

IMPIANTO FOTOVOLTAICO PER LA PRODUZIONE DI ENERGIA ELETTRICA DA FONTE SOLARE DENOMINATO "MELFI 8" DA REALIZZARSI IN LOCALITA' MASSERIA MONTELUNGO, COMUNE DI MELFI (PZ)

OPERA DI PUBBLICA UTILITA'
VALUTAZIONE IMPATTO AMBIENTALE ai sensi del D.Lgs 3 aprile 2006, n.152 ALL. II

CUSTOMER Committente

FIMENERGIA

ADDRES:

VIA L. BUZZI 6, 15033 CASALE MONFERRATO (AL) T. +390292875126 (ufficio operativo)

DESIGNERS TEAM
Gruppo di progettazione

CIVIL - ENVIRONMENTAL DESIGN
Progettazione civile - ambientale

VIA ADIGE 16

Engineering

1. 133 332 31 43330

Ing. ANTONIO BUCCOLIERI

ELECTRICAL DESIGN

VIA GIOVANNI BATTISTA PIRELLI, 27 20124 MILANO (MI) T. +390292875126

Ing. FRANCESCO FAVERO

HYDRAULIC CONSULTANCY

C.SO A. DE GASPERI 529/c 70125 BARI (BA) T. +393287050505

Ing. SALVATORE VERNOLE

GEOLOGICAL CONSULTANCY Consulenza geologica

VIALE DEL SEMINARIO MAGGIORE, 35 25063 POTENZA (PZ) T. +393483017593

Dr. ANTONIO DE CARLO

ARCHEOLOGIST Archeologo

> VIA MARATEA, 1 85100 POTENZA (PZ) T. +393490881560

Dr.SSA LUCIA COLANGELO

REV.	DATE	DESCRIPTION	PREPARED	CHECKED	APPROVED
00	Novembre 2023	PRIMA EMISSIONE	Dr. A. De Carlo	Dr. A. De Carlo	Dr. A. De Carlo
01					
02					
03					
04					
05					

DRAWING - Elaborato

TITLE Titolo

RELAZIONE GEOLOGICA E GEOTECNICA

D	RAWING DETAILS	- Dettagli di disegi	no	
	GENERAL SCALE Scala generale		DETAIL SCALE Scala particolari	
				_

Al	RCHIVE - Archivio		
	FILE	PLOT STYLE	
	DTG_071		

CODING - Codifica

PROJECT LEVEL Fase progettuale

DEFINITIVO

DTG

Progressivo

7

1

REVISION Revisione

00

Progetto di realizzazione di un impianto di produzione di energia da fonte solare denominato "Melfi 8", della potenza di 19,99 MW, da realizzarsi in località Masseria Montelungo nel comune di Melfi (PZ)".

INDICE

1.	PREMESSA	2
2.	RIFERIMENTI NORMATIVI E CARTOGRAFICI	4
3.	UBICAZIONE DEI SITI DI PROGETTO ED INQUADRAMENTO URBANISTICO	5
4.	INQUADRAMENTO GEOLOGICO-STRUTTURALE	11
5.	PRIME CONSIDERAZIONI DI CARATTERE GEOTECNICO	14
6.	CARATTERIZZAZIONE IDROGEOLOGICA	16
7.	VALUTAZIONE DEL RISCHIO FRANE ED ALLUVIONE	19
8.	CARATTERIZZAZIONE MORFOLOGICA	20
9.	CONCLUSIONI	30

ALLEGATI:

- Allegato DTG.072: Carta Geologica
- Allegato DTG.073: Carta Geomorfologica
- Allegato DTG.074: Carta Idrogeologica
- Allegato DTG.075: Carta Bacini Idrografici
- Allegato DTG.076: Planimetria indagini
- Allegato DTG.077: Profilo geologico

Progetto di realizzazione di un impianto di produzione di energia da fonte solare denominato "Melfi 8", della potenza di 19,99 MW, da realizzarsi in località Masseria Montelungo nel comune di Melfi (PZ)".

1. PREMESSA

Per incarico ricevuto dalla Società Fimenergia S.r.l., lo scrivente ha redatto il presente studio geologico preliminare per il "Progetto di realizzazione di un impianto di produzione di energia da fonte solare denominato "Melfi 8", della potenza di 19,99 MW, da realizzarsi in località Masseria Montelungo nel comune di Melfi (PZ)". Il progetto prevede di un impianto di produzione di energia da fonte solare, della potenza di 19,99 MW, integrato con un sistema di accumulo elettrochimico a batterie, di capacità pari a 100,5 MWh e potenza nominale di 18 MW, collegato alla rete elettrica mediante connessione in antenna a 36 kV alla futura Stazione Elettrica 380/36 kV, denominata "Melfi 36", in fase di progettazione da parte di TERNA spa.

Per verificare la realizzabilità del progetto in parola nel territorio in cui è stato inserito, si è proceduto in uno studio tale da poter inquadrare sotto il profilo geologico, idrogeologico e geomorfologico l'areale coinvolto dall'intervento al fine di poterne sottoscrivere la fattibilità. Ai fini della rappresentazione preliminare delle caratteristiche geologiche *latu sensu* dell'intera area e, <u>per escludere la presenza di elementi di criticità</u>, il rilevamento geo-morfologico di superficie, coadiuvato dalla fotointerpretazione di foto aeree, si è dimostrato ed è lo studio tematico più appropriato al raggiungimento di tale obiettivo, in quanto ha permesso di rilevare e cartografare le Unità Litologiche in affioramento, nonchè tutte quelle forme morfoevolutive o contesti idrogeologici meritevoli di attenzione. Chiaramente, una volta appurata l'idoneità geologica e morfologica dei siti di sedime, <u>avendo scartato gli areali con criticità litologica e morfologica</u>, si passerà al successivo grado di approfondimento della progettazione (progetto esecutivo) in cui sarà effettuata la verifica puntuale delle caratteristiche litologiche, dei rapporti stratigrafici (ad esempio tra il substrato alterato ed il substrato s.s., o tra coltri detritiche e substrato), delle caratteristiche geotecniche, idrogeologiche e sismiche dei terreni in affioramento, tramite una corposa campagna di indagini geognostiche dirette ed indirette, nonchè di analisi e prove geotecniche di laboratorio, così come programmato e riportato nell'Allegato DTG.076: Planimetria indagini.

Con riferimento a quest'ultimo aspetto, ai sensi del cap. 6.12 del D.M. 17/01/2018, in questa fase della progettazione, come già accennato, il rilevamento geologico e geomorfologico effettuato in loco ha confermato macroscopicamente le buone condizioni di stabilità dell'area di sedime dell'opera in progetto. Nel dettaglio saranno eseguite:

- n°5 MASW; n°5 sismiche a rifrazione in onda P;
- n°7 Prove penetrometriche (DPSH);

Progetto di realizzazione di un impianto di produzione di energia da fonte solare denominato "Melfi 8", della potenza di 19,99 MW, da realizzarsi in località Masseria Montelungo nel comune di Melfi (PZ)".

 n°4 Sondaggi geognostici a carotaggio continuo con prelievo di campioni indisturbati da sottoporre ad analisi e prove geotecniche di laboratorio.

Le elaborazioni cartografiche prodotte in questa fase sono riportate negli allegati di seguito elencati:

- Allegato DTG.072: Carta Geologica;
- Allegato DTG.073: Carta Geomorfologica;
- Allegato DTG.074: Carta Idrogeologica;
- Allegato DTG.075: Carta Bacini Idrografici;
- Allegato DTG.076: Planimetria con ubicazione delle indagini geognostiche da eseguire;
- Allegato DTG.077: Profilo geologico.

Progetto di realizzazione di un impianto di produzione di energia da fonte solare denominato "Melfi 8", della potenza di 19,99 MW, da realizzarsi in località Masseria Montelungo nel comune di Melfi (PZ)".

2. RIFERIMENTI NORMATIVI E CARTOGRAFICI

Nella redazione della presente relazione si è fatto riferimento alla normativa vigente ed alla documentazione cartografica e bibliografica esistente, di seguito riportate:

Normativa di riferimento nazionale:

- L.N. n.64/74 Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche;
- D.M. 11.03.1988 Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione;
- D.P.R. n.380/2001 Testo unico delle disposizioni legislative e regolamentari in materia edilizia;
- O.P.C.M. n.3274/2003 Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica;
- D.M. 14.09.2005 Norme Tecniche per le Costruzioni;
- O.P.C.M. n.3519/2006 Criteri generali per l'individuazione delle zone sismiche e per la formazione e l'aggiornamento degli elenchi delle medesime zone;
- O.P.C.M. n.3907/2010 "Attuazione dell'art.11 del D.L. 28/04/2009, n.39, convertito con modificazioni, dalla Legge 24/06/2009, n.77 in materia di contributi per interventi di prevenzione del rischio sismico";
- D.M. del 17.01.2018 Aggiornamento delle "Norme tecniche per le costruzioni";
- Circolare del C.S.LL.PP. n° 7 del 21.01.2019 Istruzioni per l'applicazione dell'Aggiornamento delle Norme Tecniche per le Costruzioni.

Normativa di riferimento regionale:

- L.R. n.1 del 19 gennaio 2010 "Norme in materia di energia e Piano di Indirizzo Energetico Ambientale Regionale. D.Lgs. n. 152 del 3 aprile 2006 L.R. n. 9/2007"
- Norme di Attuazione e Piano Stralcio per la Difesa dal Rischio Idrogeologico Autorità di Bacino distrettuale dell'Appennino Meridionale sede Puglia.
- L.R. n° 38 del 06.08.1997 Norme per l'esercizio delle funzioni regionali in materia di difesa del territorio dal rischio sismico;
- L.R. n° 9 del 16.04.1984;
- Delibera del Consiglio Regionale di Basilicata n° 575 del 04.08.2009;
- L.R. 9/2011 Disposizioni urgenti in materia di microzonazione sismica.

Riferimenti cartografici e bibliografici:

- Foglio 175 "Cerignola" della Carta Geologica d'Italia (scala 1:100.000) e "Note Illustrative";
- Sezione 435 II della CTR della Basilicata (scala 1:25.000);
- Elementi 435092 e 435093 della CTR Basilicata (scala 1:5000);
- Piano stralcio per la difesa dal rischio idrogeologico dell'Autorità di Bacino distrettuale dell'Appennino Meridionale – sede Puglia, consultabile tramite il WebGIS dell'AdB Puglia all'indirizzo http://webgis.adb.puglia.it.

3. UBICAZIONE DEI SITI DI PROGETTO ED INQUADRAMENTO URBANISTICO

Il sito interessato alla realizzazione dell'impianto si sviluppa nel territorio di Melfi (PZ); l'area di intervento, avente superficie complessiva di circa 24 ettari, è ubicata a sud dell'area industriale San Nicola di Melfi ad una quota circa di 219 m s.l.m.

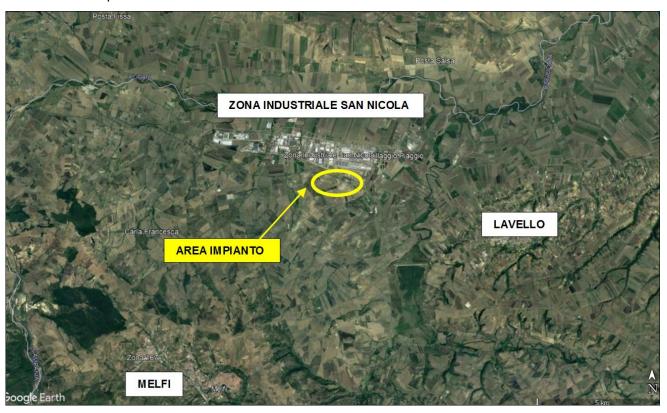


Fig.01: Ortofoto con inquadramento territoriale ed ubicazione dell'area di interesse

Anche la cabina primaria "Melfi - Industriale" di connessione alla rete di E-distribuzione è sita nella stessa area. La zona è caratterizzata da una morfologia essenzialmente pianeggiante, con piccole incisioni idrografiche che ricadono all'interno del bacino del Fiume Ofanto.

L'area di intervento è situata in prossimità della zona industriale San Nicola, nel Comune di Melfi (PZ), a più di 8 km in direzione N dal centro abitato di Melfi e a più di 8 km in direzione O dal centro abitato di Lavello in località "Masseria Montelungo".

Le coordinate geografiche del sito destinato alla realizzazione del progetto sono le seguenti:

		COORE GEOGR		COORDINA	TE PIANE	QUOTA	COMUNE	LOCALITAL
		WGS-84 UTM 33 N (32633)		MONTE MARIO OVEST (3004)			COMONE	LOCALITA'
		E-LONG	N-LAT	E-LONG	N-LAT	m s.l.m.		
	1	557748.118	4546958.279	2577756.629	4546966.150	202	Melfi	Loc. Ind. San Nicola
	2	557937.458	4546826.044	2577946.036	4546833.885	204	Melfi	Loc. Ind. San Nicola
	3	557937.537	4546672.261	2577946.037	4546679.794	204	Melfi	Loc. Ind. San Nicola
	4	557698.620	4546864.101	2577707.176	4546871.720	205	Melfi	Loc. Ind. San Nicola

	•	,					
5	558472.863	4546473.403	2578481.411	4546481.093	210	Melfi	Loc. Ind. San Nicola
6	558787.309	4546432.256	2578795.944	4546439.946	215	Melfi	Loc. Ind. San Nicola
7	559033.340	4546329.927	2579042.173	4546337.504	215	Melfi	Loc. Ind. San Nicola
8	559033.591	4546117.429	2579042.229	4546125.213	213	Melfi	Loc. Ind. San Nicola
9	558908.353	4546025.532	2578916.988	4546033.234	217	Melfi	Loc. Ind. San Nicola
10	558670.330	4546089.606	2578678.800	4546097.308	244	Melfi	Loc. Ind. San Nicola
11	558650.939	4546220.364	2578659.734	4546227.991	245	Melfi	Loc. Ind. San Nicola
12	558564.282	4546119.930	2578572.932	4546127.594	247	Melfi	Loc. Ind. San Nicola
13	558265.350	4546209.283	2578273.994	4546217.010	223	Melfi	Loc. Ind. San Nicola
14	558133.213	4546371.973	2578141.857	4546379.542	218	Melfi	Loc. Ind. San Nicola

Sotto il profilo urbanistico, le aree comprese nel territorio comunale di Melfi risultano incluse nella zona Industriale San Nicola di Melfi (PZ). Al catasto dei terreni le aree dell'impianto fotovoltaico e delle opere di connessione, sono individuate in base ai seguenti riferimenti catastali:

COMUNE	FG	PARTICELLA	UTILIZZO	
MELFI (PZ)	18	15	IMPIANTO FOTOVOLTAICO	
MELFI (PZ)	18	16	IMPIANTO FOTOVOLTAICO	
MELFI (PZ)	18	152	IMPIANTO FOTOVOLTAICO	
MELFI (PZ)	18	154	IMPIANTO FOTOVOLTAICO	
MELFI (PZ)	18	277	IMPIANTO FOTOVOLTAICO CAVIDOTTO	
MELFI (PZ)	18	392	IMPIANTO FOTOVOLTAICO CAVIDOTTO	
MELFI (PZ)	18	394	IMPIANTO FOTOVOLTAICO CAVIDOTTO	
MELFI (PZ)	18	396	IMPIANTO FOTOVOLTAICO CAVIDOTTO	
MELFI (PZ)	18	398	IMPIANTO FOTOVOLTAICO	
MELFI (PZ)	18	400	IMPIANTO FOTOVOLTAICO	
MELFI (PZ)	18	494	IMPIANTO FOTOVOLTAICO	
MELFI (PZ)	18	504	IMPIANTO FOTOVOLTAICO	
MELFI (PZ)	18	505	IMPIANTO FOTOVOLTAICO	
MELFI (PZ)	18	507	IMPIANTO FOTOVOLTAICO	
MELFI (PZ)	18	537	IMPIANTO FOTOVOLTAICO	
MELFI (PZ)	18	549	IMPIANTO FOTOVOLTAICO	
MELFI (PZ)	18	631	IMPIANTO FOTOVOLTAICO	
MELFI (PZ)	18	652	IMPIANTO FOTOVOLTAICO	
MELFI (PZ)	18	654	IMPIANTO FOTOVOLTAICO	
MELFI (PZ)	18	655	IMPIANTO FOTOVOLTAICO	
MELFI (PZ)	18	656	IMPIANTO FOTOVOLTAICO	
MELFI (PZ)	18	657	IMPIANTO FOTOVOLTAICO	
MELFI (PZ)	18	658	IMPIANTO FOTOVOLTAICO	
MELFI (PZ)	18	659	IMPIANTO FOTOVOLTAICO	
MELFI (PZ)	16	198	CAVIDOTTO	
MELFI (PZ)	16	213	CAVIDOTTO	
MELFI (PZ)	16	216	CAVIDOTTO	
MELFI (PZ)	16	218	CAVIDOTTO	
MELFI (PZ)	16	496	CAVIDOTTO	
MELFI (PZ)	16	504	CAVIDOTTO	

Progetto di realizzazione di un impianto di produzione di energia da fonte solare denominato "Melfi 8", della potenza di 19,99 MW, da realizzarsi in località Masseria Montelungo nel comune di Melfi (PZ)".

MELFI (PZ)	16	505	CAVIDOTTO
MELFI (PZ)	16	539	CAVIDOTTO
MELFI (PZ)	17	285	CAVIDOTTO
MELFI (PZ)	17	303	CAVIDOTTO
MELFI (PZ)	17	306	CAVIDOTTO
MELFI (PZ)	17	312	CAVIDOTTO
MELFI (PZ)	17	315	CAVIDOTTO
MELFI (PZ)	17	319	CAVIDOTTO
MELFI (PZ)	17	321	CAVIDOTTO
MELFI (PZ)	17	326	CAVIDOTTO
MELFI (PZ)	17	331	CAVIDOTTO
MELFI (PZ)	17	335	CAVIDOTTO
MELFI (PZ)	17	340	CAVIDOTTO
MELFI (PZ)	17	342	CAVIDOTTO
MELFI (PZ)	17	349	CAVIDOTTO
MELFI (PZ)	17	352	CAVIDOTTO
MELFI (PZ)	17	355	CAVIDOTTO
MELFI (PZ)	17	370	CAVIDOTTO
MELFI (PZ)	17	553	CAVIDOTTO
MELFI (PZ)	17	556	CAVIDOTTO
MELFI (PZ)	17	628	CAVIDOTTO
MELFI (PZ)	18	162	CAVIDOTTO
MELFI (PZ)	18	283	CAVIDOTTO
MELFI (PZ)	18	444	CAVIDOTTO
MELFI (PZ)	18	447	CAVIDOTTO
MELFI (PZ)	18	453	CAVIDOTTO
MELFI (PZ)	18	466	CAVIDOTTO
MELFI (PZ)	18	468	CAVIDOTTO
MELFI (PZ)	18	472	CAVIDOTTO
MELFI (PZ)	18	476	CAVIDOTTO
MELFI (PZ)	18	498	CAVIDOTTO
MELFI (PZ)	18	502	CAVIDOTTO
MELFI (PZ)	18	503	CAVIDOTTO
MELFI (PZ)	18	539	CAVIDOTTO
MELFI (PZ)	18	540	CAVIDOTTO
MELFI (PZ)	18	580	CAVIDOTTO
MELFI (PZ)	18	581	CAVIDOTTO
MELFI (PZ)	18	629	CAVIDOTTO
MELFI (PZ)	18	632	CAVIDOTTO
MELFI (PZ)	18	633	CAVIDOTTO
MELFI (PZ)	18	637	CAVIDOTTO

Di seguito si riporta uno stralcio della planimetria catastale.

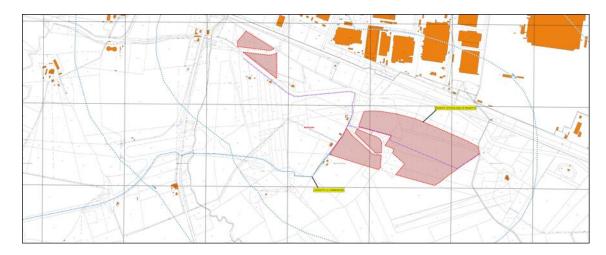


Fig.02: Planimetria catastale dell'area di progetto dell'impianto di produzione di energia da fonte solare

Dal punto di vista cartografico il sito ricade all'interno del Foglio n°175, Cerignola della Carta Geologica d'Italia in scala 1:100.000, Sezione 435-II della CTR in scala 1:25.000, Elementi 435092 e 435093 della CTR Basilicata in scala 1:5000; il sito è inoltre regolamentato dal Piano stralcio per la difesa dal rischio idrogeologico dell'Autorità di Bacino distrettuale dell'Appennino Meridionale - sede Puglia, consultabile tramite il WebGIS dell'AdB Puglia, all'indirizzo http://webgis.adb.puglia.it.

L'impianto fotovoltaico in progetto, consiste in 3 lotti ricadenti a sud della zona industriale di San Nicola nel Comune di Melfi (PZ): i lotti 2 e 3 si sviluppano in adiacenza alla strada statale SS 655 "Bradanica" mentre il lotto 1 è situato a nord della stessa. Per quanto riguarda la connessione dei lotti alla cabina di consegna, il cavidotto a media tensione proveniente dal Lotto 1 attraverserà il canale irriguo Ofanto-Rendina, e successivamente, passerà al di sotto della SS 655 "Bradanica", sfruttando un sottopasso esistente, mentre i cavi provenienti dal lotto 2 e 3 passeranno al di sotto di strade sterrate (la posa avverrà tramite tecniche di attraversamento di trivellazione orizzontale controllata denominata T.O.C., successivamente illustrate).

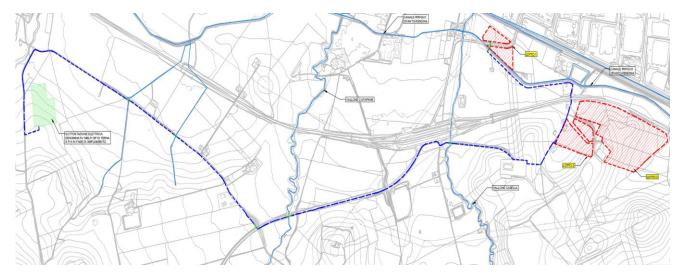


Fig.03: Planimetria del progetto su Carta Tecnica Regionale in scala 1:25.000

Nell'area di progetto come strumento urbanistico, vige il PRG approvato con D.P.G.R. n.113 dell'11/02/1992 e successivo D.P.G.R, n. 469 del 24/05/1993.

In base allo strumento urbanistico, le aree in cui ricade il parco fotovoltaico di progetto sono classificate come Zone Agricole. Come previsto dal D.Lgs. 387/03 e ss.mm.ii art. 12 comma 7, gli impianti alimentati da fonte rinnovabile possono essere collocati all'interno di zone classificate agricole dai vigenti piani urbanistici, e nel caso, costituiscono variante allo stesso.

L'area del lotto 1, ricade in zona PPC - "Aree produttive concentrate", ma viene ulteriormente classificata da strumenti urbanistici sovracomunali, nelle quali viene denominata "Zona Industriale San Nicola di Melfi".

Fig.04: Inquadramento su Piano Regolatore Generale di Melfi - Tavola 12

Il nuovo regolamento edilizio, individua i vincoli e le aree soggette a tutela, e dall'analisi di tale elaborato, si può evidenziare che i lotti interessati dall'intervento sono interni alle aree individuate idonee all'installazione di impianti alimentati da fonti rinnovabili (si rimanda alla L.R. 54/2015).

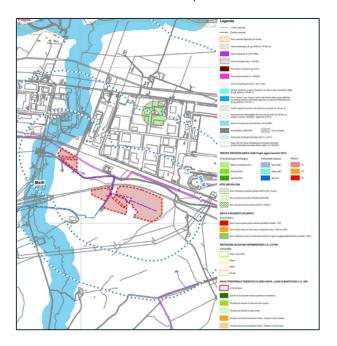


Fig.05: Inquadramento sul Piano Regolatore Generale di Melfi - Tavola 06

Inoltre, l'area d'impianto ricade all'interno di un buffer di 300-100 m dall'area industriale di San Nicola di Melfi, il che si traduce in un incentivo alla realizzazione di un impianto da FER, in quanto si tratterebbe di una conversione di una zona limitrofa ad un'area impattata negativamente dagli stabilimenti presenti.

Progetto di realizzazione di un impianto di produzione di energia da fonte solare denominato "Melfi 8", della potenza di 19,99 MW, da realizzarsi in località Masseria Montelungo nel comune di Melfi (PZ)".

4. INQUADRAMENTO GEOLOGICO-STRUTTURALE

L'area oggetto di studio ricade all'interno del Foglio 175 "Cerignola" della Carta Geologica d'Italia (scala 1:100.000) ed i depositi che vi affiorano coincidono con la parte meridionale della Fossa Bradanica, parzialmente ricoperti dalle coltri alluvionali terrazzate del Fiume Ofanto e localmente da depositi direttamente o indirettamente derivanti dall'attività vulcanica del Vulture, in parte depositati in ambiente palustre.

La Fossa Bradanica è un bacino di sedimentazione plio-pleistocenico compreso tra la catena appenninica meridionale ad ovest, ed il Gargano e le Murge ad est. La fisiografia di quest'area di sedimentazione è definita ad occidente da un margine interno, a sedimentazione silicoclastica, e a oriente da un margine esterno, a sedimentazione carbonatica. Il primo è costituito dai *thrust* attivi appenninici che deformano unità, prevalentemente terziarie, già accavallatesi sui depositi di avanfossa pliocenici autoctoni, ed è caratterizzato da una parte interna (con una zona emersa ed una sommersa, rappresentata da una ristretta piattaforma), ad alto gradiente ed in sollevamento, e da una parte esterna, costituita da scarpata e da bacino, in forte subsidenza. Per questi motivi il margine interno è interessato da alti tassi di sedimentazione silicoclastica.

In questo quadro paleogeografico si è formato il complesso di sedimenti che costituisce la nota successione della Fossa Bradanica. Questa è costituita da depositi le cui litologie, facies e spessori variano in funzione della loro posizione rispetto ai due margini sopra descritti e che possono schematicamente essere ricondotti a:

- successioni silicoclastiche connesse al margine occidentale del bacino;
- successioni carbonatiche connesse al margine orientale del bacino;
- successioni silicoclastiche e miste di colmamento del bacino.

Le successioni silicoclastiche sono essenzialmente costituite da notevoli spessori di sedimenti siltosoargillosi con livelli sabbiosi (Argille subappennine), all'interno dei quali si rinvengono isolati corpi ghiaiosi deltizi (Conglomerato di Serra del Cedro).

Le successioni carbonatiche sono rappresentate dall'unità della Calcareniti di Gravina, costituita da biocalcareniti e biocalciruditi intrabacinali e/o da calciruditi terrigene. Queste passano in alto, per alternanze, alle Argille Subappennine. Le due unità ora descritte costituiscono i termini trasgressivi della successione della Fossa Bradanica, dovuti al lento e progressivo annegamento della rampa regionale e all'approfondimento batimetrico del bacino.

Progetto di realizzazione di un impianto di produzione di energia da fonte solare denominato "Melfi 8", della potenza di 19,99 MW, da realizzarsi in località Masseria Montelungo nel comune di Melfi (PZ)".

Le successioni silicoclastiche e miste di colmamento rappresentano la parte alta del ciclo sedimentario bradanico e sono costituite da unità sabbiose e conglomeratiche silicoclastiche e/o miste. Queste poggiano stratigraficamente sulle Argille subappennine, con passaggio graduale e rapido o con contatto erosivo. Nel complesso tali successioni rappresentano i termini regressivi bradanici, legati alla successiva fase di emersione dell'avanfossa.

Riguardo all'assetto dei depositi bradanici, seguendo una sezione trasversale allo sviluppo del bacino, risulta che i corpi sedimentari del margine ovest sono inclinati verso l'asse e tendono gradualmente all'orizzontalità superato l'asse del bacino. Gli altri sedimenti presentano assetto orizzontale e se mostrano deboli immersioni (10°) verso l'asse, queste sono dovute a tettonica sin-sedimentaria.

La ricostruzione litostratigrafica, scaturita dal rilevamento geologico di superficie, esteso ad un'area più ampia rispetto a quella strettamente interessata dal progetto in epigrafe, ha messo in evidenza che le caratteristiche peculiari delle formazioni, come anche riportato nell' **Allegato DTG.072: Carta Geologica** e schematizzato nell' **Allegato DTG.077: Profilo geologico** sono, dall'alto verso il basso stratigrafico, quelle di seguito descritte:

a) DEPOSITI ALLUVIONALI TERRAZZATI (Pleistocene)

Rappresentano i terreni di fondazione dell'impianto fotovoltaico e sono costituiti in prevalenza da sedimenti sabbioso ghiaiosi, in parte argillosi e localmente torbosi, con ciottoli poligenici, provenienti dall'erosione delle formazioni affioranti in gran parte dell'area di alimentazione del bacino imbrifero del Fiume Ofanto; vistosamente terrazzati, sono sopraelevati di 15 metri circa sull'alveo attuale.

b) LITOFACIES ARGILLOSO-SILTOSA (Pliocene-Calabriano)

Caratterizzata da una grande omogeneità laterale e verticale ed è costituita da alternanze di strati e livelli di limo argilloso, di argille limose grigio-chiare e di sabbie-argillose sottilmente stratificate e generalmente laminate, cui si intercalano straterelli siltosi o argilloso-siltosi caratterizzati di norma da una laminazione parallela. Si presentano mediamente consistenti, plastici e discretamente compressibili. A più altezze si rinvengono corpi lenticolari, di spessore inferiore al metro, costituiti da microconglomerati a matrice sabbiosa, gradati e talora amalgamati. Non di rado si intercalano strati decimetrici di siltiti ed arenarie. Il loro spessore è compreso da 200 a 250 m.

c) LITOFACIES SABBIOSA (Pliocene-Calabriano)

Rappresentano i terreni di fondazione della SSE. Costituita da alternanze di strati e livelli di sabbie fini, sabbie limose, limo argilloso, argille limose e sabbie argillose giallastre nella loro parte alterata, grigio

chiaro-azzurrognole in quella Integra. Si presentano in genere sottilmente stratificate e laminate, con laminazione parallela. Generalmente questi litotipi sono caratterizzati da una grande omogeneità laterale e verticale. A più altezze si rinvengono corpi lenticolari costituiti da microconglomerati a matrice sabbiosa, gradati e talora amalgamati, o si intercalano strati decimetrici di siltiti ed arenarie. Gli orizzonti più sabbiosi si presentano ben addensati. Abbondanti sono le intercalazioni di resti fossiliferi carbonatici.

Di seguito si riporta lo stralcio del Foglio n°175 "Cerignola" della Carta Geologica d'Italia (scala 1:100.000).

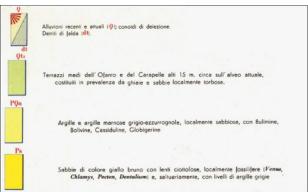


Fig. 06: Stralcio del Foglio 175 "Cerignola" della Carta Geologica d'Italia, scala 1:100.000

Progetto di realizzazione di un impianto di produzione di energia da fonte solare denominato "Melfi 8", della potenza di 19,99 MW, da realizzarsi in località Masseria Montelungo nel comune di Melfi (PZ)".

5. PRIME CONSIDERAZIONI DI CARATTERE GEOTECNICO

Al fine di dare solo delle prime indicazioni sulle caratteristiche geotecniche dei terreni in affioramento, in questo capitolo ne saranno riportati i principali parametri fisico-meccanici che scaturiscono da considerazioni macroscopiche effettuate sugli affioramenti in campagna e dalla letteratura tecnica specializzata. Tali parametri devono essere impiegati con estrema cautela in qualsiasi calcolo geotecnico, anche se preliminare, in quanto non è possibile prescindere dalla stratimetria delle singole litofacies descritte nel precedente capitolo, dal loro rapporto stratigrafico, dal loro comportamento sismoelastico. Pertanto, le suddette indicazioni devono ritenersi valide nei limiti che questa prima fase cognitiva pone, ovvero acquisizione di dati e notizie preliminari.

Perciò si rimanda al successivo grado di approfondimento della progettazione (progetto esecutivo) la verifica puntuale delle caratteristiche stratigrafiche, litologiche, geotecniche, idrogeologiche, sismiche dei terreni di sedime, tramite un'idonea e ragionata campagna di indagini geognostiche dirette ed indirette, che potrà confermare o meno quanto si espone di seguito:

a) UNITÀ LITOTECNICA 1: Depositi Alluvionali Terrazzati

Costituita da sedimenti sabbioso ghiaiosi, in parte argillosi e localmente torbosi, con ciottoli poligenici. Nei livelli più superficiali si presentano mediamente addensati ed asciutti, mentre con la profondità aumenta sia il grado di addensamento che l'umidità (fino a saturi):

γ _{n k}	γsat k	φ' _k	C_k'
(t/m³)	(t/m³)	(gradi)	(t/m²)
1.85	2.10	28	0.50

b) UNITÀ LITOTECNICA 2: Litofacies Argilloso-Siltosa

Costituita da alternanze di strati e livelli di limo argilloso, di argille limose grigio-chiare e di sabbie-argillose sottilmente stratificate e generalmente laminate, cui si intercalano straterelli siltosi o argilloso-siltosi. A più altezze si rinvengono corpi lenticolari, di spessore inferiore al metro, costituiti da microconglomerati a matrice sabbiosa, gradati e talora amalgamati. Si presentano mediamente consistenti, plastici e discretamente compressibili. Alto è il grado di umidità. Assumono una colorazione variabile dal marroncino al giallo ocra con venature grigiastre:

γn k	γsat k	φ'k	C_k'
(t/m³)	(t/m³)	(gradi)	(t/m²)
2.00	2.10	24	2.50

c) **UNITÀ LITOTECNICA 3**: Litofacies Sabbiosa

Costituita da alternanze di strati e livelli di sabbie fini, sabbie limose, limo argilloso, argille limose e sabbie argillose giallastre nella loro parte alterata, grigio chiaro-azzurrognole in quella integra. Si presentano in genere sottilmente stratificate e laminate, con laminazione parallela. Si presentano ben addensati e non plastiche:

γ _{n k}	γsat k	φ' _k	C_k'
(t/m³)	(t/m³)	(gradi)	(t/m²)
1.95	2.00	28	1.00

Legenda:

 $\gamma_{n k}$ (gr/cm³): Peso dell'unità di volume; $\gamma_{sat k}$ (gr/cm³): Peso dell'unità di volume saturo; ϕ_k ' (gradi): Angolo di attrito interno; C_k ' (kg/cm²): Coesione consolidata-drenata;

Progetto di realizzazione di un impianto di produzione di energia da fonte solare denominato "Melfi 8", della potenza di 19,99 MW, da realizzarsi in località Masseria Montelungo nel comune di Melfi (PZ)".

6. CARATTERIZZAZIONE IDROGEOLOGICA

Le caratteristiche idrogeologiche dei terreni affioranti sono molto differenziate e questo dipende dalle caratteristiche proprie dei litotipi presenti, come la composizione granulometrica, il grado di addensamento o consistenza dei terreni, nonché dal grado di fratturazione dei livelli lapidei o pseudo-lapidei e, più in generale, dalla loro porosità. Sulla base di tali parametri, quindi, è stata redatta la Carta Idrogeologica (Allegato DTG.074) ed i terreni affioranti sono stati raggruppati in complessi idrogeologici, in relazione alle proprietà idrogeologiche che caratterizzano ciascun litotipo. I complessi idrogeologici scaturiti dalle formazioni presenti possono essere così raggruppati e caratterizzati:

- COMPLESSO IDROGEOLOGICO I: *Terreni permeabili* (coefficiente di permeabilità dell'ordine di K= 10⁻³ 10⁻⁴ m/s) ne fanno parte i *Depositi Alluvionali Terrazzati*. Tali terreni sono costituiti in prevalenza da sedimenti sabbioso ghiaiosi, in parte argillosi e localmente torbosi, con ciottoli poligenici, provenienti dall'erosione delle formazioni affioranti in gran parte dell'area di alimentazione del bacino imbrifero del Fiume Ofanto. Dunque, la circolazione idrica sotterranea avviene essenzialmente per infiltrazione in questi depositi che, possono essere sede di accumuli di acqua dipendenti quasi esclusivamente dagli eventi meteorici locali. Inoltre, la caoticità, la disgregazione ed il crepacciamento superficiale, l'azione antropica, il disfacimento fisico-meccanico dovuto agli agenti atmosferici, la presenza di un substrato praticamente impermeabile, lo scarso grado di addensamento e la configurazione idrogeologica e morfologica dell'area, fanno sì che ci sia l'infiltrazione e l'accumulo delle acque meteoriche e non nel sottosuolo e, quindi, la creazione di una falda medio-profonda.
- COMPLESSO IDROGEOLOGICO II: *Terreni scarsamente permeabili* (coefficiente di permeabilità dell'ordine di K= 10⁻⁷ 10⁻⁹ m/s) ne fa parte la *Litofacies Argilloso-Siltosa e la Litofacies Sabbiosa*. I relativi terreni sono da ritenersi *impermeabili*, in quanto tali complessi anche se dotato di alta porosità primaria, sono praticamente impermeabili a causa delle ridottissime dimensioni dei pori nei quali l'acqua viene fissata come acqua di ritenzione. Ne deriva una circolazione nulla o trascurabile. Nell'insieme, il complesso litologico è da considerarsi scarsamente permeabile, in quanto anche la permeabilità delle porzioni più ricche in frazione sabbiosa è del tutto controllata dalla frazione argillosa.

Strettamente all'area di sedime il modello idrogeologico è rappresentato pertanto dai terreni dei Depositi Alluvionali Terrazzati (*Complesso idrogeologico I*) e dai terreni afferenti la Litofacies Argilloso-Siltosa e la Litofacies Sabbiosa (*Complesso idrogeologico II*). I Depositi Alluvionali Terrazzati permettono l'infiltrazione di acqua veicolandole in profondità che, dalle osservazioni condotte, tende ad accumularsi

Progetto di realizzazione di un impianto di produzione di energia da fonte solare denominato "Melfi 8", della potenza di 19,99 MW, da realizzarsi in località Masseria Montelungo nel comune di Melfi (PZ)".

in corrispondenza del contatto col substrato argilloso pressoché impermeabile. Infatti, da informazioni assunte nella zona sui pozzi realizzati e dalle letture piezometriche effettuate in sondaggi attrezzati con piezometri per la realizzazione di pale eoliche ricadenti in aree immediatamente contermini a quelle in studio, la superficie piezometrica media si attesterebbe tra i 12 e 20 m dal piano campagna. Pertanto, è possibile affermare che la falda in questi terreni è ad una profondità tale da non interferire con le opere in progetto (parco fotovoltaico); inoltre questi terreni non sono soggetti a regimi transitori delle *pressioni interstiziali* indotti da variazioni repentine di carico. Eventuali effetti di *sovrappressioni neutre* si dissipano in modo abbastanza rapido, facendo sì che ogni variazione di stato tensionale al contorno si traduca istantaneamente in *tensioni efficaci*. Da qui le considerazioni di utilizzare per i calcoli geotecnici solo le condizioni "drenate".

Premesso che l'acquifero si trova a profondità tali da non interagire con il progetto in parola e, comunque il caso di sottolineare che l'impianto fotovoltaico è costituito da poche opere che interagiscono con i terreni di sedime ed essenzialmente da paletti di ancoraggio su cui vengono montati i pannelli fotovoltaici, la viabilità, il cavidotto e la fondazione del sistema di accumulo. Nel caso in esame il progetto è stato concepito in modo tale da interferire al minimo con la morfologia dei luoghi, evitando scavi e rinterri (l'unico scavo di circa 1.00 m di altezza per una larghezza di 30/60 cm riguarda il cavidotto) e, allo stesso modo, con il contesto idrogeologico in cui il progetto si inserisce. Infatti, i pannelli saranno allocati su pali di ancoraggio che avranno profondità di infissione trascurabili (compresa entro 2.00/2.50 m) e distanziati tra di loro in modo tale da non creare quel dannoso "effetto diga", ovvero non interferiranno con il normali deflusso di eventuali circolazioni di acque effimere che dovessero crearsi in ambito superficiale in occasione di eventi meteorici eccezionali; il cavidotto avrà una profondità minima tanto da interessare essenzialmente il terreno vegetale humificato o i primi decimetri dei depositi alluvionali terrazzati; inoltre per la maggior parte, seguirà la viabilità esistente, mentre l'attraversamento di eventuali torrenti saranno effettuati tramite T.O.C., proprio onde evitare ogni interferenza con il normale deflusso delle acque incanalate (reticolo idrografico). In più, oltre alle strade, anche le piazzole di servizio saranno realizzate in misto granulare, ovvero con materiale drenante, al fine di minimizzare l'interferenza con l'attuale corrivazione delle acque meteoriche superficiali, nonché con il loro seppur minimo drenaggio nei livelli più superficiali dei terreni in affioramento. Alla luce di tali considerazioni risulta chiaro che il contesto idrogeologico rimane praticamente invariato, indipendentemente dalla presenza di ipotetici acquiferi superficiali. Inoltre in tutta l'area indagata non sono state rilevate sorgenti o emergenze di acquiferi

Progetto di realizzazione di un impianto di produzione di energia da fonte solare denominato "Melfi 8", della potenza di 19,99 MW, da realizzarsi in località Masseria Montelungo nel comune di Melfi (PZ)".

superficiali, tanto da poter scongiurare ogni tipo di interferenza tra il progetto del parco fotovoltaico e queste/questi ultimi, così come anche riportato dalle cartografie consultate.

7. VALUTAZIONE DEL RISCHIO FRANE ED ALLUVIONE

Il Piano Stralcio per l'Assetto Idrogeologico (PAI) rappresenta uno strumento conoscitivo, normativo e tecnico-operativo mediante il quale sono programmate e pianificate le azioni e le norme d'uso riguardanti la difesa dal rischio idraulico ed idrogeologico del territorio. L'esame degli elaborati cartografici riguardanti la pericolosità ed il rischio da frane così come il rischio da alluvioni (WebGIS dell'AdB Puglia, http://webgis.adb.puglia.it) del PAI dell'Autorità di Bacino Distrettuale dell'Appennino Meridionale - sede Puglia, nelle cui competenze ricadono l'intero territorio dell'area parco, ha evidenziato che non sono presenti areali a rischio da frana, a pericolosità geomorfologica o idraulica sia nel sito dell'impianto fotovoltaico che nelle relative opere di connessione.

Fig. 07: PAI dell'AdB – Sede Puglia, con ubicazione dell'area parco

Pertanto, in riferimento alle norme d'attuazione del PAI, gli interventi previsti in progetto non sono soggetti a particolari prescrizioni salvo quelle di rito. **Di conseguenza, si esprime giudizio positivo sulla loro fattibilità e compatibilità idrogeologica.**

Progetto di realizzazione di un impianto di produzione di energia da fonte solare denominato "Melfi 8", della potenza di 19,99 MW, da realizzarsi in località Masseria Montelungo nel comune di Melfi (PZ)".

8. CARATTERIZZAZIONE MORFOLOGICA

La configurazione morfologica dell'area in studio è condizionata dalle caratteristiche litologiche, dall'assetto stratigrafico dei terreni affioranti e dall'azione modellatrice delle acque. Nell'insieme il paesaggio è caratterizzato da un versante a bassa acclività, e con una certa disomogeneità morfologica interna, delimitato dalla piana alluvionale del Fiume Ofanto.

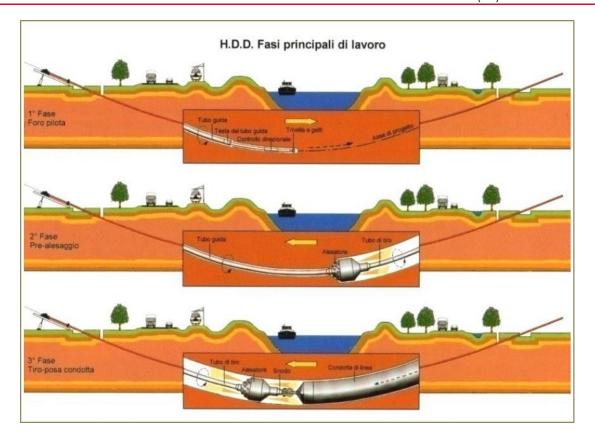
In particolare le aree del progetto si sviluppano su morfologia pianeggiante, costituita principalmente da sedimenti ghiaioso-limosi di ambiente continentale ascrivibili ai depositi alluvionali terrazzati del Fiume Ofanto e dai depositi argillosi-sabbiosi, che affiorano nel settore meridionale e costituiscono il substrato geologico del sito oggetto di studio. La morfologia risulta condizionata dalla natura litologica dei terreni affioranti, passando da forme spianate in corrispondenza dei depositi alluvionali terrazzati, a forme collinari poco inclinate in corrispondenza degli affioramenti argillosi-sabbiosi.

In un intorno significativo e negli stessi siti di progetto non sono state riconosciute forme gravitative legate a movimenti di versante in atto o in preparazione tali da compromettere la fattibilità degli interventi da realizzare; infatti, l'andamento morfologico risulta regolare e da pianeggiante a subpianeggiante. Tale valutazione è congruente con gli strumenti normativi adottati a scala di bacino (Piano di Bacino Stralcio Assetto Idrogeologico, redatto dall'Autorità di Bacino Distrettuale dell'Appennino Meridionale - sede Puglia). I siti, infatti non ricadono in aree classificate come esposte a pericolosità e rischio da frana per i quali il progetto risulti incompatibile, né interessate da fenomeni di alluvionamento.

Dall'analisi stereoscopica delle foto aeree e dal rilevamento geomorfologico in sito, è stato possibile verificare che le aree in studio presentano un andamento morfologico regolare senza segni di forme e fenomeni di movimenti gravitativi in atto o in preparazione. Inoltre, non sono stati rilevati quei fattori predisponenti al dissesto.

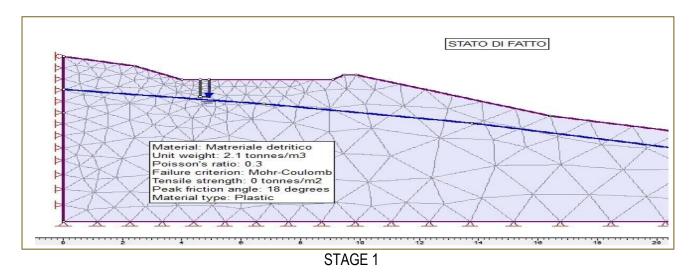
L'andamento essenzialmente subpianeggiante della porzione di territorio interessato dal progetto in parola, oltre a garantirne la sua stabilità "per posizione", permetterà la realizzazione delle opere minimizzando la movimentazione di terreno, ovvero gli scavi saranno contenuti sia per l'area parco, sia per il sistema di accumulo, nonché per le strade; tali opere saranno praticamente a "raso" rispetto al piano campagna e, quindi, si procederà essenzialmente allo scotico del terreno vegetale ed alla regolarizzazione e livellazione richiesta dal progetto utilizzando materiale arido. La stessa realizzazione del campo fotovoltaico non potrà incidere sullo stato tensionale dell'area, in quanto non ci saranno appesantimenti, poiché le tensioni in gioco rimarranno pressoché invariate; anzi si avrà un

Progetto di realizzazione di un impianto di produzione di energia da fonte solare denominato "Melfi 8", della potenza di 19,99 MW, da realizzarsi in località Masseria Montelungo nel comune di Melfi (PZ)".


consolidamento circoscritto dei terreni per l'"effetto chiodante" dei pali di ancoraggio dei pannelli fotovoltaici.

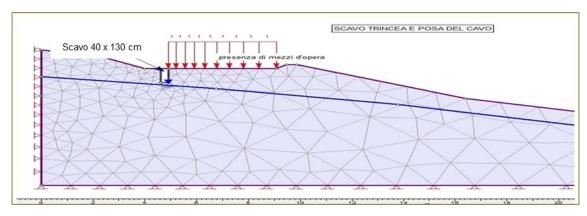
Anche la posa del cavidotto, per il quale sarà necessario uno scavo limitato nelle dimensioni e nei volumi di terreno rimossi, non intaccherà i fattori di sicurezza preesistenti delle aree attraversate, né tantomeno il contesto idrogeologico degli areali interessati; in merito, di seguito, si dimostrerà analiticamente come le condizioni tensionali nel terreno, ante e post operam del cavidotto, rimarranno pressoché le stesse. Questo risultato è facilmente intuibile per l'estrema superficialità e "lievità" dell'intervento che non interesserà volumi di terreno significativi, in quanto, la profondità e la larghezza di scavo saranno veramente trascurabili. Quindi, la limitatezza e l'inconsistenza dei volumi di terreno coinvolti, unitamente all'indubbia velocità di esecuzione, non potranno in nessun modo compromettere l'equilibrio dei luoghi che, comunque, si presentano macroscopicamente ed oggettivamente stabili. Anche le metodologie di scavo che si intenderanno utilizzare, essendo poco o per niente invasive, contribuiranno ancora di più alla realizzazione del cavidotto senza incidere sullo stato tensionale dei terreni attraversati. Comunque, in particolari condizioni morfologiche, ad esempio negli attraversamenti dei corsi d'acqua, come già accennato, il cavidotto potrebbe essere posato con le Tecniche di attraversamento no-dig: Trivellazione Orizzontale Controllata (T.O.C.). La trivellazione orizzontale controllata, chiamata anche perforazione orizzontale controllata (HDD), o perforazione direzionale teleguidata, è una vantaggiosa alternativa ai tradizionali metodi d'installazione di linee di servizio. Infatti, una volta studiato la geometria dell'elemento da attraversare, con tale tecnologia è possibile passare con la perforazione e, dunque, con il cavidotto, in totale sicurezza al disotto del corso d'acqua.

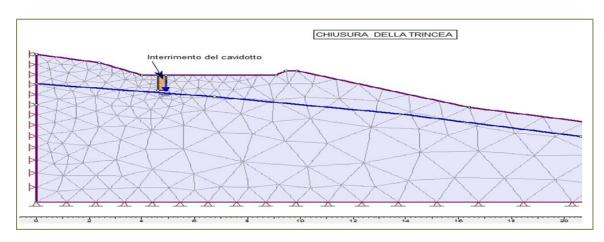
L'utilizzo di tali tecnologie, nella progettazione esecutiva, sarà necessariamente supportato da studi geologici specifici corredati da sondaggi geognostici a carotaggio continuo ed indagini geofisiche necessarie alla ricostruzione del modello litotecnico del sottosuolo da attraversare con la trivellazione. Nella figura sottostante è mostrato uno schema della T.O.C.:



Progetto di realizzazione di un impianto di produzione di energia da fonte solare denominato "Melfi 8", della potenza di 19,99 MW, da realizzarsi in località Masseria Montelungo nel comune di Melfi (PZ)".

Come già sopra premesso, per la realizzazione del cavidotto, saranno coinvolti volumi di terreno poco significativi, in quanto, la profondità e la larghezza di scavo saranno veramente trascurabili. Infatti, la profondità sarà compresa entro 1.00 m, mentre la larghezza sarà di circa 30/60 cm. Pertanto, lo scavo interesserà il primo livello dei terreni di copertura humificati nei tratti in cui si svilupperà in "aperta campagna", mentre su tratti stradali (asfaltati e non) si attesterà immediatamente al disotto della massicciata stradale e, comunque, nei primi decimetri dei materiali di copertura. Quindi, appurato macroscopicamente la stabilità delle aree in cui il cavidotto stesso si sviluppa, in considerazione che da un punto di vista geologico-tecnico, in nessun modo si andrà ad interessare i terreni di substrato che, pertanto, per tale opera vengono trascurati, mentre si dimostrerà analiticamente, anche se è facilmente intuibile, che gli scavi per la realizzazione del cavidotto sono previsti di dimensioni trascurabili tanto da non modificare lo stato dei luoghi, sia per quanto concerne le tensioni nel terreno, sia, di conseguenza, i fattori di stabilità e di sicurezza degli areali attraversati che risultano, comunque, pianeggianti. Seppure le minime variazioni interessino esclusivamente i volumi di terreno strettamente localizzati al contorno dello scavo, non si evince alcuna ripercussione sullo stato tensio-deformativo delle aree attraversate. In tal senso, si riporta di seguito una semplice dimostrazione analitica di quanto appena espresso, ad esempio "in termini di tensioni verticali geostatiche (σ 1)", per una situazione abbastanza frequente di


posizionamento del cavidotto lungo una strada. A favore di sicurezza si è considerato che il cavo sia posato in terreni detritici a scadenti caratteristiche geotecniche così come di seguito schematizzato:


La larghezza stradale, l'inclinazione del piano di campagna, ecc. sono da ritenersi molto cautelative rispetto all'effettiva morfologia dei luoghi che è sempre pressoché pianeggiante. La qualità geotecnica dei terreni sommitali è stata volutamente considerata decisamente scarsa in modo da simulare terreni detritici o di alterazione. I valori dei parametri fisico-meccanici assunti non hanno nessuna importanza per la finalità dell'esempio che, invece, vuole evidenziare come non si ha alcuna variazione tensionale, a prescindere dalle caratteristiche litotecniche del terreno attraversato dal cavidotto elettrico. A vantaggio di calcolo è stata prevista anche la falda nello strato detritico o di alterazione. Tramite un modello di calcolo F.E.M. (Metodo agli elementi finiti) sono stati previsti n° 3 stages (fasi) ed in particolare:

- Stage 1: Stato di fatto (di riferimento iniziale)
- Stage 2: fase di scavo e posa del cavidotto
- Stage 3: rinterro dello scavo.

Dal momento che le operazioni dello Stage 2 e 3 sono eseguite in un lasso di tempo limitatissimo tra la fase di scavo, posa e quella di rinterro, in questo esempio, non è stato preso in considerazione alcun fenomeno sismico, anche perché non necessario agli scopi dimostrativi della quasi inesistente variazione del regime tensionale verticale nei terreni.

STAGE 2

STAGE 3

Le informazioni sui dati e sui risultati principali sono riportate di seguito:

Phase 2 Analysis Information

Document Name

sezione tipo condotta 1strato rev2.fez

Project Settings

General

Project Title: sezione su strada condotta

Number of Stages: 3

Analysis Type: Plane Strain

Solver Type: Gaussian Elimination

Units: Metric, stress as tonnes/m²

Stress Analysis

Maximum Number of Iterations: 500

Tolerance: 0.001

Number of Load Steps: Automatic

Groundwater

Method: Piezometric Lines

Pore Fluid Unit Weight: 0.981 tonnes/m³

Field Stress

Field stress: gravity Using actual ground surface

Studio di Geologia e Geologegneria Dott. Geol. Antonio De Carlo

- RELAZIONE GEOLOGICA -

Progetto di realizzazione di un impianto di produzione di energia da fonte solare denominato "Melfi 8", della potenza di 19,99 MW, da realizzarsi in località Masseria Montelungo nel comune di Melfi (PZ)".

Total stress ratio (horizontal/vertical in-plane): 1 Total stress ratio (horizontal/vertical out-of-plane): 1 Locked-in horizontal stress (in-plane): 0 Locked-in horizontal stress (out-of-plane): 0

Mesh

Mesh type: graded

Element type: 3 noded triangles

Number of elements on Stato di fatto: 368 Number of nodes on Stato di fatto: 220

Number of elements on Scavo e posa condotta: 368 Number of nodes on Scavo e posa condotta: 220 Number of elements on Chiusura scavo: 368 Number of nodes on Chiusura scavo: 220

Material Properties

Material: Matreriale detritico

Initial element loading: field stress & body force

Unit weight: 2.1 tonnes/m³ Elastic type: isotropic Poisson's ratio: 0.3

Failure criterion: Mohr-Coulomb Tensile strength: 0 tonnes/m² Peak friction angle: 18 degrees Peak cohesion: 0 tonnes/m² Material type: Plastic Dilation Angle: 0 degrees

Residual Friction Angle: 18 degrees Residual Cohesion: 0 tonnes/m²

Piezo to use: 1 Hu Type: Custom Hu value: 1

Material: riempimento scavo

Initial element loading: body force only

Unit weight: 2.2 tonnes/m³ Elastic type: isotropic

Young's modulus: 500 tonnes/m²

Poisson's ratio: 0.3

Failure criterion: Mohr-Coulomb Tensile strength: 0 tonnes/m² Peak friction angle: 35 degrees Peak cohesion: 0 tonnes/m² Material type: Plastic Dilation Angle: 0 degrees

Residual Friction Angle: 35 degrees Residual Cohesion: 0 tonnes/m²

Piezo to use: None Ru value: 0

Areas of Excavated and Filled Elements

Scavo e posa condotta

Material: Matreriale detritico, Area Excavated: 0.60 m²

Chiusura scavo

Material: riempimento scavo, Area Filled: 0.60 m²

Excavation Areas

Original Un-deformed Areas
Excavation Area: 0.60 m²
Excavation Perimeter: 3.80 m
External Boundary Area: 212.027 m²
External Boundary Perimeter: 74.116 m

Stato di fatto

Progetto di realizzazione di un impianto di produzione di energia da fonte solare denominato "Melfi 8", della potenza di 19,99 MW, da realizzarsi in località Masseria Montelungo nel comune di Melfi (PZ)".

Excavation Area: 0.60 m² (-5.0119e-⁰⁰⁵ m² change from original area)
Excavation Perimeter: 3.80 m (-0.00448978 m change from original perimeter)
External Boundary Area: 212.280 m² (0.252363 m² change from original area)
External Boundary Perimeter: 74.048 m (-0.0675524 m change from original perimeter)

Volume Loss to Excavation: -82.6102 %

Scavo e posa condotta

Excavation Area: 5.118 m² (2.81208 m² change from original area)
Excavation Perimeter: 11.682 m (8.13233 m change from original perimeter)
External Boundary Area: 213.248 m² (1.22127 m² change from original area)
External Boundary Perimeter: 84.047 m (9.92811 m change from original perimeter)

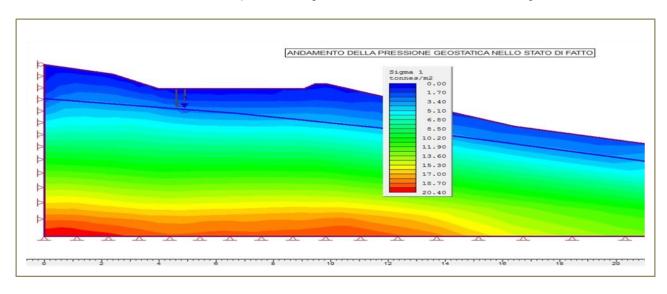
Volume Loss to Excavation: -399.778 %

Chiusura scavo

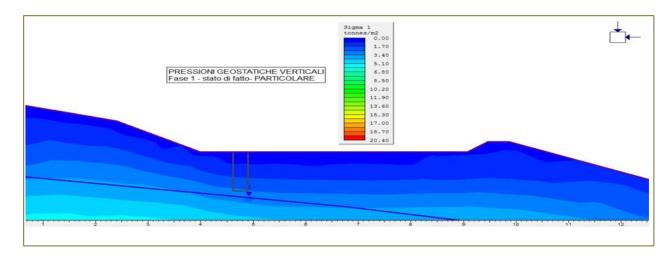
Excavation Area: 5.117 m^2 (2.81158 m^2 change from original area) Excavation Perimeter: 11.670 m (8.13315 m change from original perimeter) External Boundary Area: 213.324 m^2 (1.29639 m^2 change from original area) External Boundary Perimeter: 84.050 m (9.93367 m change from original perimeter)

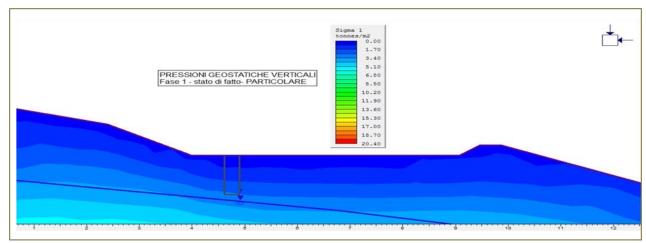
Volume Loss to Excavation: -424.37 %

Displacements

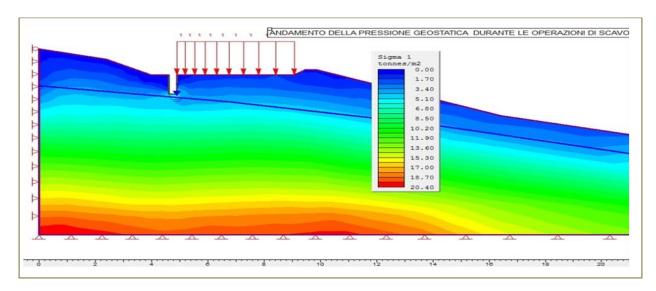

Maximum total displacement for Stato di fatto: 0.110545 m Maximum total displacement for Scavo e posa condotta: 0.125059 m Maximum total displacement for Chiusura scavo: 0.126825 m

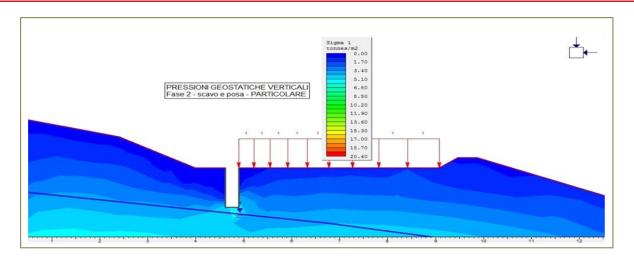
Yielded Elements

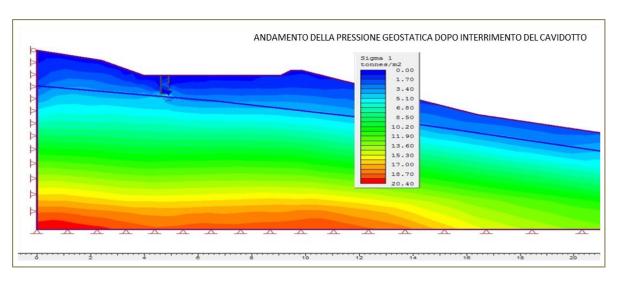

Yielded Mesh Elements

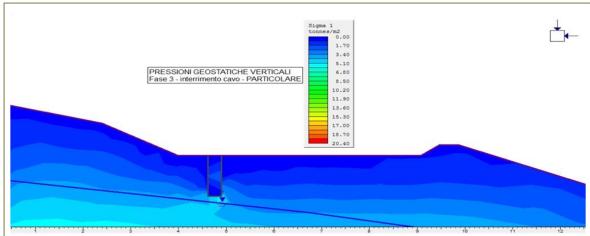

Number of yielded mesh elements on Stato di fatto: 486 Number of yielded mesh elements on Scavo e posa condotta: 482 Number of yielded mesh elements on Chiusura scavo: 500

I risultati delle analisi FEM sono compendiati dai grafici successivi che non hanno bisogno di commento:




Progetto di realizzazione di un impianto di produzione di energia da fonte solare denominato "Melfi 8", della potenza di 19,99 MW, da realizzarsi in località Masseria Montelungo nel comune di Melfi (PZ)".




STAGE 1: σ₁

STAGE 2: σ_1

STAGE 3: σ1

Come si può notare dalle figure dello *Stage 1* e dello *Stage 3*, la condizione *tensionale \sigma1* è praticamente la stessa (sia nel contesto generale che nel dettaglio). Questo risultato è facilmente intuibile per la limitatezza degli scavi da eseguire che, unitamente all'indubbia velocità di esecuzione (non

Progetto di realizzazione di un impianto di produzione di energia da fonte solare denominato "Melfi 8", della potenza di 19,99 MW, da realizzarsi in località Masseria Montelungo nel comune di Melfi (PZ)".

secondaria quando si opera in terreni di tale natura), non intaccano minimamente i fattori di sicurezza preesistenti delle aree attraversate dall'opera a rete. Di conseguenza, è possibile affermare che la

realizzazione del cavidotto in nessun modo va ad interferire con l'attuale stato di equilibrio dei luoghi e, quindi, delle cose che ivi ricadono nelle immediate vicinanze, garantendo, allo stesso tempo, anche la stabilità dei fronti di scavo. Inoltre, assolutamente, è ininfluente sul grado di pericolosità e rischio idrogeologico delle aree di sedime. Anche le metodologie di scavo, come avanti riportato, essendo poco o per niente invasive, contribuiranno ancora di più alla realizzazione del cavidotto, senza incidere sullo

stato tensionale dei luoghi. In merito, l'ottimizzazione del progetto ha tenuto conto della grande valenza ambientale, evitando, in tal senso, di operare scavi di sbancamento e di minimizzare quelli delle trincee, in cui posare il cavidotto.

Nel dettaglio, saranno eseguite microtrincee tramite un'apposita attrezzatura "trencher" (rif. figura laterale) che riduce sia i volumi di scavo che i tempi di realizzazione. Nei terreni di che trattasi, sono stimati scavi di lunghezza di oltre un chilometro al giorno. I materiali utilizzati per i rinterri, saranno scelti in funzione dei luoghi o delle strade attraversate, ovvero per gli scavi eseguiti in aperta campagna sarà riutilizzato, previo allettamento del cavo, il terreno di scavo stesso idoneamente compattato in modo tale da ripristinare i luoghi nelle stesse condizioni ambientali ante operam; sulle strade asfaltate o sterrate, il rinterro sarà eseguito con idoneo materiale arido, posto in opera, a perfetta regola d'arte al fine di ripristinare il piano viabile nelle condizioni iniziali. Chiaramente i fisiologici assestamenti che si potrebbero verificare, saranno ripristinati tempestivamente in modo da garantire la fruibilità della circolazione veicolare in sicurezza.

Di conseguenza, lo scrivente, alla luce di tutti gli elementi di carattere idrogeomorfologico che è stato possibile rilevare in questa prima fase della progettazione, ritiene che il progetto non andrà ad interferire con l'attuale stato di equilibrio dei luoghi e, quindi, assolutamente sarà ininfluente sul grado di *pericolosità/rischio idrogeologico* delle aree attraversate che, comunque, si presentano stabili.

Progetto di realizzazione di un impianto di produzione di energia da fonte solare denominato "Melfi 8", della potenza di 19,99 MW, da realizzarsi in località Masseria Montelungo nel comune di Melfi (PZ)".

9. CONCLUSIONI

Il presente studio geologico preliminare per la realizzazione di un "Impianto di produzione di energia da fonte solare denominato "Melfi 8", della potenza di 19,99 MW, da realizzarsi in località Masseria Montelungo nel Comune di Melfi (PZ)", illustra i risultati interpretativi a cui si è giunti attraverso l'analisi geologica, geotecnica, idrogeologica e morfologica degli areali interessati dal suddetto progetto.

Per verificare la fattibilità geologica del progetto, il presente studio preliminare inquadra sotto il profilo geologico, idrogeologico e geomorfologico l'areale coinvolto dall'intervento. Ai fini della rappresentazione preliminare delle caratteristiche geologiche *latu sensu* dell'intera area, <u>e per escludere la presenza di elementi di criticità morfologica, il rilevamento geo-morfologico di superficie si è dimostrato utile al raggiungimento dell'obiettivo. Le informazioni ottenute, tuttavia, devono ritenersi valide nei limiti che questa prima fase cognitiva pone, ovvero acquisizione di dati e <u>notizie preliminari</u>. Si rimanda al successivo grado di approfondimento della progettazione (progetto definitivo) la verifica puntuale delle caratteristiche litologiche, geotecniche, idrogeologiche e sismiche dei terreni in affioramento, finalizzate alla ricostruzione del modello litotecnico e sismico dell'areale di sedime di ogni opera da realizzare.</u>

In merito, saranno eseguite le indagini geognostiche dirette ed indirette ed analisi e prove geotecniche di laboratorio. La progettazione definitiva, infatti, certamente impone una campagna d'indagini geognostiche finalizzata ad ottenere tutti i dati necessari per una corretta progettazione delle fondazioni delle cabine e per la definizione delle profondità a cui ancorare i pali di fissaggio dei pannelli fotovoltaici.

L'andamento essenzialmente pianeggiante della porzione di territorio interessato dal progetto in parola, oltre a garantirne la sua stabilità "per posizione", permetterà la realizzazione delle opere minimizzando la movimentazione di terreno, ovvero gli scavi saranno contenuti sia per l'area parco, sia per il sistema di accumulo, nonché per le strade; tali opere saranno praticamente a "raso" rispetto al piano campagna e, quindi, si procederà essenzialmente allo scotico del terreno vegetale ed alla regolarizzazione e livellazione richiesta dal progetto utilizzando materiale arido. La stessa realizzazione del campo fotovoltaico non potrà incidere sullo stato tensionale dell'area, in quanto non ci saranno appesantimenti, poiché le tensioni in gioco rimarranno pressoché invariate; anzi si avrà un consolidamento circoscritto dei terreni per l'"effetto chiodante" dei pali di ancoraggio dei pannelli fotovoltaici. Le considerazioni sulla stabilità delle aree interessate dal progetto, sono congruenti con gli strumenti normativi adottati a scala di bacino (Piano di Bacino Stralcio Assetto Idrogeologico, redatto dall'Autorità di Bacino Distrettuale dell'Appennino Meridionale - sede Puglia). I siti, infatti non ricadono in

Progetto di realizzazione di un impianto di produzione di energia da fonte solare denominato "Melfi 8", della potenza di 19,99 MW, da realizzarsi in località Masseria Montelungo nel comune di Melfi (PZ)".

aree classificate come esposte a pericolosità e rischio da frana per i quali il progetto risulti incompatibile, né interessate da fenomeni di alluvionamento.

Anche la posa del cavidotto, per il quale sarà necessario uno scavo limitato nelle dimensioni e nei volumi di terreno rimossi, non intaccherà i fattori di sicurezza preesistenti delle aree attraversate, né tantomeno il contesto idrogeologico degli areali interessati. Questo risultato è facilmente intuibile per l'estrema superficialità e "lievità" dell'intervento che non interesserà volumi di terreno significativi, in quanto, la profondità e la larghezza di scavo saranno veramente trascurabili.

Quindi, la limitatezza e l'inconsistenza dei volumi di terreno coinvolti, unitamente all'indubbia velocità di esecuzione, non potranno in nessun modo compromettere l'equilibrio dei luoghi che, comunque, si presentano macroscopicamente ed oggettivamente stabili. Anche le metodologie di scavo che si intenderanno utilizzare, essendo poco o per niente invasive, contribuiranno ancora di più alla realizzazione del cavidotto senza incidere sullo stato tensionale dei terreni attraversati.

Alla luce delle considerazioni fin qui esposte lo scrivente ritiene che nulla osta alla realizzazione del progetto di che trattasi.

II Geologo Dott. Antonio DE CARLO

I collaboratori Geol. Bartolo ROMANIELLO Geol. Annagrazia MANCINI