione di trazione agente sul calcestruzzo dovuta al ritiro N_{rit} : -12362,13 kN Numero di travi che costituiscono l'impalcato:	Vita utile della struttura:		100	anni	
Dimensione fittizia h_o : Coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $\beta_s(t-t_s)$: Oeformazione finale dovuta al ritiro $\varepsilon_{cs}(t-t_s)$: Coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $\beta_s(t-t_s)$: Coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $\beta_s(t-t_s)$: Coefficiente di viscosità $\phi_{cs}(t-t_s)$: Coefficiente conto dell'effetto dell'umidità relativa sul coeff. nom. di viscosità ϕ_{RH} : Coefficiente conto dell'eff. della resist. del cls sul coeffi. nom. di viscosità $\beta(t_{cm})$: Coefficiente conto dell'età del cls sul coefficiente nominale di viscosità $\beta(t_{cm})$: Coefficiente nominale di viscosità ϕ_c : Coefficiente nominale di viscosità ϕ_c : Coefficiente funzione dell'umidità relativa RH e dalla dimensione fittizia $h_c \beta_H$: Coefficiente che tiene conto dello sviluppo della viscosità nel tempo $\beta_c(t-t_o)$: Coefficiente di viscosità $\phi(t-t_o)$: Coefficiente di viscosità $\phi(t-t_o)$: Coefficiente di viscosità $\phi(t-t_o)$: Coefficiente di omogeneizzazione per gli effetti del ritiro n_{rit} : Coefficiente di omogeneizzazione per gli effetti del ritiro n_{rit} : Coefficiente di trazione sul calcestruzzo dovuta al ritiro σ_{rit} : Coefficiente otale di trazione agente sul calcestruzzo dovuta al ritiro N_{rit} : Avione totale di trazione agente sul calcestruzzo dovuta al ritiro N_{rit} : 12362,13 kN	Area delle sezione di calcestruzzo \boldsymbol{A}_c :		3,14	m²	
Coefficiente atto a descrivere lo sviluppo del ritiro nel tempo $\beta_s(t-t_s)$: 0,898126 Deformazione finale dovuta al ritiro $\varepsilon_{cs}(t-t_s)$: -0,000325 2. VALUTAZIONE DEL COEFFICIENTE DI OMOGENEIZZAZIONE PER L'AZIONE DI RITIRO Coeff. che tiene conto dell'effetto dell'umidità relativa sul coeff. nom. di viscosità Φ_{RH} : 1,315 Coeff. che tiene conto dell'eff. della resist. del cls sul coeff. nom. di viscosità $\beta(t_{cm})$: 2,617 Coeff. che tiene conto dell'età del cls sul coefficiente nominale di viscosità $\beta(t_{cm})$: 0,909 Coefficiente nominale di viscosità Φ_o : 3,129 Coefficiente funzione dell'umidità relativa RH e dalla dimensione fittizia h_o β_H : 1112,571 Coefficiente che tiene conto dello sviluppo della viscosità nel tempo $\beta_c(t-t_o)$: 0,991 Coefficiente di viscosità $\Phi(t-t_o)$: 3,101 Modulo elastico dell'acciaio E_a : 210000,000 N/mm² Modulo elastico medio del calcestruzzo E_{cm} : 2210000,000 N/mm² Coefficiente di omogeneizzazione per gli effetti del ritiro n_{rit} : 17,316 3. VALUTAZIONE DELL'AZIONE ASSIALE TOTALE DOVUTA AL RITIRO Tensione di trazione sul calcestruzzo dovuta al ritiro σ_{rit} : -3,943 N/mm² Azione totale di trazione agente sul calcestruzzo dovuta al ritiro N_{rit} : 4	Perimetro della sezione di calcestruzzo a cont	atto con l'atmosfera u :	12,54	m	
Coefficiente conto dell'eff del cestruzzo Ecoefficiente nominale di viscosità ρ_{RH} : 0,900325 Coefficiente nominale di viscosità ρ_{RH} : 1,315 Coefficiente nominale di viscosità ρ_{RH} : 0,909 Coefficiente funzione dell'umidità relativa RH e dalla dimensione fittizia ρ_{RH} : 1,12,571 Coefficiente di viscosità ρ_{RH} : 1,12,571 Coefficiente di viscosità ρ_{RH} : 1,315 Coefficiente conto dell'età del cls sul coefficiente nominale di viscosità ρ_{RH} : 0,909 Coefficiente funzione dell'umidità relativa RH e dalla dimensione fittizia ρ_{RH} : 1112,571 Coefficiente che tiene conto dello sviluppo della viscosità nel tempo ρ_{RH} : 1112,571 Coefficiente di viscosità ρ_{RH} : 1112,571 Coefficiente di omogeneizzazione per gli effetti del ritiro ρ_{RH} : 17,316 Coefficiente di trazione sul calcestruzzo dovuta al ritiro ρ_{RH} : 17,316 Coefficiente di trazione agente sul calcestruzzo dovuta al ritiro ρ_{RH} : -12362,13 kN Numero di travi che costituiscono l'impalcato: 4	Dimensione fittizia h _o :		500	mm	
2. VALUTAZIONE DEL COEFFICIENTE DI OMOGENEIZZAZIONE PER L'AZIONE DI RITIRO Coeff. che tiene conto dell'effetto dell'umidità relativa sul coeff. nom. di viscosità ϕ_{RH} : 1,315 Coeff. che tiene conto dell'eff. della resist. del cls sul coeff. nom. di viscosità $\beta(f_{cm})$: 2,617 Coeff. che tiene conto dell'età del cls sul coefficiente nominale di viscosità $\beta(f_{cm})$: 0,909 Coefficiente nominale di viscosità ϕ_0 : 3,129 Coefficiente funzione dell'umidità relativa RH e dalla dimensione fittizia $h_o \beta_H$: 1112,571 Coefficiente che tiene conto dello sviluppo della viscosità nel tempo $\beta_c(t-t_o)$: 0,991 Coefficiente di viscosità $\phi(t-t_o)$: 3,101 Modulo elastico dell'acciaio E_a : 210000,000 N/mm² Modulo elastico medio del calcestruzzo E_{cm} : 2210000,000 N/mm² Coefficiente di omogeneizzazione per gli effetti del ritiro n_{rit} : 17,316 32811,24 N/mm² Azione totale di trazione sul calcestruzzo dovuta al ritiro σ_{rit} : -3,943 N/mm² Azione totale di trazione agente sul calcestruzzo dovuta al ritiro N_{rit} : -12362,13 kN Numero di travi che costituiscono l'impalcato:	Coefficiente atto a descrivere lo sviluppo del ri	tiro nel tempo β _s (t-t _s):	0,898126		
Coeff. che tiene conto dell'effetto dell'umidità relativa sul coeff. nom. di viscosità ϕ_{RH} : 1,315 Coeff. che tiene conto dell'eff. della resist. del cls sul coeff. nom. di viscosità $\beta(f_{cm})$: 2,617 Coeff. che tiene conto dell'età del cls sul coefficiente nominale di viscosità $\beta(f_{cm})$: 0,909 Coefficiente nominale di viscosità ϕ_o : 3,129 Coefficiente funzione dell'umidità relativa RH e dalla dimensione fittizia $h_o \beta_H$: 1112,571 Coefficiente che tiene conto dello sviluppo della viscosità nel tempo $\beta_c(t-t_o)$: 0,991 Coefficiente di viscosità $\phi(t-t_o)$: 3,101 Modulo elastico dell'acciaio E_a : 210000,00 N/mm² Coefficiente di omogeneizzazione per gli effetti del ritiro n_{rit} : 17,316 Coefficiente di trazione sul calcestruzzo dovuta al ritiro σ_{rit} : -3,943 N/mm² Azione totale di trazione agente sul calcestruzzo dovuta al ritiro N_{rit} : 4	Deformazione finale dovuta al ritiro $\varepsilon_{cs}(t-t_s)$:		-0,000325		
Coeff. che tiene conto dell'eff. della resist. del cls sul coeff. nom. di viscosità $\beta(f_{cm})$: Coeff. che tiene conto dell'età del cls sul coefficiente nominale di viscosità $\beta(t_o)$: Coefficiente nominale di viscosità ϕ_o : Coefficiente funzione dell'umidità relativa RH e dalla dimensione fittizia $h_o \beta_H$: Coefficiente che tiene conto dello sviluppo della viscosità nel tempo $\beta_c(t-t_o)$: Coefficiente di viscosità $\phi(t-t_o)$: Modulo elastico dell'acciaio E_a : 210000,000 N/mm² Modulo elastico medio del calcestruzzo E_{cm} : Coefficiente di omogeneizzazione per gli effetti del ritiro n_{rit} : 32811,24 N/mm² Coefficiente di trazione sul calcestruzzo dovuta al ritiro σ_{rit} : -3,943 N/mm² Azione totale di trazione agente sul calcestruzzo dovuta al ritiro N_{rit} : -12362,13 kN Numero di travi che costituiscono l'impalcato:	2. VALUTAZIONE DEL COEFFICIENTE DI OMOC	GENEIZZAZIONE PER L'AZIONE DI RITIRO			
Coeff. che tiene conto dell'età del cls sul coefficiente nominale di viscosità $\beta(t_o)$: Coefficiente nominale di viscosità ϕ_o : Coefficiente funzione dell'umidità relativa RH e dalla dimensione fittizia $h_o \beta_H$: Coefficiente che tiene conto dello sviluppo della viscosità nel tempo $\beta_c(t-t_o)$: Coefficiente di viscosità $\phi(t-t_o)$: 3,101 Coefficiente di viscosità $\phi(t-t_o)$: 3,101 Coefficiente di viscosità $\phi(t-t_o)$: Coefficiente di onogeneizzazione per gli effetti del ritiro n_{rit} : Coefficiente di omogeneizzazione per gli effetti del ritiro n_{rit} : Coefficiente di trazione sul calcestruzzo dovuta al ritiro σ_{rit} : Azione totale di trazione agente sul calcestruzzo dovuta al ritiro N_{rit} : Alumero di travi che costituiscono l'impalcato: 4	Coeff. che tiene conto dell'effetto dell'umidità r	elativa sul coeff. nom. di viscosità $oldsymbol{\phi}_{\mathit{RH}}$:	1,3	15	
Coefficiente nominale di viscosità ϕ_o : Coefficiente funzione dell'umidità relativa RH e dalla dimensione fittizia $h_o \beta_H$: Coefficiente che tiene conto dello sviluppo della viscosità nel tempo $\beta_c(t-t_o)$: Coefficiente di viscosità $\phi(t-t_o)$: Coefficiente di viscosità $\phi(t-t_o)$: Modulo elastico dell'acciaio E_a : 210000,000 N/mm² Coefficiente di omogeneizzazione per gli effetti del ritiro n_{rit} : 17,316 Coefficiente di omogeneizzazione per gli effetti del ritiro n_{rit} : 3. VALUTAZIONE DELL'AZIONE ASSIALE TOTALE DOVUTA AL RITIRO Tensione di trazione sul calcestruzzo dovuta al ritiro σ_{rit} : -3,943 N/mm² Azione totale di trazione agente sul calcestruzzo dovuta al ritiro N_{rit} : -12362,13 kN Numero di travi che costituiscono l'impalcato:	Coeff. che tiene conto dell'eff. della resist. del	cls sul coeff. nom. di viscosità $\beta(f_{cm})$:	2,617		
Coefficiente funzione dell'umidità relativa RH e dalla dimensione fittizia $h_o \beta_H$: Coefficiente che tiene conto dello sviluppo della viscosità nel tempo $\beta_c(t-t_o)$: Coefficiente di viscosità $\Phi(t-t_o)$: Coefficiente di omogeneizzazione per gli effetti del ritiro n_{rit} : Coefficiente di omogeneizzazione per gli effetti del ritiro n_{rit} : Coefficiente di trazione sul calcestruzzo dovuta al ritiro σ_{rit} : Coefficiente di trazione agente sul calcestruzzo dovuta al ritiro N_{rit} : -3,943 N/mm² Azione totale di trazione agente sul calcestruzzo dovuta al ritiro N_{rit} : -12362,13 kN Numero di travi che costituiscono l'impalcato:	Coeff. che tiene conto dell'età del cls sul coefficiente nominale di viscosità $\beta(t_o)$:		09		
Coefficiente che tiene conto dello sviluppo della viscosità nel tempo $\beta_c(t-t_o)$: Operatione di viscosità $\phi(t-t_o)$:	Coefficiente nominale di viscosità $m{\phi}_{o}$:		3,129		
Coefficiente di viscosità $\phi(t-t_o)$: Modulo elastico dell'acciaio E_a : Modulo elastico medio del calcestruzzo E_{cm} : Coefficiente di omogeneizzazione per gli effetti del ritiro n_{rit} : 17,316 S. VALUTAZIONE DELL'AZIONE ASSIALE TOTALE DOVUTA AL RITIRO Tensione di trazione sul calcestruzzo dovuta al ritiro σ_{rit} : -3,943 N/mm² Azione totale di trazione agente sul calcestruzzo dovuta al ritiro N_{rit} : -12362,13 kN Numero di travi che costituiscono l'impalcato:	Coefficiente funzione dell'umidità relativa RH e	e dalla dimensione fittizia h _o $oldsymbol{eta}_{H}$:	1112,571		
Modulo elastico dell'acciaio E_a : Modulo elastico medio del calcestruzzo E_{cm} : Coefficiente di omogeneizzazione per gli effetti del ritiro n_{rit} : 17,316 32811,24 N/mm² Coefficiente di omogeneizzazione per gli effetti del ritiro n_{rit} : 17,316 3. VALUTAZIONE DELL'AZIONE ASSIALE TOTALE DOVUTA AL RITIRO Tensione di trazione sul calcestruzzo dovuta al ritiro σ_{rit} : -3,943 N/mm² Azione totale di trazione agente sul calcestruzzo dovuta al ritiro N_{rit} : -12362,13 kN Numero di travi che costituiscono l'impalcato:	Coefficiente che tiene conto dello sviluppo del	la viscosità nel tempo β _c (t-t _o):	0,991		
Modulo elastico medio del calcestruzzo E_{cm} : Coefficiente di omogeneizzazione per gli effetti del ritiro n_{rit} : 17,316 32811,24 N/mm² 17,316 3. VALUTAZIONE DELL'AZIONE ASSIALE TOTALE DOVUTA AL RITIRO Tensione di trazione sul calcestruzzo dovuta al ritiro σ_{rit} : -3,943 N/mm² Azione totale di trazione agente sul calcestruzzo dovuta al ritiro N_{rit} : -12362,13 kN Numero di travi che costituiscono l'impalcato:	Coefficiente di viscosità Φ(t-t _o):		3,101		
Coefficiente di omogeneizzazione per gli effetti del ritiro n _{rit} : 17,316 8. VALUTAZIONE DELL'AZIONE ASSIALE TOTALE DOVUTA AL RITIRO Tensione di trazione sul calcestruzzo dovuta al ritiro σ _{rit} : -3,943 N/mm² Azione totale di trazione agente sul calcestruzzo dovuta al ritiro N _{rit} : -12362,13 kN Numero di travi che costituiscono l'impalcato:	Modulo elastico dell'acciaio \boldsymbol{E}_a :		210000,00	N/mm ²	
S. VALUTAZIONE DELL'AZIONE ASSIALE TOTALE DOVUTA AL RITIRO Tensione di trazione sul calcestruzzo dovuta al ritiro σ _{rit} : -3,943 N/mm² Azione totale di trazione agente sul calcestruzzo dovuta al ritiro N _{rit} : -12362,13 kN Numero di travi che costituiscono l'impalcato:	Modulo elastico medio del calcestruzzo \boldsymbol{E}_{cm} :		32811,24	N/mm ²	
Tensione di trazione sul calcestruzzo dovuta al ritiro σ_{rit} : -3,943 N/mm ² Azione totale di trazione agente sul calcestruzzo dovuta al ritiro N _{rit} : -12362,13 kN Numero di travi che costituiscono l'impalcato: 4	Coefficiente di omogeneizzazione per gli effetti del ritiro $m{n}_{rit}$:		17,316		
Azione totale di trazione agente sul calcestruzzo dovuta al ritiro N _{rit} : -12362,13 kN Numero di travi che costituiscono l'impalcato: 4	3. VALUTAZIONE DELL'AZIONE ASSIALE TOT	ALE DOVUTA AL RITIRO			
Numero di travi che costituiscono l'impalcato:	Tensione di trazione sul calcestruzzo dovuta a	l ritiro σ _{rit} :	-3,943	N/mm ²	
	Azione totale di trazione agente sul calcestruzzo dovuta al ritiro N _{rit} : -12362,13 kN		kN		
Azione di compressione agente sulla singola travata N _R : 3090,53 kN	Numero di travi che costituiscono l'impalcato:			4	
	Azione di compressione agente sulla singola	travata N _R :	3090,53	kN	



Il ritiro impedito (per la presenza delle travi metalliche che impediscono la deformazione della soletta) è un fenomeno auto - equilibrato. L'azione di trazione sulla soletta è equilibrata da una reazione di compressione (deformazione impedita) applicata sull'intera sezione composta ed agente sul suo baricentro. Tale reazione genera un momento flettente di trasporto sulla sezione.

7.10 CARICHI ACCIDENTALI

7.10.1 CARICHI VIAGGIANTI DA TRAFFICO

Il carico accidentale del traffico viene valutato secondo lo schema n. 1 riportato nel D.M. 17.01.2018 "Norme Tecniche per le Costruzioni", par. 5.1.3.3.3 e 5.1.3.3.5.

La carreggiata risulta divisa in corsie convenzionale che presentano ciascuna una larghezza pari a **3,00 m**.

In corrispondenza della spalla A la carreggiata presenta una larghezza complessiva pari a **11,58 m**, il numero di corsie convenzionali presenti risulta pertanto:

$n_{corsie} = int(w/3,00) = int(10,50/3,00) = int(3,86) = 3 corsie convenzionali$

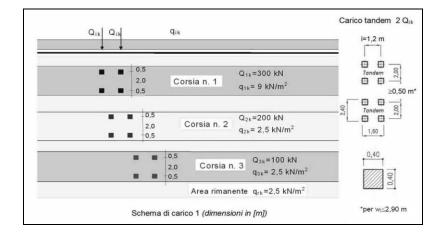
Trattandosi di un viadotto di **1ª Categoria** su ciascuna corsia convenzionale verranno applicati i seguenti carichi mobili da traffico:

- 1ª corsia convenzionale

 $Q_{1a} = 2 \times 300 \text{ kN}$ disposti come in figura $q_{1a} = 9,00 \text{ kN/m}^2 \times 3,00 \text{ m} = 27,00 \text{ kN/m}$

2ª corsia convenzionale

 $Q_{1b} = 2 \times 200 \text{ kN disposti come in figura}$ $q_{1b} = 2,50 \text{ kN/m}^2 \times 3,00 \text{ m} = 7,50 \text{ kN/m}$


3ª corsia convenzionale

 $Q_{1c} = 2 \times 100 \text{ kN disposti come in figura}$ $q_{1c} = 2,50 \text{ kN/m}^2 \times 3,00 \text{ m} = 7,50 \text{ kN/m}$

- Carreggiata rimanente

 $q_{1d} = 2,50 \text{ kN/m}^2 \text{ x } 2,58 \text{ m} = 6,45 \text{ kN/m}$

In corrispondenza della spalla B la carreggiata presenta una larghezza complessiva pari a **10,50 m**, il numero di corsie convenzionali presenti risulta pertanto:

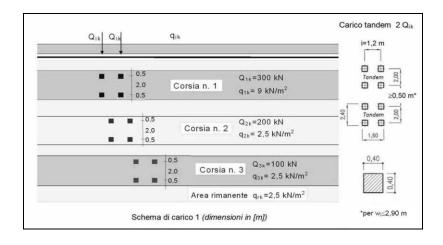
$n_{corsie} = int(w/3,00) = int(10,50/3,00) = int(3,50) = 3 corsie convenzionali$

Trattandosi di un viadotto di **1ª Categoria** su ciascuna corsia convenzionale verranno applicati i seguenti carichi mobili da traffico:

1ª corsia convenzionale

 $Q_{1a} = 2 \times 300 \text{ kN disposti come in figura}$ $q_{1a} = 9,00 \text{ kN/m}^2 \times 3,00 \text{ m} = 27,00 \text{ kN/m}$

- 2ª corsia convenzionale

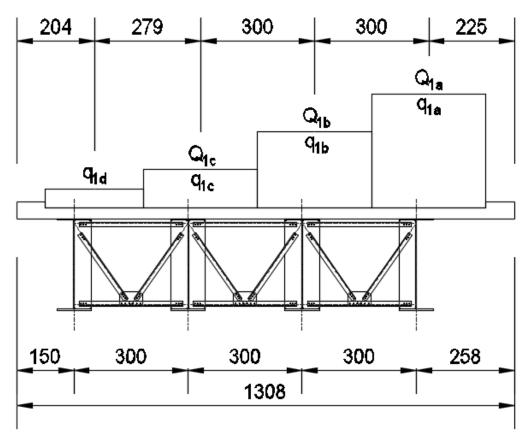

 $Q_{1b} = 2 \times 200 \text{ kN disposti come in figura}$ $q_{1b} = 2,50 \text{ kN/m}^2 \times 3,00 \text{ m} = 7,50 \text{ kN/m}$

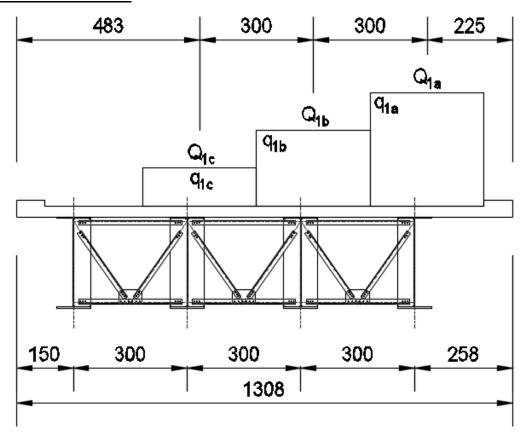
- 3ª corsia convenzionale

 $Q_{1c} = 2 \times 100 \text{ kN disposti come in figura}$ $q_{1c} = 2,50 \text{ kN/m}^2 \times 3,00 \text{ m} = 7,50 \text{ kN/m}$

- Carreggiata rimanente

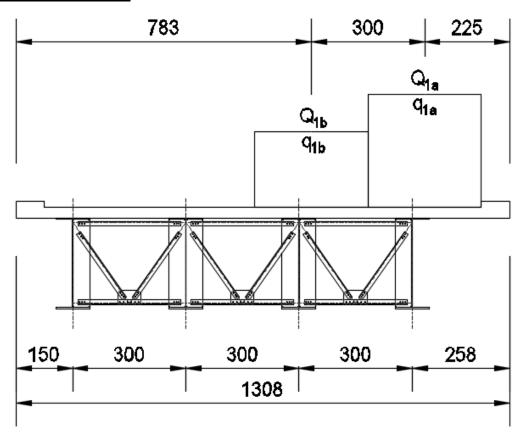
 $q_{1d} = 2,50 \text{ kN/m}^2 \text{ x } 1,50 \text{ m} = 3,75 \text{ kN/m}$

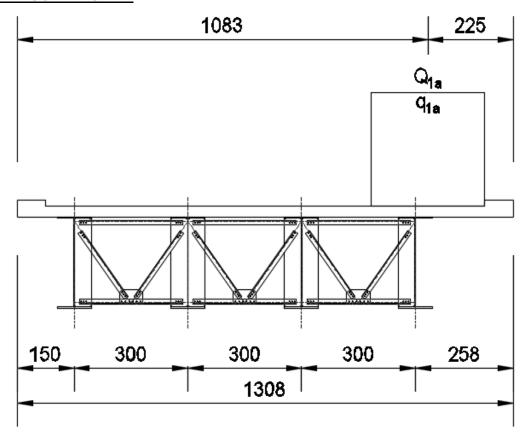


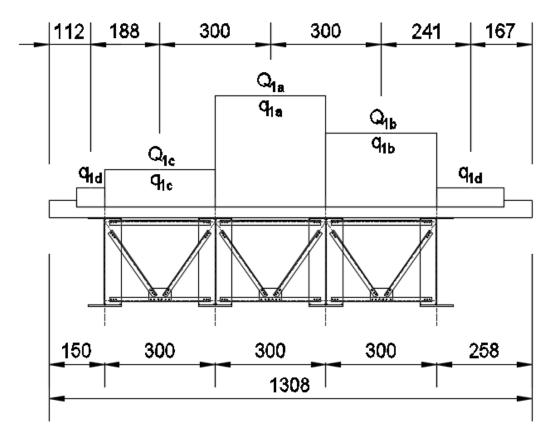


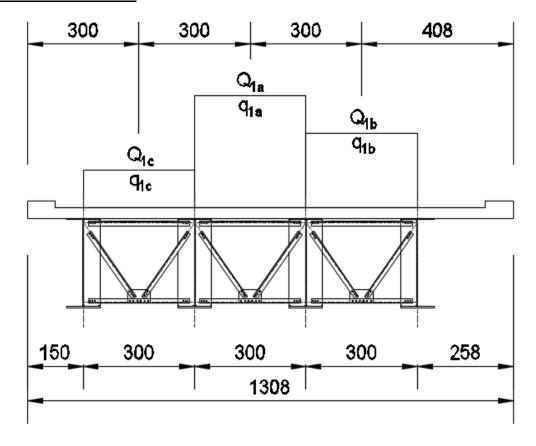
Sono state considerate otto differenti disposizioni dei carichi viaggianti da traffico.

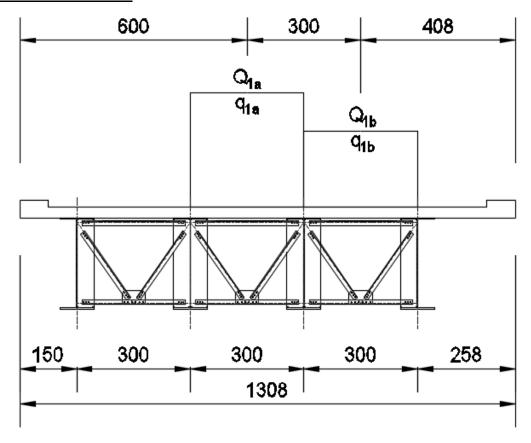
SPALLA A - CONDIZIONE 1

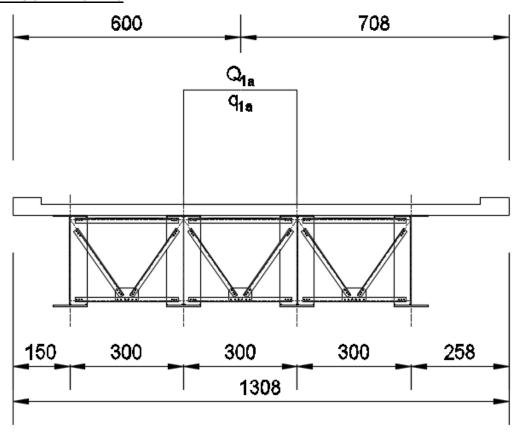


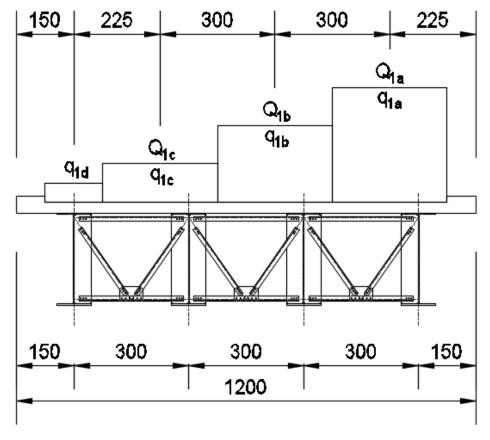


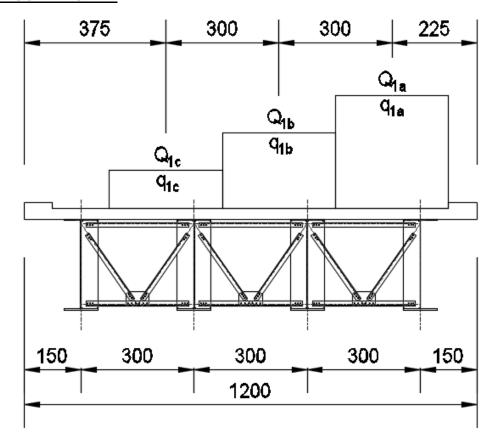


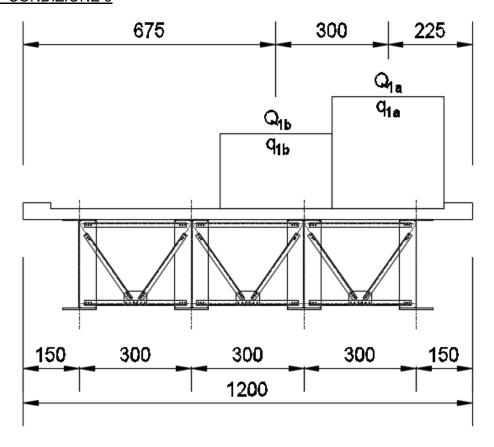


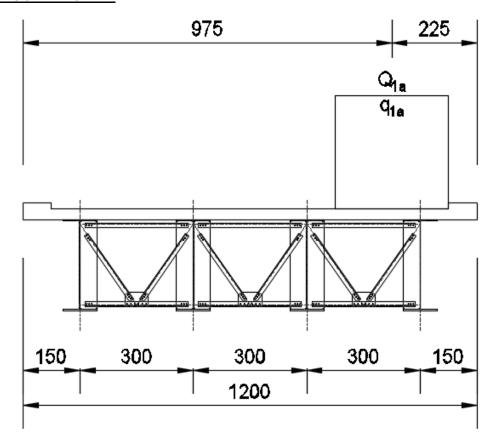


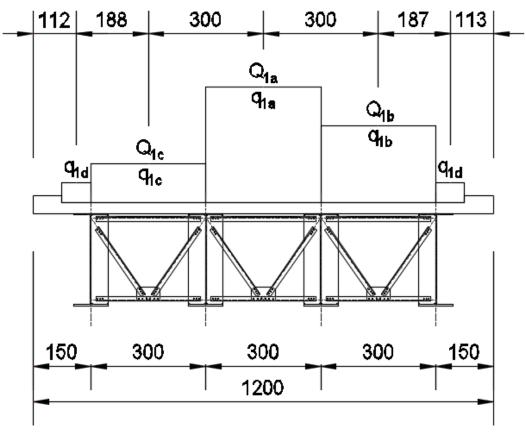


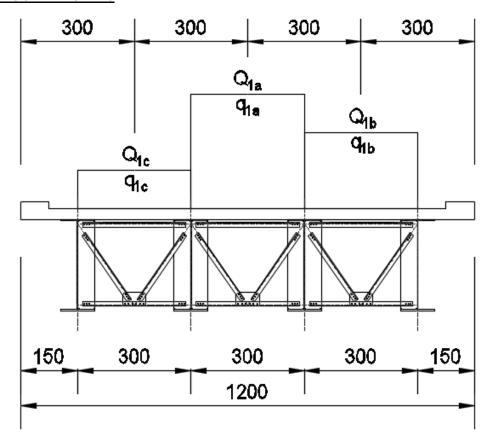


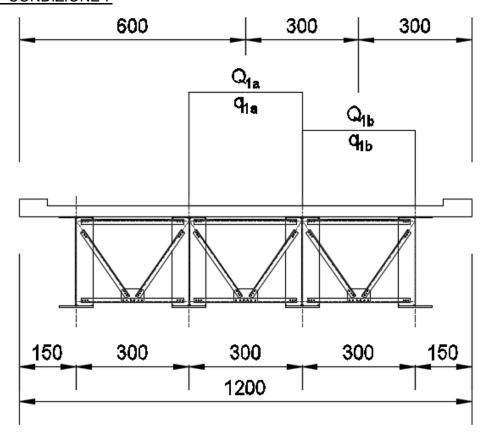


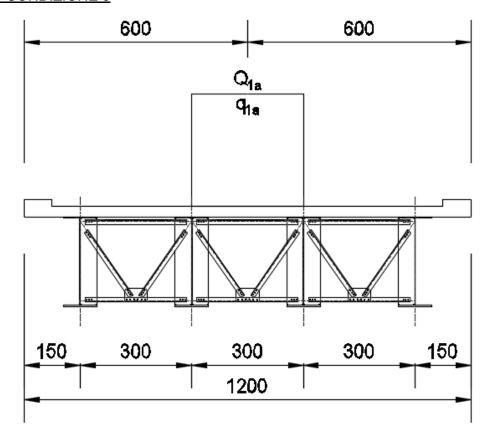








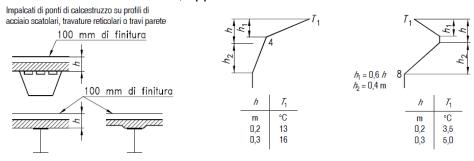




7.10.2 CARICO ACCIDENTALE FOLLA

Non essendo presenti marciapiedi adibiti al passaggio di persone non è stato considerato il carico della folla.

7.10.3 INCREMENTO DINAMICO DEI CARICHI MOBILI (Q2)


L'incremento dinamico è già compreso nei valori sopra citati.

7.10.4 AZIONE TERMICA LONGITUDINALE

Si assume che le travi principali subiscano un'azione termica longitudinale pari a **ΔT= ± 30°**. Tale azione verrà presa in considerazione esclusivamente per la valutazione dell'escursione dei giunti e degli apparecchi di appoggio/isolamento.

7.10.5 AZIONE TERMICA DIFFERENZIALE

L'azione termica differenziale è stata calcolata mediante l'applicazione di un gradiente termico valutato sulla base delle distribuzioni di temperatura previste dall'EC1 Parte 2-5 "Azioni sulle strutture – Azioni termiche", appendici B e C.

Per la definizione della temperatura T_1 si è fatto riferimento al prospetto B.2 della sopra citata normativa:

Profondità della soletta	Spessore della superficie	Differenza positiva di temperatura	Differenza negativa di temperatura
(<i>h</i>)		<i>T</i> ₁	7 ₁
m	mm	°C	°C
0,2	Senza finitura Resistente all'acqua 50 100 150 200	[16,5] [23,0] [18,0] [13,0] [10,5] [8,5]	[5,9] [5,9] [4,4] [3,5] [2,3] [1,6]
0,3	Senza finitura Resistente all'acqua 50 100 150 200	[18,5] [26,5] [20,5] [16,0] [12,5] [10,0]	[9,0] [9,0] [6,8] [5,0] [3,7] [2,7]

Nel caso di soletta calda è stata assunta una temperatura T_1 pari a **16,0** °C, mentre per una soletta fredda è stata assunta una temperatura T_1 pari a **6,0** °C.

Per la valutazione del gradiente lineare verticale equivalente da applicare ai calcoli di verifica delle sezioni si è fatto riferimento alla relazione [C.4] riportato dall'EC1 parte 2-5 al paragrafo C.5:

$$DT_{\mathsf{MY}} = \frac{n_{\mathsf{E}} n_{\alpha} \int\limits_{A_1} T(\mathsf{Z},\mathsf{Y}) \mathsf{Y} dA_1 + \int\limits_{A_2} T(\mathsf{Z},\mathsf{Y}) \mathsf{Y} dA_2}{n_{\mathsf{E}} J_{\mathsf{Z}1} + J_{\mathsf{Z}2}}$$

dove:

- n_E è il rapporto tra i moduli elastici dell'acciaio e del calcestruzzo della soletta
- n_α è il rapporto tra i coefficienti di dilatazione termica dell'acciaio e del calcestruzzo
- J_{z1} è il momento di inerzia della soletta in calcestruzzo rispetto al baricentro della sezione omogeneizzata
- J_{z2} è il momento di inerzia della sezione in acciaio rispetto al baricentro della sezione omogeneizzata

Sulla base del gradiente termico equivalente calcolato sono stati determinati, alla stregua di quanto già riportato relativamente agli effetti del ritiro:

- effetti isostatici (azione normale e momento flettente)

– SEZIONI DI TESTATA CONCIO TIPO 1

CONCIO TIPO 1 – SEZIO	<u>oni di te</u>	<u>ESTATA</u>				
	C	ARATTERISTICH	IE DEI MATERIA	ALI		
CALCESTRUZZO DELLA SOLET	TA					
C32/40 ▼	R _{ck} f _{ck} f _{cm} f _{cd}	40,00 33,20 41,20 18,81	[N/mm²] [N/mm²] [N/mm²] [N/mm²]	f _{ctm} f _{ctk} f _{ctd} E _{cm}	3,10 2,17 1,45 32.811,24	[N/mm²] [N/mm²] [N/mm²] [N/mm²]
ACCIAIO PER LE BARRE DI ARM		·		o	·	
B450C ▼	f _{tk} f _{yk}	540,00 450,00	[N/mm²] [N/mm²]	f _{yd} f _{ctk}	391,30 210.000,00	[N/mm²] [N/mm²]
ACCIAIO PER CARPENTERIA			2			2
\$355 ▼	f _{tk} f _{yk}	510,00 355,00	[N/mm²] [N/mm²]	f _{yd} f _{ctk}	338,10 210.000,00	[N/mm²] [N/mm²]
CARATTERISTICHE GEOMETRICHE DELLA TRAVE METALLICA						
Imp.sup			RATTERISTICI			
of I _{p.sup}	. Н	2.400,00	[mm]	h _{an}	20,00	[mm]
	l _{imp,sup}	0,00	[mm]	l _{p,inf}	900,00 30,00	[mm] [mm]
	S _{imp,sup}	900,00	[mm] [mm]	S _{p,inf}	0,00	[mm]
	I _{p,sup} S _{p,sup}	20,00	[mm]	l _{imp,inf} S _{imp,inf}	0,00	[mm]
T d	h _{an}	2.350,00	[mm]	Olmp,int	5,55	[]
San	- an		CARATTERIST	I ICHE INERZIAL	.I	
	Α	92.000,00	[mm²]	J_{t}	1,677E+07	[mm ⁴]
.	S	1,001E+08	[mm³]	W_{sup}	6,391E+07	[mm³]
Sa Salar	Y_{G}	1.087,61	[mm]	W_{inf}	-7,712E+07	[mm³]
Imp.inf John	J	8,388E+10	[mm⁴]	A_V	48.000,00	[mm²]
CARATTERISTIC	HE GEOME	TRICHE ED INERZ	ZIALI DELLA S	OLETTA IN CA	ALCESTRUZZO	
b _{eff}		CARATTE	ERISTICHE GEO	METRICHEE	NERZIALI	
	h _s	250,00	[mm]	Y_{G}	167,41	[mm]
<u>e</u>	h_p	50,00	[mm]	A_{c}	7,900E+05	[mm²]
4 4	b_{eff}	3.000,00	[mm]	J	4,769E+09	[mm⁴]
L _{ad}	b _{inf}	800,00	[mm]			
	_		ARMATURA LO			
	Ø _{inf}	16,00	[mm]	Ø _{sup}	16,00	[mm]
	i _{inf}	100,00	[mm]	İ _{sup}	100,00	[mm]
	$A_{s,inf}$	6.030,00	[mm²]	$A_{s,sup}$	6.030,00	[mm²]

✓ SOLETTA FESSURATA

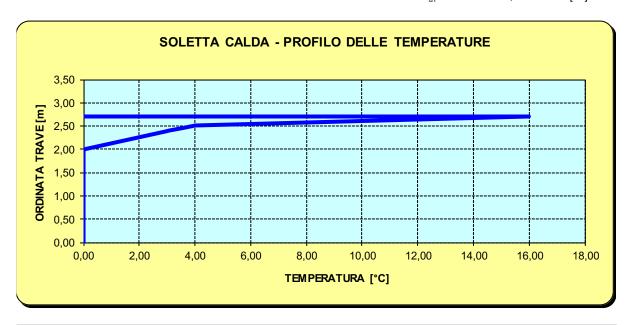
CARATTERISTICHE GEOMETRICHE ED INERZIALI DELLA SEZIONE COMPOSTA						
CARATTERISICA GEOMETRICA/INERZIALE		FASE I (pesi propri)	FASE II-A (permanenti)	FASE II-B (ritiro)	FASE III (accidentali)	
Coefficiente di viscosità:	$\Phi(t_0, \infty)$	-	2,165	3,101	-	
Coefficiente di omogeneizzazione	n	-	21,64	17,32	6,40	
Momento statico della sezione	S [m³]	1,001E+02	1,309E-01	1,309E-01	1,309E-01	
Baricentro della sezione	Y_{G} [m]	1,088	1,258	1,258	1,258	
Area della sezione	A [m²]	9,200E-02	1,041E-01	1,041E-01	1,041E-01	
Costante torsionale della sezione	J_{t} [m ⁴]	1,677E-05	1,677E-05	1,677E-05	1,677E-05	
Momento di inerzia della sezione	J [m⁴]	8,388E-02	1,070E-01	1,070E-01	1,070E-01	
Modulo di resistenza estradosso soletta	W _{soletta} [m ³]	-	-	-	-	
Modulo di resistenza armatura superiore	$W_{am,sup}$ [m ³]	-	7,804E-02	7,804E-02	7,804E-02	
Modulo di resistenza armatura inferiore	$W_{am,inf}$ [m^3]	-	8,691E-02	8,691E-02	8,691E-02	
Modulo di resistenza estradosso trave	$W_{tr,sup}$ [m ³]	6,391E-02	9,376E-02	9,376E-02	9,376E-02	
Modulo di resitenza intradosso trave	$W_{tr,inf}$ [m ³]	-7,712E-02	-8,508E-02	-8,508E-02	-8,508E-02	

90,00

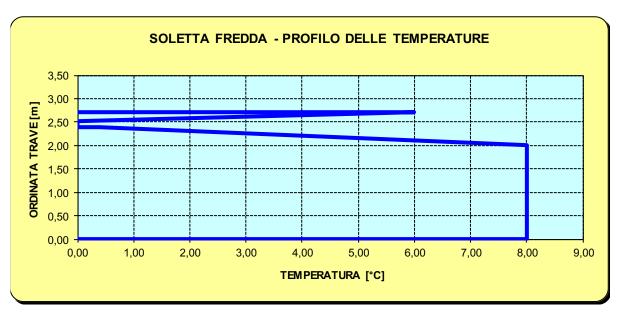
[mm]

 $Y_{\text{s,sup}}$

230,00

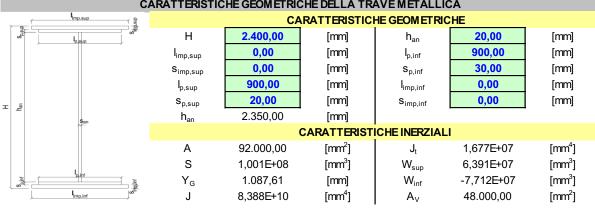


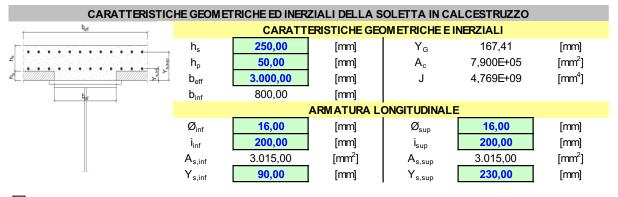
 $Y_{\text{s,inf}}$


[mm]

DEFINIZIONE DEL PROFILO DI TEMPERATURA PER ΔT POSITIVO (SOLE <u>TTA CALDA)</u>					
Temperatura all'estradosso della soletta:		16,00	[°C]		
Larghezza di applicazione dell'azione termica in soletta per singola trave:	$L_{\Delta \mathrm{T}}$	3,00	[m]		
Gradiente termico lineare per unità di altezza:	$\Delta T_{,1}$	4,69	[°C/m]		
Gradiente termico lineare totale:	ΔΤ	12,67	[°C]		
Azione normale isostatica:	$N_{\Lambda T}$	3.939,88	[kN]		

DEFINIZIONE DEL PROFILO DI TEMPERATURA PER ∆T NEGATIVO (SOLETTA FREDDA)					
Temperatura all'estradosso della soletta:		6,00	[°C]		
Temperatura all'intradosso della trave metallica:		8,00	[°C]		
Larghezza di applicazione dell'azione termica in soletta per singola trave:	$L_{\Delta \mathrm{T}}$	3,00	[m]		
Gradiente termico lineare per unità di altezza:	$\Delta T_{,1}$	0,04	[°C/m]		
Gradiente termico lineare totale:	ΔΤ	0,10	[°C]		
Azione normale isostatica:	$N_{\Delta T}$	10,48	[kN]		



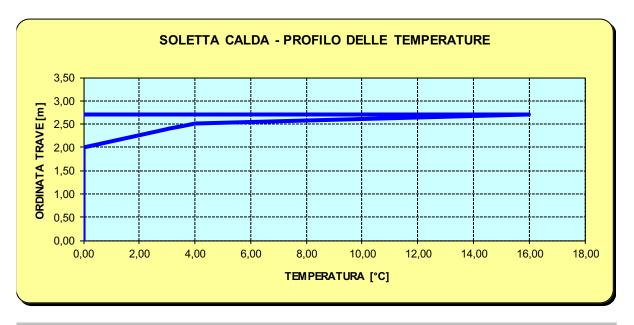


CONCIO TIPO 1 - SEZIONI DI GIUNTO

CONTROL THE CELEN	OI TI DI O	<u> </u>					
CARATTERISTICHE DEI MATERIALI							
CALCESTRUZZO DELLA SOLE	TTA						
	R_{ck}	40,00	[N/mm²]	f_{ctm}	3,10	[N/mm²]	
C32/40	f_ck	33,20	[N/mm²]	f _{ctk}	2,17	[N/mm²]	
632,710	$f_{\sf cm}$	41,20	[N/mm²]	f_ctd	1,45	[N/mm²]	
	f_cd	18,81	[N/mm²]	E _{cm}	32.811,24	[N/mm²]	
ACCIAIO PER LE BARRE DI ARI	MATURA						
B450C ▼	f_{tk}	540,00	[N/mm²]	f _{yd}	391,30	[N/mm²]	
D430C	f_{yk}	450,00	[N/mm²]	f _{ctk}	210.000,00	[N/mm²]	
ACCIAIO PER CARPENTERIA							
S355 ▼	f_{tk}	510,00	[N/mm²]	f _{yd}	338,10	[N/mm²]	
3333	f_{yk}	355,00	[N/mm²]	f _{ctk}	210.000,00	[N/mm²]	
CAF	RATTERISTIC	CHE GEOMETRIC	HE DELLA TRA	AVEMETALL	ICA		
Imp.sup dis		CA	RATTERISTIC	HE GEOM ETR	CHE		

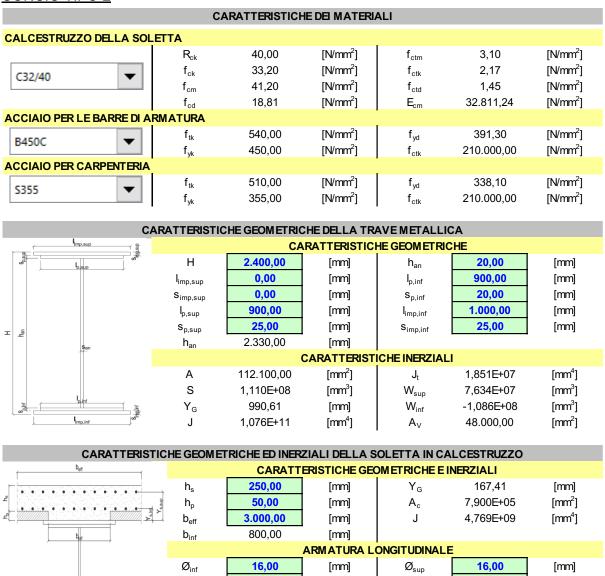
☐ SOLETTA FESSURATA

CARATTERISTICHE GEOMETRICHE ED INERZIALI DELLA SEZIONE COMPOSTA							
CARATTERISICA GEOMETRICA/INERZIALE		FASE I (pesi propri)	FASE II-A (permanenti)	FASE II-B (ritiro)	FASE III (accidentali)		
Coefficiente di viscosità:	$\Phi(t_0, \infty)$	-	2,165	3,101	-		
Coefficiente di omogeneizzazione	n	-	21,64	17,32	6,40		
Momento statico della sezione	S [m³]	1,001E+02	2,092E-01	2,326E-01	4,324E-01		
Baricentro della sezione	Y_{G} [m]	1,088	1,555	1,619	1,952		
Area della sezione	A [m²]	9,200E-02	1,345E-01	1,437E-01	2,215E-01		
Costante torsionale della sezione	J _t [m⁴]	1,677E-05	7,403E-04	9,210E-04	2,463E-03		
Momento di inerzia della sezione	J [m⁴]	8,388E-02	1,477E-01	1,571E-01	2,373E-01		
Modulo di resistenza estradosso soletta	W _{soletta} [m ³]	-	1,290E-01	1,454E-01	3,175E-01		
Modulo di resistenza armatura superiore	$W_{am,sup}$ [m ³]	-	1,374E-01	1,555E-01	3,503E-01		
Modulo di resistenza armatura inferiore	$W_{am,inf}$ [m ³]	-	1,580E-01	1,805E-01	4,415E-01		
Modulo di resistenza estradosso trave	$W_{tr,sup}$ [m ³]	6,391E-02	1,748E-01	2,013E-01	5,303E-01		
Modulo di resitenza intradosso trave	$W_{tr,inf}$ [m^3]	-7,712E-02	-9,499E-02	-9,703E-02	-1,216E-01		



DEFINIZIONE DEL PROFILO DI TEMPERATURA PER ΔT POSITIVO (SOLE <u>TTA CALDA)</u>					
Temperatura all'estradosso della soletta:		16,00	[°C]		
Larghezza di applicazione dell'azione termica in soletta per singola trave:	$L_{\Delta \mathrm{T}}$	3,00	[m]		
Gradiente termico lineare per unità di altezza:	$\Delta T_{,1}$	3,36	[°C/m]		
Gradiente termico lineare totale:	ΔΤ	9,07	[°C]		
Azione normale isostatica:	$N_{\scriptscriptstyle{\Lambda} ext{T}}$	2.819,82	[kN]		

DEFINIZIONE DEL PROFILO DI TEMPERATURA PER ΔT NEGATIVO (SOLE <u>TTA FREDDA)</u>					
Temperatura all'estradosso della soletta:		6,00	[°C]		
Temperatura all'intradosso della trave metallica:		8,00	[°C]		
Larghezza di applicazione dell'azione termica in soletta per singola trave:	$L_{\Delta \mathrm{T}}$	3,00	[m]		
Gradiente termico lineare per unità di altezza:	$\Delta T_{,1}$	-0,53	[°C/m]		
Gradiente termico lineare totale:	ΔΤ	-1,44	[°C]		
Azione normale isostatica:	$N_{\Delta T}$	-152,89	[kN]		



CONCIO TIPO 2

A

CARATTERISTICHE GEOMETRICHE ED INERZIALI DELLA SEZIONE COMPOSTA							
CARATTERISICA GEOMETRICA/INERZIALE		FASE I (pesi propri)	FASE II-A (permanenti)	FASE II-B (ritiro)	FASE III (accidentali)		
Coefficiente di viscosità:	$\Phi(t_0, \infty)$	-	2,165	3,101	-		
Coefficiente di omogeneizzazione	n	-	21,64	17,32	6,40		
Momento statico della sezione	S [m³]	1,110E+02	2,202E-01	2,436E-01	4,434E-01		
Baricentro della sezione	Y_G [m]	0,991	1,424	1,488	1,835		
Area della sezione	A [m²]	1,121E-01	1,546E-01	1,638E-01	2,416E-01		
Costante torsionale della sezione	J_{t} [m ⁴]	1,851E-05	7,420E-04	9,228E-04	2,465E-03		
Momento di inerzia della sezione	J [m⁴]	1,076E-01	1,844E-01	1,964E-01	2,986E-01		
Modulo di resistenza estradosso soletta	W _{soletta} [m ³]	-	1,445E-01	1,620E-01	3,454E-01		
Modulo di resistenza armatura superiore	$W_{am,sup}$ [m ³]	-	1,529E-01	1,719E-01	3,758E-01		
Modulo di resistenza armatura inferiore	$W_{am,inf}$ [m ³]	-	1,730E-01	1,959E-01	4,562E-01		
Modulo di resistenza estradosso trave	$W_{tr,sup}$ [m ³]	7,634E-02	1,889E-01	2,153E-01	5,289E-01		
Modulo di resitenza intradosso trave	$W_{tr,inf}$ [m ³]	-1,086E-01	-1,295E-01	-1,320E-01	-1,627E-01		

200,00

3.015,00

90,00

i_{inf}

 $A_{s,inf}$

 $Y_{s,inf}$

[mm]

 $[mm^2]$

[mm]

200,00

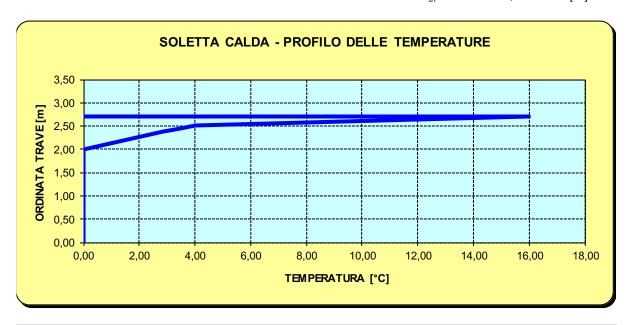
3.015,00

230,00

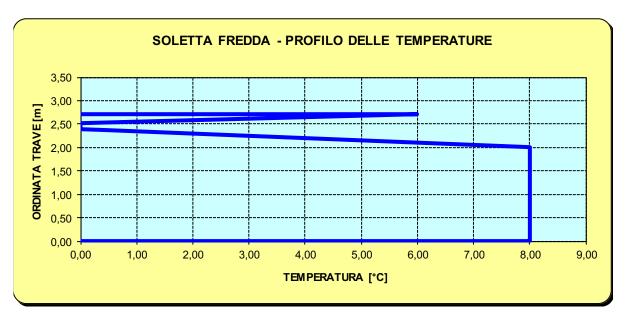
[mm]

 $[mm^2]$

[mm]


 $\mathbf{i}_{\mathrm{sup}}$

 $A_{s,sup}$

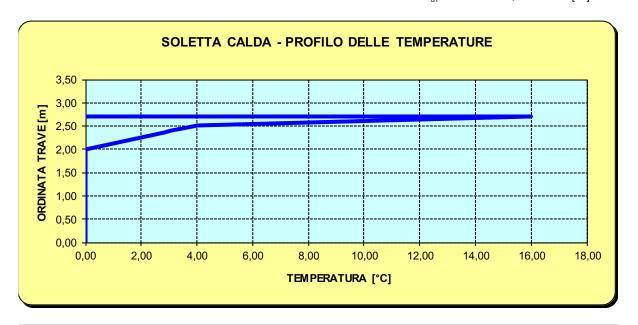

 $Y_{\text{s,sup}}$

DEFINIZIONE DEL PROFILO DI TEMPERATURA PER ΔT POSITIVO (SOLE <u>TTA CALDA)</u>					
Temperatura all'estradosso della soletta:		16,00	[°C]		
Larghezza di applicazione dell'azione termica in soletta per singola trave:	$L_{\Delta \mathrm{T}}$	3,00	[m]		
Gradiente termico lineare per unità di altezza:	$\Delta T_{,1}$	3,15	[°C/m]		
Gradiente termico lineare totale:	ΔΤ	8,51	[°C]		
Azione normale isostatica:	$N_{\scriptscriptstyle{\Lambda} ext{T}}$	2.646,27	[kN]		

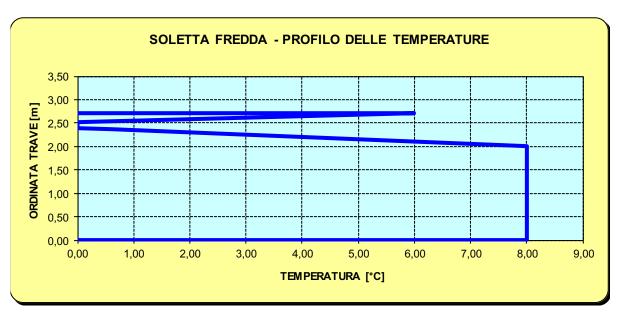
DEFINIZIONE DEL PROFILO DI TEMPERATURA PER ΔT NEGATIVO (SOLETTA FREDDA)							
Temperatura all'estradosso della soletta:		6,00	[°C]				
Temperatura all'intradosso della trave metallica:		8,00	[°C]				
Larghezza di applicazione dell'azione termica in soletta per singola trave:	$L_{\Delta \mathrm{T}}$	3,00	[m]				
Gradiente termico lineare per unità di altezza:	$\Delta T_{,1}$	-0,66	[°C/m]				
Gradiente termico lineare totale:	ΔΤ	-1,79	[°C]				
Azione normale isostatica:	$N_{\Delta T}$	-190,01	[kN]				



CONCIO TIPO 3


☐ SOLETTA FESSURATA

CARATTERISTICHE GEOMETRICHE ED INERZIALI DELLA SEZIONE COMPOSTA							
CARATTERISICA GEOMETRICA/IN	CARATTERISICA GEOMETRICA/INERZIALE		FASE II-A (permanenti)	FASE II-B (ritiro)	FASE III (accidentali)		
Coefficiente di viscosità:	$\Phi(t_0, \infty)$	-	2,165	3,101	-		
Coefficiente di omogeneizzazione	n	-	21,64	17,32	6,40		
Momento statico della sezione	S [m³]	1,217E+02	2,309E-01	2,543E-01	4,540E-01		
Baricentro della sezione	Y_{G} [m]	1,003	1,408	1,469	1,810		
Area della sezione	A [m²]	1,214E-01	1,639E-01	1,731E-01	2,509E-01		
Costante torsionale della sezione	J _t [m⁴]	2,569E-05	7,492E-04	9,299E-04	2,472E-03		
Momento di inerzia della sezione	J [m ⁴]	1,203E-01	1,976E-01	2,099E-01	3,149E-01		
Modulo di resistenza estradosso soletta	W _{soletta} [m ³]	-	1,530E-01	1,706E-01	3,539E-01		
Modulo di resistenza armatura superiore	$W_{am,sup}$ [m ³]	-	1,618E-01	1,809E-01	3,841E-01		
Modulo di resistenza armatura inferiore	$W_{am,inf}$ [m ³]	-	1,827E-01	2,057E-01	4,631E-01		
Modulo di resistenza estradosso trave	$W_{tr,sup}$ [m ³]	8,612E-02	1,993E-01	2,256E-01	5,338E-01		
Modulo di resitenza intradosso trave	$W_{tr,inf}$ [m ³]	-1,200E-01	-1,403E-01	-1,429E-01	-1,740E-01		



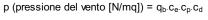
DEFINIZIONE DEL PROFILO DI TEMPERATURA PER ΔT POSITIVO (SOLETTA CALDA)								
Temperatura all'estradosso della soletta:		16,00	[°C]					
Larghezza di applicazione dell'azione termica in soletta per singola trave:	$L_{\Delta \mathrm{T}}$	3,00	[m]					
Gradiente termico lineare per unità di altezza:	$\Delta T_{,1}$	3,08	[°C/m]					
Gradiente termico lineare totale:	ΔΤ	8,33	[°C]					
Azione normale isostatica:	$N_{\Lambda T}$	2.590,64	[kN]					

DEFINIZIONE DEL PROFILO DI TEM PERATURA PER ΔT NEGATIVO (SOLETTA FREDDA)							
Temperatura all'estradosso della soletta:		6,00	[°C]				
Temperatura all'intradosso della trave metallica:		8,00	[°C]				
Larghezza di applicazione dell'azione termica in soletta per singola trave:	$L_{\Delta T}$	3,00	[m]				
Gradiente termico lineare per unità di altezza:	$\Delta T_{,1}$	-0,71	[°C/m]				
Gradiente termico lineare totale:	ΔΤ	-1,91	[°C]				
Azione normale isostatica:	$N_{\Delta T}$	-202,53	[kN]				

7.10.6 AZIONE TRASVERSALE DEL VENTO

L'altezza di riferimento per la valutazione della pressione caratteristica del vento è stata valutata, a favore di sicurezza, pari a $h_1 = 10,00$ m dal piano di campagna.

All'altezza massima della sottostruttura sono stati sommati:


- Altezza massima delle travi → h₂ = 2,40 m
- Spessore della soletta $\rightarrow h_3 = 0,30 \text{ m}$
- Spessore medio della pavimentazione $\rightarrow h_4 = 0,175 \text{ m}$
- Sagoma fittizia dell'autoveicolo → h₅ = 3,00 m

L'altezza totale di riferimento, a favore di sicurezza, per la valutazione della pressione caratteristica del vento risulta pertanto pari a:

 $h_{rif} = 10,00 + 2,40 + 0,30 + 0,175 + 3,00 = 15,875 m$

1) Valle d'Aosta, Piemonte, Lombardia, Trentino Alto Adige, Veneto, Friuli Venezia Giulia (con l'eccezione della provincia di Trieste)

Zona	v _{b,0} [m/s]	a ₀ [m]	k _a [1/s]		
1	25	1000	0,01		
a _s (altitudii	ne sul livello del	mare [m])	120		
T _R	100				
$v_b = v_{b,0}$ per $a_s \le a_0$					
$v_b = v_{b,0} + k_a (a_s - a_0)$ per $a_0 < a_s \le 1500 \text{ m}$					
<u>v</u>	25,000				
α _R (T _R)			1,03924		
V _b (T_R) = $v_b \times \alpha_R$ [m.	/s])	25,981		

q_b (pressione cinetica di riferimento [N/mq])

ce (coefficiente di esposizione)

c_n (coefficiente di forma)

c_d (coefficiente dinamico)

Pressione cinetica di riferimento

$$q_b = 1/2 \cdot \rho \cdot v_b^2$$
 ($\rho = 1,25 \text{ kg/mc}$)

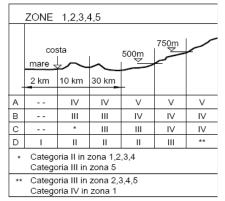
q _b [N/mq]	421,88

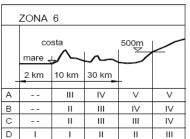
Coefficiente di forma

E' il coefficiente di forma (o coefficiente aero dinamico), funzio ne della tipo logia e della geometria della costruzione e del suo orientamento rispetto alla direzione del vento. Il suo valore può essere ricavato da dati suffragati da opportuna documentazione o da prove sperimentali in galleria del vento

Coefficiente dinamico

Esso può essere assunto autelativamente pari ad 1nelle costruzioni di tipologia ricorrente, quali gli edifici di forma regolare non eccedenti 80 m di altezza ed i capanno ni industriali, o ppure può essere determinato mediante analisi specifiche o facendo riferimento a dati di comprovata affidabilità.

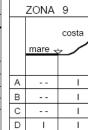



Coefficiente di esposizione

Classe di rugosità del terreno

B) Aree urbane (non di classe A), suburbane, industriali e boschive

Categoria di esposizione



Zona

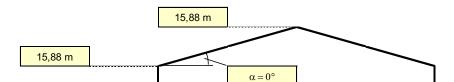
Cat. Esposiz.

Ш

a_s [m]

$c_e(z) = k_r^2 \cdot c_t \cdot \ln(z/z_0) [7 + c_t \cdot \ln(z/z_0)]$	per z≥z _{min}
$c_e(z) = c_e(z_{min})$	per z < z _{min}

 z_0 [m]


0,1

z_{min} [m]

5

Classe di rugosità

z [m]	Ce
z ≤ 5	1,708
z = 15,875	2,446
z = 15,875	2,446

0,2

Il coefficiente di esposizione maggiore risulta pari a $c_{e,max} = 2,446$.

La pressione del vento di calcolo risulta dunque pari a:

$p_{vento} = 0.42188 \times 2.446 \times 1.00 \times 1.00 = 1.032 \text{ kN/m}^2$

L'azione trasversale risultante del vento sull'impalcato, valutata per metro lineare di impalcato stesso, è uquale a:

$$P_{vento} = 1,032 \times [2,40 + 0,30 + 0,175 + 3,00] = 6,063 \text{ kN/m}$$

L'azione trasversale del vento produce un momento flettente trasversale sull'impalcato che risulta pari a:

$$M_{T,vento} = 6,063 \times [(2,40 + 0,30 + 0,175 + 3,00)/2 - (2,40 + 0,30)/2] = 9,63 \text{ kNm/m}$$

Tale azione si considera scomposta in coppia sulle travi di estremità (effetto "tira e spingi") producendo sulle travi di estremità un'azione verticale (alternata in segno).

Tale azione verticale, considerata una distanza tra le travi di bordo pari a 9,00 m, risulta pari a:

$$p_{vento,trave} = 9,63 / 9,00 = \pm 1,07 kN/m$$

7.11 **AZIONE SISMICA**

7.11.1 **AZIONE INERZIALE DELLE MASSE**

L'azione sismica verrà assegnata alle strutture in cemento armato mediante un'analisi dinamica lineare con spettro di risposta elastico allo Stato Limite di Salvaguardia della Vita.

8 COMBINAZIONI DI CARICO

8.1 COMBINAZIONI DI CARICO ALLO STATO LIMITE DI ESERCIZIO – COMBINAZIONI QUASI-PERMANENTI

Per le combinazioni di carico statiche relative alla struttura in oggetto si è fatto riferimento a quanto riportato nel capitolo nel D.M. 17.01.2018 "Norme Tecniche per le Costruzioni", par. 2.5.3.

Sulla base di ciò sono state individuate le combinazioni di carico statiche quasi permanenti allo Stato Limite di Esercizio, ottenute tramite la relazione generale:

$$F_d = \sum G_{ki} + \sum (\psi_{2i} \cdot Q_{ki})$$

dove:

- G_{kj} rappresenta il valore caratteristico della j-esima azione permanente
- Q_{ki} rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{2i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori quasi permanenti

8.2 COMBINAZIONI DI CARICO ALLO STATO LIMITE DI ESERCIZIO – COMBINAZIONI FREQUENTI

Per le combinazioni di carico statiche relative alla struttura in oggetto si è fatto riferimento a quanto riportato nel capitolo nel D.M. 17.01.2018 "Norme Tecniche per le Costruzioni", par. 2.5.3. Sulla base di ciò sono state individuate le combinazioni di carico statiche frequenti allo Stato Limite di Esercizio, ottenute tramite la relazione generale:

$$F_{d} = \sum G_{kj} + \psi_{11} \cdot Q_{k1} + \sum (\psi_{2i} \cdot Q_{ki})$$

dove:

- G_{kj} rappresenta il valore caratteristico della j-esima azione permanente
- Q_{k1} rappresenta il valore caratteristico dell'azione variabile di base in ogni combinazione
- Qki rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{1i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori frequenti

8.3 COMBINAZIONI DI CARICO ALLO STATO LIMITE DI ESERCIZIO – COMBINAZIONI CARATTERISTICHE

Per le combinazioni di carico statiche relative alla struttura in oggetto si è fatto riferimento a quanto riportato nel capitolo nel D.M. 17.01.2018 "Norme Tecniche per le Costruzioni", par. 2.5.3. Sulla base di ciò sono state individuate le combinazioni di carico statiche caratteristiche allo Stato Limite di Esercizio, ottenute tramite la relazione generale:

$$F_d = \sum G_{kj} + Q_{k1} + \sum (\psi_{0i} \cdot Q_{ki})$$

dove:

- G_{ki} rappresenta il valore caratteristico della j-esima azione permanente
- Q_{k1} rappresenta il valore caratteristico dell'azione variabile di base in ogni combinazione
- Qki rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{0i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori caratteristici

8.4

COMBINAZIONI DI CARICO ALLO STATO LIMITE ULTIMO STATICHE

Per le combinazioni di carico statiche relative alla struttura in oggetto si è fatto riferimento a quanto riportato nel capitolo nel D.M. 17.01.2018 "Norme Tecniche per le Costruzioni", par. 2.5.3. Sulla base di ciò sono state individuate le combinazioni di carico statiche allo Stato Limite Ultimo, ottenute tramite la relazione generale:

$$F_d = \sum_{j=1}^m \left(\gamma_{Gj} \cdot G_{kj} \right) + \gamma_{Q1} \cdot Q_{k1} + \sum_{i=2}^n \left(\psi_{0i} \cdot \gamma_{Qi} \cdot Q_{ki} \right)$$

dove:

- y_G e y_Q rappresentano i coefficienti parziali di amplificazione dei carichi
- G_{ki} rappresenta il valore caratteristico della j-esima azione permanente
- Q_{k1} rappresenta il valore caratteristico dell'azione variabile di base in ogni combinazione
- Q_{ki} rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{0i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori caratteristici

I coefficienti di amplificazione dei carichi per le combinazioni di carico A1, secondo il D.M. 17.01.2018 "Norme Tecniche per le Costruzioni", par. 5.1.3.12, tabella 5.1.V, sono di seguito

Tabella 5.1.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	Al STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γ _{Qi}	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γ ε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	γε2, γε3, γε4	0,00 1,20	0,00 1,20	0,00 1,00

Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

I coefficienti di partecipazione dei carichi, secondo il D.M. 17.01.2018 "Norme Tecniche per le Costruzioni", par. 5.1.3.12, tabella 5.1.VI, sono di seguito riepilogati:

Tabella 5.1.VI - Coefficienti ₩ per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente \(\psi_0\) di combinazione	Coefficiente \(\psi_1\) (valori frequenti)	Coefficiente \(\psi_2\) (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	Vento a ponte scarico			
	SLU e SLE	0,6	0,2	0,0
Vento q₅	Esecuzione	0,8		0,0
	Vento a ponte carico	0,6		
Nava a	SLU e SLE	0,0	0,0	0,0
Neve q ₅	esecuzione	0,8	0,6	0,5
Temperatura	T_k	0,6	0,6	0,5

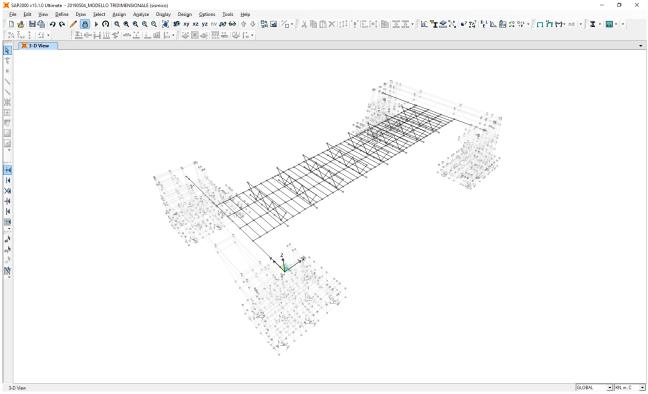
8.5 COMBINAZIONE DI CARICO SISMICHE

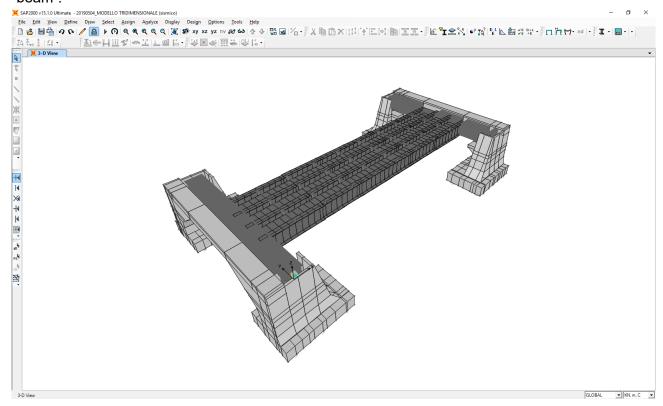
In fase sismica è state ipotizzate un'unica combinazione di carico allo Stato Limite di Salvaguardia ottenuta tramite la relazione generale:

$$F_d = E + \sum G_{kj} + \sum (\psi_{2i} \cdot Q_{ki})$$

dove:

- E rappresenta il carico sismico
- G_{ki} rappresenta il valore caratteristico della j-esima azione permanente
- Qki rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{2i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori quasi permanenti

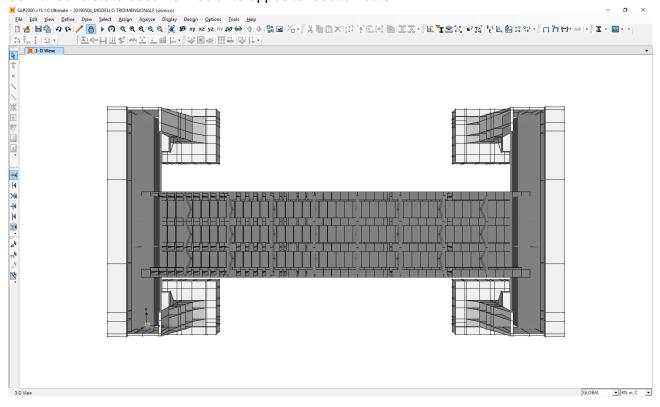


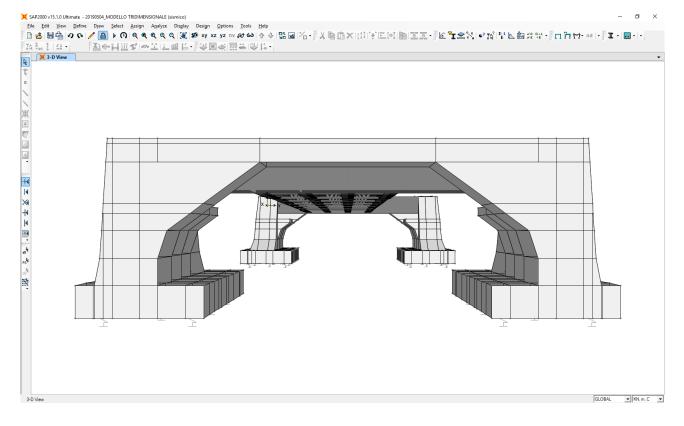


MODELLO DI CALCOLO

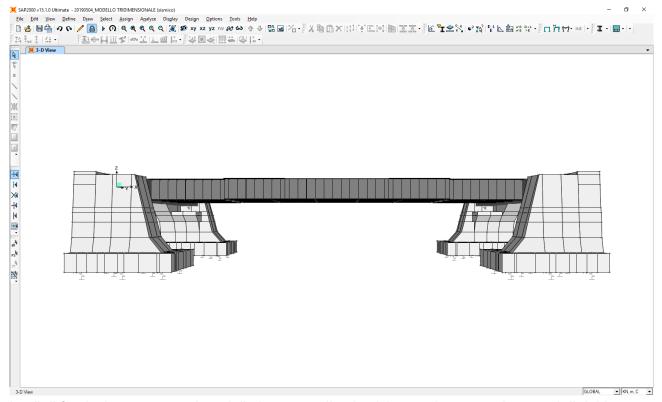
Al fine di determinare le azioni sollecitanti sugli elementi delle sottostrutture (elevazioni, zattere di fondazione e pali di fondazione) è stato approntato un apposito modello di calcolo agli elementi finiti mediante il software SAP2000 v.15.1 (Computers & Structures, Inc.).

Gli elementi dell'impalcato sono stato tutti modellati mediante elementi monodimensionali tipo "beam".





Le sottostrutture, al fine di rispettare le esatte geometrie e il corretto posizionamento delle masse, sono state modellate mediante elementi tridimensionali tipo "solid". Le sollecitazioni allo spiccato dei ritti sono state desunte mediante apposite "section cuts".



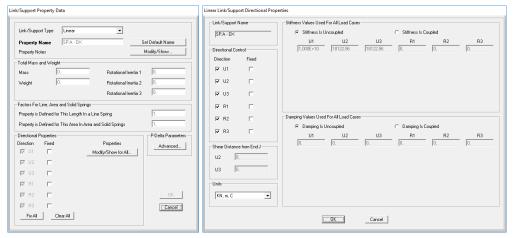
I pali di fondazione sono stati modellati come molle elastiche con le seguenti costanti di rigidezza:

- Direzione verticale → k = 1.000.000,00 kN/m
- Direzione orizzontale → k = 500.000,00 kN/m

La scelta di costanti di rigidezza elevate delle molle, rispetto alla scelta di appoggi semplici, è stata valutata con la finalità di garantire alla struttura un comportamento rigido (massimizzazione delle azioni sollecitanti sulle strutture in cemento armato) e di evitare la formazione di punte di tensione non congruenti con il reale funionamento della struttura tipiche dell'utilizzo di appoggi semplici come elemento di modellazione dei pali di fondazione.

Gli isolatori sismici sono stati modellati mediante elementi "nlink" lineari equivalenti del tipo "linear", ai quali sono stati attribuiti i valori della rigidezza equivalente dell'isolatotre a pendolo a singola superficie di scorrimento (rigidezza secante), valutata mediante la seguente relazione:

$$K_e = N_{SD} \cdot \left(\frac{1}{R} + \frac{\mu}{d}\right)$$


Nella tabella successiva sono riepilogati i valori delle rigidezze lineari equivalenti orizzontali assegnate ai differenti isolatori (valori di primo tentativo dedotti dal predimensionamento >> relazione di calcolo dell'impalcato metallico):

SOTTOSTRUTTURA	APPOGGIO	N _{SLC}		R	D	K _e	K _e	ş
SOTIOSIKOTIONA	AFFOGGIO	N _{SLC}	μ	[mm]	[mm]	[kN/mm]	[kN/m]	\$
SPALLA A	1	2.712,65	4,85%	2.500,00	10,38	13,76	13.764,80	58,64%
SPALLA A	2	2.211,32	5,75%	2.500,00	10,38	13,14	13.138,99	59,38%
SPALLA B	1	2.674,18	4,91%	2.500,00	10,38	13,72	13.724,23	58,70%
OF ALLA D	2	2.148,92	5,89%	2.500,00	10,38	13,06	13.058,18	59,47%

9.1 VALIDAZIONE E TARATURA DEI DATI DI PREDIMENSIONAMENTO DEL SISTEMA DI ISOLAMENTO

E' stato adottato un procedimento iterattivo partendo da una condizione iniziale caratterizzata dall'assegnazione ai singoli isolatori sismici delle caratteristiche di rigidezza e di smorzamento elastiche equivalenti determinate mediante il predimensionamento.

Successivamente è stata eseguita un'analisi dinamica lineare con spettro di risposta smorzato allo Stato Limite di Collasso.

Determinato il periodo principale di oscillazione della struttura in direzione longitudinale e in direzione trasversale si è proceduto a ricalcolare le caratteristiche di rigidezza e smorzamento elastiche equivalenti degli isolatori in relazione dei valori di tali periodi.

Tale iter è stata implementato fino a una sostanziale stabilità dei risultati → variazione degli spostamenti in fase sismica < 1,00%.

		Р	REDIMENSIONAL	MENTO MANUAL	.E		MODELLO I	OI CALCOLO - 1°	TENTATIVO		
0077007011771104	APPOGGIO	RIGIDEZZA	SPOSTAMENTO	PERIODO DI	SMORZAMENT	RIGIDEZZA	SPOSTAMENTO	PERIODO DI	SMORZAMENT		
SOTTOSTRUTTURA	APPOGGIO	EQUIVALENTE	d _{SLC}	ISOLAMENTO	0	EQUIVALENTE	d _{SLC}	ISOLAMENTO	0	∆d _{SLC}	
		[kN/m]	[mm]	[sec]	EQUIVALENTE	[kN/m]	[mm]	[sec]	EQUIVALENTE	[%]	
SPALLA A	Α	13.764,80	10,38			13.764,80	10,22			1,53%	
SPALLA A	В	13.138,99	10,38	0.8549	59.04%	13.138,99	9,17	0.8304	59.33%	11,64%	
SPALLA B	Α	13.724,23	10,38	0,0049	59,04%	13.724,23	10,23	0,0304	59,55%	1,43%	
SFALLA B	В	13.058,18	10,38			13.058,18	9,18			11,55%	
			MODELLO DI CALCOLO - 2º TENTATIVO MODELLO DI CALCOLO -					DI CALCOLO - 3°	TENTATIVO		
SOTTOSTRUTTURA	APPOGGIO	RIGIDEZZA	SPOSTAMENTO	PERIODO DI	SMORZAMENT		RIGIDEZZA	SPOSTAMENTO	PERIODO DI	SMORZAMENT	
SOTIOSIRUTIONA	APPOGGIO	EQUIVALENTE	d _{SLC}	ISOLAMENTO	0	Δd _{SLC}	EQUIVALENTE	d _{SLC}	ISOLAMENTO	0	Δα
		[kN/m]	[mm]	[sec]	EQUIVALENTE	[%]	[kN/m]	[mm]	[sec]	EQUIVALENTE	ľ
SPALLA A	Α	13.958,20	10,06		1,57%	14.162,95	9,94			1,1	
SPALLA A	В	14.750,49	8,66	0.9160	0,8160 59,48%	5,56%	15.567,08	8,42	0,8160	59,48%	2,
SPALLA B	Α	13.904,69	10,06	0,0100		1,66%	14.121,58	9,94			1,
SFALLA B	В	14.647,30	8,67			5,56%	15.458,34	8,42			2,8
			MODELLO D	I CALCOLO - 4°	TENTATIVO		MODELLO DI CALCOLO - 5° TENTATIVO				
SOTTOSTRUTTURA	APPOGGIO	RIGIDEZZA	SPOSTAMENTO	PERIODO DI	SMORZAMENT		RIGIDEZZA	SPOSTAMENTO	PERIODO DI	SMORZAMENT	
SUTTOSTRUTTURA	APPOGGIO	EQUIVALENTE	d _{SLC}	ISOLAMENTO	0	Δd _{SLC}	EQUIVALENTE	d _{SLC}	ISOLAMENTO	0	Δα
		[kN/m]	[mm]	[sec]	EQUIVALENTE	[%]	[kN/m]	[mm]	[sec]	EQUIVALENTE	ľ
SPALLA A	Α	14.320,83	9,86			0,81%	14.428,22	9,81			0,5
SFALLA A	В	15.985,59	8,29	3,29 0.8081	50 56%	1,54%	16.222,39	8,22	0.8035	50 60%	0,8
SPALLA B	A	14.279,15	9,86	0,0001	81 59,56%	0,81%	14.386,33	9,81	0,0033	59,60%	0,5
	В	15.891,80	8,29			1,54%	16.127,53	8,22			0,8

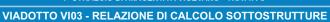
Il periodo finale di isolamento è stato dunque definito pari a 0,8035 secondi, cui corrisponde uno smorzamento pari a 59,60%.

10.1 SPALLA "A" - ELEVAZIONE SINISTRA

anas

Nella tabella successiva sono riepilogati i valori delle azioni sollecitanti in corrispondenza dello spiccato dell'elevazione sinistra per le differenti combinazioni di carico allo Stato Limite di Esercizio e allo Stato Limite Ultimo:

COMBIN	AZIONE	N_{Sd}	$V_{long,Sd}$	$V_{trasv,Sd}$	$M_{long,Sd}$	$M_{trasv,Sd}$	$M_{torc,Sd}$
		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
SLE - Q.P.01	Max	KN	KN	KN	KN-m	KN-m	KN-m
SLE - Q.P.01	Min	7.487,11	102,25	-669,56	10.236,36	-4.694,04	2.155,21
SLE - Q.P.02	Max	7.487,11	102,25	-669,56	10.236,36	-4.694,04	2.155,21
SLE - Q.P.02	Min	7.487,09	109,72	-655,45	10.274,00	-4.720,17	2.202,85
SLE - FREQ.01	Max	7.487,09	109,72	-655,45	10.274,00	-4.720,17	2.202,85
SLE - FREQ.01	Min	8.399,08	141,07	-669,56	10.898,83	-4.693,99	2.251,45
SLE - FREQ.02	Max	7.487,11	101,98	-703,69	10.236,36	-5.135,38	2.155,20
SLE - FREQ.02	Min	8.399,06	148,55	-655,45	10.936,47	-4.720,12	2.299,09
SLE - FREQ.03	Max	7.487,09	109,46	-689,58	10.274,00	-5.161,50	2.202,84
SLE - FREQ.03	Min	7.487,11	101,50	-670,98	10.232,60	-4.691,43	2.150,45
SLE - FREQ.04	Max	7.487,11	101,50	-670,98	10.232,60	-4.691,43	2.150,45
SLE - FREQ.04	Min	7.487,09	110,47	-654,03	10.277,76	-4.722,78	2.207,62
SLE - CAR.01	Max	7.487,09	110,47	-654,03	10.277,76	-4.722,78	2.207,62
SLE - CAR.01	Min	8.694,85	152,82	-628,63	11.088,81	-4.810,51	2.261,17
SLE - CAR.02	Max	7.478,90	100,70	-674,14	10.205,51	-5.399,03	2.132,83
SLE - CAR.02	Min	8.694,83	161,79	-611,69	11.133,97	-4.841,87	2.318,34
SLE - CAR.03	Max	7.478,87	109,67	-657,20	10.250,68	-5.430,38	2.190,01
SLE - CAR.03	Min	8.711,28	153,70	-713,32	11.142,93	-4.572,21	2.296,36
SLE - CAR.04	Max	7.495,33	101,58	-758,83	10.259,64	-5.160,73	2.168,03
SLE - CAR.04	Min	8.711,26	162,67	-696,38	11.188,10	-4.603,57	2.353,53
SLE - CAR.05	Max	7.495,30	110,55	-741,88	10.304,81	-5.192,08	2.225,20
SLE - CAR.05	Min	8.385,39	139,58	-600,40	10.849,93	-4.889,96	2.217,36
SLE - CAR.06	Max	7.473,42	100,49	-634,53	10.187,46	-5.331,35	2.121,11
SLE - CAR.06	Min	8.385,37	148,55	-583,46	10.895,09	-4.921,32	2.274,53
SLE - CAR.07	Max	7.473,40	109,46	-617,59	10.232,62	-5.362,70	2.178,28
SLE - CAR.07	Min	8.412,77	141,05	-741,55	10.940,14	-4.492,80	2.276,01
SLE - CAR.08	Max	7.500,80	101,96	-775,68	10.277,67	-4.934,18	2.179,76
SLE - CAR.08	Min	8.412,75	150,02	-724,61	10.985,30	-4.524,15	2.333,18
SLE - CAR.09	Max	7.500,78	110,93	-758,74	10.322,83	-4.965,53	2.236,93
SLE - CAR.09	Min	8.390,87	136,89	-634,28	10.852,93	-4.800,08	2.210,03
SLE - CAR.10	Max	7.478,91	97,80	-668,41	10.190,46	-5.241,46	2.113,78
SLE - CAR.10	Min	8.390,83	151,84	-606,04	10.928,20	-4.852,33	2.305,32
SLE - CAR.11	Max	7.478,87	112,75	-640,17	10.265,73	-5.293,72	2.209,07
SLE - CAR.11	Min	8.407,30	137,77	-718,97	10.907,06	-4.561,78	2.245,22
SLE - CAR.12	Max	7.495,34	98,68	-753,10	10.244,59	-5.003,16	2.148,97
SLE - CAR.12	Min	8.407,26	152,72	-690,73	10.982,33	-4.614,03	2.340,51


COMBIN	IAZIONE	N _{Sd} [kN]	V _{long,Sd} [kN]	V _{trasv,Sd} [kN]	M _{long,Sd} [kNm]	M _{trasv,Sd} [kNm]	M _{torc,Sd} [kNm]
SLU - STR.01	Max	7.495,29	113,63	-724,86	10.319,86	-5.055,42	2.244,26
SLU - STR.01	Min	11.820,40	211,42	-844,77	15.043,72	-6.556,02	3.066,71
SLU - STR.02	Max	10.178,86	141,06	-906,21	13.851,27	-7.350,51	2.893,46
SLU - STR.02	Min	11.820,37	222,19	-824,44	15.097,92	-6.593,65	3.135,32
SLU - STR.03	Max	10.178,83	151,82	-885,87	13.905,47	-7.388,14	2.962,06
SLU - STR.03	Min	11.845,04	212,74	-971,80	15.124,91	-6.198,57	3.119,50
SLU - STR.04	Max	10.203,50	142,38	-1.033,24	13.932,46	-6.993,06	2.946,24
SLU - STR.04	Min	11.845,01	223,51	-951,47	15.179,11	-6.236,20	3.188,10
SLU - STR.05	Max	10.203,47	153,14	-1.012,91	13.986,66	-7.030,69	3.014,85
SLU - STR.05	Min	11.401,80	193,51	-802,43	14.718,52	-6.675,20	3.005,81
SLU - STR.06	Max	10.170,64	140,73	-848,50	13.824,19	-7.271,06	2.875,87
SLU - STR.06	Min	11.399,02	204,20	-782,09	14.771,01	-6.711,66	3.074,75
SLU - STR.07	Max	10.167,86	151,43	-828,17	13.876,68	-7.307,53	2.944,80
SLU - STR.07	Min	11.442,87	195,71	-1.014,15	14.853,84	-6.079,45	3.093,78
SLU - STR.08	Max	10.211,71	142,93	-1.060,22	13.959,51	-6.675,31	2.963,84
SLU - STR.08	Min	11.442,84	206,47	-993,82	14.908,04	-6.117,07	3.162,39
SLU - STR.09	Max	10.211,68	153,70	-1.039,89	14.013,70	-6.712,94	3.032,45
SLU - STR.09	Min	11.410,02	190,36	-851,55	14.727,54	-6.543,50	3.000,53
SLU - STR.10	Max	10.178,87	137,59	-897,62	13.833,21	-7.139,37	2.870,59
SLU - STR.10	Min	11.409,97	208,31	-817,66	14.817,87	-6.606,21	3.114,88
SLU - STR.11	Max	10.178,82	155,53	-863,74	13.923,54	-7.202,08	2.984,94
SLU - STR.11	Min	11.434,66	191,68	-978,58	14.808,73	-6.186,05	3.053,32
SLU - STR.12	Max	10.203,51	138,91	-1.024,66	13.914,40	-6.781,92	2.923,38
SLU - STR.12	Min	11.434,61	209,63	-944,70	14.899,06	-6.248,76	3.167,66
SLV - X - 01	Max	7.759,88	691,91	-474,39	13.911,03	-3.636,82	3.868,73
SLV - X - 01	Min	7.214,12	-340,50	-901,24	7.303,39	-5.687,57	420,99
SLV - X - 02	Max	7.759,84	704,88	-449,43	13.976,14	-3.682,84	3.952,38
SLV - X - 02	Min	7.214,08	-327,53	-876,29	7.368,50	-5.733,59	504,64
SLV - Y - 01	Max	7.753,17	399,46	-114,08	11.793,29	-2.703,15	3.458,78
SLV - Y - 01	Min	7.220,83	-48,04	-1.261,55	9.421,13	-6.621,24	830,95
SLV - Y - 02	Max	7.753,12	412,43	-89,13	11.858,40	-2.749,17	3.542,42
SLV - Y - 02	Min	7.220,79	-35,08	-1.236,59	9.486,24	-6.667,26	914,60

10.2 SPALLA "A" - ELEVAZIONE DESTRA

anas

Nella tabella successiva sono riepilogati i valori delle azioni sollecitanti in corrispondenza dello spiccato dell'elevazione sinistra per le differenti combinazioni di carico allo Stato Limite di Esercizio e allo Stato Limite Ultimo:

COMBIN	COMBINAZIONE		$V_{long,Sd}$	$V_{trasv,Sd}$	$M_{long,Sd}$	$M_{\text{trasv},Sd}$	$M_{torc,Sd}$
COMBIN	AZIONE	[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
SLE - Q.P.01	Max	7.936,06	-109,05	667,28	-10.488,24	4.884,53	2.097,98
SLE - Q.P.01	Min	7.936,06	-109,05	667,28	-10.488,24	4.884,53	2.097,98
SLE - Q.P.02	Max	7.936,08	-115,02	653,30	-10.518,76	4.910,86	2.145,73
SLE - Q.P.02	Min	7.936,08	-115,02	653,30	-10.518,76	4.910,86	2.145,73
SLE - FREQ.01	Max	8.860,63	-108,88	701,36	-10.488,03	5.331,72	2.188,85
SLE - FREQ.01	Min	7.935,80	-146,45	667,25	-11.149,44	4.884,44	2.097,98
SLE - FREQ.02	Max	8.860,65	-114,85	687,38	-10.518,54	5.358,05	2.236,60
SLE - FREQ.02	Min	7.935,81	-152,42	653,27	-11.179,96	4.910,76	2.145,73
SLE - FREQ.03	Max	7.936,06	-108,45	668,68	-10.485,19	4.881,90	2.093,21
SLE - FREQ.03	Min	7.936,06	-108,45	668,68	-10.485,19	4.881,90	2.093,21
SLE - FREQ.04	Max	7.936,08	-115,61	651,90	-10.521,81	4.913,49	2.150,51
SLE - FREQ.04	Min	7.936,08	-115,61	651,90	-10.521,81	4.913,49	2.150,51
SLE - CAR.01	Max	9.177,01	-108,29	757,46	-10.510,04	5.357,27	2.228,53
SLE - CAR.01	Min	7.943,89	-158,38	711,98	-11.391,92	4.760,89	2.107,36
SLE - CAR.02	Max	9.177,03	-115,45	740,68	-10.546,66	5.388,86	2.285,83
SLE - CAR.02	Min	7.943,91	-165,54	695,19	-11.428,54	4.792,48	2.164,67
SLE - CAR.03	Max	9.160,63	-108,16	670,78	-10.459,74	5.599,03	2.200,21
SLE - CAR.03	Min	7.927,51	-158,25	625,30	-11.341,62	5.002,65	2.079,05
SLE - CAR.04	Max	9.160,65	-115,32	654,00	-10.496,35	5.630,62	2.257,51
SLE - CAR.04	Min	7.927,53	-165,41	608,52	-11.378,24	5.034,24	2.136,35
SLE - CAR.05	Max	8.874,28	-108,39	774,99	-10.526,87	5.127,62	2.207,67
SLE - CAR.05	Min	7.949,44	-145,95	740,88	-11.188,28	4.680,34	2.116,80
SLE - CAR.06	Max	8.874,30	-115,55	758,21	-10.563,49	5.159,22	2.264,98
SLE - CAR.06	Min	7.949,46	-153,12	724,10	-11.224,90	4.711,93	2.174,10
SLE - CAR.07	Max	8.846,98	-108,17	630,53	-10.443,03	5.530,56	2.160,48
SLE - CAR.07	Min	7.922,14	-145,74	596,42	-11.104,44	5.083,27	2.069,61
SLE - CAR.08	Max	8.847,00	-115,34	613,75	-10.479,65	5.562,15	2.217,78
SLE - CAR.08	Min	7.922,16	-152,90	579,64	-11.141,06	5.114,86	2.126,91
SLE - CAR.09	Max	8.868,81	-105,96	751,69	-10.497,91	5.197,68	2.179,13
SLE - CAR.09	Min	7.943,98	-143,53	717,58	-11.159,32	4.750,39	2.088,26
SLE - CAR.10	Max	8.868,85	-117,89	723,72	-10.558,94	5.250,33	2.274,64
SLE - CAR.10	Min	7.944,01	-155,46	689,61	-11.220,35	4.803,05	2.183,77
SLE - CAR.11	Max	8.852,43	-105,83	665,02	-10.447,60	5.439,44	2.150,82
SLE - CAR.11	Min	7.927,60	-143,40	630,90	-11.109,01	4.992,15	2.059,95
SLE - CAR.12	Max	8.852,47	-117,77	637,05	-10.508,63	5.492,09	2.246,32
SLE - CAR.12	Min	7.927,63	-155,33	602,93	-11.170,04	5.044,81	2.155,45

COMBIN	AZIONE	N _{Sd} [kN]	V _{long,Sd} [kN]	V _{trasv,Sd} [kN]	M _{long,Sd} [kNm]	M _{trasv,Sd} [kNm]	M _{torc,Sd} [kNm]
SLU - STR.01	Max	12.491,32	-151,49	1.031,42	-14.279,20	7.265,55	3.024,97
SLU - STR.01	Min	10.826,61	-219,11	970,02	-15.469,75	6.460,44	2.861,40
SLU - STR.02	Max	12.491,34	-160,08	1.011,28	-14.323,15	7.303,46	3.093,73
SLU - STR.02	Min	10.826,64	-227,71	949,88	-15.513,69	6.498,35	2.930,16
SLU - STR.03	Max	12.466,75	-151,30	901,41	-14.203,75	7.628,19	2.982,49
SLU - STR.03	Min	10.802,04	-218,92	840,00	-15.394,29	6.823,08	2.818,93
SLU - STR.04	Max	12.466,77	-159,89	881,27	-14.247,69	7.666,10	3.051,26
SLU - STR.04	Min	10.802,07	-227,52	819,87	-15.438,23	6.860,99	2.887,69
SLU - STR.05	Max	12.083,46	-151,63	1.059,42	-14.304,44	6.943,44	2.998,23
SLU - STR.05	Min	10.834,93	-202,34	1.013,37	-15.197,34	6.339,60	2.875,56
SLU - STR.06	Max	12.086,23	-160,30	1.039,28	-14.350,15	6.982,53	3.066,71
SLU - STR.06	Min	10.837,70	-211,02	993,23	-15.243,06	6.378,69	2.944,03
SLU - STR.07	Max	12.042,50	-151,31	842,73	-14.178,67	7.547,83	2.927,44
SLU - STR.07	Min	10.793,98	-202,03	796,68	-15.071,58	6.944,00	2.804,77
SLU - STR.08	Max	12.042,53	-159,90	822,59	-14.222,62	7.585,74	2.996,21
SLU - STR.08	Min	10.794,00	-210,62	776,54	-15.115,52	6.981,91	2.873,53
SLU - STR.09	Max	12.075,26	-148,70	1.022,80	-14.264,65	7.051,68	2.961,16
SLU - STR.09	Min	10.826,73	-199,42	976,74	-15.157,56	6.447,84	2.838,48
SLU - STR.10	Max	12.075,30	-163,02	989,23	-14.337,89	7.114,86	3.075,76
SLU - STR.10	Min	10.826,77	-213,74	943,18	-15.230,80	6.511,03	2.953,08
SLU - STR.11	Max	12.050,69	-148,51	892,78	-14.189,19	7.414,32	2.918,68
SLU - STR.11	Min	10.802,16	-199,23	846,73	-15.082,10	6.810,48	2.796,01
SLU - STR.12	Max	12.050,73	-162,83	859,22	-14.262,43	7.477,50	3.033,29
SLU - STR.12	Min	10.802,20	-213,55	813,17	-15.155,34	6.873,67	2.910,61
SLV - X - 01	Max	8.207,90	345,23	898,12	-7.505,84	5.879,64	3.815,69
SLV - X - 01	Min	7.664,43	-692,75	472,42	-14.129,78	3.831,89	367,24
SLV - X - 02	Max	8.207,94	335,73	873,27	-7.554,61	5.926,49	3.900,21
SLV - X - 02	Min	7.664,47	-702,25	447,57	-14.178,55	3.878,75	451,75
SLV - Y - 01	Max	8.201,11	51,63	1.257,46	-9.633,31	6.811,73	3.405,69
SLV - Y - 01	Min	7.671,22	-399,14	113,08	-12.002,30	2.899,80	777,23
SLV - Y - 02	Max	8.201,15	42,12	1.232,61	-9.682,09	6.858,58	3.490,21
SLV - Y - 02	Min	7.671,26	-408,64	88,23	-12.051,07	2.946,65	861,75

10.3 **SPALLA "B" - ELEVAZIONE SINISTRA**

anas

Nella tabella successiva sono riepilogati i valori delle azioni sollecitanti in corrispondenza dello spiccato dell'elevazione sinistra per le differenti combinazioni di carico allo Stato Limite di Esercizio e allo Stato Limite Ultimo:

COMBIN	AZIONE	N _{Sd}	$V_{long,Sd}$	$V_{\text{trasv,Sd}}$	$M_{long,Sd}$	$M_{\text{trasv},Sd}$	$M_{torc,Sd}$
COMBIN	AZIONE	[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
SLE - Q.P.01	Max	7.423,53	-101,67	-666,90	-10.196,36	-4.665,47	-2.152,99
SLE - Q.P.01	Min	7.423,53	-101,67	-666,90	-10.196,36	-4.665,47	-2.152,99
SLE - Q.P.02	Max	7.423,51	-109,18	-652,93	-10.234,14	-4.691,29	-2.200,22
SLE - Q.P.02	Min	7.423,51	-109,18	-652,93	-10.234,14	-4.691,29	-2.200,22
SLE - FREQ.01	Max	8.283,25	-101,50	-666,89	-10.196,36	-4.665,42	-2.152,98
SLE - FREQ.01	Min	7.423,53	-140,25	-700,82	-10.835,12	-5.084,66	-2.249,46
SLE - FREQ.02	Max	8.283,23	-109,01	-652,92	-10.234,14	-4.691,25	-2.200,20
SLE - FREQ.02	Min	7.423,51	-147,76	-686,85	-10.872,90	-5.110,49	-2.296,69
SLE - FREQ.03	Max	7.423,53	-100,92	-668,29	-10.192,59	-4.662,88	-2.148,27
SLE - FREQ.03	Min	7.423,53	-100,92	-668,29	-10.192,59	-4.662,88	-2.148,27
SLE - FREQ.04	Max	7.423,51	-109,93	-651,53	-10.237,92	-4.693,88	-2.204,94
SLE - FREQ.04	Min	7.423,51	-109,93	-651,53	-10.237,92	-4.693,88	-2.204,94
SLE - CAR.01	Max	8.561,64	-100,39	-626,12	-10.166,23	-4.781,54	-2.130,35
SLE - CAR.01	Min	7.415,34	-152,06	-671,35	-11.017,91	-5.340,53	-2.258,99
SLE - CAR.02	Max	8.561,62	-109,40	-609,35	-10.211,56	-4.812,54	-2.187,02
SLE - CAR.02	Min	7.415,32	-161,06	-654,59	-11.063,24	-5.371,53	-2.315,67
SLE - CAR.03	Max	8.578,02	-100,99	-710,46	-10.218,90	-4.544,11	-2.166,14
SLE - CAR.03	Min	7.431,72	-152,65	-755,69	-11.070,58	-5.103,10	-2.294,79
SLE - CAR.04	Max	8.578,00	-109,99	-693,70	-10.264,24	-4.575,10	-2.222,82
SLE - CAR.04	Min	7.431,70	-161,66	-738,93	-11.115,92	-5.134,09	-2.351,46
SLE - CAR.05	Max	8.269,60	-100,25	-598,00	-10.148,65	-4.860,70	-2.118,42
SLE - CAR.05	Min	7.409,88	-139,00	-631,93	-10.787,41	-5.279,95	-2.214,91
SLE - CAR.06	Max	8.269,58	-109,26	-581,24	-10.193,99	-4.891,70	-2.175,10
SLE - CAR.06	Min	7.409,86	-148,00	-615,17	-10.832,75	-5.310,94	-2.271,58
SLE - CAR.07	Max	8.296,90	-101,24	-738,58	-10.236,45	-4.464,98	-2.178,08
SLE - CAR.07	Min	7.437,18	-139,99	-772,50	-10.875,21	-4.884,22	-2.274,56
SLE - CAR.08	Max	8.296,88	-110,25	-721,81	-10.281,79	-4.495,97	-2.234,75
SLE - CAR.08	Min	7.437,16	-149,00	-755,74	-10.920,55	-4.915,21	-2.331,24
SLE - CAR.09	Max	8.275,07	-97,45	-631,71	-10.151,11	-4.771,23	-2.111,46
SLE - CAR.09	Min	7.415,35	-136,20	-665,63	-10.789,87	-5.190,47	-2.207,95
SLE - CAR.10	Max	8.275,04	-112,46	-603,77	-10.226,67	-4.822,88	-2.205,92
SLE - CAR.10	Min	7.415,31	-151,21	-637,69	-10.865,43	-5.242,13	-2.302,40
SLE - CAR.11	Max	8.291,45	-98,04	-716,05	-10.203,79	-4.533,79	-2.147,26
SLE - CAR.11	Min	7.431,73	-136,79	-749,97	-10.842,55	-4.953,03	-2.243,74
SLE - CAR.12	Max	8.291,42	-113,05	-688,11	-10.279,35	-4.585,45	-2.241,71
SLE - CAR.12	Min	7.431,69	-151,80	-722,04	-10.918,11	-5.004,69	-2.338,20

COMBIN	AZIONE	N _{Sd} [kN]	V _{long,Sd} [kN]	V _{trasv,Sd} [kN]	M _{long,Sd} [kNm]	M _{trasv,Sd} [kNm]	M _{torc,Sd} [kNm]
SLU - STR.01	Max	11.636,86	-140,65	-841,27	-13.796,06	-6.515,12	-2.889,84
SLU - STR.01	Min	10.089,36	-210,39	-902,33	-14.945,83	-7.269,76	-3.063,51
SLU - STR.02	Max	11.636,84	-151,45	-821,15	-13.850,46	-6.552,32	-2.957,85
SLU - STR.02	Min	10.089,34	-221,20	-882,22	-15.000,23	-7.306,96	-3.131,52
SLU - STR.03	Max	11.661,43	-141,54	-967,78	-13.875,08	-6.158,97	-2.943,53
SLU - STR.03	Min	10.113,93	-211,28	-1.028,85	-15.024,85	-6.913,61	-3.117,20
SLU - STR.04	Max	11.661,41	-152,35	-947,67	-13.929,48	-6.196,16	-3.011,54
SLU - STR.04	Min	10.113,91	-222,09	-1.008,74	-15.079,25	-6.950,80	-3.185,21
SLU - STR.05	Max	11.241,80	-140,42	-799,10	-13.769,70	-6.633,86	-2.871,95
SLU - STR.05	Min	10.081,17	-192,73	-844,90	-14.632,03	-7.199,84	-3.002,20
SLU - STR.06	Max	11.239,03	-151,16	-778,98	-13.822,40	-6.669,90	-2.940,29
SLU - STR.06	Min	10.078,40	-203,47	-824,78	-14.684,72	-7.235,88	-3.070,54
SLU - STR.07	Max	11.282,75	-141,91	-1.009,96	-13.901,40	-6.040,27	-2.961,44
SLU - STR.07	Min	10.122,12	-194,22	-1.055,76	-14.763,73	-6.606,25	-3.091,69
SLU - STR.08	Max	11.282,73	-152,72	-989,84	-13.955,80	-6.077,47	-3.029,44
SLU - STR.08	Min	10.122,10	-205,03	-1.035,64	-14.818,13	-6.643,44	-3.159,70
SLU - STR.09	Max	11.250,00	-137,12	-847,97	-13.777,93	-6.502,75	-2.867,18
SLU - STR.09	Min	10.089,37	-189,43	-893,77	-14.640,25	-7.068,73	-2.997,43
SLU - STR.10	Max	11.249,96	-155,13	-814,45	-13.868,60	-6.564,73	-2.980,53
SLU - STR.10	Min	10.089,33	-207,44	-860,25	-14.730,92	-7.130,71	-3.110,78
SLU - STR.11	Max	11.274,57	-138,01	-974,49	-13.856,95	-6.146,59	-2.920,87
SLU - STR.11	Min	10.113,94	-190,32	-1.020,29	-14.719,27	-6.712,57	-3.051,12
SLU - STR.12	Max	11.274,53	-156,03	-940,96	-13.947,62	-6.208,58	-3.034,22
SLU - STR.12	Min	10.113,90	-208,34	-986,76	-14.809,94	-6.774,56	-3.164,47
SLV - X - 01	Max	7.695,36	337,67	-470,65	-7.271,46	-3.603,12	-420,50
SLV - X - 01	Min	7.151,49	-688,05	-899,18	-13.863,52	-5.664,90	-3.866,39
SLV - X - 02	Max	7.695,32	324,69	-445,81	-7.336,63	-3.648,92	-503,82
SLV - X - 02	Min	7.151,45	-701,03	-874,33	-13.928,70	-5.710,70	-3.949,71
SLV - Y - 01	Max	7.670,12	35,84	-111,57	-9.399,29	-2.675,36	-829,13
SLV - Y - 01	Min	7.176,73	-386,22	-1.258,26	-11.735,69	-6.592,66	-3.457,75
SLV - Y - 02	Max	7.670,08	22,86	-86,73	-9.464,47	-2.721,16	-912,46
SLV - Y - 02	Min	7.176,69	-399,20	-1.233,42	-11.800,86	-6.638,46	-3.541,08

10.4 SPALLA "B" - ELEVAZIONE DESTRA

Nella tabella successiva sono riepilogati i valori delle azioni sollecitanti in corrispondenza dello spiccato dell'elevazione sinistra per le differenti combinazioni di carico allo Stato Limite di Esercizio e allo Stato Limite Ultimo:

COMBIN	AZIONE	N _{Sd}	$V_{long,Sd}$	V _{trasv,Sd}	$M_{long,Sd}$	M _{trasv,Sd}	$M_{torc,Sd}$
0.5.0.0.04	.,	[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
SLE - Q.P.01	Max	7.936,06	-109,05	667,28	-10.488,24	4.884,53	2.097,98
SLE - Q.P.01	Min	7.936,06	-109,05	667,28	-10.488,24	4.884,53	2.097,98
SLE - Q.P.02	Max	7.936,08	-115,02	653,30	-10.518,76	4.910,86	2.145,73
SLE - Q.P.02	Min	7.936,08	-115,02	653,30	-10.518,76	4.910,86	2.145,73
SLE - FREQ.01	Max	8.860,63	-108,88	701,36	-10.488,03	5.331,72	2.188,85
SLE - FREQ.01	Min	7.935,80	-146,45	667,25	-11.149,44	4.884,44	2.097,98
SLE - FREQ.02	Max	8.860,65	-114,85	687,38	-10.518,54	5.358,05	2.236,60
SLE - FREQ.02	Min	7.935,81	-152,42	653,27	-11.179,96	4.910,76	2.145,73
SLE - FREQ.03	Max	7.936,06	-108,45	668,68	-10.485,19	4.881,90	2.093,21
SLE - FREQ.03	Min	7.936,06	-108,45	668,68	-10.485,19	4.881,90	2.093,21
SLE - FREQ.04	Max	7.936,08	-115,61	651,90	-10.521,81	4.913,49	2.150,51
SLE - FREQ.04	Min	7.936,08	-115,61	651,90	-10.521,81	4.913,49	2.150,51
SLE - CAR.01	Max	9.177,01	-108,29	757,46	-10.510,04	5.357,27	2.228,53
SLE - CAR.01	Min	7.943,89	-158,38	711,98	-11.391,92	4.760,89	2.107,36
SLE - CAR.02	Max	9.177,03	-115,45	740,68	-10.546,66	5.388,86	2.285,83
SLE - CAR.02	Min	7.943,91	-165,54	695,19	-11.428,54	4.792,48	2.164,67
SLE - CAR.03	Max	9.160,63	-108,16	670,78	-10.459,74	5.599,03	2.200,21
SLE - CAR.03	Min	7.927,51	-158,25	625,30	-11.341,62	5.002,65	2.079,05
SLE - CAR.04	Max	9.160,65	-115,32	654,00	-10.496,35	5.630,62	2.257,51
SLE - CAR.04	Min	7.927,53	-165,41	608,52	-11.378,24	5.034,24	2.136,35
SLE - CAR.05	Max	8.874,28	-108,39	774,99	-10.526,87	5.127,62	2.207,67
SLE - CAR.05	Min	7.949,44	-145,95	740,88	-11.188,28	4.680,34	2.116,80
SLE - CAR.06	Max	8.874,30	-115,55	758,21	-10.563,49	5.159,22	2.264,98
SLE - CAR.06	Min	7.949,46	-153,12	724,10	-11.224,90	4.711,93	2.174,10
SLE - CAR.07	Max	8.846,98	-108,17	630,53	-10.443,03	5.530,56	2.160,48
SLE - CAR.07	Min	7.922,14	-145,74	596,42	-11.104,44	5.083,27	2.069,61
SLE - CAR.08	Max	8.847,00	-115,34	613,75	-10.479,65	5.562,15	2.217,78
SLE - CAR.08	Min	7.922,16	-152,90	579,64	-11.141,06	5.114,86	2.126,91
SLE - CAR.09	Max	8.868,81	-105,96	751,69	-10.497,91	5.197,68	2.179,13
SLE - CAR.09	Min	7.943,98	-143,53	717,58	-11.159,32	4.750,39	2.088,26
SLE - CAR.10	Max	8.868,85	-117,89	723,72	-10.558,94	5.250,33	2.274,64
SLE - CAR.10	Min	7.944,01	-155,46	689,61	-11.220,35	4.803,05	2.183,77
SLE - CAR.11	Max	8.852,43	-105,83	665,02	-10.447,60	5.439,44	2.150,82
SLE - CAR.11	Min	7.927,60	-143,40	630,90	-11.109,01	4.992,15	2.059,95
SLE - CAR.12	Max	8.852,47	-117,77	637,05	-10.508,63	5.492,09	2.246,32
SLE - CAR.12	Min	7.927,63	-155,33	602,93	-11.170,04	5.044,81	2.155,45

COMBIN	AZIONE	N _{Sd} [kN]	V _{long,Sd} [kN]	V _{trasv,Sd} [kN]	M _{long,Sd} [kNm]	M _{trasv,Sd} [kNm]	M _{torc,Sd} [kNm]
SLU - STR.01	Max	12.491,32	-151,49	1.031,42	-14.279,20	7.265,55	3.024,97
SLU - STR.01	Min	10.826,61	-219,11	970,02	-15.469,75	6.460,44	2.861,40
SLU - STR.02	Max	12.491,34	-160,08	1.011,28	-14.323,15	7.303,46	3.093,73
SLU - STR.02	Min	10.826,64	-227,71	949,88	-15.513,69	6.498,35	2.930,16
SLU - STR.03	Max	12.466,75	-151,30	901,41	-14.203,75	7.628,19	2.982,49
SLU - STR.03	Min	10.802,04	-218,92	840,00	-15.394,29	6.823,08	2.818,93
SLU - STR.04	Max	12.466,77	-159,89	881,27	-14.247,69	7.666,10	3.051,26
SLU - STR.04	Min	10.802,07	-227,52	819,87	-15.438,23	6.860,99	2.887,69
SLU - STR.05	Max	12.083,46	-151,63	1.059,42	-14.304,44	6.943,44	2.998,23
SLU - STR.05	Min	10.834,93	-202,34	1.013,37	-15.197,34	6.339,60	2.875,56
SLU - STR.06	Max	12.086,23	-160,30	1.039,28	-14.350,15	6.982,53	3.066,71
SLU - STR.06	Min	10.837,70	-211,02	993,23	-15.243,06	6.378,69	2.944,03
SLU - STR.07	Max	12.042,50	-151,31	842,73	-14.178,67	7.547,83	2.927,44
SLU - STR.07	Min	10.793,98	-202,03	796,68	-15.071,58	6.944,00	2.804,77
SLU - STR.08	Max	12.042,53	-159,90	822,59	-14.222,62	7.585,74	2.996,21
SLU - STR.08	Min	10.794,00	-210,62	776,54	-15.115,52	6.981,91	2.873,53
SLU - STR.09	Max	12.075,26	-148,70	1.022,80	-14.264,65	7.051,68	2.961,16
SLU - STR.09	Min	10.826,73	-199,42	976,74	-15.157,56	6.447,84	2.838,48
SLU - STR.10	Max	12.075,30	-163,02	989,23	-14.337,89	7.114,86	3.075,76
SLU - STR.10	Min	10.826,77	-213,74	943,18	-15.230,80	6.511,03	2.953,08
SLU - STR.11	Max	12.050,69	-148,51	892,78	-14.189,19	7.414,32	2.918,68
SLU - STR.11	Min	10.802,16	-199,23	846,73	-15.082,10	6.810,48	2.796,01
SLU - STR.12	Max	12.050,73	-162,83	859,22	-14.262,43	7.477,50	3.033,29
SLU - STR.12	Min	10.802,20	-213,55	813,17	-15.155,34	6.873,67	2.910,61
SLV - X - 01	Max	8.207,90	345,23	898,12	-7.505,84	5.879,64	3.815,69
SLV - X - 01	Min	7.664,43	-692,75	472,42	-14.129,78	3.831,89	367,24
SLV - X - 02	Max	8.207,94	335,73	873,27	-7.554,61	5.926,49	3.900,21
SLV - X - 02	Min	7.664,47	-702,25	447,57	-14.178,55	3.878,75	451,75
SLV - Y - 01	Max	8.201,11	51,63	1.257,46	-9.633,31	6.811,73	3.405,69
SLV - Y - 01	Min	7.671,22	-399,14	113,08	-12.002,30	2.899,80	777,23
SLV - Y - 02	Max	8.201,15	42,12	1.232,61	-9.682,09	6.858,58	3.490,21
SLV - Y - 02	Min	7.671,26	-408,64	88,23	-12.051,07	2.946,65	861,75

SPALLE- VERIFICHE STRUTTURALI DELLA SEZIONE DI SPICCATO DELLE **ELEVAZIONI**

Essendo la geometria delle due spalle perfettamente uguale, le verifiche strutturali della sezione delle elevazioni verranno esequite sulle azioni sollecitanti maggiormenti gravose.

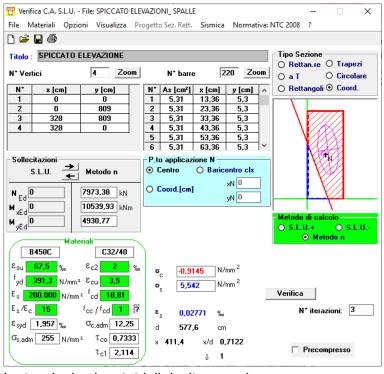
SEZIONE E ARMATURA DI VERIFICA

La sezione di armatura è rettangolare con base pari a 328 cm (direzione perpendicolare all'impalcato) e altezza pari a 809 cm (direzione parallela all'impalcato).

L'armatura verticale è costituita da:

- Ø26/10 disposti lungo i lati maggiori
- Ø26/10 disposti lungo i lati maggiori

L'armatura a taglio è costituita da staffe Ø16/20. Il copreferro minimo è assunto pari a 40 mm.


11.2 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI

11.2.1 **COMBINAZIONE SLE – QUASI PERMANENTE**

La combinazione maggiormente gravosa è risultata la combinazione SLE – Q.P.02.

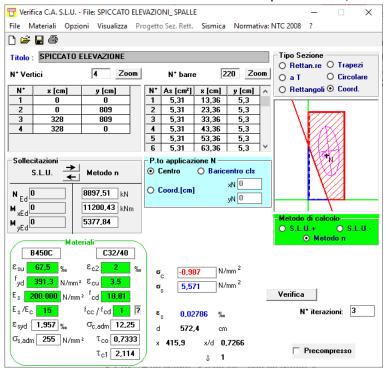
L'azione normale di calcolo è assunta pari a N_{sd} = 7.973,38 kNm.

Il momento flettente longitudinale di calcolo è assunto pari a M_{long,Sd} = 10.539,93 kNm Il momento flettente di calcolo è assunto pari a M_{trasv,Sd} = 4.930,77 kNm.

Le tensioni sui matetriali risultano pari a:

- $\sigma_c = 0.91 \text{ N/mm}^2 < 0.45 \text{ f}_{ck} = 14.94 \text{ N/mm}^2$
- $\sigma_s = 5,54 \text{ N/mm}^2 < 0,80 \text{ f}_{vk} = 360,00 \text{ N/mm}^2$

La verifica risulta pertanto soddisfatta.



11.2.2 COMBINAZIONE SLE - FREQUENTE

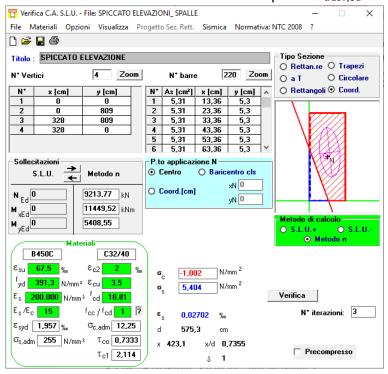
La combinazione maggiormente gravosa è risultata la combinazione **SLE – FREQ.02**. L'azione normale di calcolo è assunta pari a **N**_{Sd} = **8.897,51 kNm**.

Il momento flettente longitudinale di calcolo è assunto pari a $M_{long,Sd}$ = 11.200,43 kNm Il momento flettente di calcolo è assunto pari a $M_{trasv,Sd}$ = 5.377,84 kNm.

Le tensioni sui matetriali risultano pari a:

- $\sigma_c = 0.99 \text{ N/mm}^2 < 0.45 \text{ f}_{ck} = 14.94 \text{ N/mm}^2$
- $\sigma_s = 5,57 \text{ N/mm}^2 < 0,80 \text{ f}_{vk} = 360,00 \text{ N/mm}^2$

La verifica risulta pertanto soddisfatta.



11.2.3 COMBINAZIONE SLE - RARA

La combinazione maggiormente gravosa è risultata la combinazione SLE - CAR.02.

L'azione normale di calcolo è assunta pari a N_{Sd} = 9.213,77 kNm.

Il momento flettente longitudinale di calcolo è assunto pari a $M_{long,Sd}$ = 11.449,52 kNm Il momento flettente di calcolo è assunto pari a $M_{trasv,Sd}$ = 5.408,55 kNm.

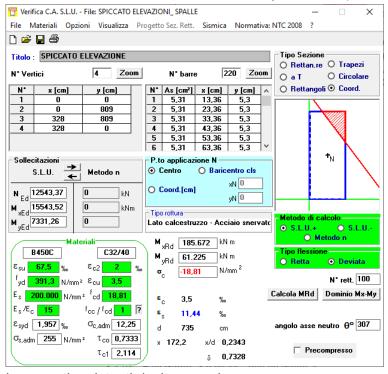
Le tensioni sui matetriali risultano pari a:

- $\sigma_c = 1,00 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 14,94 \text{ N/mm}^2$
- $\sigma_s = 5,40 \text{ N/mm}^2 < 0,80 \text{ f}_{vk} = 360,00 \text{ N/mm}^2$

La verifica risulta pertanto soddisfatta.

11.3 VERIFICA ALLO STATO LIMITE DI FESSURAZIONE

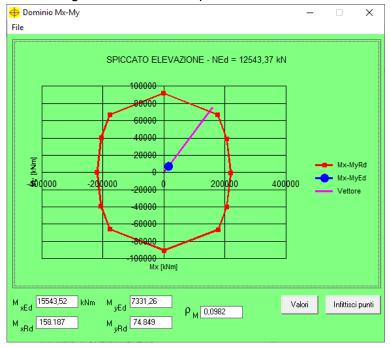
Stanti le tensioni sui materiali estremamente ridotte, le verifiche allo Stato Limite di fessurazione possono essere considerate implicitamente soddisfatte.


11.4 VERIFICA ALLO STATO LIMITE ULTIMO PER PRESSOFLESSIONE

11.4.1 **COMBINAZIONE SLU - STR**

La combinazione maggiormente gravosa è risultata la combinazione SLU – STR.02.

L'azione normale di calcolo è assunta pari a N_{Sd} = 12.543,37 kNm.

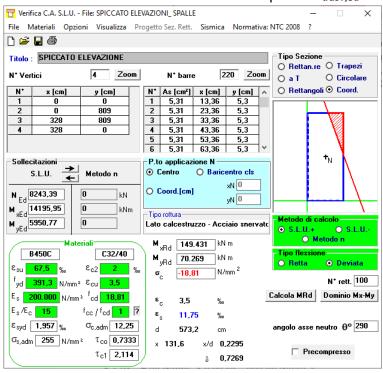

Il momento flettente longitudinale di calcolo è assunto pari a M_{long,Sd} = 15.543,52 kNm Il momento flettente di calcolo è assunto pari a M_{trasv,Sd} = 7.331,26 kNm.

I momenti resistenti risultano pari a:

- $M_{long,Rd} = 185.672,00 \text{ kNm} > M_{long,Sd} = 15.543,52 \text{ kNm}$
- $M_{trasv,Rd}$ = 61.225,00 kNm > $M_{trasv,Sd}$ = 7.331,26 kNm

Nell'immagine successiva è riportato il dominio di resistenza della sezione:

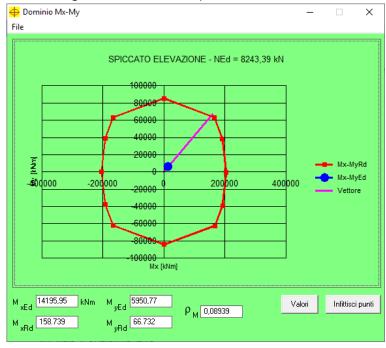
La verifica risulta pertanto soddisfatta.



11.4.2 **COMBINAZIONE SLV**

La combinazione maggiormente gravosa è risultata la combinazione SLV – X - 02.

L'azione normale di calcolo è assunta pari a N_{Sd} = 8.243,39 kNm.


Il momento flettente longitudinale di calcolo è assunto pari a M_{long,Sd} = 14.195,95 kNm Il momento flettente di calcolo è assunto pari a M_{trasv,Sd} = 5.950,77 kNm.

I momenti resistenti risultano pari a:

- $M_{long,Rd} = 149.431,00 \text{ kNm} > M_{long,Sd} = 14.195,95 \text{ kNm}$
- $M_{trasv,Rd} = 70.269,00 \text{ kNm} > M_{trasv,Sd} = 5.950,77 \text{ kNm}$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:

La verifica risulta pertanto soddisfatta.

11.5 VERIFICA ALLO STATO LIMITE ULTIMO PER TAGLIO

11.5.1 **DIREZIONE LONGITUDINALE**

La combinazione maggiormente gravosa è risultata la combinazione SLV – X - 02. L'azione tagliante di calcolo è assunta pari a V_{sd} = 704,88 kNm.

VERIFICA ALLO STATO LIMITE ULTIMO PER TAGLIO - ELEMENTI CON ARMATURE TRASVERSALI RESISTENTI AL TAGLIO D.M. 17.01.2018 - CAPITOLO 4.1.2.3.5.2 CARATTERISTICHE GEOMETRICHE DELLA SEZIONE 328,00 [cm] Base della zezione trasversale: b 809,00 Altezza della sezione trasversale: h [cm] 4,00 Copriferro netto: С [cm] 805,00 Altezza utile della sezione: d [cm] CARATTERISTICHE DEI MATERIALI Classe di resistenza del calcestruzzo: C32/40 40.00 [N/mm²] Resistenza caratteristica cubica a compressione: R_{ck} 33,20 [N/mm²] Resistenza caratteristica cilindrica a compressione: 18,81 [N/mm²] Resistenza di calcolo a compressione: Tipologia dell'acciaio da armatura: B450C Tensione caratteristica di rottura: 540.00 [N/mm²]Tensione caratteristica di snervamento: 450.00 [N/mm²] Resistenza di calcolo: 391,30 $[N/mm^2]$ AZIONI SOLLECITANTI DI CALCOLO $V_{\text{S},\text{d}}$ Azione tagliante di calcolo: 704,88 [kN] Azione normale di calcolo: $N_{S,d}$ 0,00 [kN] ARMATURA TRASVERSALE Inclinazione dei puntoni di calcestruzzo: 45,00 [°] Cotangente dell'angolo θ: cot(θ) 1,00 Inclinazione dell'armatura trasversale rispetto all'asse della trave: 90,00 [°] α Numero di bracci dell'armatura trasversale: 2,00 n Passo longitudinale delle armature trasversali: 20,00 [cm] S Diametro dell'armatura trasversale: $Ø_{trasv}$ 16,00 [mm] Area della singola barra: 2,01 [cm²] Area totale dell'armatura trasversale: A_{tot} 20,10 [cm²/m]

VERIFICA ALLO S.L.U. PER TAGLIO

La resistenza di calcolo a "taglio trazione" viene valutata mediante la seguente relazione - D.M. 17.01.2018 [4.1.27]:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot \left[\cot \left(\alpha\right) + \cot \left(\theta\right)\right] \cdot sen \left(\alpha\right)$$

La resistenza di calcolo a "taglio compressione" viene valutata mediante la seguente relazione - D.M. 17.01.2018 [4.1.28]:

$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f_{cd} \cdot \frac{\left[\cot \left(\alpha\right) + \cot \left(\theta\right)\right]}{\left[1 + \cot^{2}\left(\theta\right)\right]}$$

Larghezza minima della sezione: Resistenza a compressione ridotta del calcestruzzo: Tensione media di compressione nella sezione: Coefficiente maggiorativo α_c :	$\begin{array}{c} b_w \\ f_{yd} \\ \sigma_{cp} \\ \alpha_c \end{array}$	328,00 9,41 0,00 1,00	[cm] [N/mm²] [N/mm²]
RESISTENZA DI CALCOLO A "TAGLIO TRAZIONE" RESISTENZA DI CALCOLO A "TAGLIO COMPRESSIONE"	$ m V_{Rsd}$ $ m V_{Rcd}$	5698,35 111768,13	[kN] [kN]
AZIONE TAGLIANTE RESISTENTE DELLA SEZIONE: COEFFICIENTE DI SICUREZZA:	$V_{R,d}$ $F_S=V_{R,d}/V_{S,d}$	5.698,35 8,08	[kN]

LA VERIFICA RISULTA POSITIVA.

DIREZIONE TRASVERSALE

La combinazione maggiormente gravosa è risultata la combinazione SLV – Y - 01. L'azione tagliante di calcolo è assunta pari a V_{Sd} = -1.261,55 kNm.

VERIFICA ALLO STATO LIMITE ULTIMO PER TAGLIO - ELEMENTI CON ARMATURE TRASVERSALI RESISTENTI AL TAGLIO D.M. 17.01.2018 - CAPITOLO 4.1.2.3.5.2								
b	809,00	[cm]						
h	328,00	[cm]						
С		[cm]						
d	324,00	[cm]						
	C32/40	-						
R_{ck}	40,00	[N/mm ²]						
f_{ck}	33,20	$[N/mm^2]$						
f_{cd}	18,81	[N/mm ²]						
	B450C	-						
f_{tk}	540,00	[N/mm ²]						
f_{yk}	450,00	$[N/mm^2]$						
f_{yd}	391,30	[N/mm ²]						
$V_{s,d}$	1261,55	[kN]						
$N_{\text{S,d}}$	0,00	[kN]						
θ	45,00	[°]						
cot(θ)	1,00							
α	90,00	[°]						
n	2,00							
S	20,00	[cm]						
\emptyset_{trasv}	16,00	[mm]						
A_{barra}	2,01	[cm ²]						
A_{tot}	20,10	$[cm^2/m]$						
	3.5.2 b h c d R _{ck} f _{ck} f _{ck} f _{od} V _{s,d} N _{s,d} V _{s,d} N _{s,d} O _{trasv} A _{barra}	Boundary Boundary						

La resistenza di calcolo a "taglio trazione" viene valutata mediante la seguente relazione - D.M. 17.01.2018 [4.1.27]:

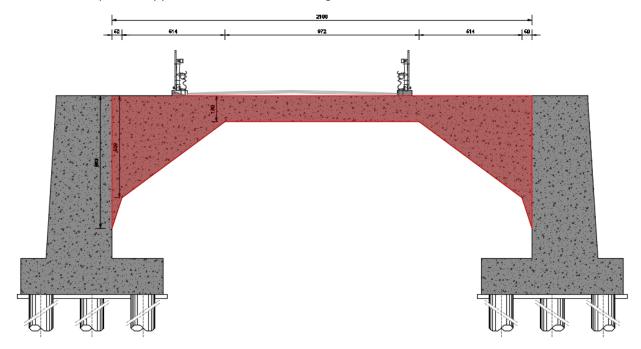
$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot [\cot(\alpha) + \cot(\theta)] \cdot sen(\alpha)$$

La resistenza di calcolo a "taglio compressione" viene valutata mediante la seguente relazione - D.M. 17.01.2018 [4.1.28]:

$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f_{cd} \cdot \frac{\left[\cot \left(\alpha\right) + \cot \left(\theta\right)\right]}{\left[1 + \cot^{2}\left(\theta\right)\right]}$$

Larghezza minima della sezione:	b_w	809,00	[cm]
Resistenza a compressione ridotta del calcestruzzo:	\mathbf{f}_{yd}	9,41	$[N/mm^2]$
Tensione media di compressione nella sezione:	$\sigma_{\sf cp}$	0,00	[N/mm ²]
Coefficiente maggiorativ o α_c :	$\alpha_{\!\scriptscriptstyle c}$	1,00	
RESISTENZA DI CALCOLO A "TAGLIO TRAZIONE"	V_{Rsd}	2293,50	[kN]
RESISTENZA DI CALCOLO A "TAGLIO COMPRESSIONE"	V_{Rcd}	110953,70	[kN]
AZIONE TAGLIANTE RESISTENTE DELLA SEZIONE:	$V_{R,d}$	2.293,50	[kN]
COEFFICIENTE DI SICUREZZA:	$\mathbf{F_{S}}\text{=}\mathbf{V_{R,d}}/\mathbf{V_{S,d}}$	1,82	

LA VERIFICA RISULTA POSITIVA.



12 SPALLE- VALUTAZIONE DELLE AZIONI SOLLECITANTI SULLA TRAVATA POSTERIORE

12.1 DEFINIZIONE DEL MODELLO DI CALCOLO E DEI CARICHI AGENTI

Al fine di valutare le azioni sollecitanti sulla travata posteriore è stato realizzato un apposito modello di calcolo (locale) mediante il software agli elementi finiti SAP2000 v.15.1 (Computers & Structures, Inc.), che rappresenta l'elemento di seguito evidenziato:

Lo schema statico adottato è di trave a campata unica incastrata agli estremi.

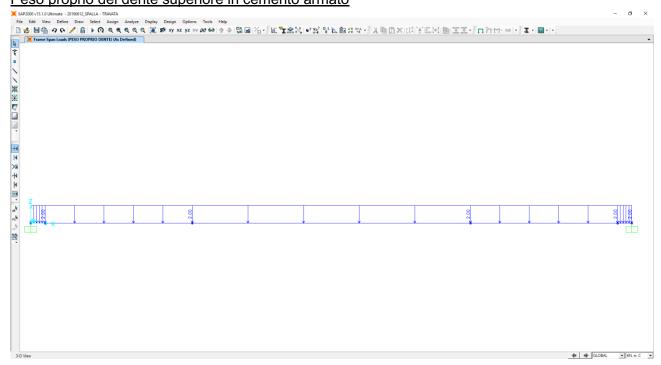
La larghezza della trave è stata considerata pari a **199 cm**, mentre la larghezza di applicazione dei carichi statici e mobili è stata considerata pari a **219 cm** (per tener conto della presenza del dente superiore in cemento armato).

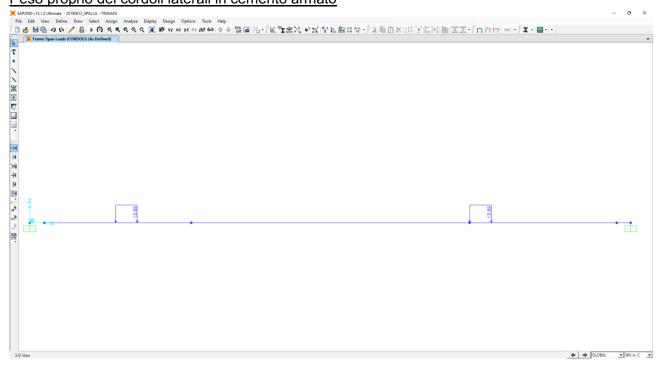
Sono stati pertanto presi in esame i seguenti carichi:

- Peso proprio della trave
- Peso proprio del dente superiore in cemento armato
- Peso proprio dei cordoli laterali in cemento armato
- Peso proprio della pavimentazione stradale
- Peso proprio delle barriere guard rail
- Carichi accidentali da traffico (secondo le disposizioni definite al capitolo 7.10.1)

Nella tabella successiva è riportata la determinazione dei carichi cocntrati e lineari, relativi ai carichi permanenti, applicati al modello di calcolo:

CARICO	b ₁	b ₂	h	L	V	γ	р	Р
	[m]	[m]	[m]	[m]	[m³/m]	[kN/m³]	[kN/m]	[kN]
Peso proprio dente in cemento armato	0,50	0,30	0,20	-	0,08	25,00	2,00	-
Cordoli in cemento armato	-	-	0,25	2,19	0,55	25,00	13,69	-
Pavimentazione (h _{min,dx})	-	-	0,07	2,19	0,15	22,00	3,37	-
Pavimentazione (h _{min,sx})	-	-	0,10	2,19	0,22	22,00	4,82	-
Pavimentazione (h _{max})	-	-	0,23	2,19	0,50	22,00	11,08	-
Barriere guard rail	-	-	-	2,19	-	2,00		4,38

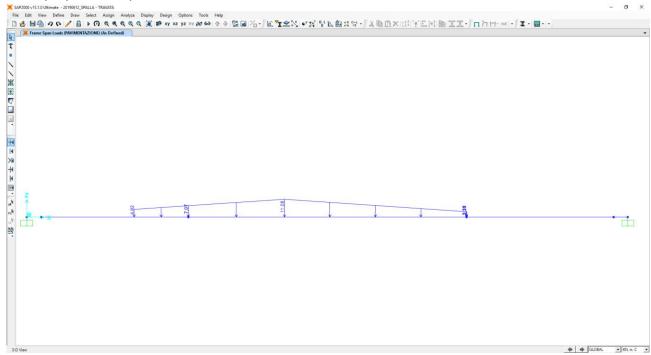


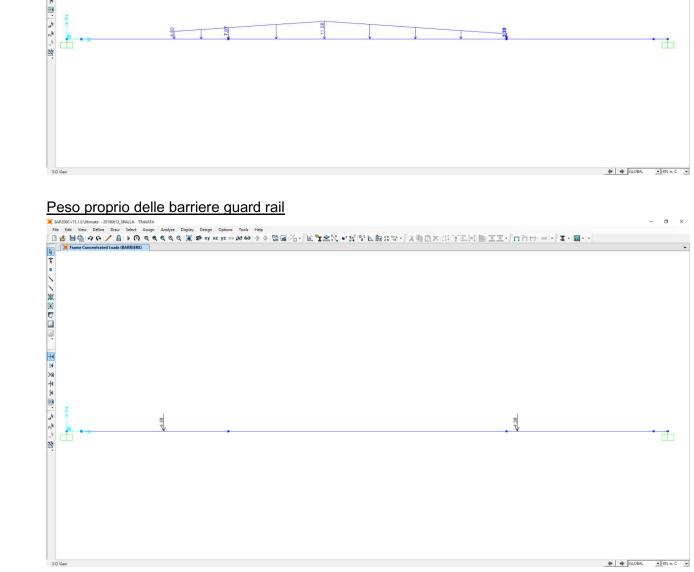


Nelle immagini seguenti è riportata l'applicazione dei carichi al modello di calcolo.

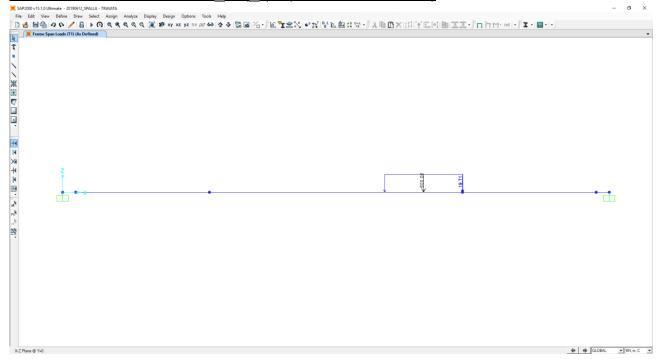
Peso proprio del dente superiore in cemento armato

Peso proprio dei cordoli laterali in cemento armato

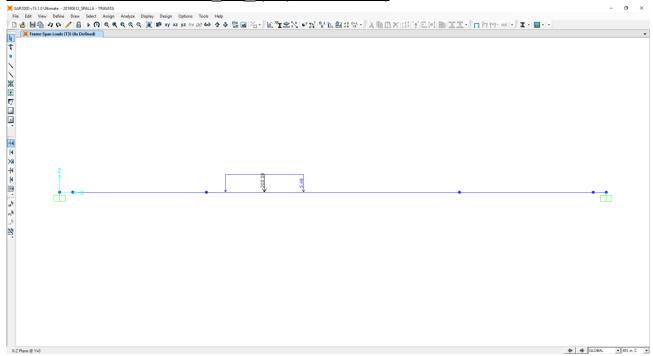




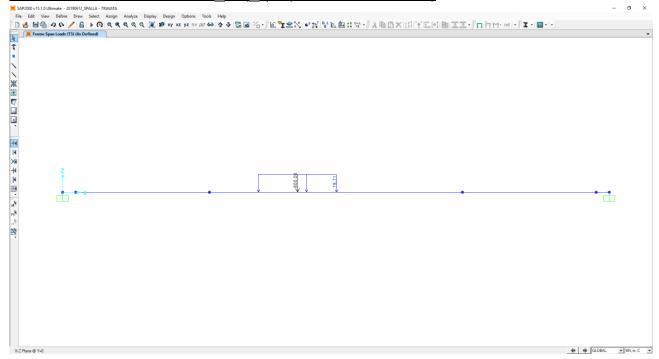
Peso proprio della pavimentazione stradale



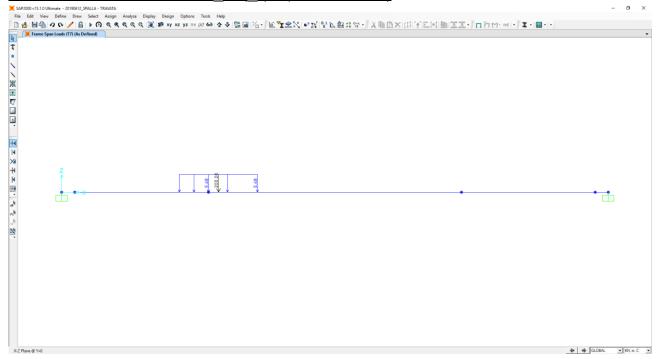
Carico accidentale da traffico Q_{1a} – q_{1a} (Disposizioni 01-02-03-04)



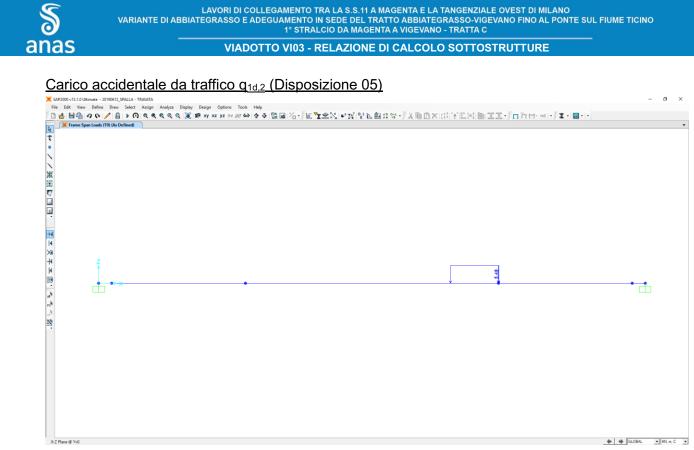
Carico accidentale da traffico Q_{1c} – q_{1c} (Disposizioni 01-02)

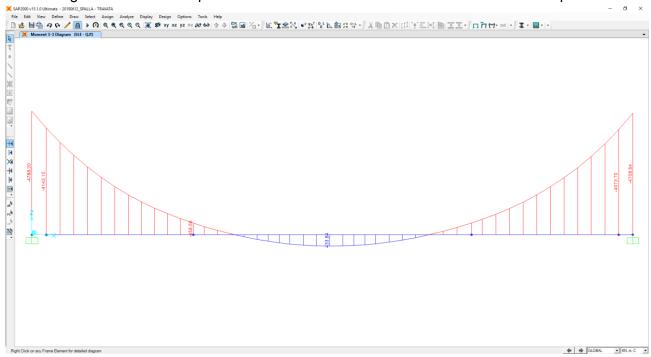


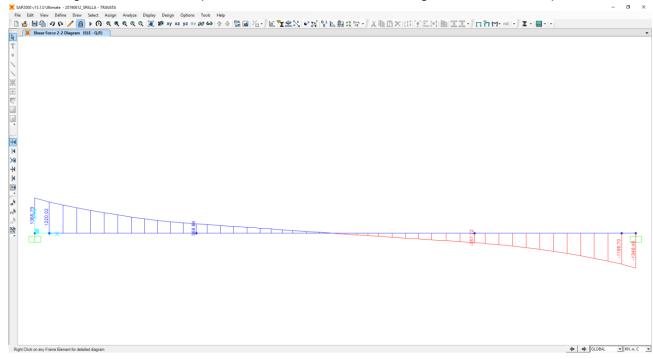
Carico accidentale da traffico Q_{1a} – q_{1a} (Disposizioni 05-06-07-08)



Carico accidentale da traffico Q_{1c} – q_{1c} (Disposizioni 05-06)



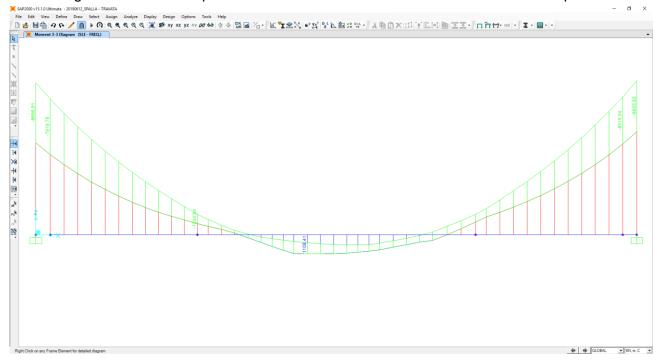


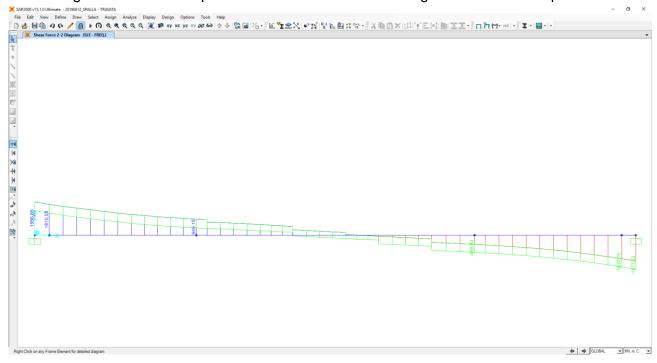


12.2 DIAGRAMMI DELLE AZIONI SOLLECITANTI

12.2.1 COMBINAZIONE ALLO STATO LIMITE DI ESERCIZIO – QUASI PERMANENTE

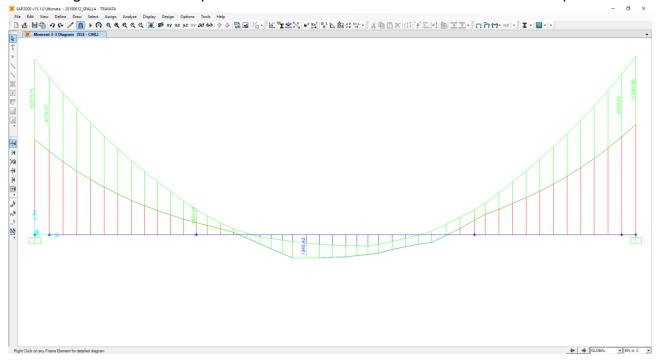
Nell'immagine successiva è riportato l'andamento del momento flettente sulla travata posteriore:

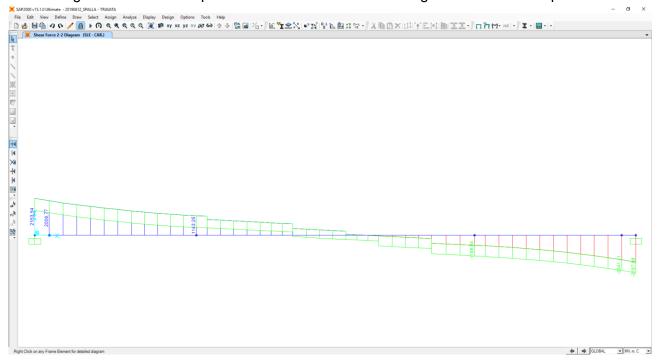




12.2.2 COMBINAZIONE ALLO STATO LIMITE DI ESERCIZIO – FREQUENTE

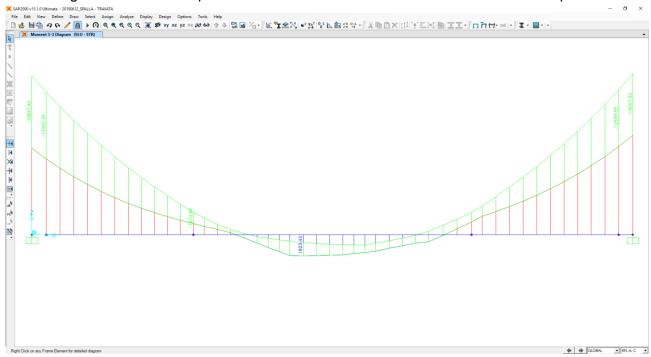
Nell'immagine successiva è riportato l'andamento del momento flettente sulla travata posteriore:

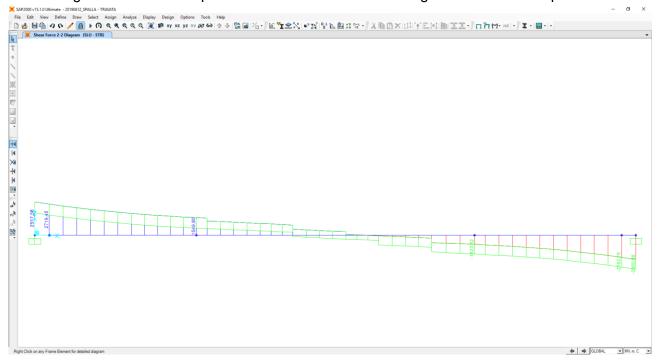




12.2.3 COMBINAZIONE ALLO STATO LIMITE DI ESERCIZIO – CARATTERISTICA

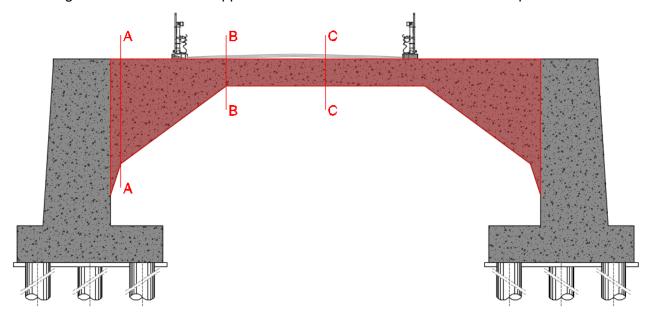
Nell'immagine successiva è riportato l'andamento del momento flettente sulla travata posteriore:





12.2.4 COMBINAZIONE ALLO STATO LIMITE ULTIMO - STR

Nell'immagine successiva è riportato l'andamento del momento flettente sulla travata posteriore:



13

SPALLE - VERIFICHE STRUTTURALI DELLA TRAVATA POSTERIORE

13.1 **DEFINIZIONI DELLE SEZIONI DI VERIFICA**

Nell'immagine successiva sono rappresentate le sezioni di verifica della travata posteriore:

13.2 RIEPILOGO DELLE AZIONI SOLLECITANTI SULLE SEZIONI DI VERIFICA

Nella tabella successiva sono riepilogati i valori delle azioni sollecitanti in corrispondenza delle sezioni di verifica precedentemente definite per le diverse combinazioni di carico considerate:

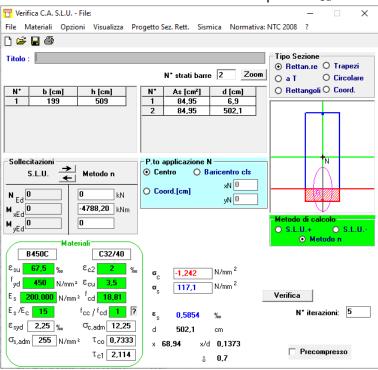
SEZIONE	COMBINAZIONE	M _{Sd} [kNm]	V _{Sd} [kN]
	SLE - QUASI PERMANENTE	-4.788,20	1.366,79
A-A	SLE - FREQUENTE	-8.965,82	-1.977,52
A-A	SLE - CARATTERISTICA	-10.384,88	-2.187,88
	SLU - STR -14.067,34		-2.960,89
	SLE - QUASI PERMANENTE	-456,56	366,84
B-B	SLE - FREQUENTE	-1.204,64	-988,64
B-B	SLE - CARATTERISTICA	-1.454,00	-1.198,94
	SLU - STR	SLU - STR -1.970,95	
	SLE - QUASI PERMANENTE	433,84	0,00
C-C	SLE - FREQUENTE	1.108,41	0,00
0-0	SLE - CARATTERISTICA	1.345,42	0,00
	SLU - STR	1.823,43	0,00

13.3

SEZIONE A-A - SEZIONE ED ARMATURA DI VERIFICA

La sezione di verifica è rettangolare con base pari a 199 cm e altezza pari a 509 cm.

L'armatura longitudinale è prevista realizzata come segue:


- 16Ø26 superiori
- 16Ø26 inferiori

L'armatura a taglio è costituita da staffe Ø16/20. Il copriferro netto minimo è assunto pari a 40 mm.

13.4 SEZIONE A-A - VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI

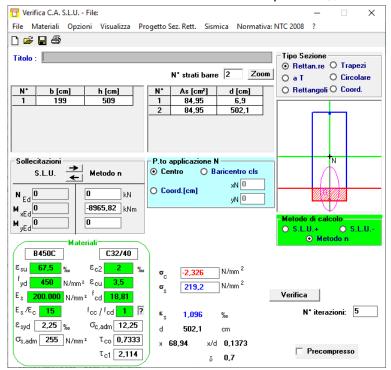
13.4.1 COMBINAZIONE SLE - QUASI PERMANENTE

Il momento flettente di calcolo è assunto pari a M_{Sd} = -4.788,20 kNm.

Le tensioni sui materiali risultano pari a:

 σ_c = 1,24 N/mm² < 0,45 f_{ck} = 14,94 N/mm²

 $\sigma_s = 117,10 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$



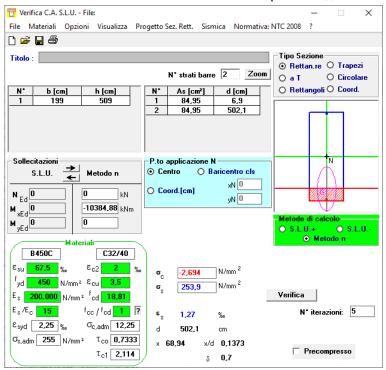
13.4.2 COMBINAZIONE SLE - FREQUENTE

Il momento flettente di calcolo è assunto pari a M_{Sd} = -8.965,82 kNm.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 2.33 \text{ N/mm}^2 < 0.45 \text{ f}_{ck} = 14.94 \text{ N/mm}^2$

 σ_s = 219,20 N/mm² < 0,80 f_{yk} = 360,00 N/mm²



13.4.3 **COMBINAZIONE SLE - CARATTERISTICA**

Il momento flettente di calcolo è assunto pari a M_{Sd} = -10.384,88 kNm.

Le tensioni sui materiali risultano pari a:

 σ_c = 2,69 N/mm² < 0,60 f_{ck} = 19,92 N/mm²

 $\sigma_s = 253,90 \text{ N/mm}^2 < 0.80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$

13.5 SEZIONE A-A - VERIFICA ALLO STATO LIMITE DI FESSURAZIONE

13.5.1 **COMBINAZIONE SLE – QUASI PERMANENTE**

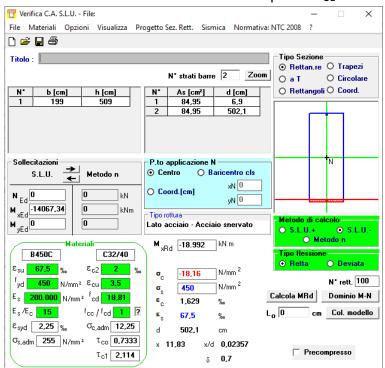
13.5.1 COMBINAZIONE SLE - QUASI PERMANENTE	_	
Geometria della sezione		
Altezza della sezione	h	5090 [mm]
Larghezza della sezione	b	1990 [mm]
Altezza utile della sezione	d	5021 [mm]
Distanza tra asse armatura e lembo compresso	d'	69 [mm]
Ricoprimento dell'armatura	С	56 [mm]
Armatura tesa ordinaria		
Numero di ferri tesi presenti nella sezione	n _{f.1}	<u>16</u> [-]
Diametro dei ferri tesi presenti nella sezione	φ _{f.1}	26 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.1}	8495 [mm²]
Armatura tesa di infittimento		
Numero di ferri tesi presenti nella sezione	n _{f.2}	0 [-]
Diametro dei ferri tesi presenti nella sezione	φ _{f.2}	0 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.2}	0 [mm²]
Caratteristiche dei materiali		
Resistenza caratteristica cilindrica dal calcestruzzo	f _{ck}	33,2 [MPa]
Resistenza a trazione media del calcestruzzo	f _{ctm}	3,1 [MPa]
Modulo di elasticità del calcestruzzo	E _{cm}	33643 [MPa]
Resistenza a snervamento dell'acciaio	f _{yk}	450 [MPa]
Modulo di elasticità dell'acciaio	E _s	210000 [MPa]
DETERMINAZIONE DELL'AMPIEZZA DELLE FESSURE		
Tensione nell'armatura tesa considerando la sezione fessurata	$\sigma_{\rm s}$	117,1 [MPa]
Asse neutro della sezione	X	689,4 [mm]
Tina a durata dai agrichi applicati		Lunga ▼
Tipo e durata dei carichi applicati		
Coefficiente di omogeneizzazione	α_{e}	6,24 [-]
Area totale delle armature presenti nella zona tesa Area efficace tesa di calcestruzzo	As	8495 [mm²] 343275 [mm²]
Area efficace lesa di calcestruzzo	A _{c,eff.1}	
	A _{c,eff.2}	2919065 [mm²]
	A _{c,eff.3}	5064550 [mm²]
	$A_{c,eff.min}$	343275 [mm²]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso	$\rho_{\text{p,eff}}$	0,02475 [-]
Resistenza efficace media del calcestruzzo	$f_{ct,eff}$	3,1 [MPa]
Fattore di durata del carico	k _t	0,4 [-]
Differenza tra la deformazione nell'acciaio e nel cls	$[\varepsilon_{\rm sm}$ - $\varepsilon_{\rm cm}]_{\rm min}$	0,000335 [-]
	$[\varepsilon_{\rm sm}$ - $\varepsilon_{\rm cm}]_{\rm calc.}$	0,000282 [-]
	$\left[\epsilon_{sm} \text{-} \epsilon_{cm} \right]$	0,000335 [-]
Spaziatura tra le barre (calcolata tra i baricentri dei ferri)	S	100 [mm]
Diametro equivalente delle barre	ϕ_{eq}	26,00 [mm]
Spaziatura massima di riferimento	S _{max,rif}	345 [mm]
Coefficienti k per il calcolo dell'ampiezza di fessurazione	k ₁	0,800 [-]
	k_2	0,500 [-]
	k ₃	3,400 [-]
	k ₄	0,425 [-]
<u>Distanza massima tra le fessure</u>	S _{r,max.1}	369 [mm]
	S _{r,max.2}	5721 [mm]
	S _{r,max}	369 [mm]
Ampiezza limite delle fessure per la combinazione di calcolo pertinente	W _{k.lim}	0,20 [mm]
Ampiezza delle fessure (di calcolo)	$\mathbf{w}_{\mathbf{k}}$	0,12 [mm]

13.5.2 COMBINAZIONE SLE - FREQUENTE

13.5.2 COMBINAZIONE SLE – FREQUENTE		
Geometria della sezione		
Altezza della sezione	h	5090 [mm]
Larghezza della sezione	b	1990 [mm]
Altezza utile della sezione	d	5021 [mm]
Distanza tra asse armatura e lembo compresso	d'	69 [mm]
Ricoprimento dell'armatura	С	56 [mm]
Armatura tesa ordinaria		<u> </u>
Numero di ferri tesi presenti nella sezione	n _{f.1}	16 [-]
Diametro dei ferri tesi presenti nella sezione	φ _{f.1}	26 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.1}	8495 [mm ²]
Armatura tesa di infittimento		
Numero di ferri tesi presenti nella sezione	n _{f.2}	0 [-]
Diametro dei ferri tesi presenti nella sezione	φ _{f.2}	0 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.2}	0 [mm ²]
Caratteristiche dei materiali		
Resistenza caratteristica cilindrica dal calcestruzzo	f _{ck}	33,2 [MPa]
Resistenza a trazione media del calcestruzzo	f _{ctm}	3,1 [MPa]
Modulo di elasticità del calcestruzzo	E _{cm}	33643 [MPa]
Resistenza a snervamento dell'acciaio	f _{yk}	450 [MPa]
Modulo di elasticità dell'acciaio	Ę,	210000 [MPa]
	_	
DETERMINAZIONE DELL'AMPIEZZA DELLE FESSURE		
Tensione nell'armatura tesa considerando la sezione fessurata	$\sigma_{\!s}$	219,2 [MPa]
Asse neutro della sezione	Х	689,4 [mm]
Tipo e durata dei carichi applicati		Lunga ▼
Coefficiente di omogeneizzazione	$lpha_{e}$	6,24 [-]
Area totale delle armature presenti nella zona tesa	A _s	8495 [mm²]
Area efficace tesa di calcestruzzo	A _{c,eff.1}	343275 [mm²]
A Carriodo toda di odiocoti dello	A _{c.eff.2}	2919065 [mm²]
	A _{c.eff.3}	5064550 [mm²]
	A _{c.eff.min}	343275 [mm ²]
	.,.	
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso	$\rho_{p,eff}$	0,02475 [-]
Resistenza efficace media del calcestruzzo	f _{ct,eff}	3,1 [MPa]
Fattore di durata del carico	k _t	0,4 [-]
Differenza tra la deformazione nell'acciaio e nel cls	[E _{sm} -E _{cm}] _{min}	0,000626 [-]
	$[\varepsilon_{\rm sm}$ - $\varepsilon_{\rm cm}]_{\rm calc.}$	0,000768 [-]
	$[\epsilon_{sm}\text{-}\epsilon_{cm}]$	0,000768 [-]
Charietura tra la harra (aglaciata tra i haria antri dei farri)		100 []
Spaziatura tra le barre (calcolata tra i baricentri dei ferri)	S	100 [mm]
Diametro equivalente delle barre	φ _{eq}	26,00 [mm]
Spaziatura massima di riferimento	S _{max,rif}	345 [mm]
Coefficienti k per il calcolo dell'ampiezza di fessurazione	K ₁	0,800 [-]
	k ₂	0,500 [-]
	k₃	3,400 [-]
	$=$ k_4	0,425 [-]
<u>Distanza massima tra le fessure</u>	S _{r,max.1}	369 [mm]
	S _{r,max.2}	5721 [mm]
	S _{r,max}	369 [mm]
		0.00
Ampiezza limite delle fessure per la combinazione di calcolo pertinente	W _{k.lim}	0,30 [mm]

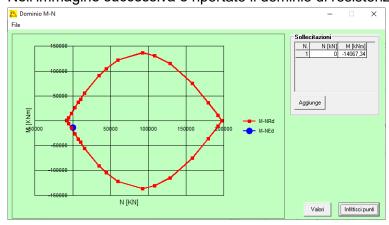
Ampiezza delle fessure (di calcolo)

 $\mathbf{w}_{\mathbf{k}}$



0,28 [mm]

13.6 SEZIONE A-A - VERIFICA ALLO STATO LIMITE ULTIMO PER FLESSIONE SEMPLICE


Il momento flettente di calcolo è assunto pari a M_{Sd} = -14.067,34 kNm.

Il momento resistente risulta pari a:

 $M_{Rd} = -18.992,00 \text{ kNm} > M_{Sd} = -14.067,34 \text{ kNm}$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:

13.7 SEZIONE A-A - VERIFICA ALLO STATO LIMITE ULTIMO PER TAGLIO

L'azione tagliante di calcolo è assunta pari a V_{Sd} = -2.960,89 kN.

VERIFICA ALLO STATO LIMITE ULTIMO PER TAGLIO - ELEMENTI D.M. 17.01.2018 - CAPIT		SALI RESISTENTI /	AL TAGLIO
CARATTERISTICHE GEOMETRICHE DELLA SEZIONE			
Base della zezione trasversale:	b	199,00	[cm]
Altezza della sezione trasv ersale: Copriferro netto:	h	509,00 4,00	[cm]
Altezza utile della sezione:	c d	505,00	[cm] [cm]
CARATTERISTICHE DEI MATERIALI			
Classe di resistenza del calcestruzzo:		C32/40	-
Resistenza caratteristica cubica a compressione:	R _{ck}	40,00	[N/mm ²]
Resistenza caratteristica cilindrica a compressione:	f _{ck}	33,20	[N/mm ²]
Resistenza di calcolo a compressione:	f _{cd}	18,81	[N/mm ²]
Tipologia dell'acciaio da armatura:		B450C	•
Tensione caratteristica di rottura:	f_{tk}	540,00	[N/mm ²]
Tensione caratteristica di snervamento:	f_{yk}	450,00	[N/mm ²]
Resistenza di calcolo:	\mathbf{f}_{yd}	391,30	[N/mm ²]
AZIONI SOLLECITANTI DI CALCOLO			
Azione tagliante di calcolo:	$V_{S,d}$	2960,89	[kN]
Azione normale di calcolo:	$N_{s,d}$	0,00	[kN]
ARMATURA TRASVERSALE			
Inclinazione dei puntoni di calcestruzzo:	θ	45,00	[°]
Cotangente dell'angolo θ:	cot(θ)	1,00	
Inclinazione dell'armatura trasversale rispetto all'asse della trave:	α	90,00	[°]
Numero di bracci dell'armatura trasversale:	n	2,00	
Passo longitudinale delle armature trasversali:	S	20,00	[cm]
Diametro dell'armatura trasversale:	\mathcal{O}_{trasv}	16,00	[mm]
Area della singola barra:	A_{barra}	2,01	[cm ²]
Area totale dell'armatura trasversale:	A_{tot}	20,10	[cm ² /m]

VERIFICA ALLO S.L.U. PER TAGLIO

La resistenza di calcolo a "taglio trazione" viene valutata mediante la seguente relazione - D.M. 17.01.2018 [4.1.27]:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot \left[\cot \left(\alpha\right) + \cot \left(\theta\right)\right] \cdot sen \left(\alpha\right)$$

La resistenza di calcolo a "taglio compressione" viene valutata mediante la seguente relazione - D.M. 17.01.2018 [4.1.28]:

$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f_{cd} \cdot \frac{\left[\cot\left(\alpha\right) + \cot\left(\theta\right)\right]}{\left[1 + \cot^{2}\left(\theta\right)\right]}$$

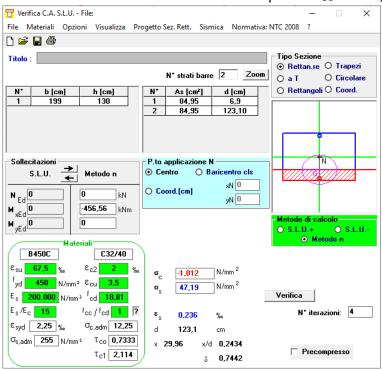
Larghezza minima della sezione: Resistenza a compressione ridotta del calcestruzzo: Tensione media di compressione nella sezione: Coefficiente maggiorativ ο α _c :	$egin{aligned} b_w \ f_{yd} \ \sigma_{cp} \ lpha_c \end{aligned}$	199,00 9,41 0,00 1,00	[cm] [N/mm²] [N/mm²]
RESISTENZA DI CALCOLO A "TAGLIO TRAZIONE" RESISTENZA DI CALCOLO A "TAGLIO COMPRESSIONE"	V_{Rsd} V_{Rcd}	3574,74 42539,53	[kN] [kN]
AZIONE TAGLIANTE RESISTENTE DELLA SEZIONE: COEFFICIENTE DI SICUREZZA:	$V_{R,d}$ $F_s=V_{R,d}/V_{S,d}$	3.574,74 1,21	[kN]

LA VERIFICA RISULTA POSITIVA

13.8 SEZIONE B-B - SEZIONE ED ARMATURA DI VERIFICA

La sezione di verifica è rettangolare con base pari a 199 cm e altezza pari a 130 cm.

L'armatura longitudinale è prevista realizzata come segue:


- 16Ø26 superiori
- 16Ø26 inferiori

L'armatura a taglio è costituita da staffe Ø16/10. Il copriferro netto minimo è assunto pari a 40 mm.

13.9 SEZIONE B-B - VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI

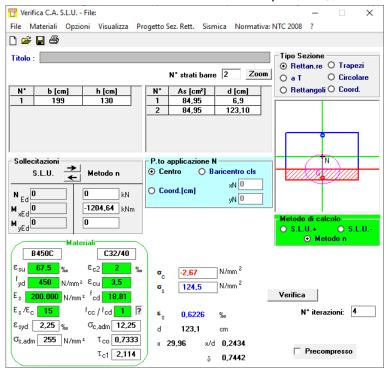
13.9.1 **COMBINAZIONE SLE - QUASI PERMANENTE**

Il momento flettente di calcolo è assunto pari a M_{Sd} = -456,56 kNm.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 1,01 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 14,94 \text{ N/mm}^2$

 $\sigma_s = 47,19 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$



13.9.2 COMBINAZIONE SLE - FREQUENTE

Il momento flettente di calcolo è assunto pari a M_{Sd} = -1.204,64 kNm.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 2,67 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 14,94 \text{ N/mm}^2$

 σ_s = 124,50 N/mm² < 0,80 f_{yk} = 360,00 N/mm²

13.9.3 COMBINAZIONE SLE - CARATTERISTICA

Il momento flettente di calcolo è assunto pari a M_{Sd} = -1.454,00 kNm.

Le tensioni sui materiali risultano pari a:

 σ_c = 3,22 N/mm² < 0,60 f_{ck} = 19,92 N/mm²

 $\sigma_s = 150,30 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$

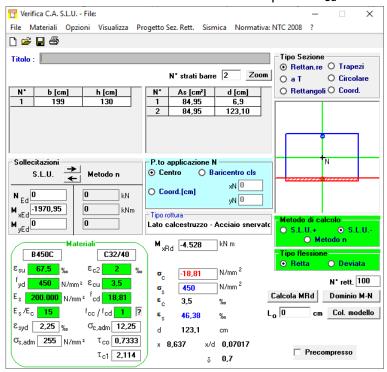
13.10 SEZIONE B-B - VERIFICA ALLO STATO LIMITE DI FESSURAZIONE

13.10.1 COMBINAZIONE SLE - QUASI PERMANENTE

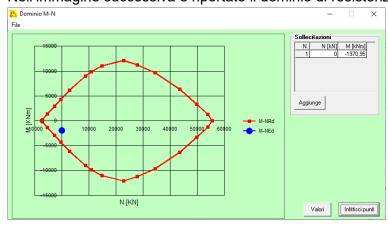
Geometria della sezione		
Altezza della sezione	h	1300 [mm]
Larghezza della sezione	b	1990 [mm]
Altezza utile della sezione	d	1231 [mm]
Distanza tra asse armatura e lembo compresso	d'	69 [mm]
Ricoprimento dell'armatura	c	56 [mm]
Armatura tesa ordinaria		[]
Numero di ferri tesi presenti nella sezione	n _{f.1}	<mark>16</mark> [-]
Diametro dei ferri tesi presenti nella sezione	φ _{f.1}	26 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.1}	8495 [mm²]
Armatura tesa di infittimento	, si.i	0.00 []
Numero di ferri tesi presenti nella sezione	n _{f.2}	0 [-]
Diametro dei ferri tesi presenti nella sezione	φ _{f.2}	0 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.2}	0 [mm ²]
7 11 00 00 17 10 00 F1 00 01 11 11 10 11 0 00 21 10 11 0	, st.2	o [mm]
Caratteristiche dei materiali		
Resistenza caratteristica cilindrica dal calcestruzzo	f _{ck}	33,2 [MPa]
Resistenza a trazione media del calcestruzzo	f _{ctm}	3,1 [MPa]
Modulo di elasticità del calcestruzzo	E _{cm}	33643 [MPa]
Resistenza a snervamento dell'acciaio	f _{yk}	450 [MPa]
Modulo di elasticità dell'acciaio	Ē,	210000 [MPa]
DETERMINAZIONE DELL'AM PIEZZA DELLE FESSURE		
Tensione nell'armatura tesa considerando la sezione fessurata	σ_{s}	47,19 [MPa]
Asse neutro della sezione	X	299,6 [mm]
Tipo e durata dei carichi applicati		Lunga 🔻
Coefficiente di omogeneizzazione	α_{e}	6,24 [-]
Area totale delle armature presenti nella zona tesa	A_s	8495 [mm²]
Area efficace tesa di calcestruzzo	$A_{c,eff.1}$	343275 [mm²]
	$A_{c,eff.2}$	663599 [mm²]
	$A_{c,eff.3}$	1293500 [mm²]
	$A_{c,eff.min}$	343275 [mm²]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso	$ ho_{ m p,eff}$	0,02475 [-]
Resistenza efficace media del calcestruzzo	f _{ct,eff}	3,1 [MPa]
Fattore di durata del carico	k _t	0,4 [-]
Differenza tra la deformazione nell'acciaio e nel cls	$[\varepsilon_{sm}^{-}-\varepsilon_{cm}]_{min}$	0,000135 [-]
	$[\varepsilon_{\rm sm}$ - $\varepsilon_{\rm cm}]_{\rm calc}$	-0,000051 [-]
	$[\epsilon_{\sf sm}\text{-}\epsilon_{\sf cm}]$	0,000135 [-]
Spaziatura tra le barre (calcolata tra i baricentri dei ferri)	S	100 [mm]
Diametro equivalente delle barre	$\phi_{\sf eq}$	26,00 [mm]
Spaziatura massima di riferimento	S _{max,rif}	345 [mm]
Coefficienti k per il calcolo dell'ampiezza di fessurazione	k ₁	0,800 [-]
	k_2	0,500 [-]
	k_3	3,400 [-]
	k ₄	0,425 [-]
<u>Distanza massima tra le fessure</u>	S _{r,max.1}	369 [mm]
	S _{r,max.2}	1301 [mm]
	S _{r,max}	369 [mm]
Ampiezza limite delle fessure per la combinazione di calcolo pertinente	W _{k.lim}	0,20 [mm]
Ampiezza delle fessure (di calcolo)		0,25 [mm]
Ampiezza delle lessure (di calcolo)	W _k	0,03

13 10 2 COMBINAZIONE SLE - EREQUENTE

13.10.2 COMBINAZIONE SLE – FREQUENTE		
Geometria della sezione		
Altezza della sezione	h	1300 [mm]
Larghezza della sezione	b	1990 [mm]
Altezza utile della sezione	d	1231 [mm]
Distanza tra asse armatura e lembo compresso	d'	69 [mm]
Ricoprimento dell'armatura	С	56 [mm]
Armatura tesa ordinaria		
Numero di ferri tesi presenti nella sezione	n _{f.1}	16 [-]
Diametro dei ferri tesi presenti nella sezione	φ _{f.1}	26 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.1}	8495 [mm ²]
Armatura tesa di infittimento	J	
Numero di ferri tesi presenti nella sezione	n _{f.2}	0 [-]
Diametro dei ferri tesi presenti nella sezione	φ _{f.2}	0 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.2}	0 [mm ²]
·	- 01.2	
Caratteristiche dei materiali		
Resistenza caratteristica cilindrica dal calcestruzzo	f _{ck}	33,2 [MPa]
Resistenza a trazione media del calcestruzzo	f _{ctm}	3,1 [MPa]
Modulo di elasticità del calcestruzzo	E _{cm}	33643 [MPa]
Resistenza a snervamento dell'acciaio	f _{yk}	450 [MPa]
Modulo di elasticità dell'acciaio	Ę,	210000 [MPa]
DETERMINAZIONE DELL'AMPIEZZA DELLE FESSURE		
Tensione nell'armatura tesa considerando la sezione fessurata	$\sigma_{\!s}$	124,5 [MPa]
Asse neutro della sezione	X	299,6 [mm]
Tipo e durata dei carichi applicati		Lunga ▼
Coefficiente di omogeneizzazione	α_{e}	6,24 [-]
Area totale delle armature presenti nella zona tesa	A _s	8495 [mm²]
Area efficace tesa di calcestruzzo	A _{c,eff.1}	343275 [mm²]
	A _{c,eff.2}	663599 [mm²]
	A _{c.eff.3}	1293500 [mm²]
	A _{c,eff.min}	343275 [mm ²]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso		0,02475 [-]
Resistenza efficace media del calcestruzzo	$ ho_{ m p,eff}$	0,02475 [-] 3,1 [MPa]
Fattore di durata del carico	f _{ct,eff} k₁	0,4 [-]
Differenza tra la deformazione nell'acciaio e nel cls		0,000356 [-]
Differenza tra la deformazione fieli accialo e fiel cis	$[\varepsilon_{\rm sm}$ - $\varepsilon_{\rm cm}]_{\rm min}$	0,000330 [-]
	$[\varepsilon_{\rm sm}$ - $\varepsilon_{\rm cm}]_{\rm calc.}$	0,000317 [-]
	$[\varepsilon_{sm}\text{-}\varepsilon_{cm}]$	0,000330 [-]
Spaziatura tra le barre (calcolata tra i baricentri dei ferri)	S	100 [mm]
Diametro equivalente delle barre	ϕ_{eq}	26,00 [mm]
Spaziatura massima di riferimento	Ψeq S _{max.rif}	345 [mm]
Coefficienti k per il calcolo dell'ampiezza di fessurazione	k ₁	0,800 [-]
Coornolona K por a dalocio dell'ampiozza di recodinazione	k ₂	0,500 [-]
	k ₃	3,400 [-]
	k ₄	0,425 [-]
Distanza massima tra le fessure	S _{r,max.1}	369 [mm]
	S _{r,max.1}	1301 [mm]
	S _{r,max}	369 [mm]
	Timux	
Ampiezza limite delle fessure per la combinazione di calcolo pertinente	W _{k.lim}	0,30 [mm]
Ampiezza delle fessure (di calcolo)	w _k	0,13 [mm]
. , , , , , , , , , , , , , , , , , , ,		



13.11 SEZIONE B-B - VERIFICA ALLO STATO LIMITE ULTIMO PER FLESSIONE SEMPLICE


Il momento flettente di calcolo è assunto pari a M_{Sd} = -1.970,95 kNm.

Il momento resistente risulta pari a:

 $M_{Rd} = -4.528,00 \text{ kNm} > M_{Sd} = -1.970,95 \text{ kNm}$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:

13.12

VIADOTTO VI03 - RELAZIONE DI CALCOLO SOTTOSTRUTTURE

L'azione tagliante di calcolo è assunta pari a V_{Sd} = -1.623,82 kN.

SEZIONE B-B - VERIFICA ALLO STATO LIMITE ULTIMO PER TAGLIO

VERIFICA ALLO STATO LIMITE ULTIMO PER TAGLIO - ELEMENTI CO D.M. 17.01.2018 - CAPITOL		SALI RESISTENTI	AL IAGLIU
CARATTERISTICHE GEOMETRICHE DELLA SEZIONE			
Base della zezione trasversale:	b	199,00	[cm]
Altezza della sezione trasversale:	h	130,00	[cm]
Copriferro netto:	С	4,00	[cm]
Altezza utile della sezione:	d	126,00	[cm]
CARATTERISTICHE DEI MATERIALI			
Classe di resistenza del calcestruzzo:		C32/40	•
Resistenza caratteristica cubica a compressione:	R_{ck}	40,00	[N/mm ²]
Resistenza caratteristica cilindrica a compressione:	f_{ck}	33,20	$[N/mm^2]$
Resistenza di calcolo a compressione:	f_{cd}	18,81	[N/mm ²]
Tipologia dell'acciaio da armatura:		B450C	•
Tensione caratteristica di rottura:	\mathbf{f}_{tk}	540,00	[N/mm ²]
Tensione caratteristica di snervamento:	f _{yk}	450,00	[N/mm ²]
Resistenza di calcolo:	f_{yd}	391,30	[N/mm ²]
AZIONI SOLLECITANTI DI CALCOLO			
Azione tagliante di calcolo:	$V_{S,d}$	1623,83	[kN]
Azione normale di calcolo:	$N_{s,d}$	0,00	[kN]
ARMATURA TRASVERSALE			
Inclinazione dei puntoni di calcestruzzo:	θ	45,00	[°]
Cotangente dell'angolo θ:	$\cot(\theta)$	1,00	
Inclinazione dell'armatura trasversale rispetto all'asse della trave:	α	90,00	[°]
Numero di bracci dell'armatura trasversale:	n	2,00	l
Passo longitudinale delle armature trasversali:	S	10,00	[cm]
Diametro dell'armatura trasversale:	\emptyset_{trasv}	16,00	[mm]
Area della singola barra:	A_{barra}	2,01	[cm ²]
Area totale dell'armatura trasversale:	A_{tot}	40,20	[cm ² /m]

VERIFICA ALLO S.L.U. PER TAGLIO

La resistenza di calcolo a "taglio trazione" viene valutata mediante la seguente relazione - D.M. 17.01.2018 [4.1.27]:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot \left[\cot \left(\alpha\right) + \cot \left(\theta\right)\right] \cdot sen \left(\alpha\right)$$

La resistenza di calcolo a "taglio compressione" viene valutata mediante la seguente relazione - D.M. 17.01.2018 [4.1.28]:

$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f_{cd} \cdot \frac{\left[\cot \left(\alpha\right) + \cot \left(\theta\right)\right]}{\left[1 + \cot^{2}\left(\theta\right)\right]}$$

Larghezza minima della sezione: Resistenza a compressione ridotta del calcestruzzo: Tensione media di compressione nella sezione: Coefficiente maggiorativ o α_c :	b _w f _{yd} σ _{cp} α _c	199,00 9,41 0,00 1,00	[cm] [N/mm²] [N/mm²]
RESISTENZA DI CALCOLO A "TAGLIO TRAZIONE" RESISTENZA DI CALCOLO A "TAGLIO COMPRESSIONE"	$egin{array}{c} egin{array}{c} egin{array}{c} V_{Rsd} \end{array}$	1783,83 10613,82	[kN] [kN]
AZIONE TAGLIANTE RESISTENTE DELLA SEZIONE: COEFFICIENTE DI SICUREZZA:	$V_{R,d}$ $F_S=V_{R,d}/V_{S,d}$	1.783,83 1,10	[kN]

LA VERIFICA RISULTA POSITIVA

13.13 SEZIONE C-C - SEZIONE ED ARMATURA DI VERIFICA

La sezione di verifica è rettangolare con base pari a 199 cm e altezza pari a 130 cm.

L'armatura longitudinale è prevista realizzata come segue:

- 16Ø26 superiori
- 16Ø26 inferiori

L'armatura a taglio è costituita da staffe Ø16/20. Il copriferro netto minimo è assunto pari a 40 mm.

SEZIONE C-C - VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI

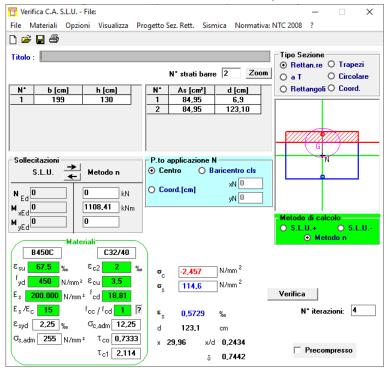
13.14.1 COMBINAZIONE SLE - QUASI PERMANENTE

Il momento flettente di calcolo è assunto pari a M_{Sd} = 433,84 kNm.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 0.96 \text{ N/mm}^2 < 0.45 \text{ f}_{ck} = 11.20 \text{ N/mm}^2$

 $\sigma_s = 44,85 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$



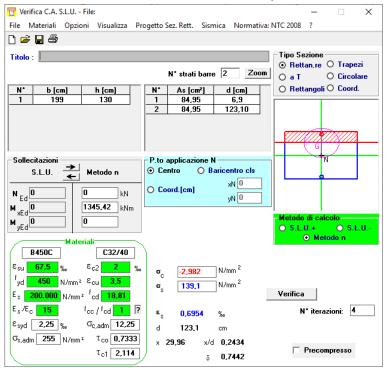
13.14.2 COMBINAZIONE SLE - FREQUENTE

Il momento flettente di calcolo è assunto pari a M_{Sd} = 1.108,41 kNm.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 2,46 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 11,20 \text{ N/mm}^2$

 σ_s = 114,60 N/mm² < 0,80 f_{yk} = 360,00 N/mm²



13.14.3 COMBINAZIONE SLE - CARATTERISTICA

Il momento flettente di calcolo è assunto pari a M_{Sd} = 1.345,42 kNm.

Le tensioni sui materiali risultano pari a:

 σ_c = 2,98 N/mm² < 0,60 f_{ck} = 14,94 N/mm²

 $\sigma_s = 139,10 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$

13.15

VIADOTTO VI03 - RELAZIONE DI CALCOLO SOTTOSTRUTTURE

13.15.1 COMBINAZIONE SLE – QUASI PERMANENTE

SEZIONE C-C - VERIFICA ALLO STATO LIMITE DI FESSURAZIONE

13.15.1 COMBINAZIONE SLE – QUASI PERMANENTE	_	
Geometria della sezione		
Altezza della sezione	h :	1300 [mm]
Larghezza della sezione	b	1990 [mm]
Altezza utile della sezione	d	1231 [mm]
Distanza tra asse armatura e lembo compresso	d'	69 [mm]
Ricoprimento dell'armatura	С	56 [mm]
Armatura tesa ordinaria		
Numero di ferri tesi presenti nella sezione	n _{f.1}	16 [-]
Diametro dei ferri tesi presenti nella sezione	φ _{f.1}	26 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.1}	8495 [mm²]
Armatura tesa di infittimento		
Numero di ferri tesi presenti nella sezione	n _{f.2}	0 [-]
Diametro dei ferri tesi presenti nella sezione	φ _{f.2}	0 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.2}	0 [mm²]
	51.2	5 [HART]
Caratteristiche dei materiali		
Resistenza caratteristica cilindrica dal calcestruzzo	f _{ck}	33,2 [MPa]
Resistenza a trazione media del calcestruzzo	f _{ctm}	3,1 [MPa]
Modulo di elasticità del calcestruzzo	E _{cm}	33643 [MPa]
Resistenza a snervamento dell'acciaio	f _{yk}	450 [MPa]
Modulo di elasticità dell'acciaio	E,	210000 [MPa]
	<u>La</u>	
DETERMINAZIONE DELL'AMPIEZZA DELLE FESSURE		
Tensione nell'armatura tesa considerando la sezione fessurata	$\sigma_{\!s}$	44,85 [MPa]
Asse neutro della sezione	X	299,6 [mm]
Tipo e durata dei carichi applicati		Lunga 🔻
Coefficiente di omogeneizzazione	α_{e}	6,24 [-]
Area totale delle armature presenti nella zona tesa	A_s	8495 [mm²]
Area efficace tesa di calcestruzzo	$A_{c,eff.1}$	343275 [mm²]
	$A_{c,eff.2}$	663599 [mm²]
	$A_{c,eff.3}$	1293500 [mm²]
	$A_{c,eff.min}$	343275 [mm²]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso	$\rho_{p,eff}$	0,02475 [-]
Resistenza efficace media del calcestruzzo	f _{ct.eff}	3,1 [MPa]
Fattore di durata del carico	k,	0,4 [-]
Differenza tra la deformazione nell'acciaio e nel cls	$[\varepsilon_{\rm sm}^{-}\varepsilon_{\rm cm}]_{\rm min}$	0.000128 [-]
	[\varepsilon_{sm} - \varepsilon_{cm}]_{calc.}	,
	[E _{sm} -E _{cm}]	0,000128 [-]
	Losm ocmj	0,000.20 []
Spaziatura tra le barre (calcolata tra i baricentri dei ferri)	s	100 [mm]
Diametro equivalente delle barre	ϕ_{eq}	26,00 [mm]
Spaziatura massima di riferimento	S _{max.rif}	345 [mm]
Coefficienti k per il calcolo dell'ampiezza di fessurazione	k ₁	0,800 [-]
200	k ₂	0,500 [-]
	k ₃	3,400 [-]
	-	
Diotanza massima tra la fassure	k ₄	0,425 [-]
<u>Distanza massima tra le fessure</u>	S _{r,max.1}	369 [mm]
	S _{r,max.2}	1301 [mm]
	S _{r,max}	369 [mm]
A majozza limita dalla fangura par la combinazione di calcala martinante	\A/	[cree] 00 0
Ampiezza limite delle fessure per la combinazione di calcolo pertinente	W _{k.lim}	0,20 [mm]

Ampiezza delle fessure (di calcolo)

 $\mathbf{w}_{\mathbf{k}}$

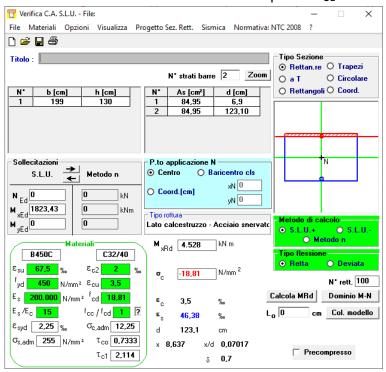
0,05 [mm]

13.15.2 COMBINAZIONE SLE - FREQUENTE

13.15.2 COMBINAZIONE SLE – FREQUENTE		
Geometria della sezione		
Altezza della sezione	h	1300 [mm]
Larghezza della sezione	b	1990 [mm]
Altezza utile della sezione	d	1231 [mm]
Distanza tra asse armatura e lembo compresso	d'	69 [mm]
Ricoprimento dell'armatura	С	56 [mm]
Armatura tesa ordinaria		
Numero di ferri tesi presenti nella sezione	n _{f.1}	16 [-]
Diametro dei ferri tesi presenti nella sezione	φ _{f.1}	26 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.1}	8495 [mm ²]
Armatura tesa di infittimento		
Numero di ferri tesi presenti nella sezione	n _{f.2}	0 [-]
Diametro dei ferri tesi presenti nella sezione	φ _{f.2}	0 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.2}	0 [mm²]
<u>Caratteristiche dei materiali</u>		
Resistenza caratteristica cilindrica dal calcestruzzo	f _{ck}	33,2 [MPa]
Resistenza a trazione media del calcestruzzo	f _{ctm}	3,1 [MPa]
Modulo di elasticità del calcestruzzo	E _{cm}	33643 [MPa]
Resistenza a snervamento dell'acciaio	f _{yk}	450 [MPa]
Modulo di elasticità dell'acciaio	Ē	210000 [MPa]
DETERMINAZIONE DELL'AMPIEZZA DELLE FESSURE		
Tensione nell'armatura tesa considerando la sezione fessurata	σ_{s}	114,6 [MPa]
Asse neutro della sezione	Х	299,6 [mm]
Tipo e durata dei carichi applicati		Lunga ▼
Coefficiente di omogeneizzazione	~	6,24 [-]
Area totale delle armature presenti nella zona tesa	$oldsymbol{lpha_{e}}{A_{s}}$	8495 [mm²]
Area efficace tesa di calcestruzzo	· ·	343275 [mm ²]
Al ea el licace lesa di caicesti de 20	A _{c,eff.1}	663599 [mm²]
	A _{c,eff.2}	1293500 [mm ²]
	A _{c,eff.3}	343275 [mm ²]
	$A_{c,eff.min}$	
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso	$\rho_{p,eff}$	0,02475 [-]
Resistenza efficace media del calcestruzzo	f _{ct,eff}	3,1 [MPa]
Fattore di durata del carico	K _t	0,4 [-]
<u>Differenza tra la deformazione nell'acciaio e nel cls</u>	$[\varepsilon_{\rm sm}$ - $\varepsilon_{\rm cm}]_{\rm min}$	0,000327 [-]
	[\varepsilon_{sm}-\varepsilon_{cm}]_{calc.}	0,000270 [-]
	$[\epsilon_{\sf sm} extsf{-}\epsilon_{\sf cm}]$	0,000327 [-]
Constitute to be been a facility of the state of the stat		400 []
Spaziatura tra le barre (calcolata tra i baricentri dei ferri)	S	100 [mm]
Diametro equivalente delle barre	φ _{eq}	26,00 [mm]
Spaziatura massima di riferimento	S _{max,rif}	345 [mm]
Coefficienti k per il calcolo dell'ampiezza di fessurazione	k ₁	0,800 [-]
	k ₂	0,500 [-]
	k ₃	3,400 [-]
	k ₄	0,425 [-]
<u>Distanza massima tra le fessure</u>	S _{r,max.1}	369 [mm]
	S _{r,max.2}	1301 [mm]
	S _{r,max}	369 [mm]
		0.00
Ampiezza limite delle fessure per la combinazione di calcolo pertinente	W _{k.lim}	0,30 [mm]

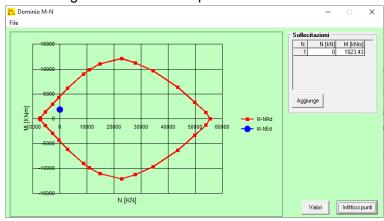
Ampiezza delle fessure (di calcolo)

 $\mathbf{w}_{\mathbf{k}}$



0,12 [mm]

13.16 SEZIONE C-C - VERIFICA ALLO STATO LIMITE ULTIMO PER FLESSIONE SEMPLICE


Il momento flettente di calcolo è assunto pari a M_{Sd} = 1.823,43 kNm.

Il momento resistente risulta pari a:

 $M_{Rd} = 4.528,00 \text{ kNm} > M_{Sd} = 1.823,43 \text{ kNm}$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:

14 SPALLE- VALUTAZIONE DELLE AZIONI SOLLECITANTI SUI PALI DI FONDAZIONE

14.1 SPALLA "A" - AZIONI SOLLECITANTI DESUNTE DAL MODELLO DI CALCOLO

14.1.1 **ZATTERA SINISTRA**

Nelle tabelle successive sono riepilogati i valori delle azioni sollecitanti (azione normale e taglio nelle due direzioni trasversali) valutati in corrispondenza delle molle elastiche mediante le quali sono stati modellati i pali di fondaizone all'interno del modello di calcolo tridimensionale.

Per ciascun palo è stata determinata anche la risultante di taglio orizzontale, valutata come combinazione quadratica delle azioni taglianti valutate lungo le due direzioni orizzontali ortogonali.

Combinazioni allo Stato Limite di Esercizio – Quasi Permanenti

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{sd} [kN]	R _{v,sd} [kN]
SP.A-SX-1	SLE - Q.P.01	Max	102,85	17,44	1.853,69	104,31
SP.A-SX-1	SLE - Q.P.01	Min	102,85	17,44	1.853,69	104,31
SP.A-SX-1	SLE - Q.P.02	Max	104,77	18,47	1.859,16	106,38
SP.A-SX-1	SLE - Q.P.02	Min	104,77	18,47	1.859,16	106,38
SP.A-SX-2	SLE - Q.P.01	Max	101,42	10,04	1.140,31	101,91
SP.A-SX-2	SLE - Q.P.01	Min	101,42	10,04	1.140,31	101,91
SP.A-SX-2	SLE - Q.P.02	Max	103,35	12,09	1.143,81	104,05
SP.A-SX-2	SLE - Q.P.02	Min	103,35	12,09	1.143,81	104,05
SP.A-SX-3	SLE - Q.P.01	Max	86,77	20,03	369,69	89,05
SP.A-SX-3	SLE - Q.P.01	Min	86,77	20,03	369,69	89,05
SP.A-SX-3	SLE - Q.P.02	Max	88,33	22,68	370,79	91,20
SP.A-SX-3	SLE - Q.P.02	Min	88,33	22,68	370,79	91,20
SP.A-SX-4	SLE - Q.P.01	Max	5,86	-142,67	2.145,20	142,79
SP.A-SX-4	SLE - Q.P.01	Min	5,86	-142,67	2.145,20	142,79
SP.A-SX-4	SLE - Q.P.02	Max	6,82	-141,40	2.147,05	141,56
SP.A-SX-4	SLE - Q.P.02	Min	6,82	-141,40	2.147,05	141,56
SP.A-SX-5	SLE - Q.P.01	Max	-2,43	-59,38	1.100,18	59,43
SP.A-SX-5	SLE - Q.P.01	Min	-2,43	-59,38	1.100,18	59,43
SP.A-SX-5	SLE - Q.P.02	Max	-1,37	-56,97	1.098,41	56,98
SP.A-SX-5	SLE - Q.P.02	Min	-1,37	-56,97	1.098,41	56,98
SP.A-SX-6	SLE - Q.P.01	Max	-66,43	-320,58	2.350,34	327,39
SP.A-SX-6	SLE - Q.P.01	Min	-66,43	-320,58	2.350,34	327,39
SP.A-SX-6	SLE - Q.P.02	Max	-66,78	-320,33	2.350,64	327,22
SP.A-SX-6	SLE - Q.P.02	Min	-66,78	-320,33	2.350,64	327,22
SP.A-SX-7	SLE - Q.P.01	Max	-75,60	-157,51	1.392,29	174,72
SP.A-SX-7	SLE - Q.P.01	Min	-75,60	-157,51	1.392,29	174,72
SP.A-SX-7	SLE - Q.P.02	Max	-75,62	-155,75	1.388,11	173,14
SP.A-SX-7	SLE - Q.P.02	Min	-75,62	-155,75	1.388,11	173,14
SP.A-SX-8	SLE - Q.P.01	Max	-50,19	-36,93	455,01	62,31
SP.A-SX-8	SLE - Q.P.01	Min	-50,19	-36,93	455,01	62,31
SP.A-SX-8	SLE - Q.P.02	Max	-49,77	-34,23	448,72	60,41
SP.A-SX-8	SLE - Q.P.02	Min	-49,77	-34,23	448,72	60,41

Combinazioni allo Stato Limite di Esercizio – Frequenti

PALO	COMBINAZIONE		V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _v , _{sd} [kN]
SP.A-SX-1	SLE - FREQ.01	Max	111,71	28,09	2.000,89	115,18
SP.A-SX-1	SLE - FREQ.01	Min	102,85	17,42	1.853,69	104,31
SP.A-SX-1	SLE - FREQ.02	Max	113,63	29,12	2.006,36	117,30
SP.A-SX-1	SLE - FREQ.02	Min	104,77	18,45	1.859,16	106,38
SP.A-SX-1	SLE - FREQ.03	Max	102,65	17,33	1.853,15	104,10
SP.A-SX-1	SLE - FREQ.03	Min	102,65	17,33	1.853,15	104,10
SP.A-SX-1	SLE - FREQ.04	Max	104,96	18,57	1.859,71	106,59
SP.A-SX-1	SLE - FREQ.04	Min	104,96	18,57	1.859,71	106,59
SP.A-SX-2	SLE - FREQ.01	Max	109,87	15,90	1.228,45	111,01
SP.A-SX-2	SLE - FREQ.01	Min	101,42	10,04	1.140,31	101,91
SP.A-SX-2	SLE - FREQ.02	Max	111,80	17,95	1.231,94	113,23
SP.A-SX-2	SLE - FREQ.02	Min	103,35	12,09	1.143,80	104,05
SP.A-SX-2	SLE - FREQ.03	Max	101,22	9,84	1.139,97	101,70
SP.A-SX-2	SLE - FREQ.03	Min	101,22	9,84	1.139,97	101,70
SP.A-SX-2	SLE - FREQ.04	Max	103,54	12,30	1.144,16	104,27
SP.A-SX-2	SLE - FREQ.04	Min	103,54	12,30	1.144,16	104,27
SP.A-SX-3	SLE - FREQ.01	Max	93,62	22,23	388,08	96,23
SP.A-SX-3	SLE - FREQ.01	Min	86,77	19,90	367,87	89,02
SP.A-SX-3	SLE - FREQ.02	Max	95,19	24,88	389,18	98,38
SP.A-SX-3	SLE - FREQ.02	Min	88,33	22,55	368,97	91,16
SP.A-SX-3	SLE - FREQ.03	Max	86,61	19,76	369,58	88,84
SP.A-SX-3	SLE - FREQ.03	Min	86,61	19,76	369,58	88,84
SP.A-SX-3	SLE - FREQ.04	Max	88,49	22,95	370,90	91,41
SP.A-SX-3	SLE - FREQ.04	Min	88,49	22,95	370,90	91,41
SP.A-SX-4	SLE - FREQ.01	Max	11,54	-142,67	2.332,58	143,14
SP.A-SX-4	SLE - FREQ.01	Min	5,86	-149,87	2.145,20	149,98
SP.A-SX-4	SLE - FREQ.02	Max	12,50	-141,40	2.334,43	141,95
SP.A-SX-4	SLE - FREQ.02	Min	6,82	-148,59	2.147,05	148,75
SP.A-SX-4	SLE - FREQ.03	Max	5,76	-142,80	2.145,01	142,92
SP.A-SX-4	SLE - FREQ.03	Min	5,76	-142,80	2.145,01	142,92
SP.A-SX-4	SLE - FREQ.04	Max	6,91	-141,27	2.147,24	141,44
SP.A-SX-4	SLE - FREQ.04	Min	6,91	-141,27	2.147,24	141,44

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _v , _{sd} [kN]
SP.A-SX-5	SLE - FREQ.01	Max	0,87	-59,38	1.199,20	59,38
SP.A-SX-5	SLE - FREQ.01	Min	-4,46	-63,92	1.100,17	64,07
SP.A-SX-5	SLE - FREQ.02	Max	1,92	-56,97	1.197,44	57,00
SP.A-SX-5	SLE - FREQ.02	Min	-3,41	-61,51	1.098,41	61,60
SP.A-SX-5	SLE - FREQ.03	Max	-2,53	-59,62	1.100,36	59,67
SP.A-SX-5	SLE - FREQ.03	Min	-2,53	-59,62	1.100,36	59,67
SP.A-SX-5	SLE - FREQ.04	Max	-1,27	-56,73	1.098,24	56,74
SP.A-SX-5	SLE - FREQ.04	Min	-1,27	-56,73	1.098,24	56,74
SP.A-SX-6	SLE - FREQ.01	Max	-63,05	-320,58	2.551,65	326,72
SP.A-SX-6	SLE - FREQ.01	Min	-67,18	-342,25	2.350,34	348,78
SP.A-SX-6	SLE - FREQ.02	Max	-63,41	-320,33	2.551,96	326,55
SP.A-SX-6	SLE - FREQ.02	Min	-67,53	-342,00	2.350,64	348,60
SP.A-SX-6	SLE - FREQ.03	Max	-66,39	-320,61	2.350,31	327,41
SP.A-SX-6	SLE - FREQ.03	Min	-66,39	-320,61	2.350,31	327,41
SP.A-SX-6	SLE - FREQ.04	Max	-66,82	-320,31	2.350,67	327,20
SP.A-SX-6	SLE - FREQ.04	Min	-66,82	-320,31	2.350,67	327,20
SP.A-SX-7	SLE - FREQ.01	Max	-73,29	-157,51	1.520,44	173,73
SP.A-SX-7	SLE - FREQ.01	Min	-77,99	-170,52	1.392,29	187,51
SP.A-SX-7	SLE - FREQ.02	Max	-73,30	-155,75	1.516,26	172,14
SP.A-SX-7	SLE - FREQ.02	Min	-78,00	-168,76	1.388,11	185,91
SP.A-SX-7	SLE - FREQ.03	Max	-75,60	-157,69	1.392,71	174,88
SP.A-SX-7	SLE - FREQ.03	Min	-75,60	-157,69	1.392,71	174,88
SP.A-SX-7	SLE - FREQ.04	Max	-75,62	-155,58	1.387,69	172,98
SP.A-SX-7	SLE - FREQ.04	Min	-75,62	-155,58	1.387,69	172,98
SP.A-SX-8	SLE - FREQ.01	Max	-48,07	-36,93	498,00	60,62
SP.A-SX-8	SLE - FREQ.01	Min	-53,09	-43,39	454,76	68,56
SP.A-SX-8	SLE - FREQ.02	Max	-47,66	-34,23	491,71	58,68
SP.A-SX-8	SLE - FREQ.02	Min	-52,68	-40,69	448,47	66,56
SP.A-SX-8	SLE - FREQ.03	Max	-50,23	-37,19	455,64	62,50
SP.A-SX-8	SLE - FREQ.03	Min	-50,23	-37,19	455,64	62,50
SP.A-SX-8	SLE - FREQ.04	Max	-49,73	-33,96	448,10	60,22
SP.A-SX-8	SLE - FREQ.04	Min	-49,73	-33,96	448,10	60,22

Combinazioni allo Stato Limite di Esercizio – Caratteristiche

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _v , _{Sd} [kN]
SP.A-SX-1	SLE - CAR.01	Max	113,60	38,81	2.060,84	120,05
SP.A-SX-1	SLE - CAR.01	Min	101,79	24,58	1.864,58	104,71
SP.A-SX-1	SLE - CAR.02	Max	115,91	40,05	2.067,40	122,63
SP.A-SX-1	SLE - CAR.02	Min	104,09	25,82	1.871,14	107.25
SP.A-SX-1	SLE - CAR.03	Max	115,33	24,26	2.037,97	117,86
SP.A-SX-1	SLE - CAR.03	Min	103,52	10,04	1.841,71	104,00
SP.A-SX-1	SLE - CAR.04	Max	117,64	25,50	2.044,53	120,37
SP.A-SX-1	SLE - CAR.04	Min	105,82	11,28	1.848.27	106,42
SP.A-SX-1	SLE - CAR.05	Max	110,07	40.11	2.019,40	117,15
SP.A-SX-1	SLE - CAR.05	Min	101,21	29,44	1.872,20	105,40
SP.A-SX-1	SLE - CAR.06	Max	112,38	41,34	2.025,96	119,74
SP.A-SX-1	SLE - CAR.06	Min	103,52	30,68	1.878,76	107,97
SP.A-SX-1	SLE - CAR.07	Max	112,95	15,86	1.981,28	114,06
SP.A-SX-1	SLE - CAR.07	Min	104,09	5,20	1.834,09	104,22
SP.A-SX-1	SLE - CAR.08	Max	115,26	17,10	1.987,84	116,52
SP.A-SX-1	SLE - CAR.08	Min	106,40	6,43	1.840,65	106,59
SP.A-SX-1	SLE - CAR.09	Max	109,88	34,84	2.009,59	115,27
SP.A-SX-1	SLE - CAR.09	Min	101,02	24,18	1.862,40	103,87
SP.A-SX-1	SLE - CAR.10	Max	113,72	36,91	2.020,52	119,56
SP.A-SX-1	SLE - CAR.10	Min	104,86	26.24	1.873,33	108,10
SP.A-SX-1	SLE - CAR.10	Max	111,61	20,30	1.986,72	113,44
SP.A-SX-1	SLE - CAR.11	Min	102,75	9,63	1.839,53	103,20
SP.A-SX-1	SLE - CAR.11	Max	115,45	22,36	1.997,65	117,60
SP.A-SX-1	SLE - CAR.12	Min	106,59	11,70	1.850,46	107,23
SP.A-SX-2	SLE - CAR.12	Max	110,95	23,68	1.270,42	113,45
SP.A-SX-2	SLE - CAR.01	Min	99,68	15,87	1.152,90	100,94
SP.A-SX-2	SLE - CAR.02	Max	113,27	26,13	1.274,61	116,25
SP.A-SX-2	SLE - CAR.02	Min	102,00	18,32	1.157,09	103,63
SP.A-SX-2	SLE - CAR.03	Max	114,03	11,62	1.244,54	114,62
SP.A-SX-2	SLE - CAR.03	Min	102,76	3,81	1.127,02	102,83
SP.A-SX-2	SLE - CAR.04	Max	116,35	14,07	1.248,73	117,20
SP.A-SX-2	SLE - CAR.04	Min	105,08	6,26	1.131,22	105,27
SP.A-SX-2	SLE - CAR.05	Max	107,11	25,74	1.249,66	110,16
SP.A-SX-2	SLE - CAR.05	Min	98,66	19,89	1.161,53	100,64
SP.A-SX-2	SLE - CAR.06	Max	109,43	28,20	1.253,86	113,00
SP.A-SX-2	SLE - CAR.06	Min	100,98	22,34	1.165,72	103,42
SP.A-SX-2	SLE - CAR.07	Max	112,24	5,64	1.206,54	112,38
SP.A-SX-2	SLE - CAR.07	Min	103,79	-0,21	1.118,40	103,79
SP.A-SX-2	SLE - CAR.07	Max	114,56	8,10	1.210,73	114,85
SP.A-SX-2	SLE - CAR.08	Min	106,11	2,24	1.122,59	106,13
SP.A-SX-2	SLE - CAR.09	Max	107,36	20,91	1.239,64	109,38
SP.A-SX-2	SLE - CAR.09	Min	98,91	15,05	1.151,50	100,05
SP.A-SX-2	SLE - CAR.10	Max	111,23	25,00	1.131,30	114,00
SP.A-SX-2	SLE - CAR.10	Min	102,78	19,14	1.158,49	104,54
SP.A-SX-2	SLE - CAR. 10	Max	110,44	8,85	1.136,49	110,80
SP.A-SX-2	SLE - CAR.11	Min	101,99	2,99	1.125,63	102,03
SP.A-SX-2	SLE - CAR.11	Max	114,31	12,94	1.125,05	115,04
SP.A-SX-2	SLE - CAR. 12	Min	105,86	7,08	1.132,61	
3r.A-31-2	SLE - CAR. 12	IVIII	105,60	ι ,0δ	1.132,01	106,09

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _{v,sd} [kN]
SP.A-SX-3	SLE - CAR.01 Max		94,00	27,10	405,21	97,83
SP.A-SX-3	SLE - CAR.01	Min	84,87	23,99		88,19
SP.A-SX-3	SLE - CAR.01	Max	95,88	30,29	378,26 406,52	100,55
			· · · · · · · · · · · · · · · · · · ·		379,57	
SP.A-SX-3	SLE - CAR.02	Min	86,74	27,18	,	90,90
SP.A-SX-3	SLE - CAR.03	Max	97,50	18,30	383,00	99,20
SP.A-SX-3	SLE - CAR.03	Min	88,36	15,19	356,05	89,65
SP.A-SX-3	SLE - CAR.04	Max	99,37	21,48	384,32	101,67
SP.A-SX-3	SLE - CAR.04	Min	90,23	18,37	357,36	92,08
SP.A-SX-3	SLE - CAR.05	Max	90,56	29,30	406,48	95,18
SP.A-SX-3	SLE - CAR.05	Min	83,70	26,97	386,27	87,94
SP.A-SX-3	SLE - CAR.06	Max	92,43	32,49	407,80	97,97
SP.A-SX-3	SLE - CAR.06	Min	85,58	30,15	387,59	90,73
SP.A-SX-3	SLE - CAR.07	Max	96,38	14,63	369,47	97,48
SP.A-SX-3	SLE - CAR.07	Min	89,52	12,30	349,25	90,36
SP.A-SX-3	SLE - CAR.08	Max	98,25	17,81	370,78	99,85
SP.A-SX-3	SLE - CAR.08	Min	91,40	15,48	350,57	92,70
SP.A-SX-3	SLE - CAR.09	Max	91,09	25,31	398,64	94,54
SP.A-SX-3	SLE - CAR.09	Min	84,24	22,98	378,43	87,32
SP.A-SX-3	SLE - CAR.10	Max	94,22	30,61	400,83	99,07
SP.A-SX-3	SLE - CAR.10	Min	87,37	28,28	380,62	91,83
SP.A-SX-3	SLE - CAR.11	Max	94,59	16,50	376,43	96,02
SP.A-SX-3	SLE - CAR.11	Min	87,73	14,17	356,22	88,87
SP.A-SX-3	SLE - CAR.12	Max	97,71	21,81	378,63	100,12
SP.A-SX-3	SLE - CAR.12	Min	90,86	19,48	358,41	92,92
SP.A-SX-4	SLE - CAR.01	Max	13,33	-137,03	2.393,91	137,68
SP.A-SX-4	SLE - CAR.01	Min	5,76	-146,62	2.144,07	146,74
SP.A-SX-4	SLE - CAR.02	Max	14,48	-135,50	2.396,13	136,27
SP.A-SX-4	SLE - CAR.02	Min	6,91	-145,09	2.146,30	145,25
SP.A-SX-4	SLE - CAR.03	Max	13,34	-148,57	2.395,79	149,17
SP.A-SX-4	SLE - CAR.03	Min	5,77	-158,16	2.145,95	158,27
SP.A-SX-4	SLE - CAR.04	Max	14,49	-147,04	2.398,02	147,75
SP.A-SX-4	SLE - CAR.04	Min	6,92	-156,63	2.148,18	156,78
SP.A-SX-4	SLE - CAR.05	Max	11,44	-133,18	2.330,82	133,67
SP.A-SX-4	SLE - CAR.05	Min	5,76	-140,38	2.143,44	140,49
SP.A-SX-4	SLE - CAR.06	Max	12,59	-131,65	2.333,05	132,25
SP.A-SX-4	SLE - CAR.06	Min	6,91	-138,85	2.145,67	139,02
SP.A-SX-4	SLE - CAR.07	Max	11,45	-152,42	2.333,96	152,85
SP.A-SX-4	SLE - CAR.07	Min	5,77	-159,61	2.146,58	159,72
SP.A-SX-4	SLE - CAR.08	Max	12,60	-150,89	2.336,18	151,41
SP.A-SX-4	SLE - CAR.08	Min	6,92	-158,08	2.148,81	158,23
SP.A-SX-4	SLE - CAR.09	Max	11,06	-137,54	2.330,71	137,98
SP.A-SX-4	SLE - CAR.09	Min	5,38	-144,73	2.143,33	144,83
SP.A-SX-4	SLE - CAR.10	Max	12,97	-134,99	2.334,42	135,61
SP.A-SX-4	SLE - CAR.10	Min	7,29	-142,18	2.147,04	142,37
SP.A-SX-4	SLE - CAR.11	Max	11,06	-149,08	2.332,59	149,49
SP.A-SX-4	SLE - CAR.11	Min	5,38	-156,28	2.145,21	156,37
SP.A-SX-4	SLE - CAR.12	Max	12,98	-146,53	2.336,30	147,10
SP.A-SX-4	SLE - CAR.12	Min	7,30	-153,72	2.148,92	153,90

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _{v,sd} [kN]
SP.A-SX-5	SLE - CAR.01	Max	1,66	-55,00	1.233,19	55,02
SP.A-SX-5	SLE - CAR.01	Min	-5,44	-61,06	1.101,15	61,30
SP.A-SX-5	SLE - CAR.02	Max	2,93	-52,11	1.231,07	52,19
SP.A-SX-5	SLE - CAR.02	Min	-4,17	-58,16	1.099,03	58,31
SP.A-SX-5	SLE - CAR.02	Max	2,05	-64,24	1.231,58	64,27
SP.A-SX-5	SLE - CAR.03	Min	-5,05	-70,29	1.099,54	70,47
SP.A-SX-5	SLE - CAR.03	Max	3,32	-61,35	1.229,46	61,43
SP.A-SX-5	SLE - CAR.04 SLE - CAR.04	Min	-3,79	-67,40	1.097,42	67,51
SP.A-SX-5	SLE - CAR.04 SLE - CAR.05	Max	0,44	-51,92	1.200,72	51,92
SP.A-SX-5	SLE - CAR.05	Min	-4,89	-56,46	1.101,69	56,67
SP.A-SX-5	SLE - CAR.06	Max	1,71	-49,03		
SP.A-SX-5	SLE - CAR.06	Min	-3,62	-53,57	1.198,60 1.099,57	49,06 53,69
SP.A-SX-5	SLE - CAR.07	Max	1,08	-67,32	1.198,04	67,32
SP.A-SX-5	SLE - CAR.07	Min	-4,25	-71,86	1.099,01	71,98
SP.A-SX-5	SLE - CAR.08	Max	2,35	-64,42	1.195,92	64,47
SP.A-SX-5	SLE - CAR.08	Min	-2,98	-68,97	1.096,89	69,03
SP.A-SX-5	SLE - CAR.09	Max	0,15	-55,96	1.200,89	55,96
SP.A-SX-5	SLE - CAR.09	Min	-5,18	-60,51	1.101,86	60,73
SP.A-SX-5	SLE - CAR.10	Max	2,26	-51,15	1.197,36	51,19
SP.A-SX-5	SLE - CAR.10	Min	-3,07	-55,69	1.098,33	55,77
SP.A-SX-5	SLE - CAR.11	Max	0,53	-65,20	1.199,28	65,20
SP.A-SX-5	SLE - CAR.11	Min	-4,80	-69,74	1.100,25	69,91
SP.A-SX-5	SLE - CAR.12	Max	2,64	-60,38	1.195,75	60,44
SP.A-SX-5	SLE - CAR.12	Min	-2,69	-64,92	1.096,72	64,98
SP.A-SX-6	SLE - CAR.01	Max	-61,04	-314,34	2.600,84	320,22
SP.A-SX-6	SLE - CAR.01	Min	-66,54	-343,23	2.332,41	349,62
SP.A-SX-6	SLE - CAR.02	Max	-61,47	-314,05	2.601,21	320,01
SP.A-SX-6	SLE - CAR.02	Min	-66,97	-342,93	2.332,78	349,41
SP.A-SX-6	SLE - CAR.03	Max	-62,74	-326,87	2.636,62	332,84
SP.A-SX-6	SLE - CAR.03	Min	-68,24	-355,76	2.368,20	362,24
SP.A-SX-6	SLE - CAR.04	Max	-63,17	-326,57	2.636,99	332,63
SP.A-SX-6	SLE - CAR.04	Min	-68,67	-355,46	2.368,56	362,03
SP.A-SX-6	SLE - CAR.05	Max	-61,60	-310,17	2.521,80	316,23
SP.A-SX-6	SLE - CAR.05	Min	-65,72	-331,83	2.320,49	338,28
SP.A-SX-6	SLE - CAR.06	Max	-62,03	-309,87	2.522,17	316,02
SP.A-SX-6	SLE - CAR.06	Min	-66,15	-331,54	2.320,85	338,07
SP.A-SX-6	SLE - CAR.07	Max	-64,44	-331,05	2.581,44	337,26
SP.A-SX-6	SLE - CAR.07	Min	-68,56	-352,71	2.380,12	359,31
SP.A-SX-6	SLE - CAR.08	Max	-64,86	-330,75	2.581,81	337,05
SP.A-SX-6	SLE - CAR.08	Min	-68,99	-352,41	2.380,49	359,10
SP.A-SX-6	SLE - CAR.09	Max	-62,02	-314,44	2.533,61	320,50
SP.A-SX-6	SLE - CAR.09	Min	-66,15	-336,11	2.332,29	342,56
SP.A-SX-6	SLE - CAR.10	Max	-62,74	-313,95	2.534,22	320,15
SP.A-SX-6	SLE - CAR.10	Min	-66,86	-335,61	2.332,90	342,21
SP.A-SX-6	SLE - CAR.11	Max	-63,73	-326,97	2.569,39	333,12
SP.A-SX-6	SLE - CAR.11	Min	-67,85	-348,63	2.368,07	355,18
SP.A-SX-6	SLE - CAR.12	Max	-64,44	-326,47	2.570,00	332,77
SP.A-SX-6	SLE - CAR.12	Min	-68,56	-348,14	2.368,69	354,82

PALO	COMBIN	AZIONE	V _{Sd,long}	V _{Sd,long}	N _{Sd}	R _v , _{sd} [kN]
SP.A-SX-7	SLE - CAR.01	Max	[kN] -71,11	[kN] -152,88	[kN] 1.547,96	168,60
SP.A-SX-7	SLE - CAR.01	Min		-170,21	•	186,98
SP.A-SX-7	SLE - CAR.01	Max	-77,38 -71,12	-170,21	1.377,09	166,70
	_			-168,10	1.542,94	185,06
SP.A-SX-7 SP.A-SX-7	SLE - CAR.02	Min Max	-77,39 73,00	-160,10	,	· · · · · · · · · · · · · · · · · · ·
	SLE - CAR.03		-73,92		1.579,20	178,53
SP.A-SX-7	SLE - CAR.03	Min	-80,19	-179,84	1.408,33	196,91
SP.A-SX-7	SLE - CAR.04	Max	-73,93	-160,39	1.574,18	176,61
SP.A-SX-7	SLE - CAR.04	Min	-80,21	-177,73	1.403,31	194,99
SP.A-SX-7	SLE - CAR.05	Max	-70,94	-149,67	1.494,83	165,63
SP.A-SX-7	SLE - CAR.05	Min	-75,65 -70,00	-162,67	1.366,67	179,40
SP.A-SX-7	SLE - CAR.06	Max	-70,96	-147,56	1.489,81	163,73
SP.A-SX-7	SLE - CAR.06	Min	-75,66	-160,56	1.361,65	177,49
SP.A-SX-7	SLE - CAR.07	Max	-75,63	-165,71	1.546,90	182,15
SP.A-SX-7	SLE - CAR.07	Min	-80,33	-178,72	1.418,74	195,94
SP.A-SX-7	SLE - CAR.08	Max	-75,64	-163,60	1.541,88	180,24
SP.A-SX-7	SLE - CAR.08	Min	-80,35	-176,60	1.413,72	194,02
SP.A-SX-7	SLE - CAR.09	Max	-71,87	-153,58	1.506,92	169,57
SP.A-SX-7	SLE - CAR.09	Min	-76,58	-166,58	1.378,76	183,34
SP.A-SX-7	SLE - CAR.10	Max	-71,90	-150,06	1.498,55	166,39
SP.A-SX-7	SLE - CAR.10	Min	-76,60	-163,06	1.370,39	180,16
SP.A-SX-7	SLE - CAR.11	Max	-74,69	-163,21	1.538,16	179,48
SP.A-SX-7	SLE - CAR.11	Min	-79,39	-176,21	1.410,00	193,27
SP.A-SX-7	SLE - CAR.12	Max	-74,71	-159,69	1.529,79	176,30
SP.A-SX-7	SLE - CAR.12	Min	-79,42	-172,69	1.401,64	190,07
SP.A-SX-8	SLE - CAR.01	Max	-45,76	-34,02	502,92	57,02
SP.A-SX-8	SLE - CAR.01	Min	-52,45	-42,63	445,26	67,59
SP.A-SX-8	SLE - CAR.02	Max	-45,26	-30,79	495,37	54,74
SP.A-SX-8	SLE - CAR.02	Min	-51,96	-39,40	437,72	65,21
SP.A-SX-8	SLE - CAR.03	Max	-49,06	-40,37	523,00	63,53
SP.A-SX-8	SLE - CAR.03	Min	-55,75	-48,98	465,35	74,21
SP.A-SX-8	SLE - CAR.04	Max	-48,56	-37,14	515,46	61,13
SP.A-SX-8	SLE - CAR.04	Min	-55,26	-45,75	457,80	71,74
SP.A-SX-8	SLE - CAR.05	Max	-45,37	-31,90	481,89	55,46
SP.A-SX-8	SLE - CAR.05	Min	-50,39	-38,36	438,65	63,33
SP.A-SX-8	SLE - CAR.06	Max	-44,87	-28,67	474,35	53,25
SP.A-SX-8	SLE - CAR.06	Min	-49,89	-35,13	431,11	61,02
SP.A-SX-8	SLE - CAR.07	Max	-50,87	-42,48	515,37	66,27
SP.A-SX-8	SLE - CAR.07	Min	-55,89	-48,94	472,13	74,29
SP.A-SX-8	SLE - CAR.08	Max	-50,37	-39,25	507,83	63,86
SP.A-SX-8	SLE - CAR.08	Min	-55,39	-45,71	464,58	71,81
SP.A-SX-8	SLE - CAR.09	Max	-46,63	-35,10	491,10	58,36
SP.A-SX-8	SLE - CAR.09	Min	-51,65	-41,56	447,86	66,29
SP.A-SX-8	SLE - CAR.10	Max	-45,80	-29,71	478,53	54,59
SP.A-SX-8	SLE - CAR.10	Min	-50,82	-36,17	435,29	62,38
SP.A-SX-8	SLE - CAR.11	Max	-49,93	-41,45	511,19	64,89
SP.A-SX-8	SLE - CAR.11	Min	-54,95	-47,91	467,94	72,90
SP.A-SX-8	SLE - CAR.12	Max	-49,10	-36,06	498,62	60,92
SP.A-SX-8	SLE - CAR.12	Min	-54,12	-42,52	455,37	68,82

Combinazioni allo Stato Limite Ultimo – STR

PALO	COMBIN	AZIONE	V _{Sd,long}	V _{Sd,long}	N _{Sd}	R _v , _{sd}
00 4 07 4	OLU OTD 04	Maria	[kN]	[kN]	[kN]	[kN]
SP.A-SX-1	SLU - STR.01	Max	154,53	54,46	2.798,77	163,85
SP.A-SX-1	SLU - STR.01	Min	138,58	35,26	2.533,81	143,00
SP.A-SX-1	SLU - STR.02	Max	157,30	55,94	2.806,64	166,95
SP.A-SX-1	SLU - STR.02	Min	141,35	36,74	2.541,68	146,05
SP.A-SX-1	SLU - STR.03	Max	157,13	32,64	2.764,46	160,48
SP.A-SX-1	SLU - STR.03	Min	141,18	13,44	2.499,51	141,82
SP.A-SX-1	SLU - STR.04	Max	159,90	34,13	2.772,33	163,50
SP.A-SX-1	SLU - STR.04	Min	143,95	14,92	2.507,38	144,72
SP.A-SX-1	SLU - STR.05	Max	149,68	56,94	2.743,96	160,14
SP.A-SX-1	SLU - STR.05	Min	137,72	42,53	2.545,24	144,14
SP.A-SX-1	SLU - STR.06	Max	152,44	58,36	2.751,39	163,23
SP.A-SX-1	SLU - STR.06	Min	140,48	43,96	2.552,68	147,19
SP.A-SX-1	SLU - STR.07	Max	154,00	20,57	2.686,79	155,37
SP.A-SX-1	SLU - STR.07	Min	142,04	6,17	2.488,07	142,18
SP.A-SX-1	SLU - STR.08	Max	156,77	22,06	2.694,66	158,32
SP.A-SX-1	SLU - STR.08	Min	144,81	7,66	2.495,94	145,01
SP.A-SX-1	SLU - STR.09	Max	149,62	49,17	2.729,90	157,49
SP.A-SX-1	SLU - STR.09	Min	137,66	34,77	2.531,19	141,98
SP.A-SX-1	SLU - STR.10	Max	154,24	51,65	2.743,02	162,65
SP.A-SX-1	SLU - STR.10	Min	142,27	37,24	2.544,30	147,07
SP.A-SX-1	SLU - STR.11	Max	152,22	27,35	2.695,60	154,65
SP.A-SX-1	SLU - STR.11	Min	140,25	12,95	2.496,88	140,85
SP.A-SX-1	SLU - STR.12	Max	156,83	29,83	2.708,72	159,64
SP.A-SX-1	SLU - STR.12	Min	144,87	15,43	2.510,00	145,69
SP.A-SX-2	SLU - STR.01	Max	150,82	33,52	1.725,35	154,50
SP.A-SX-2	SLU - STR.01	Min	135,61	22,98	1.566,70	137,54
SP.A-SX-2	SLU - STR.02	Max	153,60	36,47	1.730,38	157,87
SP.A-SX-2	SLU - STR.02	Min	138,39	25,93	1.571,73	140,80
SP.A-SX-2	SLU - STR.03	Max	155,44	15,43	1.686,53	156,21
SP.A-SX-2	SLU - STR.03	Min	140,23	4,89	1.527,88	140,32
SP.A-SX-2	SLU - STR.04	Max	158,23	18,38	1.691,56	159,29
SP.A-SX-2	SLU - STR.04	Min	143,01	7,84	1.532,91	143,23
SP.A-SX-2	SLU - STR.05	Max	145,48	36,92	1.698,62	150,09
SP.A-SX-2	SLU - STR.05	Min	134,07	29,01	1.579,64	137,17
SP.A-SX-2	SLU - STR.06	Max	148,26	39,84	1.703,39	153,51
SP.A-SX-2	SLU - STR.06	Min	136,85	31,93	1.584,40	140,52
SP.A-SX-2	SLU - STR.07	Max	153,18	6,77	1.633,93	153,33
SP.A-SX-2	SLU - STR.07	Min	141,77	-1,14	1.514,95	141,77
SP.A-SX-2	SLU - STR.08	Max	155,96	9,72	1.638,96	156,26
SP.A-SX-2	SLU - STR.08	Min	144,55	1,81	1.519,98	144,57
SP.A-SX-2	SLU - STR.09	Max	146,09	29,91	1.684,01	149,12
SP.A-SX-2	SLU - STR.09	Min	134,68	22,00	1.565,02	136,47
SP.A-SX-2	SLU - STR.10	Max	150,73	34,82	1.692,39	154,70
SP.A-SX-2	SLU - STR.10	Min	139,32	26,91	1.573,40	141,90
SP.A-SX-2	SLU - STR.11	Max	150,71	11,81	1.645,19	151,17
SP.A-SX-2	SLU - STR.11	Min	139,30	3,91	1.526,21	139,36
SP.A-SX-2	SLU - STR.11	Max	155,35	16,73	1.653,58	156,25
SP.A-SX-2	SLU - STR.12			8,82	1.534,59	144,21
οΓ.Α-3Λ-2	3LU - 31K.12	Min	143,94	0,02	1.554,59	144,∠1

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _v , _{sd} [kN]
SP.A-SX-3	SLU - STR.01	Max	127,68	37,64	549,61	133,11
SP.A-SX-3	SLU - STR.01	Min	115,34	33,44	513,23	120,09
SP.A-SX-3	SLU - STR.01	Max	129,93	41,46	513,23	136,38
				37,26		•
SP.A-SX-3	SLU - STR.02	Min Max	117,59		514,81	123,35
SP.A-SX-3	SLU - STR.03		132,91	24,44	516,30	135,14
SP.A-SX-3	SLU - STR.03	Min	120,58	20,24	479,91	122,26
SP.A-SX-3	SLU - STR.04	Max	135,17	28,26	517,88	138,09
SP.A-SX-3	SLU - STR.04	Min	122,83	24,06	481,49	125,16
SP.A-SX-3	SLU - STR.05	Max	122,85	41,05	552,44	129,52
SP.A-SX-3	SLU - STR.05	Min	113,59	37,90	525,15	119,75
SP.A-SX-3	SLU - STR.06	Max	125,09	44,87	553,96	132,90
SP.A-SX-3	SLU - STR.06	Min	115,84	41,72	526,68	123,13
SP.A-SX-3	SLU - STR.07	Max	131,58	19,04	496,92	132,95
SP.A-SX-3	SLU - STR.07	Min	122,32	15,90	469,63	123,35
SP.A-SX-3	SLU - STR.08	Max	133,83	22,86	498,50	135,76
SP.A-SX-3	SLU - STR.08	Min	124,57	19,72	471,21	126,12
SP.A-SX-3	SLU - STR.09	Max	123,84	35,38	540,81	128,79
SP.A-SX-3	SLU - STR.09	Min	114,59	32,23	513,52	119,03
SP.A-SX-3	SLU - STR.10	Max	127,59	41,74	543,44	134,25
SP.A-SX-3	SLU - STR.10	Min	118,34	38,59	516,16	124,47
SP.A-SX-3	SLU - STR.11	Max	129,08	22,17	507,50	130,97
SP.A-SX-3	SLU - STR.11	Min	119,83	19,02	480,21	121,33
SP.A-SX-3	SLU - STR.12	Max	132,83	28,54	510,13	135,86
SP.A-SX-3	SLU - STR.12	Min	123,58	25,39	482,84	126,16
SP.A-SX-4	SLU - STR.01	Max	18,75	-184,80	3.249,60	185,74
SP.A-SX-4	SLU - STR.01	Min	8,53	-197,75	2.912,32	197,93
SP.A-SX-4	SLU - STR.02	Max	20,13	-182,96	3.252,27	184,06
SP.A-SX-4	SLU - STR.02	Min	9,90	-195,91	2.914,99	196,16
SP.A-SX-4	SLU - STR.03	Max	18,76	-202,11	3.252,42	202,98
SP.A-SX-4	SLU - STR.03	Min	8,53	-215,06	2.915,14	215,23
SP.A-SX-4	SLU - STR.04	Max	20,14	-200,27	3.255,09	201,28
SP.A-SX-4	SLU - STR.04	Min	9,91	-213,22	2.917,81	213,45
SP.A-SX-4	SLU - STR.05	Max	16,19	-179,02	3.164,33	179,75
SP.A-SX-4	SLU - STR.05	Min	8,52	-188,74	2.911,38	188,93
SP.A-SX-4	SLU - STR.06	Max	17,56	-177,19	3.166,45	178,06
SP.A-SX-4	SLU - STR.06	Min	9,89	-186,90	2.913,49	187,16
SP.A-SX-4	SLU - STR.07	Max	16,21	-207,88	3.169,04	208,51
SP.A-SX-4	SLU - STR.07	Min	8,54	-217,59	2.916,08	217,76
SP.A-SX-4	SLU - STR.08	Max	17,58	-206,04	3.171,71	206,79
SP.A-SX-4	SLU - STR.08	Min	9,92	-215,75	2.918,75	215,98
SP.A-SX-4	SLU - STR.09	Max	15,73	-185,41	3.164,39	186,07
SP.A-SX-4	SLU - STR.09	Min	8,07	-195,12	2.911,43	195,29
SP.A-SX-4	SLU - STR.10	Max	18,03	-182,35	3.168,84	183,24
SP.A-SX-4	SLU - STR.10	Min	10,36	-192,06	2.915,88	192,34
SP.A-SX-4	SLU - STR.11	Max	15,74	-202,72	3.167,21	203,33
SP.A-SX-4	SLU - STR.11	Min	8,08	-212,43	2.914,25	212,59
SP.A-SX-4	SLU - STR.12	Max	18,04	-199,66	3.171,66	200,47
SP.A-SX-4	SLU - STR.12	Min	10,37	-209,37	2.918,70	209,63

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _v , _{sd} [kN]
SP.A-SX-5	SLU - STR.01	Max	2,64	-73,78	1.673,12	73,83
SP.A-SX-5	SLU - STR.01	Min	-6,95	-81,96	1.494,87	82,25
SP.A-SX-5	SLU - STR.02	Max	4,16	-70,31	1.670,58	70,43
SP.A-SX-5	SLU - STR.02	Min	-5,43	-78,49	1.492,32	78,67
SP.A-SX-5	SLU - STR.03	Max	3,21	-87,64	1.670,71	87,69
SP.A-SX-5	SLU - STR.03	Min	-6,38	-95,81	1.492,45	96,02
SP.A-SX-5	SLU - STR.04	Max	4,73	-84,17	1.668,16	84,30
SP.A-SX-5	SLU - STR.04	Min	-4,73	-92,34	1.489,91	92,47
SP.A-SX-5	SLU - STR.04	Max	0,96	-92,34	1.629,37	69,17
SP.A-SX-5	SLU - STR.05	Min	-6,23	-75,29	1.495,68	75,55
			·	·		•
SP.A-SX-5	SLU - STR.06	Max	2,48	-65,68	1.626,51	65,73
SP.A-SX-5	SLU - STR.06	Min	-4,71	-71,81	1.492,82	71,97
SP.A-SX-5	SLU - STR.07	Max	1,92	-92,25	1.625,35	92,27
SP.A-SX-5	SLU - STR.07	Min	-5,27	-98,38	1.491,65	98,52
SP.A-SX-5	SLU - STR.08	Max	3,44	-88,78	1.622,80	88,85
SP.A-SX-5	SLU - STR.08	Min	-3,75	-94,92	1.489,11	94,99
SP.A-SX-5	SLU - STR.09	Max	0,65	-74,94	1.629,41	74,94
SP.A-SX-5	SLU - STR.09	Min	-6,55	-81,07	1.495,72	81,33
SP.A-SX-5	SLU - STR.10	Max	3,18	-69,16	1.625,17	69,23
SP.A-SX-5	SLU - STR.10	Min	-4,01	-75,29	1.491,48	75,39
SP.A-SX-5	SLU - STR.11	Max	1,22	-88,79	1.627,00	88,80
SP.A-SX-5	SLU - STR.11	Min	-5,97	-94,92	1.493,31	95,11
SP.A-SX-5	SLU - STR.12	Max	3,76	-83,01	1.622,75	83,10
SP.A-SX-5	SLU - STR.12	Min	-3,43	-89,14	1.489,06	89,21
SP.A-SX-6	SLU - STR.01	Max	-82,04	-425,66	3.528,17	433,50
SP.A-SX-6	SLU - STR.01	Min	-89,47	-464,66	3.165,80	473,19
SP.A-SX-6	SLU - STR.02	Max	-82,56	-425,31	3.528,62	433,24
SP.A-SX-6	SLU - STR.02	Min	-89,98	-464,30	3.166,25	472,94
SP.A-SX-6	SLU - STR.03	Max	-84,59	-444,45	3.581,85	452,43
SP.A-SX-6	SLU - STR.03	Min	-92,02	-483,45	3.219,48	492,13
SP.A-SX-6	SLU - STR.04	Max	-85,11	-444,10	3.582,29	452,18
SP.A-SX-6	SLU - STR.04	Min	-92,53	-483,09	3.219,92	491,87
SP.A-SX-6	SLU - STR.05	Max	-82,71	-419,40	3.419,69	427,48
SP.A-SX-6	SLU - STR.05	Min	-88,28	-448,65	3.147,91	457,25
SP.A-SX-6	SLU - STR.06	Max	-83,25	-419,01	3.419,55	427,20
SP.A-SX-6	SLU - STR.06	Min	-88,82	-448,26	3.147,77	456,97
SP.A-SX-6	SLU - STR.07	Max	-86,97	-450,72	3.509,14	459,03
SP.A-SX-6	SLU - STR.07	Min	-92,53	-479,96	3.237,37	488,80
SP.A-SX-6	SLU - STR.08	Max	-87,48	-450,36	3.509,59	458,78
SP.A-SX-6	SLU - STR.08	Min	-93,05	-479,61	3.237,81	488,55
SP.A-SX-6	SLU - STR.09	Max	-83,39	-425,78	3.437,43	433,87
SP.A-SX-6	SLU - STR.09	Min	-88,96	-455,03	3.165,66	463,64
SP.A-SX-6	SLU - STR.10	Max	-84,25	-425,19	3.438,17	433,45
SP.A-SX-6	SLU - STR.10	Min	-89,81	-454,43	3.166,39	463,22
SP.A-SX-6	SLU - STR.11	Max	-85,94	-444,57	3.491,11	452,80
SP.A-SX-6	SLU - STR.11	Min	-91,51	-473,82	3.219,33	482,58
SP.A-SX-6	SLU - STR.12	Max	-86,80	-443,98	3.491,84	452,38
SP.A-SX-6	SLU - STR.12	Min	-92,37	-473,22	3.220,07	482,15

PALO	COMBIN	AZIONE	V _{Sd,long}	V _{Sd,long}	N _{Sd}	R _{v,sd} [kN]
SP.A-SX-7	SLU - STR.01	Max	[kN] -95,70	[kN] -206,76	[kN] 2.098,64	227,83
SP.A-SX-7	SLU - STR.01	Min	-95,70	-200,76		252,64
SP.A-SX-7	SLU - STR.01	Max	-104,17	-230,17	1.867,97	232,64
SP.A-SX-7	SLU - STR.02	Min	-104,18	-204,23	2.092,62 1.861,94	250,34
SP.A-SX-7	SLU - STR.02	Max	-99,92	-221,03	2.145,51	242,72
	SLU - STR.03	Min	-99,92			· · · · · · · · · · · · · · · · · · ·
SP.A-SX-7			· · · · · · · · · · · · · · · · · · ·	-244,61	1.914,83	267,54
SP.A-SX-7	SLU - STR.04 SLU - STR.04	Max	-99,93	-218,67	2.139,48	240,42
SP.A-SX-7 SP.A-SX-7	SLU - STR.04 SLU - STR.05	Min Max	-108,40 -95,33	-242,07 201.05	1.908,80	265,23 223,32
		Min		-201,95	2.025,35	
SP.A-SX-7	SLU - STR.05		-101,69	-219,50	1.852,35	241,91
SP.A-SX-7 SP.A-SX-7	SLU - STR.06 SLU - STR.06	Max Min	-95,37 -101,72	-199,39 -216,94	2.018,94 1.845,93	221,02 239,60
	_			·	·	·
SP.A-SX-7 SP.A-SX-7	SLU - STR.07 SLU - STR.07	Max Min	-102,37 -108,72	-226,02 -243,57	2.103,46	248,12 266,73
SP.A-SX-7	SLU - STR.07		-100,72	-243,37	1.930,45 2.097,43	245,82
		Max				
SP.A-SX-7	SLU - STR.08 SLU - STR.09	Min	-108,73	-241,03	1.924,43	264,42
SP.A-SX-7		Max	-96,73	-207,61	2.042,98	229,04
SP.A-SX-7	SLU - STR.09	Min	-103,09	-225,16	1.869,97	247,64
SP.A-SX-7	SLU - STR.10	Max	-96,76	-203,38	2.032,94	225,23
SP.A-SX-7	SLU - STR.10	Min	-103,12	-220,93	1.859,93	243,81
SP.A-SX-7	SLU - STR.11	Max	-100,95	-222,05	2.089,85	243,92
SP.A-SX-7	SLU - STR.11	Min	-107,30	-239,60	1.916,84	262,53
SP.A-SX-7	SLU - STR.12	Max	-100,98	-217,82	2.079,80	240,09
SP.A-SX-7	SLU - STR.12	Min	-107,33	-235,38	1.906,80	258,69
SP.A-SX-8	SLU - STR.01	Max	-61,44	-45,71	679,72	76,57
SP.A-SX-8	SLU - STR.01	Min	-70,47	-57,34	601,88	90,85
SP.A-SX-8	SLU - STR.02	Max	-60,84	-41,83	670,67	73,83
SP.A-SX-8	SLU - STR.02	Min	-69,87	-53,46	592,83	87,98
SP.A-SX-8	SLU - STR.03	Max	-66,39	-55,23	709,84	86,36
SP.A-SX-8	SLU - STR.03	Min	-75,42	-66,86	632,01	100,79
SP.A-SX-8	SLU - STR.04	Max	-65,79	-51,35	700,79	83,46
SP.A-SX-8	SLU - STR.04	Min	-74,82	-62,98	622,96	97,80
SP.A-SX-8	SLU - STR.05	Max	-60,74	-42,54	650,33	74,15
SP.A-SX-8	SLU - STR.05	Min	-67,51	-51,26	591,95	84,76
SP.A-SX-8	SLU - STR.06	Max	-60,15	-38,63	641,13	71,48
SP.A-SX-8	SLU - STR.06	Min	-66,92	-47,35	582,75	81,98
SP.A-SX-8	SLU - STR.07	Max	-68,99	-58,41	700,54	90,39
SP.A-SX-8	SLU - STR.07	Min	-75,76	-67,13	642,17	101,22
SP.A-SX-8	SLU - STR.08	Max	-68,39	-54,53	691,49	87,47
SP.A-SX-8	SLU - STR.08	Min	-75,16	-63,25	633,11	98,23
SP.A-SX-8	SLU - STR.09	Max	-62,59	-47,00	663,39	78,27
SP.A-SX-8	SLU - STR.09	Min	-69,36	-55,72	605,01	88,97
SP.A-SX-8	SLU - STR.10	Max	-61,59	-40,54	648,30	73,73
SP.A-SX-8	SLU - STR.10	Min	-68,36	-49,26	589,93	84,26
SP.A-SX-8	SLU - STR.11	Max	-67,54	-56,53	693,52	88,07
SP.A-SX-8	SLU - STR.11	Min	-74,31	-65,25	635,14	98,89
SP.A-SX-8	SLU - STR.12	Max	-66,54	-50,06	678,43	83,27
SP.A-SX-8	SLU - STR.12	Min	-73,31	-58,78	620,05	93,97

Combinazioni allo Stato limite di Salvaguardia della Vita

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _{v,sd} [kN]
SP.A-SX-1	SLV - X - 01	Max	224,82	98,83	2.203,44	245,58
SP.A-SX-1	SLV - X - 01	Min	-4,45	-59,30	1.548,41	59,47
SP.A-SX-1	SLV - X - 02	Max	228,17	100,66	2.213,00	249,39
SP.A-SX-1	SLV - X - 02	Min	-1,09	-57,48	1.557,97	57,49
SP.A-SX-1	SLV - Y - 01	Max	172,47	174,45	2.177,60	245,31
SP.A-SX-1	SLV - Y - 01	Min	47,90	-134,92	1.574,25	143,18
SP.A-SX-1	SLV - Y - 02	Max	175,82	176,28	2.187,15	248,97
SP.A-SX-1	SLV - Y - 02	Min	51,26	-133,10	1.583,81	142,63
SP.A-SX-2	SLV - X - 01	Max	240,87	47,30	1.238,07	245,47
SP.A-SX-2	SLV - X - 01	Min	-19,61	-32,53	1.030,45	37,98
SP.A-SX-2	SLV - X - 02	Max	244,24	50,91	1.244,24	249,49
SP.A-SX-2	SLV - X - 02	Min	-16,24	-28,91	1.036,62	33,16
SP.A-SX-2	SLV - Y - 01	Max	185,73	107,83	1.354,67	214,76
SP.A-SX-2	SLV - Y - 01	Min	35,53	-93,06	913,85	99,61
SP.A-SX-2	SLV - Y - 02	Max	189,10	111,44	1.360,84	219,49
SP.A-SX-2	SLV - Y - 02	Min	38,90	-89,44	920,02	97,54
SP.A-SX-3	SLV - X - 01	Max	213,83	64,68	557,98	223,40
SP.A-SX-3	SLV - X - 01	Min	-22,42	-38,11	127,43	44,22
SP.A-SX-3	SLV - X - 02	Max	216,55	69,36	559,99	227,39
SP.A-SX-3	SLV - X - 02	Min	-19,70	-33,43	129,44	38,80
SP.A-SX-3	SLV - Y - 01	Max	166,62	78,27	544,83	184,09
SP.A-SX-3	SLV - Y - 01	Min	24,79	-51,70	140,59	57,34
SP.A-SX-3	SLV - Y - 02	Max	169,34	82,95	546,84	188,57
SP.A-SX-3	SLV - Y - 02	Min	27,51	-47,02	142,60	54,48
SP.A-SX-4	SLV - X - 01	Max	98,02	-83,91	2.357,39	129,03
SP.A-SX-4	SLV - X - 01	Min	-68,59	-203,52	1.964,64	214,77
SP.A-SX-4	SLV - X - 02	Max	99,68	-81,65	2.360,61	128,86
SP.A-SX-4	SLV - X - 02	Min	-66,93	-201,26	1.967,86	212,10
SP.A-SX-4	SLV - Y - 01	Max	54,71	-29,01	2.267,68	61,92
SP.A-SX-4	SLV - Y - 01	Min	-25,28	-258,43	2.054,36	259,66
SP.A-SX-4	SLV - Y - 02	Max	56,37	-26,75	2.270,89	62,39
SP.A-SX-4	SLV - Y - 02	Min	-23,62	-256,17	2.057,57	257,25

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _v , _{sd} [kN]
SP.A-SX-5	SLV - X - 01	Max	101,18	-17,88	1.246,83	102,74
SP.A-SX-5	SLV - X - 01	Min	-85,29	-108,25	914,24	137,81
SP.A-SX-5	SLV - X - 02	Max	103,01	-13,63	1.243,77	103,90
SP.A-SX-5	SLV - X - 02	Min	-83,46	-103,99	911,19	133,34
SP.A-SX-5	SLV - Y - 01	Max	51,40	12,69	1.169,45	52,94
SP.A-SX-5	SLV - Y - 01	Min	-35,51	-138,82	991,61	143,29
SP.A-SX-5	SLV - Y - 02	Max	53,23	16,94	1.166,40	55,86
SP.A-SX-5	SLV - Y - 02	Min	-33,68	-134,57	988,56	138,72
SP.A-SX-6	SLV - X - 01	Max	5,36	-217,06	2.770,53	217,13
SP.A-SX-6	SLV - X - 01	Min	-120,54	-427,72	2.001,26	444,38
SP.A-SX-6	SLV - X - 02	Max	4,71	-216,60	2.770,96	216,65
SP.A-SX-6	SLV - X - 02	Min	-121,18	-427,26	2.001,68	444,11
SP.A-SX-6	SLV - Y - 01	Max	-2,43	-178,19	2.735,51	178,21
SP.A-SX-6	SLV - Y - 01	Min	-112,75	-466,59	2.036,28	480,01
SP.A-SX-6	SLV - Y - 02	Max	-3,07	-177,73	2.735,94	177,76
SP.A-SX-6	SLV - Y - 02	Min	-113,40	-466,13	2.036,70	479,72
SP.A-SX-7	SLV - X - 01	Max	7,44	-122,68	1.511,41	122,90
SP.A-SX-7	SLV - X - 01	Min	-138,69	-196,58	1.277,60	240,58
SP.A-SX-7	SLV - X - 02	Max	7,40	-119,56	1.504,04	119,79
SP.A-SX-7	SLV - X - 02	Min	-138,73	-193,47	1.270,23	238,07
SP.A-SX-7	SLV - Y - 01	Max	0,29	-75,92	1.648,90	75,92
SP.A-SX-7	SLV - Y - 01	Min	-131,54	-243,34	1.140,11	276,61
SP.A-SX-7	SLV - Y - 02	Max	0,25	-72,81	1.641,53	72,81
SP.A-SX-7	SLV - Y - 02	Min	-131,58	-240,22	1.132,74	273,90
SP.A-SX-8	SLV - X - 01	Max	36,57	24,66	750,11	44,11
SP.A-SX-8	SLV - X - 01	Min	-117,09	-103,56	113,42	156,31
SP.A-SX-8	SLV - X - 02	Max	37,29	29,40	739,12	47,48
SP.A-SX-8	SLV - X - 02	Min	-116,38	-98,81	102,42	152,67
SP.A-SX-8	SLV - Y - 01	Max	26,46	19,67	685,88	32,96
SP.A-SX-8	SLV - Y - 01	Min	-106,97	-98,57	177,65	145,46
SP.A-SX-8	SLV - Y - 02	Max	27,17	24,41	674,89	36,52
SP.A-SX-8	SLV - Y - 02	Min	-106,26	-93,82	166,65	141,75

14.1.2 ZATTERA DESTRA

Nelle tabelle successive sono riepilogati i valori delle azioni sollecitanti (azione normale e taglio nelle due direzioni trasversali) valutati in corrispondenza delle molle elastiche mediante le quali sono stati modellati i pali di fondaizone all'interno del modello di calcolo tridimensionale.

Per ciascun palo è stata determinata anche la risultante di taglio orizzontale, valutata come combinazione quadratica delle azioni taglianti valutate lungo le due direzioni orizzontali ortogonali.

Combinazioni allo Stato Limite di Esercizio – Quasi Permanenti

PALO	сомвін	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _{v,sd} [kN]
SP.A-DX-1	SLE - Q.P.01	Max	-63,23	325,79	2.450,46	331,87
SP.A-DX-1	SLE - Q.P.01	Min	-63,23	325,79	2.450,46	331,87
SP.A-DX-1	SLE - Q.P.02	Max	-63,78	325,57	2.450,16	331,76
SP.A-DX-1	SLE - Q.P.02	Min	-63,78	325,57	2.450,16	331,76
SP.A-DX-2	SLE - Q.P.01	Max	-74,05	162,25	1.461,02	178,35
SP.A-DX-2	SLE - Q.P.01	Min	-74,05	162,25	1.461,02	178,35
SP.A-DX-2	SLE - Q.P.02	Max	-74,28	160,49	1.456,86	176,84
SP.A-DX-2	SLE - Q.P.02	Min	-74,28	160,49	1.456,86	176,84
SP.A-DX-3	SLE - Q.P.01	Max	-49,77	41,70	483,04	64,93
SP.A-DX-3	SLE - Q.P.01	Min	-49,77	41,70	483,04	64,93
SP.A-DX-3	SLE - Q.P.02	Max	-49,57	38,98	477,26	63,06
SP.A-DX-3	SLE - Q.P.02	Min	-49,57	38,98	477,26	63,06
SP.A-DX-4	SLE - Q.P.01	Max	7,38	142,29	2.242,04	142,48
SP.A-DX-4	SLE - Q.P.01	Min	7,38	142,29	2.242,04	142,48
SP.A-DX-4	SLE - Q.P.02	Max	8,15	141,05	2.243,60	141,28
SP.A-DX-4	SLE - Q.P.02	Min	8,15	141,05	2.243,60	141,28
SP.A-DX-5	SLE - Q.P.01	Max	-3,50	61,20	1.156,13	61,30
SP.A-DX-5	SLE - Q.P.01	Min	-3,50	61,20	1.156,13	61,30
SP.A-DX-5	SLE - Q.P.02	Max	-2,65	58,76	1.154,74	58,82
SP.A-DX-5	SLE - Q.P.02	Min	-2,65	58,76	1.154,74	58,82
SP.A-DX-6	SLE - Q.P.01	Max	103,83	-28,47	1.929,58	107,66
SP.A-DX-6	SLE - Q.P.01	Min	103,83	-28,47	1.929,58	107,66
SP.A-DX-6	SLE - Q.P.02	Max	105,61	-29,38	1.934,56	109,63
SP.A-DX-6	SLE - Q.P.02	Min	105,61	-29,38	1.934,56	109,63
SP.A-DX-7	SLE - Q.P.01	Max	101,50	-15,24	1.188,10	102,64
SP.A-DX-7	SLE - Q.P.01	Min	101,50	-15,24	1.188,10	102,64
SP.A-DX-7	SLE - Q.P.02	Max	103,26	-17,29	1.191,65	104,70
SP.A-DX-7	SLE - Q.P.02	Min	103,26	-17,29	1.191,65	104,70
SP.A-DX-8	SLE - Q.P.01	Max	86,33	-20,34	382,60	88,69
SP.A-DX-8	SLE - Q.P.01	Min	86,33	-20,34	382,60	88,69
SP.A-DX-8	SLE - Q.P.02	Max	87,72	-23,10	384,17	90,71
SP.A-DX-8	SLE - Q.P.02	Min	87,72	-23,10	384,17	90,71

Combinazioni allo Stato Limite di Esercizio - Frequenti

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _v , _{sd} [kN]
SP.A-DX-1	SLE - FREQ.01	Max	-59,97	347,59	2.653,95	352,73
SP.A-DX-1	SLE - FREQ.01	Min	-64,05	325,78	2.450,40	332,02
SP.A-DX-1	SLE - FREQ.02	Max	-60,52	347,37	2.653,65	352,60
SP.A-DX-1	SLE - FREQ.02	Min	-64,60	325,57	2.450,10	331,91
SP.A-DX-1	SLE - FREQ.03	Max	-63,17	325,81	2.450,49	331,88
SP.A-DX-1	SLE - FREQ.03	Min	-63,17	325,81	2.450,49	331,88
SP.A-DX-1	SLE - FREQ.04	Max	-63,83	325,55	2.450,13	331,75
SP.A-DX-1	SLE - FREQ.04	Min	-63,83	325,55	2.450,13	331,75
SP.A-DX-2	SLE - FREQ.01	Max	-71,84	175,35	1.590,86	189,50
SP.A-DX-2	SLE - FREQ.01	Min	-76,50	162,24	1.460,97	179,37
SP.A-DX-2	SLE - FREQ.02	Max	-72,07	173,60	1.586,70	187,96
SP.A-DX-2	SLE - FREQ.02	Min	-76,73	160,48	1.456,81	177,88
SP.A-DX-2	SLE - FREQ.03	Max	-74,02	162,42	1.461,43	178,50
SP.A-DX-2	SLE - FREQ.03	Min	-74,02	162,42	1.461,43	178,50
SP.A-DX-2	SLE - FREQ.04	Max	-74,30	160,31	1.456,44	176,69
SP.A-DX-2	SLE - FREQ.04	Min	-74,30	160,31	1.456,44	176,69
SP.A-DX-3	SLE - FREQ.01	Max	-47,79	48,25	526,87	67,90
SP.A-DX-3	SLE - FREQ.01	Min	-52,72	41,69	483,01	67,22
SP.A-DX-3	SLE - FREQ.02	Max	-47,59	45,52	521,08	65,85
SP.A-DX-3	SLE - FREQ.02	Min	-52,52	38,97	477,22	65,40
SP.A-DX-3	SLE - FREQ.03	Max	-49,79	41,97	483,62	65,12
SP.A-DX-3	SLE - FREQ.03	Min	-49,79	41,97	483,62	65,12
SP.A-DX-3	SLE - FREQ.04	Max	-49,55	38,71	476,68	62,88
SP.A-DX-3	SLE - FREQ.04	Min	-49,55	38,71	476,68	62,88
SP.A-DX-4	SLE - FREQ.01	Max	12,89	149,49	2.431,69	150,04
SP.A-DX-4	SLE - FREQ.01	Min	7,37	142,28	2.241,99	142,47
SP.A-DX-4	SLE - FREQ.02	Max	13,66	148,25	2.433,25	148,88
SP.A-DX-4	SLE - FREQ.02	Min	8,15	141,04	2.243,55	141,28
SP.A-DX-4	SLE - FREQ.03	Max	7,30	142,41	2.241,88	142,60
SP.A-DX-4	SLE - FREQ.03	Min	7,30	142,41	2.241,88	142,60
SP.A-DX-4	SLE - FREQ.04	Max	8,23	140,92	2.243,75	141,16
SP.A-DX-4	SLE - FREQ.04	Min	8,23	140,92	2.243,75	141,16

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _v , _{sd} [kN]
SP.A-DX-5	SLE - FREQ.01	Max	-0,45	65,75	1.256,73	65,75
SP.A-DX-5	SLE - FREQ.01	Min	-5,54	61,20	1.156,10	61,45
SP.A-DX-5	SLE - FREQ.02	Max	0,40	63,31	1.255,34	63,31
SP.A-DX-5	SLE - FREQ.02	Min	-4,69	58,75	1.154,71	58,94
SP.A-DX-5	SLE - FREQ.03	Max	-3,59	61,45	1.156,27	61,55
SP.A-DX-5	SLE - FREQ.03	Min	-3,59	61,45	1.156,27	61,55
SP.A-DX-5	SLE - FREQ.04	Max	-2,57	58,52	1.154,60	58,57
SP.A-DX-5	SLE - FREQ.04	Min	-2,57	58,52	1.154,60	58,57
SP.A-DX-6	SLE - FREQ.01	Max	112,53	-28,46	2.078,48	116,07
SP.A-DX-6	SLE - FREQ.01	Min	103,83	-39,35	1.929,55	111,03
SP.A-DX-6	SLE - FREQ.02	Max	114,31	-29,38	2.083,46	118,03
SP.A-DX-6	SLE - FREQ.02	Min	105,61	-40,27	1.934,53	113,03
SP.A-DX-6	SLE - FREQ.03	Max	103,65	-28,37	1.929,08	107,46
SP.A-DX-6	SLE - FREQ.03	Min	103,65	-28,37	1.929,08	107,46
SP.A-DX-6	SLE - FREQ.04	Max	105,79	-29,48	1.935,06	109,82
SP.A-DX-6	SLE - FREQ.04	Min	105,79	-29,48	1.935,06	109,82
SP.A-DX-7	SLE - FREQ.01	Max	109,71	-15,24	1.277,50	110,76
SP.A-DX-7	SLE - FREQ.01	Min	101,49	-21,24	1.188,08	103,69
SP.A-DX-7	SLE - FREQ.02	Max	111,47	-17,29	1.281,06	112,80
SP.A-DX-7	SLE - FREQ.02	Min	103,26	-23,29	1.191,63	105,85
SP.A-DX-7	SLE - FREQ.03	Max	101,32	-15,03	1.187,74	102,43
SP.A-DX-7	SLE - FREQ.03	Min	101,32	-15,03	1.187,74	102,43
SP.A-DX-7	SLE - FREQ.04	Max	103,44	-17,49	1.192,01	104,91
SP.A-DX-7	SLE - FREQ.04	Min	103,44	-17,49	1.192,01	104,91
SP.A-DX-8	SLE - FREQ.01	Max	92,93	-20,21	401,35	95,10
SP.A-DX-8	SLE - FREQ.01	Min	86,32	-22,63	381,25	89,24
SP.A-DX-8	SLE - FREQ.02	Max	94,33	-22,97	402,92	97,08
SP.A-DX-8	SLE - FREQ.02	Min	87,72	-25,38	382,83	91,32
SP.A-DX-8	SLE - FREQ.03	Max	86,19	-20,07	382,44	88,49
SP.A-DX-8	SLE - FREQ.03	Min	86,19	-20,07	382,44	88,49
SP.A-DX-8	SLE - FREQ.04	Max	87,86	-23,38	384,33	90,92
SP.A-DX-8	SLE - FREQ.04	Min	87,86	-23,38	384,33	90,92

Combinazioni allo Stato Limite di Esercizio – Caratteristiche

PALO	COMBIN	AZIONE	V _{Sd,long}	V _{Sd,long}	N _{Sd}	R _v , _{sd}
			[kN]	[kN]	[kN]	[kN]
SP.A-DX-1	SLE - CAR.01	Max	-59,62	361,16	2.739,80	366,05
SP.A-DX-1	SLE - CAR.01	Min	-65,07	332,09	2.468,40	338,40
SP.A-DX-1	SLE - CAR.02	Max	-60,28	360,90	2.739,44	365,90
SP.A-DX-1	SLE - CAR.02	Min	-65,73	331,83	2.468,04	338,27
SP.A-DX-1	SLE - CAR.03	Max	-58,03	348,60	2.703,82	353,39
SP.A-DX-1	SLE - CAR.03	Min	-63,47	319,52	2.432,41	325,76
SP.A-DX-1	SLE - CAR.04	Max	-58,69	348,33	2.703,46	353,24
SP.A-DX-1	SLE - CAR.04	Min	-64,13	319,26	2.432,05	325,64
SP.A-DX-1	SLE - CAR.05	Max	-61,24	358,09	2.683,97	363,28
SP.A-DX-1	SLE - CAR.05	Min	-65,32	336,28	2.480,41	342,56
SP.A-DX-1	SLE - CAR.06	Max	-61,90	357,83	2.683,61	363,14
SP.A-DX-1	SLE - CAR.06	Min	-65,98	336,02	2.480,05	342,43
SP.A-DX-1	SLE - CAR.07	Max	-58,59	337,14	2.623,99	342,19
SP.A-DX-1	SLE - CAR.07	Min	-62,67	315,33	2.420,44	321,50
SP.A-DX-1	SLE - CAR.08	Max	-59,24	336,88	2.623,63	342,05
SP.A-DX-1	SLE - CAR.08	Min	-63,33	315,07	2.420,07	321,37
SP.A-DX-1	SLE - CAR.09	Max	-60,49	353,98	2.672,09	359,11
SP.A-DX-1	SLE - CAR.09	Min	-64,57	332,18	2.468,54	338,40
SP.A-DX-1	SLE - CAR.10	Max	-61,59	353,55	2.671,49	358,87
SP.A-DX-1	SLE - CAR.10	Min	-65,67	331,74	2.467,94	338,18
SP.A-DX-1	SLE - CAR.11	Max	-58,90	341,42	2.636,11	346,46
SP.A-DX-1	SLE - CAR.11	Min	-62,98	319,61	2.432,55	325,75
SP.A-DX-1	SLE - CAR.12	Max	-59,99	340,98	2.635,51	346,22
SP.A-DX-1	SLE - CAR.12	Min	-64,08	319,17	2.431,95	325,54
SP.A-DX-2	SLE - CAR.01	Max	-72,45	184,83	1.650,46	198,52
SP.A-DX-2	SLE - CAR.01	Min	-78,66	167,35	1.477,28	184,92
SP.A-DX-2	SLE - CAR.02	Max	-72,72	182,72	1.645,47	196,66
SP.A-DX-2	SLE - CAR.02	Min	-78,94	165,24	1.472,29	183,13
SP.A-DX-2	SLE - CAR.03	Max	-69,71	174,96	1.618,65	188,34
SP.A-DX-2	SLE - CAR.03	Min	-75,92	157,48	1.445,47	174,83
SP.A-DX-2	SLE - CAR.04	Max	-69,98	172,85	1.613,66	186,48
SP.A-DX-2	SLE - CAR.04	Min	-76,20	155,37	1.440,48	173,05
SP.A-DX-2	SLE - CAR.05	Max	-74,10	183,75	1.617,78	198,13
SP.A-DX-2	SLE - CAR.05	Min	-78,76	170,64	1.487,89	187,94
SP.A-DX-2	SLE - CAR.06	Max	-74,37	181,65	1.612,79	196,28
SP.A-DX-2	SLE - CAR.06	Min	-79,03	168,53	1.482,90	186,15
SP.A-DX-2	SLE - CAR.07	Max	-69,53	167,30	1.564,77	181,18
SP.A-DX-2	SLE - CAR.07	Min	-74,19	154,19	1.434,89	171,11
SP.A-DX-2	SLE - CAR.08	Max	-69,81	165,20	1.559,78	179,34
SP.A-DX-2	SLE - CAR.08	Min	-74,47	152,08	1.429,89	169,34
SP.A-DX-2	SLE - CAR.09	Max	-73,09	181,17	1.608,84	195,36
SP.A-DX-2	SLE - CAR.09	Min	-77,75	168,06	1.478,95	185,17
SP.A-DX-2	SLE - CAR.10	Max	-73,55	177,65	1.600,52	192,28
SP.A-DX-2	SLE - CAR.10	Min	-78,21	164,54	1.470,64	182,18
SP.A-DX-2	SLE - CAR.11	Max	-70,35	171,30	1.577,04	185,18
SP.A-DX-2	SLE - CAR.11	Min	-75,01	158,19	1.447,15	175,07
SP.A-DX-2	SLE - CAR.12	Max	-70,81	167,78	1.568,72	182,11
SP.A-DX-2	SLE - CAR.12	Min	-75,47	154,67	1.438,83	172,10

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _v , _{sd} [kN]
SP.A-DX-3	SLE - CAR.01	Max	-48.79	54,06	552,44	72,82
SP.A-DX-3	SLE - CAR.01	Min	-55,37	45,32	493,96	71,55
SP.A-DX-3	SLE - CAR.02	Max	-48,55	50,79	545,49	70,26
SP.A-DX-3	SLE - CAR.02	Min	-55,13	42,06	487,01	69,34
SP.A-DX-3	SLE - CAR.03	Max	-45,50	47,34	531,69	65,66
SP.A-DX-3	SLE - CAR.03	Min	-52,09	38,61	473,21	64,83
SP.A-DX-3	SLE - CAR.04	Max	-45,26	44,07	524,74	63,17
SP.A-DX-3	SLE - CAR.04	Min	-51,85	35,34	466,26	62,75
SP.A-DX-3	SLE - CAR.05	Max	-50,54	54,12	544,74	74,05
SP.A-DX-3	SLE - CAR.05	Min	-55,48	47,57	500,88	73,08
SP.A-DX-3	SLE - CAR.06	Max	-50,30	50,85	537,80	71,53
SP.A-DX-3	SLE - CAR.06	Min	-55,24	44,30	493,94	70,81
SP.A-DX-3	SLE - CAR.07	Max	-45,07	42,92	510,16	62,23
SP.A-DX-3	SLE - CAR.07	Min	-50,01	36,37	466,30	61,83
SP.A-DX-3	SLE - CAR.08	Max	-44,83	39,65	503,22	59,85
SP.A-DX-3	SLE - CAR.08	Min	-49,77	33,10	459,36	59,77
SP.A-DX-3	SLE - CAR.09	Max	-49,53	52,96	540,14	72,51
SP.A-DX-3	SLE - CAR.09	Min	-54,47	46,41	496,28	71,56
SP.A-DX-3	SLE - CAR.10	Max	-49,13	47,52	528,57	68,35
SP.A-DX-3	SLE - CAR.10	Min	-54,07	40,97	484,70	67,84
SP.A-DX-3	SLE - CAR.11	Max	-46,25	46,25	519,39	65,40
SP.A-DX-3	SLE - CAR.11	Min	-51,18	39,70	475,53	64,77
SP.A-DX-3	SLE - CAR.12	Max	-45,84	40,81	507,82	61,37
SP.A-DX-3	SLE - CAR.12	Min	-50,78	34,25	463,96	61,25
SP.A-DX-4	SLE - CAR.01	Max	14,62	157,87	2.495,63	158,55
SP.A-DX-4	SLE - CAR.01	Min	7,26	148,26	2.242,69	148,44
SP.A-DX-4	SLE - CAR.02	Max	15,55	156,39	2.497,50	157,16
SP.A-DX-4	SLE - CAR.02	Min	8,20	146,78	2.244,56	147,00
SP.A-DX-4	SLE - CAR.03	Max	14,67	146,16	2.493,88	146,89
SP.A-DX-4	SLE - CAR.03	Min	7,32	136,55	2.240,94	136,74
SP.A-DX-4	SLE - CAR.04	Max	15,61	144,67	2.495,75	145,51
SP.A-DX-4	SLE - CAR.04	Min	8,25	135,06	2.242,81	135,31
SP.A-DX-4	SLE - CAR.05	Max	12,76	159,38	2.433,00	159,88
SP.A-DX-4	SLE - CAR.05	Min	7,25	152,17	2.243,29	152,34
SP.A-DX-4	SLE - CAR.06	Max	13,69	157,89	2.434,86	158,48
SP.A-DX-4	SLE - CAR.06	Min	8,18	150,68	2.245,16	150,90
SP.A-DX-4	SLE - CAR.07	Max	12,86	139,85	2.430,08	140,44
SP.A-DX-4	SLE - CAR.07	Min	7,34	132,64	2.240,38	132,85
SP.A-DX-4	SLE - CAR.08	Max	13,79	138,37	2.431,95	139,05
SP.A-DX-4	SLE - CAR.08	Min	8,27	131,16	2.242,24	131,42
SP.A-DX-4	SLE - CAR.09	Max	12,47	155,97	2.431,79	156,46
SP.A-DX-4	SLE - CAR.09	Min	6,95	148,76	2.242,09	148,92
SP.A-DX-4	SLE - CAR.10	Max	14,02	153,49	2.434,90	154,13
SP.A-DX-4	SLE - CAR.10	Min	8,51	146,28	2.245,20	146,53
SP.A-DX-4	SLE - CAR.11	Max	12,53	144,25	2.430,04	144,79
SP.A-DX-4	SLE - CAR.11	Min	7,01	137,04	2.240,34	137,22
SP.A-DX-4	SLE - CAR.12	Max	14,08	141,78	2.433,15	142,47
SP.A-DX-4	SLE - CAR.12	Min	8,57	134,57	2.243,45	134,84

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _{v,sd} [kN]
SP.A-DX-5	SLE - CAR.01	Max	0,65	72,30	1.289,65	72,30
SP.A-DX-5	SLE - CAR.01	Min	-6,14	66,23	1.155,47	66,51
SP.A-DX-5	SLE - CAR.02	Max	1,67	69,37	1.287,98	69,39
SP.A-DX-5	SLE - CAR.02	Min	-5,12	63,30	1.153,81	63,50
SP.A-DX-5	SLE - CAR.03	Max	0,33	62,72	1.291,16	62,72
SP.A-DX-5	SLE - CAR.03	Min	-6,46	56,65	1.156,99	57,02
SP.A-DX-5	SLE - CAR.04	Max	1,35	59,79	1.289,49	59,81
SP.A-DX-5	SLE - CAR.04	Min	-5,44	53,72	1.155,32	53,99
SP.A-DX-5	SLE - CAR.05	Max	-0,27	73,98	1.255,61	73,98
SP.A-DX-5	SLE - CAR.05	Min	-5,36	69,42	1.154,98	69,63
SP.A-DX-5	SLE - CAR.06	Max	0,75	71,05	1.253,94	71,05
SP.A-DX-5	SLE - CAR.06	Min	-4,34	66,49	1.153,31	66,63
SP.A-DX-5	SLE - CAR.07	Max	-0,80	58,02	1.258,13	58,02
SP.A-DX-5	SLE - CAR.07	Min	-5,89	53,46	1.157,50	53,78
SP.A-DX-5	SLE - CAR.08	Max	0,22	55,08	1.256,47	55,08
SP.A-DX-5	SLE - CAR.08	Min	-4,87	50,53	1.155,84	50,76
SP.A-DX-5	SLE - CAR.09	Max	-0,71	71,76	1.256,67	71,77
SP.A-DX-5	SLE - CAR.09	Min	-5,80	67,21	1.156,04	67,46
SP.A-DX-5	SLE - CAR.10	Max	0.99	66,88	1.253,89	66,88
SP.A-DX-5	SLE - CAR.10	Min	-4,11	62,32	1.153,26	62,46
SP.A-DX-5	SLE - CAR.11	Max	-1,03	62,19	1.258,18	62,19
SP.A-DX-5	SLE - CAR.11	Min	-6,12	57,63	1.157,55	57,95
SP.A-DX-5	SLE - CAR.12	Max	0,67	57,30	1.255,41	57,30
SP.A-DX-5	SLE - CAR.12	Min	-4,42	52,74	1.154,78	52,93
SP.A-DX-6	SLE - CAR.01	Max	116,01	-21,04	2.115,90	117,90
SP.A-DX-6	SLE - CAR.01	Min	104,41	-35,56	1.917,32	110,30
SP.A-DX-6	SLE - CAR.02	Max	118,15	-22,14	2.121,87	120,21
SP.A-DX-6	SLE - CAR.02	Min	106,55	-36,66	1.923,30	112,68
SP.A-DX-6	SLE - CAR.03	Max	114,48	-35,70	2.139,33	119,92
SP.A-DX-6	SLE - CAR.03	Min	102,88	-50,22	1.940,75	114,48
SP.A-DX-6	SLE - CAR.04	Max	116,63	-36,80	2.145,30	122,30
SP.A-DX-6	SLE - CAR.04	Min	105,03	-51,32	1.946,73	116,89
SP.A-DX-6	SLE - CAR.05	Max	113,62	-16,15	2.058,45	114,76
SP.A-DX-6	SLE - CAR.05	Min	104,92	-27,04	1.909,52	108,35
SP.A-DX-6	SLE - CAR.06	Max	115,76	-17,26	2.064,43	117,04
SP.A-DX-6	SLE - CAR.06	Min	107,06	-28,15	1.915,50	110,70
SP.A-DX-6	SLE - CAR.07	Max	111,08	-40,59	2.097,50	118,26
SP.A-DX-6	SLE - CAR.07	Min	102,37	-51,48	1.948,57	114,59
SP.A-DX-6	SLE - CAR.08	Max	113,22	-41,69	2.103,48	120,65
SP.A-DX-6	SLE - CAR.08	Min	104,52	-52,58	1.954,55	117,00
SP.A-DX-6	SLE - CAR.09	Max	112,40	-20,67	2.064,27	114,28
SP.A-DX-6	SLE - CAR.09	Min	103,70	-31,56	1.915,34	108,39
SP.A-DX-6	SLE - CAR.10	Max	115,97	-22,51	2.074,23	118,13
SP.A-DX-6	SLE - CAR.10	Min	107,27	-33,40	1.925,30	112,35
SP.A-DX-6	SLE - CAR.11	Max	110,87	-35,33	2.087,70	116,36
SP.A-DX-6	SLE - CAR.11	Min	102,17	-46,22	1.938,77	112,14
SP.A-DX-6	SLE - CAR.12	Max	114,44	-37,17	2.097,66	120,33
SP.A-DX-6	SLE - CAR.12	Min	105,74	-48,06	1.948,73	116,15
J, (D) (0	JLL 3/111.12	14/111	100,17	.5,00	1.0 10,10	1 10, 10

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _v , _{sd} [kN]
SP.A-DX-7	SLE - CAR.01	Max	113,71	-8,86	1.293,76	114,05
SP.A-DX-7	SLE - CAR.01	Min	102,76	-16,87	1.174,53	104,14
SP.A-DX-7	SLE - CAR.02	Max	115,83	-11,32	1.298,03	116,38
SP.A-DX-7	SLE - CAR.02	Min	104,88	-19,33	1.178,80	106,64
SP.A-DX-7	SLE - CAR.03	Max	110,82	-21,20	1.320,14	112,83
SP.A-DX-7	SLE - CAR.03	Min	99,87	-29,21	1.200,91	104,06
SP.A-DX-7	SLE - CAR.04	Max	112,93	-23,66	1.324,40	115,39
SP.A-DX-7	SLE - CAR.04	Min	101,99	-31,67	1.205,17	106,79
SP.A-DX-7	SLE - CAR.05	Max	111,94	-4,74	1.255,17	112,04
SP.A-DX-7	SLE - CAR.05	Min	103,73	-10,75	1.165,75	104,28
SP.A-DX-7	SLE - CAR.06	Max	114,05	-7,20	1.259,43	114,28
SP.A-DX-7	SLE - CAR.06	Min	105,84	-13,21	1.170,01	106,66
SP.A-DX-7	SLE - CAR.00	Max	107,12	-25,32	1.299,13	110,07
SP.A-DX-7	SLE - CAR.07	Min	98,91	-31,33	1.299,13	103,75
	SLE - CAR.07		·	· · · · · · · · · · · · · · · · · · ·		•
SP.A-DX-7		Max	109,24	-27,78 -33,79	1.303,39	112,71
SP.A-DX-7	SLE - CAR.08	Min	101,02	· ·	1.213,97	106,52
SP.A-DX-7	SLE - CAR.09	Max	110,27	-8,04	1.262,54	110,56
SP.A-DX-7	SLE - CAR.09	Min	102,06	-14,04	1.173,12	103,02
SP.A-DX-7	SLE - CAR.10	Max	113,80	-12,14	1.269,64	114,44
SP.A-DX-7	SLE - CAR.10	Min	105,58	-18,15	1.180,22	107,13
SP.A-DX-7	SLE - CAR.11	Max	107,38	-20,38	1.288,92	109,30
SP.A-DX-7	SLE - CAR.11	Min	99,17	-26,39	1.199,49	102,62
SP.A-DX-7	SLE - CAR.12	Max	110,90	-24,48	1.296,02	113,57
SP.A-DX-7	SLE - CAR.12	Min	102,69	-30,49	1.206,60	107,12
SP.A-DX-8	SLE - CAR.01	Max	96,66	-15,29	396,17	97,86
SP.A-DX-8	SLE - CAR.01	Min	87,85	-18,51	369,38	89,78
SP.A-DX-8	SLE - CAR.02	Max	98,34	-18,60	398,06	100,08
SP.A-DX-8	SLE - CAR.02	Min	89,53	-21,82	371,27	92,15
SP.A-DX-8	SLE - CAR.03	Max	93,31	-24,49	418,71	96,47
SP.A-DX-8	SLE - CAR.03	Min	84,51	-27,71	391,92	88,93
SP.A-DX-8	SLE - CAR.04	Max	94,99	-27,80	420,59	98,97
SP.A-DX-8	SLE - CAR.04	Min	86,19	-31,02	393,81	91,60
SP.A-DX-8	SLE - CAR.05	Max	95,58	-12,27	382,41	96,36
SP.A-DX-8	SLE - CAR.05	Min	88,97	-14,69	362,32	90,17
SP.A-DX-8	SLE - CAR.06	Max	97,26	-15,58	384,29	98,49
SP.A-DX-8	SLE - CAR.06	Min	90,65	-17,99	364,20	92,42
SP.A-DX-8	SLE - CAR.07	Max	90,00	-27,60	419,97	94,13
SP.A-DX-8	SLE - CAR.07	Min	83,39	-30,01	399,88	88,63
SP.A-DX-8	SLE - CAR.08	Max	91,67	-30,91	421,86	96,74
SP.A-DX-8	SLE - CAR.08	Min	85,07	-33,32	401,77	91,36
SP.A-DX-8	SLE - CAR.09	Max	93,90	-14,23	389,29	94,97
SP.A-DX-8	SLE - CAR.09	Min	87,30	-16,65	369,20	88,87
SP.A-DX-8	SLE - CAR.10	Max	96,70	-19,75	392,43	98,69
SP.A-DX-8	SLE - CAR.10	Min	90,09	-22,16	372,34	92,78
SP.A-DX-8	SLE - CAR.11	Max	90,55	-23,43	411,83	93,53
SP.A-DX-8	SLE - CAR.11	Min	83,95	-25,85	391,74	87,84
SP.A-DX-8	SLE - CAR.12	Max	93,35	-28,94	414,97	97,73
SP.A-DX-8	SLE - CAR.12	Min	86,75	-31,36	394,88	92,24

Combinazioni allo Stato Limite Ultimo – STR

PALO	COMBIN	AZIONE	$V_{\rm Sd,long}$	$V_{\rm Sd,long}$	N_{Sd}	$R_{v,sd}$
			[kN]	[kN]	[kN]	[kN]
SP.A-DX-1	SLU - STR.01	Max	-80,26	490,97	3.725,21	497,49
SP.A-DX-1	SLU - STR.01	Min	-87,61	451,72	3.358,81	460,14
SP.A-DX-1	SLU - STR.02	Max	-81,05	490,66	3.724,77	497,31
SP.A-DX-1	SLU - STR.02	Min	-88,40	451,40	3.358,37	459,98
SP.A-DX-1	SLU - STR.03	Max	-77,87	472,12	3.671,23	478,50
SP.A-DX-1	SLU - STR.03	Min	-85,23	432,87	3.304,83	441,18
SP.A-DX-1	SLU - STR.04	Max	-78,66	471,80	3.670,79	478,32
SP.A-DX-1	SLU - STR.04	Min	-86,02	432,55	3.304,39	441,02
SP.A-DX-1	SLU - STR.05	Max	-82,53	487,44	3.651,63	494,38
SP.A-DX-1	SLU - STR.05	Min	-88,04	458,00	3.376,83	466,39
SP.A-DX-1	SLU - STR.06	Max	-83,29	487,16	3.651,78	494,23
SP.A-DX-1	SLU - STR.06	Min	-88,81	457,72	3.376,98	466,26
SP.A-DX-1	SLU - STR.07	Max	-78,55	456,02	3.561,66	462,74
SP.A-DX-1	SLU - STR.07	Min	-84,06	426,58	3.286,86	434,79
SP.A-DX-1	SLU - STR.08	Max	-79,34	455,71	3.561,23	462,56
SP.A-DX-1	SLU - STR.08	Min	-84,85	426,27	3.286,43	434,63
SP.A-DX-1	SLU - STR.09	Max	-81,47	481,26	3.633,78	488,11
SP.A-DX-1	SLU - STR.09	Min	-86,98	451,82	3.358,98	460,12
SP.A-DX-1	SLU - STR.10	Max	-82,78	480,74	3.633,06	487,82
SP.A-DX-1	SLU - STR.10	Min	-88,30	451,30	3.358,26	459,86
SP.A-DX-1	SLU - STR.11	Max	-79,08	462,41	3.579,80	469,12
SP.A-DX-1	SLU - STR.11	Min	-84,59	432,97	3.305,00	441,16
SP.A-DX-1	SLU - STR.12	Max	-80,40	461,89	3.579,08	468,83
SP.A-DX-1	SLU - STR.12	Min	-85,91	432,45	3.304,28	440,90
SP.A-DX-2	SLU - STR.01	Max	-97,89	251,56	2.244,57	269,93
SP.A-DX-2	SLU - STR.01	Min	-106,28	227,96	2.010,78	251,52
SP.A-DX-2	SLU - STR.02	Max	-98,22	249,03	2.238,58	267,70
SP.A-DX-2	SLU - STR.02	Min	-106,61	225,43	2.004,79	249,37
SP.A-DX-2	SLU - STR.03	Max	-93,78	236,75	2.196,86	254,65
SP.A-DX-2	SLU - STR.03	Min	-102,17	213,15	1.963,07	236,37
SP.A-DX-2	SLU - STR.04	Max	-94,11	234,22	2.190,87	252,42
SP.A-DX-2	SLU - STR.04	Min	-102,50	210,62	1.957,08	234,24
SP.A-DX-2	SLU - STR.05	Max	-100,25	250,60	2.202,04	269,91
SP.A-DX-2	SLU - STR.05	Min	-106,54	232,90	2.026,70	256,11
SP.A-DX-2	SLU - STR.06	Max	-100,57	248,09	2.196,44	267,70
SP.A-DX-2	SLU - STR.06	Min	-106,86	230,39	2.021,10	253,97
SP.A-DX-2	SLU - STR.07	Max	-93,40	225,92	2.122,53	244,47
SP.A-DX-2	SLU - STR.07	Min	-99,69	208,22	1.947,19	230,86
SP.A-DX-2	SLU - STR.08	Max	-93,73	223,39	2.116,54	242,26
SP.A-DX-2	SLU - STR.08	Min	-100,02	205,69	1.941,20	228,72
SP.A-DX-2	SLU - STR.09	Max	-98,77	246,51	2.188,14	265,56
SP.A-DX-2	SLU - STR.09	Min	-105,06	228,81	2.012,79	251,77
SP.A-DX-2	SLU - STR.10	Max	-99,32	242,29	2.178,15	261,86
SP.A-DX-2	SLU - STR.10	Min	-105,61	224,59	2.002,81	248,18
SP.A-DX-2	SLU - STR.11	Max	-94,66	231,70	2.140,43	250,29
SP.A-DX-2	SLU - STR.11	Min	-100,95	214,00	1.965,09	236,62
SP.A-DX-2	SLU - STR.12	Max	-95,21	227,48	2.130,45	246,60
SP.A-DX-2	SLU - STR.12	Min	-101,50	209,78	1.955,10	233,05

PALO	COMBIN	AZIONE	V _{Sd,long}	V _{Sd,long}	N _{Sd}	R _{v,sd} [kN]
SP.A-DX-3	SLU - STR.01	Max	[kN] -66,02	[kN] 73,93	[kN] 750,84	99,12
SP.A-DX-3	SLU - STR.01	Min	-74,91	62,14	671,89	97,33
SP.A-DX-3	SLU - STR.01	Max	-65,73	70,02	742,50	96,04
SP.A-DX-3	SLU - STR.02 SLU - STR.02	Min	-74,62	58,23	663,55	94,65
		Max	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
SP.A-DX-3 SP.A-DX-3	SLU - STR.03	Min	-61,09	63,86	719,72 640,77	88,37
SP.A-DX-3	SLU - STR.03 SLU - STR.04		-69,98 60,84	52,06	711,38	87,23
	SLU - STR.04 SLU - STR.04	Max	-60,81	59,94 48,15		85,38
SP.A-DX-3 SP.A-DX-3	SLU - STR.04 SLU - STR.05	Min Max	-69,69 -68,56	74,35	632,43 741,49	84,71 101,13
SP.A-DX-3	SLU - STR.05	Min	-75,22	65,51	682,28	99,75
	 			·		
SP.A-DX-3 SP.A-DX-3	SLU - STR.06 SLU - STR.06	Max Min	-68,26 -74,93	70,46 61,62	733,30	98,10 97,01
	 		· · · · · · · · · · · · · · · · · · ·	·	674,08	
SP.A-DX-3 SP.A-DX-3	SLU - STR.07 SLU - STR.07	Max Min	-60,35 -67,01	57,55 48,71	689,62 630,41	83,39 82,84
	SLU - STR.07		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		80,52
SP.A-DX-3		Max	-60,06	53,63	681,29	· · · · · · · · · · · · · · · · · · ·
SP.A-DX-3 SP.A-DX-3	SLU - STR.08	Min	-66,73	44,79	622,07	80,36
SP.A-DX-3	SLU - STR.09	Max	-67,01	72,29	733,89	98,57
	SLU - STR.09	Min	-73,68	63,45	674,68	97,23
SP.A-DX-3	SLU - STR.10 SLU - STR.10	Max	-66,53 73,20	65,77	720,00	93,55
SP.A-DX-3	 	Min	-73,20	56,92	660,79	92,72
SP.A-DX-3 SP.A-DX-3	SLU - STR.11	Max Min	-62,09	62,22	702,77	87,89
SP.A-DX-3	SLU - STR.11 SLU - STR.12		-68,75	53,37	643,56	87,04
	SLU - STR.12	Max	-61,60	55,69	688,88	83,04
SP.A-DX-3		Min	-68,27	46,84	629,67	82,80
SP.A-DX-4 SP.A-DX-4	SLU - STR.01	Max	20,52	214,66	3.391,14	215,64
SP.A-DX-4	SLU - STR.01 SLU - STR.02	Min Max	10,59 21,64	201,69 212,88	3.049,67 3.393,38	201,97
SP.A-DX-4	SLU - STR.02 SLU - STR.02	Min	11,71	199,91	3.051,91	213,98 200,25
SP.A-DX-4	SLU - STR.02 SLU - STR.03	Max	20,60	197,09	3.388,52	198,17
SP.A-DX-4	SLU - STR.03	Min	10,68	·	3.047,05	
SP.A-DX-4	SLU - STR.03		21,72	184,12 195,31	3.390,76	184,43
SP.A-DX-4	SLU - STR.04	Max Min	11,80	182,34	3.049,29	196,51 182,72
SP.A-DX-4	SLU - STR.04 SLU - STR.05	Max	18,01	217,28	3.306,67	218,02
SP.A-DX-4	SLU - STR.05	Min	10,56	207,55	3.050,57	210,02
SP.A-DX-4	SLU - STR.06	Max	19,14	215,49	3.309,47	216,34
SP.A-DX-4	SLU - STR.06	Min	11,70	205,76	3.053,37	206,10
SP.A-DX-4	SLU - STR.07	Max	18,15	188,00	3.302,30	188,87
SP.A-DX-4	SLU - STR.07	Min	10,71	178,27	3.046,20	178,59
SP.A-DX-4	SLU - STR.08	Max	19,27	186,21	3.304,54	187,21
SP.A-DX-4	SLU - STR.08	Min	11,83	176,48	3.048,44	176,88
SP.A-DX-4	SLU - STR.00 SLU - STR.09	Max	17,66	212,02	3.305,05	212,75
SP.A-DX-4	SLU - STR.09 SLU - STR.09	Min	10,22	202,29	3.048,95	202,55
SP.A-DX-4	SLU - STR.09 SLU - STR.10	Max	19,53	202,29	3.308,78	202,35
SP.A-DX-4	SLU - STR. 10	Min	12,09	199,32	3.052,68	199,68
SP.A-DX-4	SLU - STR.10	Max	17,75	199,32	3.302,42	195,25
SP.A-DX-4	SLU - STR.11	Min	10,31	184,72	3.046,32	185,00
SP.A-DX-4	SLU - STR.11 SLU - STR.12	Max	19,62	191,47	3.306,16	192,48
				·		
SP.A-DX-4	SLU - STR.12	Min	12,17	181,74	3.050,06	182,15

PALO	COMBIN	AZIONE	V _{Sd,long}	V _{Sd,long}	N _{Sd}	R _V , _{Sd}
CD A DV 5	CLU CTD 04	May	[kN]	[kN]	[kN]	[kN]
SP.A-DX-5	SLU - STR.01	Max	1,25	98,62	1.751,44	98,63
SP.A-DX-5	SLU - STR.01	Min	-7,92	90,42	1.570,31	90,77
SP.A-DX-5	SLU - STR.02	Max	2,47	95,10	1.749,44	95,13
SP.A-DX-5	SLU - STR.02	Min	-6,70	86,90	1.568,31	87,16
SP.A-DX-5	SLU - STR.03	Max	0,77	84,25	1.753,71	84,26
SP.A-DX-5	SLU - STR.03	Min	-8,39	76,06	1.572,58	76,52
SP.A-DX-5	SLU - STR.04	Max	1,99	80,74	1.751,71	80,76
SP.A-DX-5	SLU - STR.04	Min	-7,17	72,54	1.570,58	72,89
SP.A-DX-5	SLU - STR.05	Max	0,03	101,36	1.705,42	101,36
SP.A-DX-5	SLU - STR.05	Min	-6,84	95,21	1.569,57	95,46
SP.A-DX-5	SLU - STR.06	Max	1,25	97,85	1.703,72	97,86
SP.A-DX-5	SLU - STR.06	Min	-5,62	91,70	1.567,87	91,88
SP.A-DX-5	SLU - STR.07	Max	-0,77	77,42	1.709,20	77,42
SP.A-DX-5	SLU - STR.07	Min	-7,64	71,27	1.573,35	71,68
SP.A-DX-5	SLU - STR.08	Max	0,46	73,90	1.707,20	73,90
SP.A-DX-5	SLU - STR.08	Min	-6,42	67,75	1.571,35	68,05
SP.A-DX-5	SLU - STR.09	Max	-0,54	97,75	1.706,84	97,75
SP.A-DX-5	SLU - STR.09	Min	-7,41	91,60	1.570,99	91,89
SP.A-DX-5	SLU - STR.10	Max	1,50	91,88	1.703,51	91,89
SP.A-DX-5	SLU - STR.10	Min	-5,37	85,73	1.567,66	85,90
SP.A-DX-5	SLU - STR.11	Max	-1,01	83,38	1.709,11	83,39
SP.A-DX-5	SLU - STR.11	Min	-7,89	77,23	1.573,26	77,63
SP.A-DX-5	SLU - STR.12	Max	1,02	77,52	1.705,78	77,52
SP.A-DX-5	SLU - STR.12	Min	-5,85	71,37	1.569,93	71,61
SP.A-DX-6	SLU - STR.01	Max	158,05	-28,72	2.872,67	160,64
SP.A-DX-6	SLU - STR.01	Min	142,39	-48,32	2.604,60	150,37
SP.A-DX-6	SLU - STR.02	Max	160,63	-30,04	2.879,84	163,41
SP.A-DX-6	SLU - STR.02	Min	144,96	-49,64	2.611,77	153,23
SP.A-DX-6	SLU - STR.03	Max	155,76	-50,71	2.907,82	163,81
SP.A-DX-6	SLU - STR.03	Min	140,10	-70,31	2.639,75	156,75
SP.A-DX-6	SLU - STR.04	Max	158,33	-52,03	2.914,99	166,66
SP.A-DX-6	SLU - STR.04	Min	142,67	-71,64	2.646,92	159,65
SP.A-DX-6	SLU - STR.05	Max	154,90	-21,39	2.793,95	156,37
SP.A-DX-6	SLU - STR.05	Min	143,16	-36,09	2.592,90	147,64
SP.A-DX-6	SLU - STR.06	Max	157,49	-22,78	2.801,57	159,12
SP.A-DX-6	SLU - STR.06	Min	145,74	-37,48	2.600,51	150,48
SP.A-DX-6	SLU - STR.07	Max	151,08	-58,04	2.852,53	161,85
SP.A-DX-6	SLU - STR.07	Min	139,34	-72,74	2.651,48	157,18
SP.A-DX-6	SLU - STR.08	Max	153,66	-59,37	2.859,70	164,73
SP.A-DX-6	SLU - STR.08	Min	141,91	-74,07	2.658,65	160,07
SP.A-DX-6	SLU - STR.09	Max	153,28	-28,28	2.803,28	155,87
SP.A-DX-6	SLU - STR.09	Min	141,54	-42,98	2.602,23	147,92
SP.A-DX-6	SLU - STR.10	Max	157,57	-30,48	2.815,23	160,49
SP.A-DX-6	SLU - STR.10	Min	145,82	-45,19	2.614,18	152,66
SP.A-DX-6	SLU - STR.11	Max	150,99	-50,27	2.838,43	159,14
SP.A-DX-6	SLU - STR.11	Min	139,24	-64,97	2.637,37	153,66
SP.A-DX-6	SLU - STR.12	Max	155,28	-52,48	2.850,38	163,90
SP.A-DX-6	SLU - STR.12	Min	143,53	-67,18	2.649,32	158,47

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _v , _{sd} [kN]
SP.A-DX-7	SLU - STR.01	Max	154,98	-11,90	1.754,92	155,43
SP.A-DX-7	SLU - STR.01	Min	140,20	-22,71	1.754,92	142,02
SP.A-DX-7	SLU - STR.01	Max	157,52	-14,85		158,21
-	_		· · · · · · · · · · · · · · · · · · ·		1.760,03	·
SP.A-DX-7	SLU - STR.02	Min	142,74	-25,67	1.599,07	145,02
SP.A-DX-7	SLU - STR.03	Max	150,64	-30,42	1.794,48	153,68
SP.A-DX-7	SLU - STR.03	Min	135,86	-41,23	1.633,52	141,98
SP.A-DX-7	SLU - STR.04	Max	153,18	-33,37	1.799,59	156,77
SP.A-DX-7	SLU - STR.04	Min	138,40	-44,18	1.638,63	145,28
SP.A-DX-7	SLU - STR.05	Max	152,73	-5,73	1.701,50	152,84
SP.A-DX-7	SLU - STR.05	Min	141,64	-13,84	1.580,78	142,32
SP.A-DX-7	SLU - STR.06	Max	155,27	-8,71	1.706,88	155,52
SP.A-DX-7	SLU - STR.06	Min	144,19	-16,82	1.586,16	145,17
SP.A-DX-7	SLU - STR.07	Max	145,50	-36,59	1.767,43	150,03
SP.A-DX-7	SLU - STR.07	Min	134,42	-44,70	1.646,71	141,65
SP.A-DX-7	SLU - STR.08	Max	148,04	-39,54	1.772,55	153,23
SP.A-DX-7	SLU - STR.08	Min	136,95	-47,65	1.651,82	145,01
SP.A-DX-7	SLU - STR.09	Max	150,44	-10,92	1.712,98	150,83
SP.A-DX-7	SLU - STR.09	Min	139,35	-19,03	1.592,26	140,64
SP.A-DX-7	SLU - STR.10	Max	154,67	-15,84	1.721,50	155,48
SP.A-DX-7	SLU - STR.10	Min	143,58	-23,95	1.600,78	145,57
SP.A-DX-7	SLU - STR.11	Max	146,10	-29,43	1.752,54	149,04
SP.A-DX-7	SLU - STR.11	Min	135,02	-37,54	1.631,82	140,14
SP.A-DX-7	SLU - STR.12	Max	150,33	-34,36	1.761,06	154,21
SP.A-DX-7	SLU - STR.12	Min	139,25	-42,47	1.640,34	145,58
SP.A-DX-8	SLU - STR.01	Max	131,74	-20,37	534,64	133,30
SP.A-DX-8	SLU - STR.01	Min	119,85	-24,72	498,47	122,37
SP.A-DX-8	SLU - STR.02	Max	133,75	-24,34	536,90	135,95
SP.A-DX-8	SLU - STR.02	Min	121,87	-28,69	500,74	125,20
SP.A-DX-8	SLU - STR.03	Max	126,72	-34,17	568,45	131,24
SP.A-DX-8	SLU - STR.03	Min	114,83	-38,51	532,28	121,11
SP.A-DX-8	SLU - STR.04	Max	128,73	-38,14	570,71	134,26
SP.A-DX-8	SLU - STR.04	Min	116,84	-42,48	534,55	124,33
SP.A-DX-8	SLU - STR.05	Max	130,44	-15,83	514,93	131,40
SP.A-DX-8	SLU - STR.05	Min	121,53	-19,09	487,81	123,02
SP.A-DX-8	SLU - STR.06	Max	132,46	-19,80	517,25	133,93
SP.A-DX-8	SLU - STR.06	Min	123,54	-23,06	490,13	125,68
SP.A-DX-8	SLU - STR.07	Max	122,07	-38,83	571,28	128,10
SP.A-DX-8	SLU - STR.07	Min	113,15	-42,09	544,16	120,73
SP.A-DX-8	SLU - STR.08	Max	124,09	-42,80	573,54	131,26
SP.A-DX-8	SLU - STR.08	Min	115,17	-46,06	546,42	124,04
SP.A-DX-8	SLU - STR.09	Max	128,10	-19,11	525,45	129,51
SP.A-DX-8	SLU - STR.09	Min	119,18	-22,37	498,32	121,26
SP.A-DX-8	SLU - STR.10	Max	131,45	-25,72	529,22	133,95
SP.A-DX-8	SLU - STR.10	Min	122,54	-28,98	502,10	125,92
SP.A-DX-8	SLU - STR.11	Max	123,07	-32,90	559,26	127,40
SP.A-DX-8	SLU - STR.11	Min	114,16	-36,16	532,13	119,75
SP.A-DX-8	SLU - STR.12	Max	126,43	-39,52	563,03	132,46
SP.A-DX-8	SLU - STR.12	Min	117,52	-42,78	535,90	125,06

Combinazioni allo Stato limite di Salvaguardia della Vita

PALO	COMBIN	IAZIONE	V _{Sd,long}	V _{Sd,long} [kN]	N _{Sd} [kN]	R _v , _{sd} [kN]
SP.A-DX-1	SLV - X - 01	Max	7,79	434,07	2.867,35	434,13
SP.A-DX-1	SLV - X - 01	Min	-118,83	221,47	2.097,48	251,33
SP.A-DX-1	SLV - X - 02	Max	6,70	433,67	2.866,35	433,72
SP.A-DX-1	SLV - X - 02	Min	-119,92	221,08	2.096,48	251,51
SP.A-DX-1	SLV - Y - 01	Max	-0,48	471,94	2.830,92	471,94
SP.A-DX-1	SLV - Y - 01	Min	-110,56	183,60	2.133,92	214,32
SP.A-DX-1	SLV - Y - 02	Max	-1,57	471,55	2.829,91	471,55
SP.A-DX-1	SLV - Y - 02	Min	-111,65	183,21	2.132,92	214,55
SP.A-DX-2	SLV - X - 01	Max	8,28	202,81	1.580,26	202,98
SP.A-DX-2	SLV - X - 01	Min	-138,96	125,94	1.346,45	187,53
SP.A-DX-2	SLV - X - 02	Max	7,73	199,70	1.572,93	199,85
SP.A-DX-2	SLV - X - 02	Min	-139,50	122,83	1.339,12	185,87
SP.A-DX-2	SLV - Y - 01	Max	0,50	248,11	1.716,83	248,11
SP.A-DX-2	SLV - Y - 01	Min	-131,18	80,65	1.209,88	153,98
SP.A-DX-2	SLV - Y - 02	Max	-0,05	245,00	1.709,50	245,00
SP.A-DX-2	SLV - Y - 02	Min	-131,72	77,54	1.202,55	152,85
SP.A-DX-3	SLV - X - 01	Max	36,41	107,60	781,84	113,60
SP.A-DX-3	SLV - X - 01	Min	-118,61	-19,48	143,56	120,20
SP.A-DX-3	SLV - X - 02	Max	36,62	102,80	772,00	109,12
SP.A-DX-3	SLV - X - 02	Min	-118,40	-24,29	133,72	120,87
SP.A-DX-3	SLV - Y - 01	Max	25,81	102,73	716,32	105,92
SP.A-DX-3	SLV - Y - 01	Min	-108,01	-14,60	209,08	108,99
SP.A-DX-3	SLV - Y - 02	Max	26,02	97,92	706,48	101,32
SP.A-DX-3	SLV - Y - 02	Min	-107,80	-19,41	199,24	109,53
SP.A-DX-4	SLV - X - 01	Max	98,68	205,25	2.451,56	227,74
SP.A-DX-4	SLV - X - 01	Min	-68,33	81,83	2.060,65	106,61
SP.A-DX-4	SLV - X - 02	Max	99,92	203,07	2.454,08	226,33
SP.A-DX-4	SLV - X - 02	Min	-67,09	79,66	2.063,17	104,14
SP.A-DX-4	SLV - Y - 01	Max	53,71	258,38	2.357,57	263,91
SP.A-DX-4	SLV - Y - 01	Min	-23,36	28,70	2.154,64	37,00
SP.A-DX-4	SLV - Y - 02	Max	54,95	256,21	2.360,09	262,03
SP.A-DX-4	SLV - Y - 02	Min	-22,12	26,52	2.157,16	34,53

PALO	COMBIN	IAZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _v , _{Sd} [kN]
SP.A-DX-5	SLV - X - 01	Max	99,17	109,61	1.304,52	147,81
SP.A-DX-5	SLV - X - 01	Min	-87,88	19,76	972,91	90,07
SP.A-DX-5	SLV - X - 02	Max	100,52	105,27	1.302,35	145,55
SP.A-DX-5	SLV - X - 02	Min	-86,53	15,42	970,74	87,90
SP.A-DX-5	SLV - Y - 01	Max	48,01	139,91	1.224,15	147,91
SP.A-DX-5	SLV - Y - 01	Min	-36,72	-10,55	1.053,28	38,20
SP.A-DX-5	SLV - Y - 02	Max	49,35	135,57	1.221,98	144,27
SP.A-DX-5	SLV - Y - 02	Min	-35,37	-14,88	1.051,11	38,37
SP.A-DX-6	SLV - X - 01	Max	225,38	51,36	2.277,42	231,15
SP.A-DX-6	SLV - X - 01	Min	-4,64	-111,65	1.620,52	111,74
SP.A-DX-6	SLV - X - 02	Max	228,41	49,79	2.285,85	233,78
SP.A-DX-6	SLV - X - 02	Min	-1,60	-113,21	1.628,96	113,22
SP.A-DX-6	SLV - Y - 01	Max	172,22	124,92	2.250,40	212,76
SP.A-DX-6	SLV - Y - 01	Min	48,51	-185,21	1.647,54	191,45
SP.A-DX-6	SLV - Y - 02	Max	175,26	123,35	2.258,84	214,32
SP.A-DX-6	SLV - Y - 02	Min	51,55	-186,77	1.655,97	193,75
SP.A-DX-7	SLV - X - 01	Max	240,35	29,11	1.286,12	242,11
SP.A-DX-7	SLV - X - 01	Min	-20,93	-54,32	1.078,68	58,21
SP.A-DX-7	SLV - X - 02	Max	243,33	25,48	1.292,44	244,66
SP.A-DX-7	SLV - X - 02	Min	-17,95	-57,95	1.084,99	60,67
SP.A-DX-7	SLV - Y - 01	Max	184,40	87,94	1.402,33	204,30
SP.A-DX-7	SLV - Y - 01	Min	35,03	-113,16	962,48	118,45
SP.A-DX-7	SLV - Y - 02	Max	187,37	84,31	1.408,64	205,47
SP.A-DX-7	SLV - Y - 02	Min	38,00	-116,79	968,79	122,81
SP.A-DX-8	SLV - X - 01	Max	212,80	36,14	573,72	215,84
SP.A-DX-8	SLV - X - 01	Min	-24,20	-64,57	143,09	68,96
SP.A-DX-8	SLV - X - 02	Max	215,14	31,21	576,84	217,39
SP.A-DX-8	SLV - X - 02	Min	-21,86	-69,50	146,21	72,86
SP.A-DX-8	SLV - Y - 01	Max	164,98	50,17	559,93	172,44
SP.A-DX-8	SLV - Y - 01	Min	23,62	-78,60	156,88	82,08
SP.A-DX-8	SLV - Y - 02	Max	167,32	45,24	563,06	173,33
SP.A-DX-8	SLV - Y - 02	Min	25,96	-83,53	160,00	87,47

14.1.3 RIEPILOGO DELLE AZIONI SOLLECITANTI DESUNTE DAL MODELLO DI CALCOLO

Nella tabella successiva sono riepilogati i valori maggiormente gravosi delle azioni sollecitanti per le differenti famiglie di combinazioni di carico adottate:

SOTTOST	RUTTURA	COMBINAZIONE	N _{Sd,max} [kN]	N _{Sd,min} [kN]	R _{v,sd} [kN]
		SLE - QUASI PERMANENTE	2.350,64	369,69	327,39
		SLE - FREQUENTE	2.551,96	367,87	348,78
	ZATTERA SX	SLE - CARATTERISTICA	2.636,99	349,25	362,24
		SLU - STR	3.582,29	469,63	492,13
SPALLA A		SLV	2.770,96	102,42	480,01
SFALLA A		SLE - QUASI PERMANENTE	2.450,46	382,60	331,87
		SLE - FREQUENTE	2.653,95	381,25	352,73
	ZATTERA DX	SLE - CARATTERISTICA	2.739,80	362,32	366,05
		SLU - STR	3.725,21	487,81	497,49
		SLV	2.867,35	133,72	471,94

14.2 SPALLA "B" - AZIONI SOLLECITANTI DESUNTE DAL MODELLO DI CALCOLO

14.2.1 **Z**ATTERA SINISTRA

Nelle tabelle successive sono riepilogati i valori delle azioni sollecitanti (azione normale e taglio nelle due direzioni trasversali) valutati in corrispondenza delle molle elastiche mediante le quali sono stati modellati i pali di fondaizone all'interno del modello di calcolo tridimensionale.

Per ciascun palo è stata determinata anche la risultante di taglio orizzontale, valutata come combinazione quadratica delle azioni taglianti valutate lungo le due direzioni orizzontali ortogonali.

Combinazioni allo Stato Limite di Esercizio - Quasi Permanenti

PALO	COMBIN	AZIONE	V _{Sd,long}	V _{Sd,long}	N _{Sd}	R _v , _{sd}
			[kN]	[kN]	[kN]	[kN]
SP.B-SX-1	SLE - Q.P.01	Max	-86,59	19,97	368,30	88,86
SP.B-SX-1	SLE - Q.P.01	Min	-86,59	19,97	368,30	88,86
SP.B-SX-1	SLE - Q.P.02	Max	-88,15	22,59	369,35	91,00
SP.B-SX-1	SLE - Q.P.02	Min	-88,15	22,59	369,35	91,00
SP.B-SX-2	SLE - Q.P.01	Max	-101,14	9,69	1.134,34	101,60
SP.B-SX-2	SLE - Q.P.01	Min	-101,14	9,69	1.134,34	101,60
SP.B-SX-2	SLE - Q.P.02	Max	-103,07	11,72	1.137,79	103,73
SP.B-SX-2	SLE - Q.P.02	Min	-103,07	11,72	1.137,79	103,73
SP.B-SX-3	SLE - Q.P.01	Max	-102,48	16,70	1.843,96	103,83
SP.B-SX-3	SLE - Q.P.01	Min	-102,48	16,70	1.843,96	103,83
SP.B-SX-3	SLE - Q.P.02	Max	-104,39	17,72	1.849,40	105,88
SP.B-SX-3	SLE - Q.P.02	Min	-104,39	17,72	1.849,40	105,88
SP.B-SX-4	SLE - Q.P.01	Max	2,26	-58,98	1.093,01	59,03
SP.B-SX-4	SLE - Q.P.01	Min	2,26	-58,98	1.093,01	59,03
SP.B-SX-4	SLE - Q.P.02	Max	1,20	-56,60	1.091,23	56,61
SP.B-SX-4	SLE - Q.P.02	Min	1,20	-56,60	1.091,23	56,61
SP.B-SX-5	SLE - Q.P.01	Max	-5,70	-142,18	2.132,39	142,30
SP.B-SX-5	SLE - Q.P.01	Min	-5,70	-142,18	2.132,39	142,30
SP.B-SX-5	SLE - Q.P.02	Max	-6,66	-140,92	2.134,25	141,08
SP.B-SX-5	SLE - Q.P.02	Min	-6,66	-140,92	2.134,25	141,08
SP.B-SX-6	SLE - Q.P.01	Max	49,97	-36,35	451,43	61,80
SP.B-SX-6	SLE - Q.P.01	Min	49,97	-36,35	451,43	61,80
SP.B-SX-6	SLE - Q.P.02	Max	49,55	-33,69	445,17	59,92
SP.B-SX-6	SLE - Q.P.02	Min	49,55	-33,69	445,17	59,92
SP.B-SX-7	SLE - Q.P.01	Max	75,48	-156,57	1.383,10	173,81
SP.B-SX-7	SLE - Q.P.01	Min	75,48	-156,57	1.383,10	173,81
SP.B-SX-7	SLE - Q.P.02	Max	75,48	-154,83	1.378,96	172,25
SP.B-SX-7	SLE - Q.P.02	Min	75,48	-154,83	1.378,96	172,25
SP.B-SX-8	SLE - Q.P.01	Max	66,51	-319,16	2.336,61	326,02
SP.B-SX-8	SLE - Q.P.01	Min	66,51	-319,16	2.336,61	326,02
SP.B-SX-8	SLE - Q.P.02	Max	66,86	-318,92	2.336,96	325,85
SP.B-SX-8	SLE - Q.P.02	Min	66,86	-318,92	2.336,96	325,85

Combinazioni allo Stato Limite di Esercizio – Frequenti

PALO	COMBINA	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _{v,sd} [kN]
SP.B-SX-1	SLE - FREQ.01	Max	-86,59	22,11	385,11	89,37
SP.B-SX-1	SLE - FREQ.01	Min	-93,44	19,84	366,50	95,52
SP.B-SX-1	SLE - FREQ.02	Max	-88,15	24,73	386,17	91,55
SP.B-SX-1	SLE - FREQ.02	Min	-95,00	22,46	367,55	97,61
SP.B-SX-1	SLE - FREQ.03	Max	-86,43	19,70	368,19	88,65
SP.B-SX-1	SLE - FREQ.03	Min	-86,43	19,70	368,19	88,65
SP.B-SX-1	SLE - FREQ.04	Max	-88,31	22,85	369,45	91,21
SP.B-SX-1	SLE - FREQ.04	Min	-88,31	22,85	369,45	91,21
SP.B-SX-2	SLE - FREQ.01	Max	-101,14	15,02	1.217,39	102,25
SP.B-SX-2	SLE - FREQ.01	Min	-109,56	9,69	1.134,33	109,99
SP.B-SX-2	SLE - FREQ.02	Max	-103,07	17,05	1.220,84	104,47
SP.B-SX-2	SLE - FREQ.02	Min	-111,49	11,71	1.137,79	112,10
SP.B-SX-2	SLE - FREQ.03	Max	-100,95	9,49	1.133,99	101,39
SP.B-SX-2	SLE - FREQ.03	Min	-100,95	9,49	1.133,99	101,39
SP.B-SX-2	SLE - FREQ.04	Max	-103,26	11,92	1.138,14	103,94
SP.B-SX-2	SLE - FREQ.04	Min	-103,26	11,92	1.138,14	103,94
SP.B-SX-3	SLE - FREQ.01	Max	-102,48	26,29	1.983,30	105,79
SP.B-SX-3	SLE - FREQ.01	Min	-111,27	16,68	1.843,96	112,51
SP.B-SX-3	SLE - FREQ.02	Max	-104,39	27,32	1.988,75	107,90
SP.B-SX-3	SLE - FREQ.02	Min	-113,18	17,71	1.849,40	114,56
SP.B-SX-3	SLE - FREQ.03	Max	-102,28	16,59	1.843,41	103,62
SP.B-SX-3	SLE - FREQ.03	Min	-102,28	16,59	1.843,41	103,62
SP.B-SX-3	SLE - FREQ.04	Max	-104,58	17,82	1.849,94	106,09
SP.B-SX-3	SLE - FREQ.04	Min	-104,58	17,82	1.849,94	106,09
SP.B-SX-4	SLE - FREQ.01	Max	4,10	-58,98	1.185,86	59,13
SP.B-SX-4	SLE - FREQ.01	Min	-1,03	-63,32	1.093,00	63,33
SP.B-SX-4	SLE - FREQ.02	Max	3,04	-56,60	1.184,08	56,68
SP.B-SX-4	SLE - FREQ.02	Min	-2,09	-60,93	1.091,22	60,97
SP.B-SX-4	SLE - FREQ.03	Max	2,37	-59,22	1.093,19	59,27
SP.B-SX-4	SLE - FREQ.03	Min	2,37	-59,22	1.093,19	59,27
SP.B-SX-4	SLE - FREQ.04	Max	1,10	-56,36	1.091,05	56,37
SP.B-SX-4	SLE - FREQ.04	Min	1,10	-56,36	1.091,05	56,37

PALO	COMBINA	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _v , _{sd} [kN]
SP.B-SX-5	SLE - FREQ.01	Max	-5,70	-142,18	2.309,52	142,30
SP.B-SX-5	SLE - FREQ.01	Min	-11,32	-149,37	2.132,39	149,79
SP.B-SX-5	SLE - FREQ.02	Max	-6,66	-140,92	2.311,38	141,08
SP.B-SX-5	SLE - FREQ.02	Min	-12,28	-148,10	2.134,25	148,61
SP.B-SX-5	SLE - FREQ.03	Max	-5,60	-142,31	2.132,21	142,42
SP.B-SX-5	SLE - FREQ.03	Min	-5,60	-142,31	2.132,21	142,42
SP.B-SX-5	SLE - FREQ.04	Max	-6,76	-140,79	2.134,44	140,95
SP.B-SX-5	SLE - FREQ.04	Min	-6,76	-140,79	2.134,44	140,95
SP.B-SX-6	SLE - FREQ.01	Max	52,83	-36,35	491,12	64,12
SP.B-SX-6	SLE - FREQ.01	Min	47,84	-42,29	451,18	63,85
SP.B-SX-6	SLE - FREQ.02	Max	52,40	-33,69	484,86	62,29
SP.B-SX-6	SLE - FREQ.02	Min	47,41	-39,62	444,92	61,79
SP.B-SX-6	SLE - FREQ.03	Max	50,02	-36,62	452,06	61,99
SP.B-SX-6	SLE - FREQ.03	Min	50,02	-36,62	452,06	61,99
SP.B-SX-6	SLE - FREQ.04	Max	49,51	-33,42	444,55	59,73
SP.B-SX-6	SLE - FREQ.04	Min	49,51	-33,42	444,55	59,73
SP.B-SX-7	SLE - FREQ.01	Max	77,87	-156,57	1.503,79	174,87
SP.B-SX-7	SLE - FREQ.01	Min	73,14	-169,04	1.383,10	184,18
SP.B-SX-7	SLE - FREQ.02	Max	77,87	-154,83	1.499,64	173,31
SP.B-SX-7	SLE - FREQ.02	Min	73,14	-167,30	1.378,96	182,58
SP.B-SX-7	SLE - FREQ.03	Max	75,48	-156,75	1.383,52	173,97
SP.B-SX-7	SLE - FREQ.03	Min	75,48	-156,75	1.383,52	173,97
SP.B-SX-7	SLE - FREQ.04	Max	75,48	-154,66	1.378,55	172,09
SP.B-SX-7	SLE - FREQ.04	Min	75,48	-154,66	1.378,55	172,09
SP.B-SX-8	SLE - FREQ.01	Max	67,27	-319,16	2.527,38	326,17
SP.B-SX-8	SLE - FREQ.01	Min	63,20	-340,22	2.336,61	346,04
SP.B-SX-8	SLE - FREQ.02	Max	67,61	-318,92	2.527,74	326,00
SP.B-SX-8	SLE - FREQ.02	Min	63,55	-339,98	2.336,96	345,86
SP.B-SX-8	SLE - FREQ.03	Max	66,48	-319,18	2.336,58	326,03
SP.B-SX-8	SLE - FREQ.03	Min	66,48	-319,18	2.336,58	326,03
SP.B-SX-8	SLE - FREQ.04	Max	66,89	-318,89	2.337,00	325,83
SP.B-SX-8	SLE - FREQ.04	Min	66,89	-318,89	2.337,00	325,83

Combinazioni allo Stato Limite di Esercizio – Caratteristiche

PALO	COMBIN	AZIONE	V _{Sd,long}	V _{Sd,long}	N _{Sd}	R _v , _{sd}
CD D CV 4	OLE CAR 04	May	[kN]	[kN]	[kN]	[kN]
SP.B-SX-1	SLE - CAR.01	Max	-84,70	26,93	401,63	88,88
SP.B-SX-1	SLE - CAR.01	Min	-93,83	23,90	376,82	96,82
SP.B-SX-1	SLE - CAR.02	Max	-86,57	30,08	402,89	91,65
SP.B-SX-1	SLE - CAR.02	Min	-95,70	27,04	378,08	99,45
SP.B-SX-1	SLE - CAR.03	Max	-88,16	18,21	379,60	90,02
SP.B-SX-1	SLE - CAR.03	Min	-97,29	15,17	354,78	98,47
SP.B-SX-1	SLE - CAR.04	Max	-90,04	21,35	380,86	92,53
SP.B-SX-1	SLE - CAR.04	Min	-99,17	18,32	356,05	100,84
SP.B-SX-1	SLE - CAR.05	Max	-83,55	29,13	403,37	88,48
SP.B-SX-1	SLE - CAR.05	Min	-90,39	26,85	384,76	94,30
SP.B-SX-1	SLE - CAR.06	Max	-85,42	32,27	404,63	91,31
SP.B-SX-1	SLE - CAR.06	Min	-92,27	29,99	386,02	97,02
SP.B-SX-1	SLE - CAR.07	Max	-89,32	14,58	366,65	90,50
SP.B-SX-1	SLE - CAR.07	Min	-96,16	12,31	348,04	96,95
SP.B-SX-1	SLE - CAR.08	Max	-91,19	17,72	367,91	92,90
SP.B-SX-1	SLE - CAR.08	Min	-98,04	15,45	349,30	99,25
SP.B-SX-1	SLE - CAR.09	Max	-84,08	25,17	395,60	87,76
SP.B-SX-1	SLE - CAR.09	Min	-90,92	22,89	376,99	93,76
SP.B-SX-1	SLE - CAR.10	Max	-87,20	30,41	397,71	92,35
SP.B-SX-1	SLE - CAR.10	Min	-94,05	28,13	379,10	98,16
SP.B-SX-1	SLE - CAR.11	Max	-87,54	16,44	373,57	89,07
SP.B-SX-1	SLE - CAR.11	Min	-94,39	14,17	354,96	95,44
SP.B-SX-1	SLE - CAR.12	Max	-90,66	21,68	375,68	93,22
SP.B-SX-1	SLE - CAR.12	Min	-97,51	19,41	357,07	99,42
SP.B-SX-2	SLE - CAR.01	Max	-99,42	22,60	1.257,61	101,95
SP.B-SX-2	SLE - CAR.01	Min	-110,65	15,49	1.146,87	111,73
SP.B-SX-2	SLE - CAR.02	Max	-101,73	25,03	1.261,75	104,76
SP.B-SX-2	SLE - CAR.02	Min	-112,96	17,92	1.151,02	114,37
SP.B-SX-2	SLE - CAR.03	Max	-102,47	10,59	1.231,84	103,02
SP.B-SX-2	SLE - CAR.03	Min	-113,70	3,48	1.121,10	113,76
SP.B-SX-2	SLE - CAR.04	Max	-104,79	13,02	1.235,98	105,59
SP.B-SX-2	SLE - CAR.04	Min	-116,02	5,91	1.125,25	116,17
SP.B-SX-2	SLE - CAR.05	Max	-98,40	24,83	1.238,52	101,48
SP.B-SX-2	SLE - CAR.05	Min	-106,82	19,49	1.155,46	108,59
SP.B-SX-2	SLE - CAR.06	Max	-100,71	27,26	1.242,66	104,34
SP.B-SX-2	SLE - CAR.06	Min	-109,14	21,92	1.159,61	111,32
SP.B-SX-2	SLE - CAR.07	Max	-103,49	4,81	1.195,57	103,60
SP.B-SX-2	SLE - CAR.07	Min	-111,91	-0,52	1.112,52	111,91
SP.B-SX-2	SLE - CAR.08	Max	-105,80	7,24	1.199,71	106,05
SP.B-SX-2	SLE - CAR.08	Min	-114,23	1,91	1.116,66	114,24
SP.B-SX-2	SLE - CAR.09	Max	-98,65	20,01	1.228,55	100,66
SP.B-SX-2	SLE - CAR.09	Min	-107,07	14,68	1.145,49	108,07
SP.B-SX-2	SLE - CAR.10	Max	-102,50	24,06	1.235,45	105,29
SP.B-SX-2	SLE - CAR.10	Min	-110,93	18,73	1.152,40	112,50
SP.B-SX-2	SLE - CAR.11	Max	-101,70	8,00	1.202,78	102,02
SP.B-SX-2	SLE - CAR.11	Min	-110,12	2,67	1.119,72	110,16
SP.B-SX-2	SLE - CAR.12	Max	-105,56	12,05	1.209,68	106,24
SP.B-SX-2	SLE - CAR.12	Min	-113,98	6,72	1.126,63	114,18

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _{v,sd} [kN]
SP.B-SX-3	SLE - CAR.01	Max	-101,43	36,65	2.040,65	107,84
SP.B-SX-3	SLE - CAR.01	Min	-113,15	23,84	1.854,85	115,63
SP.B-SX-3	SLE - CAR.02	Max	-103,73	37,88	2.047,18	110,43
SP.B-SX-3	SLE - CAR.02	Min	-115,45	25,07	1.861,38	118,14
SP.B-SX-3	SLE - CAR.03	Max	-103,14	22,12	2.017,76	105,49
SP.B-SX-3	SLE - CAR.03	Min	-103,14	9,31	1.831,97	115,24
SP.B-SX-3	SLE - CAR.03	Max	-105,44	23,35	2.024,30	107,99
SP.B-SX-3	SLE - CAR.04 SLE - CAR.04	Min	-105,44	10,54	1.838,50	117,63
SP.B-SX-3	SLE - CAR.04 SLE - CAR.05	Max	-100,86	38,30	2.001,83	107,88
SP.B-SX-3	SLE - CAR.05	Min	-100,66	28,69	1.862,48	113,34
SP.B-SX-3 SP.B-SX-3	SLE - CAR.06 SLE - CAR.06	Max Min	-103,15 -111,95	39,53 29,92	2.008,36	110,47 115,87
-					1.869,01	·
SP.B-SX-3 SP.B-SX-3	SLE - CAR.07 SLE - CAR.07	Max Min	-103,71 112,50	14,08 4,47	1.963,69	104,66 112,59
			-112,50		1.824,34 1.970,22	·
SP.B-SX-3	SLE - CAR.08	Max	-106,01	15,31		107,11
SP.B-SX-3	SLE - CAR.08 SLE - CAR.09	Min	-114,80	5,70	1.830,87	114,94
SP.B-SX-3		Max	-100,66	33,04	1.992,02	105,94
SP.B-SX-3	SLE - CAR.09	Min	-109,45	23,43	1.852,68	111,93
SP.B-SX-3	SLE - CAR.10	Max	-104,49	35,09	2.002,91	110,23
SP.B-SX-3	SLE - CAR.10	Min	-113,28	25,48	1.863,56	116,11
SP.B-SX-3	SLE - CAR.11	Max	-102,37	18,51	1.969,14	104,03
SP.B-SX-3	SLE - CAR.11	Min	-111,17	8,90	1.829,79	111,52
SP.B-SX-3	SLE - CAR.12	Max	-106,21	20,56	1.980,02	108,18
SP.B-SX-3	SLE - CAR.12	Min	-115,00	10,95	1.840,68	115,52
SP.B-SX-4	SLE - CAR.01	Max	4,99	-54,63	1.217,75	54,86
SP.B-SX-4	SLE - CAR.01	Min	-1,86	-60,41	1.093,95	60,44
SP.B-SX-4	SLE - CAR.02	Max	3,71	-51,77	1.215,62	51,90
SP.B-SX-4	SLE - CAR.02	Min	-3,13	-57,55	1.091,81	57,64
SP.B-SX-4	SLE - CAR.03	Max	4,64	-63,81	1.216,22	63,98
SP.B-SX-4	SLE - CAR.03	Min	-2,20	-69,59	1.092,41	69,62
SP.B-SX-4	SLE - CAR.04	Max	3,37	-60,95	1.214,08	61,04
SP.B-SX-4	SLE - CAR.04	Min	-3,47	-66,73	1.090,28	66,82
SP.B-SX-4	SLE - CAR.05	Max	4,49	-51,57	1.187,31	51,77
SP.B-SX-4	SLE - CAR.05	Min	-0,64	-55,91	1.094,46	55,91
SP.B-SX-4	SLE - CAR.06	Max	3,22	-48,71	1.185,18	48,82
SP.B-SX-4	SLE - CAR.06	Min	-1,91	-53,05	1.092,33	53,08
SP.B-SX-4	SLE - CAR.07	Max	3,92	-66,87	1.184,76	66,99
SP.B-SX-4	SLE - CAR.07	Min	-1,21	-71,21	1.091,90	71,22
SP.B-SX-4	SLE - CAR.08	Max	2,64	-64,01	1.182,62	64,07
SP.B-SX-4	SLE - CAR.08	Min	-2,49	-68,35	1.089,77	68,39
SP.B-SX-4	SLE - CAR.09	Max	4,80	-55,59	1.187,51	55,79
SP.B-SX-4	SLE - CAR.09	Min	-0,33	-59,92	1.094,66	59,92
SP.B-SX-4	SLE - CAR.10	Max	2,68	-50,82	1.183,96	50,89
SP.B-SX-4	SLE - CAR.10	Min	-2,45	-55,15	1.091,10	55,21
SP.B-SX-4	SLE - CAR.11	Max	4,45	-64,77	1.185,98	64,92
SP.B-SX-4	SLE - CAR.11	Min	-0,68	-69,10	1.093,12	69,10
SP.B-SX-4	SLE - CAR.12	Max	2,33	-60,00	1.182,42	60,04
SP.B-SX-4	SLE - CAR.12	Min	-2,80	-64,33	1.089,57	64,39

PALO	сомвім	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _v , _{sd} [kN]
SP.B-SX-5	SLE - CAR.01	Max	-5,62	-136,55	2.367,47	136,67
SP.B-SX-5	SLE - CAR.01	Min	-13,11	-146,13	2.131,30	146,72
SP.B-SX-5	SLE - CAR.02	Max	-6,77	-135,04	2.369,70	135,21
SP.B-SX-5	SLE - CAR.02	Min	-14,26	-144,62	2.133,53	145,32
SP.B-SX-5	SLE - CAR.03	Max	-5,59	-148,06	2.369,29	148,17
SP.B-SX-5	SLE - CAR.03	Min	-13,08	-157,64	2.133,12	158,18
SP.B-SX-5	SLE - CAR.04	Max	-6,74	-146,55	2.371,52	146,70
SP.B-SX-5	SLE - CAR.04	Min	-14,23	-156,13	2.135,35	156,77
SP.B-SX-5	SLE - CAR.05	Max	-5,63	-132,72	2.307,82	132,83
SP.B-SX-5	SLE - CAR.05	Min	-11,24	-139,90	2.130,69	140,35
SP.B-SX-5	SLE - CAR.06	Max	-6,78	-131,20	2.310,05	131,37
SP.B-SX-5	SLE - CAR.06	Min	-12,40	-138,38	2.132,92	138,94
SP.B-SX-5	SLE - CAR.07	Max	-5,58	-151,90	2.310,85	152,00
SP.B-SX-5	SLE - CAR.07	Min	-11,20	-159,08	2.133,72	159,48
SP.B-SX-5	SLE - CAR.08	Max	-6,73	-150,38	2.313,08	150,53
SP.B-SX-5	SLE - CAR.08	Min	-12,35	-157,57	2.135,95	158,05
SP.B-SX-5	SLE - CAR.09	Max	-5,23	-137,06	2.307,68	137,16
SP.B-SX-5	SLE - CAR.09	Min	-10,85	-144,24	2.130,55	144,65
SP.B-SX-5	SLE - CAR.10	Max	-7,15	-134,53	2.311,40	134,72
SP.B-SX-5	SLE - CAR.10	Min	-12,77	-141,72	2.134,27	142,29
SP.B-SX-5	SLE - CAR.11	Max	-5,21	-148,57	2.309,50	148,66
SP.B-SX-5	SLE - CAR.11	Min	-10,82	-155,75	2.132,38	156,13
SP.B-SX-5	SLE - CAR.12	Max	-7,13	-146,04	2.313,22	146,22
SP.B-SX-5	SLE - CAR.12	Min	-12,74	-153,23	2.136,09	153,75
SP.B-SX-6	SLE - CAR.01	Max	52,15	-33,47	494,93	61,97
SP.B-SX-6	SLE - CAR.01	Min	45,49	-41,39	441,68	61,50
SP.B-SX-6	SLE - CAR.02	Max	51,64	-30,27	487,42	59,86
SP.B-SX-6	SLE - CAR.02	Min	44,99	-38,19	434,17	59,01
SP.B-SX-6	SLE - CAR.03	Max	55,49	-39,77	515,02	68,27
SP.B-SX-6	SLE - CAR.03	Min	48,84	-47,69	461,77	68,26
SP.B-SX-6	SLE - CAR.04	Max	54,98	-36,57	507,51	66,03
SP.B-SX-6	SLE - CAR.04	Min	48,33	-44,49	454,26	65,68
SP.B-SX-6	SLE - CAR.05	Max	50,08	-31,37	475,00	59,10
SP.B-SX-6	SLE - CAR.05	Min	45,09	-37,31	435,06	58,53
SP.B-SX-6	SLE - CAR.06	Max	49,58	-28,17	467,49	57,02
SP.B-SX-6	SLE - CAR.06	Min	44,59	-34,11	427,56	56,14
SP.B-SX-6	SLE - CAR.07	Max	55,65	-41,87	508,49	69,64
SP.B-SX-6	SLE - CAR.07	Min	50,66	-47,80	468,56	69,66
SP.B-SX-6	SLE - CAR.08	Max	55,15	-38,67	500,98	67,35
SP.B-SX-6	SLE - CAR.08	Min	50,15	-44,60	461,05	67,12
SP.B-SX-6	SLE - CAR.09	Max	51,37	-34,54	484,20	61,90
SP.B-SX-6	SLE - CAR.09	Min	46,38	-40,48	444,26	61,56
SP.B-SX-6	SLE - CAR.10	Max	50,52	-29,20	471,68	58,35
SP.B-SX-6	SLE - CAR.10	Min	45,53	-35,14	431,75	57,51
SP.B-SX-6	SLE - CAR.11	Max	54,71	-40,83	504,29	68,27
SP.B-SX-6	SLE - CAR.11	Min	49,72	-46,77	464,36	68,26
SP.B-SX-6	SLE - CAR.12	Max	53,86	-35,50	491,78	64,51
SP.B-SX-6	SLE - CAR.12	Min	48,87	-41,44	451,84	64,07

PALO	COMBIN	AZIONE	V _{Sd,long}	V _{Sd,long}	N _{Sd}	R _V , _{Sd}
CD D CV 7	CLE CAD 04	May	[kN]	[kN]	[kN]	[kN]
SP.B-SX-7	SLE - CAR.01	Max	77,24	-151,95	1.528,86	170,46
SP.B-SX-7	SLE - CAR.01	Min	70,93	-168,57	1.367,95	182,89
SP.B-SX-7	SLE - CAR.02	Max	77,24	-149,86	1.523,89	168,60
SP.B-SX-7	SLE - CAR.02	Min	70,93	-166,48	1.362,98	180,96
SP.B-SX-7	SLE - CAR.03	Max	80,10	-161,54	1.559,99	180,31
SP.B-SX-7	SLE - CAR.03	Min	73,79	-178,16	1.399,08	192,84
SP.B-SX-7	SLE - CAR.04	Max	80,10	-159,45	1.555,02	178,44
SP.B-SX-7	SLE - CAR.04	Min	73,79	-176,07	1.394,11	190,91
SP.B-SX-7	SLE - CAR.05	Max	75,49	-148,76	1.478,26	166,82
SP.B-SX-7	SLE - CAR.05	Min	70,76	-161,22	1.357,57	176,07
SP.B-SX-7	SLE - CAR.06	Max	75,49	-146,67	1.473,29	164,95
SP.B-SX-7	SLE - CAR.06	Min	70,76	-159,13	1.352,60	174,15
SP.B-SX-7	SLE - CAR.07	Max	80,26	-164,74	1.530,14	183,24
SP.B-SX-7	SLE - CAR.07	Min	75,52	-177,20	1.409,46	192,62
SP.B-SX-7	SLE - CAR.08	Max	80,26	-162,64	1.525,17	181,37
SP.B-SX-7	SLE - CAR.08	Min	75,52	-175,11	1.404,49	190,70
SP.B-SX-7	SLE - CAR.09	Max	76,44	-152,65	1.490,29	170,72
SP.B-SX-7	SLE - CAR.09	Min	71,71	-165,12	1.369,61	180,01
SP.B-SX-7	SLE - CAR.10	Max	76,44	-149,17	1.482,01	167,61
SP.B-SX-7	SLE - CAR.10	Min	71,71	-161,63	1.361,32	176,82
SP.B-SX-7	SLE - CAR.11	Max	79,30	-162,24	1.521,42	180,58
SP.B-SX-7	SLE - CAR.11	Min	74,57	-174,70	1.400,74	189,95
SP.B-SX-7	SLE - CAR.12	Max	79,30	-158,75	1.513,14	177,46
SP.B-SX-7	SLE - CAR.12	Min	74,57	-171,22	1.392,46	186,75
SP.B-SX-8	SLE - CAR.01	Max	66,61	-312,93	2.573,16	319,94
SP.B-SX-8	SLE - CAR.01	Min	61,19	-341,01	2.318,80	346,46
SP.B-SX-8	SLE - CAR.02	Max	67,02	-312,64	2.573,58	319,74
SP.B-SX-8	SLE - CAR.02	Min	61,60	-340,72	2.319,22	346,24
SP.B-SX-8	SLE - CAR.03	Max	68,36	-325,44	2.608,71	332,54
SP.B-SX-8	SLE - CAR.03	Min	62,94	-353,51	2.354,35	359,07
SP.B-SX-8	SLE - CAR.04	Max	68,77	-325,14	2.609,14	332,34
SP.B-SX-8	SLE - CAR.04	Min	63,35	-353,22	2.354,77	358,86
SP.B-SX-8	SLE - CAR.05	Max	65,78	-308,76	2.497,72	315,69
SP.B-SX-8	SLE - CAR.05	Min	61,71	-329,82	2.306,94	335,55
SP.B-SX-8	SLE - CAR.06	Max	66,19	-308,47	2.498,14	315,49
SP.B-SX-8	SLE - CAR.06	Min	62,12	-329,53	2.307,37	335,34
SP.B-SX-8	SLE - CAR.07	Max	68,69	-329,60	2.556,97	336,68
SP.B-SX-8	SLE - CAR.07	Min	64,63	-350,66	2.366,20	356,57
SP.B-SX-8	SLE - CAR.08	Max	69,10	-329,31	2.557,40	336,48
SP.B-SX-8	SLE - CAR.08	Min	65,04	-350,37	2.366,62	356,36
SP.B-SX-8	SLE - CAR.09	Max	66,22	-313,03	2.509,43	319,96
SP.B-SX-8	SLE - CAR.09	Min	62,16	-334,09	2.318,66	339,82
SP.B-SX-8	SLE - CAR.10	Max	66,91	-312,54	2.510,13	319,62
SP.B-SX-8	SLE - CAR.10	Min	62,84	-333,60	2.319,36	339,47
SP.B-SX-8	SLE - CAR.11	Max	67,97	-325,53	2.544,98	332,55
SP.B-SX-8	SLE - CAR.11	Min	63,91	-346,59	2.354,21	352,43
SP.B-SX-8	SLE - CAR.12	Max	68,66	-325,05	2.545,69	332,22
SP.B-SX-8	SLE - CAR.12	Min	64,59	-346,11	2.354,92	352,08

Combinazioni allo Stato Limite Ultimo – STR

PALO	COMBIN	AZIONE	V _{Sd,long}	V _{Sd,long}	N _{Sd}	R _V , _{Sd}
CD D CV 1	CLU CTD 04	May	[kN]	[kN]	[kN]	[kN]
SP.B-SX-1	SLU - STR.01	Max	-115,11	37,40	544,68	121,03
SP.B-SX-1	SLU - STR.01	Min	-127,43	33,30	511,18	131,71
SP.B-SX-1	SLU - STR.02	Max	-117,35	41,17	546,19	124,37
SP.B-SX-1	SLU - STR.02	Min	-129,68	37,07	512,69	134,88
SP.B-SX-1	SLU - STR.03	Max	-120,30	24,31	511,63	122,73
SP.B-SX-1	SLU - STR.03	Min	-132,63	20,21	478,13	134,16
SP.B-SX-1	SLU - STR.04	Max	-122,55	28,08	513,15	125,72
SP.B-SX-1	SLU - STR.04	Min	-134,87	23,98	479,65	136,99
SP.B-SX-1	SLU - STR.05	Max	-113,38	40,79	548,13	120,49
SP.B-SX-1	SLU - STR.05	Min	-122,62	37,72	523,00	128,29
SP.B-SX-1	SLU - STR.06	Max	-115,62	44,57	549,58	123,91
SP.B-SX-1	SLU - STR.06	Min	-124,87	41,50	524,46	131,58
SP.B-SX-1	SLU - STR.07	Max	-122,03	18,98	493,05	123,50
SP.B-SX-1	SLU - STR.07	Min	-131,28	15,90	467,92	132,23
SP.B-SX-1	SLU - STR.08	Max	-124,28	22,75	494,56	126,34
SP.B-SX-1	SLU - STR.08	Min	-133,52	19,68	469,44	134,96
SP.B-SX-1	SLU - STR.09	Max	-114,36	35,17	536,61	119,64
SP.B-SX-1	SLU - STR.09	Min	-123,60	32,10	511,48	127,70
SP.B-SX-1	SLU - STR.10	Max	-118,10	41,46	539,13	125,17
SP.B-SX-1	SLU - STR.10	Min	-127,35	38,39	514,01	133,01
SP.B-SX-1	SLU - STR.11	Max	-119,55	22,08	503,56	121,57
SP.B-SX-1	SLU - STR.11	Min	-128,80	19,01	478,43	130,19
SP.B-SX-1	SLU - STR.12	Max	-123,30	28,37	506,08	126,52
SP.B-SX-1	SLU - STR.12	Min	-132,54	25,30	480,96	134,93
SP.B-SX-2	SLU - STR.01	Max	-135,24	32,04	1.707,69	138,98
SP.B-SX-2	SLU - STR.01	Min	-150,40	22,44	1.558,20	152,06
SP.B-SX-2	SLU - STR.02	Max	-138,01	34,96	1.712,67	142,37
SP.B-SX-2	SLU - STR.02	Min	-153,17	25,36	1.563,17	155,26
SP.B-SX-2	SLU - STR.03	Max	-139,82	14,03	1.669,04	140,52
SP.B-SX-2	SLU - STR.03	Min	-154,98	4,43	1.519,55	155,04
SP.B-SX-2	SLU - STR.04	Max	-142,59	16,94	1.674,01	143,60
SP.B-SX-2	SLU - STR.04	Min	-157,76	7,34	1.524,52	157,93
SP.B-SX-2	SLU - STR.05	Max	-133,71	35,65	1.683,21	138,38
SP.B-SX-2	SLU - STR.05	Min	-145,08	28,45	1.571,09	147,84
SP.B-SX-2	SLU - STR.06	Max	-136,48	38,54	1.687,91	141,82
SP.B-SX-2	SLU - STR.06	Min	-147,85	31,34	1.575,79	151,14
SP.B-SX-2	SLU - STR.07	Max	-141,34	5,62	1.618,78	141,46
SP.B-SX-2	SLU - STR.07	Min	-152,72	-1,58	1.506,66	152,72
SP.B-SX-2	SLU - STR.08	Max	-144,12	8,54	1.623,75	144,37
SP.B-SX-2	SLU - STR.08	Min	-155,49	1,34	1.511,63	155,50
SP.B-SX-2	SLU - STR.09	Max	-134,31	28,67	1.668,66	137,34
SP.B-SX-2	SLU - STR.09	Min	-145,68	21,47	1.556,54	147,25
SP.B-SX-2	SLU - STR.10	Max	-138,94	33,53	1.676,95	142,93
SP.B-SX-2	SLU - STR.10	Min	-150,31	26,33	1.564,83	152,60
SP.B-SX-2	SLU - STR.11	Max	-138,89	10,66	1.630,01	139,30
SP.B-SX-2	SLU - STR.11	Min	-150,26	3,46	1.517,89	150,30
SP.B-SX-2	SLU - STR.11	Max	-143,52	15,52	1.638,30	144,36
SP.B-SX-2	SLU - STR.12	Min		8,32	1.526,18	155,11
OF.D-∂Λ-2	3LU - 31K.12	IVIIII	-154,89	0,32	1.020,10	100,11

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _v , _{sd} [kN]
SP.B-SX-3	SLU - STR.01	Max	-138,07	51,50	2.770,94	147,37
SP.B-SX-3	SLU - STR.01	Min	-153,90	34,21	2.520,11	157,66
SP.B-SX-3	SLU - STR.02	Max	-140,83	52,98	2.778,77	150,47
SP.B-SX-3	SLU - STR.02	Min	-156,66	35,68	2.527,95	160,67
SP.B-SX-3	SLU - STR.03	Max	-140,65	29,71	2.736,61	143,75
SP.B-SX-3	SLU - STR.03	Min	-156,47	12,41	2.485,78	156,96
SP.B-SX-3	SLU - STR.04	Max	-143,40	31,18	2.744,45	146,75
SP.B-SX-3	SLU - STR.04	Min	-159,23	13,89	2.493,62	159,83
SP.B-SX-3	SLU - STR.05	Max	-137,22	54,45	2.719,67	147,63
SP.B-SX-3	SLU - STR.05	Min	-149,09	41,48	2.531,55	154,75
SP.B-SX-3	SLU - STR.06	Max	-139,97	55,86	2.727,07	150,70
SP.B-SX-3	SLU - STR.06	Min	-151,84	42,89	2.538,95	157,78
SP.B-SX-3	SLU - STR.07	Max	-141,50	18,12	2.662,46	142,66
SP.B-SX-3	SLU - STR.07	Min	-153,37	5,15	2.474,34	153,46
SP.B-SX-3	SLU - STR.08	Max	-144,26	19,60	2.670,30	145,59
SP.B-SX-3	SLU - STR.08	Min	-156,13	6,63	2.482,18	156,27
SP.B-SX-3	SLU - STR.09	Max	-137,16	46,69	2.705,62	144,88
SP.B-SX-3	SLU - STR.09	Min	-149,03	33,72	2.517,50	152,79
SP.B-SX-3	SLU - STR.10	Max	-141,75	49,15	2.718,68	150,03
SP.B-SX-3	SLU - STR.10	Min	-153,62	36,18	2.530,56	157,82
SP.B-SX-3	SLU - STR.11	Max	-139,73	24,90	2.671,29	141,93
SP.B-SX-3	SLU - STR.11	Min	-151,60	11,93	2.483,17	152,06
SP.B-SX-3	SLU - STR.12	Max	-144,32	27,36	2.684,35	146,89
SP.B-SX-3	SLU - STR.12	Min	-156,19	14,38	2.496,23	156,85
SP.B-SX-4	SLU - STR.01	Max	6,33	-73,27	1.651,85	73,54
SP.B-SX-4	SLU - STR.01	Min	-2,91	-81,07	1.484,71	81,12
SP.B-SX-4	SLU - STR.02	Max	4,80	-69,84	1.649,29	70,00
SP.B-SX-4	SLU - STR.02	Min	-4,43	-77,64	1.482,15	77,77
SP.B-SX-4	SLU - STR.03	Max	5,81	-87,04	1.649,55	87,23
SP.B-SX-4	SLU - STR.03	Min	-3,42	-94,84	1.482,41	94,90
SP.B-SX-4	SLU - STR.04	Max	4,28	-83,61	1.646,99	83,72
SP.B-SX-4	SLU - STR.04	Min	-4,95	-91,41	1.479,85	91,54
SP.B-SX-4	SLU - STR.05	Max	5,68	-68,68	1.610,83	68,91
SP.B-SX-4	SLU - STR.05	Min	-1,25	-74,53	1.485,48	74,54
SP.B-SX-4	SLU - STR.06	Max	4,15	-65,24	1.607,97	65,37
SP.B-SX-4	SLU - STR.06	Min	-2,78	-71,09	1.482,62	71,14
SP.B-SX-4	SLU - STR.07	Max	4,82	-91,63	1.607,00	91,76
SP.B-SX-4	SLU - STR.07	Min	-2,11	-97,48	1.481,65	97,50
SP.B-SX-4	SLU - STR.08	Max	3,29	-88,20	1.604,44	88,26
SP.B-SX-4	SLU - STR.08	Min	-3,64	-94,05	1.479,09	94,12
SP.B-SX-4	SLU - STR.09	Max	6,01	-74,41	1.610,92	74,66
SP.B-SX-4	SLU - STR.09	Min	-0,91	-80,26	1.485,57	80,27
SP.B-SX-4	SLU - STR.10	Max	3,47	-68,69	1.606,66	68,78
SP.B-SX-4	SLU - STR.10	Min	-3,46	-74,55	1.481,30	74,63
SP.B-SX-4	SLU - STR.11	Max	5,50	-88,18	1.608,62	88,35
SP.B-SX-4	SLU - STR.11	Min	-1,43	-94,03	1.483,27	94,04
SP.B-SX-4	SLU - STR.12	Max	2,95	-82,46	1.604,35	82,52
SP.B-SX-4	SLU - STR.12	Min	-3,97	-88,32	1.479,00	88,40

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _v , _{sd} [kN]
SP.B-SX-5	SLU - STR.01	Max	-8,33	-184,13	3.213,16	184,31
SP.B-SX-5	SLU - STR.01	Min	-18,44	-197,06	2.894,34	197,92
SP.B-SX-5	SLU - STR.01	Max	-10,44	-182,31	3.215,84	182,56
			· ·	, , , , , , , , , , , , , , , , , , ,		•
SP.B-SX-5	SLU - STR.02	Min	-19,82	-195,24	2.897,01	196,24
SP.B-SX-5	SLU - STR.03	Max	-8,29	-201,39	3.215,90	201,56
SP.B-SX-5	SLU - STR.03	Min	-18,40	-214,32	2.897,07	215,11
SP.B-SX-5	SLU - STR.04	Max	-9,67	-199,57	3.218,57	199,81
SP.B-SX-5	SLU - STR.04	Min	-19,78	-212,51	2.899,74	213,42
SP.B-SX-5	SLU - STR.05	Max	-8,34	-178,37	3.132,55	178,56
SP.B-SX-5	SLU - STR.05	Min	-15,92	-188,07	2.893,42	188,74
SP.B-SX-5	SLU - STR.06	Max	-9,71	-176,55	3.134,67	176,82
SP.B-SX-5	SLU - STR.06	Min	-17,29	-186,25	2.895,55	187,05
SP.B-SX-5	SLU - STR.07	Max	-8,27	-207,15	3.137,10	207,31
SP.B-SX-5	SLU - STR.07	Min	-15,85	-216,85	2.897,98	217,42
SP.B-SX-5	SLU - STR.08	Max	-9,65	-205,33	3.139,77	205,55
SP.B-SX-5	SLU - STR.08	Min	-17,24	-215,03	2.900,65	215,72
SP.B-SX-5	SLU - STR.09	Max	-7,87	-184,73	3.132,57	184,90
SP.B-SX-5	SLU - STR.09	Min	-15,45	-194,43	2.893,44	195,04
SP.B-SX-5	SLU - STR.10	Max	-10,17	-181,70	3.137,02	181,98
SP.B-SX-5	SLU - STR.10	Min	-17,75	-191,40	2.897,90	192,22
SP.B-SX-5	SLU - STR.11	Max	-7,83	-202,00	3.135,30	202,15
SP.B-SX-5	SLU - STR.11	Min	-15,41	-211,70	2.896,17	212,26
SP.B-SX-5	SLU - STR.12	Max	-10,13	-198,97	3.139,76	199,22
SP.B-SX-5	SLU - STR.12	Min	-17,71	-208,67	2.900,63	209,42
SP.B-SX-6	SLU - STR.01	Max	70,04	-44,94	668,72	83,22
SP.B-SX-6	SLU - STR.01	Min	61,06	-55,63	596,84	82,60
SP.B-SX-6	SLU - STR.02	Max	69,43	-41,10	659,71	80,68
SP.B-SX-6	SLU - STR.02	Min	60,45	-51,79	587,83	79,60
SP.B-SX-6	SLU - STR.03	Max	75,05	-54,39	698,86	92,69
SP.B-SX-6	SLU - STR.03	Min	66,07	-65,08	626,98	92,74
SP.B-SX-6	SLU - STR.04	Max	74,44	-50,55	689,85	89,98
SP.B-SX-6	SLU - STR.04	Min	65,46	-61,24	617,97	89,64
SP.B-SX-6	SLU - STR.05	Max	67,09	-41,79	640,82	79,04
SP.B-SX-6	SLU - STR.05	Min	60,35	-49,81	586,91	78,25
SP.B-SX-6	SLU - STR.06	Max	66,48	-37,93	631,66	76,54
SP.B-SX-6	SLU - STR.06	Min	59,75	-45,94	577,75	75,37
SP.B-SX-6	SLU - STR.07	Max	75,44	-57,54	691,05	94,88
SP.B-SX-6	SLU - STR.07	Min	68,70	-65,55	637,14	94,96
SP.B-SX-6	SLU - STR.08	Max	74,83	-53,70	682,04	92,10
SP.B-SX-6	SLU - STR.08	Min	68,09	-61,71	628,13	91,90
SP.B-SX-6	SLU - STR.09	Max	68,96	-46,22	653,87	83,02
SP.B-SX-6	SLU - STR.09	Min	62,22	-54,24	599,96	82,55
SP.B-SX-6	SLU - STR.10	Max	67,94	-39,82	638,85	78,75
SP.B-SX-6	SLU - STR.10	Min	61,21	-47,84	584,94	77,68
SP.B-SX-6	SLU - STR.11	Max	73,97	-55,67	684,01	92,58
SP.B-SX-6	SLU - STR.11	Min	67,24	-63,68	630,10	92,61
SP.B-SX-6	SLU - STR.12	Max	72,96	-49,27	668,99	88,03
SP.B-SX-6	SLU - STR.12	Min	66,22	-57,29	615,08	87,56

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _v , _{sd} [kN]
SP.B-SX-7	SLU - STR.01	Max	103,96	-205,47	2.072,34	230,27
SP.B-SX-7	SLU - STR.01	Min	95,45	-227,90	1.855,11	247,08
SP.B-SX-7	SLU - STR.02	Max	103,96	-202,96	2.066,38	228,04
SP.B-SX-7	SLU - STR.02	Min	95,45	-225,39	1.849,15	244,77
SP.B-SX-7	SLU - STR.03	Max	108,25	-219,85	2.119,04	245,05
SP.B-SX-7	SLU - STR.03	Min	99,74	-242,28	1.901,81	262,01
SP.B-SX-7	SLU - STR.04	Max	108,25	-217,34	2.113,08	242,81
SP.B-SX-7	SLU - STR.04	Min	99,74	-239,77	1.895,85	259,69
SP.B-SX-7	SLU - STR.05	Max	101,46	-200,67	2.002,47	224,86
SP.B-SX-7	SLU - STR.05	Min	95,07	-217,50	1.839,55	237,37
SP.B-SX-7	SLU - STR.06	Max	101,47	-198,14	1.996,12	222,61
SP.B-SX-7	SLU - STR.06	Min	95,08	-214,97	1.833,19	235,05
SP.B-SX-7	SLU - STR.07	Max	108,61	-224,64	2.080,30	249,52
SP.B-SX-7	SLU - STR.07	Min	102,22	-241,47	1.917,38	262,21
SP.B-SX-7	SLU - STR.08	Max	108,61	-222,13	2.074,34	247,26
SP.B-SX-7	SLU - STR.08	Min	102,22	-238,96	1.911,41	259,90
SP.B-SX-7	SLU - STR.09	Max	102,89	-206,30	2.020,02	230,54
SP.B-SX-7	SLU - STR.09	Min	96,50	-223,13	1.857,10	243,10
SP.B-SX-7	SLU - STR.10	Max	102,89	-202,12	2.010,09	226,80
SP.B-SX-7	SLU - STR.10	Min	96,50	-218,95	1.847,16	239,27
SP.B-SX-7	SLU - STR.11	Max	107,18	-220,68	2.066,72	245,33
SP.B-SX-7	SLU - STR.11	Min	100,79	-237,51	1.903,80	258,01
SP.B-SX-7	SLU - STR.12	Max	107,18	-216,50	2.056,78	241,58
SP.B-SX-7	SLU - STR.12	Min	100,79	-233,33	1.893,86	254,17
SP.B-SX-8	SLU - STR.01	Max	89,56	-423,68	3.490,04	433,04
SP.B-SX-8	SLU - STR.01	Min	82,24	-461,58	3.146,65	468,85
SP.B-SX-8	SLU - STR.02	Max	90,05	-423,33	3.490,55	432,80
SP.B-SX-8	SLU - STR.02	Min	82,73	-461,23	3.147,16	468,59
SP.B-SX-8	SLU - STR.03	Max	92,18	-442,43	3.543,37	451,93
SP.B-SX-8	SLU - STR.03	Min	84,87	-480,34	3.199,98	487,78
SP.B-SX-8	SLU - STR.04	Max	92,68	-442,08	3.543,88	451,69
SP.B-SX-8	SLU - STR.04	Min	85,36	-479,99	3.200,49	487,52
SP.B-SX-8	SLU - STR.05	Max	88,34	-417,42	3.386,41	426,67
SP.B-SX-8	SLU - STR.05	Min	82,86	-445,86	3.128,87	453,49
SP.B-SX-8	SLU - STR.06	Max	88,86	-417,05	3.386,34	426,41
SP.B-SX-8	SLU - STR.06	Min	83,37	-445,48	3.128,80	453,21
SP.B-SX-8	SLU - STR.07	Max	92,72	-448,68	3.475,30	458,16
SP.B-SX-8	SLU - STR.07	Min	87,23	-477,11	3.217,76	485,02
SP.B-SX-8	SLU - STR.08	Max	93,21	-448,33	3.475,81	457,92
SP.B-SX-8	SLU - STR.08	Min	87,72	-476,76	3.218,27	484,77
SP.B-SX-8	SLU - STR.09	Max	89,05	-423,79	3.404,02	433,05
SP.B-SX-8	SLU - STR.09	Min	83,57	-452,22	3.146,48	459,88
SP.B-SX-8	SLU - STR.10	Max	89,88	-423,21	3.404,87	432,65
SP.B-SX-8	SLU - STR.10	Min	84,39	-451,64	3.147,33	459,46
SP.B-SX-8	SLU - STR.11	Max	91,68	-442,55	3.457,35	451,94
SP.B-SX-8	SLU - STR.11	Min	86,19	-470,98	3.199,81	478,80
SP.B-SX-8	SLU - STR.12	Max	92,50	-441,96	3.458,20	451,54
SP.B-SX-8	SLU - STR.12	Min	87,01	-470,39	3.200,66	478,37

Combinazioni allo Stato limite di Salvaguardia della Vita

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{sd} [kN]	R _{v,sd} [kN]
SP.B-SX-1	SLV - X - 01	Max	22,64	63,89	556,30	67,78
SP.B-SX-1	SLV - X - 01	Min	-213,72	-37,36	126,39	216,96
SP.B-SX-1	SLV - X - 02	Max	19,92	68,55	558,28	71,39
SP.B-SX-1	SLV - X - 02	Min	-216,44	-32,70	128,37	218,90
SP.B-SX-1	SLV - Y - 01	Max	-24,98	77,95	543,01	81,85
SP.B-SX-1	SLV - Y - 01	Min	-166,11	-51,41	139,68	173,88
SP.B-SX-1	SLV - Y - 02	Max	-27,70	82,61	544,99	87,13
SP.B-SX-1	SLV - Y - 02	Min	-168,83	-46,75	141,66	175,18
SP.B-SX-2	SLV - X - 01	Max	19,89	48,62	1.232,48	52,53
SP.B-SX-2	SLV - X - 01	Min	-240,64	-34,49	1.024,20	243,10
SP.B-SX-2	SLV - X - 02	Max	16,52	52,22	1.238,62	54,77
SP.B-SX-2	SLV - X - 02	Min	-244,00	-30,89	1.030,34	245,95
SP.B-SX-2	SLV - Y - 01	Max	-35,84	107,63	1.348,57	113,44
SP.B-SX-2	SLV - Y - 01	Min	-184,92	-93,50	908,12	207,21
SP.B-SX-2	SLV - Y - 02	Max	-39,20	111,23	1.354,70	117,93
SP.B-SX-2	SLV - Y - 02	Min	-188,28	-89,90	914,25	208,64
SP.B-SX-3	SLV - X - 01	Max	4,82	99,74	2.193,69	99,86
SP.B-SX-3	SLV - X - 01	Min	-224,50	-61,67	1.538,81	232,82
SP.B-SX-3	SLV - X - 02	Max	1,47	101,56	2.203,23	101,57
SP.B-SX-3	SLV - X - 02	Min	-227,85	-59,85	1.548,34	235,58
SP.B-SX-3	SLV - Y - 01	Max	-48,12	173,82	2.167,46	180,36
SP.B-SX-3	SLV - Y - 01	Min	-171,56	-135,75	1.565,04	218,77
SP.B-SX-3	SLV - Y - 02	Max	-51,47	175,64	2.177,00	183,03
SP.B-SX-3	SLV - Y - 02	Min	-174,91	-133,93	1.574,58	220,30
SP.B-SX-4	SLV - X - 01	Max	85,00	-17,60	1.238,36	86,80
SP.B-SX-4	SLV - X - 01	Min	-101,22	-107,66	908,35	147,77
SP.B-SX-4	SLV - X - 02	Max	83,17	-13,37	1.235,30	84,23
SP.B-SX-4	SLV - X - 02	Min	-103,06	-103,42	905,29	146,00
SP.B-SX-4	SLV - Y - 01	Max	34,05	12,75	1.158,61	36,36
SP.B-SX-4	SLV - Y - 01	Min	-50,28	-138,01	988,09	146,88
SP.B-SX-4	SLV - Y - 02	Max	32,22	16,98	1.155,55	36,42
SP.B-SX-4	SLV - Y - 02	Min	-52,11	-133,78	985,03	143,57

PALO	COMBIN	IAZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _{v,sd} [kN]
SP.B-SX-5	SLV - X - 01	Max	68,51	-81,86	2.343,65	106,75
SP.B-SX-5	SLV - X - 01	Min	-97,64	-204,55	1.952,81	226,66
SP.B-SX-5	SLV - X - 02	Max	66,85	-79,61	2.346,87	103,95
SP.B-SX-5	SLV - X - 02	Min	-99,30	-202,30	1.956,02	225,36
SP.B-SX-5	SLV - Y - 01	Max	23,77	-28,47	2.250,35	37,09
SP.B-SX-5	SLV - Y - 01	Min	-52,90	-257,94	2.046,11	263,31
SP.B-SX-5	SLV - Y - 02	Max	22,11	-26,22	2.253,57	34,29
SP.B-SX-5	SLV - Y - 02	Min	-54,56	-255,69	2.049,32	261,45
SP.B-SX-6	SLV - X - 01	Max	117,13	24,75	745,96	119,72
SP.B-SX-6	SLV - X - 01	Min	-37,04	-102,42	110,27	108,91
SP.B-SX-6	SLV - X - 02	Max	116,42	29,48	734,99	120,09
SP.B-SX-6	SLV - X - 02	Min	-37,75	-97,69	99,30	104,73
SP.B-SX-6	SLV - Y - 01	Max	106,76	20,02	681,19	108,62
SP.B-SX-6	SLV - Y - 01	Min	-26,67	-97,68	175,03	101,26
SP.B-SX-6	SLV - Y - 02	Max	106,04	24,74	670,22	108,89
SP.B-SX-6	SLV - Y - 02	Min	-27,38	-92,96	164,06	96,91
SP.B-SX-7	SLV - X - 01	Max	138,69	-120,51	1.502,16	183,73
SP.B-SX-7	SLV - X - 01	Min	-7,67	-196,80	1.268,36	196,95
SP.B-SX-7	SLV - X - 02	Max	138,72	-117,41	1.494,82	181,74
SP.B-SX-7	SLV - X - 02	Min	-7,64	-193,71	1.261,01	193,86
SP.B-SX-7	SLV - Y - 01	Max	131,16	-74,96	1.638,75	151,07
SP.B-SX-7	SLV - Y - 01	Min	-0,14	-242,35	1.131,76	242,35
SP.B-SX-7	SLV - Y - 02	Max	131,19	-71,87	1.631,41	149,58
SP.B-SX-7	SLV - Y - 02	Min	-0,11	-239,25	1.124,42	239,25
SP.B-SX-8	SLV - X - 01	Max	120,65	-214,87	2.756,81	246,43
SP.B-SX-8	SLV - X - 01	Min	-5,27	-427,05	1.987,49	427,08
SP.B-SX-8	SLV - X - 02	Max	121,29	-214,42	2.757,27	246,34
SP.B-SX-8	SLV - X - 02	Min	-4,64	-426,60	1.987,94	426,62
SP.B-SX-8	SLV - Y - 01	Max	112,60	-176,89	2.720,83	209,69
SP.B-SX-8	SLV - Y - 01	Min	2,78	-465,03	2.023,47	465,04
SP.B-SX-8	SLV - Y - 02	Max	113,23	-176,44	2.721,29	209,64
SP.B-SX-8	SLV - Y - 02	Min	3,42	-464,58	2.023,93	464,59

14.2.2 ZATTERA DESTRA

Nelle tabelle successive sono riepilogati i valori delle azioni sollecitanti (azione normale e taglio nelle due direzioni trasversali) valutati in corrispondenza delle molle elastiche mediante le quali sono stati modellati i pali di fondaizone all'interno del modello di calcolo tridimensionale.

Per ciascun palo è stata determinata anche la risultante di taglio orizzontale, valutata come combinazione quadratica delle azioni taglianti valutate lungo le due direzioni orizzontali ortogonali.

Combinazioni allo Stato Limite di Esercizio – Quasi Permanenti

PALO	COMBIN	AZIONE	V _{Sd,long}	V _{Sd,long}	N _{Sd}	R _{v,sd}
SP.B-DX-1	SLE - Q.P.01	Max	[kN] 49,45	[kN] 41,46	[kN] 480,89	[kN] 64,53
SP.B-DX-1	SLE - Q.P.01	Min	49,45	41,46	480,89	64,53
SP.B-DX-1		Max				
	SLE - Q.P.02		49,25	38,76	475,14	62,67
SP.B-DX-1	SLE - Q.P.02	Min	49,25	38,76	475,14	62,67
SP.B-DX-2	SLE - Q.P.01	Max	73,75	161,65	1.455,81	177,68
SP.B-DX-2	SLE - Q.P.01	Min	73,75	161,65	1.455,81	177,68
SP.B-DX-2	SLE - Q.P.02	Max	73,97	159,91	1.451,68	176,19
SP.B-DX-2	SLE - Q.P.02	Min	73,97	159,91	1.451,68	176,19
SP.B-DX-3	SLE - Q.P.01	Max	63,05	324,75	2.442,79	330,81
SP.B-DX-3	SLE - Q.P.01	Min	63,05	324,75	2.442,79	330,81
SP.B-DX-3	SLE - Q.P.02	Max	63,59	324,53	2.442,49	330,70
SP.B-DX-3	SLE - Q.P.02	Min	63,59	324,53	2.442,49	330,70
SP.B-DX-4	SLE - Q.P.01	Max	3,28	61,01	1.151,75	61,10
SP.B-DX-4	SLE - Q.P.01	Min	3,28	61,01	1.151,75	61,10
SP.B-DX-4	SLE - Q.P.02	Max	2,44	58,59	1.150,36	58,64
SP.B-DX-4	SLE - Q.P.02	Min	2,44	58,59	1.150,36	58,64
SP.B-DX-5	SLE - Q.P.01	Max	-7,39	141,86	2.234,62	142,05
SP.B-DX-5	SLE - Q.P.01	Min	-7,39	141,86	2.234,62	142,05
SP.B-DX-5	SLE - Q.P.02	Max	-8,17	140,63	2.236,17	140,87
SP.B-DX-5	SLE - Q.P.02	Min	-8,17	140,63	2.236,17	140,87
SP.B-DX-6	SLE - Q.P.01	Max	-86,24	-20,16	381,43	88,57
SP.B-DX-6	SLE - Q.P.01	Min	-86,24	-20,16	381,43	88,57
SP.B-DX-6	SLE - Q.P.02	Max	-87,63	-22,89	382,98	90,57
SP.B-DX-6	SLE - Q.P.02	Min	-87,63	-22,89	382,98	90,57
SP.B-DX-7	SLE - Q.P.01	Max	-101,34	-15,05	1.184,42	102,45
SP.B-DX-7	SLE - Q.P.01	Min	-101,34	-15,05	1.184,42	102,45
SP.B-DX-7	SLE - Q.P.02	Max	-103,09	-17,08	1.187,94	104,50
SP.B-DX-7	SLE - Q.P.02	Min	-103,09	-17,08	1.187,94	104,50
SP.B-DX-8	SLE - Q.P.01	Max	-103,60	-28,25	1.923,97	107,38
SP.B-DX-8	SLE - Q.P.01	Min	-103,60	-28,25	1.923,97	107,38
SP.B-DX-8	SLE - Q.P.02	Max	-105,37	-29,16	1.928,92	109,33
SP.B-DX-8	SLE - Q.P.02	Min	-105,37	-29,16	1.928,92	109,33

Combinazioni allo Stato Limite di Esercizio – Frequenti

PALO	COMBINA	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _{v,sd} [kN]
SP.B-DX-1	SLE - FREQ.01	Max	52,40	48,00	524,72	71,07
SP.B-DX-1	SLE - FREQ.01	Min	47,45	41,45	480,79	63,01
SP.B-DX-1	SLE - FREQ.02	Max	52,20	45,31	518,97	69,12
SP.B-DX-1	SLE - FREQ.02	Min	47,25	38,76	475,04	61,11
SP.B-DX-1	SLE - FREQ.03	Max	49,47	41,73	481,47	64,72
SP.B-DX-1	SLE - FREQ.03	Min	49,47	41,73	481,47	64,72
SP.B-DX-1	SLE - FREQ.04	Max	49,23	38,49	474,57	62,49
SP.B-DX-1	SLE - FREQ.04	Min	49,23	38,49	474,57	62,49
SP.B-DX-2	SLE - FREQ.01	Max	76,15	174,76	1.585,71	190,63
SP.B-DX-2	SLE - FREQ.01	Min	71,52	161,64	1.455,76	176,76
SP.B-DX-2	SLE - FREQ.02	Max	76,37	173,02	1.581,58	189,12
SP.B-DX-2	SLE - FREQ.02	Min	71,75	159,90	1.451,64	175,26
SP.B-DX-2	SLE - FREQ.03	Max	73,72	161,82	1.456,22	177,82
SP.B-DX-2	SLE - FREQ.03	Min	73,72	161,82	1.456,22	177,82
SP.B-DX-2	SLE - FREQ.04	Max	73,99	159,73	1.451,27	176,04
SP.B-DX-2	SLE - FREQ.04	Min	73,99	159,73	1.451,27	176,04
SP.B-DX-3	SLE - FREQ.01	Max	63,68	346,56	2.646,41	352,36
SP.B-DX-3	SLE - FREQ.01	Min	59,78	324,74	2.442,72	330,20
SP.B-DX-3	SLE - FREQ.02	Max	64,22	346,34	2.646,12	352,25
SP.B-DX-3	SLE - FREQ.02	Min	60,32	324,53	2.442,43	330,08
SP.B-DX-3	SLE - FREQ.03	Max	63,00	324,77	2.442,81	330,82
SP.B-DX-3	SLE - FREQ.03	Min	63,00	324,77	2.442,81	330,82
SP.B-DX-3	SLE - FREQ.04	Max	63,65	324,51	2.442,46	330,69
SP.B-DX-3	SLE - FREQ.04	Min	63,65	324,51	2.442,46	330,69
SP.B-DX-4	SLE - FREQ.01	Max	5,31	65,56	1.252,38	65,78
SP.B-DX-4	SLE - FREQ.01	Min	0,21	61,01	1.151,71	61,01
SP.B-DX-4	SLE - FREQ.02	Max	4,47	63,14	1.250,99	63,30
SP.B-DX-4	SLE - FREQ.02	Min	-0,64	58,59	1.150,33	58,59
SP.B-DX-4	SLE - FREQ.03	Max	3,37	61,26	1.151,88	61,35
SP.B-DX-4	SLE - FREQ.03	Min	3,37	61,26	1.151,88	61,35
SP.B-DX-4	SLE - FREQ.04	Max	2,35	58,35	1.150,22	58,40
SP.B-DX-4	SLE - FREQ.04	Min	2,35	58,35	1.150,22	58,40

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _{v,sd} [kN]
SP.B-DX-5	SLE - FREQ.01	Max	-7,39	149,07	2.424,38	149,25
SP.B-DX-5	SLE - FREQ.01	Min	-12,92	141,86	2.234,57	142,44
SP.B-DX-5	SLE - FREQ.02	Max	-8,16	147,84	2.425,93	148,06
SP.B-DX-5	SLE - FREQ.02	Min	-13,70	140,63	2.236,12	141,29
SP.B-DX-5	SLE - FREQ.03	Max	-7,32	141,98	2.234,47	142,17
SP.B-DX-5	SLE - FREQ.03	Min	-7,32	141,98	2.234,47	142,17
SP.B-DX-5	SLE - FREQ.04	Max	-8,25	140,51	2.236,33	140,75
SP.B-DX-5	SLE - FREQ.04	Min	-8,25	140,51	2.236,33	140,75
SP.B-DX-6	SLE - FREQ.01	Max	-86,24	-20,01	400,18	88,53
SP.B-DX-6	SLE - FREQ.01	Min	-92,86	-22,44	379,93	95,54
SP.B-DX-6	SLE - FREQ.02	Max	-87,63	-22,75	401,73	90,53
SP.B-DX-6	SLE - FREQ.02	Min	-94,25	-25,18	381,48	97,56
SP.B-DX-6	SLE - FREQ.03	Max	-86,10	-19,88	381,27	88,37
SP.B-DX-6	SLE - FREQ.03	Min	-86,10	-19,88	381,27	88,37
SP.B-DX-6	SLE - FREQ.04	Max	-87,77	-23,16	383,14	90,78
SP.B-DX-6	SLE - FREQ.04	Min	-87,77	-23,16	383,14	90,78
SP.B-DX-7	SLE - FREQ.01	Max	-101,34	-15,04	1.273,86	102,45
SP.B-DX-7	SLE - FREQ.01	Min	-109,57	-21,06	1.184,40	111,58
SP.B-DX-7	SLE - FREQ.02	Max	-103,09	-17,08	1.277,38	104,50
SP.B-DX-7	SLE - FREQ.02	Min	-111,32	-23,09	1.187,92	113,69
SP.B-DX-7	SLE - FREQ.03	Max	-101,17	-14,84	1.184,07	102,25
SP.B-DX-7	SLE - FREQ.03	Min	-101,17	-14,84	1.184,07	102,25
SP.B-DX-7	SLE - FREQ.04	Max	-103,27	-17,28	1.188,29	104,71
SP.B-DX-7	SLE - FREQ.04	Min	-103,27	-17,28	1.188,29	104,71
SP.B-DX-8	SLE - FREQ.01	Max	-103,60	-28,24	2.072,96	107,38
SP.B-DX-8	SLE - FREQ.01	Min	-112,32	-39,14	1.923,94	118,94
SP.B-DX-8	SLE - FREQ.02	Max	-105,37	-29,15	2.077,91	109,33
SP.B-DX-8	SLE - FREQ.02	Min	-114,09	-40,05	1.928,88	120,92
SP.B-DX-8	SLE - FREQ.03	Max	-103,42	-28,15	1.923,48	107,19
SP.B-DX-8	SLE - FREQ.03	Min	-103,42	-28,15	1.923,48	107,19
SP.B-DX-8	SLE - FREQ.04	Max	-105,55	-29,25	1.929,41	109,53
SP.B-DX-8	SLE - FREQ.04	Min	-105,55	-29,25	1.929,41	109,53

Combinazioni allo Stato Limite di Esercizio – Caratteristiche

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _{v,sd} [kN]
CD D DV 1	CLE CAD 01	May				
SP.B-DX-1	SLE - CAR.01	Max	55,07	53,82	550,33	77,00
SP.B-DX-1	SLE - CAR.01	Min	48,46	45,09	491,75	66,19
SP.B-DX-1	SLE - CAR.02	Max	54,82	50,58	543,43	74,59
SP.B-DX-1	SLE - CAR.02	Min	48,22	41,85	484,85	63,85
SP.B-DX-1	SLE - CAR.03	Max	51,75	47,09	529,49	69,97
SP.B-DX-1	SLE - CAR.03	Min	45,15	38,35	470,91	59,24
SP.B-DX-1	SLE - CAR.04	Max	51,51	43,85	522,59	67,65
SP.B-DX-1	SLE - CAR.04	Min	44,91	35,12	464,01	57,01
SP.B-DX-1	SLE - CAR.05	Max	55,19	53,88	542,67	77,13
SP.B-DX-1	SLE - CAR.05	Min	50,23	47,34	498,74	69,02
SP.B-DX-1	SLE - CAR.06	Max	54,94	50,65	535,77	74,73
SP.B-DX-1	SLE - CAR.06	Min	49,99	44,10	491,84	66,66
SP.B-DX-1	SLE - CAR.07	Max	49,67	42,66	507,93	65,47
SP.B-DX-1	SLE - CAR.07	Min	44,71	36,11	463,99	57,47
SP.B-DX-1	SLE - CAR.08	Max	49,42	39,42	501,03	63,22
SP.B-DX-1	SLE - CAR.08	Min	44,47	32,87	457,09	55,30
SP.B-DX-1	SLE - CAR.09	Max	54,16	52,72	538,02	75,58
SP.B-DX-1	SLE - CAR.09	Min	49,21	46,17	494,09	67,48
SP.B-DX-1	SLE - CAR.10	Max	53,76	47,32	526,52	71,62
SP.B-DX-1	SLE - CAR.10	Min	48,81	40,78	482,59	63,60
SP.B-DX-1	SLE - CAR.11	Max	50,85	45,98	517,18	68,56
SP.B-DX-1	SLE - CAR.11	Min	45,90	39,43	473,24	60,51
SP.B-DX-1	SLE - CAR.12	Max	50,45	40,59	505,68	64,75
SP.B-DX-1	SLE - CAR.12	Min	45,49	34,04	461,74	56,82
SP.B-DX-2	SLE - CAR.01	Max	78,31	184,24	1.645,32	200,19
SP.B-DX-2	SLE - CAR.01	Min	72,14	166,75	1.472,06	181,69
SP.B-DX-2	SLE - CAR.02	Max	78,58	182,15	1.640,37	198,37
SP.B-DX-2	SLE - CAR.02	Min	72,41	164,66	1.467,11	179,88
SP.B-DX-2	SLE - CAR.03	Max	75,54	174,36	1.613,53	190,02
SP.B-DX-2	SLE - CAR.03	Min	69,38	156,88	1.440,26	171,53
SP.B-DX-2	SLE - CAR.04	Max	75,81	172,27	1.608,57	188,22
SP.B-DX-2	SLE - CAR.04	Min	69,64	154,79	1.435,31	169,73
SP.B-DX-2	SLE - CAR.05	Max	78,43	183,16	1.612,62	199,25
SP.B-DX-2	SLE - CAR.05	Min	73,80	170,05	1.482,67	185,37
SP.B-DX-2	SLE - CAR.06	Max	78,70	181,07	1.607,67	197,43
SP.B-DX-2	SLE - CAR.06	Min	74,07	167,96	1.477,72	183,56
SP.B-DX-2	SLE - CAR.07	Max	73,82	166,70	1.559,63	182,32
SP.B-DX-2	SLE - CAR.07	Min	69,20	153,59	1.429,68	168,46
SP.B-DX-2	SLE - CAR.08	Max	74,09	164,61	1.554,67	180,52
SP.B-DX-2	SLE - CAR.08	Min	69,46	151,50	1.424,73	166,66
SP.B-DX-2	SLE - CAR.09	Max	77,42	180,57	1.603,67	196,46
SP.B-DX-2	SLE - CAR.09	Min	72,79	167,45	1.473,72	182,59
SP.B-DX-2	SLE - CAR.10	Max	77,87	177,08	1.595,42	193,45
SP.B-DX-2	SLE - CAR.10	Min	73,24	163,97	1.465,47	179,58
SP.B-DX-2	SLE - CAR.11	Max	74,65	170,69	1.571,88	186,30
SP.B-DX-2	SLE - CAR.11	Min	70,03	157,58	1.441,93	172,44
SP.B-DX-2	SLE - CAR.12	Max	75,10	167,21	1.563,62	183,30
SP.B-DX-2	SLE - CAR.12	Min	70,48	154,09	1.433,67	169,44

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _{v,sd} [kN]
SP.B-DX-3	SLE - CAR.01	Max	64,64	360,13	2.732,23	365,88
SP.B-DX-3	SLE - CAR.01	Min	59,44	331,04	2.460,65	336,33
SP.B-DX-3	SLE - CAR.02	Max	65,29	359,87	2.731,88	365,74
SP.B-DX-3	SLE - CAR.02	Min	60,09	330,78	2.460,30	336,19
SP.B-DX-3	SLE - CAR.03	Max	63,03	347,57	2.696,39	353,24
SP.B-DX-3	SLE - CAR.03	Min	57,83	318,48	2.424,82	323,69
SP.B-DX-3	SLE - CAR.04	Max	63,68	347,31	2.696,04	353,10
SP.B-DX-3	SLE - CAR.04	Min	58,48	318,23	2.424,46	323,55
SP.B-DX-3	SLE - CAR.05	Max	64,97	357,04	2.676,30	362,90
SP.B-DX-3	SLE - CAR.05	Min	61,07	335,23	2.472,61	340,74
SP.B-DX-3	SLE - CAR.06	Max	65,62	356,78	2.675,94	362,77
SP.B-DX-3	SLE - CAR.06	Min	61,72	334,97	2.472,26	340,60
SP.B-DX-3	SLE - CAR.07	Max	62,29	336,12	2.616,57	341,84
SP.B-DX-3	SLE - CAR.07	Min	58,38	314,30	2.412,89	319,68
SP.B-DX-3	SLE - CAR.08	Max	62,94	335,86	2.616,22	341,70
SP.B-DX-3	SLE - CAR.08	Min	59,03	314,04	2.412,54	319,54
SP.B-DX-3	SLE - CAR.09	Max	64,22	352,94	2.664,47	358,74
SP.B-DX-3	SLE - CAR.09	Min	60,31	331,13	2.460,79	336,57
SP.B-DX-3	SLE - CAR.10	Max	65,30	352,51	2.663,88	358,51
SP.B-DX-3	SLE - CAR.10	Min	61,40	330,70	2.460,20	336,35
SP.B-DX-3	SLE - CAR.11	Max	62,61	340,39	2.628,64	346,10
SP.B-DX-3	SLE - CAR.11	Min	58,70	318,57	2.424,95	323,93
SP.B-DX-3	SLE - CAR.12	Max	63,69	339,96	2.628,05	345,87
SP.B-DX-3	SLE - CAR.12	Min	59,78	318,14	2.424,37	323,71
SP.B-DX-4	SLE - CAR.01	Max	5,94	72,11	1.285,34	72,36
SP.B-DX-4	SLE - CAR.01	Min	-0,87	66,04	1.151,12	66,05
SP.B-DX-4	SLE - CAR.02	Max	4,93	69,21	1.283,68	69,38
SP.B-DX-4	SLE - CAR.02	Min	-1,89	63,14	1.149,46	63,16
SP.B-DX-4	SLE - CAR.03	Max	6,22	62,53	1.286,78	62,84
SP.B-DX-4	SLE - CAR.03	Min	-0,60	56,46	1.152,56	56,46
SP.B-DX-4	SLE - CAR.04	Max	5,20	59,62	1.285,12	59,85
SP.B-DX-4	SLE - CAR.04	Min	-1,61	53,55	1.150,90	53,57
SP.B-DX-4	SLE - CAR.05	Max	5,17	73,79	1.251,31	73,97
SP.B-DX-4	SLE - CAR.05	Min	0,06	69,24	1.150,65	69,24
SP.B-DX-4	SLE - CAR.06	Max	4,16	70,89	1.249,65	71,01
SP.B-DX-4	SLE - CAR.06	Min	-0,95	66,33	1.148,99	66,34
SP.B-DX-4	SLE - CAR.07	Max	5,63	57,82	1.253,72	58,09
SP.B-DX-4	SLE - CAR.07	Min	0,52	53,26	1.153,05	53,27
SP.B-DX-4	SLE - CAR.08	Max	4,62	54,91	1.252,06	55,10
SP.B-DX-4	SLE - CAR.08	Min	-0,49	50,36	1.151,39	50,36
SP.B-DX-4	SLE - CAR.09	Max	5,60	71,57	1.252,35	71,78
SP.B-DX-4	SLE - CAR.09	Min	0,49	67,01	1.151,68	67,01
SP.B-DX-4	SLE - CAR.10	Max	3,91	66,72	1.249,58	66,84
SP.B-DX-4	SLE - CAR.10	Min	-1,20	62,17	1.148,92	62,18
SP.B-DX-4	SLE - CAR.11	Max	5,88	61,98	1.253,79	62,26
SP.B-DX-4	SLE - CAR.11	Min	0,77	57,43	1.153,13	57,43
SP.B-DX-4	SLE - CAR.12	Max	4,19	57,14	1.251,02	57,29
SP.B-DX-4	SLE - CAR.12	Min	-0,92	52,58	1.150,36	52,59

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _v , _{Sd} [kN]
SP.B-DX-5	SLE - CAR.01	Max	-7,27	157,45	2.488,32	157,62
SP.B-DX-5	SLE - CAR.01	Min	-14,64	147,84		148,56
SP.B-DX-5	SLE - CAR.01	Max	-8,19	155,98	2.235,24 2.490,18	156,19
-			· ·		·	·
SP.B-DX-5	SLE - CAR.02	Min	-15,57	146,36	2.237,10	147,19
SP.B-DX-5	SLE - CAR.03	Max	-7,36	145,73	2.486,64	145,92
SP.B-DX-5	SLE - CAR.03	Min	-14,73	136,12	2.233,56	136,92
SP.B-DX-5	SLE - CAR.04	Max	-8,29	144,26	2.488,50	144,50
SP.B-DX-5	SLE - CAR.04	Min	-15,66	134,65	2.235,42	135,56
SP.B-DX-5	SLE - CAR.05	Max	-7,24	158,95	2.425,63	159,12
SP.B-DX-5	SLE - CAR.05	Min	-12,77	151,74	2.235,82	152,28
SP.B-DX-5	SLE - CAR.06	Max	-8,16	157,48	2.427,49	157,69
SP.B-DX-5	SLE - CAR.06	Min	-13,70	150,27	2.237,68	150,89
SP.B-DX-5	SLE - CAR.07	Max	-7,39	139,43	2.422,83	139,62
SP.B-DX-5	SLE - CAR.07	Min	-12,92	132,22	2.233,02	132,85
SP.B-DX-5	SLE - CAR.08	Max	-8,32	137,95	2.424,68	138,20
SP.B-DX-5	SLE - CAR.08	Min	-13,85	130,74	2.234,87	131,48
SP.B-DX-5	SLE - CAR.09	Max	-6,96	155,54	2.424,45	155,69
SP.B-DX-5	SLE - CAR.09	Min	-12,49	148,33	2.234,64	148,85
SP.B-DX-5	SLE - CAR.10	Max	-8,50	153,08	2.427,55	153,32
SP.B-DX-5	SLE - CAR.10	Min	-14,04	145,87	2.237,73	146,55
SP.B-DX-5	SLE - CAR.11	Max	-7,05	143,82	2.422,77	144,00
SP.B-DX-5	SLE - CAR.11	Min	-12,58	136,61	2.232,96	137,19
SP.B-DX-5	SLE - CAR.12	Max	-8,60	141,37	2.425,86	141,63
SP.B-DX-5	SLE - CAR.12	Min	-14,13	134,16	2.236,05	134,90
SP.B-DX-6	SLE - CAR.01	Max	-87,75	-15,09	395,05	89,04
SP.B-DX-6	SLE - CAR.01	Min	-96,58	-18,33	368,04	98,30
SP.B-DX-6	SLE - CAR.02	Max	-89,42	-18,37	396,91	91,29
SP.B-DX-6	SLE - CAR.02	Min	-98,25	-21,61	369,91	100,60
SP.B-DX-6	SLE - CAR.03	Max	-84,45	-24,29	417,50	87,87
SP.B-DX-6	SLE - CAR.03	Min	-93,28	-27,53	390,50	97,26
SP.B-DX-6	SLE - CAR.04	Max	-86,11	-27,57	419,36	90,42
SP.B-DX-6	SLE - CAR.04	Min	-94,95	-30,81	392,36	99,82
SP.B-DX-6	SLE - CAR.05	Max	-88,85	-12,08	381,32	89,67
SP.B-DX-6	SLE - CAR.05	Min	-95,48	-14,51	361,06	96,57
SP.B-DX-6	SLE - CAR.06	Max	-90,52	-15,35	383,18	91,81
SP.B-DX-6	SLE - CAR.06	Min	-97,14	-17,78	362,93	98,76
SP.B-DX-6	SLE - CAR.07	Max	-83,35	-27,41	418,74	87,74
SP.B-DX-6	SLE - CAR.07	Min	-89,97	-29,84	398,48	94,79
SP.B-DX-6	SLE - CAR.08	Max	-85,01	-30,68	420,60	90,38
SP.B-DX-6	SLE - CAR.08	Min	-91,64	-33,12	400,34	97,44
SP.B-DX-6	SLE - CAR.09	Max	-87,20	-14,05	388,18	88,32
SP.B-DX-6	SLE - CAR.09	Min	-93,82	-16,48	367,92	95,25
SP.B-DX-6	SLE - CAR.10	Max	-89,98	-19,51	391,28	92,07
SP.B-DX-6	SLE - CAR.10	Min	-96,60	-21,94	371,03	99,06
SP.B-DX-6	SLE - CAR.11	Max	-83,89	-23,25	410,63	87,05
SP.B-DX-6	SLE - CAR.11	Min	-90,52	-25,68	390,38	94,09
SP.B-DX-6	SLE - CAR.12	Max	-86,67	-28,71	413,74	91,30
SP.B-DX-6	SLE - CAR.12	Min	-93,30	-31,14	393,48	98,36

PALO	COMBIN	AZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _v , _{Sd} [kN]
SP.B-DX-7	SLE - CAR.01	Max	-102,58	-8,67	1.290,14	102,95
SP.B-DX-7	SLE - CAR.01	Min	-113,56	-16,68	1.170,85	114,78
SP.B-DX-7	SLE - CAR.02	Max	-104,69	-11,11	1.294,37	105,27
SP.B-DX-7	SLE - CAR.02	Min	-115,66	-19,13	1.175,08	117,23
SP.B-DX-7	SLE - CAR.03	Max	-99,74	-21,01	1.316,50	101,93
SP.B-DX-7	SLE - CAR.03	Min	-110,72	-29,03	1.197,22	114,46
SP.B-DX-7	SLE - CAR.04	Max	-101,84	-23,46	1.320,73	104,51
SP.B-DX-7	SLE - CAR.04	Min	-112,82	-31,47	1.201,44	117,13
SP.B-DX-7	SLE - CAR.05	Max	-103,53	-4,55	1.251,54	103,63
SP.B-DX-7	SLE - CAR.05	Min	-111,76	-10,56	1.162,07	112,26
SP.B-DX-7	SLE - CAR.06	Max	-105,63	-6,99	1.255,77	105,86
SP.B-DX-7	SLE - CAR.06	Min	-113,86	-13,01	1.166,30	114,60
SP.B-DX-7	SLE - CAR.07	Max	-98,80	-25,13	1.295,48	101,94
SP.B-DX-7	SLE - CAR.07	Min	-107,03	-31,15	1.206,01	111,47
SP.B-DX-7	SLE - CAR.08	Max	-100,90	-27,57	1.299,70	104,60
SP.B-DX-7	SLE - CAR.08	Min	-109,13	-33,59	1.210,24	114,18
SP.B-DX-7	SLE - CAR.09	Max	-101,88	-7,85	1.258,92	102,19
SP.B-DX-7	SLE - CAR.09	Min	-110,12	-13,87	1.169,45	110,99
SP.B-DX-7	SLE - CAR.10	Max	-105,39	-11,92	1.265,96	106,06
SP.B-DX-7	SLE - CAR.10	Min	-113,62	-17,93	1.176,50	115,02
SP.B-DX-7	SLE - CAR.11	Max	-99,04	-20,20	1.285,28	101,08
SP.B-DX-7	SLE - CAR.11	Min	-107,27	-26,22	1.195,82	110,43
SP.B-DX-7	SLE - CAR.12	Max	-102,55	-24,27	1.292,33	105,38
SP.B-DX-7	SLE - CAR.12	Min	-110,78	-30,28	1.202,86	114,84
SP.B-DX-8	SLE - CAR.01	Max	-104,16	-20,82	2.110,37	106,22
SP.B-DX-8	SLE - CAR.01	Min	-115,79	-35,35	1.911,67	121,06
SP.B-DX-8	SLE - CAR.02	Max	-106,29	-21,91	2.116,30	108,52
SP.B-DX-8	SLE - CAR.02	Min	-117,92	-36,45	1.917,61	123,42
SP.B-DX-8	SLE - CAR.03	Max	-102,68	-35,48	2.133,89	108,63
SP.B-DX-8	SLE - CAR.03	Min	-114,30	-50,01	1.935,19	124,77
SP.B-DX-8	SLE - CAR.04	Max	-104,81	-36,58	2.139,82	111,00
SP.B-DX-8	SLE - CAR.04	Min	-116,43	-51,11	1.941,13	127,15
SP.B-DX-8	SLE - CAR.05	Max	-104,66	-15,93	2.052,86	105,86
SP.B-DX-8	SLE - CAR.05	Min	-113,38	-26,83	1.903,84	116,51
SP.B-DX-8	SLE - CAR.06	Max	-106,79	-17,03	2.058,80	108,13
SP.B-DX-8	SLE - CAR.06	Min	-115,50	-27,93	1.909,78	118,83
SP.B-DX-8	SLE - CAR.07	Max	-102,18	-40,37	2.092,06	109,87
SP.B-DX-8	SLE - CAR.07	Min	-110,90	-51,27	1.943,04	122,18
SP.B-DX-8	SLE - CAR.08	Max	-104,31	-41,47	2.098,00	112,25
SP.B-DX-8	SLE - CAR.08	Min	-113,03	-52,37	1.948,98	124,57
SP.B-DX-8	SLE - CAR.09	Max	-103,45	-20,45	2.058,73	105,46
SP.B-DX-8	SLE - CAR.09	Min	-112,17	-31,35	1.909,70	116,47
SP.B-DX-8	SLE - CAR.10	Max	-107,00	-22,28	2.068,62	109,29
SP.B-DX-8	SLE - CAR.10	Min	-115,72	-33,18	1.919,60	120,38
SP.B-DX-8	SLE - CAR.11	Max	-101,97	-35,12	2.082,25	107,85
SP.B-DX-8	SLE - CAR.11	Min	-110,69	-46,02	1.933,22	119,87
SP.B-DX-8	SLE - CAR.12	Max	-105,52	-36,94	2.092,14	111,80
SP.B-DX-8	SLE - CAR.12	Min	-114,23	-47,84	1.943,12	123,85

Combinazioni allo Stato Limite Ultimo – STR

PALO	COMBIN	AZIONE	V _{Sd,long}	V _{Sd,long}	N _{Sd}	R _{v,sd}
			[kN]	[kN]	[kN]	[kN]
SP.B-DX-1	SLU - STR.01	Max	74,48	73,60	747,87	104,71
SP.B-DX-1	SLU - STR.01	Min	65,57	61,81	668,79	90,11
SP.B-DX-1	SLU - STR.02	Max	74,19	69,72	739,59	101,81
SP.B-DX-1	SLU - STR.02	Min	65,27	57,93	660,51	87,27
SP.B-DX-1	SLU - STR.03	Max	69,51	63,50	716,60	94,15
SP.B-DX-1	SLU - STR.03	Min	60,60	51,71	637,52	79,66
SP.B-DX-1	SLU - STR.04	Max	69,22	59,62	708,32	91,35
SP.B-DX-1	SLU - STR.04	Min	60,31	47,83	629,24	76,97
SP.B-DX-1	SLU - STR.05	Max	74,81	74,02	738,57	105,24
SP.B-DX-1	SLU - STR.05	Min	68,12	65,18	679,26	94,28
SP.B-DX-1	SLU - STR.06	Max	74,51	70,17	730,44	102,35
SP.B-DX-1	SLU - STR.06	Min	67,82	61,33	671,12	91,44
SP.B-DX-1	SLU - STR.07	Max	66,53	57,19	686,46	87,73
SP.B-DX-1	SLU - STR.07	Min	59,84	48,35	627,15	76,93
SP.B-DX-1	SLU - STR.08	Max	66,24	53,30	678,18	85,02
SP.B-DX-1	SLU - STR.08	Min	59,55	44,46	618,87	74,32
SP.B-DX-1	SLU - STR.09	Max	73,25	71,95	730,91	102,68
SP.B-DX-1	SLU - STR.09	Min	66,56	63,11	671,60	91,73
SP.B-DX-1	SLU - STR.10	Max	72,76	65,48	717,11	97,89
SP.B-DX-1	SLU - STR.10	Min	66,08	56,64	657,80	87,03
SP.B-DX-1	SLU - STR.11	Max	68,28	61,85	699,64	92,13
SP.B-DX-1	SLU - STR.11	Min	61,60	53,01	640,33	81,26
SP.B-DX-1	SLU - STR.12	Max	67,80	55,38	685,84	87,54
SP.B-DX-1	SLU - STR.12	Min	61,11	46,54	626,53	76,81
SP.B-DX-2	SLU - STR.01	Max	105,78	250,72	2.237,30	272,12
SP.B-DX-2	SLU - STR.01	Min	97,45	227,12	2.003,39	247,14
SP.B-DX-2	SLU - STR.02	Max	106,10	248,21	2.231,36	269,94
SP.B-DX-2	SLU - STR.02	Min	97,78	224,61	1.997,45	244,97
SP.B-DX-2	SLU - STR.03	Max	101,63	235,91	2.189,61	256,87
SP.B-DX-2	SLU - STR.03	Min	93,31	212,30	1.955,70	231,90
SP.B-DX-2	SLU - STR.04	Max	101,96	233,40	2.183,66	254,70
SP.B-DX-2	SLU - STR.04	Min	93,63	209,80	1.949,76	229,74
SP.B-DX-2	SLU - STR.05	Max	106,08	249,76	2.194,74	271,36
SP.B-DX-2	SLU - STR.05	Min	99,84	232,06	2.019,31	252,62
SP.B-DX-2	SLU - STR.06	Max	106,39	247,28	2.189,18	269,19
SP.B-DX-2	SLU - STR.06	Min	100,14	229,58	2.013,76	250,47
SP.B-DX-2	SLU - STR.07	Max	99,17	225,07	2.115,25	245,95
SP.B-DX-2	SLU - STR.07	Min	92,93	207,37	1.939,82	227,24
SP.B-DX-2	SLU - STR.08	Max	99,49	222,56	2.109,31	243,79
SP.B-DX-2	SLU - STR.08	Min	93,25	204,86	1.933,88	225,08
SP.B-DX-2	SLU - STR.09	Max	104,59	245,66	2.180,82	267,00
SP.B-DX-2	SLU - STR.09	Min	98,35	227,96	2.005,40	248,27
SP.B-DX-2	SLU - STR.10	Max	105,13	241,48	2.170,92	263,37
SP.B-DX-2	SLU - STR.10	Min	98,89	223,78	1.995,49	244,65
SP.B-DX-2	SLU - STR.11	Max	100,45	230,85	2.133,13	251,75
SP.B-DX-2	SLU - STR.11	Min	94,20	213,14	1.957,70	233,03
SP.B-DX-2	SLU - STR.12	Max	100,98	226,67	2.123,22	248,14
SP.B-DX-2	SLU - STR.12	Min	94,74	208,96	1.947,80	229,43
			- 1	,		-,

PALO	COMBIN	AZIONE	V _{Sd,long}	V _{Sd,long}	N _{Sd}	R _V , _{Sd}
SP.B-DX-3	SLU - STR.01	Max	[kN] 87,03	[kN] 489,50	[kN] 3.714,46	[kN] 497,18
SP.B-DX-3	SLU - STR.01	Min	80,01	450,23		457,16
SP.B-DX-3	SLU - STR.01	Max	87,81	489,19	3.347,83 3.714,04	497,01
						,
SP.B-DX-3	SLU - STR.02	Min	80,79	449,92	3.347,41	457,12
SP.B-DX-3	SLU - STR.03	Max	84,62	470,67	3.660,71	478,22
SP.B-DX-3	SLU - STR.03	Min	77,59	431,40	3.294,08	438,32
SP.B-DX-3	SLU - STR.04	Max	85,40	470,36	3.660,29	478,05
SP.B-DX-3	SLU - STR.04	Min	78,37	431,09	3.293,66	438,16
SP.B-DX-3	SLU - STR.05	Max	87,56	485,97	3.640,75	493,79
SP.B-DX-3	SLU - STR.05	Min	82,29	456,51	3.365,77	463,87
SP.B-DX-3	SLU - STR.06	Max	88,31	485,68	3.640,91	493,65
SP.B-DX-3	SLU - STR.06	Min	83,04	456,23	3.365,94	463,73
SP.B-DX-3	SLU - STR.07	Max	83,53	454,58	3.551,16	462,19
SP.B-DX-3	SLU - STR.07	Min	78,26	425,13	3.276,19	432,27
SP.B-DX-3	SLU - STR.08	Max	84,31	454,27	3.550,74	462,02
SP.B-DX-3	SLU - STR.08	Min	79,04	424,82	3.275,77	432,11
SP.B-DX-3	SLU - STR.09	Max	86,49	479,79	3.622,97	487,52
SP.B-DX-3	SLU - STR.09	Min	81,22	450,34	3.348,00	457,61
SP.B-DX-3	SLU - STR.10	Max	87,79	479,27	3.622,27	487,25
SP.B-DX-3	SLU - STR.10	Min	82,52	449,82	3.347,30	457,33
SP.B-DX-3	SLU - STR.11	Max	84,07	460,96	3.569,22	468,56
SP.B-DX-3	SLU - STR.11	Min	78,80	431,51	3.294,25	438,64
SP.B-DX-3	SLU - STR.12	Max	85,37	460,44	3.568,52	468,29
SP.B-DX-3	SLU - STR.12	Min	80,10	430,99	3.293,55	438,37
SP.B-DX-4	SLU - STR.01	Max	7,63	98,36	1.745,35	98,65
SP.B-DX-4	SLU - STR.01	Min	-1,56	90,16	1.564,15	90,17
SP.B-DX-4	SLU - STR.02	Max	6,42	94,87	1.743,36	95,08
SP.B-DX-4	SLU - STR.02	Min	-2,78	86,67	1.562,16	86,72
SP.B-DX-4	SLU - STR.03	Max	8,05	83,98	1.747,51	84,36
SP.B-DX-4	SLU - STR.03	Min	-1,14	75,78	1.566,32	75,79
SP.B-DX-4	SLU - STR.04	Max	6,84	80,49	1.745,52	80,78
SP.B-DX-4	SLU - STR.04	Min	-2,36	72,30	1.564,33	72,33
SP.B-DX-4	SLU - STR.05	Max	6,58	101,10	1.699,34	101,31
SP.B-DX-4	SLU - STR.05	Min	-0,32	94,96	1.563,45	94,96
SP.B-DX-4	SLU - STR.06	Max	5,36	97,62	1.697,66	97,77
SP.B-DX-4	SLU - STR.06	Min	-1,53	91,48	1.561,76	91,49
SP.B-DX-4	SLU - STR.07	Max	7,28	77,14	1.702,95	77,48
SP.B-DX-4	SLU - STR.07	Min	0,38	70,99	1.567,05	70,99
SP.B-DX-4	SLU - STR.08	Max	6,06	73,65	1.700,96	73,90
SP.B-DX-4	SLU - STR.08	Min	-0,84	67,51	1.565,06	67,51
SP.B-DX-4	SLU - STR.09	Max	7,12	97,47	1.700,73	97,73
SP.B-DX-4	SLU - STR.09	Min	0,23	91,33	1.564,83	91,33
SP.B-DX-4	SLU - STR.10	Max	5,10	91,66	1.697,41	91,80
SP.B-DX-4	SLU - STR.10	Min	-1,80	85,51	1.561,51	85,53
SP.B-DX-4	SLU - STR.11	Max	7,54	83,10	1.702,89	83,44
SP.B-DX-4	SLU - STR.11	Min	0,65	76,95	1.567,00	76,95
SP.B-DX-4	SLU - STR.12	Max	5,52	77,28	1.699,57	77,48
SP.B-DX-4	SLU - STR.12	Min	-1,38	71,14	1.563,68	71,15

PALO	COMBIN	AZIONE	V _{Sd,long}	V _{Sd,long}	N _{Sd}	R _V , _{Sd}
CD D DV 5	CLU CTD 04	May	[kN]	[kN]	[kN]	[kN]
SP.B-DX-5	SLU - STR.01	Max	-10,59	214,07	3.380,78	214,33
SP.B-DX-5	SLU - STR.01	Min	-20,55	201,09	3.039,12	202,14
SP.B-DX-5	SLU - STR.02	Max	-11,71	212,30	3.383,01	212,62
SP.B-DX-5	SLU - STR.02	Min	-21,66	199,32	3.041,35	200,50
SP.B-DX-5	SLU - STR.03	Max	-10,73	196,50	3.378,26	196,79
SP.B-DX-5	SLU - STR.03	Min	-20,69	183,52	3.036,60	184,68
SP.B-DX-5	SLU - STR.04	Max	-11,85	194,73	3.380,49	195,09
SP.B-DX-5	SLU - STR.04	Min	-21,80	181,75	3.038,83	183,05
SP.B-DX-5	SLU - STR.05	Max	-10,55	216,68	3.296,23	216,94
SP.B-DX-5	SLU - STR.05	Min	-18,01	206,95	3.039,99	207,73
SP.B-DX-5	SLU - STR.06	Max	-11,68	214,91	3.299,02	215,23
SP.B-DX-5	SLU - STR.06	Min	-19,14	205,18	3.042,77	206,07
SP.B-DX-5	SLU - STR.07	Max	-10,78	187,40	3.292,03	187,71
SP.B-DX-5	SLU - STR.07	Min	-18,25	177,66	3.035,78	178,60
SP.B-DX-5	SLU - STR.08	Max	-11,89	185,63	3.294,26	186,01
SP.B-DX-5	SLU - STR.08	Min	-19,36	175,90	3.038,01	176,96
SP.B-DX-5	SLU - STR.09	Max	-10,22	211,42	3.294,65	211,66
SP.B-DX-5	SLU - STR.09	Min	-17,69	201,68	3.038,40	202,46
SP.B-DX-5	SLU - STR.10	Max	-12,08	208,47	3.298,36	208,82
SP.B-DX-5	SLU - STR.10	Min	-19,55	198,74	3.042,12	199,69
SP.B-DX-5	SLU - STR.11	Max	-10,36	193,84	3.292,13	194,12
SP.B-DX-5	SLU - STR.11	Min	-17,83	184,11	3.035,88	184,97
SP.B-DX-5	SLU - STR.12	Max	-12,22	190,90	3.295,84	191,29
SP.B-DX-5	SLU - STR.12	Min	-19,68	181,16	3.039,60	182,23
SP.B-DX-6	SLU - STR.01	Max	-119,70	-20,09	533,06	121,37
SP.B-DX-6	SLU - STR.01	Min	-131,62	-24,46	496,60	133,87
SP.B-DX-6	SLU - STR.02	Max	-121,70	-24,02	535,30	124,05
SP.B-DX-6	SLU - STR.02	Min	-133,62	-28,40	498,84	136,61
SP.B-DX-6	SLU - STR.03	Max	-114,74	-33,89	566,74	119,64
SP.B-DX-6	SLU - STR.03	Min	-126,67	-38,26	530,28	132,32
SP.B-DX-6	SLU - STR.04	Max	-116,75	-37,82	568,97	122,72
SP.B-DX-6	SLU - STR.04	Min	-128,67	-42,20	532,51	135,41
SP.B-DX-6	SLU - STR.05	Max	-121,35	-15,55	513,40	122,34
SP.B-DX-6	SLU - STR.05	Min	-130,29	-18,84	486,05	131,65
SP.B-DX-6	SLU - STR.06	Max	-123,36	-19,49	515,69	124,89
SP.B-DX-6	SLU - STR.06	Min	-132,30	-22,77	488,35	134,24
SP.B-DX-6	SLU - STR.07	Max	-113,09	-38,55	569,53	119,48
SP.B-DX-6	SLU - STR.07	Min	-122,03	-41,83	542,18	129,00
SP.B-DX-6	SLU - STR.08	Max	-115,09	-42,49	571,76	122,68
SP.B-DX-6	SLU - STR.08	Min	-124,04	-45,77	544,42	132,21
SP.B-DX-6	SLU - STR.09	Max	-119,03	-18,84	523,88	120,51
SP.B-DX-6	SLU - STR.09	Min	-127,97	-22,12	496,53	129,87
SP.B-DX-6	SLU - STR.10	Max	-122,37	-25,40	527,60	124,98
SP.B-DX-6	SLU - STR.10	Min	-131,31	-28,68	500,26	134,41
SP.B-DX-6	SLU - STR.11	Max	-114,08	-32,64	557,55	118,65
SP.B-DX-6	SLU - STR.11	Min	-123,02	-35,92	530,21	128,16
SP.B-DX-6	SLU - STR.12	Max	-117,41	-39,20	561,28	123,78
SP.B-DX-6	SLU - STR.12	Min	-126,36	-42,48	533,93	133,30

PALO	COMBIN	AZIONE	V _{Sd,long}	V _{Sd,long} [kN]	N _{Sd}	R _{v,sd} [kN]
SP.B-DX-7	SLU - STR.01	Max	[kN] -139,94	-11,63	[kN] 1.749,78	140,42
SP.B-DX-7	SLU - STR.01	Min		-22,45	1.588,75	
SP.B-DX-7	SLU - STR.01	Max	-154,76 -142,46	-14,56	1.754,86	156,38 143,20
						·
SP.B-DX-7	SLU - STR.02	Min	-157,28	-25,38	1.593,82	159,31
SP.B-DX-7	SLU - STR.03	Max	-135,68	-30,15	1.789,33	138,99
SP.B-DX-7	SLU - STR.03	Min	-150,50	-40,97	1.628,29	155,97
SP.B-DX-7	SLU - STR.04	Max	-138,20	-33,08	1.794,40	142,10
SP.B-DX-7	SLU - STR.04	Min	-153,02	-43,90	1.633,36	159,19
SP.B-DX-7	SLU - STR.05	Max	-141,36	-5,45	1.696,35	141,47
SP.B-DX-7	SLU - STR.05	Min	-152,47	-13,57	1.575,58	153,08
SP.B-DX-7	SLU - STR.06	Max	-143,89	-8,41	1.701,70	144,14
SP.B-DX-7	SLU - STR.06	Min	-155,00	-16,53	1.580,92	155,88
SP.B-DX-7	SLU - STR.07	Max	-134,26	-36,32	1.762,26	139,09
SP.B-DX-7	SLU - STR.07	Min	-145,37	-44,44	1.641,48	152,01
SP.B-DX-7	SLU - STR.08	Max	-136,78	-39,25	1.767,33	142,30
SP.B-DX-7	SLU - STR.08	Min	-147,89	-47,37	1.646,55	155,29
SP.B-DX-7	SLU - STR.09	Max	-139,10	-10,65	1.707,84	139,51
SP.B-DX-7	SLU - STR.09	Min	-150,21	-18,77	1.587,07	151,38
SP.B-DX-7	SLU - STR.10	Max	-143,30	-15,53	1.716,30	144,14
SP.B-DX-7	SLU - STR.10	Min	-154,42	-23,65	1.595,52	156,22
SP.B-DX-7	SLU - STR.11	Max	-134,84	-29,17	1.747,39	137,96
SP.B-DX-7	SLU - STR.11	Min	-145,95	-37,29	1.626,61	150,64
SP.B-DX-7	SLU - STR.12	Max	-139,04	-34,06	1.755,84	143,15
SP.B-DX-7	SLU - STR.12	Min	-150,15	-42,17	1.635,06	155,96
SP.B-DX-8	SLU - STR.01	Max	-142,04	-28,40	2.864,83	144,85
SP.B-DX-8	SLU - STR.01	Min	-157,73	-48,02	2.596,59	164,88
SP.B-DX-8	SLU - STR.02	Max	-144,59	-29,72	2.871,96	147,61
SP.B-DX-8	SLU - STR.02	Min	-160,29	-49,34	2.603,72	167,71
SP.B-DX-8	SLU - STR.03	Max	-139,81	-50,40	2.900,11	148,62
SP.B-DX-8	SLU - STR.03	Min	-155,50	-70,02	2.631,87	170,54
SP.B-DX-8	SLU - STR.04	Max	-142,36	-51,71	2.907,24	151,46
SP.B-DX-8	SLU - STR.04	Min	-158,06	-71,33	2.639,00	173,41
SP.B-DX-8	SLU - STR.05	Max	-142,78	-21,07	2.786,03	144,33
SP.B-DX-8	SLU - STR.05	Min	-154,55	-35,79	2.584,85	158,64
SP.B-DX-8	SLU - STR.06	Max	-145,35	-22,45	2.793,60	147,07
SP.B-DX-8	SLU - STR.06	Min	-157,12	-37,17	2.592,42	161,45
SP.B-DX-8	SLU - STR.07	Max	-139,07	-57,73	2.844,83	150,58
SP.B-DX-8	SLU - STR.07	Min	-150,84	-72,45	2.643,65	167,33
SP.B-DX-8	SLU - STR.08	Max	-141,62	-59,05	2.851,95	153,44
SP.B-DX-8	SLU - STR.08	Min	-153,39	-73,76	2.650,77	170,21
SP.B-DX-8	SLU - STR.09	Max	-141,19	-27,96	2.795,42	143,93
SP.B-DX-8	SLU - STR.09	Min	-152,96	-42,68	2.594,23	158,80
SP.B-DX-8	SLU - STR.10	Max	-145,44	-30,16	2.807,29	148,54
SP.B-DX-8	SLU - STR.10	Min	-157,21	-44,87	2.606,11	163,49
SP.B-DX-8	SLU - STR.11	Max	-138,96	-49,96	2.830,70	147,67
SP.B-DX-8	SLU - STR.11	Min	-150,73	-64,68	2.629,51	164,02
SP.B-DX-8	SLU - STR.12	Max	-143,22	-52,15	2.842,57	152,42
SP.B-DX-8	SLU - STR.12	Min	-154,99	-66,87	2.641,39	168,80

Combinazioni allo Stato limite di Salvaguardia della Vita

PALO	СОМВІМ	IAZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _{v,sd} [kN]
SP.B-DX-1	SLV - X - 01	Max	118,06	107,79	779,72	159,87
SP.B-DX-1	SLV - X - 01	Min	-36,46	-20,25	141,27	41,71
SP.B-DX-1	SLV - X - 02	Max	117,85	103,00	769,91	156,51
SP.B-DX-1	SLV - X - 02	Min	-36,68	-25,04	131,45	44,41
SP.B-DX-1	SLV - Y - 01	Max	107,69	102,67	714,78	148,79
SP.B-DX-1	SLV - Y - 01	Min	-26,10	-15,12	206,21	30,16
SP.B-DX-1	SLV - Y - 02	Max	107,48	97,87	704,97	145,37
SP.B-DX-1	SLV - Y - 02	Min	-26,31	-19,92	196,40	33,00
SP.B-DX-2	SLV - X - 01	Max	138,61	201,11	1.574,86	244,25
SP.B-DX-2	SLV - X - 01	Min	-8,49	126,37	1.341,26	126,66
SP.B-DX-2	SLV - X - 02	Max	139,15	198,01	1.567,56	242,02
SP.B-DX-2	SLV - X - 02	Min	-7,95	123,28	1.333,96	123,54
SP.B-DX-2	SLV - Y - 01	Max	131,18	247,46	1.712,08	280,08
SP.B-DX-2	SLV - Y - 01	Min	-1,05	80,02	1.204,04	80,02
SP.B-DX-2	SLV - Y - 02	Max	131,72	244,37	1.704,78	277,61
SP.B-DX-2	SLV - Y - 02	Min	-0,51	76,92	1.196,74	76,92
SP.B-DX-3	SLV - X - 01	Max	118,72	432,31	2.859,50	448,31
SP.B-DX-3	SLV - X - 01	Min	-7,98	221,13	2.089,81	221,27
SP.B-DX-3	SLV - X - 02	Max	119,80	431,92	2.858,51	448,22
SP.B-DX-3	SLV - X - 02	Min	-6,89	220,74	2.088,82	220,84
SP.B-DX-3	SLV - Y - 01	Max	110,69	470,94	2.823,79	483,77
SP.B-DX-3	SLV - Y - 01	Min	0,05	182,49	2.125,52	182,49
SP.B-DX-3	SLV - Y - 02	Max	111,77	470,55	2.822,80	483,64
SP.B-DX-3	SLV - Y - 02	Min	1,14	182,10	2.124,53	182,11
SP.B-DX-4	SLV - X - 01	Max	87,82	109,55	1.301,20	140,40
SP.B-DX-4	SLV - X - 01	Min	-99,54	19,34	967,50	101,40
SP.B-DX-4	SLV - X - 02	Max	86,48	105,23	1.299,03	136,20
SP.B-DX-4	SLV - X - 02	Min	-100,88	15,02	965,33	101,99
SP.B-DX-4	SLV - Y - 01	Max	37,84	140,01	1.223,62	145,03
SP.B-DX-4	SLV - Y - 01	Min	-49,55	-11,12	1.045,07	50,79
SP.B-DX-4	SLV - Y - 02	Max	36,49	135,69	1.221,45	140,51
SP.B-DX-4	SLV - Y - 02	Min	-50,90	-15,44	1.042,90	53,19

PALO	COMBIN	IAZIONE	V _{Sd,long} [kN]	V _{Sd,long} [kN]	N _{Sd} [kN]	R _{v,sd} [kN]
SP.B-DX-5	SLV - X - 01	Max	68,61	203,34	2.445,35	214,60
SP.B-DX-5	SLV - X - 01	Min	-98,99	82,84	2.052,02	129,08
SP.B-DX-5	SLV - X - 02	Max	67,37	201,17	2.447,86	212,15
SP.B-DX-5	SLV - X - 02	Min	-100,23	80,67	2.054,53	128,66
SP.B-DX-5	SLV - Y - 01	Max	25,04	257,86	2.355,00	259,07
SP.B-DX-5	SLV - Y - 01	Min	-55,42	28,32	2.142,36	62,24
SP.B-DX-5	SLV - Y - 02	Max	23,80	255,69	2.357,52	256,80
SP.B-DX-5	SLV - Y - 02	Min	-56,66	26,16	2.144,87	62,40
SP.B-DX-6	SLV - X - 01	Max	24,22	37,07	572,76	44,28
SP.B-DX-6	SLV - X - 01	Min	-212,67	-65,26	141,89	222,45
SP.B-DX-6	SLV - X - 02	Max	21,89	32,16	575,86	38,91
SP.B-DX-6	SLV - X - 02	Min	-215,00	-70,17	145,00	226,16
SP.B-DX-6	SLV - Y - 01	Max	-23,20	50,57	559,17	55,64
SP.B-DX-6	SLV - Y - 01	Min	-165,24	-78,76	155,48	183,05
SP.B-DX-6	SLV - Y - 02	Max	-25,53	45,66	562,28	52,31
SP.B-DX-6	SLV - Y - 02	Min	-167,57	-83,67	158,58	187,30
SP.B-DX-7	SLV - X - 01	Max	21,07	27,73	1.282,36	34,82
SP.B-DX-7	SLV - X - 01	Min	-240,20	-52,64	1.075,25	245,91
SP.B-DX-7	SLV - X - 02	Max	18,10	24,11	1.288,64	30,15
SP.B-DX-7	SLV - X - 02	Min	-243,17	-56,26	1.081,54	249,59
SP.B-DX-7	SLV - Y - 01	Max	-34,32	87,92	1.398,82	94,38
SP.B-DX-7	SLV - Y - 01	Min	-184,82	-112,84	958,79	216,54
SP.B-DX-7	SLV - Y - 02	Max	-37,29	84,31	1.405,10	92,18
SP.B-DX-7	SLV - Y - 02	Min	-187,78	-116,46	965,07	220,96
SP.B-DX-8	SLV - X - 01	Max	4,85	49,90	2.271,91	50,14
SP.B-DX-8	SLV - X - 01	Min	-225,15	-109,78	1.614,91	250,49
SP.B-DX-8	SLV - X - 02	Max	1,82	48,34	2.280,32	48,37
SP.B-DX-8	SLV - X - 02	Min	-228,18	-111,34	1.623,32	253,90
SP.B-DX-8	SLV - Y - 01	Max	-47,73	124,92	2.245,15	133,73
SP.B-DX-8	SLV - Y - 01	Min	-172,58	-184,79	1.641,66	252,85
SP.B-DX-8	SLV - Y - 02	Max	-50,76	123,36	2.253,56	133,39
SP.B-DX-8	SLV - Y - 02	Min	-175,61	-186,35	1.650,07	256,06

14.2.3 RIEPILOGO DELLE AZIONI SOLLECITANTI DESUNTE DAL MODELLO DI CALCOLO

Nella tabella successiva sono riepilogati i valori maggiormente gravosi delle azioni sollecitanti per le differenti famiglie di combinazioni di carico adottate:

SOTTOSTRUTTURA		COMBINAZIONE	N _{Sd,max} [kN]	N _{Sd,min} [kN]	R _{v,sd} [kN]
		SLE - QUASI PERMANENTE	2.336,96	368,30	326,02
		SLE - FREQUENTE	2.527,74	366,50	346,04
	ZATTERA SX	SLE - CARATTERISTICA	2.609,14	348,04	359,07
SPALLA B		SLU - STR	3.543,88	467,92	487,78
		SLV	2.757,27	99,30	465,04
		SLE - QUASI PERMANENTE	2.442,79	381,43	330,81
		SLE - FREQUENTE	2.646,41	379,93	352,36
	ZATTERA DX	SLE - CARATTERISTICA	2.732,23	361,06	365,88
		SLU - STR	3.714,46	486,05	497,18
		SLV	2.859,50	131,45	483,77

14.3 SPALLA "A" - AZIONI SOLLECITANTI SUL SINGOLO PALO CONNESSE ALLA DEFORMABILITÀ **ORIZZONTALE DEL TERRENO**

Per effetto del taglio e della deformabilità del terreno nell'intorno del palo si generano le azioni sollecitanti definite nel seguito.

14.3.1 VALUTAZIONE DELLA COSTANTE DI REAZIONE ORIZZONTALE DEL TERRENO

Per terreni prevalentemente incoerenti si considera la costante di reazione orizzontale del terreno variabile con la profondità, secondo la seguente relazione lineare:

$$k_h = n_h \cdot \frac{z}{d}$$

dove:

- n_h → costante dipendente dalla litologia
- z → profondità
- d → diametro del palo

Il valore della costante nh viene determinato per via tabellare in funzione del valore della densità relativa del terreno:

Sabbia sciolta (Dr%<30%)	secca-umida	satura nh=0.128;
	nh=0.224	
Sabbia media (Dr>30	secca- umida	satura nh=0.448;
e<=70%)	nh=0.672	
Sabbia grossa (Dr%>70)	secca-umida	satura nh=1.088;
	nh=1.792	

Per terreni prevalentemente coerenti sovraconsolidati (c_u > 0,50 kg/cm²) si considera la costante di reazione orizzontale del terreno variabile con la profondità, secondo la seguente relazione lineare (Matlock & Reese, 1956)

$$k_h = c_f \cdot \frac{c_u}{d}$$

dove:

- c_f → costante assunta pari a 67 (Davisson 1970)
- c_u → coesione non drenata
- d → diametro del palo

Per terreni prevalentemente coerenti normal-consolidati si considera la costante di reazione orizzontale del terreno variabile con la profondità, secondo la seguente relazione lineare (Matlock & Reese, 1956)

$$k_h = \delta \cdot \frac{z}{d}$$

dove:

- $\delta \rightarrow$ costante dipendente dalla coesione non drenata:
 - \circ c_u <= 0,25 kg/cm² \rightarrow δ = 0,022 kg/cm³ = 0,22 N/cm³
 - 0,25 < c_u <= 0,50 kg/cm² \rightarrow δ = 3,51 kg/cm³ = 35,10 N/cm³
- z → profondità
- d → diametro del palo

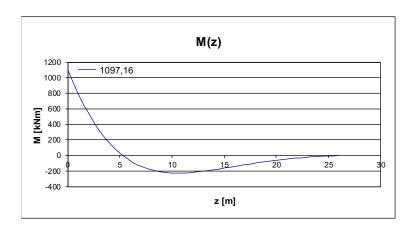
Essendo stata posta la falda di progetto a **0,00 m** dal piano di riferimento tutto il terreno è considerato "saturo".

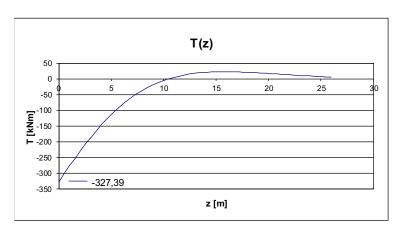
Il valore di \mathbf{k}_h finale è stato determinato come media ponderata dei valori di \mathbf{k}_h valutati per ciascuno strato della stratigrafia considerata:

STRATO	UNITA' LITOTECNICA	QUOTA INIZIALE [m]	QUOTA FINALE [m]	H _{strato} [m]	Dr [%]	n _h	d [m]	k _h QUOTA INIZIALE	k _h QUOTA FINALE	k _{h,media} STRATO	k _{h,media} . h _{strato}
1	G3	0,00	7,05	7,05	49,60	0,488	1,20	0,00	2,87	1,43	10,11
2	S1	7,05	26,00	18,95	50,00	0,488	1,20	2,87	10,57	6,72	127,35
				26,00							137,45

 $k_h = 137,45 / 26,00 = 5,287 \text{ N/cm}^3$

Per la valutazione delle azioni sollecitanti sul palo di fondazione per effetto dell'azione tagliante in testa e della deformabilità è stato utilizzato il metodo di Matlock & Reese con k_h variabile con la profondità.

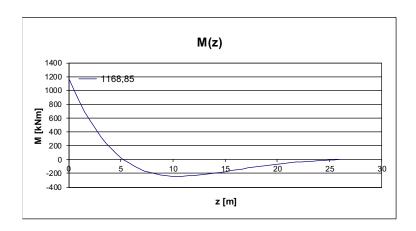


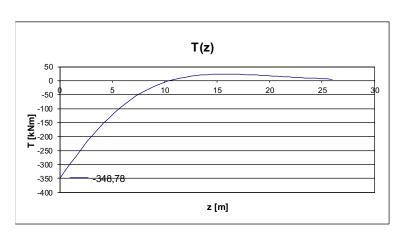


14.3.2 ZATTERA SINISTRA

Combinazione allo Stato Limite di Esercizio - Quasi Permanente

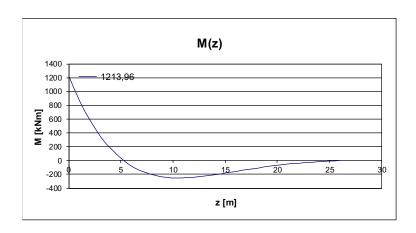
OPERA:			
DATI DI INPUT:			
Diametro del palo (D):	1,2	(m)	
Lunghezza del palo (L)	26	(m)	
Coefficiente di reazione laterale (k _h):	5,287	(N/cm ³)	L Kh
Forza orizzontale agente (T):	327,39	(kN)	
fck del calcestruzzo:	24,9	(MPa)	
fcm del calcestruzzo:	32,9	(MPa)	
Ecls (E = $22000(fcm/10)^{0.3}$):	31447	(MPa)	¹ ¹ D
$J (J = \pi * D^4/64)$:	10178760	(cm ⁴)	
λ (lunghezza elastica λ = (4*EJ/k _h *D) ^{1/4}):	670,25	(cm)	

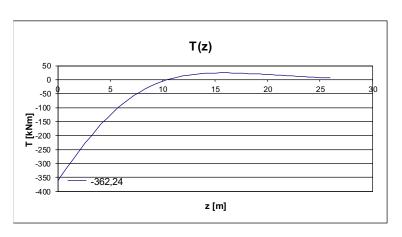




Combinazione allo Stato Limite di Esercizio - Frequente

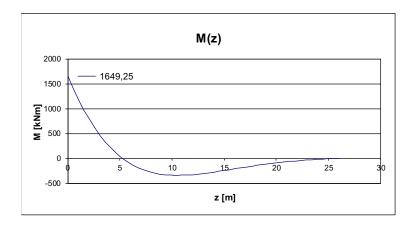
OPERA:				
DATI DI INPUT:				_
Diametro del palo (D):	1,2	(m)		
Lunghezza del palo (L)	26	(m)		
Coefficiente di reazione laterale (k _h):	5,287	(N/cm ³)	L W Kh	
Forza orizzontale agente (T):	348,78	(kN)		
fck del calcestruzzo:	24,9	(MPa)		
fcm del calcestruzzo:	32,9	(MPa)		
Ecls (E = $22000(fcm/10)^{0.3}$):	31447	(MPa)	¹ ¹ D	
$J (J = \pi * D^4/64)$:	10178760	(cm ⁴)		
λ (lunghezza elastica $\lambda = (4*EJ/k_h*D)^{1/4}$):	670,25	(cm)		

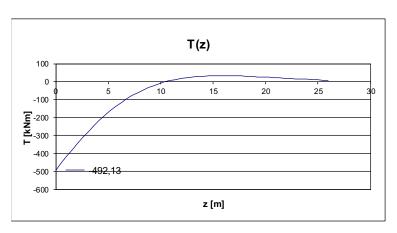




Combinazione allo Stato Limite di Esercizio - Caratteristica

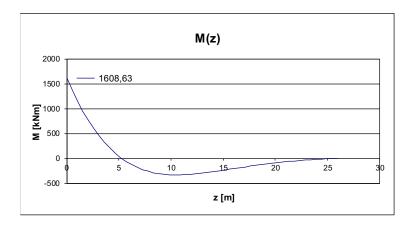
OPERA:			<u> </u>	
DATI DI INPUT:				
Diametro del palo (D):	1,2	(m)		
Lunghezza del palo (L)	26	(m)		
Coefficiente di reazione laterale (k _h):	5,287	(N/cm ³)	L III	Kh
Forza orizzontale agente (T):	362,24	(kN)		
fck del calcestruzzo:	24,9	(MPa)		
fcm del calcestruzzo:	32,9	(MPa)		
Ecls (E = $22000(fcm/10)^{0.3}$):	31447	(MPa)	1 1	D
J $(J = \pi * D^4/64)$:	10178760	(cm ⁴)		
λ (lunghezza elastica $\lambda = (4*EJ/k_h*D)^{1/4}$):	670,25	(cm)		

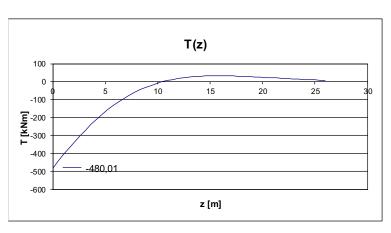




Combinazione allo Stato Limite Ultimo - STR

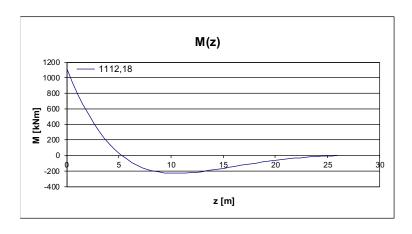
OPERA:				
DATI DI INPUT:				
Diametro del palo (D):	1,2	(m)		
Lunghezza del palo (L)	26	(m)		
Coefficiente di reazione laterale (k _h):	5,287	(N/cm ³)	L	Kh
Forza orizzontale agente (T):	492,13	(kN)		
fck del calcestruzzo:	24,9	(MPa)		
fcm del calcestruzzo:	32,9	(MPa)		
Ecls (E = $22000(fcm/10)^{0.3}$):	31447	(MPa)	1 1	D
$J (J = \pi * D^4/64)$:	10178760	(cm ⁴)		
λ (lunghezza elastica $\lambda = (4*EJ/k_h*D)^{1/4}$):	670,25	(cm)		

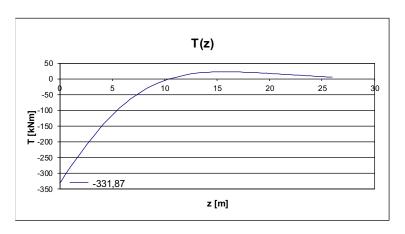




Combinazione allo Stato Limite di Salvaguardia della Vita

OPERA:				
DATI DI INPUT:				
Diametro del palo (D):	1,2	(m)		
Lunghezza del palo (L)	26	(m)		
Coefficiente di reazione laterale (k _h):	5,287	(N/cm ³)	L W Kh	
Forza orizzontale agente (T):	480,01	(kN)		
fck del calcestruzzo:	24,9	(MPa)		
fcm del calcestruzzo:	32,9	(MPa)		
Ecls (E = $22000(\text{fcm}/10)^{0.3}$):	31447	(MPa)	¹ ¹ D	
J $(J = \pi * D^4/64)$:	10178760	(cm ⁴)		
λ (lunghezza elastica $\lambda = (4*EJ/k_h*D)^{1/4}$):	670,25	(cm)		

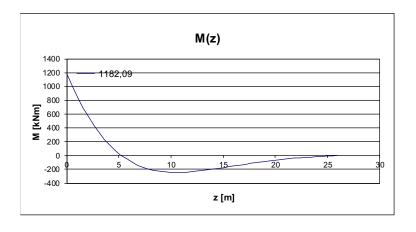


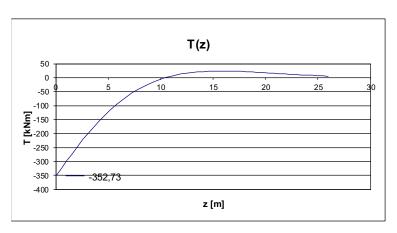


14.3.3 ZATTERA DESTRA

Combinazione allo Stato Limite di Esercizio - Quasi Permanente

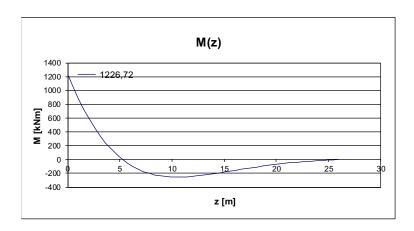
OPERA:			
DATI DI INPUT:			
Diametro del palo (D):	1,2	(m)	
Lunghezza del palo (L)	26	(m)	
Coefficiente di reazione laterale (k _h):	5,287	(N/cm ³)	L Kh
Forza orizzontale agente (T):	331,87	(kN)	
fck del calcestruzzo:	24,9	(MPa)	
fcm del calcestruzzo:	32,9	(MPa)	<u> </u>
Ecls (E = $22000(fcm/10)^{0.3}$):	31447	(MPa)	¹ ¹ D
$J (J = \pi * D^4/64)$:	10178760	(cm ⁴)	
$λ$ (lunghezza elastica $λ = (4*EJ/k_h*D)^{1/4}$):	670,25	(cm)	

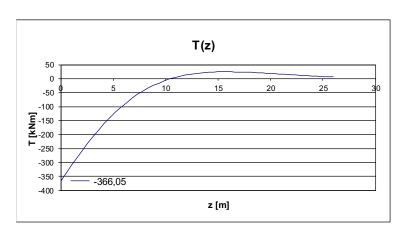




Combinazione allo Stato Limite di Esercizio - Frequente

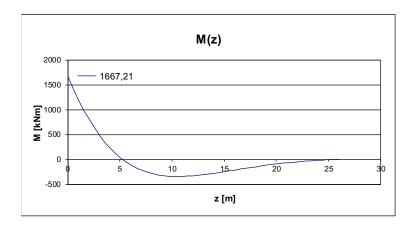
OPERA:			T	
DATI DI INPUT:				_
Diametro del palo (D):	1,2	(m)		
Lunghezza del palo (L)	26	(m)		
Coefficiente di reazione laterale (k _h):	5,287	(N/cm ³)	L Kh	
Forza orizzontale agente (T):	352,73	(kN)		
fck del calcestruzzo:	24,9	(MPa)		
fcm del calcestruzzo:	32,9	(MPa)		
Ecls (E = $22000(fcm/10)^{0.3}$):	31447	(MPa)	'	
$J (J = \pi * D^4/64)$:	10178760	(cm ⁴)		
λ (lunghezza elastica $\lambda = (4*EJ/k_h*D)^{1/4}$):	670,25	(cm)		





Combinazione allo Stato Limite di Esercizio - Caratteristica

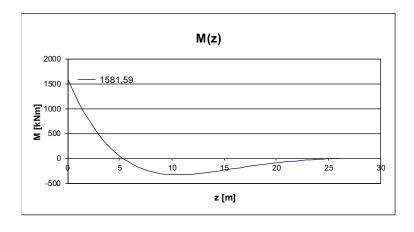
OPERA:			
DATI DI INPUT:			
Diametro del palo (D):	1,2	(m)	
Lunghezza del palo (L)	26	(m)	
Coefficiente di reazione laterale (k _h):	5,287	(N/cm ³)	L W Kh
Forza orizzontale agente (T):	366,05	(kN)	
fck del calcestruzzo:	24,9	(MPa)	
fcm del calcestruzzo:	32,9	(MPa)	
Ecls (E = $22000(fcm/10)^{0.3}$):	31447	(MPa)	1 D
$J (J = \pi * D^4/64)$:	10178760	(cm ⁴)	
λ (lunghezza elastica $\lambda = (4*EJ/k_h*D)^{1/4}$):	670,25	(cm)	

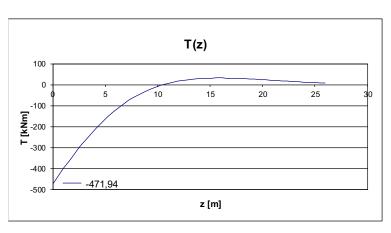




Combinazione allo Stato Limite Ultimo - STR

OPERA:			<u> </u>	
DATI DI INPUT:				
Diametro del palo (D):	1,2	(m)		
Lunghezza del palo (L)	26	(m)		
Coefficiente di reazione laterale (k _h):	5,287	(N/cm ³)	L	Kh
Forza orizzontale agente (T):	497,49	(kN)		
fck del calcestruzzo:	24,9	(MPa)		
fcm del calcestruzzo:	32,9	(MPa)		
Ecls (E = $22000(fcm/10)^{0.3}$):	31447	(MPa)	1 1	D
J $(J = \pi * D^4/64)$:	10178760	(cm ⁴)		
λ (lunghezza elastica $\lambda = (4*EJ/k_h*D)^{1/4}$):	670,25	(cm)		





Combinazione allo Stato Limite di Salvaguardia della Vita

OPERA:			<u> </u>	
DATI DI INPUT:				
Diametro del palo (D):	1,2	(m)		
Lunghezza del palo (L)	26	(m)		
Coefficiente di reazione laterale (k _h):	5,287	(N/cm ³)	L II	Kh
Forza orizzontale agente (T):	471,94	(kN)		
fck del calcestruzzo:	24,9	(MPa)		
fcm del calcestruzzo:	32,9	(MPa)		<u> </u>
Ecls (E = $22000(fcm/10)^{0.3}$):	31447	(MPa)	1 1	D
$J (J = \pi * D^4/64)$:	10178760	(cm ⁴)		
λ (lunghezza elastica $\lambda = (4*EJ/k_h*D)^{1/4}$):	670,25	(cm)		

14.3.4 RIEPILOGO DELLE AZIONI SOLLECITANTI DI VERIFICA

SOTTOSTRUTTURA		COMBINAZIONE	N _{Sd,max} [kN]	N _{Sd,min} [kN]	R _{v,sd} [kN]	M _{Sd} [kNm]
		SLE - QUASI PERMANENTE	2.350,64	369,69	327,39	1.097,16
		SLE - FREQUENTE	2.551,96	367,87	348,78	1.168,85
	ZATTERA SX	SLE - CARATTERISTICA	2.636,99	349,25	362,24	1.231,96
		SLU - STR	3.582,29	469,63	492,13	1.649,25
SPALLA A		SLV	2.770,96	102,42	480,01	1.608,63
SPALLA A		SLE - QUASI PERMANENTE	2.450,46	382,60	331,87	1.112,18
		SLE - FREQUENTE	2.653,95	381,25	352,73	1.182,09
	ZATTERA DX	SLE - CARATTERISTICA	2.739,80	362,32	366,05	1.226,72
		SLU - STR	3.725,21	487,81	497,49	1.667,21
		SLV	2.867,35	133,72	471,94	1.581,59

14.4 SPALLA "B" - AZIONI SOLLECITANTI SUL SINGOLO PALO CONNESSE ALLA DEFORMABILITÀ ORIZZONTALE DEL TERRENO

Per effetto del taglio e della deformabilità del terreno nell'intorno del palo si generano le azioni sollecitanti definite nel seguito.

14.4.1 VALUTAZIONE DELLA COSTANTE DI REAZIONE ORIZZONTALE DEL TERRENO

Per terreni **prevalentemente incoerenti** si considera la costante di reazione orizzontale del terreno variabile con la profondità, secondo la seguente relazione lineare:

$$k_h = n_h \cdot \frac{z}{d}$$

dove:

- n_h → costante dipendente dalla litologia
- z → profondità
- d → diametro del palo

Il valore della costante n_h viene determinato per via tabellare in funzione del valore della densità relativa del terreno:

Sabbia sciolta (Dr%<30%)	secca-umida	satura nh=0.128;
	nh=0.224	
Sabbia media (Dr>30	secca- umida	satura nh=0.448;
e<=70%)	nh=0.672	
Sabbia grossa (Dr%>70)	secca-umida	satura nh=1.088;
	nh=1.792	

Per terreni **prevalentemente coerenti sovraconsolidati** (c_u > 0,50 kg/cm²) si considera la costante di reazione orizzontale del terreno variabile con la profondità, secondo la seguente relazione lineare (Matlock & Reese,1956)

$$k_h = c_f \cdot \frac{c_u}{d}$$

dove:

- c_f → costante assunta pari a 67 (Davisson 1970)
- c_u → coesione non drenata
- d → diametro del palo

Per terreni prevalentemente coerenti normal-consolidati si considera la costante di reazione orizzontale del terreno variabile con la profondità, secondo la seguente relazione lineare (Matlock & Reese,1956)

$$k_h = \delta \cdot \frac{z}{d}$$

dove:

- δ → costante dipendente dalla coesione non drenata:
 - o $c_u \le 0.25 \text{ kg/cm}^2 \rightarrow \delta = 0.022 \text{ kg/cm}^3 = 0.22 \text{ N/cm}^3$
 - 0,25 < c_u <= 0,50 kg/cm² \rightarrow δ = 3,51 kg/cm³ = 35,10 N/cm³
- z → profondità
- d → diametro del palo

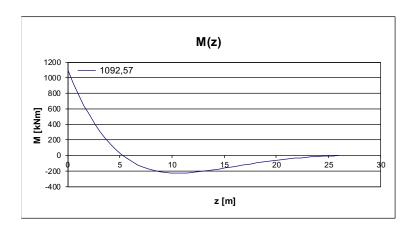
Essendo stata posta la falda di progetto a 0,00 m dal piano di riferimento tutto il terreno è considerato "saturo".

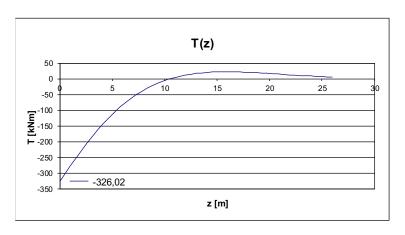
Il valore di **k**_h finale è stato determinato come media ponderata dei valori di **k**_h valutati per ciascuno strato della stratigrafia considerata:

STRATO	UNITA' LITOTECNICA	QUOTA INIZIALE [m]	QUOTA FINALE [m]	H _{strato} [m]	Dr [%]	n _h	d [m]	k _h QUOTA INIZIALE	k _h QUOTA FINALE	k _{h,media} STRATO	k _{h,media} . h _{strato}
1	G3	0,00	7,05	7,05	49,60	0,488	1,20	0,00	2,87	1,43	10,11
2	S1	7,05	26,00	18,95	50,00	0,488	1,20	2,87	10,57	6,72	127,35
				26,00							137,45

 $k_h = 137,45 / 26,00 = 5,287 \text{ N/cm}^3$

Per la valutazione delle azioni sollecitanti sul palo di fondazione per effetto dell'azione tagliante in testa e della deformabilità è stato utilizzato il metodo di Matlock & Reese con kh variabile con la profondità.

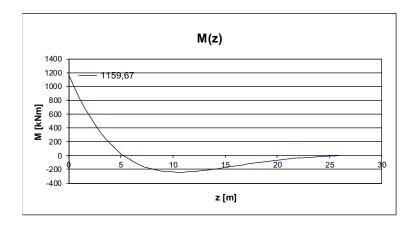


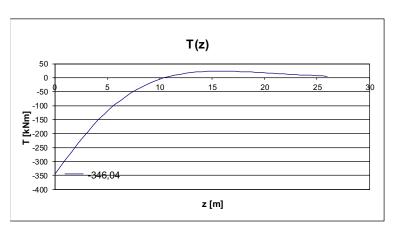


14.4.2 ZATTERA SINISTRA

Combinazione allo Stato Limite di Esercizio - Quasi Permanente

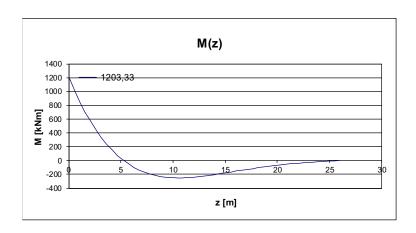
OPERA:			
DATI DI INPUT:			
Diametro del palo (D):	1,2	(m)	
Lunghezza del palo (L)	26	(m)	
Coefficiente di reazione laterale (k _h):	5,287	(N/cm ³)	L W Kh
Forza orizzontale agente (T):	326,02	(kN)	
fck del calcestruzzo:	24,9	(MPa)	
fcm del calcestruzzo:	32,9	(MPa)	
Ecls (E = $22000(fcm/10)^{0.3}$):	31447	(MPa)	¹ ¹ D
$J (J = \pi * D^4/64)$:	10178760	(cm ⁴)	
λ (lunghezza elastica λ = (4*EJ/k _h *D) ^{1/4}):	670,25	(cm)	

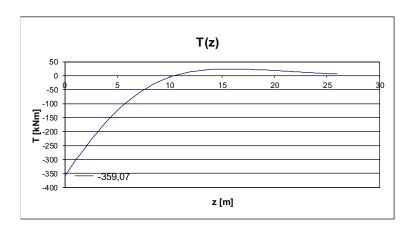




Combinazione allo Stato Limite di Esercizio - Frequente

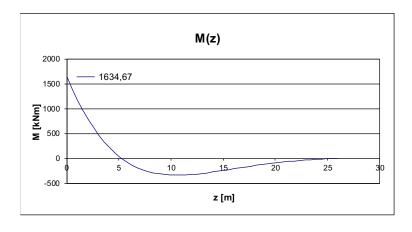
OPERA:			I	
DATI DI INPUT:				
Diametro del palo (D):	1,2	(m)		
Lunghezza del palo (L)	26	(m)		
Coefficiente di reazione laterale (k _h):	5,287	(N/cm ³)	L	Kh
Forza orizzontale agente (T):	346,04	(kN)		
fck del calcestruzzo:	24,9	(MPa)		
fcm del calcestruzzo:	32,9	(MPa)		
Ecls (E = $22000(fcm/10)^{0.3}$):	31447	(MPa)	1 1	D
$J (J = \pi * D^4/64)$:	10178760	(cm ⁴)		
λ (lunghezza elastica $\lambda = (4*EJ/k_h*D)^{1/4}$):	670,25	(cm)		

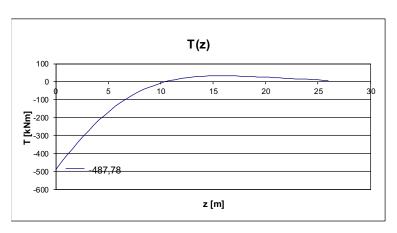




Combinazione allo Stato Limite di Esercizio - Caratteristica

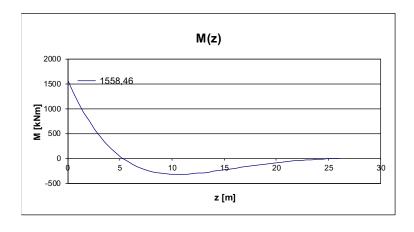
OPERA:			<u> </u>	
DATI DI INPUT:				
Diametro del palo (D):	1,2	(m)		
Lunghezza del palo (L)	26	(m)		
Coefficiente di reazione laterale (k _h):	5,287	(N/cm ³)	L III	Kh
Forza orizzontale agente (T):	359,07	(kN)		
fck del calcestruzzo:	24,9	(MPa)		
fcm del calcestruzzo:	32,9	(MPa)		_
Ecls (E = $22000(fcm/10)^{0.3}$):	31447	(MPa)	' ' [)
J $(J = \pi * D^4/64)$:	10178760	(cm ⁴)		
λ (lunghezza elastica $\lambda = (4*EJ/k_h*D)^{1/4}$):	670,25	(cm)		

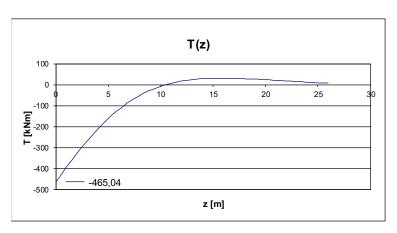




Combinazione allo Stato Limite Ultimo - STR

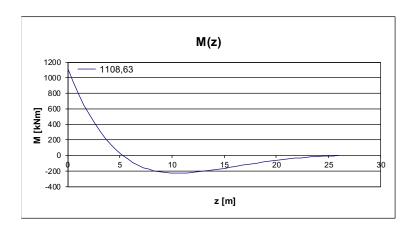
OPERA:				
DATI DI INPUT:				
Diametro del palo (D):	1,2	(m)		
Lunghezza del palo (L)	26	(m)		
Coefficiente di reazione laterale (k _h):	5,287	(N/cm ³)	L ,	< h
Forza orizzontale agente (T):	487,78	(kN)		ν
fck del calcestruzzo:	24,9	(MPa)		
fcm del calcestruzzo:	32,9	(MPa)		
Ecls (E = $22000(fcm/10)^{0.3}$):	31447	(MPa)	' 'D	
J $(J = \pi * D^4/64)$:	10178760	(cm ⁴)		
λ (lunghezza elastica $\lambda = (4*EJ/k_h*D)^{1/4}$):	670,25	(cm)		

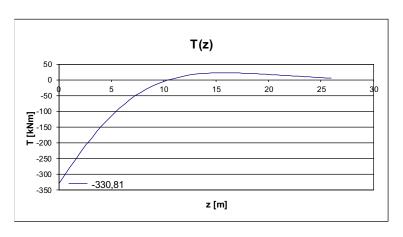




Combinazione allo Stato Limite di Salvaguardia della Vita

OPERA:			T	
DATI DI INPUT:				
Diametro del palo (D):	1,2	(m)		
Lunghezza del palo (L)	26	(m)		
Coefficiente di reazione laterale (k _h):	5,287	(N/cm ³)	L W Kh	1
Forza orizzontale agente (T):	465,04	(kN)		•
fck del calcestruzzo:	24,9	(MPa)		
fcm del calcestruzzo:	32,9	(MPa)		
Ecls (E = $22000(fcm/10)^{0.3}$):	31447	(MPa)	'	
$J (J = \pi * D^4/64)$:	10178760	(cm ⁴)		
λ (lunghezza elastica $\lambda = (4*EJ/k_h*D)^{1/4}$):	670,25	(cm)		

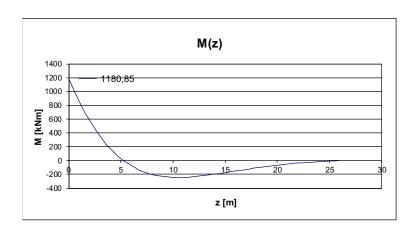


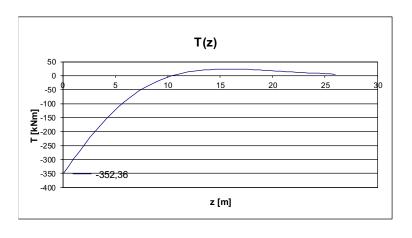


14.4.3 ZATTERA DESTRA

Combinazione allo Stato Limite di Esercizio - Quasi Permanente

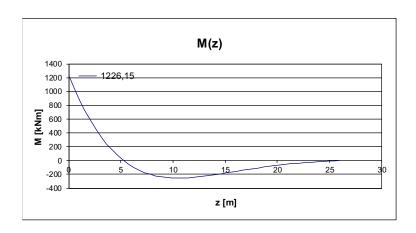
OPERA:			
DATI DI INPUT:			
Diametro del palo (D):	1,2	(m)	
Lunghezza del palo (L)	26	(m)	
Coefficiente di reazione laterale (k _h):	5,287	(N/cm ³)	L W Kh
Forza orizzontale agente (T):	330,81	(kN)	
fck del calcestruzzo:	24,9	(MPa)	
fcm del calcestruzzo:	32,9	(MPa)	
Ecls (E = $22000(fcm/10)^{0.3}$):	31447	(MPa)	¹ ¹D
$J (J = \pi * D^4/64)$:	10178760	(cm ⁴)	
λ (lunghezza elastica λ = (4*EJ/k _h *D) ^{1/4}):	670,25	(cm)	

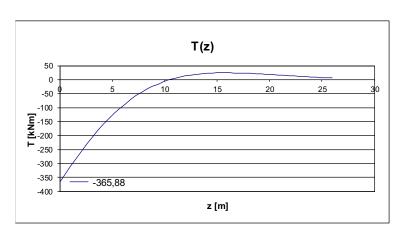




Combinazione allo Stato Limite di Esercizio - Frequente

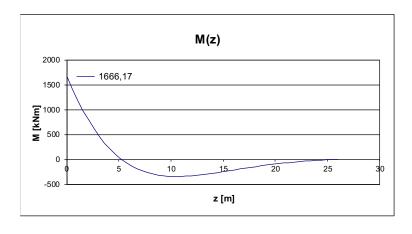
OPERA:				
DATI DI INPUT:				
Diametro del palo (D):	1,2	(m)		
Lunghezza del palo (L)	26	(m)		
Coefficiente di reazione laterale (k _h):	5,287	(N/cm ³)	L III	Kh
Forza orizzontale agente (T):	352,36	(kN)		
fck del calcestruzzo:	24,9	(MPa)		
fcm del calcestruzzo:	32,9	(MPa)		
Ecls (E = $22000(\text{fcm}/10)^{0.3}$):	31447	(MPa)	' '[D
J $(J = \pi * D^4/64)$:	10178760	(cm ⁴)		
λ (lunghezza elastica $\lambda = (4*EJ/k_h*D)^{1/4}$):	670,25	(cm)		

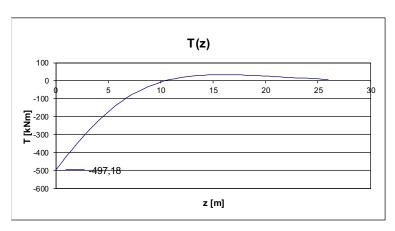




Combinazione allo Stato Limite di Esercizio - Caratteristica

OPERA:			<u> </u>	
DATI DI INPUT:				
Diametro del palo (D):	1,2	(m)		
Lunghezza del palo (L)	26	(m)		
Coefficiente di reazione laterale (k _h):	5,287	(N/cm ³)	L III	Kh
Forza orizzontale agente (T):	365,88	(kN)		
fck del calcestruzzo:	24,9	(MPa)		
fcm del calcestruzzo:	32,9	(MPa)		_
Ecls (E = $22000(fcm/10)^{0.3}$):	31447	(MPa)	' '[)
J $(J = \pi * D^4/64)$:	10178760	(cm ⁴)		
λ (lunghezza elastica $\lambda = (4*EJ/k_h*D)^{1/4}$):	670,25	(cm)		

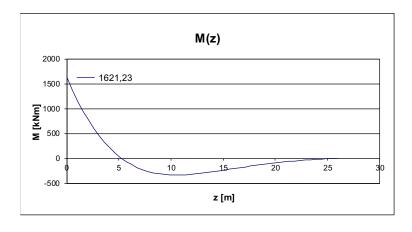


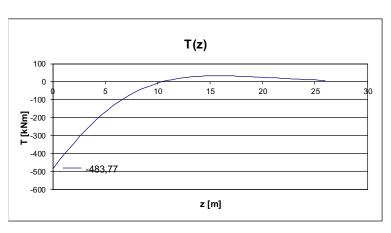


Combinazione allo Stato Limite Ultimo - STR

PALI IMPEDITI DI RUOTARE IN TESTA SOGGETTI A FORZE ORIZZONTALI

OPERA:			I	
DATI DI INPUT:				
Diametro del palo (D):	1,2	(m)		
Lunghezza del palo (L)	26	(m)		
Coefficiente di reazione laterale (k _h):	5,287	(N/cm ³)	L	Kh
Forza orizzontale agente (T):	497,18	(kN)		
fck del calcestruzzo:	24,9	(MPa)		
fcm del calcestruzzo:	32,9	(MPa)		
Ecls (E = $22000(fcm/10)^{0.3}$):	31447	(MPa)	1 1	D
J $(J = \pi * D^4/64)$:	10178760	(cm ⁴)		
λ (lunghezza elastica $\lambda = (4*EJ/k_h*D)^{1/4}$):	670,25	(cm)		





Combinazione allo Stato Limite di Salvaguardia della Vita

PALI IMPEDITI DI RUOTARE IN TESTA SOGGETTI A FORZE ORIZZONTALI

OPERA:				
DATI DI INPUT:				
Diametro del palo (D):	1,2	(m)		
Lunghezza del palo (L)	26	(m)		
Coefficiente di reazione laterale (k _h):	5,287	(N/cm ³)	L W Kh	
Forza orizzontale agente (T):	483,77	(kN)		
fck del calcestruzzo:	24,9	(MPa)		
fcm del calcestruzzo:	32,9	(MPa)	<u> </u>	
Ecls (E = $22000(fcm/10)^{0.3}$):	31447	(MPa)	¹ ¹ D	
$J (J = \pi * D^4/64)$:	10178760	(cm ⁴)		
λ (lunghezza elastica λ = (4*EJ/k _n *D) ^{1/4}):	670,25	(cm)		

14.4.4 RIEPILOGO DELLE AZIONI SOLLECITANTI DI VERIFICA

SOTTOST	RUTTURA	COMBINAZIONE	N _{Sd,max} [kN]	N _{Sd,min} [kN]	R _{v,sd} [kN]	M _{Sd} [kNm]
		SLE - QUASI PERMANENTE	2.336,96	368,30	326,02	1.092,57
		SLE - FREQUENTE	2.527,74	366,50	346,04	1.159,67
	ZATTERA SX	SLE - CARATTERISTICA	2.609,14	348,04	359,07	1.203,33
		SLU - STR	3.543,88	467,92	487,78	1.634,67
SPALLA B		SLV	2.757,27	99,30	465,04	1.558,46
SPALLA B		SLE - QUASI PERMANENTE	2.442,79	381,43	330,81	1.108,63
		SLE - FREQUENTE	2.646,41	379,93	352,36	1.180,85
	ZATTERA DX	SLE - CARATTERISTICA	2.732,23	361,06	365,88	1.226,15
		SLU - STR	3.714,46	486,05	497,18	1.666,17
		SLV	2.859,50	131,45	483,77	1.621,23

15

SPALLE - VERIFICHE STRUTTURALI DEI PALI DI FONDAZIONE

15.1 **SEZIONE ED ARMATURA DI VERIFICA**

La sezione di verifica è circolare con diametro pari a 120 cm.

L'armatura verticale (armatura di forza) è prevista come segue:

Gabbia superiore

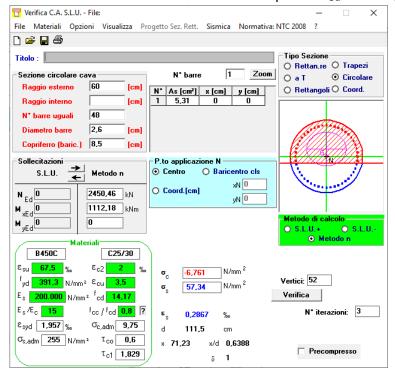
- **36Ø26** disposti a raggiera (strato esterno)
- 12Ø26 disposti a raggiera (strato interno)

Gabbie inferiori

18Ø20 disposti a raggiera

L'armatura a taglio è costituita da una spirale:

- Ø12/10 (gabbia superiore)
- Ø12/20 (gabbie inferiori)


Il copriferro netto minimo è assunto pari a 60 mm.

15.2 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI

COMBINAZIONE SLE - QUASI PERMANENTE - NMAX

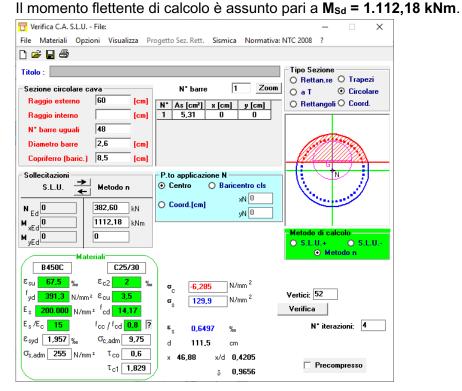
L'azione normale di calcolo è assunta pari a N_{Sd} = 2.450,46 kN.

Il momento flettente di calcolo è assunto pari a M_{Sd} = 1.112,18 kNm.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 6.76 \text{ N/mm}^2 < 0.45 \text{ f}_{ck} = 11.20 \text{ N/mm}^2$

 $\sigma_s = 57,34 \text{ N/mm}^2 < 0,80 \text{ f}_{vk} = 360,00 \text{ N/mm}^2$



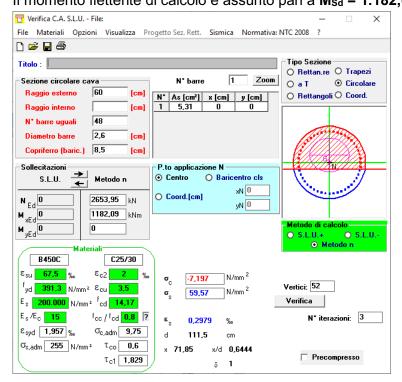
15.2.2 COMBINAZIONE SLE - QUASI PERMANENTE - NMIN

L'azione normale di calcolo è assunta pari a N_{sd} = 382,60 kN.

Le tensioni sui materiali risultano pari a:

 σ_c = 6,28 N/mm² < 0,45 f_{ck} = 11,20 N/mm²

 $\sigma_s = 129,90 \text{ N/mm}^2 < 0.80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$



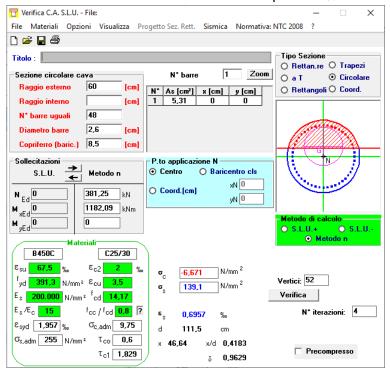
15.2.3 COMBINAZIONE SLE - FREQUENTE - NMAX

L'azione normale di calcolo è assunta pari a N_{Sd} = 2.653,95 kN. Il momento flettente di calcolo è assunto pari a M_{Sd} = 1.182,09 kNm.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 7,20 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 11,20 \text{ N/mm}^2$

 $\sigma_s = 59,57 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$



15.2.4 COMBINAZIONE SLE - FREQUENTE - N_{MIN}

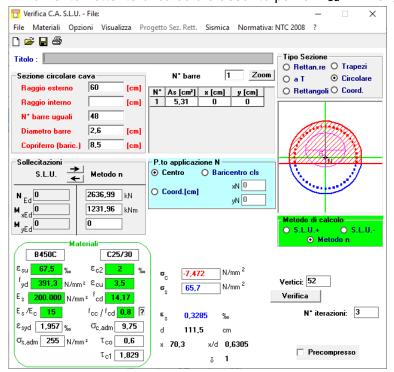
L'azione normale di calcolo è assunta pari a N_{Sd} = 381,25 kN.

Il momento flettente di calcolo è assunto pari a M_{Sd} = 1.182,09 kNm.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 6,67 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 11,20 \text{ N/mm}^2$

 $\sigma_s = 139,10 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$



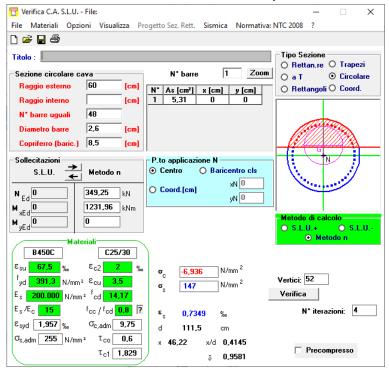
15.2.5 COMBINAZIONE SLE - CARATTERISTICA - NMAX

L'azione normale di calcolo è assunta pari a N_{Sd} = 2.636,99 kN. Il momento flettente di calcolo è assunto pari a M_{Sd} = 1.231,96 kNm.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 7,47 \text{ N/mm}^2 < 0,60 \text{ f}_{ck} = 14,94 \text{ N/mm}^2$

 $\sigma_s = 65,70 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$



15.2.6 COMBINAZIONE SLE - CARATTERISTICA - N_{MIN}

L'azione normale di calcolo è assunta pari a N_{Sd} = 349,25 kN.

Il momento flettente di calcolo è assunto pari a M_{Sd} = 1.231,96 kNm.

Le tensioni sui materiali risultano pari a:

 σ_c = 6,94 N/mm² < 0,60 f_{ck} = 14,94 N/mm²

 σ_s = 147,00 N/mm² < 0,80 f_{yk} = 360,00 N/mm²

15.3 **VERIFICA ALLO STATO LIMITE DI FESSURAZIONE**

15.3.1 COMBINAZIONE SLE - QUASI PERMANENTE - NMAX

Dati	Verica fessurazione sezione circolare CIRCOLARE 2/02/2009 N°617 Par.C.4.1.2.2.4.6					
ϑ_{s}	53 N/mm²	Tensione massima armatura tesa sezione fessurata				
Rck	30,0 N/mm²	Resistenza caratteristica cubica cls				
Фі	26 mm	Diametro barre longitudinali				
фѕ	12 mm	Diametro staffe o spirale				
n	48	Numero ferri longitudinali				
С	60 mm	Ricoprimento del calcestruzzo				
D	1200 mm	Diametro				
k _t	0,4	kt=0,6 ;0,4 carichi breve durata/lunga durata				
k ₂	0,5	k2=0,5 ;1,0 caso flessione/trazione semplice				
k ₁	0,8	k1=0,8;1,6 barre aderenza migliorata/lisce				
W	0,2 mm	Valore limite apertura fessure				
Dati						
fck	24,9 N/mm²	Resistenza caratteristica cilindrica cls				
i	67 mm	Interasse ferri longitudinali				
A_{ϕ}	531 mm²	Area barra longitudinale				
E _s	210000,0 N/mm²	Modulo elastico acciaio da c.a				
f _{ctm}	2,6 N/mm²	Resistenza a trazione media cls				
E _{cm}	31447,2 N/mm ²	Modulo elastico medio cls				
$\alpha_{\rm e}$	6,68	Rapporto Es/Ecm				
f _{cm}	32,9 N/mm²	Resistenza media cls				
ρ _{eff}	0,0539	Rapporto area acciaio/area efficace				
ϵ_{sm1}	0,000131	Deformazione unitaria media barre di calcolo				
ε_{sm2}	0,000152	Deformazione unitaria media barre valore minimo				
ε_{sm}	0,000152	Deformazione unitaria media				
k_3	3,4	Coefficiente				
k4	0,4	Coefficiente				
Δsmax	285,9 mm	Distanza massima tra le fessure				
w_d	√ 0,044 mm	Valore di calcolo apertura fessure				

15.3.2 COMBINAZIONE SLE – QUASI PERMANENTE – N_{MIN}

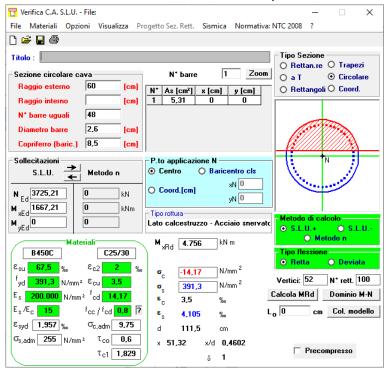
Dati	Verica fessurazione sezione circolare CIRCOLARE 2/02/2009 N°617 Par.C.4.1.2.2.4.6				
$\vartheta_{\rm s}$	119 N/mm²	Tensione massima armatura tesa sezione fessurata			
Rck	30,0 N/mm²	Resistenza caratteristica cubica cls			
φ _I	26 mm	Diametro barre longitudinali			
фѕ	12 mm	Diametro staffe o spirale			
n	48	Numero ferri longitudinali			
С	60 mm	Ricoprimento del calcestruzzo			
D	1200 mm	Diametro			
k _t	0,4	kt=0,6 ;0,4 carichi breve durata/lunga durata			
k ₂	0,5	k2=0,5 ;1,0 caso flessione/trazione semplice			
k_1	0,8	k1=0,8 ;1,6 barre aderenza migliorata/lisce			
w	0,2 mm	Valore limite apertura fessure			
Dati					
fck	24,9 N/mm²	Resistenza caratteristica cilindrica cls			
i	67 mm	Interasse ferri longitudinali			
A_{ϕ}	531 mm²	Area barra longitudinale			
E _s	210000,0 N/mm²	Modulo elastico acciaio da c.a			
f _{ctm}	2,6 N/mm²	Resistenza a trazione media cls			
E _{cm}	31447,2 N/mm²	Modulo elastico medio cls			
α_{e}	6,68	Rapporto Es/Ecm			
f _{cm}	32,9 N/mm²	Resistenza media cls			
$ ho_{ m eff}$	0,0539	Rapporto area acciaio/area efficace			
ϵ_{sm1}	0,000442	Deformazione unitaria media barre di calcolo			
ϵ_{sm2}	0,000339	Deformazione unitaria media barre valore minimo			
$\epsilon_{\sf sm}$	0,000442	Deformazione unitaria media			
k ₃	3,4	Coefficiente			
k4	0,4	Coefficiente			
Δsmax	285,9 mm	Distanza massima tra le fessure			
w_d	√ 0,126 mm	Valore di calcolo apertura fessure			

15.3.3 COMBINAZIONE SLE - FREQUENTE - N_{MAX}

Dati	Verica fessurazione sezione circolare CIRCOLARE 2/02/2009 N°617 Par.C.4.1.2.2.4.6				
ϑ_{s}	55 N/mm²	Tensione massima armatura tesa sezione fessurata			
Rck	30,0 N/mm²	Resistenza caratteristica cubica cls			
Фі	26 mm	Diametro barre longitudinali			
φ _s	12 mm	Diametro staffe o spirale			
n	48	Numero ferri longitudinali			
С	60 mm	Ricoprimento del calcestruzzo			
D	1200 mm	Diametro			
k _t	0,4	kt=0,6;0,4 carichi breve durata/lunga durata			
k ₂	0,5	k2=0,5 ;1,0 caso flessione/trazione semplice			
k ₁	0,8	k1=0,8 ;1,6 barre aderenza migliorata/lisce			
w	0,3 mm	Valore limite apertura fessure			
Dati					
fck	24,9 N/mm²	Resistenza caratteristica cilindrica cls			
i	67 mm	Interasse ferri longitudinali			
A_{ϕ}	531 mm²	Area barra longitudinale			
E _s	210000,0 N/mm²	Modulo elastico acciaio da c.a			
f _{ctm}	2,6 N/mm²	Resistenza a trazione media cls			
E _{cm}	31447,2 N/mm²	Modulo elastico medio cls			
$\alpha_{\rm e}$	6,68	Rapporto Es/Ecm			
f _{cm}	32,9 N/mm²	Resistenza media cls			
$ ho_{ m eff}$	0,0539	Rapporto area acciaio/area efficace			
ϵ_{sm1}	0,000141	Deformazione unitaria media barre di calcolo			
ε_{sm2}	0,000158	Deformazione unitaria media barre valore minimo			
ε_{sm}	0,000158	Deformazione unitaria media			
k ₃	3,4	Coefficiente			
k4	0,4	Coefficiente			
Δsmax	285,9 mm	Distanza massima tra le fessure			
w_d	√ 0,045 mm	Valore di calcolo apertura fessure			

15.3.4 COMBINAZIONE SLE - FREQUENTE - N_{MIN}

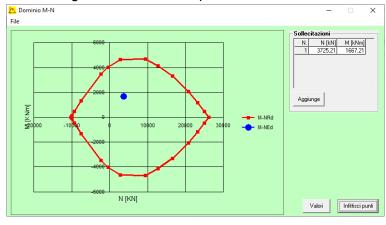
Dati	Verica fessurazione sezione circolare CIRCOLARE 2/02/2009 N°617 Par.C.4.1.2.2.4.6				
ϑ_{s}	127 N/mm²	Tensione massima armatura tesa sezione fessurata			
Rck	30,0 N/mm²	Resistenza caratteristica cubica cls			
Фі	26 mm	Diametro barre longitudinali			
φ _s	12 mm	Diametro staffe o spirale			
n	48	Numero ferri longitudinali			
С	60 mm	Ricoprimento del calcestruzzo			
D	1200 mm	Diametro			
k _t	0,4	kt=0,6;0,4 carichi breve durata/lunga durata			
k ₂	0,5	k2=0,5 ;1,0 caso flessione/trazione semplice			
k ₁	0,8	k1=0,8 ;1,6 barre aderenza migliorata/lisce			
w	0,3 mm	Valore limite apertura fessure			
Dati					
fck	24,9 N/mm²	Resistenza caratteristica cilindrica cls			
i	67 mm	Interasse ferri longitudinali			
A_{ϕ}	531 mm²	Area barra longitudinale			
E _s	210000,0 N/mm²	Modulo elastico acciaio da c.a			
f _{ctm}	2,6 N/mm²	Resistenza a trazione media cls			
E _{cm}	31447,2 N/mm²	Modulo elastico medio cls			
α_{e}	6,68	Rapporto Es/Ecm			
f _{cm}	32,9 N/mm²	Resistenza media cls			
$ ho_{ m eff}$	0,0539	Rapporto area acciaio/area efficace			
ϵ_{sm1}	0,000482	Deformazione unitaria media barre di calcolo			
ε_{sm2}	0,000363	Deformazione unitaria media barre valore minimo			
$\epsilon_{\sf sm}$	0,000482	Deformazione unitaria media			
k ₃	3,4	Coefficiente			
k4	0,4	Coefficiente			
Δsmax	285,9 mm	Distanza massima tra le fessure			
w_d	√ 0,138 mm	Valore di calcolo apertura fessure			



15.4 VERIFICA ALLO STATO LIMITE ULTIMO PER PRESSOFLESSIONE

15.4.1 CONDIZIONE STATICA SLU - STR - N_{MAX}

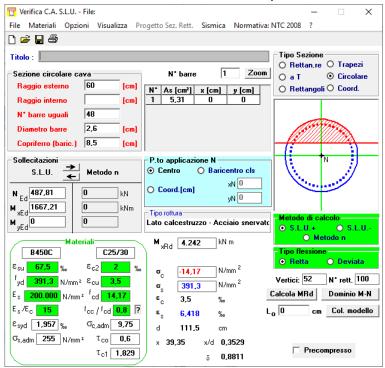
L'azione normale di calcolo è assunta pari a N_{Sd} = 3.725,21 kN.


Il momento flettente di calcolo è assunto pari a M_{Sd} = 1.667,21 kNm.

Il momento resistente risulta pari a:

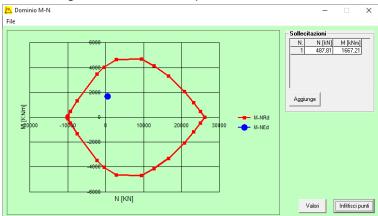
 $M_{Rd} = 4.756,00 \text{ kNm} > M_{Sd} = 1.667,21 \text{ kNm}$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:



15.4.2 CONDIZIONE STATICA SLU - STR - N_{MIN}

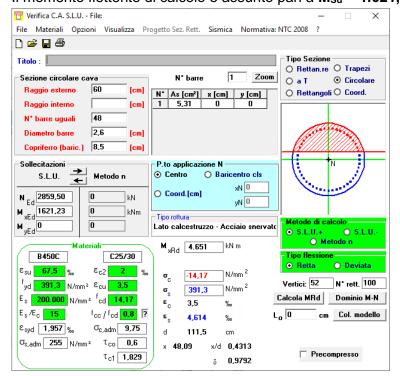
L'azione normale di calcolo è assunta pari a N_{Sd} = 487,81 kN.


Il momento flettente di calcolo è assunto pari a M_{Sd} = 1.667,21 kNm.

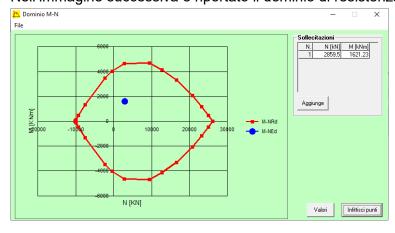
Il momento resistente risulta pari a:

 $M_{Rd} = 4.242,00 \text{ kNm} > M_{Sd} = 1.667,21 \text{ kNm}$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:



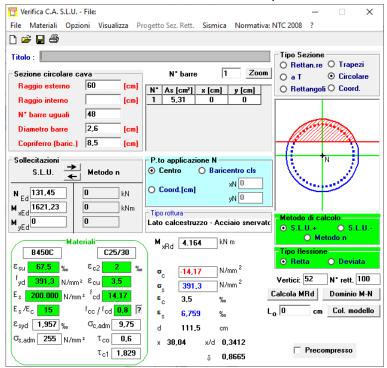
15.4.3 CONDIZIONE SISMICA SLV - N_{MAX}


L'azione normale di calcolo è assunta pari a N_{sd} = 2.859,50 kN. Il momento flettente di calcolo è assunto pari a M_{sd} = 1.621,23 kNm.

Il momento resistente risulta pari a:

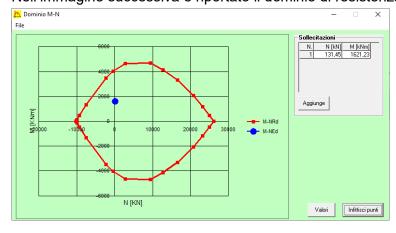
 $M_{Rd} = 4.651,00 \text{ kNm} > M_{Sd} = 1.621,23 \text{ kNm}$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:



15.4.4 CONDIZIONE SISMICA SLV - N_{MIN}

L'azione normale di calcolo è assunta pari a N_{Sd} = 131,45 kN.


Il momento flettente di calcolo è assunto pari a M_{Sd} = 1.621,23 kNm.

Il momento resistente risulta pari a:

 $M_{Rd} = 4.164,00 \text{ kNm} > M_{Sd} = 1.621,23 \text{ kNm}$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:

15.5 VERIFICA ALLO STATO LIMITE ULTIMO PER TAGLIO

L'azione tagliante di calcolo è assunta pari a V_{sd} = 497,49 kN.

A favore di sicurezza non viene considerato il contributo dell'azione normale.

La verifica viene condotta su una sezione quadrata equivalente di lato pari a 106,34 cm (equivalenza d'area).

VERIFICA ALLO STATO LIMITE ULTIMO PER TAGLIO - ELEMENTI CON ARM D.M. 17.01.2018 - CAPITOLO 4.1.2		SALI RESISTENTI	AL TAGLIO
CARATTERISTICHE GEOMETRICHE DELLA SEZIONE			
Base della zezione trasversale: Altezza della sezione trasversale: Copriferro netto: Altezza utile della sezione:	b h c d	106,35 106,35 6,00 100,35	[cm] [cm] [cm]
CARATTERISTICHE DEI MATERIALI			
Classe di resistenza del calcestruzzo: Resistenza caratteristica cubica a compressione: Resistenza caratteristica cilindrica a compressione:	R _{ck} f _{ck}	C25/30 30,00 24,90	[N/mm ²]
Resistenza di calcolo a compressione: Tipologia dell'acciaio da armatura:	f _{cd}	14,11 B450C	[N/mm ²]
Tensione caratteristica di rottura: Tensione caratteristica di snervamento: Resistenza di calcolo:	f _{tk} f _{yk} f _{yd}	540,00 450,00 391,30	[N/mm ²] [N/mm ²] [N/mm ²]
AZIONI SOLLECITANTI DI CALCOLO			
Azione tagliante di calcolo: Azione normale di calcolo:	$V_{S,d}$ $N_{S,d}$	497,49 0,00	[kN] [kN]
ARMATURA TRASVERSALE			
Inclinazione dei puntoni di calcestruzzo: Cotangente dell'angolo θ:	θ cot(θ)	45,00 1,00	[°]
Inclinazione dell'armatura trasversale rispetto all'asse della trave: Numero di bracci dell'armatura trasversale:	α n	90,00 2,00	[°]
Passo longitudinale delle armature trasversali: Diametro dell'armatura trasversale: Area della singola barra:	$m{egin{align*} S \ m{egin{align*} m{eta}_{trasv} \ A_{barra} \ \end{array}}$	10,00 12,00 1,13	[cm] [mm] [cm²]
Area totale dell'armatura trasversale:	A _{tot}	22,60	[cm ² /m]

VERIFICA ALLO S.L.U. PER TAGLIO

La resistenza di calcolo a "taglio trazione" viene valutata mediante la seguente relazione - D.M. 17.01.2018 [4.1.27]:

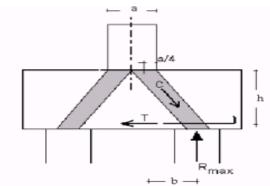
$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot \left[\cot \left(\alpha\right) + \cot \left(\theta\right)\right] \cdot sen \left(\alpha\right)$$

La resistenza di calcolo a "taglio compressione" viene valutata mediante la seguente relazione - D.M. 17.01.2018 [4.1.28]:

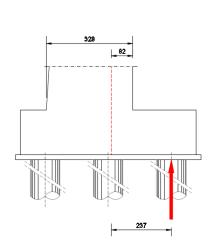
$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f_{cd} \cdot \frac{\left[\cot \left(\alpha\right) + \cot \left(\theta\right)\right]}{\left[1 + \cot^{2}\left(\theta\right)\right]}$$

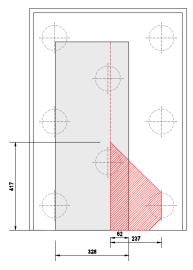
Larghezza minima della sezione:	h	106.35	[am]
Larghezza minima della sezione.	b_w	100,33	[cm]
Resistenza a compressione ridotta del calcestruzzo:	\mathbf{f}_{yd}	7,06	[N/mm²]
Tensione media di compressione nella sezione:	$\sigma_{\sf cp}$	0,00	[N/mm ²]
Coefficiente maggiorativ o α_c :	$\alpha_{\!\scriptscriptstyle c}$	1,00	
RESISTENZA DI CALCOLO A "TAGLIO TRAZIONE"	V_{Rsd}	798,70	[kN]
RESISTENZA DI CALCOLO A "TAGLIO COMPRESSIONE"	V_{Rcd}	3388,16	[kN]
AZIONE TAGLIANTE RESISTENTE DELLA SEZIONE:	$V_{R,d}$	798,70	[kN]
COEFFICIENTE DI SICUREZZA:	$F_s = V_{R,d}/V_{s,d}$	1,61	

LA VERIFICA RISULTA POSITIVA.


16

SPALLE - VERIFICHE STRUTTURALI DELLE ZATTERE DI FONDAZIONE


16.1 ZATTERA DI FONDAZIONE - VERIFICHE STRUTTURALI


La verifica della zattera di fondazione è stata condotta con il metodo degli stati limite, calcolando la capacità ultima di resistenza dell'elemento strutturale rispetto ai principali meccanismi di collasso individuabili.

È necessario osservare che, dato il valore dei rapporti altezza – aggetto dalla pila nelle diverse situazioni presenti nel progetto, le mensole da verificare sono di tipo "tozzo". Pertanto non può essere impiegata la "teoria della trave", ma è più opportuno adottare una schematizzazione a traliccio basata sull'ipotesi di un meccanismo di trasferimento degli sforzi a "tirante di acciaio" -"puntone di cls" che meglio rappresenta il reale andamento delle tensioni all'interno dei materiali costituenti l'elemento.

Per la verifica della fondazione è necessario per prima cosa stabilire la larghezza di zattera di fondazione competente al singolo palo, da assumere per il meccanismo resistente a tirantepuntone. Si ottiene diffondendo il carico trasmesso dal palo secondo delle isostatiche a 45°, ed è pari a **I = 4,17 m**, come mostrato delle immagini successive:

Di seguito si assume quindi un sistema a tirante-puntone isolato dal resto del plinto e di larghezza pari a I = 4,17 m, nel quale il tirante è costituito da 41Ø26 (Area: 217,68 cm²).

Detta h = 1,710 m la distanza del baricentro del tirante inferiore dal lembo compresso superiore ed assumendo quale braccio b della mensola tozza, quello che va dal centro dei pali ad 1/4 dello spessore del muro in elevazione, e pertanto b = 2,37 m, si calcola la risultante ultima resistente sull'insieme dei pali di bordo in direzione trasversale, assumendo:

- σ_s = 360,00 N/mm² (tensione limite definita per le verifiche di limitazione delle tensioni in esercizio)
- f_{yd} = 391,30 N/mm² (resistenza di calcolo dell'acciaio)

La resistenza del tirante in acciaio costituito dall'armatura inferiore è valutata mediante la seguente relazione:

- Stato Limite di Esercizio $\rightarrow T_{Rd} = A_s \cdot \sigma_s \cdot \frac{h}{d}$
- Stato Limite Ultimo $\rightarrow T_{Rd} = A_s \cdot f_{yd} \cdot \frac{h}{d}$

La tensione massima sul calcestruzzo della biella compressa è valutata mediante la seguente relazione:

$$\sigma_c = \frac{N_{Sd}}{(0, 2 \cdot h \cdot l) \cdot (sen(\arctan(\frac{h}{b})))}$$

Di seguito sono riportate le verifiche del tirante metallico e dalla biella compressa in calcestruzzo per le diffeerenti combinazioni di carico considerate:

SOTTOSTRUTTURA COMBINAZIONE				b	h	٨	A _s f _v		VERIFICA DEL TIRANTE IN ACCIAIO			VERIFICA DEL PUNTONE IN CLS		
		COMBINAZIONE	[m]	[m]	[m]	(mm²)	[N/mm²]	N _{Sd,max} [kN]	T _{Rd} [kN]	F _{sic}	σ _c [N/mm²]	σ _{lim} [N/mm²]	F _{sic}	
		SLE - QUASI PERMANENTE	4,17	2,370	1,710	21.768,00	360,00	2.350,64	5.654,17	2,41	2,82	14,94	5,30	
		SLE - FREQUENTE	4,17	2,370	1,710	21.768,00	360,00	2.551,96	5.654,17	2,22	3,06	14,94	4,89	
	ZATTERA SX	SLE - CARATTERISTICA	4,17	2,370	1,710	21.768,00	360,00	2.636,99	5.654,17	2,14	3,16	19,92	6,30	
		SLU - STR	4,17	2,370	1,710	21.768,00	391,30	3.582,29	6.145,77	1,72	4,29	18,81	4,38	
SPALLA A		SLV	4,17	2,370	1,710	21.768,00	391,30	2.770,96	6.145,77	2,22	3,32	18,81	5,66	
SFALLA A		SLE - QUASI PERMANENTE	4,17	2,370	1,710	21.768,00	360,00	2.450,46	5.654,17	2,31	2,94	14,94	5,09	
		SLE - FREQUENTE	4,17	2,370	1,710	21.768,00	360,00	2.653,95	5.654,17	2,13	3,18	14,94	4,70	
	ZATTERA DX	SLE - CARATTERISTICA	4,17	2,370	1,710	21.768,00	360,00	2.739,80	5.654,17	2,06	3,28	19,92	6,07	
		SLU - STR	4,17	2,370	1,710	21.768,00	391,30	3.725,21	6.145,77	1,65	4,46	18,81	4,21	
		SLV	4,17	2,370	1,710	21.768,00	391,30	2.867,35	6.145,77	2,14	3,44	18,81	5,47	
		SLE - QUASI PERMANENTE	4,17	2,370	1,721	21.768,00	360,00	2.336,96	5.690,54	2,44	2,77	14,94	5,39	
		SLE - FREQUENTE	4,17	2,370	1,721	21.768,00	360,00	2.527,74	5.690,54	2,25	3,00	14,94	4,98	
	ZATTERA SX	SLE - CARATTERISTICA	4,17	2,370	1,721	21.768,00	360,00	2.609,14	5.690,54	2,18	3,09	19,92	6,44	
		SLU - STR	4,17	2,370	1,721	21.768,00	391,30	3.543,88	6.185,30	1,75	4,20	18,81	4,48	
SPALLA B		SLV	4,17	2,370	1,721	21.768,00	391,30	2.757,27	6.185,30	2,24	3,27	18,81	5,75	
SPALLA D		SLE - QUASI PERMANENTE	4,17	2,370	1,721	21.768,00	360,00	2.442,79	5.690,54	2,33	2,90	14,94	5,16	
		SLE - FREQUENTE	4,17	2,370	1,721	21.768,00	360,00	2.646,41	5.690,54	2,15	3,14	14,94	4,76	
	ZATTERA DX	SLE - CARATTERISTICA	4,17	2,370	1,721	21.768,00	360,00	2.732,23	5.690,54	2,08	3,24	19,92	6,15	
		SLU - STR	4,17	2,370	1,721	21.768,00	391,30	3.714,46	6.185,30	1,67	4,40	18,81	4,27	
		SLV	4,17	2,370	1,721	21.768,00	391,30	2.859,50	6.185,30	2,16	3,39	18,81	5,55	

17 SPALLE - VERIFICHE GEOTECNICHE DEI PALI DI FONDAZIONE

17.1 FORMULAZIONI ADOTTATE PER LA VERIFICA DEL CARICO LIMITE ULTIMO

La stima della capacità portante per carico verticale di un palo isolato Q_{LIM} mediante formule statiche è ottenuta valutando i massimi mobilizzabili, in condizioni di equilibrio limite, della resistenza laterale **Q**_S e di quella di punta **Q**_P:

$$Q_{IIM} + W_P = Q_S + Q_P$$

essendo W_P il peso proprio del palo.

Si fanno le seguenti ipotesi:

- il carico limite del sistema palo terreno è condizionato dalla resistenza del terreno e non da quella del palo;
- il palo è un corpo cilindrico rigido;
- i termini di capacità portante per attrito e/o aderenza laterale Q_s e di capacità portante di punta **Q**_P non si influenzano reciprocamente e possono essere determinati separatamente.

17.1.1 PALO IN TERRENO COESIVO SATURO

Stima della capacità portante laterale Qs

La capacità portante per aderenza e/o per attrito laterale Q_s per un palo di diametro D e lunghezza L è per definizione:

$$Q_S = \pi \cdot D \cdot \int_0^L \tau_s \cdot dz$$

Si assume che le tensioni tangenziali limite siano una quota parte della resistenza a taglio non drenata originaria del terreno indisturbato:

$$\tau_s = \alpha \cdot c_u$$

In cui α è un coefficiente empirico di aderenza che dipende dal tipo di terreno, dalla resistenza al taglio non drenata del terreno indisturbato, dal metodo di costruzione del palo, dal tempo, dalla profondità e dal cedimento del palo.

Per la valutazione del coefficiente α per i pali trivellati si assume la seguente formulazione con cu espresso in [kPa] (Viggiani, 1999):

- $c_u < 25 \rightarrow \alpha = 0.70$
- $25 < c_u < 70 \rightarrow \alpha = 0.70 0.08 \cdot (c_u 25)$
- $70 < c_u \rightarrow \alpha = 0.35$

Stima della capacità portante di punta QP

Per la stima della capacità portante di punta \mathbf{Q}_{P} si esegue un'analisi in condizioni non drenate, in termini di tensioni totali. L'equazione di riferimento è formalmente identica a quella della capacità portante di fondazioni superficiali su terreno coesivo in condizioni non drenate:

$$Q_P = A_P \cdot q_P = A_P \cdot \left(c_u \cdot N_c + \sigma_{v0,P}\right)$$

in cui:

- A_P è l'area di base del palo;
- **q**_P è la capacità portante unitaria;
- c_u è la resistenza al taglio in condizioni non drenate del terreno alla profondità della base del palo;
- σ_{v0,P} è la tensione verticale totale alla punta;
- N_c è il fattore di capacità portante, il cui valore è assunto pari a 9,00.

17.1.2 PALO IN TERRENO INCOERENTE

Nel caso di pali in terreni incoerenti, e quindi a elevata permeabilità, l'analisi è svolta sempre con riferimento alle condizioni drenate e quindi in termini di tensioni efficaci.

Stima della capacità portante laterale Qs

La capacità portante per aderenza e/o per attrito laterale per un palo di diametro D e lunghezza L è per definizione:

$$Q_S = \pi \cdot D \cdot \int_0^L \tau_s \cdot dz$$

Si assume che le sovrappressioni interstiziali che si generano durante la messa in opera del palo si siano dissipate al momento di applicazione del carico e che pertanto la tensione tangenziale limite possa essere valutata, con riferimento alle tensioni efficaci, nel modo seguente:

$$\tau_s = \sigma_h \cdot \tan \delta = K \cdot \sigma_{v_0} \cdot \tan \delta$$

in cui:

- σ'_h è la tensione efficace orizzontale nel terreno a contatto con il palo;
- σ'_{v0} è la tensione efficace verticale iniziale prima della messa in opera del palo;
- **K** è un coefficiente di spinta, rapporto fra σ'_h e $\sigma'_{v0} \rightarrow K = 1-sen(\phi')$
- $\tan \delta$ è il coefficiente di attrito palo terreno $\rightarrow \mu = \tan \delta = \tan(\phi')$

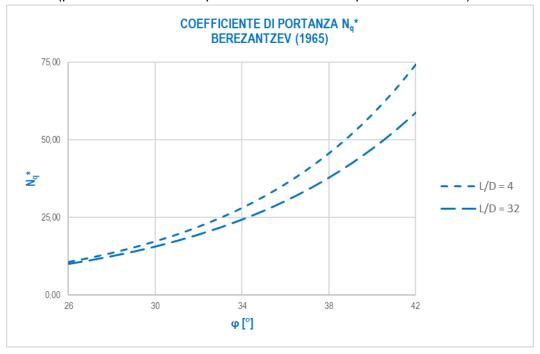
Stima della capacità portante di punta QP

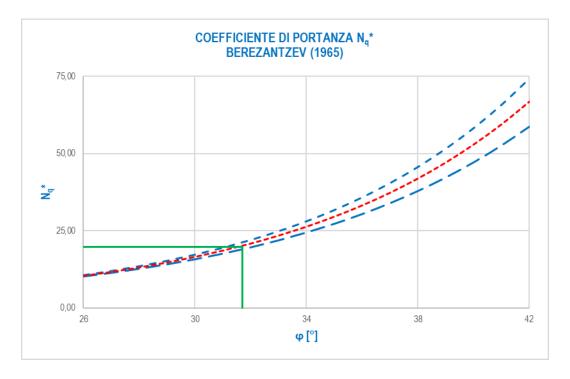
Per la stima della capacità portante di punta QP dei pali in terreni incoerenti è stimata con l'equazione:

$$Q_{P} = A_{P} \cdot q_{P} = A_{P} \cdot \sigma_{v0,P} \cdot N_{q}$$

in cui:

- A_P è l'area di base del palo;
- **q**_P è la capacità portante unitaria;
- $\sigma_{v0,P}$ è la tensione verticale totale alla punta;
- **N**_α è il fattore di capacità portante.





17.2 VALUTAZIONE DEL COEFFICIENTE DI CAPACITÀ PORTANTE ALLA PUNTA N_{Q}

Il fattore di capacità portante N_q è definito mediante il metodo si Berezantzev "ridotto" (1965), in funzione al valore dell'angolo di attrito del terreno in corrispondenza della base del palo e del rapporto tra lunghezza del palo L e diametro del palo D. Il valore di N_q^* è estrapolabile dal seguente abaco (per valori intermedi si procede mediante interpolazione lineare):

Considerato un terreno alla base con angolo di attrito pari a $31,70^{\circ}$ e un rapporto L/D = 26,00/1,20 = 21,67, è stato determinato un valore del coefficiente di portanza alla punta pari a $N_q^* = 19,48$.

Considerato l'utilizzo del metodo di Berezantzev "ridotto" per i pali di grande diametro (cautelativo), non è stata presa in consderazione la correlazione di Kishida per i pali trivellati.

17.3 VERIFICHE DI PORTANZA VERTICALE (CARICO LIMITE ULTIMO) E LATERALE DEL PALO

Le verifiche geotecniche di carico limite ultimo e portanza laterale sono state condotte mediante il software CARL 12.0 (Aztec Informatica).

Considerato il piano di posa della zattera di fondazione posto a quota -2,55 m dal piano di campagna (pari allo spessore della zattera), si considera una pressione iniziale in corrispondenza di tale piano (testa palo) pari al peso del terreno originario rimosso:

$$p = 18,50 \times 2,55 = 47,175 \text{ kN/m}^2 = 0,472 \text{ kg/cm}^2$$

Si considera, per i primi 3,0 m a partire dalla testa palo, la presenza del lamierino metallico a perdere.

Le verifiche sono state condotte per le combinazioni allo Stato Limite Ultimo statiche e sismiche maggiormente gravose, considerando i seguenti carichi:

COMBINAZIONE	N _{Sd,max} [kN]	V _{Sd} [kN]		
SLU - STR	3.725,21	497,49		
SLV	2.867,35	471,94		

Il peso proprio del palo è tenuto in conto in maniera automatica dal software di calcolo.

Richiami teorici

Determinazione della capacità portante

Il carico verticale che grava sul palo va confrontato con il valore di calcolo della resistenza verticale del palo stesso. Il problema che si pone, quindi, è quello di determinare la capacità portante del palo. Determinata la capacità portante, la resistenza di calcolo verticale del palo si ottiene applicando degli opportuni coefficienti di sicurezza.

La capacità portante di un palo viene valutata come somma di due contributi: portanza di base (o di punta) e portanza per attrito laterale lungo il fusto. Cioè si assume valida l'espressione:

$$Q_T = Q_P + Q_L - W_P$$

dove:

 Q_T Portanza totale del palo; Portanza di base del palo; Q_P

Portanza per attrito laterale del palo; Q_L

Peso proprio del palo.

Le due componenti Q_P e Q_L sono calcolate in modo indipendente fra loro. Risulta molto difficoltoso, tranne che in poche situazioni, stabilire quanta parte del carico viene assorbita per attrito laterale e quanta per resistenza alla base.

Nel caso di pali soggetti a trazione la resistenza allo sfilamento vale:

$$Q_T = Q_L + W_P$$

Dalla capacità portante del palo si ricava il carico ammissibile del palo Q_A applicando degli opportuni coefficienti di sicurezza rispettivamente γ_b e γ_s .

I coefficienti γ_b e γ_s rappresentano rispettivamente i valori del coefficiente di sicurezza per la portanza di punta e quello per la portanza laterale.

Quindi nel caso di pali compressi abbiamo la seguente relazione:

$$Q_A = Q_p/\gamma_b+Q_I/\gamma_s-W_P$$

Nel caso invece di pali soggetti a sforzi di trazione abbiamo la seguente relazione:

$$Q_A = Q_I/\gamma_s + W_P$$

Capacità portante di punta

In generale la capacità portante di punta viene calcolata tramite l'espressione:

$$Q_P = A_P (c N_c + q_b N_q)$$

dove A_P è l'area portante efficace della punta del palo, c è la coesione, q_b è la pressione del terreno alla quota della punta del palo ed i coefficienti N_c e N_q sono i coefficienti delle formule della capacità portante corretti per tener conto degli effetti di profondità. N_c ed N_q dipendono sia dalla geometria del palo che dalle caratteristiche del terreno angolo di attrito e coesione (ϕ e c).

Capacità portante per attrito laterale

La portanza laterale è data dall'integrale esteso a tutta la superficie laterale del palo delle tensioni tangenziali palo-terreno in condizioni limiti:

$$Q_L = Int(\tau_a)dS$$

dove τ_a è dato dalla nota relazione di Coulomb:

$$\tau_a = c_a + \sigma_h tg \delta$$

dove c_a è l'adesione palo-terreno, δ è l'angolo di attrito palo-terreno, e σ_h è la tensione orizzontale alla generica profondità z. La tensione orizzontale σ_h è legata alla pressione verticale σ_v tramite il coefficiente di spinta K_s

$$\sigma_h = K_s \sigma_v$$

Indicando con C il perimetro e con L la lunghezza del palo abbiamo:

Int^L(C(c_a + K_s
$$\sigma_v$$
 tg δ)dz)

Analisi del palo soggetto a forze orizzontali (Portanza trasversale)

La resistenza limite laterale di un palo è determinata dal minimo valore fra il carico orizzontale necessario per produrre il collasso del terreno lungo il fusto del palo ed il carico orizzontale necessario per produrre la plasticizzazione del palo. Il primo meccanismo (plasticizzazione del terreno) si verifica nel caso di pali molto rigidi in terreni poco resistenti (meccanismo di palo corto) mentre il secondo meccanismo si verifica nel caso di pali aventi rigidezze non eccessive rispetto al terreno di infissione (meccanismo di palo lungo o intermedio). Nel modello di terreno alla Winkler il terreno viene schematizzato come una serie di molle elastiche indipendenti fra di loro. Le molle che schematizzano il terreno vengono caratterizzate tramite una costante di rigidezza elastica, K_h , espressa in $Kg/cm^2/cm$ che rappresenta la pressione (in Kg/cm^2) che bisogna applicare per ottenere lo spostamento di 1 cm. La determinazione di questa costante può essere fatta o tramite prove di carico su piastra o mediante metodi analitici (convenzionali). La variazione della costante di Winkler con la profondità dipende dal tipo di terreno in cui il palo è immerso. Ad esempio nel caso di terreni coesivi in condizioni non drenate K_h assume un valore costante con la profondità mentre nel caso di terreni incoerenti la variazione di K_h è di tipo lineare (crescente con la profondità). In generale l'espressione di K_h assume una forma binomia del tipo:

$$K_h(z) = A + B z^n$$

Per l'analisi di pali caricati trasversalmente si utilizza il modello di Winkler. Il palo viene suddiviso in un determinato numero (100) di elementi tipo trave aventi area ed inerzia pari a quella della sezione trasversale del palo. In corrispondenza di ogni nodo di separazione fra i vari elementi viene inserita una molla orizzontale di opportuna rigidezza che schematizza il terreno. Il comportamento delle molle che schematizzano il terreno non è infinitamente elastico ma è di tipo elastoplastico. La singola molla reagisce fino ad un valore limite di spostamento o di reazione; una volta che è stato superato tale limite la molle non offre ulteriori incrementi di resistenza (diagramma tipo elastoplastico perfetto). Indicando con dyela lunghezza del tratto di influenza della molla, con D il diametro del palo la molla avrà una rigidezza pari a:

$$K_m = dy_e D K_k$$

La resistenza limite del terreno rappresenta il valore limite di resistenza che il terreno può esplicare quando il palo è soggetto ad un carico orizzontale. La resistenza limite pu=pu(z) dipende dalle caratteristiche del terreno e dalla geometria del palo. In terreni puramente coesivi (c=cu, ϕ =0) la resistenza cresce dal valore 0 in sommità fino ad un valore limite in corrispondenza di una profondità pari a circa 3 diametri. Il valore limite in tal caso è variabile fra 8 e 12 cu. Nel caso di terreni dotati di attrito e coesione la resistenza limite ad una generica profondità z è rappresentata dalla relazione (Brinch Hansen):

$$P_u = q \ K_{pq} + c \ K_{pc}$$

dove:

D diametro del palo

q pressione geostatica alla profondità z

c coesione alla profondità z

 K_{pq} , K_{pc} coefficienti funzione dell'angolo di attrito del terreno ϕ e del rapporto z/D.

Broms ha eseguito l'analisi considerando il caso sia di palo vincolato in testa che di palo libero immerso in un mezzo omogeneo. Nel caso di terreni coesivi Broms assume in questo caso un diagramma di resistenza nullo fino ad una profondità pari a 1,5D e poi valore costante pari a $9c_u$ D.

Nel caso di terreni incoerenti Broms assume che la resistenza laterale sia variabile con la profondità dal valore 0 (in testa) fino al valore $3\sigma_V K_P D$ (alla base) essendo K_P il coefficiente di resistenza passiva espresso da K_P =tan²(45° + ϕ /2).

Dati

Geometria della fondazione

Simbologia adottata

Descrizione del palo Forma del palo ((C)=Costante, (R)=Rastremato) Ascissa del baricentro del palo espressa in [m] Frm Ordinata del baricentro del palo espressa in [m]
Diametro del palo espresso in [cm]
Lunghezza del palo espressa in [m] D

Descr	Frm	х	Y	D	L
		[m]	[m]	[m]	[m]
Palo 120	(C)	0,00	0,00	120,00	26,00

Materiali palo

Calcestruzzo

C25/30 Tipo

Resistenza caratteristica a compressione R_{ck} 305,91 [kg/cmq] [kg/mc] Peso specifico 2500,00 Modulo elastico 320665,55 [kg/cmq]

Coeff. di omogeneizzazione 15,00

Acciaio

Tipo B450C

Tensione caratteristica di snervamento 4588,65 [kg/cmq]

Coefficienti di sicurezza sui materiali

Coefficiente di sicurezza calcestruzzo	1.50
Fattore riduzione da resistenza cubica a cilindrica	0.83
Fattore di riduzione per carichi di lungo periodo	0.85
Coefficiente di sicurezza acciaio	1.15
Coefficiente di sicurezza sezione	1.00

Caratteristiche pali

Pali in c.a.

Armatura con ferri longitudinali e staffe

Tipo di palo TRIVELLATO

Contributo sia della portanza laterale sia della portanza di punta

Descrizione terreni e falda

Simbologia adottata

Descrizione terreno Descrizione

Peso di volume del terreno espresso in [kg/mc] Peso di volume saturo del terreno espresso in [kg/mc] Angolo di attrito interno del terreno espresso in gradi $_{\delta}^{\phi}$ Angolo di attrito palo-terreno espresso in gradi Coesione del terreno espressa in [kg/cmq] Adesione del terreno espressa in [kg/cmq] са

Angolo di attrito interno del terreno minimo e medio espresso in gradi Angolo di attrito palo-terreno minimo e medio espresso in gradi Coesione del terreno minima e media espressa in [kg/cmq] φmin, φmed δ min, δ med Cmin, Cmed Camin, Camed Adesione del terreno minima e media espressa in [kg/cmq]

Parametri caratteristici

Descrizione	γ	γsat	ф	δ	С	ca	
	[kg/mc]	[kg/mc]	[°]	[°]	[kg/cmq]	[kg/cmq]	
G3	1850,0	1850,0	30,90	30,90	0,000	0,000	
S1	1900,0	1900,0	31,70	31,70	0,000	0,000	
G3 (lamierino)	1850,0	1850,0	30,90	30,90	0,000	0,000	

Parametri minimi

Descrizione	ф min	δmin	Cmin	Camin
	[°]	[°]	[kg/cmq]	[kg/cmq]
G3	30,89	30,89	0,000	0,000
S1	31,69	31,69	0,000	0,000
G3 (lamierino)	30,89	30,89	0,000	0,000

Parametri medi

Des	crizione	ф med	δmed	Cmed	Camed
		[°]	[°]	[kg/cmq]	[kg/cmq]
G3		30,90	30,90	0,000	0,000
S1		31,70	31,70	0,000	0,000
G3 (lamierino)		30,90	30,90	0,000	0,000

<u>Falda</u>

Profondità dal piano di posa 0,00 [m]

Descrizione stratigrafia

Simbologia adottata

Identificativo strato

N Z1 Z2 Z3 Quota dello strato in corrispondenza del punto di sondaggio nº1 espressa in [m] Quota dello strato in corrispondenza del punto di sondaggio n°2 espressa in [m] Quota dello strato in corrispondenza del punto di sondaggio n°3 espressa in [m]

Terreno Terreno dello strato

Costante di Winkler espressa in Kg/cm²/cm Coefficiente di spinta Kw

Ks

Coefficiente di espansione laterale

n°	Z1	Z2	Z3	Terreno	Kw	Ks	α
	[m]	[m]	[m]		[kg/cmq/cm]		
1	-3,0	-3,0	-3,0	G3 (lamierino)	0.14	0.00	1.00
2	-7,1	-7,1	-7,1	G3	0.14	0.49	1.00
3	-30,0	-30,0	-30,0	S1	0.67	0.48	1.00

Normativa

N.T.C. 2018 - Approccio 2

Simbologia adottata

Coefficiente parziale sfavorevole sulle azioni permanenti γGsfav . γGfav Coefficiente parziale favorevole sulle azioni permanenti γQsfav Coefficiente parziale sfavorevole sulle azioni variabili Coefficiente parziale favorevole sulle azioni variabili γQfav $\gamma tan_{\varphi}{}^{\prime}$ Coefficiente parziale di riduzione dell'angolo di attrito drenato γc' Coefficiente parziale di riduzione della coesione drenata Coefficiente parziale di riduzione della coesione non drenata γcu

Coefficiente parziale di riduzione del carico ultimo Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce

Coefficienti parziali per le azioni o per l'effetto delle azioni:

			Statici		Sismici	
Carichi	Effetto		A1	A2	A1	A2
Permanenti	Favorevole	γGfav	1.00	1.00	1.00	1.00
Permanenti	Sfavorevole	γGsfav	1.30	1.00	1.00	1.00
Variabili	Favorevole	γQfav	0.00	0.00	0.00	0.00
Variabili	Sfavorevole	γQsfav	1.50	1.30	1.00	1.00

Coefficienti parziali per i parametri geotecnici del terreno:

		Statici		Sismici		
Parametri		M1	M2	M1	M2	
Tangente dell'angolo di attrito	γtan _φ '	1.00	1.25	1.00	1.25	
Coesione efficace	γε'	1.00	1.25	1.00	1.25	
Resistenza non drenata	γси	1.00	1.40	1.00	1.40	
Resistenza a compressione uniassiale	γqu	1.00	1.60	1.00	1.60	
Peso dell'unità di volume	γγ	1.00	1.00	1.00	1.00	

PALI DI FONDAZIONE

CARICHI VERTICALI. Coefficienti parziali γ_R per le verifiche dei pali

Pali trivellati

		R3
Punta	γь	1.35
Laterale compressione	γs	1.15
Totale compressione	γt	1.30
Laterale trazione	γst	1.25

CARICHI TRASVERSALI. Coefficienti parziali γ_T per le verifiche dei pali.

	R3
γт	1.30

Coefficienti di riduzione ξ per la determinazione della resistenza caratteristica dei pali Numero di verticali indagate 7 ξ_3 =1.45 ξ_4 =1.28

Condizioni di carico

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso. Carichi orizzontali positivi verso sinistra. Momento positivo senso antiorario. Indice della fondazione

Nтот **My**тот Sforzo normale totale espressa in [kg] Momento in direzione Y espresso in [kgm] Forza di taglio espressa in [kg]

Condizione nº 1 - Condizione nº 1 - VARIABILE

Fondazione	Nтот	Му тот	Тхтот
	[kg]	[kgm]	[kg]
Palo 120	372521,0	0,0	49749,0

Condizione nº 2 - Condizione nº 2 - PERMANENTE

Fondazione	Nтот	Му тот	Тхтот
	[kg]	[kgm]	[kg]
Palo 120	286735,0	0,0	47194,0

Descrizione combinazioni di carico

Simbologia adottata

Coefficiente di partecipazione della condizione Coefficiente di combinazione della condizione

Combinazione nº 1 - STR - A1-M1-R3

Cond	γ	Ψ
Condizione nº 1	1.00	1.00

Combinazione nº 2 - STR - A1-M1-R3

Cond	γ	Ψ
Condizione nº 2	1.00	1.00

Opzioni di calcolo

Analisi in condizioni drenate

Verifica della portanza assiale

Il metodo utilizzato per il calcolo della portanza verticale è: Berezantzev ridotto.

E' stata impostata una pressione a piano campagna pari a 0,47 [kg/cmq]

L'andamento della pressione verticale σ_V con la profondità, per il calcolo della portanza di punta, è stata definita come: Pressione geostatica.

Verifica della portanza trasversale

Costante di Winkler orizzontale definita da STRATO

Pressione limite (Pressione passiva con moltiplicatore = 3.00) Criterio di rottura palo-terreno:

Risultati

Verifica della portanza assiale

Simbologia adottata

 ${\sf cmb}$ Identificativo della combinazione Nc, Nq Plmin, Plmed Fattori di capacità portante

Portanza laterale minima e media espressa in [kg] Ppmin, Ppmed Portanza di punta minima e media espressa in [kg] Pd Portanza di progetto espressa in [kg] Scarico verticale in testa al palo espresso in [kg] Coeff. di sicurezza per carichi verticali

cmb	Nc	Nq
1	29.92	19.48
2	29.92	19.48

cmb	Plmed	Ppmed	Plmin	Ppmin	Wp	Pd	N	η
	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	
1	443162	611777	442989	611087	73513	504781	372521	1.355
2	443162	611777	442989	611087	73513	504781	286735	1.760

Verifica della portanza trasversale

Simbologia adottata

cmb Identificativo della combinazione Tu

Taglio resistente ultimo in testa al palo, espresso in [kg] Taglio agente in testa al palo, espresso in [kg] Tx η=Tu/Tx Coeff. di sicurezza per carichi orizzontali

> cmb Tu [kg] [kg] 89064 49749

> > 89048

47194

Spostamenti e pressioni

Simbologia adottata

Identificativo sezione palo ordinata palo espressa in [cm] spostamento espresso in [cm] Ue pressione espressa in [kg/cmq]

Combinazione nº 1

n°	Υ	Ue	Pe	n°	Υ	Ue	Pe	n°	Υ	Ue	Pe
	[m]	[cm]	[kg/cmq]		[m]	[cm]	[kg/cmq]		[m]	[cm]	[kg/cmq]
1	0,00	2,2936	0,328	2	0,26	2,2911	0,328	3	0,52	2,2839	0,327
4	0,78	2,2722	0,325	5	1,04	2,2562	0,323	6	1,30	2,2363	0,320
7	1,56	2,2126	0,316	8	1,82	2,1854	0,313	9	2,08	2,1549	0,308
10	2,34	2,1213	0,303	11	2,60	2,0849	0,298	12	2,86	2,0459	0,293
13	3,12	2,0045	0,287	14	3,38	1,9610	0,280	15	3,64	1,9154	0,274
16	3,90	1,8680	0,267	17	4,16	1,8190	0,260	18	4,42	1,7686	0,253
19	4,68	1,7170	0,246	20	4,94	1,6644	0,238	21	5,20	1,6108	0,230
22	5,46	1,5566	0,223	23	5,72	1,5018	0,215	24	5,98	1,4467	0,207
25	6,24	1,3913	0,199	26	6,50	1,3359	0,191	27	6,76	1,2807	0,183
28	7,02	1,2256	0,175	29	7,28	1,1710	0,787	30	7,54	1,1169	0,751
31	7,80	1,0634	0,715	32	8,06	1,0108	0,679	33	8,32	0,9591	0,645
34	8,58	0,9084	0,610	35	8,84	0,8587	0,577	36	9,10	0,8102	0,544
37	9,36	0,7629	0,513	38	9,62	0,7169	0,482	39	9,88	0,6722	0,452
40	10,14	0,6289	0,423	41	10,40	0,5870	0,394	42	10,66	0,5465	0,367
43	10,92	0,5074	0,341	44	11,18	0,4697	0,316	45	11,44	0,4335	0,291
46	11,70	0,3988	0,268	47	11,96	0,3655	0,246	48	12,22	0,3336	0,224
49	12,48	0,3032	0,204	50	12,74	0,2742	0,184	51	13,00	0,2465	0,166
52	13,26	0,2202	0,148	53	13,52	0,1953	0,131	54	13,78	0,1716	0,115
55	14,04	0,1492	0,100	56	14,30	0,1281	0,086	57	14,56	0,1082	0,073
58	14,82	0,0894	0,060	59	15,08	0,0718	0,048	60	15,34	0,0553	0,037
61	15,60	0,0398	0,027	62	15,86	0,0253	0,017	63	16,12	0,0118	0,008
64	16,38	-0,0007	0,000	65	16,64	-0,0124	-0,008	66	16,90	-0,0232	-0,016
67	17,16	-0,0332	-0,022	68	17,42	-0,0424	-0,028	69	17,68	-0,0509	-0,034
70	17,94	-0,0587	-0,039	71	18,20	-0,0658	-0,044	72	18,46	-0,0724	-0,049
73	18,72	-0,0783	-0,053	74	18,98	-0,0838	-0,056	75	19,24	-0,0887	-0,060
76	19,50	-0,0931	-0,063	77	19,76	-0,0971	-0,065	78	20,02	-0,1007	-0,068
79	20,28	-0,1039	-0,070	80	20,54	-0,1068	-0,072	81	20,80	-0,1094	-0,074
82	21,06	-0,1117	-0,075	83	21,32	-0,1137	-0,076	84	21,58	-0,1155	-0,078
85	21,84	-0,1171	-0,079	86	22,10	-0,1186	-0,080	87	22,36	-0,1198	-0,081
88	22,62	-0,1209	-0,081	89	22,88	-0,1219	-0,082	90	23,14	-0,1228	-0,083
91	23,40	-0,1236	-0,083	92	23,66	-0,1243	-0,084	93	23,92	-0,1250	-0,084
94	24,18	-0,1256	-0,084	95	24,44	-0,1262	-0,085	96	24,70	-0,1268	-0,085
97	24,96	-0,1273	-0,086	98	25,22	-0,1279	-0,086	99	25,48	-0,1284	-0,086
100	25,74	-0,1289	-0,087	101	26,00	-0,1295	-0,087	102			

Combinazione nº 2

n°	Y	Ue	Pe	n°	Y	Ue	Pe	n°	Υ	Ue	Pe
	[m]	[cm]	[kg/cmq]		[m]	[cm]	[kg/cmq]		[m]	[cm]	[kg/cmq]
1	0,00	2,1758	0,311	2	0,26	2,1735	0,311	3	0,52	2,1666	0,310
4	0,78	2,1555	0,308	5	1,04	2,1404	0,306	6	1,30	2,1214	0,303
7	1,56	2,0989	0,300	8	1,82	2,0731	0,296	9	2,08	2,0442	0,292
10	2,34	2,0124	0,288	11	2,60	1,9779	0,283	12	2,86	1,9409	0,278
13	3,12	1,9016	0,272	14	3,38	1,8603	0,266	15	3,64	1,8170	0,260
16	3,90	1,7721	0,253	17	4,16	1,7256	0,247	18	4,42	1,6778	0,240
19	4,68	1,6289	0,233	20	4,94	1,5789	0,226	21	5,20	1,5281	0,219
22	5,46	1,4767	0,211	23	5,72	1,4247	0,204	24	5,98	1,3724	0,196
25	6,24	1,3199	0,189	26	6,50	1,2673	0,181	27	6,76	1,2149	0,174
28	7,02	1,1627	0,166	29	7,28	1,1108	0,746	30	7,54	1,0595	0,712
31	7,80	1,0088	0,678	32	8,06	0,9589	0,644	33	8,32	0,9098	0,611
34	8,58	0,8617	0,579	35	8,84	0,8146	0,547	36	9,10	0,7686	0,516
37	9,36	0,7237	0,486	38	9,62	0,6801	0,457	39	9,88	0,6377	0,429
40	10,14	0,5966	0,401	41	10,40	0,5568	0,374	42	10,66	0,5184	0,348
43	10,92	0,4813	0,323	44	11,18	0,4456	0,299	45	11,44	0,4113	0,276
46	11,70	0,3783	0,254	47	11,96	0,3467	0,233	48	12,22	0,3165	0,213
49	12,48	0,2876	0,193	50	12,74	0,2601	0,175	51	13,00	0,2339	0,157
52	13,26	0,2089	0,140	53	13,52	0,1852	0,124	54	13,78	0,1628	0,109
55	14,04	0,1416	0,095	56	14,30	0,1215	0,082	57	14,56	0,1026	0,069
58	14,82	0,0848	0,057	59	15,08	0,0681	0,046	60	15,34	0,0524	0,035
61	15,60	0,0377	0,025	62	15,86	0,0240	0,016	63	16,12	0,0112	0,008
64	16,38	-0,0007	0,000	65	16,64	-0,0117	-0,008	66	16,90	-0,0220	-0,015
67	17,16	-0,0315	-0,021	68	17,42	-0,0402	-0,027	69	17,68	-0,0483	-0,032
70	17,94	-0,0557	-0,037	71	18,20	-0,0625	-0,042	72	18,46	-0,0687	-0,046
73	18,72	-0,0743	-0,050	74	18,98	-0,0794	-0,053	75	19,24	-0,0841	-0,057
76	19,50	-0,0883	-0,059	77	19,76	-0,0921	-0,062	78	20,02	-0,0955	-0,064
79	20,28	-0,0986	-0,066	80	20,54	-0,1013	-0,068	81	20,80	-0,1038	-0,070
82	21,06	-0,1060	-0,071	83	21,32	-0,1079	-0,073	84	21,58	-0,1096	-0,074
85	21,84	-0,1111	-0,075	86	22,10	-0,1125	-0,076	87	22,36	-0,1137	-0,076
88	22,62	-0,1147	-0,077	89	22,88	-0,1157	-0,078	90	23,14	-0,1165	-0,078
91	23,40	-0,1173	-0,079	92	23,66	-0,1180	-0,079	93	23,92	-0,1186	-0,080
94	24,18	-0,1192	-0,080	95	24,44	-0,1198	-0,080	96	24,70	-0,1203	-0,081
97	24,96	-0,1208	-0,081	98	25,22	-0,1213	-0,082	99	25,48	-0,1218	-0,082
100	25,74	-0,1223	-0,082	101	26,00	-0,1228	-0,083	102		,	,

Spostamenti e pressioni limiti

Simbologia adottata

Identificativo sezione palo Nr. Y Ur ordinata palo espressa in [cm] spostamento limite espresso in [cm] pressione limite espressa in [kg/cmq]

n°	Y	Ur	Pr	n°	Υ	Ur	Pr	n°	Y	Ur	Pr
	[m]	[cm]	[kg/cmq]		[m]	[cm]	[kg/cmq]		[m]	[cm]	[kg/cmq]
1	0,00	4,1088	0,588	2	0,26	4,1043	0,587	3	0,52	4,0912	0,585
4	0,78	4,0701	0,582	5	1,04	4,0414	0,578	6	1,30	4,0056	0,573
7	1,56	3,9630	0,567	8	1,82	3,9142	0,560	9	2,08	3,8594	0,552
10	2,34	3,7993	0,543	11	2,60	3,7340	0,534	12	2,86	3,6641	0,524
13	3,12	3,5899	0,513	14	3,38	3,5118	0,502	15	3,64	3,4301	0,491
16	3,90	3,3452	0,478	17	4,16	3,2575	0,466	18	4,42	3,1672	0,453
19	4,68	3,0747	0,440	20	4,94	2,9804	0,426	21	5,20	2,8845	0,412
22	5,46	2,7873	0,399	23	5,72	2,6892	0,385	24	5,98	2,5904	0,370
25	6,24	2,4913	0,356	26	6,50	2,3920	0,342	27	6,76	2,2930	0,328
28	7,02	2,1944	0,314	29	7,28	2,0966	1,409	30	7,54	1,9997	1,344
31	7,80	1,9040	1,279	32	8,06	1,8097	1,216	33	8,32	1,7171	1,154
34	8,58	1,6262	1,093	35	8,84	1,5373	1,033	36	9,10	1,4505	0,975
37	9,36	1,3658	0,918	38	9,62	1,2834	0,862	39	9,88	1,2034	0,809
40	10,14	1,1258	0,757	41	10,40	1,0507	0,706	42	10,66	0,9782	0,657
43	10,92	0,9082	0,610	44	11,18	0,8408	0,565	45	11,44	0,7760	0,521
46	11,70	0,7138	0,480	47	11,96	0,6542	0,440	48	12,22	0,5971	0,401
49	12,48	0,5426	0,365	50	12,74	0,4906	0,330	51	13,00	0,4411	0,296
52	13,26	0,3941	0,265	53	13,52	0,3494	0,235	54	13,78	0,3070	0,206
55	14,04	0,2670	0,179	56	14,30	0,2291	0,154	57	14,56	0,1935	0,130
58	14,82	0,1599	0,107	59	15,08	0,1283	0,086	60	15,34	0,0987	0,066
61	15,60	0,0710	0,048	62	15,86	0,0451	0,030	63	16,12	0,0210	0,014
64	16,38	-0,0015	-0,001	65	16,64	-0,0223	-0,015	66	16,90	-0,0417	-0,028
67	17,16	-0,0596	-0,040	68	17,42	-0,0761	-0,051	69	17,68	-0,0913	-0,061
70	17,94	-0,1052	-0,071	71	18,20	-0,1180	-0,079	72	18,46	-0,1297	-0,087
73	18,72	-0,1404	-0,094	74	18,98	-0,1501	-0,101	75	19,24	-0,1589	-0,107
76	19,50	-0,1668	-0,112	77	19,76	-0,1740	-0,117	78	20,02	-0,1804	-0,121
79	20,28	-0,1862	-0,125	80	20,54	-0,1913	-0,129	81	20,80	-0,1959	-0,132
82	21,06	-0,2000	-0,134	83	21,32	-0,2037	-0,137	84	21,58	-0,2069	-0,139
85	21,84	-0,2098	-0,141	86	22,10	-0,2123	-0,143	87	22,36	-0,2145	-0,144
88	22,62	-0,2165	-0,146	89	22,88	-0,2183	-0,147	90	23,14	-0,2199	-0,148
91	23,40	-0,2213	-0,149	92	23,66	-0,2226	-0,150	93	23,92	-0,2238	-0,150
94	24,18	-0,2249	-0,151	95	24,44	-0,2260	-0,152	96	24,70	-0,2270	-0,153
97	24,96	-0,2280	-0,153	98	25,22	-0,2289	-0,154	99	25,48	-0,2299	-0,154
100	25,74	-0,2308	-0,155	101	26,00	-0,2317	-0,156	102			

Di seguito sono riepilogati i coefficienti di sicurezza delle verifiche geotecniche desunti dal software di calcolo relativamente alle diverse combinazioni di carico considerate:

COMBINAZIONE	CARICO LIMITE	PORTANZA LATERALE		
SLU - STR	1,355	1,790		
SLV	1,760	1,887		

17.4 VALUTAZIONE DELL'EFFICIENZA DEI PALI IN GRUPPO

Trattandosi di terreni incoerenti l'efficienza dei pali in gruppo è di norma superiore all'unità. Nel caso in esame, a favore di sicurezza, si considera un'efficienza unitaria dei pali in gruppo.

17.5 VALIDAZIONE MANUALE DEI RISULTATI DEL SOFTWARE

Nella tabella successiva è riportata la determinazione della portanza laterale caratteristica del palo di fondazione:

 Diametro del palo
 1,20
 [m]

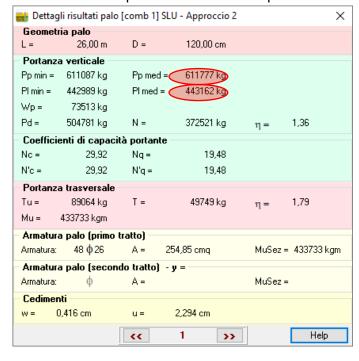
 Lunghezza del palo
 26,00
 [m]

 Quota di falda
 0,00
 [m]

 Pressione al piano di posa della zattera di fondazione
 47,18
 [kN/m²]

z [m]	Y [kN/m³]	γ' [kN/m³]	Y _w [kN/m³]	σ _v [kN/m²]	σ _w [kN/m²]	σ' _ν [kN/m²]	φ [°]	K = 1-sen(φ)	μ=tan(δ)=tan(φ)	τ _s [kN/m²]	T _{s,media}	R _{L,k} [kN]
0.00	18,50	8,50	10,00	47,18	0,00	47,18	30,90	0,000	0,598	0,00	0,00	0,00
1.00	18.50	8,50	10,00	65.68	10.00	55,68	30,90	0.000	0.598	0.00	0,00	0.00
2,00	18,50	8,50	10,00	84,18	20,00	64,18	30,90	0,000	0,598	0,00	0,00	0,00
3,00	18,50	8,50	10,00	102,68	30,00	72,68	30,90	0,000	0,598	0,00	0,00	0,00
4,00	18,50	8,50	10,00	121,18	40,00	81,18	30,90	0,486	0,598	23,63	11,82	44,55
5,00	18,50	8,50	10,00	139,68	50,00	89,68	30,90	0,486	0,598	26,11	24,87	138,31
6,00	18,50	8,50	10,00	158,18	60,00	98,18	30,90	0,486	0,598	28,58	27,35	241,40
7,00	18,50	8,50	10,00	176,68	70,00	106,68	30,90	0,486	0,598	31,06	29,82	353,82
7,05	18,50	8,50	10,00	177,60	70,50	107,10	30,90	0,486	0,598	31,18	31,12	359,68
8,00	19,00	9,00	10,00	195,65	80,00	115,65	31,70	0,475	0,618	33,89	32,54	476,21
9,00	19,00	9,00	10,00	214,65	90,00	124,65	31,70	0,475	0,618	36,53	35,21	608,96
10,00	19,00	9,00	10,00	233,65	100,00	133,65	31,70	0,475	0,618	39,17	37,85	751,65
11,00	19,00	9,00	10,00	252,65	110,00	142,65	31,70	0,475	0,618	41,81	40,49	904,29
12,00	19,00	9,00	10,00	271,65	120,00	151,65	31,70	0,475	0,618	44,44	43,13	1.066,87
13,00	19,00	9,00	10,00	290,65	130,00	160,65	31,70	0,475	0,618	47,08	45,76	1.239,40
14,00	19,00	9,00	10,00	309,65	140,00	169,65	31,70	0,475	0,618	49,72	48,40	1.421,87
15,00	19,00	9,00	10,00	328,65	150,00	178,65	31,70	0,475	0,618	52,36	51,04	1.614,28
16,00	19,00	9,00	10,00	347,65	160,00	187,65	31,70	0,475	0,618	55,00	53,68	1.816,63
17,00	19,00	9,00	10,00	366,65	170,00	196,65	31,70	0,475	0,618	57,63	56,31	2.028,93
18,00	19,00	9,00	10,00	385,65	180,00	205,65	31,70	0,475	0,618	60,27	58,95	2.251,18
19,00	19,00	9,00	10,00	404,65	190,00	214,65	31,70	0,475	0,618	62,91	61,59	2.483,37
20,00	19,00	9,00	10,00	423,65	200,00	223,65	31,70	0,475	0,618	65,55	64,23	2.725,50
21,00	19,00	9,00	10,00	442,65	210,00	232,65	31,70	0,475	0,618	68,18	66,86	2.977,57
22,00	19,00	9,00	10,00	461,65	220,00	241,65	31,70	0,475	0,618	70,82	69,50	3.239,59
23,00	19,00	9,00	10,00	480,65	230,00	250,65	31,70	0,475	0,618	73,46	72,14	3.511,55
24,00	19,00	9,00	10,00	499,65	240,00	259,65	31,70	0,475	0,618	76,10	74,78	3.793,46
25,00	19,00	9,00	10,00	518,65	250,00	268,65	31,70	0,475	0,618	78,73	77,42	4.085,31
26,00	19,00	9,00	10,00	537,65	260,00	277,65	31,70	0,475	0,618	81,37	80,05	4.387,10

Il valore caratteristico della portanza laterale è risultato pari a R_{L,k} = 4.387,10 kN.


Considerato:

- Coefficiente di portanza alla punta N*_q = 19,48
- Pressione verticale efficace alla base σ'_v = 277,65 kN/m²

il valore caratteristico della portanza di punta risulta pari a:

$R_{P,k} = \pi \times 1,20^2 / 4 \times 19,48 \times 277,65 = 6.117,01 \text{ kN}$

Di seguito è riportato il form di output del software di calcolo recante la determinazione dei valori caratteristici della portanza laterale e di punta:

Risulta pertanto:

PORTANZA	SOFTWARE	VALIDAZIONE
di punta [kN]	6.117,77	6.117,01
laterale [kN]	4.431,62	4.387,10

I risultati risultano perfettamente confrontabili.

Nel diagramma successivo è riportato l'andamento della tensione tangenziale con la profondità:

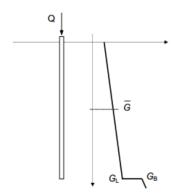
La tensione tangenziale risulta sempre inferiore a 100,00 kPa, nel rispetto dell'assunzione presente nel progetto definitivo.

17.6 CALCOLO DEI CEDIMENTI VERTICALI ALLO STATO LIMITE DI ESERCIZIO - COMBINAZIONE **CARATTERISTICA**

Il cedimento del palo per la combinazione maggiormente gravosa allo Stato Limite di Esercizio -Combinazione Caratteristica viene determinato mediante il metodo di Randolph e Worth di seguito descritto.

Il cedimento del singolo palo è determinato mediante la seguente relazione:

$$\frac{Q}{G_L \cdot r_0 \cdot w} = \left[\frac{4}{\eta \cdot (1 - \nu)} + \frac{2 \cdot \pi}{\zeta} \cdot \rho \cdot \frac{L}{r_0} \cdot \frac{\tanh\left(\mu \cdot L\right)}{\mu \cdot L} \right] \cdot \left[1 + \frac{4}{\eta \cdot (1 - \nu)} + \frac{1}{\pi \cdot L} \cdot \frac{L}{r_0} \cdot \frac{\tanh\left(\mu \cdot L\right)}{\mu \cdot L} \right]^{-1}$$


dove:

- Q = carico sul palo
- r₀ = raggio del palo
- w = cedimento del palo
- E_p = modulo elastico del calcestruzzo costituente il palo

- G_m = modulo di rigidezza trasversale media del terreno lungo lo sviluppo del palo
- G_L = modulo di rigidezza trasversale del terreno alla lunghezza L
- G_b = modulo di rigidezza trasversale del terreno in corrispondenza della base del palo
- v = coefficiente di Poisson del terreno
- r_b = raggio del palo alla base

$$\bullet \quad \rho = \frac{G_m}{G_I}$$

$$\bullet \qquad \lambda = \frac{E_p}{G_I}$$

$$\bullet \qquad \xi = \frac{G_L}{G_L}$$

$$\bullet \qquad \eta = \frac{r_b}{r_0}$$

•
$$r_m = L \cdot \left\{ \frac{L}{4} + \left[2 \cdot \rho \cdot (1 - \nu) - \frac{L}{4} \right] \cdot \xi \right\}$$

•
$$\zeta = \ln \left(\frac{r_m}{r_0} \right)$$

$$\bullet \qquad \mu = \frac{\sqrt{\frac{2}{\zeta \cdot \lambda}}}{r_0}$$

Il carico massimo sul singolo palo determinato per lo Stato Limite di Esercizio – Combinazione caratteristica è risultato pari a:

Q = 2.739,80 kN

A tale carico, trasmesso dalla pila, viene sommato il peso proprio del palo, che risulta pari a:

$$P_{palo} = 26,00 \times \pi \times 1,20^2 / 4 \times 25,00 = 735,13 \text{ kN}$$

Viene infine sottratto il peso del terreno rimosso durante la trivellazione del palo:

$$P_t = \pi \times 1,20^2 / 4 \times (7,05 \times 18,50 + 18,95 \times 19,00) = 554,71 \text{ kN}$$

Il carico massimo in condizioni di esercizio utilizzato per la stima del cedimento verticale risulta dunque pari a:

Q = 2.739,80 + 735,13 - 554,71 = 2.920,22 kN

Sulla base della caratterizzazione geotecnica dei terreni di fondazione si assumono i seguenti valori del modulo elastico:

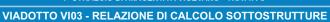
- Strato 1 (Unità G3) \rightarrow E = 22,30 Mpa = 22.300,00 kN/m²
- Strato 2 (Unità S1) \rightarrow E = 21,70 Mpa = 21.700,00 kN/m²

Il valore medio del modulo elastico lungo lo sviluppo del palo è valutato mediante la seguente media ponderata:

$$E_m = (7,05 \times 22.300,00 + 18,95 \times 21.700,00) / (7,05 + 18,95) = 21.862,69 \text{ kN/m}^2$$

Considerato un coefficiente di Poisson del terreno pari a v = 0,30, si ottengono i seguenti valori del modulo di rigidezza trasversale:

- $G_m = 8.576,92 \text{ kN/m}^2$
- $G_L = 8.346,15 \text{ kN/m}^2$
- $G_b = 8.346,15 \text{ kN/m}^2$


Di seguito è riportata la valutazione del cedimento massimo verticale in esercizio riferito al singolo palo:

Q	2.920,22	[kN]
L	26,00	[m]
r_0	0,60	[m]
r_{b}	0,60	[m]
E_p	31.220.185,78	[kN/m ²
E _m	22.300,00	[kN/m ²
E_L	21.700,00	[kN/m ²
E_b	21.700,00	[kN/m ²
G _m	8.576,92	[kN/m ²
G_L	8.346,15	[kN/m ²
G_b	8.346,15	[kN/m ²
ν	0,30	[-]
r_{m}	37,41	[m]
ζ	4,13	[-]
η	1,00	[-]
ξ	1,00	[-]
ρ	1,03	[-]
μ	0,0190	[-]
λ	3.740,67	[-]
μL	0,49	[m]
w	8,69	[mm]

Il cedimento calcolato risulta compatibile con la funzionalità in esercizio dell'opera, considerando che l'effetto dei carichi permanenti risulta essere percentualmente molto maggiore rispetto all'effetto dei carichi accidentali (cedimento immediato in fase di realizzazione dell'opera).

18 VERIFICHE STRUTTURALI DEI BAGGIOLI DI APPOGGIO E DEI RITEGNI SISMICI **TRASVERSALI**

18.1 VALUTAZIONE DELLE AZIONI SOLLECITANTI SUGLI APPOGGI

Nella tabella successiva sono riepilogati i valori delle azioni sollecitanti (azione normale e azioni orizzontali taglianti) valutate sui singoli appoggi e desunte dal modello di calcolo tridimensionale:

SOTTOSTRUTTURA	APPOGGIO	COMBIN	AZIONE	N _{Sd}	V _{long,Sd}	V _{trasv,Sd}
		SLU - STR.01	Max	[kN] -3.787,08	[kN] 224,21	[kN] -146,63
		SLU - STR.01	Min	-5.455,02	155,89	-173,75
		SLU - STR.01	Max	-3.787,08	232,74	-98,92
		SLU - STR.02	Min	-5.455,03	164,42	-126,03
		SLU - STR.03	Max	-3.786,16	220,94	-14,66
		SLU - STR.03	Min	-5.454,10	152,63	-41,77
		SLU - STR.04	Max	-3.786,16	229.48	33.06
		SLU - STR.04	Min	-5.454,10	161,16	5,95
		SLU - STR.05	Max	-3.787,50	208,23	-190,64
		SLU - STR.05	Min	-5.038,46	156,99	-210,97
		SLU - STR.06	Max	-3.790,33	216,88	-142,91
		SLU - STR.06	Min	-5.041,29	165,64	-163,24
		SLU - STR.07	Max	-3.785,96	202,79	29.32
		SLU - STR.07	Min	-5.036,92	151,55	8,98
		SLU - STR.08	Max	-3.785,96	211,32	77,04
		SLU - STR.08	Min	-5.036,92	160,08	56,70
	Α	SLU - STR.09	Max	-3.787,19	204,30	-162,56
		SLU - STR.09	Min	-5.038,15	153,06	-182,89
		SLU - STR.10	Max	-3.787,19	218,52	-83,03
		SLU - STR.10	Min	-5.038,15	167,28	-103,36
		SLU - STR.10	Max	-3.786,27	201,04	-30,58
		SLU - STR.11	Min	-5.037,22	149,80	-50,92
		SLU - STR.12	Max	-3.786,27	215,26	48,95
		SLU - STR.12	Min	-5.037,23	164,02	28,61
		SLV - X - 01	Max	-2.713,84	291,05	-58,01
		SLV - X - 01	Min	-2.713,04	59,53	-145,87
		SLV - X - 01	Max	-2.742,79	300,40	0,61
		SLV - X - 02	Min	-2.713,04	68,88	-87,25
		SLV - X - 02	Max	-2.742,79	214,20	10,59
		SLV - Y - 01	Min	-2.748,24	136,38	-214,47
		SLV - Y - 02	Max	-2.740,24	223,55	69,21
		SLV - Y - 02	Min	-2.748,24	145,73	-155,85
SPALLA A		SLU - STR.01	Max	-3.091,27	207,76	46,14
		SLU - STR.01	Min	-4.736,32	136,73	18,73
		SLU - STR.02	Max	-3.091,27	218,63	-1,60
		SLU - STR.02	Min	-4.736,31	147,60	-29,01
		SLU - STR.03	Max	-3.092,19	211,73	171,18
		SLU - STR.03	Min	-4.737,24	140,70	143,77
		SLU - STR.04	Max	-3.092,19	222,60	123,44
		SLU - STR.04	Min	-4.737,24	151,57	96,02
		SLU - STR.05	Max	-3.090,96	188,69	-2,39
		SLU - STR.05	Min	-4.324,75	135,42	-22,95
		SLU - STR.06	Max	-3.088,13	199,46	-50,15
		SLU - STR.06	Min	-4.321,92	146,18	-70,71
		SLU - STR.07	Max	-3.092,50	195,30	206,00
		SLU - STR.07	Min	-4.326,29	142,03	185,44
		SLU - STR.08	Max	-3.092,50	206,17	158,26
	_	SLU - STR.08	Min	-4.326,29	152,90	137,70
	В	SLU - STR.09	Max	-3.091,27	186,39	55,20
		SLU - STR.09	Min	-4.325,05	133,12	34,64
		SLU - STR.10	Max	-3.091,27	204,51	-24,37
		SLU - STR.10	Min	-4.325,05	151,24	-44,93
		SLU - STR.11	Max	-3.092,19	190,36	180,24
		SLU - STR.11	Min	-4.325,98	137,09	159,68
		SLU - STR.12	Max	-3.092,19	208,48	100,67
		SLU - STR.12	Min	-4.325,98	155,20	80,11
		SLV - X - 01	Max	-2.215,01	283,18	151,90
		SLV - X - 01	Min	-2.241,92	64,14	52,68
		SLV - X - 02	Max	-2.215,01	296,31	93,28
		SLV - X - 02	Min	-2.241,92	77,27	-5,95
		SLV - Y - 01	Max	-2.209,31	211,76	228,58
		SLV - Y - 01	Min	-2.247,63	135,56	-23,99
		SLV - Y - 01 SLV - Y - 02	Min Max	-2.247,63 -2.209,31	135,56 224,89	-23,99 169,95

SOTTOSTRUTTURA	APPOGGIO	COMBINAZIONE		N _{sd} [kN]	V _{long,Sd} [kN]	V _{trasv,Sd} [kN]
		SLU - STR.01	Max	-3.734,66	-156,71	-145,33
		SLU - STR.01	Min	-5.403,46	-225,30	-172,59
		SLU - STR.02	Max	-3.734,66	-165,20	-98,04
		SLU - STR.02	Min	-5.403,46	-233,79	-125,31
		SLU - STR.03	Max	-3.733,77	-153,92	-12,94
		SLU - STR.03	Min	-5.402,57	-222,51	-40,21
		SLU - STR.04	Max	-3.733,77	-162,41	34,34
		SLU - STR.04	Min	-5.402,57	-231,00	7,08
		SLU - STR.05	Max	-3.735,08	-157,65	-189,47
		SLU - STR.05	Min	-4.986,68	-209,10	-209,92
		SLU - STR.06	Max	-3.737,90	-166,26	-142,17
		SLU - STR.06	Min	-4.989,50	-217,70	-162,62
		SLU - STR.07	Max	-3.733,60	-153,00	31,17
		SLU - STR.07	Min	-4.985,20	-204,44	10,72
		SLU - STR.08	Max	-3.733,60	-161,49	78,46
	Α	SLU - STR.08	Min	-4.985,20	-212,93	58,01
	^	SLU - STR.09	Max	-3.734,78	-153,90	-161,10
		SLU - STR.09	Min	-4.986,38	-205,34	-181,55
		SLU - STR.10	Max	-3.734,78	-168,04	-82,30
		SLU - STR.10	Min	-4.986,38	-219,49	-102,74
		SLU - STR.11	Max	-3.733,90	-151,10	-28,72
		SLU - STR.11	Min	-4.985,50	-202,55	-49,17
		SLU - STR.12	Max	-3.733,90	-165,25	50,09
		SLU - STR.12	Min	-4.985,49	-216,69	29,64
		SLV - X - 01	Max	-2.677,31	-60,32	-56,85
		SLV - X - 01	Min	-2.705,34	-291,65	-143,57
		SLV - X - 02	Max	-2.677,30	-69,65	1,53
		SLV - X - 02	Min	-2.705,34	-300,98	-85,19
		SLV - Y - 01	Max	-2.671,83	-136,60	10,04
		SLV - Y - 01	Min	-2.710,82	-215,36	-210,46
		SLV - Y - 02	Max	-2.671,83	-145,94	68,41
SPALLA B		SLV - Y - 02	Min	-2.710,82	-224,70	-152,08
		SLU - STR.01	Max	-3.001,33	-135,91	43,50
		SLU - STR.01	Min	-4.549,82	-206,22	16,58
		SLU - STR.02 SLU - STR.02	Max Min	-3.001,34 -4.549,82	-146,83 -217,13	-3,76
		SLU - STR.03	Max	-3.002,22	-139,41	-30,68 167,65
		SLU - STR.03	Min	-4.550,70	-209,71	140,73
		SLU - STR.04	Max	-3.002,22	-150,32	120,39
		SLU - STR.04	Min	-4.550,71	-220,63	93,47
		SLU - STR.05	Max	-3.001,04	-134,76	-4,61
		SLU - STR.05	Min	-4.162,40	-187,49	-24,80
		SLU - STR.06	Max	-2.998,21	-145,57	-51,88
		SLU - STR.06	Min	-4.159,58	-198,30	-72,08
		SLU - STR.07	Max	-3.002,52	-140,58	202,30
		SLU - STR.07	Min	-4.163,88	-193,31	182,11
		SLU - STR.08	Max	-3.002,52	-151,50	155,04
	В	SLU - STR.08	Min	-4.163,88	-204,23	134,85
	٥	SLU - STR.09	Max	-3.001,33	-132,29	52,53
		SLU - STR.09	Min	-4.162,70	-185,02	32,34
		SLU - STR.10	Max	-3.001,34	-150,48	-26,24
		SLU - STR.10	Min	-4.162,70	-203,21	-46,43
		SLU - STR.11	Max	-3.002,22	-135,79	176,67
		SLU - STR.11	Min	-4.163,58	-188,52	156,48
		SLU - STR.12	Max	-3.002,22	-153,97	97,91
		SLU - STR.12	Min	-4.163,59	-206,70	77,71
		SLV - X - 01	Max	-2.150,69	-63,68	148,69
		SLV - X - 01	Min	-2.178,48	-282,26	51,03
		SLV - X - 02	Max	-2.150,69	-76,83	90,32
		SLV - X - 02	Min	-2.178,48	-295,40	-7,34
		SLV - Y - 01	Max	-2.145,57	-133,91	223,22
ı		SLV - Y - 01	Min	-2.183,60	-212,03	-23,51
		SLV - Y - 02	Max	-2.145,57	-147,05	164,85
		SLV - Y - 02	Min	-2.183,60	-225,17	-81,88

Le azioni normali di compressione sono assunte con segno negativo.

18.2 **BAGGIOLI DI APPOGGIO**

I baggioli in cemento armato verranno verificati a punzonamento e delle azioni taglianti orizzontali. L'azione di punzonamento sarà data dalla massima azione di compressione trasmessa ai baggioli stessi dall'apparecchio d'appoggio maggiormente caricato.

I baggioli presentano tutti una pianta quadrata con lato pari a 150 cm e uno spessore pari a 50 cm.

L'azione normale massima agente sul singolo baggiolo di appoggio è risultata pari a N_{Sd} = **5.455,03 kN** (Spalla A – Appoggio A – Combinazione SLU – STR.02).

La verifica nei confronti delle azioni orizzontali verrà invece condotta in corrispondenza dell'azione orizzontale massima agente sul singolo baggiolo di appoggio, che è risultata pari a V_{Sd} = -300,98 kN.

18.2.1 VERIFICA A PUNZONAMENTO

CARATTERISTICHE DEI MATERIALI					
CALCESTRUZZO					
Classe di resistenza del calcestruzzo				C32/40	
Resistenza di calcolo a trazione del calcesi	truzzo		f_{ctd}	1,36	[N/mm²]
ACCIAIO			0.0	•	
Tipologia di acciaio				B 450 C	-
Tensione massima ammissibile dell'acciaio			\mathbf{f}_{yd}	391,30	[N/mm²]
GEOMETRIA DEL BAGGIOLO					
Lunghezza del baggiolo (direzione parallela all'asse appoggi)			L_T	150,00	[cm]
Larghezza del baggiolo (direzione perpendicolare all'asse appoggi)			L_L	150,00	[cm]
Altezza del baggiolo			h	5,00	[cm]
AZIONI DI CALCOLO SUL BAGGIOLO					
Azione normale massima agente sul baggio	olo		N	5.455,03	[kN]
ARMATURA DEL BAGGIOLO					
Numero di forcelle in direzione longitudinale			n_{L}	15	
Diametro delle forcelle in direzione longitudinale			\mathcal{O}_{L}	20	[mm]
Area delle forcelle in direzione longitudinale				94,20	[cm²]
Numero di forcelle in direzione trasversale			n_{T}	15	
Diametro delle forcelle in direzione trasversale			\mathcal{O}_{T}	20	[mm]
Area delle forcelle in direzione trasversale			A_T	94,20	[cm²]
VERIFICA A PUNZONAMENTO					
Perimetro della sezione del baggiolo			u	600,00	[cm]
Altezza del baggiolo			h	5,00	[cm]
Forza resistente per calcestruzzo VERIFICA NEGA	<mark>203,37</mark> TIVA. E' NECESSAF	<mark>[kN]</mark> RIO ARMARE A	< A PUNZONAM	5.455,03 ENTO.	[kN]
				-	
Forza resistente per armatura	<mark>7.372,17</mark> SITIVA. L'ARMATUF	[kN] RA DISPOSTA	> E' SHEEICIEN	5.455,03	[kN]

STUDIO CORONA

18.2.2 VERIFICA NEI CONFRONTI DELLE AZIONI ORIZZONTALI

VERIFICA MENSOLA TOZZA									
Spessore del ritegno	h	1,50	[m]						
Altezza del ritegno	A	0,50	[m]						
Larghezza del ritegno	b	1,50	[m]						
Copriferro di calcolo	C _d								
Altezza utile della sezione	d								
Azione ortogonale al ritegno	Р	300,98	[m] [kN]						
DIMENSIONAMENTO E VERIFICA DELL'ARMATURA									
Azione ortogonale al ritegno per metro lineare	p = P/b	200,65	[kN/m]						
. 8 +	I = a+0,2 d	0,79	[m]						
I I I I I I I I I I I I I I I I I I I	$\lambda = \cot g \psi \approx I / (0.9 d)$	0,60							
ii ↓ ⊬	Ψ	58,92	[°]						
	f_{yd}	391,30	[N/mm ²]						
d h	$A_{s,min} = (p \times \lambda + h) / f_{yd}$	309,07	[mm²]						
I TIV	Numero barre	15							
1 630	Diametro barre	20,00	[mm]						
[I≃ a+02d	A_s	4710,00	[mm²]						
++	σ_{s}	25,68	[N/mm ²]						
σ _s 25,68 < f _{yd}	391,30 VE	391,30 VERIFICA POSITIVA							
VERIFICA DEL PUNTONE IN CALCESTRUZZO									

per sbalzi di piastre non provvisti di staffatura 1,00 Coefficiente c per sbalzi di travi provvisti di staffatura

Coefficiente c

 $\sigma_c = \{P \times [(1 + \lambda^2) / c]\} / (0.40 \times b \times d)$ Tensione massima nel calcestruzzo Resistenza caratteristica cubica del calcestruzzo R_{ck}

Resistenza di calcolo del calcestruzzo f_{cd}

VERIFICA POSITIVA σ_{c} 0,31 18,81

1,00

0,31

40,00

18,81

 $[N/mm^2]$

 $[N/mm^2]$

18.3 RITEGNI SISMICI TRASVERSALI

I ritegni sismici in cemento armato verranno verificati nei confronti dell'azione tagliante trasversale sismica trasmessa su ciascuna spalla.

I ritegni presentano tutti una base con pianta rettangolare 200 x 130 cm e uno spessore pari a 70

La verifica della mensola tozza avverrà considerando agente, a favore di sicurezza, sul singolo ritegno il doppio dell'azione orizzontale massima agente sugli appoggi:

 $V_{Sd} = -2 \times 300,98 = -601,96 \text{ kN}.$

18.3.1 VERIFICA NEI CONFRONTI DELLE AZIONI ORIZZONTALI									
VERIFICA MENSOLA TOZZA									
Spessore del ritegno Altezza del ritegno			h A	1,30 0,70	[m]				
Larghezza del ritegno			b	2,00	[m] [m]				
Copriferro di calcolo			C _d	0,04	[m]				
Altezza utile della sezione			d d	1,26	[m]				
Azione ortogonale al ritegno			P	601,96	[kN]				
DIMENSIONAMENTO E VERIFICA DELL'ARMATURA									
Azione ortogonale al ritegno per metro lineare	ILITIO E VI	p =		300,98	[kN/m]				
 	$I = a+0,2 d$ $\lambda = \cot y \neq 1 / (0,9 d)$			0,95 0,84	[m]				
		λ − ωω ψ ~ Ψ		49,99	[°]				
	Ψ f _{yd}			391,30	[N/mm ²]				
d h	$A_{s,min} = (p \times \lambda + h) / f_{vd}$		645,72	[mm ²]					
TW		Numero barre		20					
	Diametro barre A _s		20,00	[mm]					
ام المنظاء l≃ a+0.2d			6280,00	[mm ²]					
σ _s				40,23	[N/mm ²]				
σ _s 40,23 <	f_{yd}	391,30	VERIFICA POSITIVA						
VERIFICA DEL PUNTONE IN CALCESTRUZZO									
= 1,00 pe	r sbalzi di pia	astre non provvis	i di staffatura						
Coefficiente c = 1,50 per sbalzi di fravi provvisti di staffatura									
Coefficiente c			С	1,00					
Tensione massima nel calcestruzzo $\sigma_c = \{P \ x \ [(1 + \lambda^2) \ / \ c]\} \ / \ (0.4 + \lambda^2) \ / \ c] \ / \ (0.4 + \lambda^2) \ / \ c] \ / \ (0.4 + \lambda^2$			40 x b x d)	0,51	[N/mm ²]				
Resistenza caratteristica cubica del calcestruzzo			R_ck	40,00					
Resistenza di calcolo del calcestruzzo			f_{cd}	18,81	[N/mm ²]				
σ _c 0,51 <	f_{cd}	18,81	VE	RIFICA POSITI	VA				

