

ANAS S.p.A.

LAVORI DI COLLEGAMENTO TRA LA S.S.11 A MAGENTA E LA TANGENZIALE OVEST DI MILANO

VARIANTE DI ABBIATEGRASSO E ADEGUAMENTO IN SEDE DEL TRATTO ABBIATEGRASSO-VIGEVANO FINO AL PONTE SUL FIUME TICINO

1° STRALCIO DA MAGENTA A VIGEVANO - TRATTA C

PROGETTO ESECUTIVO - COD. MI608

lng. Renato Vaira

VISTO: IL RESPONSABILE **DEL PROCEDIMENTO**

Dott. Ing. Giuseppe Danilo MALGERI

L0014

C

В

Α

REV.

Ing. Valerio Bajetti

ata: GA&M...

Prof. Ing. Matteo Ranieri

INTEGRATORE DELLE PRESTAZIONI SPECIALISTICHE

Ing. Fabrizio BAJETTI

ING. RENATO DEL PRETE

Ing. Renato Del Prete

SETAC Srl

Prof. Ing. Luigi Monterisi

ARKE'

ECOPLAN

Arch. Nicoletta Frattini

Ing. Gioacchino Angarano

CC

Ing. Gabriele Incecchi

DOTT, GEOL. **DANILO GALLO**

Dott. Geol. Danilo Gallo

IL COORDINATORE DELLA SICUREZZA IN FASE DI PROBECTAZIONE GIANLUCA CICIRIELLO

Ing. Gianluca CICIRIELLO

Prof. Ing. Geol. Luigi MONTERISI L - PROGETTO STRUTTURALE - TOMBINATURE IDRAULICHE

GEOLOGO

LUIGI MONTERISI N° 610

L00 - RELAZIONI TOMBINATURE E MANUFATTI

RELAZIONE DI CALCOLO MANUFATTO DI IMBOCCO E/O DI USCITA CIRCOLARE MURO SCATOLATO

CODICE PROGET	NOME FIL		
PROGETTO	LIV. PROG.	N. PROG.	L0014-T0
LO203	E	2301	CODICE ELAB.

EMISSIONE

DESCRIZIONE

L0014-T00TM00STRRRE14_A	√.dwg	REVISIONE	SCALA:	
CODICE TOOTMOO	STRRE14	A		
	Ottobre 2023	ING. MARTINA D'AVERSA	ING. GAETANO RANIERI	ING. FABRIZIO BAJETTI

DATA

REDATTO

VERIFICATO

APPROVATO

SOMMARIO

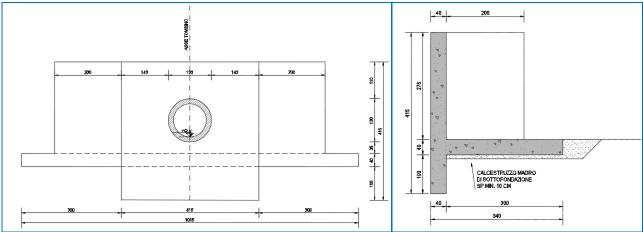
1	PREM	MESSA	4
2	DESC	CRIZIONE DELLE OPERE	4
3	NORI	MATIVA DI RIFERIMENTO	5
4	UNIT	A' DI MISURA	5
5	MATE	ERIALI	6
	5.1 C	alcestruzzo	6
	5.1.1	Calcestruzzo per opere di sottofondazione	6
	5.1.2	·	
	5.2 A	.cciaio	
	5.2.1		
	5.3 C	calcolo dei copriferri minimi – zattera di fondazione	
		calcolo dei copriferri minimi – elevazioni	
		alutazione della lunghezza di ancoraggio delle barre di armatura	
6		ATTERIZZAZIONE GEOTECNICA DEI TERRENI	
7		ZZAZIONE E CARATTERIZZAZIONE SISMICA	
•		dentificazione della località e dei parametri sismici generali	
		Definizione della strategia progettuale	
		rarametri di calcolo	
	7.3.1	Parametri numerici sismici	
	7.3.2	Categoria dei terreni di fondazione e categoria topografica	
	7.3.3	Categoria dei terreni di fondazione e categoria topografica	
	7.3.4	Fattori di struttura	
	7.3.5		
		Definizione dei coefficienti sismici di calcolo	
8		LISI DEI CARICHI	
Ŭ		eso proprio delle strutture in cemento armato	
		eso proprio del rinfianco del tombino scatolare	
		eso proprio del parapetto	
		Carichi accidentali a tergo del muro	
		pinta dei terreni a tergo dell'opera di sostegno	
		pinta dei sovraccarichi a tergo dell'opera di sostegno	
		zione sismica	
	8.7.1	Azione inerziale delle masse	
	-	ovraspinta dinamica dei terreni	
9		BINAZIONI DI CARICO	
Ü		Combinazioni di carico allo Stato Limite di Esercizio – Combinazioni quasi- permanenti	
		Combinazioni di carico allo Stato Limite di Esercizio – Combinazioni frequenti	
		Combinazioni di carico allo Stato Limite di Esercizio – Combinazioni caratteristiche	
		Combinazioni di carico allo Stato Limite Ultimo statiche	
		Combinazione di carico sismiche	
		Definizione dei coefficienti di partecipazione e riepilogo delle combinazioni	
10		ELLO DI CALCOLO	
	10.1	Definizione del modello di calcolo	
	10.1	Applicazione dei carichi elementari	
	10.2.		
	10.2.	·	

	10.2.3	Carichi accidentali a tergo del muro	29
	10.2.4	Spinta orizzontale dei terreni a tergo del muro sulla parete sinistra	29
	10.2.5	Spinta orizzontale dei terreni a tergo del muro sulla parete destra	
	10.2.6	Spinta orizzontale dei terreni a tergo del muro sulla parete frontale	30
	10.2.7	Spinta orizzontale dei terreni a valle del muro (agente sul taglione)	
	10.2.8	Spinta orizzontale dei carichi accidentali a tergo del muro sulle pareti laterali	
	10.2.9	Spinta orizzontale dei carichi accidentali a tergo del muro sulla parete frontale	
	10.2.10	Inerzia sismica orizzontale degli elementi strutturali	33
	10.2.11	Inerzia sismica orizzontale del terreno a tergo del muro sulle pareti laterali	34
	10.2.12	2 Inerzia sismica orizzontale del terreno a tergo del muro sulla parete frontale	34
	10.2.13	Inerzia sismica orizzontale del parapetto metallico	35
	10.2.14	Sovraspinta dinamica dei terreni sulle pareti laterali	36
	10.2.15	Sovraspinta dinamica dei terreni sulla parete frontale	36
11	VALUT	AZIONE DELLE AZIONI SOLLECITANTI SUL MURO FRONTALE	37
1	1.1	Combinazione allo Stato Limite Ultimo – STR	37
1	1.2	Combinazione allo Stato Limite di Salvaguardia della Vita (envelope)	39
12		AZIONE DELLE AZIONI SOLLECITANTI SUI MURI LATERALI	
1	2.1	Combinazione allo Stato Limite Ultimo – STR	42
		Combinazione allo Stato Limite di Salvaguardia della Vita (envelope)	
13		AZIONE DELLE AZIONI SOLLECITANTI SULLA ZATTERA DI FONDAZIONE	
		Combinazione allo Stato Limite Ultimo – STR	
		Combinazione allo Stato Limite di Salvaguardia della Vita (envelope)	
		FRONTALE – VERIFICHE STRUTTURALI	
		Riepilogo delle azioni sollecitanti di calcolo	
		Sezione ed armatura di verifica	
1		/erifica allo Stato Limite di limitazione delle tensioni	
	14.3.1	Combinazione Quasi Permanente – Direzione verticale	
	14.3.2	Combinazione Quasi Permanente – Direzione orizzontale	
	14.3.3	Combinazione Frequente – Direzione verticale	
	14.3.4	Combinazione Frequente – Direzione orizzontale	
	14.3.5	Combinazione Rara – Direzione verticale	
	14.3.6	Combinazione Rara – Direzione orizzontale	
		/erifica allo Stato Limite di fessurazione – Direzione verticale	
1		/erifica allo Stato Limite di fessurazione – Direzione orizzontale	
	14.5.1	Combinazione Quasi Permanente	
		Combinazione Frequente	
		/erifica allo Stato Limite Ultimo per pressoflessione – Direzione verticale	
		/erifica allo Stato Limite Ultimo per flessione – Direzione orizzontale	
		/erifica allo Stato Limite Ultimo per taglio – Direzione verticale	
		/erifica allo Stato Limite Ultimo per taglio – Direzione orizzontale	
		ATERALI – VERIFICHE STRUTTURALI	
		Riepilogo delle azioni sollecitanti di calcolo	
		Sezione ed armatura di verifica	
1		/erifica allo Stato Limite di limitazione delle tensioni	
	15.3.1	Combinazione Quasi Permanente – Direzione verticale	
	15.3.2	Combinazione Quasi Permanente – Direzione orizzontale	
	15.3.3	Combinazione Frequente – Direzione verticale	
	15.3.4	Combinazione Frequente – Direzione orizzontale	ช9

15.3.5 Combinazione Rara – Direzione verticale	70
15.3.6 Combinazione Rara – Direzione orizzontale	71
15.4 Verifica allo Stato Limite di fessurazione – Direzione verticale	72
15.5 Verifica allo Stato Limite di fessurazione – Direzione orizzontale	73
15.5.1 Combinazione Quasi Permanente	73
15.5.2 Combinazione Frequente	74
15.6 Verifica allo Stato Limite Ultimo per pressoflessione – Direzione verticale	75
15.7 Verifica allo Stato Limite Ultimo per flessione – Direzione orizzontale	76
15.8 Verifica allo Stato Limite Ultimo per taglio – Direzione verticale	77
15.9 Verifica allo Stato Limite Ultimo per taglio – Direzione orizzontale	78
16 ZATTERA DI FONDAZIONE – VERIFICHE STRUTTURALI	79
16.1 Sezione ed armatura di verifica	79
16.2 Verifica allo Stato Limite di limitazione delle tensioni	80
16.2.1 Combinazione Quasi Permanente – Direzione trasversale	80
16.2.2 Combinazione Quasi Permanente – Direzione longitudinale	82
16.2.3 Combinazione Frequente – Direzione trasversale	84
16.2.4 Combinazione Frequente – Direzione longitudinale	86
16.2.5 Combinazione Rara – Direzione trasversale	88
16.2.6 Combinazione Rara – Direzione longitudinale	90
16.3 Verifica allo Stato Limite di fessurazione – Direzione trasversale	92
16.3.1 Verifica allo Stato Limite di fessurazione – Direzione longitudinale	93
16.3.2 Verifica allo Stato Limite Ultimo per pressoflessione – Direzione trasversale	94
16.4 Verifica allo Stato Limite Ultimo per flessione – Direzione orizzontale	96
16.5 Verifica allo Stato Limite Ultimo per taglio – Direzione trasversale	98
16.6 Verifica allo Stato Limite Ultimo per taglio – Direzione longitudinale	100
17 VERIFICHE GEOTECNICHE	102
17.1 Valutazione delle azioni sollecitanti caratteristiche alla base della zattera di fon 102	dazione
17.2 Valutazione delle azioni sollecitanti di calcolo alla base della zattera di fondazione	ne 102
17.2.1 Combinazioni allo Stato Limite Ultimo – STR	102
17.2.2 Combinazioni allo Stato Limite di Salvaguardia della Vita – SLV	104
17.2.3 Riepilogo delle azioni sollecitanti di calcolo	104
17.3 Verifica del carico limite ultimo e dello scorrimento	
17.4 Risultati	107
17.4.1 Dati	107
17.4.2 Descrizione combinazioni di carico	108
17.4.3 Opzioni di calcolo	
18 VERIFICA DEGLI SPOSTAMENTI	

PREMESSA

La presente relazione di calcolo riporta la descrizione, il dimensionamento e le verifiche strutturali e geotecniche dei muri di testata (imbocco e sbocco) in cemento armato dei tombini circolari Ф1000 nell'ambito del progetto esecutivo "Lavori di collegamento tra la S.S. n.11 a Magenta e la tangenziale Ovest di Milano – Variante di Abbiategrasso ed adeguamento in sede del tratto Abbiategrasso-Vigevano fino al ponte sul fiume Ticino".


2 DESCRIZIONE DELLE OPERE

I muri di testata dei tombini circolari presentano una sezione trasversale a "U" e sono interamente realizzati in cemento armato gettato in opera.

Le dimensioni dell'opera sono di seguito riepilogate:

- Pareti verticali laterali: 200 x 275 cm spessore 40 cm
- Parete verticale frontale: 415 x 275 cm spessore 40 cm
- Soletta di fondazione: 415 x 300 cm spessore 40 cm
- Taglione: 415 x 100 cm spessore 40 cm

Si riportano di seguito le immagini rispettivamente dello sviluppo longitudinale dell'opera, della pianta e della sezione trasversale in asse al tombino:

I muri di testata non sono rigidamente collegati con i conci di estremità del tombino prefabbricato (è presente esclusivamente una sigillatura in malta).

3 NORMATIVA DI RIFERIMENTO

La presente relazione è stata redatta in osservanza delle seguenti Normative Tecniche:

- Legge 05/01/1971 n.1086 → Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica
- Legge 02/02/1974 n. 64 → Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche
- **DM 17/01/2018** → Nuove Norme Tecniche per le Costruzioni
- UNI EN 1992-1 (Eurocodice 2 Parte 1) → Progettazione delle strutture in calcestruzzo -Regole generali
- UNI EN 1992-2 (Eurocodice 2 Parte 2) → Progettazione delle strutture in calcestruzzo Ponti
- UNI EN 1998-5 (Eurocodice 8) Gennaio 2015 → Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici
- UNI EN 206-1:2016 → Calcestruzzo Specificazione, prestazione, produzione e conformità
- **UNI 11104:2016** → Calcestruzzo Specificazione, prestazione, produzione e conformità Specificazioni complementari per l'applicazione della EN 206
- Servizio Tecnico Centrale della Presidenza del Consiglio Superiore dei LL.PP. Linee guida sul calcestruzzo strutturale

4 UNITA' DI MISURA

Nei calcoli è stato fatto uso delle seguenti unità di misura:

per i carichi: kN/m², kN/m, kN

per i momenti: kNm
 per i tagli e sforzi normali: kN
 per le tensioni: N/mm²
 per le accelerazioni: m/sec²

5

MATERIALI

5.1 **CALCESTRUZZO**

5.1.1 **CALCESTRUZZO PER OPERE DI SOTTOFONDAZIONE**

Per le opere di sottofondazione è stato previsto un calcestruzzo con classe di resistenza C12/15 e classe di esposizione X0.

Tale calcestruzzo non ha valenza strutturale e quindi non se ne riportano le caratteristiche meccaniche.

5.1.2 **CALCESTRUZZO PER LE OPERE STRUTTURALI**

Per le zattere di fondazione delle opere è stato previsto un calcestruzzo con classe di resistenza C28/35 e classe di esposizione XC2 con le seguenti caratteristiche meccaniche:

CLASSE DI RESISTENZA	C28/35				
DESCRIZIONE CARATTERISTICA	FORMULA DI CALCOLO	RIF. CAP. NORMA	VALORE DI APPLICA		AZIONE
Resistenza caratteristica cubica a compressione			R _{ck}	35,00	[N/mm ²]
Resistenza caratteristica cilindrica a compressione	[0,83*Rck]	11.2.10.1	f _{ck}	29,05	[N/mm ²]
Resistenza cilindrica media a compressione a 28 gg	[fck+8]	11.2.10.1	f _{cm}	37,05	[N/mm ²]
Resistenza di calcolo a compressione	[acc*fck/Yc]	4.1.2.1.1.1	f _{cd}	16,46	[N/mm ²]
Resistenza media a trazione	[0,30*fck ^{2/3}]	11.2.10.2	f _{ctm}	2,83	[N/mm ²]
Resistenza caratteristica a trazione	[0,70*fctm]	11.2.10.2	f _{ctk}	1,98	[N/mm ²]
Resistenza di calcolo a trazione	[fctk/1,5]	4.1.2.1.1.2	f _{ctd}	1,32	[N/mm ²]
Tensione massima di compressione del cls in esercizio (rara)	[0,60*fck]	4.1.2.2.5.1	бс тах	17,43	[N/mm ²]
Tensione massima di compressione del cls in esercizio (quasi perm)	[0,45*fck]	4.1.2.2.5.1	бс тах	13,07	[N/mm ²]
Modulo elastico istantaneo	[Ec=Ecm]	C4.1.2.2.5	Ec	32 588,11	[N/mm ²]
Modulo elastico medio	[22.000*(fcm/10) ^{0,3}]	11.2.10.3	E _{cm}	32 588,11	[N/mm ²]

Per le elevazioni di fondazione delle opere è stato previsto un calcestruzzo con classe di resistenza C32/40 e classe di esposizione XF2/XA1 con le seguenti caratteristiche meccaniche:

CLASSE DI RESISTENZA	C32/40		-		
DESCRIZIONE CARATTERISTICA	FORMULA DI CALCOLO	RIF. CAP. NORMA	VALORE DI APPLICAZIONE		AZIONE
Resistenza caratteristica cubica a compressione			R _{ck}	40,00	[N/mm ²]
Resistenza caratteristica cilindrica a compressione	[0,83*Rck]	11.2.10.1	f _{ck}	33,20	[N/mm ²]
Resistenza cilindrica media a compressione a 28 gg	[fck+8]	11.2.10.1	f _{cm}	41,20	[N/mm ²]
Resistenza di calcolo a compressione	[acc*fck/Yc]	4.1.2.1.1.1	f _{cd}	18,81	[N/mm ²]
Resistenza media a trazione	[0,30*fck ^{2/3}]	11.2.10.2	f _{ctm}	3,10	[N/mm ²]
Resistenza caratteristica a trazione	[0,70*fctm]	11.2.10.2	f _{ctk}	2,17	[N/mm ²]
Resistenza di calcolo a trazione	[fctk/1,5]	4.1.2.1.1.2	f _{ctd}	1,45	[N/mm ²]
Tensione massima di compressione del cls in esercizio (rara)	[0,60*fck]	4.1.2.2.5.1	бс тах	19,92	[N/mm ²]
Tensione massima di compressione del cls in esercizio (quasi perm)	[0,45*fck]	4.1.2.2.5.1	бс тах	14,94	[N/mm ²]
Modulo elastico istantaneo	[Ec=Ecm]	C4.1.2.2.5	Ec	33.642,78	[N/mm ²]
Modulo elastico medio	[22.000*(fcm/10) ^{0,3}]	11.2.10.3	E _{cm}	33.642,78	[N/mm ²]

A favore di sicurezza nelle verifiche strutturali viene utilizzato un calcestruzzo di classe di resistenza inferiore: C25/30.

5.2 ACCIAIO

5.2.1 **ACCIAIO PER ARMATURA LENTA**

Per le armature lente è stato previsto un acciaio del tipo B450C, con le seguenti caratteristiche meccaniche:

•	ft,k	=	540,00	N/mm ²	(resistenza caratteristica a rottura)
•	fy,k	=	450,00	N/mm ²	(tensione caratteristica di snervamento)
•	fy,d	=	391,30	N/mm ²	(tensione di snervamento di calcolo - γ_c =1,15)
•	Es	=	210.000,00	N/mm ²	(modulo elastico istantaneo)

5.3 CALCOLO DEI COPRIFERRI MINIMI – ZATTERA DI FONDAZIONE

Ai sensi delle prescrizioni di cui alla normativa vigente e con riferimento alla procedura di calcolo prevista dalla Circolare Applicativa (riferita alla normativa del 2008 ma a tutt'oggi valida) si riporta di seguito il calcolo del copriferro minimo inteso come ricoprimento delle barre:

Definizione della condiizoni ambientali (TABELLA 4.1.IV - Descrizione delle condizioni ambientali)						
Condizioni ambientali	Classe di esposizione	Classe di esposizione di proqetto				
Ordinarie	X0,XC1,XC2,XC3,XF1	XC2 ▼				
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3	Condizioni ambientali di progetto				
Molto Aggressive	XD2, XD3, XS2, XS3, XA3, XF4	Ordinario				

Definizione della classi di resistenza rispetto alla Tabelle C4.1.IV					
Classe minima Cmin	Classe di resistenza del calcestruzzo	Classe di resistenza del calcestruzzo			
C25/30	Barre da c.a. elementi a p ▼	C28/35 ▼			
Classe C0	Vita Nominale dell'opera	Produzioni sottoposte a controllo qualità			
C45/55	50 Anni	NO 🔻			

Determinazione del copriferro minimo (Tab. C4.1.IV)				
Copriferro minimo ai sensi della tabella e delle precisazioni di cui al capitolo C4.1.6.1.3	20	mm		
della Circolare Applicativa				
Tolleranza costruttiva	5	mm		
COPRIFERRO MINIMO DI PROGETTO	25	mm		

5.4 CALCOLO DEI COPRIFERRI MINIMI – ELEVAZIONI

Ai sensi delle prescrizioni di cui alla normativa vigente e con riferimento alla procedura di calcolo prevista dalla Circolare Applicativa (riferita alla normativa del 2008 ma a tutt'oggi valida) si riporta di seguito il calcolo del copriferro minimo inteso come ricoprimento delle barre:

Definizione della condiizoni ambientali (TABELLA 4.1.IV - Descrizione delle condizioni ambientali)						
Condizioni ambientali	Classe di esposizione	Classe di esposizione di progetto				
Ordinarie	X0,XC1,XC2,XC3,XF1	XF2 ▼				
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3	Condizioni ambientali di progetto				
Molto Aggressive	XD2, XD3, XS2, XS3, XA3, XF4	Aggressivo				

Definizione della classi di resistenza rispetto alla Tabelle C4.1.IV					
	Classa	di resistenza del	1 1	Classe di resist	tonza dol
Classe minima Cmin		ilcestruzzo		calcestru	
C28/35	Barre da	c.a. elementi a p 🔻		C32/40	-
Classe C0	Vita No	minale dell'opera		Produzioni sotto	
C45/55	50 Anni	▼		NO	1

Determinazione del copriferro minimo (Tab. C4.1.IV)			
Copriferro minimo ai sensi della tabella e delle precisazioni di cui al capitolo C4.1.6.1.3 della Circolare Applicativa			
Tolleranza costruttiva	5	mm	
COPRIFERRO MINIMO DI PROGETTO	35	mm	

5.5 VALUTAZIONE DELLA LUNGHEZZA DI ANCORAGGIO DELLE BARRE DI ARMATURA

Le Norme Tecniche per le Costruzioni (NTC 2018) e l'Eurocodice 2 (EC2 – EN1992) indicano sinteticamente le prescrizioni per calcolare la lunghezza minima di ancoraggio delle armature in modo che quest'ultime riescano ad assorbire le forze di trazione che il calcestruzzo non è in grado di sopportare.

Al paragrafo 5.2.2.3 dell'EC2 viene riportata la definizione della lunghezza di ancoraggio di base. Essa è la lunghezza rettilinea necessaria per ancorare una barra soggetta alla forza ($f_{yd}xA_s$) avendo assunto una tensione costante all'interfaccia acciaio-calcestruzzo pari a f_{bd} .

La lunghezza di ancoraggio di base per ancorare una barra di diametro \emptyset è data dalla relazione:

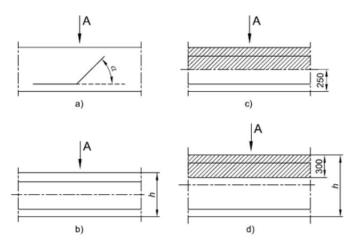
$$l_b = \frac{\emptyset \cdot f_{yd}}{4 \cdot f_{bd}}$$

con:

- f_{bd}: si indica la tensione di aderenza ultima offerta dal calcestruzzo;
- Ø: diametro della barra di armatura;
- f_{yd}: si indica la tensione di snervamento dell'accciaio.

La tensione di aderenza f_{bd} , dipende oltre che dalla resistenza del calcestruzzo, anche dalle condizioni in cui si realizza l'ancoraggio della barra.

La tensione di aderenza ultima di progetto delle barre ad aderenza migliorata è data dalla formula:


$$f_{bd} = 2,25 \cdot \eta_1 \cdot \eta_2 \cdot f_{ctd}$$

dove:

- $f_{ctd} = f_{ctk}/\gamma_c$;
- η₁= 1 nelle condizioni di buon ancoraggio, e uguale a 0,7 negli altri casi;
- η_2 = 1 per diametri delle barre inferiori a 32 mm oppure a (132 Ø) / 100 per diametri maggiori.

L'Eurocodice 2 descrive dettagliatamente le condizioni di buone aderenza:

- la barra ha una inclinazione sull'orizzontale maggiore o uguale a 45° verso la direzione del getto
- la barra ha una inclinazione compresa tra 0 e 45° e sono:
 - o poste in elementi la cui profondità nella direzione del getto non è maggiore di 250 mm.
 - o inglobate in elementi con una profondità maggiore di 250 mm e che, a getto completato, sono nella metà inferiore dell'elemento o ad almeno 300 mm dalla superficie superiore dell'elemento.

La figura a e b rappresentano condizioni di buona aderenza. Nelle figure c e d le aree tratteggiate rappresentano zone con condizioni di aderenza mediocre.

Di seguito viene riportata la tabella riepilogativa delle diverse lunghezze di ancoraggio in funzione delle diverse classi di resistenza del calcestruzzo.

		ACCIAO						
f yd	Мра	valore di calcolo snervamento acciaio	391,3					
		CALCESTRUZZO						
			C28/35	C32/40	C30/37	C35/45	C40/50	C45/55
f ck	Мра	resistenza a compressione cilindrica cls	29,05	33,2	30,71	37,35	41,5	45,65
R ck	Мра	resistenza a compressione cubica cls	35	40	37	45	50	55
f ctm	Мра	resistenza media a trazione semplice cls	2,83	3,10	2,94	3,35	3,60	3,83
f ctk	Мра	resistenza a trazione pura cls	1,98	2,17	2,06	2,35	2,52	2,68
f bk	Мра	valore caratteristico della tensione di aderenza	4,47	4,88	4,63	5,28	5,66	6,04
f bd_buona	Мра	valore di calcolo della tensione di aderenza	2,98	3,25	3,09	3,52	3,78	4,02
f bd_mediocre	Мра	valore di calcolo della tensione di aderenza	2,08	2,28	2,16	2,46	2,64	2,82
LUNGHEZZA DI ANCORAGGIO								
l b_buona	Ø	lunghezza di ancoraggio per ø	33	30	32	28	26	24
l b_mediocre	Ø	lunghezza di ancoraggio per ø	47	43	45	40	37	35

Per armature dei manufatti si è sempre considerata una lunghezza di ancoraggio e sovrapposizione pari a:

$$l_{bd} = 50 \cdot \emptyset$$

maggiore dei valori presenti nella tabella sovrastante per cui la verifica risulta implicitamente soddisfatta.

6

RELAZIONE DI CALCOLO MANUFATTO DI IMBOCCO E/O DI USCITA CIRCOLARE - MURO SCATOLATO

CARATTERIZZAZIONE GEOTECNICA DEI TERRENI

Ai sensi della relazione geologica e della relazione geotecnica, nonché in conformità con i profili geotecnici allegati al presente progetto esecutivo, il terreno di fondazione è schematizzato dalle seguenti unità litotecniche caratterizzate dai seguenti parametri geotecnici:

- <u>UNITÀ G3/G3*</u> Ghiaia con sabbia/ sabbia con ghiaia da mediamente (G3) a molto addensate (G3*), spesso intercalate dal livello L5. Questa Unità si estende da p.c. fino a profondità massime di 22.0 m.
- <u>UNITÀ L5</u> Limo sabbioso a tratti debolmente argilloso/ limo con sabbia, da poco a ben addensato si rileva solitamente all'interno dell'unità G3/G3* con spessori variabili tra 1.5 e 2.0 m. Nel solo sondaggio S14-36 raggiunge spessori di circa 5.0 m.
- **UNITÀ S2** Sabbia prevalentemente fine limosa talvolta ghiaiosa. Si rileva solitamente al di sotto dell'unità G3/G3* e si estende oltre la profondità raggiunta dai sondaggi costituendo un vero e proprio strato di base.
- <u>UNITÀ S1</u> Sabbia prevalentemente fine con passaggi a granulometria gradata media, mediamente addensata. Si rileva solo in alcune tratte al di sotto dell'unità G3/G3* e/o unità S2 e come quest'ultima si estende oltre la profondità raggiunta dai sondaggi costituendo lo strato di base.

La falda di progetto è stata considerata a quota -1,00 m dal piano di campagna.

Il terreno spingente è costituito da materiale idoneo per la costruzione del rilevato, caratterizzato dai seguenti parametri geotecnici:

Peso per unità di volume: γ = 20,00 kN/m³

Angolo di attrito interno: φ = 37,00°

• Coesione efficace: c' = 0,00 kN/m²

A favore di sicurezza i calcoli e le verifiche sono stati effettuati considerando il terreno di fondazione di tipo **L5**:

Peso per unità di volume: γ = 18,00 kN/m³

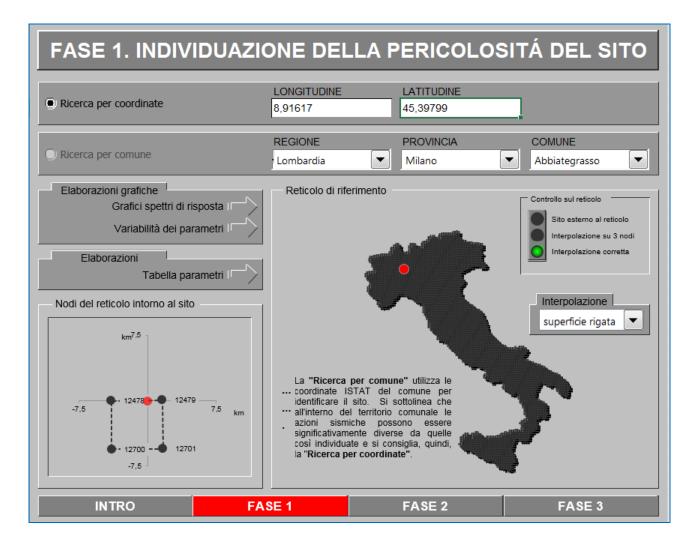
Angolo di attrito interno: φ = 26,00°

Coesione efficace: c' = 0,00 kN/m²
 Modulo di rigidezza: E = 20,00 MPa

Nei modelli di calcolo il terreno è stato modellato mediante molle elastiche alle quali sono state assegnate le seguenti costanti di rigidezza (a favore di sicurezza):

Direzione verticale → k = 15.000,00 kN/m³

Direzione orizzontale → k = 7.500,00 kN/m³



ZONIZZAZIONE E CARATTERIZZAZIONE SISMICA

7.1 IDENTIFICAZIONE DELLA LOCALITÀ E DEI PARAMETRI SISMICI GENERALI

L'area oggetto del presente intervento ricade all'interno del territorio del Comune di Abbiategrasso sito nella provincia di Milano.

7.2 **DEFINIZIONE DELLA STRATEGIA PROGETTUALE**

In riferimento al D.M. 17.01.2018 "Nuove Norme Tecniche per le Costruzioni", le opere sono progettate (in funzione dell'importanza strategica dell'infrastruttura) secondo i seguenti parametri:

Vita Nominale dell'opera:

50 anni

Tab. 2.4.I – Valori minimi della Vita nominale	V _N di progetto per i diversi tipi di costruzioni
--	--

	TIPI DI COSTRUZIONI	$egin{aligned} \mathbf{V_{alori}} & \mathbf{minimi} \\ \mathbf{di} & \mathbf{V_{N}} & (\mathbf{anni}) \end{aligned}$
1	Costruzioni temporanee e provvisorie	10
2	2 Costruzioni con livelli di prestazioni ordinari	
3	Costruzioni con livelli di prestazioni elevati	100

IV Classe d'uso dell'opera:

2.4.2. CLASSI D'USO

Con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso così definite:

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Coefficiente di utilizzo dell'opera: 2,0

Tab. $2.4.II$ – Valori del coefficiente d'uso C_U					
CLASSE D'USO	I	п	Ш	IV	
COEFFICIENTE C _U	0,7	1,0	1,5	2,0	

Vita di riferimento dell'opera: 100 anni

PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA

Le azioni sismiche sulle costruzioni vengono valutate in relazione ad un periodo di riferimento $m V_R$ che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale di progetto V_N per il coefficiente d'uso C_U:

$$V_R = V_N \cdot C_U \tag{2.4.1}$$

Qui di seguito si riporta la sintesi delle scelte progettuali adottati con i tempi di ritorno dell'azione sismica identificati in funzione del singolo stato limite.

7.3 PARAMETRI DI CALCOLO

7.3.1 PARAMETRI NUMERICI SISMICI

Nella tabella successiva sono riportati i parametri numerici sismici per i periodi di ritorno associati ai diversi Stati Limite:

SLATO	T _R	ag	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	60	0,022	2,543	0,194
SLD	101	0,027	2,590	0,211
SLV	949	0,050	2,730	0,304
SLC	1950	0,058	2,819	0,319

7.3.2 CATEGORIA DEI TERRENI DI FONDAZIONE E CATEGORIA TOPOGRAFICA

Ai sensi di quanto riportato nella Relazione Geotecnica e nei Profili geotecnici allegati al presente progetto esecutivo il terreno di fondazione è classificato simicamente come di **categoria C**.

Tab. 3.2.II - Ca	Tab. 3.2.II – Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.		
Categoria	Caratteristiche della superficie topografica		
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.		
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consi- stenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.		
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi- stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.		
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consi- stenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.		
Е	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le catego- rie C o D, con profondità del substrato non superiore a 30 m.		

7.3.3 CATEGORIA DEI TERRENI DI FONDAZIONE E CATEGORIA TOPOGRAFICA

Considerando che il territorio si presenta essenzialmente pianeggiante e privo di significati salti di quota la categoria topografica del sito è stata assunta pari a **categoria T1**.

Tab. 3.2.III – Categorie topografiche		
Categoria	Caratteristiche della superficie topografica	
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°	
T2	Pendii con inclinazione media i > 15°	
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°	
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°	

7.3.4 FATTORI DI STRUTTURA

A favore di sicurezza e visto il fatto che le opere in esame sono opere interrate, il calcolo e le verifiche sono state effettuate in campo elastico.

Il fattore di struttura è stato pertanto posto pari a **q = 1,00**.

Lo spettro di progetto adottato sarà pertanto identico allo spettro elastico.

7.3.5 DEFINIZIONE DELLO SPETTRO DI PROGETTO

Nell'immagine successiva è riportata la determinazione dei parametri dello spettro di risposta valutato per lo Stato Limite di Salvaguardia della Vita (SLV):

Nella tabella successiva sono riportati analiticamente i parametri sismici ed i valori delle accelerazioni normalizzate in funzione del periodo di vibrazione:

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV

Parametri indipendenti

STATO LIMITE	SLV
a _o	0,050 g
F _o	2,730
T _c *	0,304 s
Ss	1,500
Co	1,556
S _T	1,000
q	1,000

Parametri dipendenti

S	1,500
η	1,000
T _B	0,157 s
T _c	0,472 s
T _D	1,800 s

Espressioni dei parametri dipendenti

$$\mathbb{S} = \mathbb{S}_{\mathbb{S}} \cdot \mathbb{S}_{\mathbb{T}} \tag{NTC-08 Eq. 3.2.5}$$

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

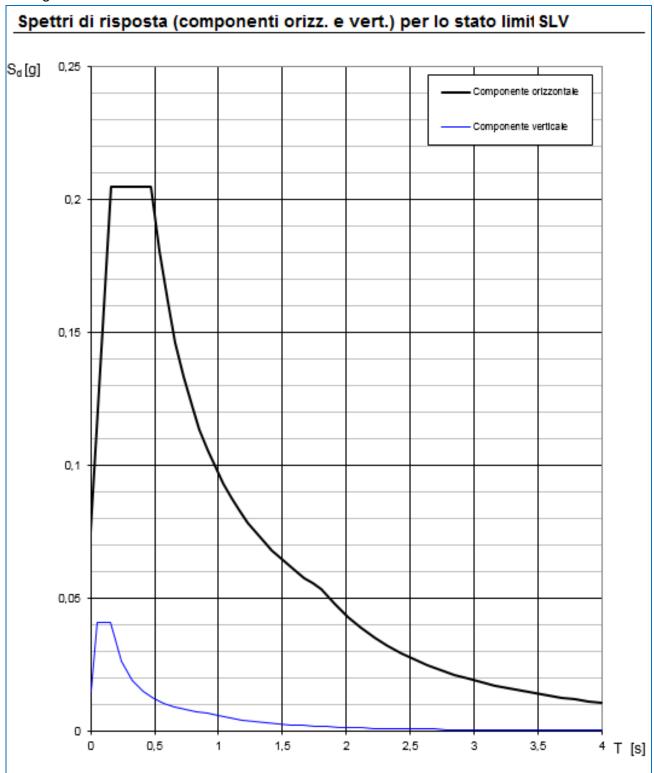
$$T_B = T_C/3$$
 (NTC-07 Eq. 3.2.8)

$$T_c = C_c \cdot T_c^*$$
 (NTC-07 Eq. 3.2.7)

$$T_0 = 4,0 \cdot a_g / g + 1,6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_B & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C \leq T < T_D & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq T & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$


Lo spettro di progetto S₄(T) per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico S_{*}(T) sostituendo n con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	T [s]	Se [g]
	0,000	0,075
Τ₀┫	0,157	0,205
Tℯ ⋖	0,472	0,205
	0,536	0,180
	0,599	0,161
	0,662	0,146
	0,725	0,133
	0,788	0,123
	0,852	0,114
	0,915	0,106
	0,978	0,099
	1,041	0,093
	1,105	0,088
	1,168	0,083
	1,231	0,079
	1,294	0,075
	1,357	0,071
	1,421	0,068
	1,484	0,065
	1,547	0,062
	1,610	0,060
	1,673	0,058
	1,737	0,056
T₀ ∢	1,800	0,054
	1,905	0,048
	2,009	0,043
	2,114	0,039
	2,219	0,035
	2,324	0,032
	2,428	0,030
	2,533	0,027
	2,638	0,025
	2,743	0,023
	2,848	0,021
	2,952	0,020
	3,057	0,019
	3,162	0,017
	3,267	0,016
	3,371	0,015
	3,476	0,014
	3,581	0,014
	3,686	0,013
	3,790	0,012
	3,895	0,011
	4,000	0,011
'		

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dell

Nell'immagine successiva è riportato il diagramma dello spettro di risposta per lo Stato Limite di Salvaguardia della Vita:

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso.

7.4 DEFINIZIONE DEI COEFFICIENTI SISMICI DI CALCOLO

Il coefficiente sismico orizzontale è determinato mediante la seguente relazione:

$$k_h = \beta_m \cdot \frac{a_{\text{max}}}{g}$$

dove:

 a_{max} → accelerazione orizzontale massima attesa al sito valutata mediante la seguente formulazione:

$$a_{max} = S \cdot a_g/g = S_S \cdot S_T \cdot a_g/g = 1,00 \cdot 1,50 \cdot 0,050 = 0,075$$

g → accelerazione di gravità

Il muro di sostegno può essere considerato come libero di ruotare intorno al piede. Il coefficiente β_m viene pertanto determinato secondo quanto previsto dal D.M. 17.01.2018 "Nuove Norme Tecniche per le Costruzioni" – par. 7.11.6.2.1:

Il coefficiente β_m assume un valore pari all'unità per muri impediti di traslare e ruotare.

I coefficienti sismici in direzione orizzontale e verticale risultano dunque pari a:

$$k_h=0,075$$

 $k_v=0,0375$

8

ANALISI DEI CARICHI

8.1 PESO PROPRIO DELLE STRUTTURE IN CEMENTO ARMATO

Il peso per unità di volume delle strutture in cemento armato è assunto pari a γ_{ca} = 25,0 kN/m³. Il peso proprio degli elementi strutturali è stato assegnato in automatico dal programma di calcolo in relazione alle reali dimensioni delle sezioni strutturali.

8.2 PESO PROPRIO DEL RINFIANCO DEL TOMBINO SCATOLARE

Il peso proprio del rinfianco in misto cementato (gravante sulla zattera di fondazione) è stato assunto pari $y = 20,00 \text{ kN/m}^3$.

8.3 PESO PROPRIO DEL PARAPETTO

Al di sopra della sommità delle pareti verticali è stata prevista la posa in opera di un parapetto metallico, il cui peso per unità di lunghezza è stato assunto pari a p = 0,20 kN/m.

8.4 CARICHI ACCIDENTALI A TERGO DEL MURO

A favore di sicurezza e per tener conto della eventuale presenza di mezzi d'opera leggeri in fase di manutenzione si considera un carico accidentale a tergo del muro (gravante sulla zattera di fondazione) pari a $\mathbf{q} = 20,00 \text{ kN/m}^2$.

8.5 SPINTA DEI TERRENI A TERGO DELL'OPERA DI SOSTEGNO

A favore di sicurezza la spinta del terreno agente esternamente all'opera è stata trascurata, mentre è stata considerata la spinta sulle pareti verticali agente dall'interno verso l'esterno, assumendo un peso per unità di volume $\gamma = 20,0$ kN/m³, calcolata in condizioni di riposo mediante la seguente relazione:

$$S_0 = \frac{1}{2} \cdot \gamma \cdot k_0 \cdot H^2$$

dove:

- γ → peso per unità di volume del terreno:
- H → altezza di applicazione della spinta
- k₀ → coefficiente di spinta a riposo, determinato mediante la relazione:

$$k_0 = 1 - sen(\varphi)$$

con:

- φ = angolo di attrito interno

8.6 SPINTA DEI SOVRACCARICHI A TERGO DELL'OPERA DI SOSTEGNO

La spinta dei sovraccarichi agenti a tergo dell'opera è stata calcolata in condizioni di riposo del terreno mediante la seguente relazione:

$$S_q = q \cdot k_0 \cdot H$$

dove:

- q è l'entità del sovraccarico agente

Sono stati considerati i seguenti sovraccarichi agenti:

sovraccarichi accidentali → q = 20,00 kN/m²

8.7 AZIONE SISMICA

Le sollecitazioni agenti sulla struttura in fase sismica vengono determinate attraverso un'analisi pseudo-statica, secondo quanto riportato nel DM 17.01.2018 "Nuove norme tecniche per le costruzioni", paragrafo 7.11.6.

8.7.1 AZIONE INERZIALE DELLE MASSE

Le azioni inerziali, orizzontali e verticali, dovute alle accelerazioni subite in fase sismica dalle masse degli elementi strutturali e del terreno vengono valutate moltiplicando il peso degli elementi strutturali per i coefficienti sismici orizzontale k_h e verticale k_v .

8.8 SOVRASPINTA DINAMICA DEI TERRENI

La sovraspinta dinamica laterali dei terreni è stata determinata mediante la formulazione di Wood:

$$\Delta P = \gamma \cdot \frac{a_g}{g} \cdot S \cdot H^2$$

dove:

- γ → peso per unità di volume del terreno:
- H → altezza di applicazione della spinta
- a₀/g → accelerazione orizzontale massima su sito di riferimento rigido orizzontale
- S → coefficiente che tiene conto della categoria di sottosuolo e della categoria topografica

9

COMBINAZIONI DI CARICO

9.1 COMBINAZIONI DI CARICO ALLO STATO LIMITE DI ESERCIZIO - COMBINAZIONI QUASI-**PERMANENTI**

Per le combinazioni di carico statiche relative alla struttura in oggetto si è fatto riferimento a quanto riportato nel capitolo nel D.M. 17.01.2018 "Nuove norme tecniche per le costruzioni", par. 2.5.3. Sulla base di ciò sono state individuate le combinazioni di carico statiche quasi permanenti allo Stato Limite di Esercizio, ottenute tramite la relazione generale:

$$F_d = \sum G_{kj} + \sum \left(\psi_{2i} \cdot Q_{ki} \right)$$

dove:

- G_{ki} rappresenta il valore caratteristico della j-esima azione permanente
- Q_{ki} rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{2i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori quasi permanenti

COMBINAZIONI DI CARICO ALLO STATO LIMITE DI ESERCIZIO - COMBINAZIONI FREQUENTI 9.2

Per le combinazioni di carico statiche relative alla struttura in oggetto si è fatto riferimento a quanto riportato nel capitolo nel D.M. 17.01.2018 "Nuove norme tecniche per le costruzioni", par. 2.5.3. Sulla base di ciò sono state individuate le combinazioni di carico statiche frequenti allo Stato Limite di Esercizio, ottenute tramite la relazione generale:

$$F_{d} = \sum G_{kj} + \psi_{11} \cdot Q_{k1} + \sum (\psi_{2i} \cdot Q_{ki})$$

dove:

- G_{ki} rappresenta il valore caratteristico della j-esima azione permanente
- Q_{k1} rappresenta il valore caratteristico dell'azione variabile di base in ogni combinazione
- Qki rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{1i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori frequenti

9.3 COMBINAZIONI DI CARICO ALLO STATO LIMITE DI ESERCIZIO -COMBINAZIONI **CARATTERISTICHE**

Per le combinazioni di carico statiche relative alla struttura in oggetto si è fatto riferimento a quanto riportato nel capitolo nel D.M. 17.01.2018 "Nuove norme tecniche per le costruzioni", par. 2.5.3. Sulla base di ciò sono state individuate le combinazioni di carico statiche caratteristiche allo Stato Limite di Esercizio, ottenute tramite la relazione generale:

$$F_d = \sum G_{kj} + Q_{k1} + \sum (\psi_{0i} \cdot Q_{ki})$$

dove:

- G_{ki} rappresenta il valore caratteristico della j-esima azione permanente
- Q_{k1} rappresenta il valore caratteristico dell'azione variabile di base in ogni combinazione
- Qki rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{0i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori caratteristici

9.4 COMBINAZIONI DI CARICO ALLO STATO LIMITE ULTIMO STATICHE

Per le combinazioni di carico statiche relative alla struttura in oggetto si è fatto riferimento a quanto riportato nel capitolo nel D.M. 17.01.2018 "Nuove norme tecniche per le costruzioni", par. 2.5.3. Sulla base di ciò sono state individuate le combinazioni di carico statiche allo Stato Limite Ultimo, ottenute tramite la relazione generale:

$$F_d = \sum_{i=1}^m \left(\gamma_{G_j} \cdot G_{k_j} \right) + \gamma_{Q_1} \cdot Q_{k_1} + \sum_{i=2}^n \left(\psi_{0i} \cdot \gamma_{Q_i} \cdot Q_{k_i} \right)$$

dove:

- y_G e y_Q rappresentano i coefficienti parziali di amplificazione dei carichi
- G_{ki} rappresenta il valore caratteristico della j-esima azione permanente
- Qk1 rappresenta il valore caratteristico dell'azione variabile di base in ogni combinazione
- Qki rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{0i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori caratteristici

I coefficienti di amplificazione dei carichi per le combinazioni di carico, secondo il D.M. 174.01.2018 "Nuove norme tecniche per le costruzioni", par. 2.6, tabella 2.6.1, sono riepilogati nelle seguenti tabelle:

Tab. 2.6.I - Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente	EQU	A1	A2
		$\gamma_{\scriptscriptstyle F}$			
Carichi permanenti G1	Favorevoli	2/	0,9	1,0	1,0
	Sfavorevoli	ΥG1	1,1	1,3	1,0
Carichi permanenti non strutturali G ₂ ⁽¹⁾	Favorevoli		0,8	0,8	0,8
	Sfavorevoli	Υ _{G2}	1,5	1,5	1,3
A minusi annui abili O	Favorevoli				
Azioni variabili Q	Sfavorevoli	Yο	1,5	1,5	1,3

⁽¹⁾Nel caso in cui l'intensità dei carichi permanenti non strutturali o di una parte di essi (ad es. carichi permanenti portati) sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti parziali validi per le azioni permanenti.

Le verifiche di tipo geotecnico sono state effettuate secondo l'approccio 2 (A1-M1-R3) del D.M. 17.01.2018 "Nuove Norme Tecniche per le Costruzioni", cap.6.

I coefficienti di riduzione dei parametri geotecnici e delle resistenze verranno esplicitati negli specifici paragrafi relativi alle verifiche di carattere geotecnico.

9.5 COMBINAZIONE DI CARICO SISMICHE

In fase sismica è state ipotizzate un'unica combinazione di carico allo Stato Limite di Salvaguardia ottenuta tramite la relazione generale:

$$F_d = E + \sum G_{kj} + \sum (\psi_{2i} \cdot Q_{ki})$$

dove:

- E rappresenta il carico sismico
- G_{ki} rappresenta il valore caratteristico della j-esima azione permanente
- Qki rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{2i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori quasi permanenti

9.6 DEFINIZIONE DEI COEFFICIENTI DI PARTECIPAZIONE E RIEPILOGO DELLE COMBINAZIONI

Nella tabella successiva sono riportati i coefficienti di amplificazione (γ) e i coefficienti di partecipazione (ψ) dei carichi elementari considerati nella definizione delle combinazioni di carico:

CARICO ELEMENTARE	γ	Ψ0	Ψ1	Ψ2	
Pesi propri strutturali	g ₁	1,35	1,00	1,00	1,00
Peso proprio del terreno a tergo del muro	g_2	1,35	1,00	1,00	1,00
Peso proprio del parapetto metallico	g ₃	1,35	1,00	1,00	1,00
Spinta orizzontale dei terreni	g ₄	1,35	1,00	1,00	1,00
Carichi accidentali a tergo del muro	q ₁	1,50	1,00	0,75	0,00
Spinta orizzontale dei carichi accidentali a tergo del muro	q_2	1,50	1,00	0,75	0,00
Sov raspinta dinamica dei terreni	S ₁	-	-	-	-
Inerzia sismica degli elementi strutturali	S ₂	-	-	-	-
Inerzia sismica del terreno a tergo del muro	s_3	-	-	-	-
Inerzia sismica del parapetto metallico	S ₄	-	-	-	-

Nelle tabelle successive sono riepilogate le combinazioni di carico utilizzate per le verifiche degli elementi strutturali:

CARICO	SLE - QUASI PERMANENTI		SLE - FR	SLE - FREQUENTE		SLE - RARA	
ELEMENTARE	γ	Ψ	γ	Ψ	γ	Ψ	
g_1	1,00	1,00	1,00	1,00	1,00	1,00	
g_2	1,00	1,00	1,00	1,00	1,00	1,00	
9 ₃	1,00	1,00	1,00	1,00	1,00	1,00	
9 ₄	1,00	1,00	1,00	1,00	1,00	1,00	
q_1	1,00	0,00	1,00	0,75	1,00	1,00	
q_2	1,00	0,00	1,00	0,75	1,00	1,00	
S ₁	-	-	-	-	-	-	
s_2	-	-	-	-	-	-	
s_3	-	-	-	-	-	-	
S ₄	-	-	-	-	-	-	
<u>.</u>		•		•			
CARICO	SLU - STR		S	SLV			
ELEMENTARE	γ	Ψ	γ	Ψ			
g ₁	1,35	1,00	1,00	1,00			
g_2	1,35	1,00	1,00	1,00			
g ₃	1,35	1,00	1,00	1,00			
9 ₄	1,35	1,00	1,00	1,00			
q_1	1,50	1,00	1,00	0,00			
q_2	1,50	1,00	1,00	0,00			
				1	7		

1,00

1,00

1,00

1,00

1,00

1,00

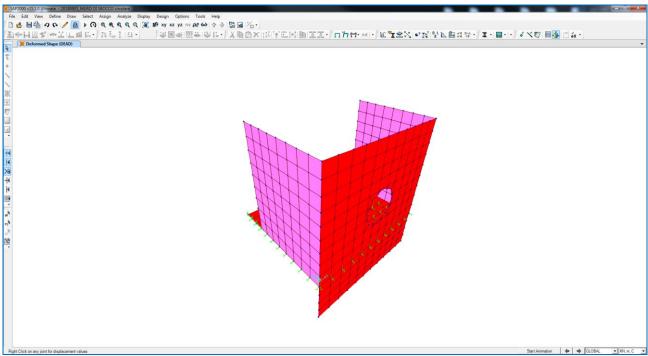
1,00

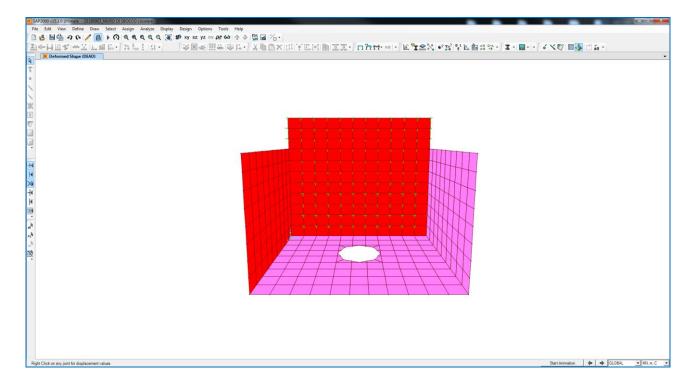
1,00

 s_1

 \mathbf{s}_{2}

 \mathbf{s}_3 S_4



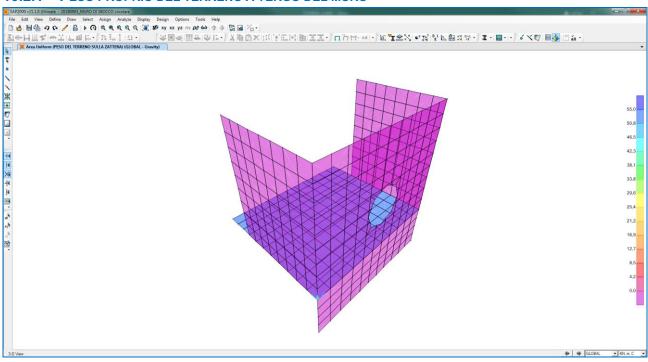


10 MODELLO DI CALCOLO

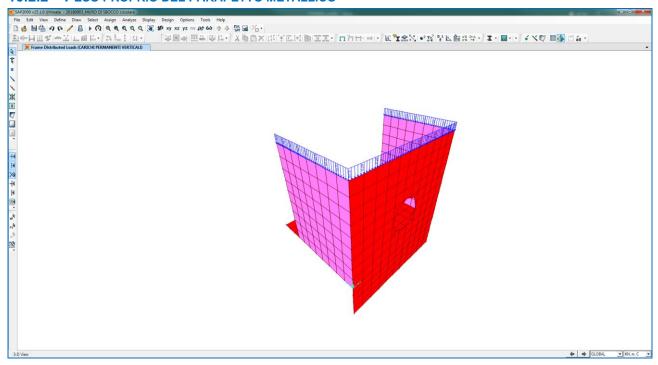
10.1 DEFINIZIONE DEL MODELLO DI CALCOLO

Al fine di valutare le azioni sollecitanti sulle pareti verticali e sulla zattera di fondazione, sia in direzione verticale che orizzontale (i muri sono collegati direttamente alla canna del tombino scatolare), è stato approntato un apposito modello di calcolo agli elementi finiti mediante il software SAP2000 v.15.1:

Gli elementi strutturali sono stati modellati mediante elementi bidimensionali tipo "shell", con comportamento a "lastra – piastra" e con spessore pari allo spessore reale della sezione strutturale.



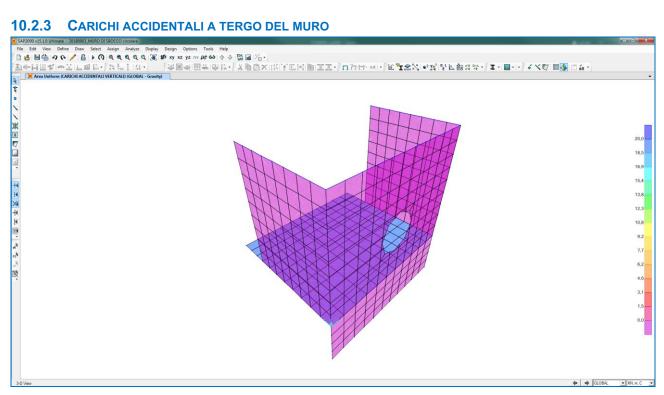
Il terreno al di sotto della zattera di fondazione è stato modellato mediante molle elastiche alle quali sono state assegnate le seguenti costanti di rigidezza (a favore di sicurezza):

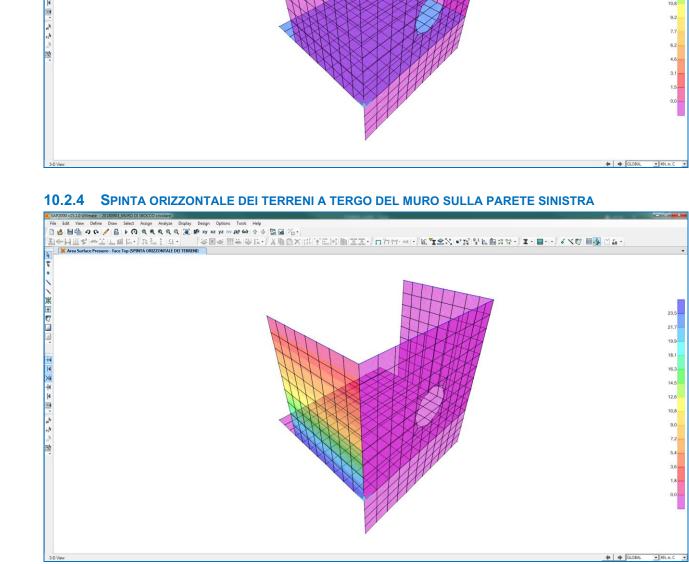

- Direzione verticale \rightarrow k = 15.000,00 kN/m³
- Direzione orizzontale \rightarrow k = 7.500,00 kN/m³

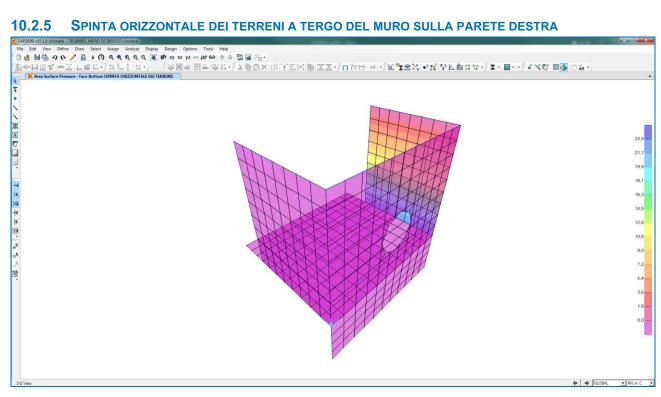
10.2 **APPLICAZIONE DEI CARICHI ELEMENTARI**

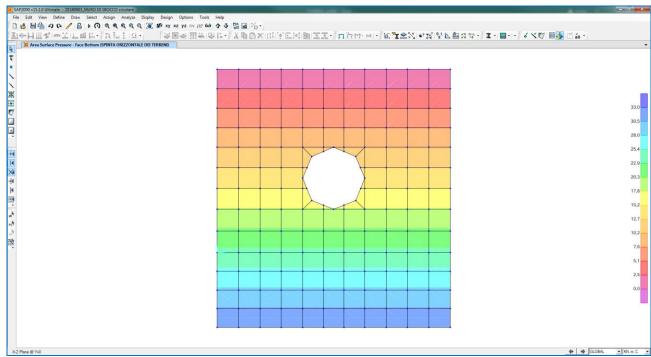
10.2.1 PESO PROPRIO DEL TERRENO A TERGO DEL MURO

10.2.2 PESO PROPRIO DEL PARAPETTO METALLICO

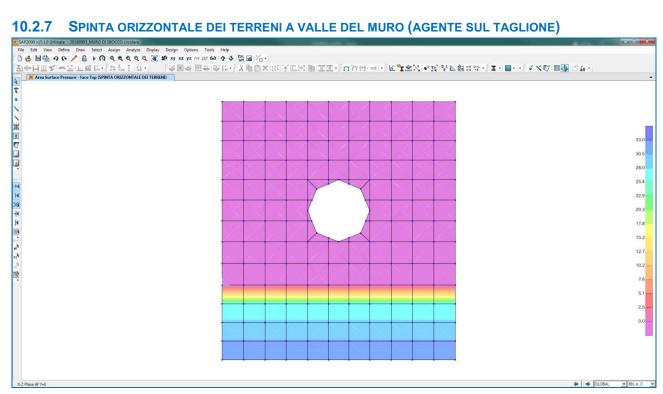


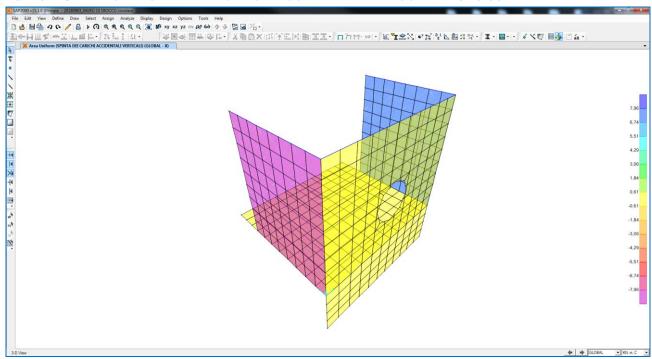






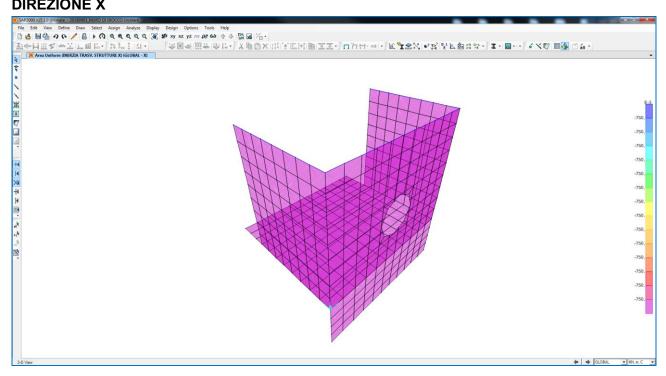
10.2.6 SPINTA ORIZZONTALE DEI TERRENI A TERGO DEL MURO SULLA PARETE FRONTALE

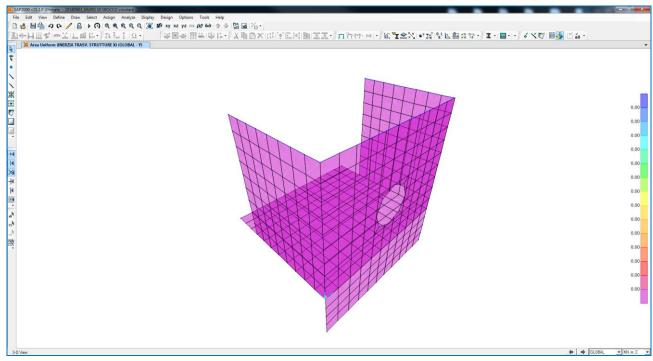




10.2.8 SPINTA ORIZZONTALE DEI CARICHI ACCIDENTALI A TERGO DEL MURO SULLE PARETI LATERALI

10.2.9 SPINTA ORIZZONTALE DEI CARICHI ACCIDENTALI A TERGO DEL MURO SULLA PARETE FRONTALE

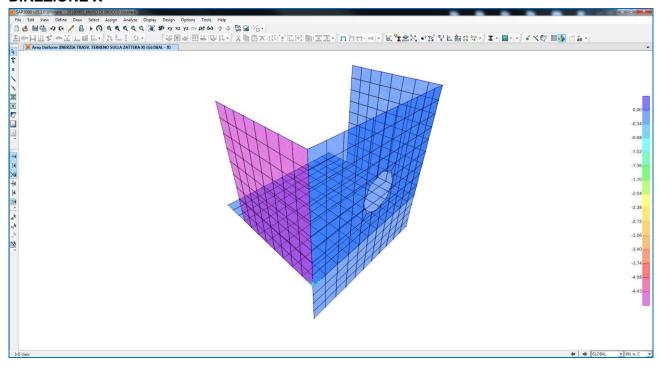


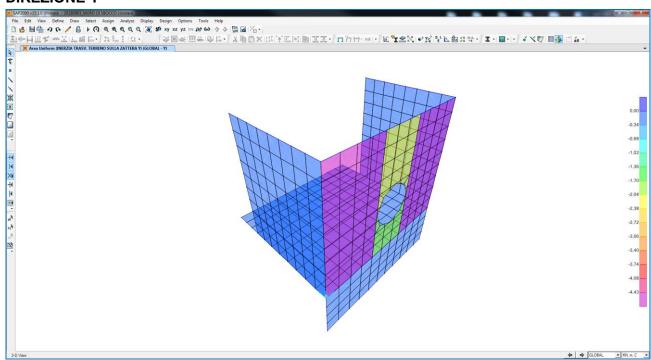


10.2.10 INERZIA SISMICA ORIZZONTALE DEGLI ELEMENTI STRUTTURALI

DIREZIONE X

DIREZIONE Y

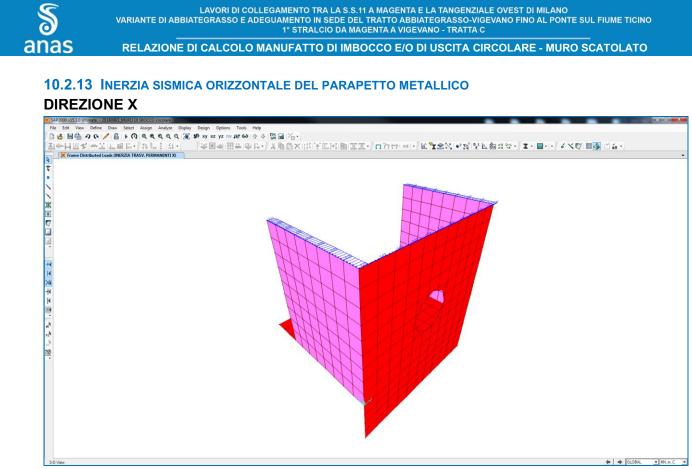


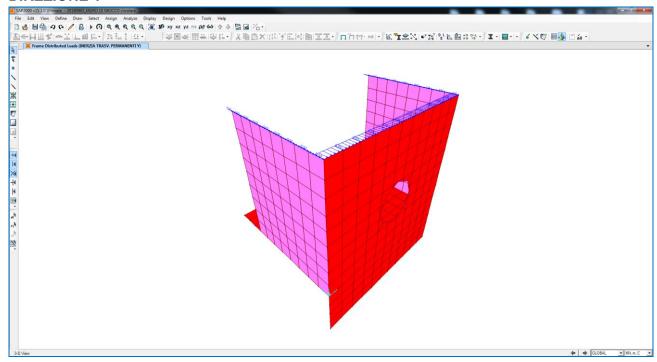

10.2.11 INERZIA SISMICA ORIZZONTALE DEL TERRENO A TERGO DEL MURO SULLE PARETI LATERALI

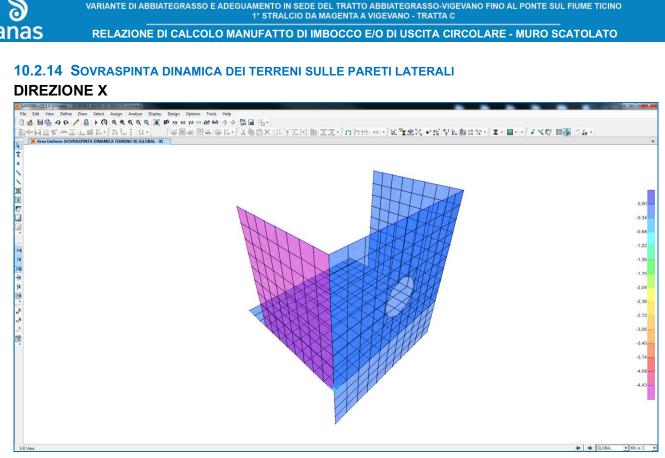
DIREZIONE X

10.2.12 INERZIA SISMICA ORIZZONTALE DEL TERRENO A TERGO DEL MURO SULLA PARETE FRONTALE

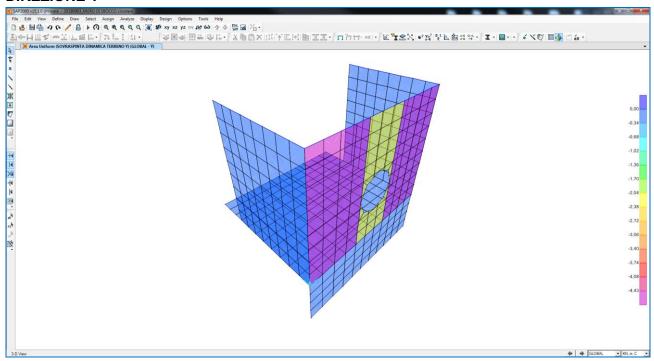
DIREZIONE Y







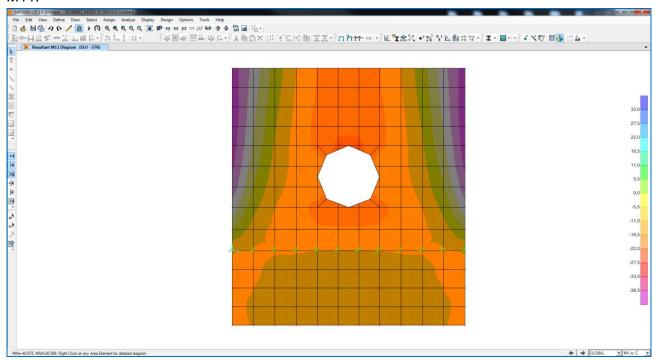
DIREZIONE Y



10.2.15 SOVRASPINTA DINAMICA DEI TERRENI SULLA PARETE FRONTALE

DIREZIONE Y

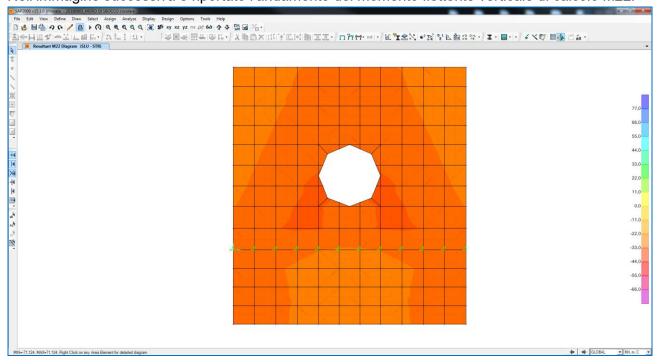
11

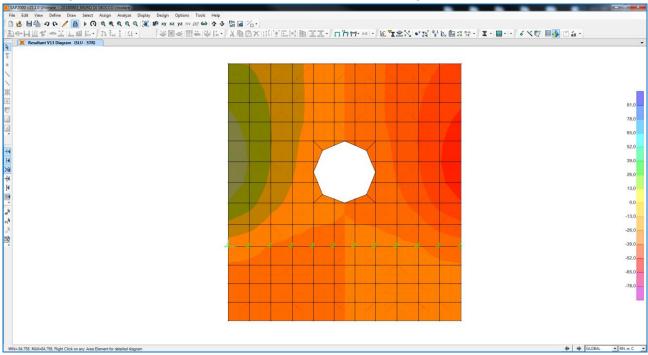

VALUTAZIONE DELLE AZIONI SOLLECITANTI SUL MURO FRONTALE

11.1 COMBINAZIONE ALLO STATO LIMITE ULTIMO - STR

Nell'immagine successiva è riportato l'andamento dell'azione normale di calcolo F22:

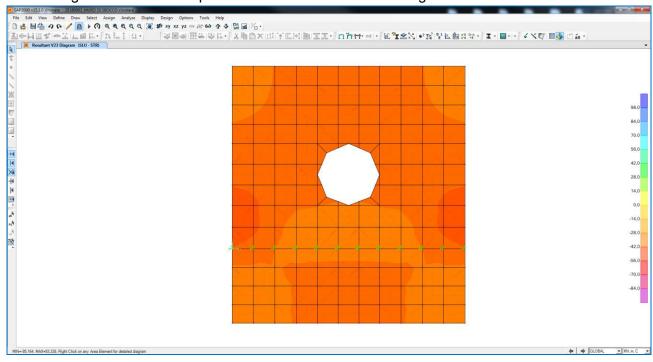
Nell'immagine successiva è riportato l'andamento del momento flettente orizzontale di calcolo M11:

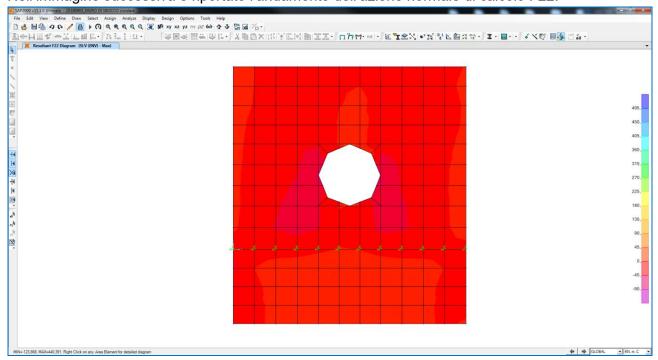




Nell'immagine successiva è riportato l'andamento del momento flettente verticale di calcolo M22:

Nell'immagine successiva è riportato l'andamento dell'azione tagliante orizzontale di calcolo V13:

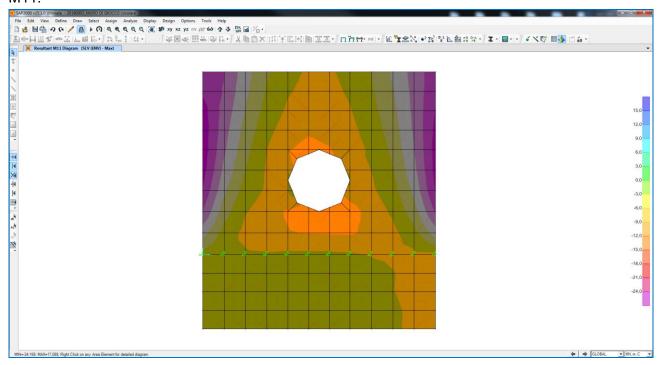


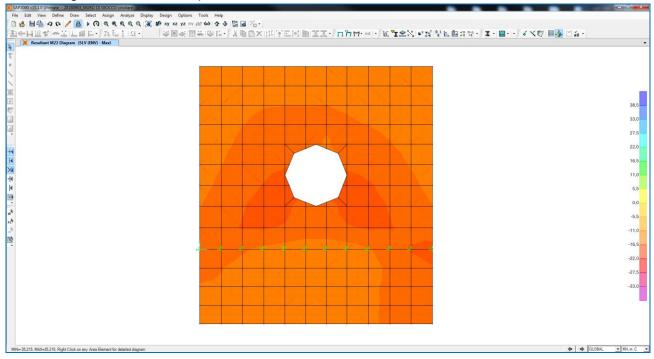

RELAZIONE DI CALCOLO MANUFATTO DI IMBOCCO E/O DI USCITA CIRCOLARE - MURO SCATOLATO

Nell'immagine successiva è riportato l'andamento dell'azione tagliante verticale di calcolo V23:

11.2 COMBINAZIONE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA (ENVELOPE)

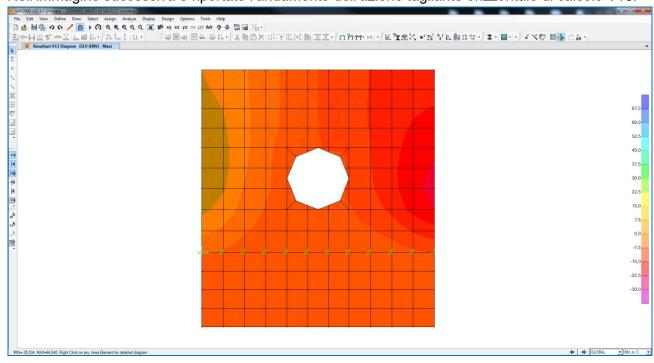
Nell'immagine successiva è riportato l'andamento dell'azione normale di calcolo F22:

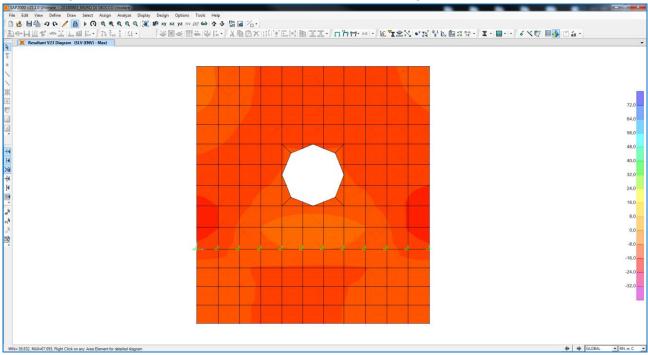




Nell'immagine successiva è riportato l'andamento del momento flettente orizzontale di calcolo M11:

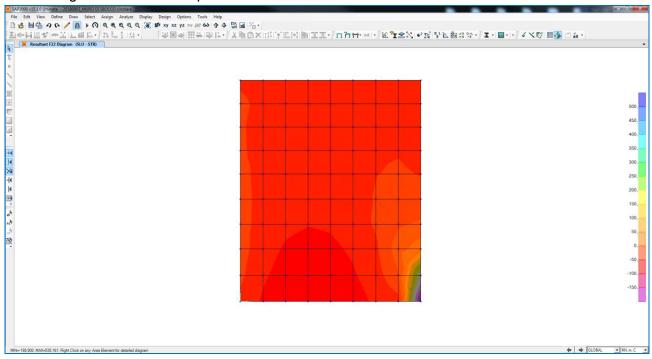
Nell'immagine successiva è riportato l'andamento del momento flettente verticale di calcolo M22:

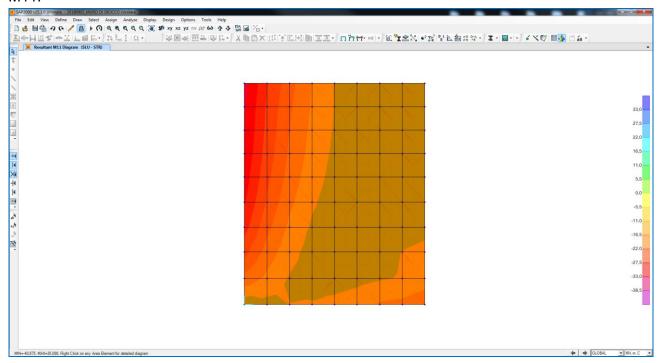




Nell'immagine successiva è riportato l'andamento dell'azione tagliante orizzontale di calcolo V13:

Nell'immagine successiva è riportato l'andamento dell'azione tagliante verticale di calcolo V23:

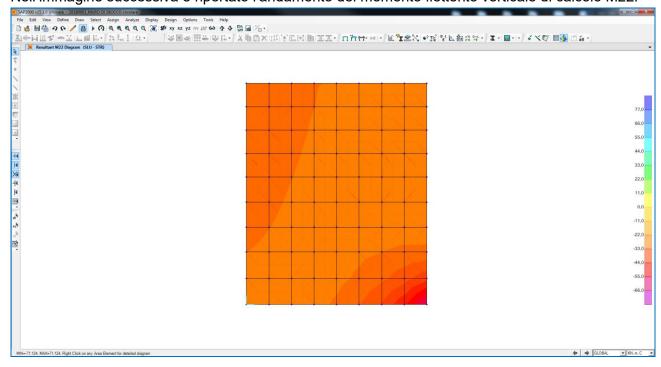


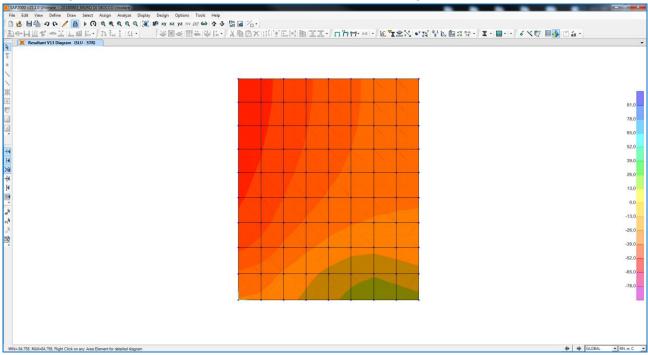

VALUTAZIONE DELLE AZIONI SOLLECITANTI SUI MURI LATERALI 12

12.1 COMBINAZIONE ALLO STATO LIMITE ULTIMO - STR

Nell'immagine successiva è riportato l'andamento dell'azione normale di calcolo F22:

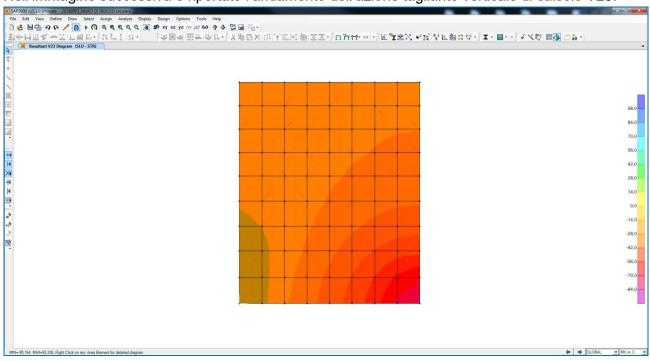
Nell'immagine successiva è riportato l'andamento del momento flettente orizzontale di calcolo M11:

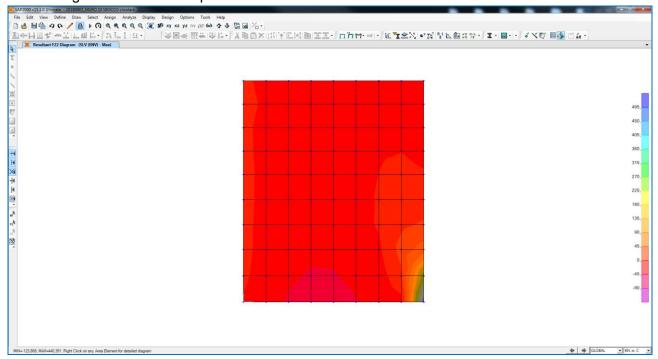




Nell'immagine successiva è riportato l'andamento del momento flettente verticale di calcolo M22:

Nell'immagine successiva è riportato l'andamento dell'azione tagliante orizzontale di calcolo V13:

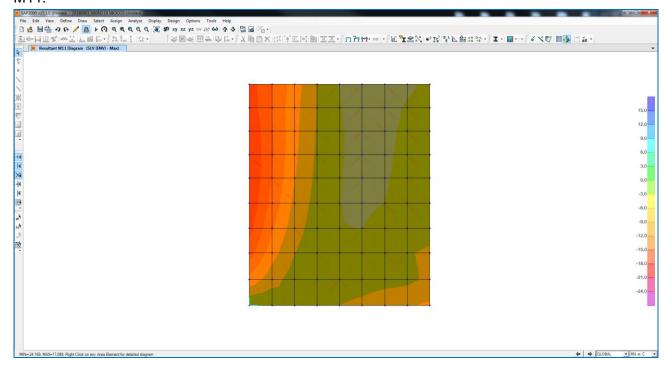


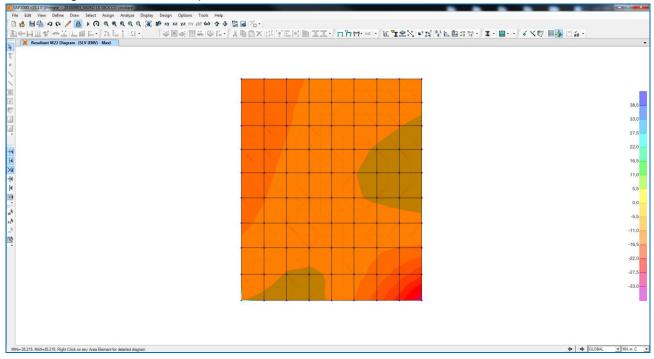

RELAZIONE DI CALCOLO MANUFATTO DI IMBOCCO E/O DI USCITA CIRCOLARE - MURO SCATOLATO

Nell'immagine successiva è riportato l'andamento dell'azione tagliante verticale di calcolo V23:

12.2 COMBINAZIONE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA (ENVELOPE)

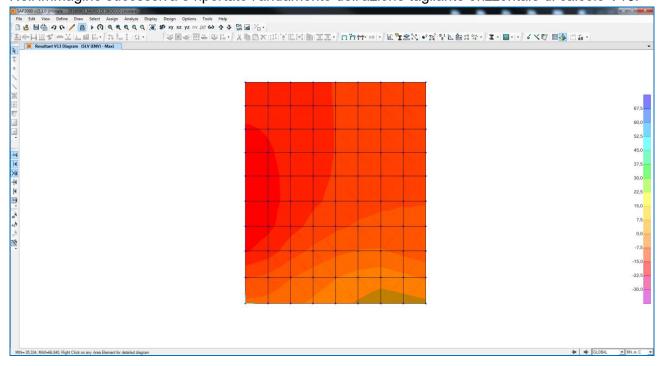
Nell'immagine successiva è riportato l'andamento dell'azione normale di calcolo F22:

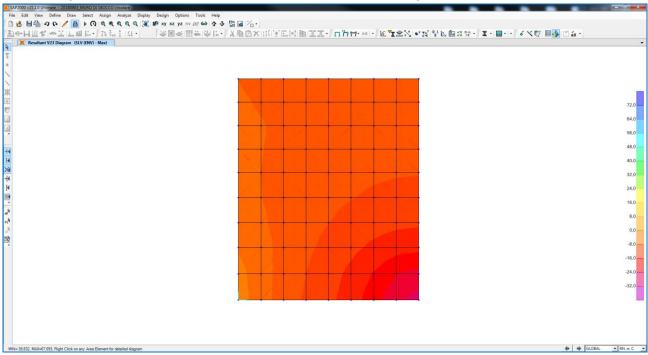




Nell'immagine successiva è riportato l'andamento del momento flettente orizzontale di calcolo M11:

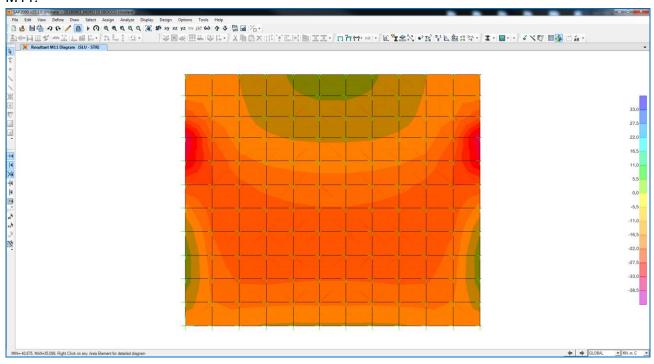
Nell'immagine successiva è riportato l'andamento del momento flettente verticale di calcolo M22:

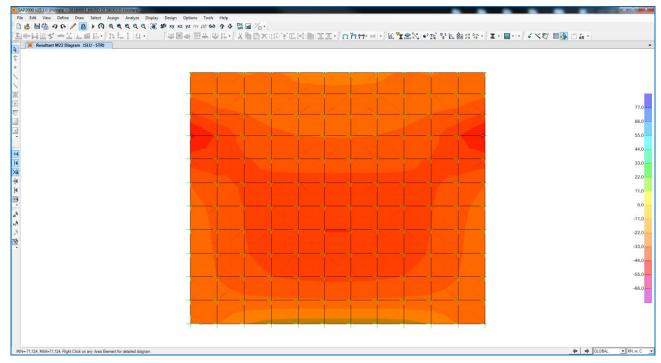




Nell'immagine successiva è riportato l'andamento dell'azione tagliante orizzontale di calcolo V13:

Nell'immagine successiva è riportato l'andamento dell'azione tagliante verticale di calcolo V23:

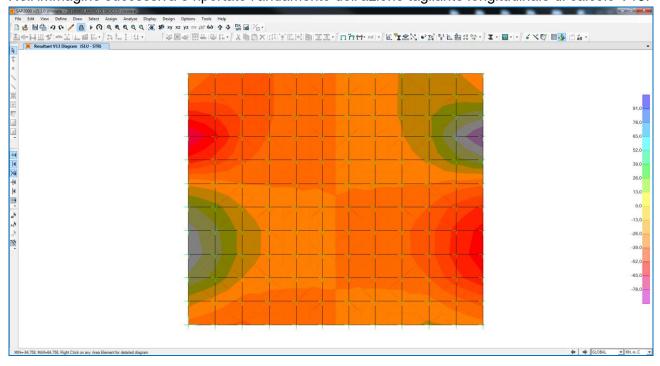


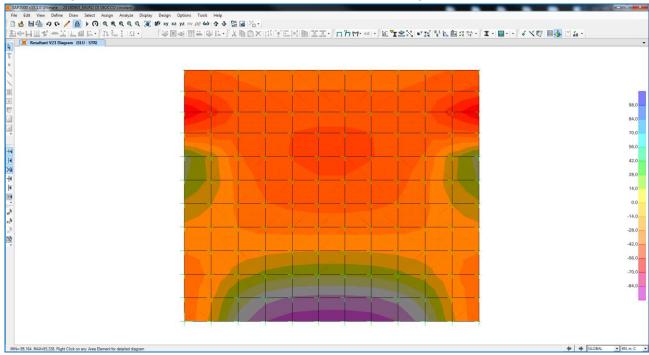

13 VALUTAZIONE DELLE AZIONI SOLLECITANTI SULLA ZATTERA DI FONDAZIONE

13.1 COMBINAZIONE ALLO STATO LIMITE ULTIMO – STR

Nell'immagine successiva è riportato l'andamento del momento flettente longitudinale di calcolo M11:

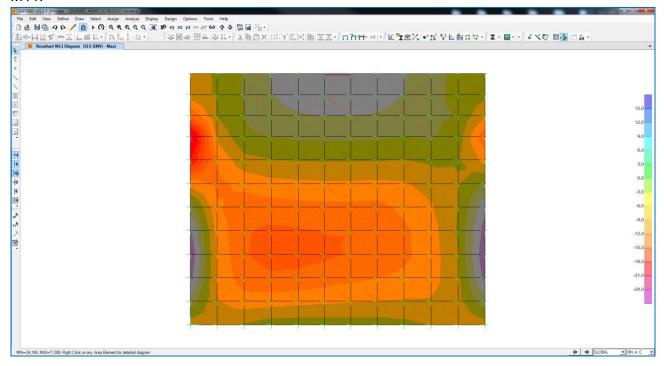
Nell'immagine successiva è riportato l'andamento del momento flettente trasversale di calcolo M22:

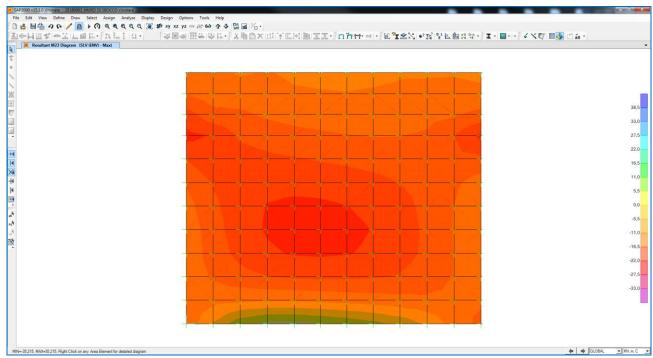




Nell'immagine successiva è riportato l'andamento dell'azione tagliante longitudinale di calcolo V13:

Nell'immagine successiva è riportato l'andamento dell'azione tagliante trasversale di calcolo V23:

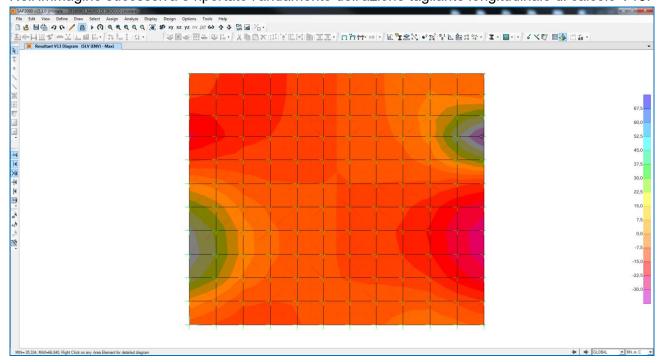


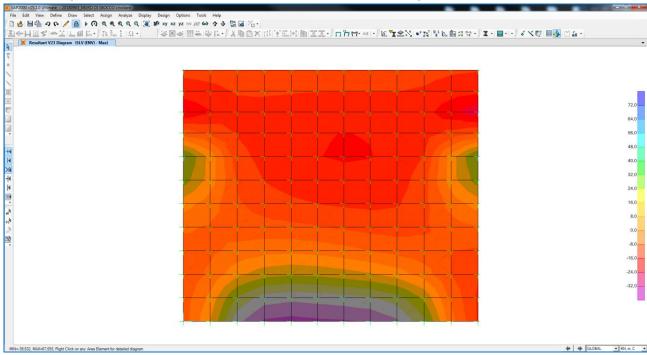


13.2 COMBINAZIONE ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA (ENVELOPE)

Nell'immagine successiva è riportato l'andamento del momento flettente longitudinale di calcolo M11:

Nell'immagine successiva è riportato l'andamento del momento flettente trasversale di calcolo M22:





Nell'immagine successiva è riportato l'andamento dell'azione tagliante longitudinale di calcolo V13:

Nell'immagine successiva è riportato l'andamento dell'azione tagliante trasversale di calcolo V23:

14

MURO FRONTALE - VERIFICHE STRUTTURALI

14.1 RIEPILOGO DELLE AZIONI SOLLECITANTI DI CALCOLO

Per ciascuna combinazione di carico sono state considerate le seguenti condizioni:

- N_{max}
- \bullet N_{min}
- M_{vert,max}
- M_{trasv.max}
- $V_{vert,max}$
- V_{trasv,max}

Nella tabella successiva sono riepilogati i valori di calcolo delle azioni sollecitanti per le diverse combinazioni di carico considerate:

COMBINAZIONE	CONDIZIONE	N_{Sd}	M _{11,Sd}	M _{22,Sd}	V _{13,Sd}	V _{23,Sd}
COMBINAZIONE	CONDIZIONE	[kN]	[kNm]	[kNm]	[kN]	[kN]
SLE - QP	N_{max}	-116,58	0,06	-10,14	3,68	-6,00
	$M_{11,max}$	10,36	13,46	1,97	22,76	-4,49
	$M_{22,max}$	-38,46	-0,32	-11,97	4,93	-8,28
	$V_{13,max}$	15,85	10,53	-1,07	23,15	-8,90
	$V_{23,max}$	3,98	0,42	-6,30	7,98	-17,53
	N_{max}	-137,59	-0,69	-11,63	3,27	-2,88
	$M_{11,max}$	2,60	22,63	3,42	28,25	1,17
SLE - FREQ	$M_{22,max}$	-41,13	-1,35	-13,14	4,03	-5,91
	$V_{13,max}$	8,94	18,20	1,10	32,86	-7,31
	$V_{23,max}$	-5,65	0,80	-6,71	9,54	-20,15
	N_{max}	-137,59	-0,69	-11,63	3,27	-2,88
	$M_{11, max}$	2,60	22,63	3,42	28,25	1,17
SLE - RARA	$M_{22,\text{max}}$	-41,13	-1,35	-13,14	4,03	-5,91
	$V_{13,max}$	8,94	18,20	1,10	32,86	-7,31
	$V_{23,max}$	-5,65	0,80	-6,71	9,54	-20,15
	N_{max}	-188,90	-1,04	-15,93	-4,35	-3,42
	$M_{11,max}$	3,61	32,17	4,91	40,17	1,34
SLU - STR	$M_{22,max}$	-55,93	-1,98	-17,92	5,30	-7,62
	$V_{13,max}$	11,82	25,42	1,58	45,87	-10,30
	$V_{23,max}$	-9,08	1,14	-9,12	13,12	-27,59
	N_{max}	-125,77	4,76	-7,43	4,90	-7,35
	$M_{11,max}$	8,50	17,09	2,29	22,52	0,24
SLV X	$M_{22,\text{max}}$	-76,38	-0,60	-14,66	-6,85	-11,37
	$V_{13,max}$	7,88	12,10	-0,43	25,19	-7,90
	$V_{23,max}$	-13,76	-2,72	-11,31	-8,51	-24,00
SLV Y	N_{max}	-128,74	-2,26	-11,03	0,92	1,42
	$M_{11,max}$	2,43	15,60	2,81	29,59	-3,23
	$M_{22,max}$	-122,18	-0,95	-11,54	2,00	-0,71
	$V_{13,max}$	4,64	13,85	0,42	29,98	-6,12
	$V_{23, max}$	-37,11	-0,07	1,12	0,00	18,89

Dove:

- le azioni normali si compressione sono indicate con segno negativo;
- M₁₁ è il momento flettente orizzontale
- M₂₂ è il momento flettente verticale
- V₁₃ è il taglio orizzontale
- V₂₃ è il taglio verticale

14.2 SEZIONE ED ARMATURA DI VERIFICA

La sezione di verifica è rettangolare con base pari a 100 cm e altezza pari a 40 cm.

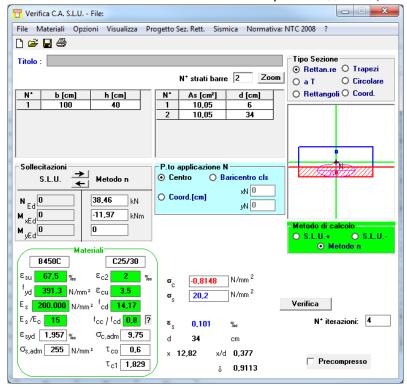
L'armatura verticale è realizzata mediante:

- Ø16/20 interni (lato terreno)
- Ø16/20 esterni

L'armatura trasversale è realizzata mediante:

- Ø16/20 interni (lato terreno)
- Ø16/20 esterni

L'armatura a taglio è costituita da Ø12/40x20.


Il copriferro netto minimo è assunto pari a 40 mm.

14.3 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI

14.3.1 COMBINAZIONE QUASI PERMANENTE - DIREZIONE VERTICALE

L'azione normale di calcolo è assunta pari a N_{Sd} = 38,46 kN.

Il momento flettente di calcolo è assunto pari a M_{Sd} = -11,97 kNm.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 0.81 \text{ N/mm}^2 < 0.45 \text{ f}_{ck} = 13.07 \text{ N/mm}^2$

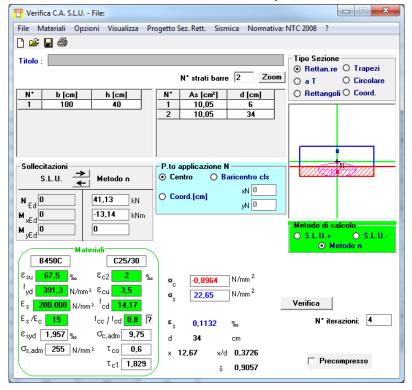
 $\sigma_s = 20,20 \text{ N/mm}^2 < 0,80 \text{ f}_{vk} = 360,00 \text{ N/mm}^2$

14.3.2 COMBINAZIONE QUASI PERMANENTE - DIREZIONE ORIZZONTALE

Il momento flettente di calcolo è assunto pari a M_{Sd} = 13,46 kNm.

Le tensioni sui materiali risultano pari a:

 σ_c = 0,94 N/mm² < 0,45 f_{ck} = 13,07 N/mm² σ_s = 43,33 N/mm² < 0,80 f_{vk} = 360,00 N/mm²



14.3.3 COMBINAZIONE FREQUENTE - DIREZIONE VERTICALE

L'azione normale di calcolo è assunta pari a N_{Sd} = 41,13 kN.

Il momento flettente di calcolo è assunto pari a M_{Sd} = -13,14 kNm.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 0.89 \text{ N/mm}^2 < 0.45 \text{ f}_{ck} = 13.07 \text{ N/mm}^2$

 $\sigma_s = 22,65 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$

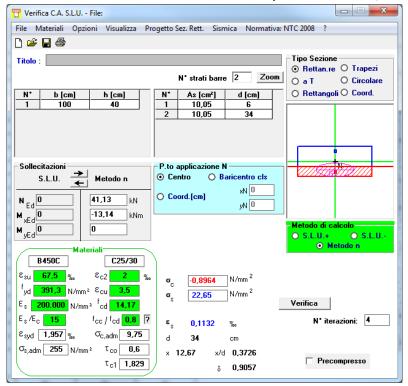
14.3.4 COMBINAZIONE FREQUENTE - DIREZIONE ORIZZONTALE

Il momento flettente di calcolo è assunto pari a M_{Sd} = 22,63 kNm.

Le tensioni sui materiali risultano pari a:

 σ_c = 1,58 N/mm² < 0,45 f_{ck} = 13,07 N/mm²

 σ_s = 72,84 N/mm² < 0,80 f_{vk} = 360,00 N/mm²



14.3.5 COMBINAZIONE RARA - DIREZIONE VERTICALE

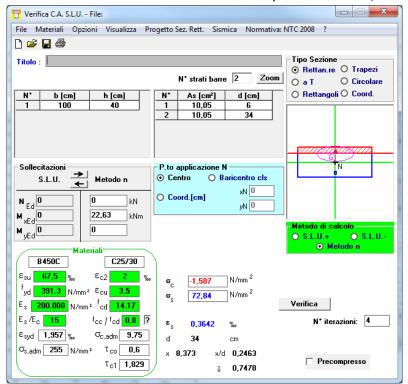
L'azione normale di calcolo è assunta pari a N_{Sd} = 41,13 kN.

Il momento flettente di calcolo è assunto pari a M_{Sd} = -13,14 kNm.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 0.89 \text{ N/mm}^2 < 0.45 \text{ f}_{ck} = 13.07 \text{ N/mm}^2$

 $\sigma_s = 22,65 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$



14.3.6 COMBINAZIONE RARA - DIREZIONE ORIZZONTALE

Il momento flettente di calcolo è assunto pari a M_{Sd} = 22,63 kNm.

Le tensioni sui materiali risultano pari a:

 σ_c = 1,58 N/mm² < 0,45 f_{ck} = 13,07 N/mm²

 σ_s = 72,84 N/mm² < 0,80 f_{vk} = 360,00 N/mm²

14.4 VERIFICA ALLO STATO LIMITE DI FESSURAZIONE – DIREZIONE VERTICALE

Per la verifica allo Stato Limite di fessurazione è stata utilizzata la procedura semplificata prevista dalla Circolare C.S.LL.PP. n.617 del 02.02.2009 – par. C4.1.2.2.4.6 – Tab. C4.1.II e C4.1.III. Le condizioni considerate sono riportate nella tabella seguente.

La verifica semplificata allo SL di fessurazione viene condotta secondo quanto previsto dalla Circolare C.S.LL.PP. n.617 del 02.02.2009, par. C4.1.2.2.4.6, tab. C4.1.II e C4.1.III.

TABELLA C4.1.II - Diametri massimi delle barre per il controllo di fessurazione					
Tensione nell'acciaio Diametro massimo Ø delle barre [mm]					
$\sigma_{\rm s}$ [N/mm 2]	$w_3 = 0,40 \text{ mm}$	w ₂ = 0,30 mm	w ₁ = 0,20 mm		
160	40	32	25		
200	32	25	16		
240	20	16	12		
280	16	12	8		
320	12	10	6		
360	10	8	0		

TABELLA C4.1.III - Spaziatura massima delle barre per il controllo di fessurazione						
Tensione nell'acciaio	Spaziatura massima s delle barre delle barre [mm]					
$\sigma_{\rm s}$ [N/mm 2]	$w_3 = 0,40 \text{ mm}$	w ₂ = 0,30 mm	w ₁ = 0,20 mm			
160	300	300	200			
200	300	250	150			
240	250	200	100			
280	200	150	50			
320	150	100	0			
360	100	50	0			

CRITERI DI SCELTA DELLO STATO LIMITE DI FESSURAZIONE

I criteri di scelta dello Stato Limite di fessurazione sono definiti secondo quanto riportato dal D.M. 14.01.2008, par. 4.1.2.2.4.5, tab. 4.1.IV.

COMBINAZIONE ALLO S.L.E. QUASI PERMANENTE

apertura fessure Stato limite: Ampiezza massima delle fessure: w_d≤ w1 $[N/mm^2]$ Tensione massima nell'acciaio calcolata: 20,20 $\sigma_{\text{s.max}}$ Diametro massimo delle barre di armature poste in opera: [mm] $Ø_{max}$ 16 Spaziatura massima delle barre di armatura poste in opera: 200,00 [mm] Smax Diametro massimo delle barre di armatura consentito: $Ø_{max}$ 25,00 [mm]

VERIFICA POSITIVA

COMBINAZIONE ALLO S.L.E. FREQUENTE

Stato limite: Ampiezza massima delle fessure: $w_d \le$

Spaziatura massima delle barre di armatura consentita:

apertura fessure

w2 $\sigma_{s,max}$ σ_{max} σ_{max}

200,00

200,00

Smax

Smax

[mm]

[mm]

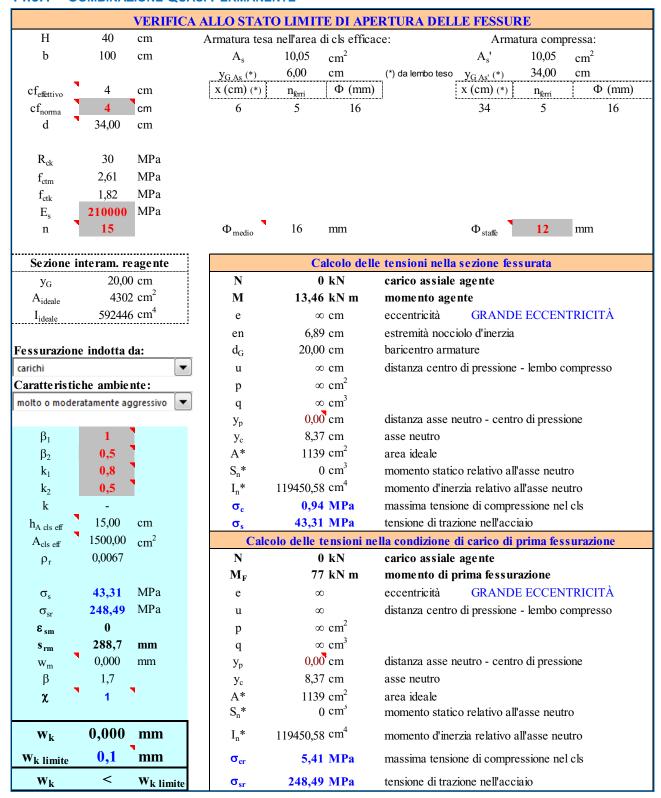
Diametro massimo delle barre di armature poste in opera: Spaziatura massima delle barre di armatura poste in opera:

Ø_{max} 32,00 [mm] s_{max} 300,00 [mm]

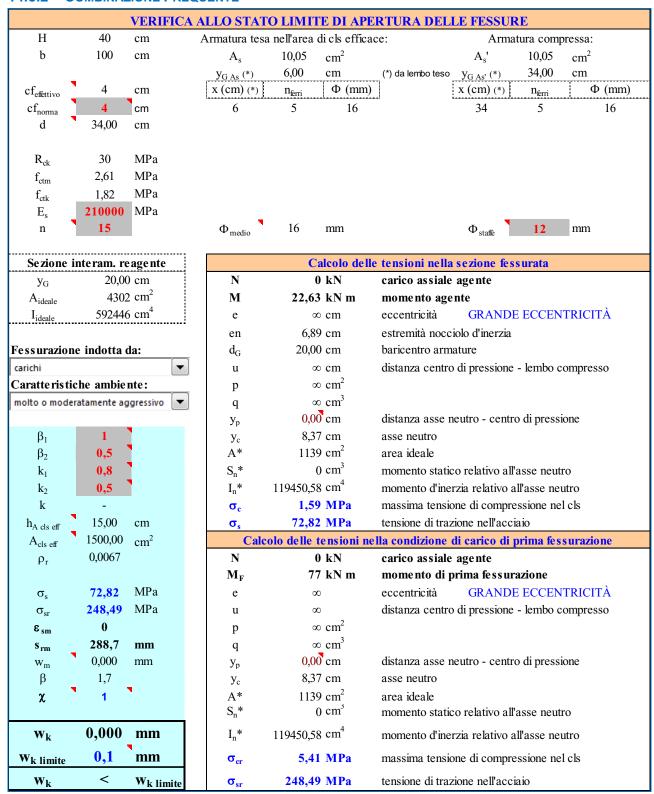
Diametro massimo delle barre di armatura consentito: Spaziatura massima delle barre di armatura consentita:

VERIFICA POSITIVA

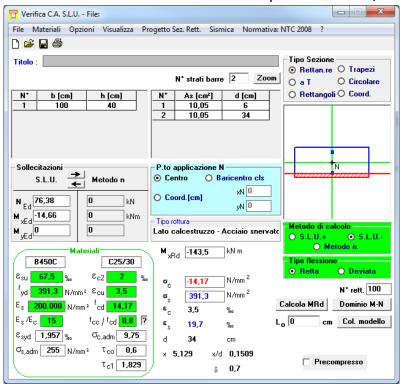
Tensione massima nell'acciaio calcolata:



14.5 VERIFICA ALLO STATO LIMITE DI FESSURAZIONE – DIREZIONE ORIZZONTALE

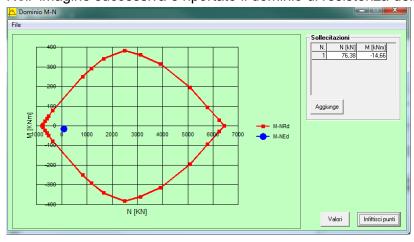

14.5.1 **COMBINAZIONE QUASI PERMANENTE**

14.5.2 **COMBINAZIONE FREQUENTE**



14.6 VERIFICA ALLO STATO LIMITE ULTIMO PER PRESSOFLESSIONE – DIREZIONE VERTICALE

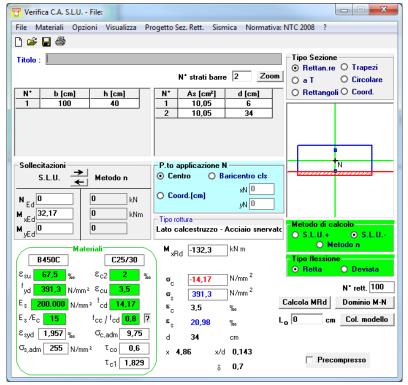
L'azione normale di calcolo è assunta pari a N_{Sd} = 76,38 kN.


Il momento flettente di calcolo è assunto pari a M_{Sd} = -14,66 kNm.

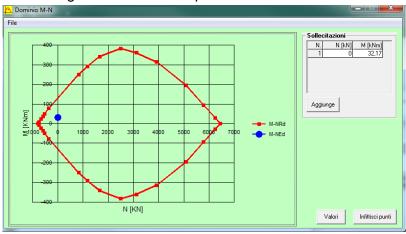
Il momento resistente risulta pari a:

 $M_{Rd} = -143,50 \text{ kNm} > M_{Sd} = -14,66 \text{ kNm}$

Nell' imagine successiva è riportato il dominio di resistenza della sezione:



14.7 VERIFICA ALLO STATO LIMITE ULTIMO PER FLESSIONE - DIREZIONE ORIZZONTALE


Il momento flettente di calcolo è assunto pari a M_{Sd} = 32,17 kNm.

Il momento resistente risulta pari a:

 $M_{Rd} = 132,30 \text{ kNm} > M_{Sd} = 32,17 \text{ kNm}$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:

14.8 VERIFICA ALLO STATO LIMITE ULTIMO PER TAGLIO – DIREZIONE VERTICALE

L'azione tagliante di calcolo è assunta pari a V_{Sd} = 45,87 kNm.

CARATTERISTICHE GEOMETRICHE DELLA SEZIONE								
Base della sezione trasversale:		b	100,00	[cm]				
Altezza della sezione trasversale:		h	40,00	[cm]				
Copriferro netto:		С	4,00	[cm]				
Altezza utile della sezione:		d	36,00	[cm]				
CARATTERISTICHE DEI MATERIALI								
		1						
Classe di resistenza del calcestruzzo:	_	J		_				
Resistenza caratteristica cubica a compressione:		R_ck	30,00	[N/mm ²]				
Resistenza caratteristica cilindrica a compressione:		f_{ck}	24,90	[N/mm ²]				
Resistenza di calcolo a compressione:		f_{cd}	14,11	[N/mm ²]				
Tipologia dell'acciaio da armatura:	-							
Tensione caratteristica di rottura:		f _{tk}	540,00	[N/mm²]				
Tensione caratteristica di snervamento:		f _{yk}	450,00	[N/mm ²]				
Resistenza di calcolo:		f _{yd}	391,30	[N/mm ²]				
		•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,				
AZIONI SOLLECIT	TANTI DI CALC	OLO		_				
Azione tagliante di calcolo:		$V_{S,d}$	45,87	[kN]				
Azione normale di calcolo:		$N_{\text{S,d}}$	0,00	[kN]				
ARMATURA L	ONGITUDINAL	F						
7 2 3 10 11 5 1 5		Ø _{barre} [mm]	A _{barra} [cm ²]	A _{s,tot} [cm ²]				
Primo strato di armatura tesa:	n _{barre} 5	16	2,01	10,05				
Infittimento primo strato di armatura tesa:			0,00	0,00				
Secondo strato di armatura tesa:			0,00	0,00				
Infittimento secondo strato di armatura tesa:			0,00	0,00				
AREA TOTALE DELLE BARRE DI ARMATURA TESA				10,05				
VERIFICA ALLO S.L.U. PER TAGLIO								
La verifica allo S.L.U. per taglio viene condotta second			4.01.2008, pai	r.4.1.2.1.3.1				
$V_{Rd} = \left\{ \frac{0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3}}{\gamma_c} + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \ge \left(v_{\min} + 0.15 \cdot \sigma_{cp}\right) \cdot b_w \cdot d$								
Coefficiente k:		k	1,75	1				
Coefficiente v _{min} :		V _{min}	0,403					
Rapporto geometrico di armatura longitudinale:		ρ_1	0,0028					
Tensione media di compressione nella sezione:		σ_{cp}	0,000	[N/mm ²]				
Larghezza minima della sezione:		b_{w}	100,00	[cm]				
AZIONE TAGLIANTE RESISTENTE DELLA SEZIONE: V _{R,d} 144,98 [kN]								
COEFFICIENTE DI SICUREZZA:		F _S =V _{R,d} /V _{S,d}	3,16	ļ <u>.</u>				
		5 1x,u 0,u	,					

L'azione tagliante di calcolo è assunta pari a V_{Sd} = -27,59 kNm.

CARATTERISTICHE GEOMETRICHE DELLA SEZIONE								
Base della sezione trasversale: Altezza della sezione trasversale: Copriferro netto: Altezza utile della sezione:		b h c d	100,00 40,00 4,00 36,00	[cm] [cm] [cm] [cm]				
CARATTERISTICHE DEI MATERIALI								
Classe di resistenza del calcestruzzo:	▼							
Resistenza caratteristica cubica a compressione:		R_ck	30,00	$[N/mm^2]$				
Resistenza caratteristica cilindrica a compressione:		f_{ck}	24,90	[N/mm ²]				
Resistenza di calcolo a compressione:		f_{cd}	14,11	[N/mm ²]				
Tipologia dell'acciaio da armatura: ■ B450C								
Tensione caratteristica di rottura:		f_{tk}	540,00	[N/mm ²]				
Tensione caratteristica di snervamento:		f_{yk}	450,00	[N/mm ²]				
Resistenza di calcolo:		f_{yd}	391,30	[N/mm ²]				
AZIONI SOLLECITANTI DI CALCOLO								
Azione tagliante di calcolo:		$V_{S,d}$	27,59	[kN]				
Azione normale di calcolo:		$N_{s,d}$	0,00	[kN]				
ARMATURA	LONGITUDINAL	E						
	n _{barre}	Ø _{barre} [mm]	A _{barra} [cm ²]	A _{s,tot} [cm ²]				
Primo strato di armatura tesa:	5	16	2,01	10,05				
Infittimento primo strato di armatura tesa:			0,00	0,00				
Secondo strato di armatura tesa:			0,00	0,00				
Infittimento secondo strato di armatura tesa:			0,00	0,00				
AREA TOTALE DELLE BARRE DI ARMATURA TESA 10,05								
VERIFICA ALLO S.L.U. PER TAGLIO								
La verifica allo S.L.U. per taglio viene condotta secondo quanto previsto dal D.M. 14.01.2008, par.4.1.2.1.3.1								
$V_{Rd} = \left\{ \frac{0.18 \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c} + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \ge \left(v_{\min} + 0.15 \cdot \sigma_{cp}\right) \cdot b_w \cdot d$								
Coefficiente k:		k	1,75]				
Coefficiente v _{min} :		V_{min}	0,403					
Rapporto geometrico di armatura longitudinale:		ρ_1	0,0028					
Tensione media di compressione nella sezione:		$\sigma_{\sf cp}$	0,000	[N/mm ²]				
Larghezza minima della sezione:		b_w	100,00	[cm]				

AZIONE TAGLIANTE RESISTENTE DELLA SEZIONE: COEFFICIENTE DI SICUREZZA:

 $V_{R,d}$ $\textbf{F}_{\text{S}} \hspace{--1mm}=\hspace{--1mm} \textbf{V}_{\text{R,d}} \hspace{--1mm}/\hspace{--1mm} \textbf{V}_{\text{S,d}}$ 144,98 5,25

[kN]

LA VERIFICA RISULTA POSITIVA

15 MURI LATERALI - VERIFICHE STRUTTURALI

15.1 RIEPILOGO DELLE AZIONI SOLLECITANTI DI CALCOLO

Per ciascuna combinazione di carico sono state considerate le seguenti condizioni:

- N_{max}
- N_{min}
- $M_{\text{vert},\text{max}}$
- $M_{trasv,max}$
- $V_{\text{vert},\text{max}}$
- $V_{trasv,max}$

Nella tabella successiva sono riepilogati i valori di calcolo delle azioni sollecitanti per le diverse combinazioni di carico considerate:

COMBINAZIONE	CONDIZIONE	N_{Sd}	$\mathbf{M}_{11,Sd}$	M _{22,Sd}	V _{13,Sd}	$V_{23,Sd}$
COMBINAZIONE	CONDIZIONE	[kN]	[kNm]	[kNm]	[kN]	[kN]
SLE - QP	N_{max}	-55,90	0,23	-5,62	-3,58	0,15
	$M_{11, max}$	7,44	13,24	2,47	19,11	-3,60
	$M_{22,max}$	209,73	4,01	25,44	-13,99	37,45
	$V_{13,max}$	12,01	12,01	0,00	19,96	-5,63
	$V_{23, max}$	-18,83	0,12	-13,96	13,99	-37,45
	N_{max}	-64,11	1,25	-4,10	-7,25	1,90
	$M_{11,\text{max}}$	-2,32	21,07	2,73	28,05	-0,78
SLE - FREQ	$M_{22,max}$	335,74	-6,22	-43,83	19,43	-55,66
	$V_{13,max}$	2,04	20,45	3,68	28,13	-4,01
	$V_{23,max}$	-13,18	-0,49	-26,10	19,43	-55,66
	N_{max}	-66,84	1,59	-3,59	-8,47	2,48
	$M_{11,max}$	-2,47	24,48	3,23	33,07	-1,32
SLE - RARA	$M_{22,max}$	377,75	-6,95	-49,96	21,25	-61,74
	$V_{13,max}$	4,37	23,52	2,82	33,07	-1,32
	$V_{23, max}$	-11,30	-0,69	-30,14	21,25	-61,74
	N_{max}	-91,88	2,36	-4,54	-12,17	3,70
	$M_{11,max}$	-3,42	35,10	4,67	47,65	-2,12
SLU - STR	${\sf M}_{\sf 22,max}$	535,16	-9,82	-71,12	29,78	-86,99
	$V_{13,max}$	6,06	33,60	4,01	47,65	-2,12
	$V_{23,max}$	-14,12	-1,06	-43,12	29,78	-86,99
	N_{max}	-55,93	-3,09	-2,29	14,70	-8,60
	$M_{11,max}$	-10,13	-19,99	-4,70	-41,65	7,87
SLV X	$M_{22,max}$	176,27	-8,43	-55,60	24,25	-70,70
	$V_{13,max}$	2,00	-19,06	-2,24	-41,65	7,87
	$V_{23,max}$	-11,93	-1,29	-34,43	24,25	-70,70
SLV Y	N_{max}	-73,83	0,02	-7,69	-0,75	-1,41
	$M_{11, max}$	0,86	-15,14	-2,73	-18,35	1,54
	$M_{22,max}$	440,39	-3,53	-35,22	11,10	-35,48
[$V_{13,max}$	7,77	13,00	0,49	20,66	-4,59
	$V_{23,max}$	-20,80	0,29	19,72	-11,10	35,48

Dove:

- le azioni normali si compressione sono indicate con segno negativo;
- M₁₁ è il momento flettente orizzontale
- M₂₂ è il momento flettente verticale
- V₁₃ è il taglio orizzontale
- V₂₃ è il taglio verticale

15.2 **SEZIONE ED ARMATURA DI VERIFICA**

La sezione di verifica è rettangolare con base pari a 100 cm e altezza pari a 40 cm.

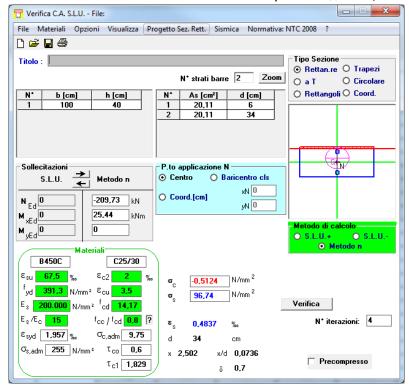
L'armatura verticale è realizzata mediante:

- Ø16/10 interni (lato terreno)
- Ø16/10 esterni

L'armatura trasversale è realizzata mediante:

- Ø16/20 interni (lato terreno)
- Ø16/20 esterni

L'armatura a taglio è costituita da Ø12/40x20.


Il copriferro netto minimo è assunto pari a 40 mm.

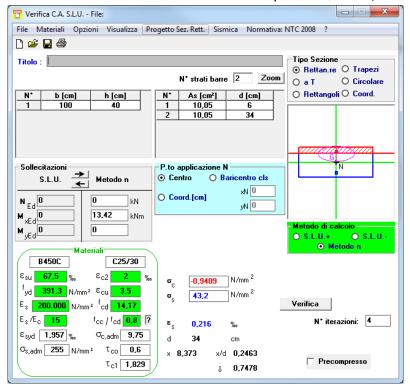
15.3 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI

COMBINAZIONE QUASI PERMANENTE - DIREZIONE VERTICALE

L'azione normale di calcolo è assunta pari a N_{Sd} = -209,73 kN.

Il momento flettente di calcolo è assunto pari a M_{Sd} = 25,44 kNm.

Le tensioni sui materiali risultano pari a:


 $\sigma_c = 0.51 \text{ N/mm}^2 < 0.45 \text{ f}_{ck} = 13.07 \text{ N/mm}^2$

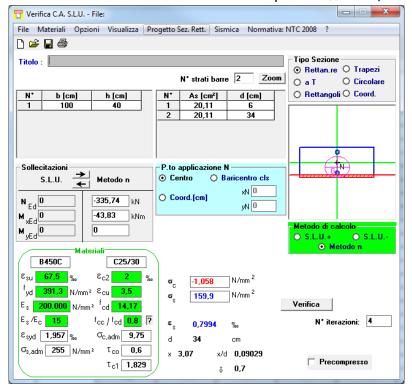
 $\sigma_s = 96,74 \text{ N/mm}^2 < 0.80 \text{ f}_{vk} = 360,00 \text{ N/mm}^2$

15.3.2 COMBINAZIONE QUASI PERMANENTE – DIREZIONE ORIZZONTALE

Il momento flettente di calcolo è assunto pari a M_{Sd} = 13, 42 kNm.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 0.95 \text{ N/mm}^2 < 0.45 \text{ f}_{ck} = 13.07 \text{ N/mm}^2$ σ_s = 43, 20 N/mm² < 0,80 f_{vk} = 360,00 N/mm²



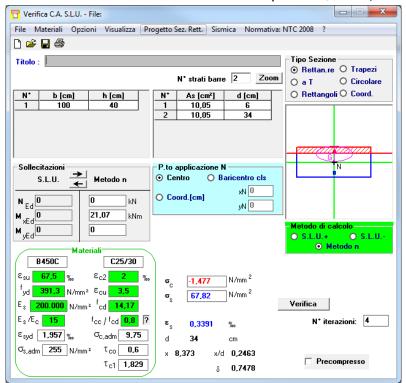
15.3.3 COMBINAZIONE FREQUENTE - DIREZIONE VERTICALE

L'azione normale di calcolo è assunta pari a N_{Sd} = -335,74 kN. Il momento flettente di calcolo è assunto pari a M_{Sd} = -43,83 kNm.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 1,06 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 13,07 \text{ N/mm}^2$

 $\sigma_s = 159,90 \text{ N/mm}^2 < 0,80 \text{ f}_{vk} = 360,00 \text{ N/mm}^2$



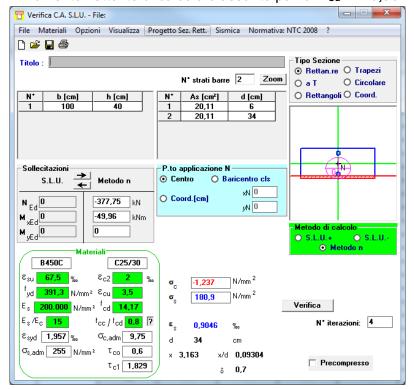
15.3.4 COMBINAZIONE FREQUENTE - DIREZIONE ORIZZONTALE

Il momento flettente di calcolo è assunto pari a M_{Sd} = 21,07 kNm.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 1,48 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 13,07 \text{ N/mm}^2$

 $\sigma_s = 67,82 \text{ N/mm}^2 < 0,80 \text{ f}_{vk} = 360,00 \text{ N/mm}^2$



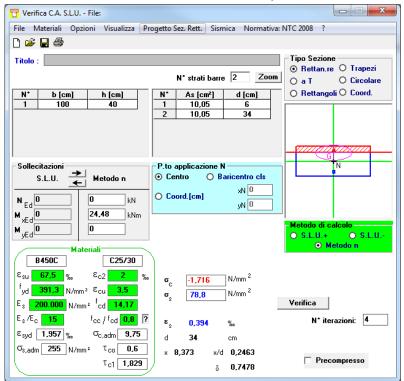
15.3.5 COMBINAZIONE RARA - DIREZIONE VERTICALE

L'azione normale di calcolo è assunta pari a N_{Sd} = -377,75 kN. Il momento flettente di calcolo è assunto pari a M_{Sd} = -49,96 kNm.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 1,24 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 17,43 \text{ N/mm}^2$

 σ_s = 180,90 N/mm² < 0,80 f_{yk} = 360,00 N/mm²



15.3.6 COMBINAZIONE RARA - DIREZIONE ORIZZONTALE

Il momento flettente di calcolo è assunto pari a M_{Sd} = 24,48 kNm.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 1,72 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 13,07 \text{ N/mm}^2$

 $\sigma_s = 78,80 \text{ N/mm}^2 < 0,80 \text{ f}_{vk} = 360,00 \text{ N/mm}^2$

15.4 VERIFICA ALLO STATO LIMITE DI FESSURAZIONE – DIREZIONE VERTICALE

Per la verifica allo Stato Limite di fessurazione è stata utilizzata la procedura semplificata prevista dalla Circolare C.S.LL.PP. n.617 del 02.02.2009 – par. C4.1.2.2.4.6 – Tab. C4.1.II e C4.1.III. Le condizioni considerate sono riportate nella tabella seguente.

La verifica semplificata allo SL di fessurazione viene condotta secondo quanto previsto dalla Circolare C.S.LL.PP. n.617 del 02.02.2009, par. C4.1.2.2.4.6, tab. C4.1.II e C4.1.III.

TABELLA C4.1.II - Diametri massimi delle barre per il controllo di fessurazione								
Tensione nell'acciaio	Diam	Diametro massimo Ø delle barre [mm]						
$\sigma_{\rm s}$ [N/mm ²]	w ₃ = 0,40 mm	$w_3 = 0,40 \text{ mm}$ $w_2 = 0,30 \text{ mm}$ $w_1 = 0,20 \text{ mm}$						
160	40	32	25					
200	32	25	16					
240	20	16	12					
280	16	12	8					
320	12	10	6					
360	10	8	0					

TABELLA C4.1.III - Spaziatura massima delle barre per il controllo di fessurazione								
Tensione nell'acciaio	Spaziatura	Spaziatura massima s delle barre delle barre [mm]						
$\sigma_{\rm s}$ [N/mm ²]	w ₃ = 0,40 mm	$w_3 = 0,40 \text{ mm}$ $w_2 = 0,30 \text{ mm}$ $w_1 = 0,20 \text{ mm}$						
160	300	300	200					
200	300	250	150					
240	250	200	100					
280	200	150	50					
320	150	100	0					
360	100	50	0					

CRITERI DI SCELTA DELLO STATO LIMITE DI FESSURAZIONE

I criteri di scelta dello Stato Limite di fessurazione sono definiti secondo quanto riportato dal D.M. 14.01.2008, par. 4.1.2.2.4.5, tab. 4.1.IV.

COMBINAZIONE ALLO S.L.E. QUASI PERMANENTE

Ampiezza massima delle fessure: $w_d \le$ w1 96.74 $[N/mm^2]$ Tensione massima nell'acciaio calcolata: $\sigma_{s,max}$ Diametro massimo delle barre di armature poste in opera: 16 [mm] Q_{max} Spaziatura massima delle barre di armatura poste in opera: 100,00 S_{max} [mm] 25,00 Diametro massimo delle barre di armatura consentito: [mm] $Ø_{max}$

VERIFICA POSITIVA

COMBINAZIONE ALLO S.L.E. FREQUENTE

Stato limite: apertura fessure Ampiezza massima delle fessure: w_d≤ w2 [N/mm²]Tensione massima nell'acciaio calcolata: 159,90 $\sigma_{s,max}$ Diametro massimo delle barre di armature poste in opera: 16 [mm] $Ø_{max}$ 100,00 Spaziatura massima delle barre di armatura poste in opera: [mm] Smax Diametro massimo delle barre di armatura consentito: $\textit{Ø}_{\max}$ 32.00 [mm] Spaziatura massima delle barre di armatura consentita: 300,00 [mm] Smax

VERIFICA POSITIVA

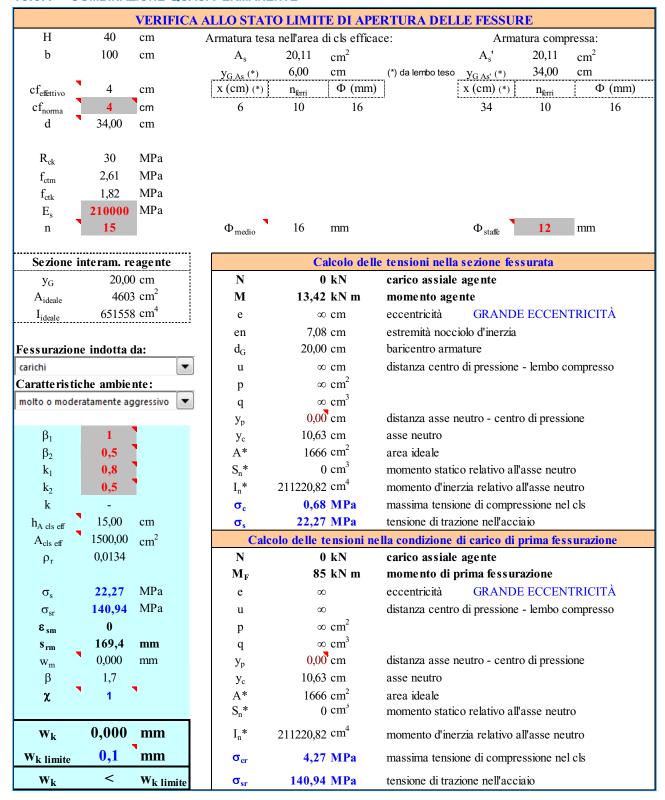
Stato limite:

Spaziatura massima delle barre di armatura consentita:

apertura fessure

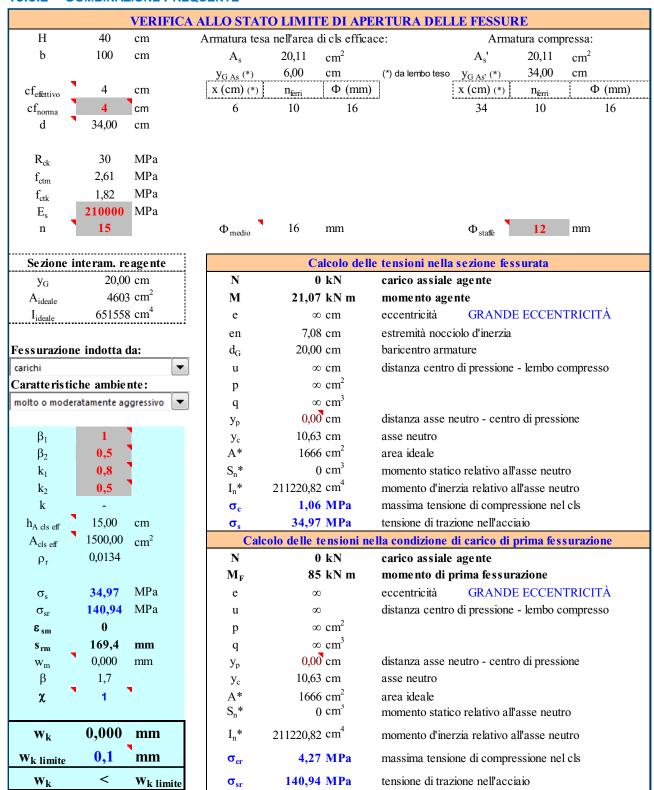
200,00

Smax

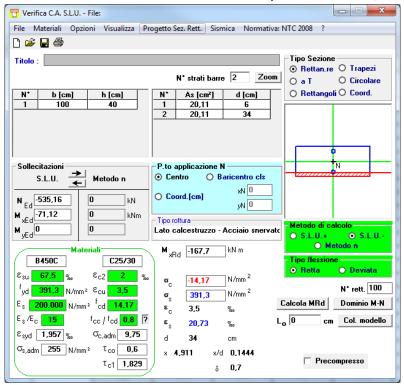

[mm]

15.5

VERIFICA ALLO STATO LIMITE DI FESSURAZIONE - DIREZIONE ORIZZONTALE

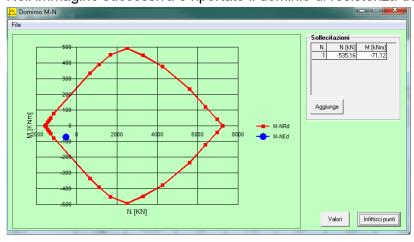

15.5.1 **COMBINAZIONE QUASI PERMANENTE**

15.5.2 **COMBINAZIONE FREQUENTE**



15.6 VERIFICA ALLO STATO LIMITE ULTIMO PER PRESSOFLESSIONE – DIREZIONE VERTICALE

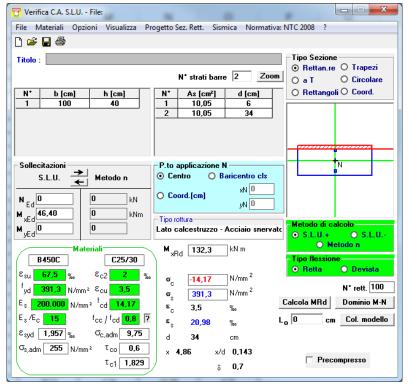
L'azione normale di calcolo è assunta pari a N_{Sd} = -535,16 kN.


Il momento flettente di calcolo è assunto pari a M_{Sd} = -71,12 kNm.

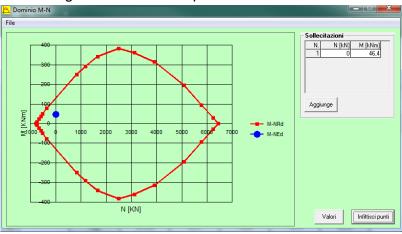
Il momento resistente risulta pari a:

 $M_{Rd} = 167,70 \text{ kNm} > M_{Sd} = -71,12 \text{ kNm}$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:



15.7 VERIFICA ALLO STATO LIMITE ULTIMO PER FLESSIONE - DIREZIONE ORIZZONTALE


Il momento flettente di calcolo è assunto pari a M_{Sd} = 35,10 kNm.

Il momento resistente risulta pari a:

 $M_{Rd} = 132,30 \text{ kNm} > M_{Sd} = 35,10 \text{ kNm}$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:

15.8 VERIFICA ALLO STATO LIMITE ULTIMO PER TAGLIO – DIREZIONE VERTICALE

L'azione tagliante di calcolo è assunta pari a V_{Sd} = 47,65 kNm.

CARATTERISTICHE GE	OMETRICHE DEL	LA SEZIONE						
Base della sezione trasversale:		b	100,00	[cm]				
Altezza della sezione trasversale:		h	40,00	[cm]				
Copriferro netto:		С	4,00	[cm]				
Altezza utile della sezione:		d	36,00	[cm]				
CARATTERIST	TICHE DEI MATER	RIALI						
Classe di resistenza del calcestruzzo:	▼							
Resistenza caratteristica cubica a compressione:		R_ck	30,00	[N/mm ²]				
Resistenza caratteristica cilindrica a compressione	:	f_{ck}	24,90	[N/mm ²]				
Resistenza di calcolo a compressione:		f_{cd}	14,11	[N/mm ²]				
Tipologia dell'acciaio da armatura: B450C	▼							
Tensione caratteristica di rottura:		– f _{tk}	540,00	[N/mm ²]				
Tensione caratteristica di snervamento:		f_{yk}	450,00	[N/mm ²]				
Resistenza di calcolo:		f_{yd}	391,30	[N/mm ²]				
AZIONI SOLLE	CITANTI DI CALC	COLO						
Azione tagliante di calcolo:		$V_{S,d}$	47,65	[kN]				
Azione normale di calcolo:		$N_{S,d}$	0,00	[kN]				
		·		••••				
ARMATURA	A LONGITUDINAL	.E						
	n _{barre}	Ø _{barre} [mm]	A _{barra} [cm ²]	A _{s,tot} [cm ²]				
Primo strato di armatura tesa:	10	16	2,01 0,00	20,10 0,00				
Infittimento primo strato di armatura tesa: Secondo strato di armatura tesa:			0,00	0,00				
Infittimento secondo strato di armatura tesa:			0,00	0,00				
AREA TOTALE DELLE BARRE DI ARMATURA TESA	\		0,00	20,10				
VERIFICA ALL	00111 DED TA							
V LINITUA ALLI	U S.L.U. PER TAC	GLIO						
La verifica allo S.L.U. per taglio viene condotta seco			1.01.2008, pai	.4.1.2.1.3.1				
-	ndo quanto previ	isto dal D.M. 14	-	:4.1.2.1.3.1				
La verifica allo S.L.U. per taglio viene condotta seco	ndo quanto previ	isto dal D.M. 14	-	:4.1.2.1.3.1]				
La verifica allo S.L.U. per taglio viene condotta secon $V_{Rd} = \begin{cases} \frac{0.18 \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c} + 0.1 \end{cases}$	ndo quanto previ	isto dal D.M. 14 $\geq \left(v_{\min} + 0.15\right)$	$\cdot \sigma_{cp} \Big) \cdot b_{\scriptscriptstyle W} \cdot d$	4.1.2.1.3.1				
La verifica allo S.L.U. per taglio viene condotta secon $V_{Rd} = \left\{\frac{0.18 \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c} + 0.1\right\}$ Coefficiente k:	ndo quanto previ	isto dal D.M. 14 $\geq \left(v_{\min} + 0.15\right)$ k	$\cdot \sigma_{cp} \cdot b_{w} \cdot d$	4.1.2.1.3.1				
La verifica allo S.L.U. per taglio viene condotta secon $V_{Rd} = \left\{ \frac{0,\!18 \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{\!1/3}}{\gamma_c} + 0,\!1\right\}$ Coefficiente k: Coefficiente v _{min} :	ndo quanto previ	isto dal D.M. 14 $\geq \left(v_{\min} + 0.15\right)$ k v_{\min}	$(\sigma_{cp}) \cdot b_w \cdot d$ $\begin{array}{c} 1,75 \\ 0,403 \end{array}$.4.1.2.1.3.1				
La verifica allo S.L.U. per taglio viene condotta secon $V_{Rd} = \left\{ \frac{0.18 \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c} + 0.1 \right\}$ Coefficiente k: Coefficiente v _{min} : Rapporto geometrico di armatura longitudinale:	ndo quanto previ	isto dal D.M. 14 $\geq \left(v_{\min} + 0.15\right)$ k v_{\min} ρ_1	$(-\sigma_{cp}) \cdot b_{w} \cdot d$ 1,75 0,403 0,0056					
La verifica allo S.L.U. per taglio viene condotta secon $V_{Rd} = \begin{cases} \frac{0,18 \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c} + 0,1 \end{cases}$ Coefficiente k: Coefficiente v _{min} : Rapporto geometrico di armatura longitudinale: Tensione media di compressione nella sezione: Larghezza minima della sezione:	ndo quanto previ	isto dal D.M. 14 $\geq \left(v_{\min} + 0.15\right)$ k v_{\min} ρ_1 σ_{cp} b_w	$(-\sigma_{cp}) \cdot b_{w} \cdot d$ $\begin{array}{c} 1,75 \\ 0,403 \\ 0,0056 \\ 0,000 \\ 100,00 \end{array}$	[N/mm²] [cm]				
La verifica allo S.L.U. per taglio viene condotta secon $\overline{V_{Rd}} = \begin{cases} \frac{0,18 \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c} + 0,1 \end{cases}$ Coefficiente k: Coefficiente v _{min} : Rapporto geometrico di armatura longitudinale: Tensione media di compressione nella sezione:	ndo quanto previ	isto dal D.M. 14 $\geq \left(v_{\min} + 0.15\right)$ k v_{\min} ρ_1 σ_{cp}	$(-\sigma_{cp}) \cdot b_w \cdot d$ 1,75 0,403 0,0056 0,000	[N/mm²]				

LA VERIFICA RISULTA POSITIVA

15.9 VERIFICA ALLO STATO LIMITE ULTIMO PER TAGLIO – DIREZIONE ORIZZONTALE

L'azione tagliante di calcolo è assunta pari a V_{sd} = -86,99 kNm.

CARATTERISTICHE DEI MATERIALI							
Classe di resistenza del calcestruzzo:	25/30	•					
Resistenza caratteristica cubica a compres	ssione:		R_ck	30,00	[N/mm ²]		
Resistenza caratteristica cilindrica a comp	Resistenza caratteristica cilindrica a compressione:			24,90	[N/mm ²]		
Resistenza di calcolo a compressione:			f_{cd}	14,11	[N/mm ²]		
Tipologia dell'acciaio da armatura:	3450C	•					
Tensione caratteristica di rottura:			f_{tk}	540,00	$[N/mm^2]$		
Tensione caratteristica di snervamento:			f_{yk}	450,00	[N/mm ²]		
Resistenza di calcolo:			f_{yd}	391,30	[N/mm ²]		
AZIOI	NI SOLLECITA	ANTI DI CALC	OLO				
Azione tagliante di calcolo:			$V_{s,d}$	86,99	[kN]		
Azione normale di calcolo:			$N_{\text{S,d}}$	0,00	[kN]		
AF	RMATURA LC	NGITUDINALI	E				
		n _{barre}	Ø _{barre} [mm]	A _{barra} [cm ²]	A _{s,tot} [cm ²]		
Primo strato di armatura tesa:		5	16	2,01	10,05		
Infittimento primo strato di armatura tesa:				0,00	0,00		
Secondo strato di armatura tesa:				0,00	0,00		
Infittimento secondo strato di armatura tes				0,00	0,00		
AREA TOTALE DELLE BARRE DI ARMATU	RATESA				10,05		
VERI	FICA ALLO S	.L.U. PER TAG	GLIO				
La verifica allo S.L.U. per taglio viene cond	otta secondo	quanto previs	sto dal D.M. 1	4.01.2008, pa	r.4.1.2.1.3.1		
$V_{Rd} = \begin{cases} 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{cd}) \\ \gamma_c \end{cases}$	+0.15	$\left.\sigma_{cp} ight\}\cdot b_{\scriptscriptstyle W}\cdot d\geq$	$\geq \left(v_{\min} + 0.15\right)$	$\cdot \sigma_{cp} \Big) \cdot b_{\scriptscriptstyle W} \cdot d$			
Coefficiente k:			k	1,75]		
Coefficiente v _{min} :			V_{min}	0,403			
Rapporto geometrico di armatura longitudinale:			ρ_1	0,0028			
Tensione media di compressione nella se	ezione:		$\sigma_{\sf cp}$	0,000	[N/mm ²]		
Larghezza minima della sezione:			b _w	100,00	[cm]		
AZIONE TAGLIANTE RESISTENTE DELLA S	SEZIONE:		$V_{R,d}$	144,98	[kN]		
COEFFICIENTE DI SICUREZZA:			$F_S = V_{R,d}/V_{S,d}$	1,67]		
					=		

LA VERIFICA RISULTA POSITIVA

16 ZATTERA DI FONDAZIONE – VERIFICHE STRUTTURALI

16.1 SEZIONE ED ARMATURA DI VERIFICA

La sezione di verifica è rettangolare con base pari a 100 cm e altezza pari a 40 cm.

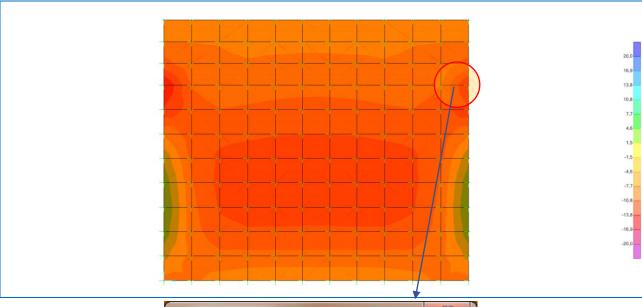
L'armatura verticale è realizzata mediante:

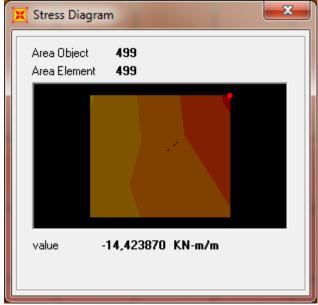
- Ø16/20 superiori
- Ø16/20 inferiori

L'armatura trasversale è realizzata mediante:

- Ø12/20 superiori
- Ø12/20 inferiori

L'armatura a taglio è costituita da Ø12/40x20. Il copriferro netto minimo è assunto pari a 40 mm.

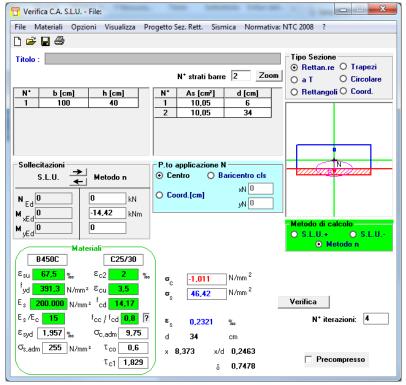




16.2 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI

16.2.1 COMBINAZIONE QUASI PERMANENTE - DIREZIONE TRASVERSALE

Nell'immagine successiva è riportato l'andamento del momento flettente trasversale e l'individuazione dell'elemento maggiormente sollecitato per la combinazione allo Stato Limite di Esercizio – Quasi Permanente:

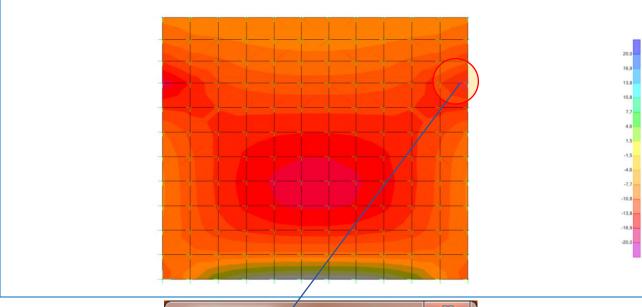


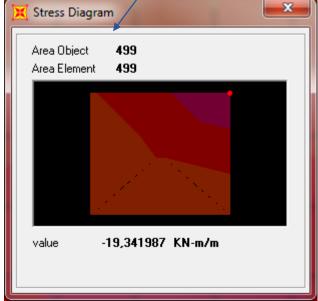
Il momento flettente di calcolo è assunto pari a M_{Sd} = -14,42 kNm.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 1,01 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 13,07 \text{ N/mm}^2$

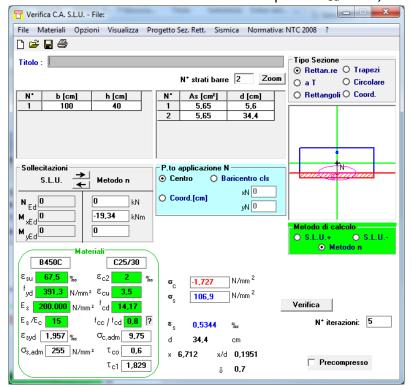
 $\sigma_s = 46,42 \text{ N/mm}^2 < 0.80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$





16.2.2 COMBINAZIONE QUASI PERMANENTE – DIREZIONE LONGITUDINALE

Nell'immagine successiva è riportato l'andamento del momento flettente longitudinale per la combinazione allo Stato Limite di Esercizio – Quasi Permanente:

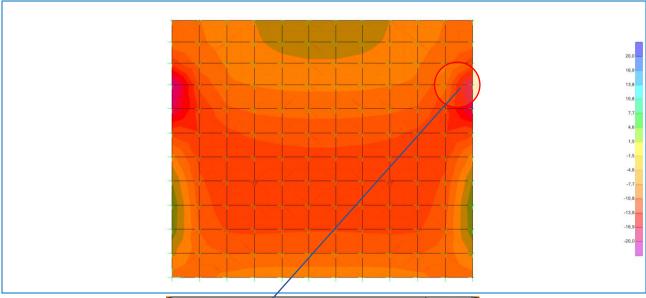


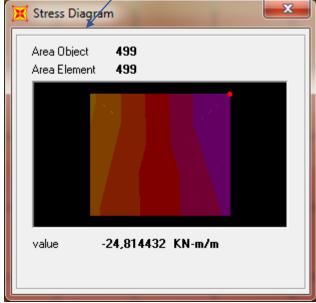
Il momento flettente di calcolo è assunto pari a M_{Sd} = -19,34 kNm.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 1,72 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 13,07 \text{ N/mm}^2$

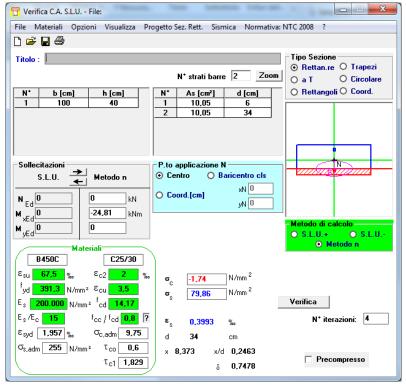
 $\sigma_s = 106,90 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$





16.2.3 COMBINAZIONE FREQUENTE – DIREZIONE TRASVERSALE

Nell'immagine successiva è riportato l'andamento del momento flettente trasversale e l'individuazione dell'elemento maggiormente sollecitato per la combinazione allo Stato Limite di Esercizio – Frequente:

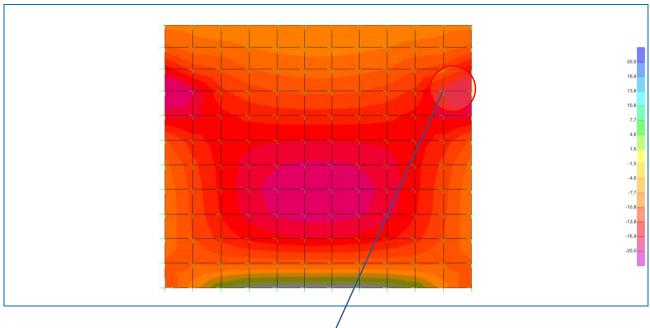


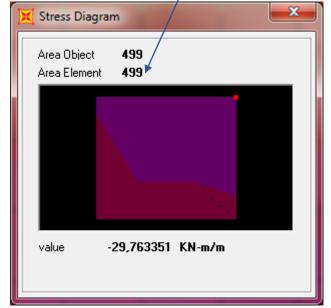
Il momento flettente di calcolo è assunto pari a M_{Sd} = -24,81 kNm.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 1,74 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 13,07 \text{ N/mm}^2$

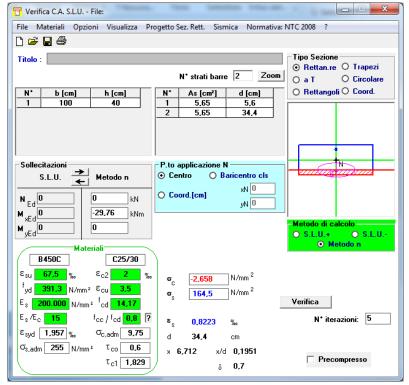
 $\sigma_s = 79,86 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$





16.2.4 COMBINAZIONE FREQUENTE - DIREZIONE LONGITUDINALE

Nell'immagine successiva è riportato l'andamento del momento flettente longitudinale per la combinazione allo Stato Limite di Esercizio – Quasi Permanente:

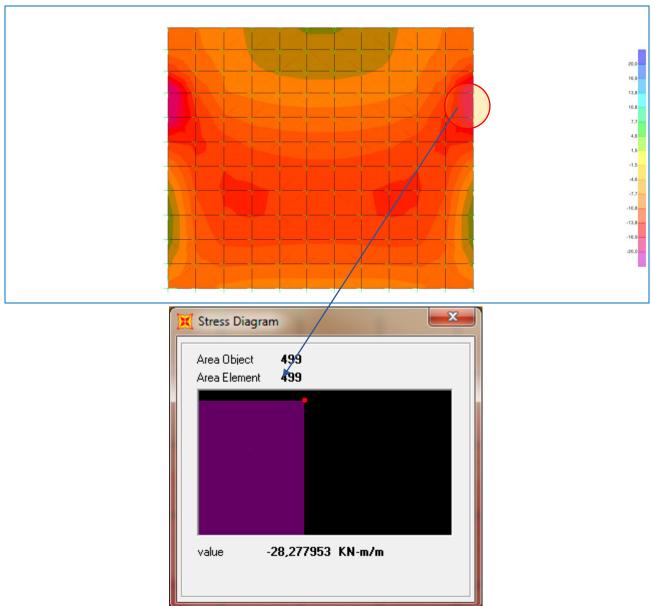


Il momento flettente di calcolo è assunto pari a M_{Sd} = -29,76 kNm.

Le tensioni sui materiali risultano pari a:

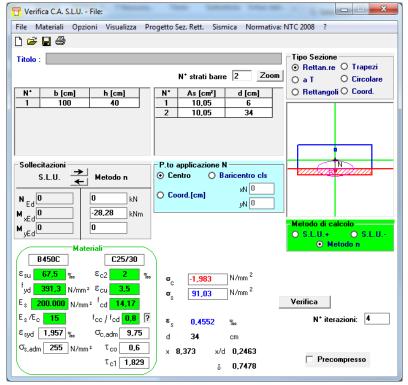
 $\sigma_c = 2,65 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 13,07 \text{ N/mm}^2$

 $\sigma_s = 164,50 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$



16.2.5 COMBINAZIONE RARA – DIREZIONE TRASVERSALE

Nell'immagine successiva è riportato l'andamento del momento flettente trasversale e l'individuazione dell'elemento maggiormente sollecitato per la combinazione allo Stato Limite di Esercizio – Rara:

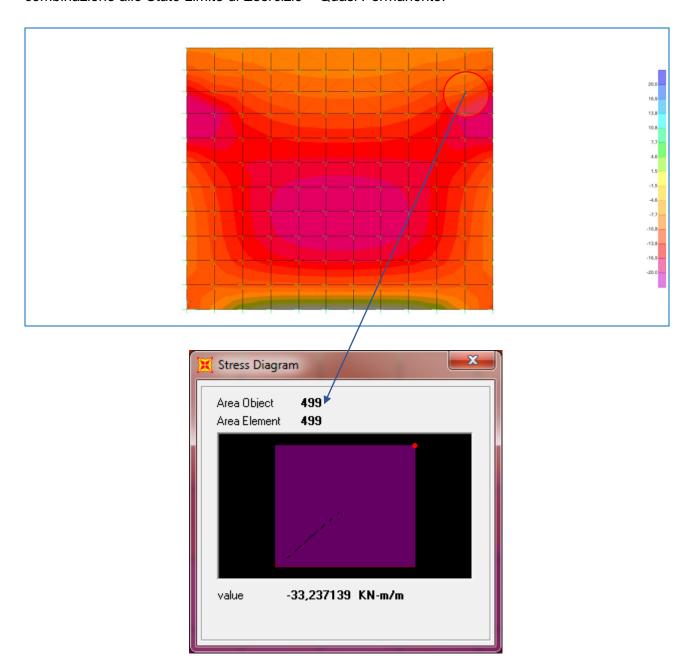


Il momento flettente di calcolo è assunto pari a M_{Sd} = -28,28 kNm.

Le tensioni sui materiali risultano pari a:

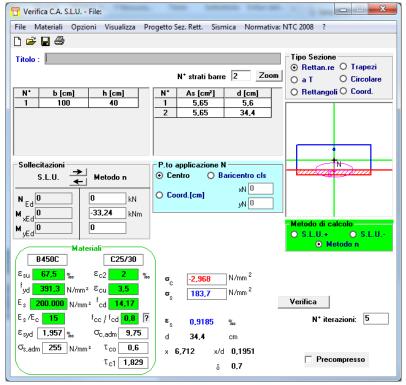
 $\sigma_c = 1,98 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 13,07 \text{ N/mm}^2$

 $\sigma_s = 91,03 \text{ N/mm}^2 < 0.80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$



16.2.6 COMBINAZIONE RARA – DIREZIONE LONGITUDINALE

Nell'immagine successiva è riportato l'andamento del momento flettente longitudinale per la combinazione allo Stato Limite di Esercizio – Quasi Permanente:



Il momento flettente di calcolo è assunto pari a M_{Sd} = -33,24 kNm.

Le tensioni sui materiali risultano pari a:

 σ_c = 2,97 N/mm² < 0,45 f_{ck} = 13,07 N/mm²

 $\sigma_s = 183,70 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$

16.3 VERIFICA ALLO STATO LIMITE DI FESSURAZIONE – DIREZIONE TRASVERSALE

La verifica semplificata allo SL di fessurazione viene condotta secondo quanto previsto dalla Circolare C.S.LL.PP. n.617 del 02.02.2009, par. C4.1.2.2.4.6, tab. C4.1.II e C4.1.III.

TABELLA C4.1.II - Diametri massimi delle barre per il controllo di fessurazione								
Tensione nell'acciaio	Diam	Diametro massimo Ø delle barre [mm]						
$\sigma_{\rm s}$ [N/mm ²]	w ₃ = 0,40 mm	w ₃ = 0,40 mm						
160	40	32	25					
200	32	25	16					
240	20	16	12					
280	16	12	8					
320	12	10	6					
360	10	8	0					

TABELLA C4.1.III - Spaziatura massima delle barre per il controllo di fessurazione							
Tensione nell'acciaio	Spaziatura	Spaziatura massima s delle barre delle barre [mm]					
$\sigma_{\rm s}$ [N/mm ²]	w ₃ = 0,40 mm	$w_3 = 0,40 \text{ mm}$ $w_2 = 0,30 \text{ mm}$ $w_1 = 0,20 \text{ mg}$					
160	300	300	200				
200	300	250	150				
240	250	200	100				
280	200	150	50				
320	150	100	0				
360	100	50	0				

CRITERI DI SCELTA DELLO STATO LIMITE DI FESSURAZIONE

I criteri di scelta dello Stato Limite di fessurazione sono definiti secondo quanto riportato dal D.M. 14.01.2008, par. 4.1.2.2.4.5, tab. 4.1.IV.

Condizioni ambientali: Aggressive

Armatura: Poco sensibile

COMBINAZIONE ALLO S.L.E. QUASI PERMANENTE

Stato limite: apertura fessure Ampiezza massima delle fessure: $w_d \le$ w1 $[N/mm^2]$ 46,42 Tensione massima nell'acciaio calcolata: $\sigma_{\text{s,max}}$ Diametro massimo delle barre di armature poste in opera: $Ø_{\text{max}}$ 16 [mm] 20,00 Spaziatura massima delle barre di armatura poste in opera: [mm]Smax \mathcal{O}_{max} Diametro massimo delle barre di armatura consentito: 25,00 [mm]

VERIFICA POSITIVA

COMBINAZIONE ALLO S.L.E. FREQUENTE

Stato limite: apertura fessure Ampiezza massima delle fessure: $W_d \le$ w2 [N/mm²]Tensione massima nell'acciaio calcolata: 79,86 $\sigma_{s,max}$ Diametro massimo delle barre di armature poste in opera: [mm] $Ø_{max}$ 16 Spaziatura massima delle barre di armatura poste in opera: 20,00 [mm] s_{max} 32,00 Diametro massimo delle barre di armatura consentito: $Ø_{max}$ [mm] 300,00 Spaziatura massima delle barre di armatura consentita: [mm]Smax

Spaziatura massima delle barre di armatura consentita:

200,00

 s_{max}

[mm]

16.3.1 VERIFICA ALLO STATO LIMITE DI FESSURAZIONE – DIREZIONE LONGITUDINALE

Per la verifica allo Stato Limite di fessurazione è stata utilizzata la procedura semplificata prevista dalla Circolare C.S.LL.PP. n.617 del 02.02.2009 – par. C4.1.2.2.4.6 – Tab. C4.1.II e C4.1.III. Le condizioni considerate sono riportate nella tabella seguente.

La verifica semplificata allo SL di fessurazione viene condotta secondo quanto previsto dalla Circolare C.S.LL.PP. n.617 del 02.02.2009, par. C4.1.2.2.4.6, tab. C4.1.II e C4.1.III.

TABELLA C4.1.II - Diametri massimi delle barre per il controllo di fessurazione								
Tensione nell'acciaio	Diametro massimo Ø delle barre [mm]							
σ _s [N/mm²]	$w_3 = 0,40 \text{ mm}$	$w_3 = 0,40 \text{ mm}$ $w_2 = 0,30 \text{ mm}$ $w_1 = 0,20 \text{ r}$						
160	40	32	25					
200	32	25	16					
240	20	16	12					
280	16	12	8					
320	12	10	6					
360	10	8	0					

TABELLA C4.1.III - Spaziatura massima delle barre per il controllo di fessurazione								
Tensione nell'acciaio	Spaziatura	Spaziatura massima s delle barre delle barre [mm]						
$\sigma_{\rm s}$ [N/mm ²]	w ₃ = 0,40 mm	$w_3 = 0,40 \text{ mm}$ $w_2 = 0,30 \text{ mm}$ $w_1 = 0,20 \text{ mm}$						
160	300	300	200					
200	300	250	150					
240	250	200	100					
280	200	150	50					
320	150	100	0					
360	100	50	0					

CRITERI DI SCELTA DELLO STATO LIMITE DI FESSURAZIONE

I criteri di scelta dello Stato Limite di fessurazione sono definiti secondo quanto riportato dal D.M. 14.01.2008, par. 4.1.2.2.4.5, tab. 4.1.IV.

Condizioni ambientali: Aggressive

Armatura: Poco sensibile

COMBINAZIONE ALLO S.L.E. QUASI PERMANENTE

Stato limite: apertura fessure Ampiezza massima delle fessure: w_d≤ w1 $[N/mm^2]$ Tensione massima nell'acciaio calcolata: 106,90 $\sigma_{s.max}$ Diametro massimo delle barre di armature poste in opera: [mm] \emptyset_{max} 12 Spaziatura massima delle barre di armatura poste in opera: 20,00 [mm] Smax Diametro massimo delle barre di armatura consentito: $Ø_{max}$ 25,00 [mm]

Diametro massimo delle barre di armatura consentito: \mathcal{O}_{max} 25,00 [mm] Spaziatura massima delle barre di armatura consentita: s_{max} 200,00 [mm]

VERIFICA POSITIVA

COMBINAZIONE ALLO S.L.E. FREQUENTE

Stato limite: Ampiezza massima delle fessure: $w_d \le$

Spaziatura massima delle barre di armatura consentita:

Ampiezza massima delle fessure: $w_d \le w_2$ Tensione massima nell'acciaio calcolata: $\sigma_{s,max}$ Diametro massimo delle barre di armature poste in opera: σ_{max} Spaziatura massima delle barre di armatura poste in opera: σ_{max} Diametro massimo delle barre di armatura consentito: σ_{max} 20,00

25,00

VERIFICA POSITIVA

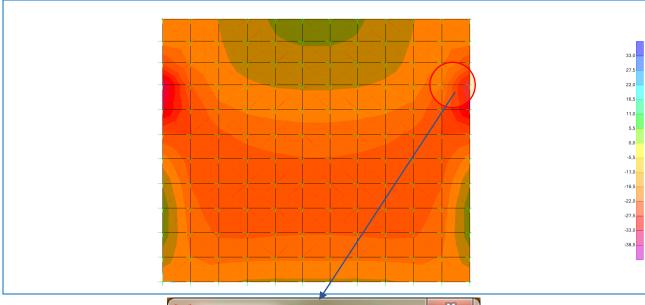
Smax

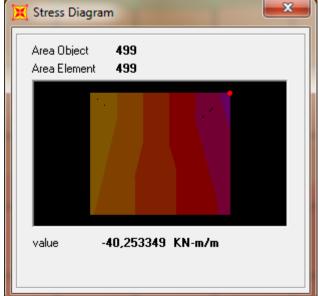
 $[N/mm^2]$

[mm]

[mm]

[mm]

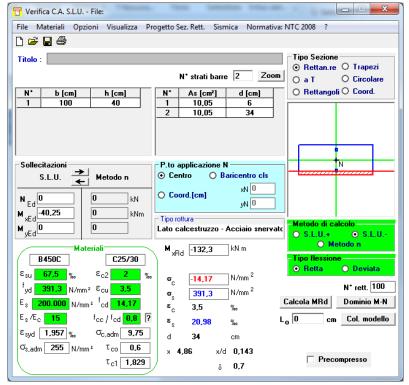

[mm]

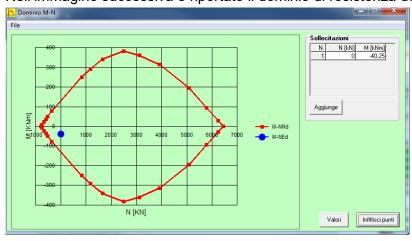

apertura fessure

250,00

16.3.2 VERIFICA ALLO STATO LIMITE ULTIMO PER PRESSOFLESSIONE – DIREZIONE TRASVERSALE

Nell'immagine successiva è riportato l'andamento del momento flettente trasversale e l'individuazione dell'elemento maggiormente sollecitato per la combinazione allo Stato Limite Ultimo - STR:

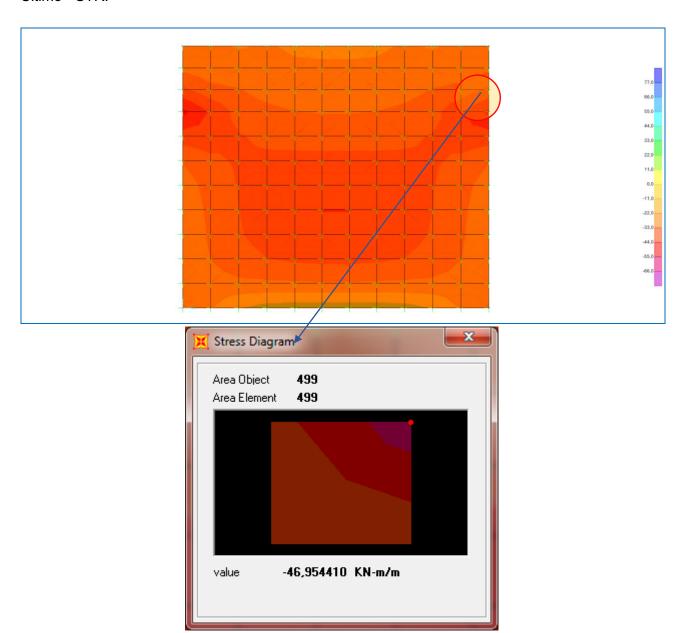



Il momento flettente di calcolo è assunto pari a M_{Sd} = -40,25 kNm.

Il momento resistente risulta pari a:

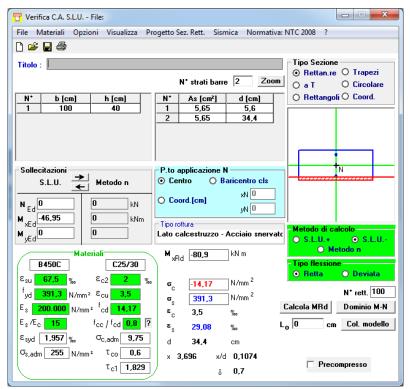
 $M_{Rd} = -132,30 \text{ kNm} > M_{Sd} = -40,25 \text{ kNm}$

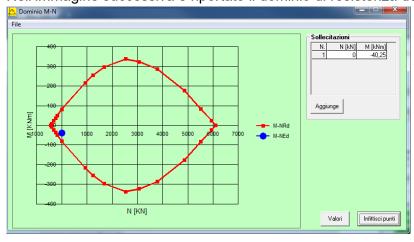
Nell'immagine successiva è riportato il dominio di resistenza della sezione:



16.4 VERIFICA ALLO STATO LIMITE ULTIMO PER FLESSIONE - DIREZIONE ORIZZONTALE

Nell'immagine successiva è riportato l'andamento del momento flettente longitudinale e l'individuazione dell'elemento maggiormente sollecitato per la combinazione allo Stato Limite Ultimo - STR:

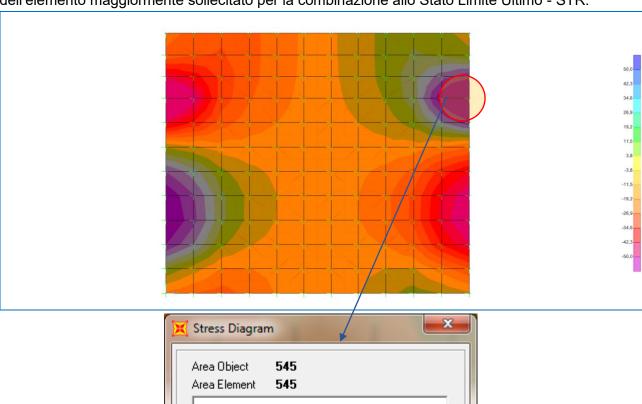


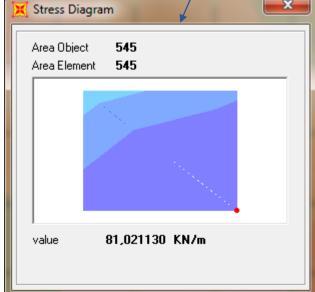

Il momento flettente di calcolo è assunto pari a M_{Sd} = -46,95 kNm.

Il momento resistente risulta pari a:

 $M_{Rd} = -80,90 \text{ kNm} > M_{Sd} = -46,95 \text{ kNm}$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:



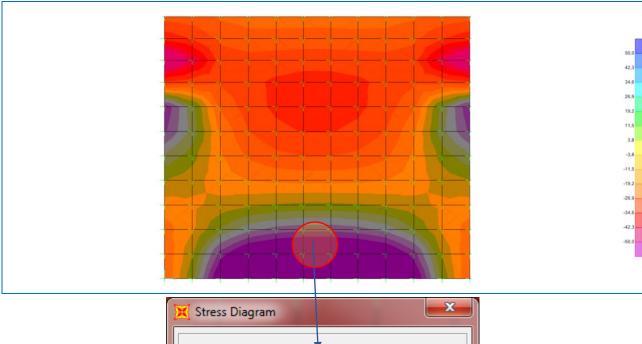


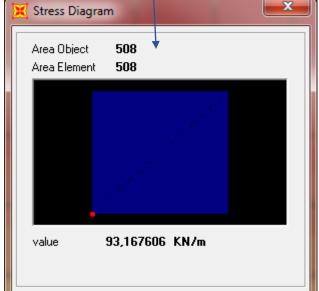
16.5 VERIFICA ALLO STATO LIMITE ULTIMO PER TAGLIO – DIREZIONE TRASVERSALE

Nell'immagine successiva è riportato l'andamento del taglio trasversale e l'individuazione dell'elemento maggiormente sollecitato per la combinazione allo Stato Limite Ultimo - STR:

L'azione tagliante di calcolo è assunta pari a V_{Sd} = 81, 02 kN.

CARATTERISTICHE GEOMETRICHE DELLA SEZIONE							
Base della sezione trasversale: Altezza della sezione trasversale: Copriferro netto: Altezza utile della sezione:		b h c d	100,00 40,00 4,00 36,00	[cm] [cm] [cm] [cm]			
CARATTERISTICHE DEI MATERIALI							
Classe di resistenza del calcestruzzo:	_			_			
Resistenza caratteristica cubica a compressione:		R_ck	35,00	[N/mm ²]			
Resistenza caratteristica cilindrica a compressione:		f_{ck}	29,05	[N/mm ²]			
Resistenza di calcolo a compressione:		f_{cd}	16,46	[N/mm ²]			
Tipologia dell'acciaio da armatura:							
Tensione caratteristica di rottura:		\mathbf{f}_{tk}	540,00	[N/mm ²]			
Tensione caratteristica di snervamento:		f_{yk}	450,00	[N/mm ²]			
Resistenza di calcolo:		f_{yd}	391,30	[N/mm ²]			
AZIONI SOLLECIT	ANTI DI CALC	OLO					
Azione tagliante di calcolo:		$V_{S,d}$	81,02	[kN]			
Azione normale di calcolo:		$N_{\text{S,d}}$	0,00	[kN]			
ARMATURA LO	ONGITUDINALI	Ē.					
	n _{barre}	Ø _{barre} [mm]	A _{barra} [cm ²]	A _{s,tot} [cm ²]			
Primo strato di armatura tesa:	5	16	2,01	10,05			
Infittimento primo strato di armatura tesa:			0,00	0,00			
Secondo strato di armatura tesa:			0,00	0,00			
Infittimento secondo strato di armatura tesa:			0,00	0,00			
AREA TOTALE DELLE BARRE DI ARMATURA TESA				10,05			
VERIFICA ALLO S	L.U. PER TAG	LIO					
La verifica allo S.L.U. per taglio viene condotta secondo	o quanto previs	sto dal D.M. 14	4.01.2008, par	.4.1.2.1.3.1			
$V_{Rd} = \left\{ \frac{0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3}}{\gamma_c} + 0.15 \cdot \frac{1}{3} + 0.15 \cdot \frac{1}{$	$\left.\sigma_{cp}\right\}\cdot b_{w}\cdot d\geq$	$\geq \left(v_{\min} + 0.15\right)$	$\cdot \sigma_{cp} \Big) \cdot b_{\scriptscriptstyle W} \cdot d$				
Coefficiente k:		k	1,75]			
Coefficiente v _{min} :		V_{min}	0,435	1			
Rapporto geometrico di armatura longitudinale:		ρ_1	0,0028				
Tensione media di compressione nella sezione:		$\sigma_{\sf cp}$	0,000	[N/mm ²]			
Larghezza minima della sezione:		b _w	100,00	[cm]			
AZIONE TAGLIANTE RESISTENTE DELLA SEZIONE:		$\mathbf{V}_{R,d}$	156,59	[kN]			
COEFFICIENTE DI SICUREZZA:		$F_S = V_{R,d}/V_{S,d}$	1,93]			
	SULTA POSITI	1/4		1			





16.6 VERIFICA ALLO STATO LIMITE ULTIMO PER TAGLIO - DIREZIONE LONGITUDINALE

Nell'immagine successiva è riportato l'andamento del taglio longitudinale e l'individuazione dell'elemento maggiormente sollecitato per la combinazione allo Stato Limite Ultimo - STR:

L'azione tagliante di calcolo è assunta pari a M_{Sd} = 93,17 kNm.

CARATTERISTICHE GEOMETRICHE DELLA SEZIONE						
	ILI NICI IL DEL			7		
Base della sezione trasversale:		b	100,00	[cm]		
Altezza della sezione trasversale:		h	40,00	[cm]		
Copriferro netto: Altezza utile della sezione:		C	4,00	[cm]		
Alezza ulile della sezione:		d	36,00	[cm]		
CARATTERISTIC	HE DEI MATER	RIALI				
Classe di resistenza del calcestruzzo:	•					
Resistenza caratteristica cubica a compressione:		R_ck	35,00	$[N/mm^2]$		
Resistenza caratteristica cilindrica a compressione:		f_{ck}	29,05	[N/mm ²]		
Resistenza di calcolo a compressione:		f _{cd}	16,46	[N/mm ²]		
		·cu	,	1, ,		
Tipologia dell'acciaio da armatura:	•					
Tensione caratteristica di rottura:		\mathbf{f}_{tk}	540,00	[N/mm ²]		
Tensione caratteristica di snervamento:		f_{yk}	450,00	$[N/mm^2]$		
Resistenza di calcolo:		f _{yd}	391,30	[N/mm ²]		
				-		
AZIONI SOLLECIT	ANTI DI CALC	OLO				
Azione tagliante di calcolo:		$V_{S,d}$	93,17	[kN]		
Azione normale di calcolo:		$N_{S,d}$	0,00	[kN]		
		-,-		_ -		
ARMATURA LO	ONGITUDINAL	E				
	n _{barre}	Ø _{barre} [mm]	A _{barra} [cm ²]	A _{s,tot} [cm ²]		
Primo strato di armatura tesa:	5	12	1,13	5,65		
Infittimento primo strato di armatura tesa:			0,00	0,00		
Secondo strato di armatura tesa:			0,00	0,00		
Infittimento secondo strato di armatura tesa:			0,00	0,00		
AREA TOTALE DELLE BARRE DI ARMATURA TESA				5,65		
VERIFICA ALLO S	S.L.U. PER TAC	GLIO				
La verifica allo S.L.U. per taglio viene condotta secondo			4.01.2008. pai	r.4.1.2.1.3.1		
			-			
$V_{Rd} = \left\{ \frac{0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3}}{\gamma_c} + 0.15 \cdot \right.$	$\left. \sigma_{cp} \right\} \cdot b_{w} \cdot d$	\geq $\left(v_{\min} + 0.15\right)$	$\cdot \sigma_{cp} \Big) \cdot b_{\scriptscriptstyle W} \cdot d$			
Coefficiente k:		k	1,75	1		
Coefficiente v _{min} :		V _{min}	0,435	1		
Rapporto geometrico di armatura longitudinale:		ρ ₁	0,0016	1		
Tensione media di compressione nella sezione:		$\sigma_{\sf cp}$	0,000	[N/mm ²]		
Larghezza minima della sezione:		b _w	100,00	[cm]		
				4 -		
AZIONE TAGLIANTE RESISTENTE DELLA SEZIONE:		$V_{R,d}$	156,59	[kN]		
COEFFICIENTE DI SICUREZZA:		$F_S=V_{R,d}/V_{S,d}$	1,68			
				=		
LA VERIFICA RIS	SULTA POSITI	VA				

17 **VERIFICHE GEOTECNICHE**

Le verifiche geotecniche del carico limite ultimo verranno eseguite secondo l'approccio 2 (A1+M1+R3) previsto dal D.M. 14.01.2008 "Nuove Norme Tecniche per le Costruzioni".

17.1 VALUTAZIONE DELLE AZIONI SOLLECITANTI CARATTERISTICHE ALLA BASE DELLA ZATTERA DI **FONDAZIONE**

Nella tabella successiva sono riportati i valori caratteristici delle azioni sollecitanti valutati alla base della zattera di fondazione per i diversi carichi elementari:

CARICHI ELEMENTARI	N _k [kN]	V _{kx} [kN]	M _{kx} [kN]	V _{ky} [kN]	M _{ky} [kN]	
Pesi propri strutturali	g ₁	89,50	0,00	0,00	0,00	0,00
Carichi permanenti portati sulla soletta	g ₂	206,65	0,00	0,00	0,00	0,00
Spinta orizzontale dei terreni	g ₃	0,00	0,00	0,00	32,90	30,71
Sov raccarichi accidentali sulla soletta	q ₁	75,00	0,00	0,00	0,00	0,00
Spinta orizzontale dei sov raccarichi accidentali sulla parete sinistra	q_2	0,00	19,10	22,92	19,10	22,92
Spinta orizzontale dei sovraccarichi accidentali sulla parete destra	q ₃	0,00	-19,10	-22,92	0,00	0,00
Inerzia sismica degli elementi strutturali	S ₁	0,00	6,71	6,38	6,71	6,38
Inerzia sismica dei carichi permanenti portati	S ₂	0,00	15,50	3,18	15,50	3,18
Sov raspinta dinamica dei terreni	S ₃	0,00	0,80	0,96	0,80	0,96

17.2 VALUTAZIONE DELLE AZIONI SOLLECITANTI DI CALCOLO ALLA BASE DELLA ZATTERA DI **FONDAZIONE**

17.2.1 COMBINAZIONI ALLO STATO LIMITE ULTIMO – STR

CARICHI	COMBINAZIONE SLU - STR 01						
ELEMENTARI	γ	Ψ	N _k [kN]	V _{kx} [kN]	M _{kx} [kN]	V _{ky} [kN]	M _{ky} [kN]
g ₁	1,35	1,00	120,83	0,00	0,00	0,00	0,00
9 ₂	1,50	1,00	309,98	0,00	0,00	0,00	0,00
g ₃	1,35	1,00	0,00	0,00	0,00	44,42	41,45
q ₁	1,35	1,00	101,25	0,00	0,00	0,00	0,00
q_2	1,35	1,00	0,00	25,79	30,95	25,79	30,95
q_3	1,35	1,00	0,00	-25,79	-30,95	0,00	0,00
S ₁	0,00	0,00	0,00	0,00	0,00	0,00	0,00
\$2	0,00	0,00	0,00	0,00	0,00	0,00	0,00
s ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00
			532,05	0,00	0,00	70,21	72,40

CARICHI			COMBINAZ	IONE SLU - ST	ΓR 02		
ELEMENTARI	γ	Ψ	N _k [kN]	V _{kx} [kN]	M _{kx} [kN]	V _{ky} [kN]	M _{ky} [kN]
g ₁	1,35	1,00	120,83	0,00	0,00	0,00	0,00
g_2	1,50	1,00	309,98	0,00	0,00	0,00	0,00
9 ₃	1,35	1,00	0,00	0,00	0,00	44,42	41,45
q_1	1,35	1,00	101,25	0,00	0,00	0,00	0,00
q_2	1,35	1,00	0,00	25,79	30,95	25,79	30,95
q_3	1,35	0,00	0,00	0,00	0,00	0,00	0,00
S ₁	0,00	0,00	0,00	0,00	0,00	0,00	0,00
s ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00
s ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00
			532,05	25,79	30,95	70,21	72,40

CARICHI			COMBINAZ	IONE SLU - ST	TR 03		
ELEMENTARI	γ	ψ	N _k [kN]	V _{kx} [kN]	M _{kx} [kN]	V _{ky} [kN]	M _{ky} [kN]
91	1,35	1,00	120,83	0,00	0,00	0,00	0,00
92	1,50	1,00	309,98	0,00	0,00	0,00	0,00
9 ₃	1,35	1,00	0,00	0,00	0,00	44,42	41,45
q_1	1,35	1,00	101,25	0,00	0,00	0,00	0,00
q_2	1,35	0,00	0,00	0,00	0,00	0,00	0,00
q_3	1,35	1,00	0,00	-25,79	-30,95	0,00	0,00
s ₁	0,00	0,00	0,00	0,00	0,00	0,00	0,00
S ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00
S ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	·		532,05	-25,79	-30,95	44,42	41,45

CARICHI			COMBINAZ	COMBINAZIONE SLU - STR 04					
ELEMENTARI	γ	Ψ	N _k [kN]	V _{kx} [kN]	M _{kx} [kN]	V _{ky} [kN]	M _{ky} [kN]		
g ₁	1,35	1,00	120,83	0,00	0,00	0,00	0,00		
9 ₂	1,50	1,00	309,98	0,00	0,00	0,00	0,00		
g ₃	1,35	1,00	0,00	0,00	0,00	44,42	41,45		
q ₁	1,35	1,00	101,25	0,00	0,00	0,00	0,00		
q_2	1,35	0,00	0,00	0,00	0,00	0,00	0,00		
q_3	1,35	0,00	0,00	0,00	0,00	0,00	0,00		
S ₁	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
\$2	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
\$3	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
			532,05	0,00	0,00	44,42	41,45		

CARICHI			COMBIN	IAZIONE SLU	- STR 05		
ELEMENTARI	γ	Ψ	N _k [kN]	V _{kx} [kN]	M _{kx} [kN]	V _{ky} [kN]	M _{ky} [kN]
g ₁	1,35	1,00	120,83	0,00	0,00	0,00	0,00
9 ₂	1,50	1,00	309,98	0,00	0,00	0,00	0,00
g ₃	1,35	1,00	0,00	0,00	0,00	44,42	41,45
q ₁	1,35	0,00	0,00	0,00	0,00	0,00	0,00
q_2	1,35	1,00	0,00	25,79	30,95	25,79	30,95
q_3	1,35	1,00	0,00	-25,79	-30,95	0,00	0,00
s ₁	0,00	0,00	0,00	0,00	0,00	0,00	0,00
S ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00
s ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00
			430,80	0,00	0,00	70,21	72,40

CARICHI			COMBIN	NAZIONE SLU	- STR 06		
ELEMENTARI	γ	Ψ	N _k [kN]	V _{kx} [kN]	M _{kx} [kN]	V _{ky} [kN]	M _{ky} [kN]
g ₁	1,35	1,00	120,83	0,00	0,00	0,00	0,00
g_2	1,50	1,00	309,98	0,00	0,00	0,00	0,00
g ₃	1,35	1,00	0,00	0,00	0,00	44,42	41,45
q_1	1,35	0,00	0,00	0,00	0,00	0,00	0,00
q_2	1,35	1,00	0,00	25,79	30,95	25,79	30,95
q_3	1,35	0,00	0,00	0,00	0,00	0,00	0,00
s ₁	0,00	0,00	0,00	0,00	0,00	0,00	0,00
\$2	0,00	0,00	0,00	0,00	0,00	0,00	0,00
s ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00
			430,80	25,79	30,95	70,21	72,40

CARICHI			COMBIN	NAZIONE SLU	- STR 07		
ELEMENTARI	γ	Ψ	N _k [kN]	V _{kx} [kN]	M _{kx} [kN]	V _{ky} [kN]	M _{ky} [kN]
g ₁	1,35	1,00	120,83	0,00	0,00	0,00	0,00
g ₂	1,50	1,00	309,98	0,00	0,00	0,00	0,00
g ₃	1,35	1,00	0,00	0,00	0,00	44,42	41,45
q ₁	1,35	0,00	0,00	0,00	0,00	0,00	0,00
q_2	1,35	0,00	0,00	0,00	0,00	0,00	0,00
q_3	1,35	1,00	0,00	-25,79	-30,95	0,00	0,00
s ₁	0,00	0,00	0,00	0,00	0,00	0,00	0,00
s ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00
S ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00
			430,80	-25,79	-30,95	44,42	41,45

17.2.2 COMBINAZIONI ALLO STATO LIMITE DI SALVAGUARDIA DELLA VITA – SLV

CARICHI			COMBIN	IAZIONE SLV	01		
ELEMENTARI	γ	Ψ	N _k [kN]	V _{kx} [kN]	M _{kx} [kN]	V _{ky} [kN]	M _{ky} [kN]
g ₁	1,00	1,00	89,50	0,00	0,00	0,00	0,00
92	1,00	1,00	206,65	0,00	0,00	0,00	0,00
9 ₃	1,00	1,00	0,00	0,00	0,00	32,90	30,71
q ₁	1,00	0,00	0,00	0,00	0,00	0,00	0,00
q_2	1,00	0,00	0,00	0,00	0,00	0,00	0,00
q ₃	1,00	0,00	0,00	0,00	0,00	0,00	0,00
s ₁	1,00	1,00	0,00	-19,10	-22,92	0,00	0,00
s ₂	1,00	1,00	0,00	6,71	6,38	6,71	6,38
S ₃	1,00	1,00	0,00	15,50	3,18	15,50	3,18
	•		296,15	3,11	-13,36	55,11	40,27

17.2.3 RIEPILOGO DELLE AZIONI SOLLECITANTI DI CALCOLO

COMBINAZIONE	N _k [kN]	V _{kx} [kN]	M _{kx} [kN]	V _{ky} [kN]	M _{ky} [kN]
SLU - STR 01	532,05	0,00	0,00	70,21	72,40
SLU - STR 02	532,05	25,79	30,95	70,21	72,40
SLU - STR 03	532,05	-25,79	-30,95	44,42	41,45
SLU - STR 04	532,05	0,00	0,00	44,42	41,45
SLU - STR 05	430,80	0,00	0,00	70,21	72,40
SLU - STR 06	430,80	25,79	30,95	70,21	72,40
SLU - STR 07	430,80	-25,79	-30,95	44,42	41,45
SLV 01	296,15	3,11	-13,36	55,11	40,27

17.3 VERIFICA DEL CARICO LIMITE ULTIMO E DELLO SCORRIMENTO

La verifica del carico limite ultimo e dello scorrimento verrà eseguita secondo l'approccio 2 definito dal D.M. 17.01.2018 "Nuove Norme Tecniche per le Costruzioni".

Verrà utilizzato il metodo di Meyerhof per le fondazioni nastriformi, considerando la condizione drenata.

Le verifiche sono state eseguite mediante il software Aztec Carl.

Richiami teorici

Verifica al carico limite

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi sul terreno di fondazione deve essere superiore a η_q . Cioè, detto Q_u , il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

$$Q_u / R >= \eta_q$$

Si adotta per il calcolo del carico limite in fondazione il metodo di MEYERHOF.

L'espressione del carico ultimo è data dalla relazione:

$$Q_u = c N_c d_c i_c + q N_q d_q i_q + 0.5 \gamma B N_\gamma d_\gamma i_\gamma$$

In questa espressione:

- coesione del terreno in fondazione; С
- φ angolo di attrito del terreno in fondazione;
- peso di volume del terreno in fondazione; γ
- В larghezza della fondazione;
- profondità del piano di posa; D
- pressione geostatica alla quota del piano di posa. a

I vari fattori che compaiono nella formula sono dati da:

$$A = e^{\pi tg \phi}$$

$$N_q = A tg^2(45^{\circ} + \phi/2)$$

$$N_c$$
 = (N_q - 1) ctg ϕ

$$N_{\gamma} = (N_{q} - 1) \text{ tg } (1.4\phi)$$

Indichiamo con K_p il coefficiente di spinta passiva espresso da:

$$K_p = tg^2(45^{\circ} + \phi/2)$$

I fattori d e i che compaiono nella formula sono rispettivamente i fattori di profondità ed i fattori di inclinazione del carico espressi dalle seguenti relazioni:

Fattori di profondità

$$\begin{split} &d_q = 1\,+\,0.2\,(\,\,D\,/\,\,B\,\,)\,\,K_p{}^{0.5}\\ &d_q = d_\gamma = 1 \quad \text{ per } \,\varphi = 0\\ &d_q = d_\gamma = 1\,+\,0.1\,(\,\,D\,/\,\,B\,\,)\,\,sK_p{}^{0.5} \qquad \text{per } \,\varphi > 0 \end{split}$$

Fattori di inclinazione

Indicando con θ l'angolo che la risultante dei carichi forma con la verticale (espresso in gradi) e con ϕ l'angolo d'attrito del terreno di posa abbiamo:

$$\begin{array}{l} i_c = i_q = (1 - \theta^{\circ}/90)^2 \\ i_{\gamma} = [1 - (\theta^{\circ}/\phi^{\circ})]^2 & \text{per } \phi > 0 \\ i_{\gamma} = 0 & \text{per } \phi = 0 \end{array}$$

Verifica allo scorrimento

Per la verifica a scorrimento lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere la fondazione deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento risulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento F_r e la risultante delle forze che tendono a fare scorrere la fondazione F_s risulta maggiore di un determinato coefficiente di sicurezza η_s

$$F_r$$
 $\longrightarrow = \eta_s$
 F_s

Le forze che intervengono nella F_s sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δ_f l'angolo d'attrito terreno-fondazione, con c_a l'adesione terrenofondazione e con B_r la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N tg \delta_f + c_a B_r$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle della fondazione. In tal caso, però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 30 percento.

Per quanto riguarda l'angolo d'attrito terra-fondazione, δ_f , diversi autori suggeriscono di assumere un valore di δ_f pari all'angolo d'attrito del terreno di fondazione.

17.4 **RISULTATI**

17.4.1 DATI

Geometria della fondazione

Simbologia adottata

Descrizione Descrizione della fondazione

Forma della fondazione (N=Nastriforme, R=Rettangolare, C=Circolare) Forma

Ascissa del baricentro della fondazione espressa in [m]

Ordinata del baricentro della fondazione espressa in [m]

Base/Diametro della fondazione espressa in [m] В Lunghezza della fondazione espressa in [m]

D Profondità del piano di posa in [m]

Inclinazione del piano di posa espressa in [°]

Inclinazione del piano campagna espressa in [°]

Descrizione	Forma	X	Υ	В	L	D	α	ω
		[m]	[m]	[m]	[m]	[m]	[°]	[°]
Fondazione	(R)	0,00	0,00	3,40	4,15	2,00	0,00	0,00

<u>Descrizione terreni e falda</u>

Caratteristiche fisico-meccaniche

Simbologia adottata

Descrizione Descrizione terreno

- γ Peso di volume del terreno espresso in [kN/mc]
- γ_{sat} Peso di volume saturo del terreno espresso in [kN/mc]
- φ Angolo di attrito interno del terreno espresso in gradi
- δ Angolo di attrito palo-terreno espresso in gradi
- c Coesione del terreno espressa in [N/mmq]
- ca Adesione del terreno espressa in [N/mmq]

Descr	γ	γsat	ф	δ	С	са
	[kN/mc]	[kN/mc]	[°]	[°]	[N/mmq]	[N/mmq]
L5	18,000	18,000	26.00	26.00	0,0000	0,0000
G3	18,500	18,500	28.00	28.00	0,0000	0,0000

Falda

Profondità dal piano campagna 1,00 [m]

Descrizione stratigrafia

Simbologia adottata

- *n*° Identificativo strato
- 21 Quota dello strato in corrispondenza del punto di sondaggio nº1 espressa in [m]
- 22 Quota dello strato in corrispondenza del punto di sondaggio n°2 espressa in [m]
- 23 Quota dello strato in corrispondenza del punto di sondaggio n°3 espressa in [m]

Terreno Terreno dello strato

Punto di sondaggio n° 1: X = 0.0 [m] Y = 0.0 [m]Punto di sondaggio n° 2: X = 3.0 [m] Y = 0.0 [m]Punto di sondaggio n° 3: X = 0.0 [m] Y = 3.0 [m]

n°	Z1	Z 2	Z 3	Terreno
	[m]	[m]	[m]	
1	-3,0	-3,0	-3,0	L5
2	-15.0	-15.0	-15.0	G3

17.4.2 DESCRIZIONE COMBINAZIONI DI CARICO

Simbologia adottata

- γ Coefficiente di partecipazione della condizione
- Ψ Coefficiente di combinazione della condizione

Combinazione nº 1 STR - A1-M1-R3

Nome	γ	Ψ
Condizione nº 1	1.00	1.00

Combinazione nº 2 STR - A1-M1-R3

Nome	γ	Ψ
Condizione nº 2	1.00	1.00

Combinazione nº 3 STR - A1-M1-R3

Nome	γ	Ψ
Condizione nº 3	1.00	1.00

Combinazione nº 4 STR - A1-M1-R3

Nome	γ	Ψ
Condizione nº 4	1.00	1.00

Combinazione nº 5 STR - A1-M1-R3

Nome	γ	Ψ
Condizione nº 5	1.00	1.00

Combinazione nº 6 STR - A1-M1-R3

Nome	γ	Ψ
Condizione nº 6	1.00	1.00

Combinazione nº 7 STR - A1-M1-R3

Nome	γ	Ψ
Condizione nº 7	1.00	1.00

Combinazione nº 8 STR - A1-M1-R3

Nome	γ	Ψ
Condizione nº 8	1.00	1.00

17.4.3 OPZIONI DI CALCOLO

Analisi in condizioni drenate

Verifica al carico limite

Metodo di calcolo della portanza:

Altezza del cuneo di rottura:

Criterio per il calcolo del macrostrato equivalente:

Meyerhof

AUTOMATICA

MEDIA ARITMETICA

Nel calcolo della portanza sono state richieste le seguenti opzioni:

Coefficiente correttivo su N_{γ} per effetti cinematici (combinazioni sismiche SLU): 1,00 Coefficiente correttivo su N_{γ} per effetti cinematici (combinazioni sismiche SLE): 1,00

Riduzione per carico eccentrico: MEYERHOF

Meccanismo di punzonamento in presenza di falda.

Risultati

Verifica della portanza per carichi verticali

Simbologia adottata

Cmb Indice della combinazione *Fnd* Indice della fondazione

PF Rottura per punzonamento in presenza di falda

q_u Portanza ultima, espressa in [N/mmq]
 q_d Portanza di progetto, espressa in [N/mmq]

P_u Portanza ultima, espressa in [kN]P_d Portanza di progetto, espressa in [kN]

V Carico ortogonale al piano di posa, espresso in [kN]

 η Fattore di sicurezza a carico limite ($\eta=P_d/V$)

Cm b	Fnd	PF	Qu	q d	Pu	P _d	V	η
			[N/mm q]	[N/mm q]	[kN]	[kN]	[kN]	
1	1	NO	0,395	0,172	5121,42	2226,71	532,05	4.19
2	1	NO	0,385	0,167	4842,16	2105,29	532,05	3.96
3	1	NO	0,426	0,185	5614,94	2441,28	532,05	4.59
4	1	NO	0,441	0,192	5984,54	2601,97	532,05	4.89
5	1	NO	0,369	0,161	4788,37	2081,90	430,80	4.83
6	1	NO	0,358	0,156	4446,54	1933,28	430,80	4.49
7	1	NO	0,405	0,176	5248,74	2282,06	430,80	5.30
8	1	NO	0,349	0,152	4479,14	1947,45	296,15	6.58

Caratteristiche terreno e fondazione di progetto

Simbologia adottata

Cmb Indice della combinazione Indice della fondazione Fnd

Н Altezza del cuneo di rottura, espressa in [m]

Peso di volume, espressa in [kN/mc] γ

Angolo di attrito, espressa in [°] ϕ

Coesione, espressa in [N/mmq] С

G Modulo di taglio, espresso in [N/mmq]

В' Base ridotta per effetto dell'eccentricità del carico (B'=B-2e_x), espressa in [m]

L' Lunghezza ridotta per effetto dell'eccentricità del carico (L'=L-2e_v), espressa in [m]

 R_{ex} Fattore di riduzione per carico eccentrico lungo X

Fattore di riduzione per carico eccentrico lungo Y R_{ey}

 I_R Indice di rigidezza

Indice di rigidezza critico I_{RC}

Cmb	Fnd	Н	γ	ф	С	G	B'	Ľ	Rex	Rey	Ic	\mathbf{I}_{RC}
		[m]	[kN/mc]	[°]	[N/mm q]	[N/mm q]	[m]	[m]				
1	1	2,77	8,4432	27.00	0,000	0,000	3,35	3,88			0.84	59.76
2	1	2,77	8,4432	27.00	0,000	0,000	3,23	3,90			0.83	59.76
3	1	2,77	8,4432	27.00	0,000	0,000	3,32	3,97			0.88	59.76
4	1	2,77	8,4432	27.00	0,000	0,000	3,40	3,99			0.90	59.76
5	1	2,77	8,4432	27.00	0,000	0,000	3,40	3,81			0.80	59.76
6	1	2,77	8,4432	27.00	0,000	0,000	3,26	3,81			0.79	59.76
7	1	2,77	8,4432	27.00	0,000	0,000	3,30	3,93			0.85	59.76
8	1	2,77	8,4432	27.00	0,000	0,000	3,31	3,88			0.78	59.76

Fattori correttivi verifica capacità portante

Combinazione nº 1 Fondazione nº 1

Fattori di capacità portante	Nc = 23.94	Nq = 13.20	$N_{\gamma} = 9.46$
Fattori di forma	Sc = 1.00	Sq = 1.00	$S_{\gamma} = 1.00$
Fattori per effetto del punzonamento	$\Psi_{c} = 1.00$	$\Psi_{q} = 1.00$	$\Psi_{\gamma} = 1.00$
Fattori di inclinazione del carico	Ic = 0.84	Iq = 0.84	$I_{\gamma} = 0.52$
Fattori di profondità	Dc = 1.19	Dq = 1.10	$Q_{\gamma} = 1.10$

Combinazione nº 2 Fondazione nº 1

Fattori di capacità portante	Nc = 23.94	Nq = 13.20	$N_{\gamma} = 9.46$
Fattori di forma	Sc = 1.00	Sq = 1.00	$S_{\gamma} = 1.00$
Fattori per effetto del punzonamento	$\Psi_{c} = 1.00$	$\Psi_{q} = 1.00$	$\Psi_{\gamma} = 1.00$
Fattori di inclinazione del carico	Ic = 0.83	Iq = 0.83	$I\gamma = 0.50$
Fattori di profondità	Dc = 1.19	Dq = 1.10	$Q_{\gamma} = 1.10$

Combinazione nº 3 Fondazione nº 1

Fattori di capacità portante	Nc = 23.94	Nq = 13.20	$N_{\gamma} = 9.46$
Fattori di forma	Sc = 1.00	Sq = 1.00	$S_{\gamma} = 1.00$
Fattori per effetto del punzonamento	$\Psi_{c} = 1.00$	$\Psi_{q} = 1.00$	$\Psi_{\gamma} = 1.00$
Fattori di inclinazione del carico	Ic = 0.88	Iq = 0.88	$I_{\gamma} = 0.63$
Fattori di profondità	Dc = 1.19	Dq = 1.10	Qγ = 1.10

Combinazione nº 4 Fondazione nº 1

Fattori di capacità portante	Nc = 23.94	Nq = 13.20	$N_{\gamma} = 9.46$
Fattori di forma	Sc = 1.00	Sq = 1.00	$S_{\gamma} = 1.00$
Fattori per effetto del punzonamento	$\Psi_{c} = 1.00$	$\Psi_{q} = 1.00$	$\Psi_{\gamma} = 1.00$
Fattori di inclinazione del carico	Ic = 0.90	Iq = 0.90	$I_{\gamma} = 0.68$
Fattori di profondità	Dc = 1.19	Dq = 1.10	$Q_{\gamma} = 1.10$

Combinazione nº 5 Fondazione nº 1

Fattori di capacità portante	Nc = 23.94	Nq = 13.20	$N_{\gamma} = 9.46$
Fattori di forma	Sc = 1.00	Sq = 1.00	$S_{\gamma} = 1.00$
Fattori per effetto del punzonamento	$\Psi_{c} = 1.00$	$\Psi_{q} = 1.00$	$\Psi_{\gamma} = 1.00$
Fattori di inclinazione del carico	Ic = 0.80	Iq = 0.80	$I_{\gamma} = 0.43$
Fattori di profondità	Dc = 1.19	Dq = 1.10	$Q_{\gamma} = 1.10$

Combinazione nº 6 Fondazione nº 1

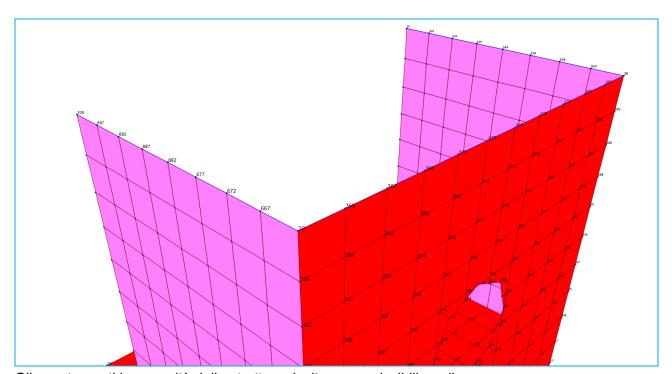
Fattori di capacità portante	Nc = 23.94	Nq = 13.20	$N_{\gamma} = 9.46$
Fattori di forma	Sc = 1.00	Sq = 1.00	$S_{\gamma} = 1.00$
Fattori per effetto del punzonamento	$\Psi_{c} = 1.00$	$\Psi_{q} = 1.00$	$\Psi_{\gamma} = 1.00$
Fattori di inclinazione del carico	Ic = 0.79	Iq = 0.79	$I_{\gamma} = 0.40$
Fattori di profondità	Dc = 1.19	Dq = 1.10	$Q_{\gamma} = 1.10$

Combinazione nº 7 Fondazione nº 1

Fattori di capacità portante	Nc = 23.94	Nq = 13.20	$N_{\gamma} = 9.46$
Fattori di forma	Sc = 1.00	Sq = 1.00	$S_{\gamma} = 1.00$
Fattori per effetto del punzonamento	$\Psi_{c} = 1.00$	$\Psi_{q} = 1.00$	$\Psi_{\gamma} = 1.00$
Fattori di inclinazione del carico	Ic = 0.85	Iq = 0.85	$I_{\gamma} = 0.56$
Fattori di profondità	Dc = 1.19	Dq = 1.10	$Q_{\gamma} = 1.10$

Combinazione nº 8 Fondazione nº 1

Fattori di capacità portante	Nc = 23.94	Nq = 13.20	$N_{\gamma} = 9.46$
Fattori di forma	Sc = 1.00	Sq = 1.00	$S_{\gamma} = 1.00$
Fattori per effetto del punzonamento	$\Psi_{c} = 1.00$	$\Psi_{q} = 1.00$	$\Psi_{\gamma} = 1.00$
Fattori di inclinazione del carico	Ic = 0.78	Iq = 0.78	$I_{\gamma} = 0.37$
Fattori di profondità	Dc = 1.19	Dq = 1.10	$Q_{\gamma} = 1.10$



18 **VERIFICA DEGLI SPOSTAMENTI**

Di seguito si riportano gli spostamenti in sommità della struttura:

TABLE: Joint Displacements				
Joint	U1	U2	U3	
	m	m	m	
32	0,000	-0,009	-0,010	
32	0,000	-0,013	-0,013	
36	0,000	-0,009	-0,010	
36	0,000	-0,013	-0,013	
52	0,000	-0,009	-0,004	
52	0,000	-0,013	-0,005	
313	0,000	-0,009	-0,010	
313	0,000	-0,013	-0,013	
315	0,000	-0,009	-0,010	
315	0,000	-0,013	-0,013	
339	0,000	-0,009	-0,004	
339	0,000	-0,013	-0,005	
356	0,000	-0,009	-0,010	
356	0,000	-0,013	-0,013	
361	0,000	-0,009	-0,010	
361	0,000	-0,013	-0,013	
366	0,000	-0,009	-0,010	
366	0,000	-0,013	-0,013	
377	0,000	-0,009	-0,010	
377	0,000	-0,013	-0,013	
382	0,000	-0,009	-0,010	
382	0,000	-0,013	-0,013	
387	0,000	-0,009	-0,010	
387	0,000	-0,013	-0,013	
473	0,000	-0,009	-0,010	
473	0,000	-0,013	-0,013	
478	0,000	-0,009	-0,010	
478	0,000	-0,013	-0,013	

TABLE: Joint Displacements				
Joint	U1	U2	U3	
	m	m	m	
629	0,000	-0,009	-0,009	
629	0,000	-0,013	-0,012	
634	0,000	-0,009	-0,009	
634	0,000	-0,013	-0,011	
639	0,000	-0,009	-0,008	
639	0,000	-0,013	-0,010	
644	0,000	-0,009	-0,007	
644	0,000	-0,013	-0,009	
649	0,000	-0,009	-0,006	
649	0,000	-0,013	-0,008	
654	0,000	-0,009	-0,005	
654	0,000	-0,013	-0,007	
659	0,000	-0,009	-0,005	
659	0,000	-0,013	-0,006	
667	0,000	-0,009	-0,009	
667	0,000	-0,013	-0,012	
672	0,000	-0,009	-0,009	
672	0,000	-0,013	-0,011	
677	0,000	-0,009	-0,008	
677	0,000	-0,013	-0,010	
682	0,000	-0,009	-0,007	
682	0,000	-0,013	-0,009	
687	0,000	-0,009	-0,006	
687	0,000	-0,013	-0,008	
692	0,000	-0,009	-0,005	
692	0,000	-0,013	-0,007	
697	0,000	-0,009	-0,005	
697	0,000	-0,013	-0,006	

Gli spostamenti in sommità della struttura risultano ammissibili per l'opera.

