Regione Autonoma della Sardegna

Provincia di Sassari

Comune di Ittiri (SS)

Comune di Villanova Monteleone (SS)

Committente:

RWE RENEWABLES ITALIA S.R.L.

via Andrea Doria, 41/G - 00192 Roma P.IVA/C.F. 06400370968

Titolo del Progetto:

PARCO EOLICO "ALAS 2"

- Comuni di Ittiri e Villanova Monteleone (SS) -

STUDIO DI IMPATTO AMBIENTALE

N° Documento:

PEALAS2-RS12

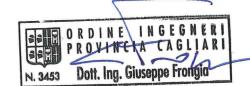
ID PROGETTO: ALAS 2 SEZIONE: A TIPOLOGIA: T FORMATO: A4

Elaborato:

RELAZIONE SULLA GITTATA DEGLI ELEMENTI ROTANTI

FOGLIO: SCALA: Nome file: PEALAS2-RS12_Relazione sulla gittata degli elementi rotanti

A cura di:


I.A.T. Consulenza e progetti S.r.l. Dott. Ing. Giuseppe Frongia

Gruppo di progettazione: Ing. Giuseppe Frongia

(coordinatore e responsabile)
Ing. Marianna Barbarino
Ing. Enrica Batzella
Pian. Terr. Andrea Cappai
Ing. Gianfranco Corda
Ing. Paolo Desogus
Pian. Terr. Veronica Fais
Ing. Gianluca Melis
Dott. Ing. Fabrizio Murru
Ing. Andrea Onnis
Pian. Terr. Eleonora Re
Ing. Elisa Roych
Ing. Marco Utzeri

Ing. Antonio Dedoni (Acustica) Dott.ssa Florinda Corrias (Archeologia)

Rev:	Data Revisione	Descrizione Revisione	Redatto	Controllato	Approvato
00	24/10/2023	PRIMA EMISSIONE	FM	GF	RWE

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS2" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS2-RS12
lat consulenz	ZA I	TITOLO RELAZIONE SULLA GITTATA DEGLI ELEMENTI ROTANTI	PAGINA	2 di 12
www.iatprogetti.it				

INDICE

1	INTRODUZIONE	3
2	ESPERIENZE E NOTE STATISTICHE	5
2.1	Distacco di una delle tre pale dal rotore	5
2.2	Rottura di un'estremità della pala	6
3	GEOMETRIA DEL PROBLEMA	7
4	DATI DI BASE PER IL CALCOLO	9
5	CALCOLO DELLA GITTATA	10
6	CONSIDERAZIONI AGGILINTIVE E VALUTAZIONE CONCLUSIVA	12

COMMITTENTE RWE Renewables Italia S.r.I. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS2" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS2-RS12
Calat consulenza e progetti		TITOLO RELAZIONE SULLA GITTATA DEGLI ELEMENTI ROTANTI	PAGINA	3 di 12
www.iatprogetti.it				

1 INTRODUZIONE

La Società RWE Renewables Italia S.r.l. ha in programma la realizzazione di un impianto eolico denominato "Alas 2" da realizzarsi in territorio di Villanova Monteleone (SS).

L'intervento prevede l'installazione di n. 7 turbine di grande taglia della potenza unitaria di 7,2 MW, posizionate su torri di sostegno in acciaio dell'altezza massima pari a 115 m ed aventi diametro massimo del rotore pari a 170 m (altezza massima al *tip* 200 m), nonché l'approntamento delle opere accessorie indispensabili per un ottimale funzionamento e gestione della centrale.

L'impianto raggiungerà complessivamente una potenza nominale di 50,4 MW, in accordo con il valore massimo in immissione stabilito dal preventivo di connessione con codice pratica 202300348, rilasciato dal Gestore della Rete di Trasmissione Nazionale (Terna).

Avuto riguardo di quanto suggerito dalle Linee Guida Nazionali sulle Fonti Rinnovabili (DM 10/09/2010), nel seguito sarà condotta una stima approssimativa della distanza massima che può essere raggiunta da una pala di un aerogeneratore delle caratteristiche geometrico-funzionali di quelli previsti nel progetto nell'ipotesi di distacco dell'intera pala durante condizioni nominali di funzionamento dello stesso.

Ad oggi il mercato delle turbine eoliche è caratterizzato da un discreto numero di costruttori che realizzano aerogeneratori della taglia sopra indicata, accrescendo la concorrenza sullo stato d'avanzamento della tecnologia e sulle garanzie di funzionamento degli stessi. Pertanto, la scelta del costruttore e della tipologia di aerogeneratore da installare nel parco eolico avverrà al termine dell'iter autorizzativo.

Ai fini della presente analisi si è deciso di fare riferimento alle caratteristiche geometriche e di funzionamento dei modelli commerciali di aerogeneratore rappresentativi della taglia massima di aerogeneratore scelta per il parco eolico in esame (SG 170 e V172 da 7.2 MW). Sulla scelta finale dell'aerogeneratore rimane valido quanto più sopra specificato.

L'esperienza di pluriennale esercizio dei moderni impianti eolici attesta come le turbine di grande taglia siano installazioni estremamente affidabili sotto il profilo meccanico-strutturale nonché ambientalmente sicure.

Premesso che la determinazione della reale distanza raggiunta da una pala distaccatasi dal rotore di un aerogeneratore (c.d. gittata), in funzione delle condizioni iniziali e al contorno, è estremamente complessa, a causa dell'influenza di un elevato numero di fattori, le stime semplificate di seguito condotte, hanno l'obiettivo di pervenire ad un valore indicativo di riferimento e di determinare l'incertezza approssimativa del dato stesso.

In particolare, lo studio è stato condotto calcolando la gittata del centro di gravità (stimato) della pala, a partire dalle condizioni iniziali teoriche di massima gittata (indicativamente ±30÷45° dall'asse orizzontale con pala in salita) e con ipotesi semplificative circa gli effetti della resistenza/portanza aerodinamica.

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS2" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS2-RS12
Calat Consulenza e progetti.it		TITOLO RELAZIONE SULLA GITTATA DEGLI ELEMENTI ROTANTI	PAGINA	4 di 12

I calcoli di seguito illustrati pervengono, in ogni caso, ad una stima conservativa circa la portata del fenomeno includendo solo le forze d'inerzia ed escludendo le forze viscose. Al riguardo, verifiche sperimentali condotte da Vestas sulla gamma dei propri modelli di aerogeneratore in esercizio indicano come le forze di resistenza che si esercitano sulla pala fanno sì che la gittata reale sia inferiore di circa il 20% rispetto a quella stimata secondo le ipotesi di calcolo sopra indicate.

Il distacco o la rottura della pala sono eventi che si verificano per condizioni operative al di fuori del normale *range* di funzionamento delle macchine. Gli aerogeneratori per i quali si prevede l'installazione nell'ambito del progetto di un impianto eolico nel territorio di Villanova Monteleone (SS) sono provvisti di sistemi di arresto che intervengono quando le condizioni di funzionamento sono tali da compromettere la funzionalità della macchina e la sicurezza pubblica.

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS2" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS2-RS12
Calat Consulenza PROGETTI		TITOLO RELAZIONE SULLA GITTATA DEGLI ELEMENTI ROTANTI	PAGINA	5 di 12
www.iatprogetti.it				

2 ESPERIENZE E NOTE STATISTICHE

Ai fini di un corretto inquadramento delle problematiche qui esaminate, si riportano di seguito alcune note statistiche ricavate dall'esperienza operativa di uno dei principali costruttori di aerogeneratori (Vestas), ragionevolmente trasponibili ai modelli in commercio prodotti dalle principali case costruttrici.

Quanto segue è stato redatto al fine di presentare alcuni degli elementi fondamentali per valutare la reale possibilità del distacco di una pala dagli aerogeneratori.

Sotto questo profilo deve in primo luogo evidenziarsi come, dal punto di vista progettuale, la combinazione di coefficienti di sicurezza adottati, i materiali utilizzati e la valutazione delle conseguenze in caso di rottura rispettino quanto prescritto dalla norma IEC61400-1 (turbine safety standard). In accordo a tale norma le pale degli aerogeneratori sono considerate "fail safe".

L'esperienza pratica su tutta la flotta operativa Vestas di 4.959 unità (Giugno 2007) ha mostrato che in caso di distacco di pala il moto è stato di tipo "rotazionale complesso" e le distanze raggiunte sono normalmente state inferiori a quelle stimate con i calcoli semplificati qui riportati.

Tralasciando gli incidenti dovuti a cause eccezionali (uragani, tifoni), nei successivi paragrafi sono descritti alcuni possibili eventi e la valutazione tecnica alla base dell'analisi dei rischi sviluppata dai costruttori per eliminare la possibilità di reiterazione dell'incidente.

2.1 Distacco di una delle tre pale dal rotore

Questo tipo di incidente, comportante il distacco di una pala completa dal rotore, può essere determinato della rottura della giunzione bullonata fra la pala ed il mozzo.

In occasione di tali tipi di evento, in base ai citati dati Vestas, la pala ha raggiunto il terreno ad una distanza inferiore ai cento metri.

Le pale sono costituite da una parte strutturale (longherone) posizionata all'interno della pala e da una parte esterna (gusci) che assolve sostanzialmente a funzioni di forma. Le tre parti, il longherone e i due gusci, sono uniti fra loro mediante incollaggio e, alla fine del processo produttivo, costituiscono un corpo unico.

Il longherone è dotato di attacchi filettati che consentono di collegarlo al mozzo con bulloni (prigionieri) serrati opportunamente durante l'installazione della turbina. Il precarico conferito ai prigionieri durante il serraggio ha un'influenza determinante sulla resistenza dei prigionieri stessi ai carichi di fatica e, per questo motivo, è di regola previsto un controllo di tale serraggio durante le operazioni di manutenzione programmata della turbina.

Sulla base dei dati operativi citati, gli eventi incidentali sono stati attribuiti a errati interventi di manutenzione programmata cui l'aerogeneratore va sottoposto così come riportato nel manuale del

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS2" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS2-RS12
Calat consulenza e progetti		TITOLO RELAZIONE SULLA GITTATA DEGLI ELEMENTI ROTANTI	PAGINA	6 di 12
www.iatprogetti.it				

costruttore. Quindi l'errata verifica del serraggio ed una plausibile riduzione del precarico possono aver determinato la rottura per fatica dei prigionieri ed al distacco della pala.

2.2 Rottura di un'estremità della pala

Questo tipo di incidente è stato quasi sempre riscontrato in concomitanza di fulminazioni di natura atmosferica.

I moderni aerogeneratori di grande taglia sono di regola provvisti di un sistema di conduzione della corrente di fulmine dalle pale collegato ad un sistema di messa a terra. In questo modo si riesce a drenare una buona parte delle correnti indotte dalle fulminazioni atmosferiche scongiurando danni alle pale.

In qualche caso, laddove la corrente di fulmine ecceda i valori di progetto (fissati dalle norme internazionali), si può manifestare un danneggiamento all'estremità di pala che si apre per la separazione dei due gusci. Tale condizione, peraltro, non determina normalmente il distacco dal corpo della pala.

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS2" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS2-RS12
Calat Consulenza PROGETTI		TITOLO RELAZIONE SULLA GITTATA DEGLI ELEMENTI ROTANTI	PAGINA	7 di 12
www.iatprogetti.it				

3 GEOMETRIA DEL PROBLEMA

La stima della gittata di un elemento rotante si basa sull'ipotesi di considerare lo stesso come un corpo rigido, ovvero un insieme di particelle soggette a forze tali da mantenere costanti nel tempo le loro distanze relative.

Nello studio si considera il moto del corpo bidimensionale, traslatorio e curvilineo, rappresentato da un punto materiale (assunto coincidente con il baricentro dell'elemento rotante) lanciato in aria obliquamente sottoposto all'accelerazione di gravità costante "g" diretta verso il basso e a velocità iniziale impressa dalla rotazione della pala.

Il calcolo della gittata massima in caso di distacco di una pala dell'aerogeneratore segue il principio della balistica applicata al moto dei proiettili. Si sottolinea come i calcoli qui riportati siano stati condotti considerando nulla la resistenza d'attrito con l'aria, nonché gli effetti di portanza aerodinamica. Il moto reale è molto più complesso, in quanto dipende dalle caratteristiche aerodinamiche e dalle condizioni iniziali (rollio, imbardata e beccheggio della pala).

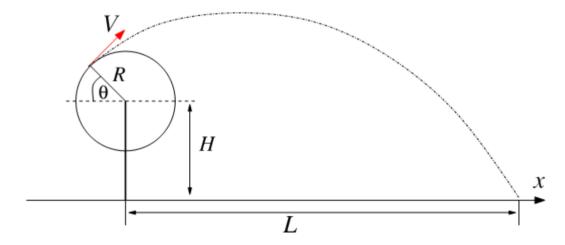


Figura 1 – Schema geometrico del fenomeno di distacco della pala di un aerogeneratore

Le equazioni del moto di un punto materiale soggetto solo alla forza di gravità, in accordo con lo schema semplificato di Figura 1, sono le seguenti:

$$d^{2}x/dt^{2}=0$$

$$d^2y/dt^2=-q$$

dove g =9,81 m/s² è l'accelerazione di gravità.

La legge del moto soluzione di queste equazioni è la seguente:

$$x(t) = x_0 + v_x t \tag{1}$$

$$y(t) = y_0 + v_y t - 1/2gt^2$$
 (2)

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS2" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS2-RS12
iat consulenza progetti		TITOLO RELAZIONE SULLA GITTATA DEGLI ELEMENTI ROTANTI	PAGINA	8 di 12
www.iatprogetti.it				

La posizione e la velocità iniziale sono determinati dall'angolo θ e dalla velocità tangenziale V del centro di massa della pala al momento del distacco. Essi sono legati alla posizione ed alla velocità iniziale dalle relazioni:

 $x_0 = -R\cos(\theta)$

 $y_0 = H_m + Rsin(\theta)$ con H_m altezza al mozzo dell'aerogeneratore

 $v_x = V \sin(\theta)$

 $v_y = V \cos(\theta)$

La gittata L è la distanza dalla torre del punto di impatto al suolo del centro di massa della pala.

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS2" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS2-RS12
Calat Consulenza e progetti.it		TITOLO RELAZIONE SULLA GITTATA DEGLI ELEMENTI ROTANTI	PAGINA	9 di 12

4 DATI DI BASE PER IL CALCOLO

I dati di base sono quelli caratteristici dell'aerogeneratore di progetto. Per le finalità del presente documento si è fatto riferimento al modello commerciale *Siemens - Gamesa SG170* con altezza al mozzo di 115 metri per quanto riguarda le dimensioni ed al modello EnVentus V172-7.2 per quanto attiene alle condizioni di funzionamento (velocità di rotazione delle pale). Con tali presupposti si è fatto riferimento ai seguenti dati di base:

- lunghezza pala = 83,33 m;
- altezza della torre = 115 m;
- velocità massima di rotazione (V) = 12.1 rpm pari a quella massima prevista per la serie EnVentus.

La massa della pala di riferimento è pari indicativamente a 25.000 kg; il centro di massa della pala risulta approssimativamente posizionato ad una distanza dal centro di rotazione pari ad un terzo della lunghezza della pala.

COMMITTENTE RWE Renewables Italia S.r.I. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS2" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS2-RS12
lat consulenza e progetti		TITOLO RELAZIONE SULLA GITTATA DEGLI ELEMENTI ROTANTI	PAGINA	10 di 12
www.iatprogetti.it				

5 CALCOLO DELLA GITTATA

Nel caso in esame si suppone che l'incidentale distacco della pala avvenga nelle condizioni più gravose ovvero:

- alla velocità massima del rotore, pari a 12,1 giri/minuto;
- nel punto di ascissa e ordinata in cui la gittata, sulla base delle formule di calcolo sotto riportate,
 è risultata massima (angolo θ= ~33°);
- con il centro di massa posizionato ad 1/3 della lunghezza della pala, in prossimità del mozzo;

L'aerogeneratore di progetto possiede:

- altezza al mozzo dell'aerogeneratore Hm = 115 m;
- lunghezza della pala dell'aerogeneratore Lp = 83,33 m;
- distanza dal mozzo del centro di massa della Pala Dcm = Lp /3 =27,77 m;
- Massima Velocità Angolare Rotore Vang = 12.1 Giri/min=11.5×2 π /60=1,27 Rad/sec;

La traiettoria iniziale è determinata principalmente dall'angolo di lancio e dalle forze generalizzate agenti sulla pala. La pala, quindi, quando inizierà il suo moto, continuerà a ruotare (conservazione della quantità di moto). L'unica forza inerziale agente in questo caso è la forza di gravità.

La durata del volo considerato è determinata considerando la velocità verticale iniziale applicata al centro di gravità. Il tempo risultante è usato per calcolare la distanza orizzontale (gittata) nel piano. La gittata è determinata dalla velocità orizzontale al momento del distacco iniziale.

Assunto un sistema di riferimento con origine sul terreno in corrispondenza dell'asse della torre, l'ordinata del centro di massa al momento del distacco della pala è data dall'altezza del mozzo sommata alla distanza verticale del centro di massa della pala rispetto al suo centro di rotazione:

$$y_0 = Hm + D_{cm}^* \sqrt{(2)/2} = 130,1 \text{ m}$$

Analogamente l'ascissa del centro di massa al momento del distacco risulta:

$$x_0 = -D_{cm}^* \sqrt{(2)/2} = -23.3 \text{ m}$$

La Velocità tangenziale posseduta dal Centro di Massa V è desunta dalla Velocità Angolare V_{ang} , ossia:

$$V = V_{ang} \times D_{cm} = 35,18 \text{ m/s}$$

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS2" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS2-RS12
lat consulenza progetti		TITOLO RELAZIONE SULLA GITTATA DEGLI ELEMENTI ROTANTI	PAGINA	11 di 12
www.iatprogetti.it				

Le componenti verticale (Vy) ed orizzontale (Vx) di tale velocità lineare al Centro di Massa saranno:

$$V_x = v * cos(30^\circ) = 29,51 \text{ m/s}$$

$$V_y = v * sen(30^\circ) = 19,16 \text{ m/s}$$

Il tempo di decelerazione verticale T_y necessario perché la componente verticale della velocità sia nulla è dato dalla formula:

$$T_v = V_v / 9.8 \text{ m/sec}^2 = 1.95 \text{ s}$$

L'altezza massima H_{max} raggiunta si ottiene dalla formula:

$$H_{max} = y_0 + V_y * T_y - 1/2*g*T_y^2 = 148.8 m$$

Il tempo di caduta T_{max} necessario affinché l'elemento rotante precipiti a terra dalla sommità si ottiene dalla relazione:

$$T_{max} = \sqrt{(H_{max}/4.9 \text{ m/s}^2)} = 5.51 \text{ s}$$

La gittata massima L percorsa dall'elemento rotante distaccatosi dall'aerogeneratore nelle condizioni più sfavorevoli risulta quindi:

$$L = V_x * (T_{max} + T_y) + x_0 = 197 \text{ m}$$

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS2" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO PEALAS2-RS12
iat consulenza e progetti		TITOLO RELAZIONE SULLA GITTATA DEGLI ELEMENTI ROTANTI	PAGINA 12 di 12
www.iatprogetti.it			

6 CONSIDERAZIONI AGGIUNTIVE E VALUTAZIONE CONCLUSIVA

Nei casi reali, la distanza di impatto a terra calcolata in accordo con il metodo precedentemente illustrato sarà verosimilmente inferiore, sia per le condizioni iniziali al momento del distacco, che non necessariamente saranno quelle teoriche per una gittata massima, sia per i moti rotazionali della pala, dovuti ai momenti delle forze resistenti, che comporteranno ulteriori dissipazioni di energia e condizioni generalmente meno favorevoli per il moto.

A questo riguardo, studi condotti da Vestas¹ attestano come le forze di resistenza che si esercitano sulla pala fanno sì che la gittata reale sia inferiore di circa il 20% rispetto a quella stimata considerando le sole forze inerziali ed escludendo l'attrito. Sotto tale ipotesi la gittata sarebbe stimabile in circa 157 m (20% in meno rispetto al caso ideale).

D'altro canto, si osserva che la distanza calcolata è riferita alla traiettoria del suo baricentro e, pertanto, la stessa andrebbe cautelativamente incrementata dei 2/3 della lunghezza della pala, ossia di circa 55 metri nell'ipotesi che l'impatto a terra avvenga, per effetto delle rotazioni, "di piatto".

In definitiva, sulla base dei calcoli condotti nonché delle predette considerazioni e valutazioni aggiuntive inerenti alle possibili dinamiche di impatto, si valuta che la distanza indicativa che può essere raggiunta da una pala di un generatore delle caratteristiche di quello previsto in progetto (D 170m – HH 115 m – P 7.2 MW) che si distacchi dal mozzo in condizioni nominali di funzionamento, sia di circa **213 metri**.

Con riferimento alle condizioni insediative dell'area di intervento, contraddistinte dalla locale presenza di fabbricati di supporto alle attività agricole, deve evidenziarsi l'assenza di edifici stabilmente occupati da persone entro la distanza indicata rispetto alla prevista ubicazione degli aerogeneratori.

Rev. 0 - del 20/12/2023

¹ "Blade throw calculation under normal operating conditions" VESTAS AS Denmark July 2001