	PORTO DI TRAF	I RAPANI Pani
PROGETTO	MARINA DI SAN F PER LA REALIZZAZIONE DI UN'API	FRANCESCO PRODO TURISTICO (art. 2 c.b DPR 509/97
Con	PROGETTO DEF ferenza dei Servizi presso il Com concernente l'approvazione de	FINITIVO nune di Trapani del 18/04/2012 el progetto preliminare
	OPERE A M	ARE
Elabor	ato: RELAZIC	NE IDRAULICO MARITTIMA
Scala:		
Data:		Aprile 2013
Proget	tisti:	
	Dott. Ing. Rocco Ricevuto	
	Arch. Biancamaria Verde	
	Geom. Benedetto Lupo	
data	revisione	descrizione
Societa Cant	à proponente iere navale Drepanum s.r.l	

PREMESSE

La presente relazione tecnica, redatta ai sensi dell'allegato II del Decreto 14 aprile 1998, riporta lo sviluppo degli studi di prima approssimazione dei quali le conclusioni sono sintetizzate nella relazione generale.

Il presente elaborato comprende:

- uno studio anemologico, (Capitolo 1 – Regime dei venti), basato sulle informazioni raccolte dalla stazione di Trapani dell'Aereonautica Militare Italiana inteso a definire il regime anemologico locale;

 lo studio delle caratteristiche meteomarine al largo (Capitolo 2 – Previsione del moto ondoso a largo) attraverso la definizione statistica degli eventi estremi, con il metodo tradizionale dell'altezza d'onda significativa (SMB);

 - uno studio sulla propagazione del moto ondoso sottocosta (Capitolo 3 – Evoluzione del moto ondoso sottocosta - rifrazione e frangimento) con la costruzione dei cosiddetti piani d'onda usando il metodo delle ortogonali (rifrazione diretta);

- una analisi dello stato di agitazione (Capitolo 4 – Agitazione interna - diffrazione)
 all'interno del porto di Trapani attraverso il modello numerico VEGA per prevedere il livello
 di agitazione del moto ondoso residuo (diffrazione);

 - uno studio specifico per definire le caratteristiche del moto ondoso in corrispondenza
 dello specchio acqueo oggetto della domanda di concessione (Capitolo 5 – previsione del moto ondoso in acque basse e per fetch limitati);

 - infine, una analisi della sicurezza degli ormeggi in relazione al clima ondoso e agli standard di settore raccomandati dalla vigente normativa (Capitolo 6 – verifica della sicurezza degli ormeggi).

1. REGIME DEI VENTI

Il presente studio raccoglie ed elabora le osservazioni anemometriche triorarie registrate, dal 1962, nella stazione di Trapani raccolte e fornite dall'Aeronautica Militare Italiana.

Lo studio anemometrico è stato condotto in prima analisi con riferimento a tutti i dati disponibili. Successivamente tali dati sono stati divisi per stagione e si è eseguito il medesimo studio per inverno, primavera, estate ed autunno.

Figura 1- Frequenze totali di apparizione del vento a Trapani.

La direzione a cui compete la massima frequenza, appartiene al settore 350°, seguita dalla direzione 150°.

Il diagramma di figura 1 non contiene informazioni circa l'intensità degli eventi analizzati. Lo studio che segue vuole entrare, quindi, in tal dettaglio.

Le osservazioni del vento sono state divise per direzione di provenienza e per intensità. I risultati di tale classificazione sono tabellati di seguito.

Direzione	Tra 1 e 5 nodi	Tra 5 e 9 nodi	Tra 9 e 13 nodi	Tra 13 e 17 nodi	Tra 17 e 21 nodi	Tra 21 e 25 nodi	Tra 25 e 29 nodi	Tra 29 e 33 nodi
0	330	1092	1236	746	320	105	44	19
10	317	724	603	260	90	32	17	13
20	401	1063	651	286	136	40	18	11
30	313	650	342	175	83	30	16	5
40	156	334	194	66	37	8	8	0
50	223	385	138	43	22	3	3	1
60	175	305	85	24	10	3	2	0
70	163	221	56	16	4	0	0	0
80	129	195	48	11	8	1	2	1
90	397	399	109	14	4	3	0	0
100	285	416	126	37	14	6	8	3
110	285	552	187	103	61	34	27	19
120	285	793	428	255	171	127	156	76
130	313	1012	705	507	414	276	283	198
140	312	1156	916	705	571	387	272	150
150	477	1543	1022	851	595	304	164	64
160	468	1383	848	589	350	169	90	25
170	284	670	474	316	174	65	36	16
180	346	900	620	372	178	65	39	7
190	58	199	183	124	65	24	9	5
200	203	457	302	158	79	22	8	5
210	222	721	601	244	78	25	18	3
220	184	773	628	270	100	44	15	7
230	133	718	456	225	129	42	22	12
240	185	868	543	258	155	55	34	7
250	142	638	451	298	214	86	43	15
260	240	920	688	456	308	151	78	30
270	345	1154	775	499	327	177	133	55
280	243	821	649	608	451	263	150	82
290	366	1213	1071	843	539	217	162	68
300	386	1370	1141	688	427	168	107	48
310	183	834	652	404	225	94	73	41
320	357	1280	975	532	270	125	88	44
330	439	1719	1305	576	288	106	69	30
340	448	1574	1374	730	327	126	64	23
350	696	1769	1417	736	271	89	58	15

Tabella 1: Numero di eventi classificati per direzione e intensità (tra 1 e 33 nodi)

Direzione	Tra 33 e 37 nodi	Tra 37 e 44 nodi	Tra 44 e 51 nodi	Tra 51 e 58 nodi	Tra 58 e 65 nodi	Tra 65 e 72 nodi	Tra 72 e 79 nodi	Tra 79 e 85 nodi	Maggiori di 85 nodi
0	3	5	2	1	1	0	0	1	0
10	7	3	4	3	3	0	3	5	2
20	6	4	5	1	2	1	1	2	2
30	2	3	0	0	0	0	0	0	0
40	0	0	0	0	0	0	0	0	0
50	0	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0	0
70	0	0	0	0	0	0	0	0	0
80	0	0	0	0	0	0	0	0	1
90	0	0	0	0	0	0	0	0	0
100	0	1	0	0	0	0	0	0	0
110	8	5	1	0	0	0	0	0	0
120	53	59	12	2	0	0	0	0	0
130	109	77	27	2	1	0	0	0	0
140	66	31	5	0	0	0	0	0	0
150	24	9	1	0	0	0	0	0	0
160	12	4	0	0	0	0	0	0	0
170	5	3	0	0	0	0	0	0	0
180	1	1	0	0	0	0	0	0	0
190	0	2	1	0	0	0	0	0	0
200	1	0	1	0	0	0	0	0	2
210	3	1	0	0	0	0	1	0	1
220	4	2	0	0	0	0	0	0	0
230	2	3	0	0	0	0	0	0	0
240	5	1	0	0	1	0	0	0	0
250	13	4	0	0	0	1	0	0	1
260	12	0	1	0	0	0	0	0	0
270	24	13	4	0	0	0	0	0	0
280	42	22	5	0	0	0	0	0	0
290	26	19	2	0	2	1	0	0	0
300	18	14	3	0	0	1	0	0	0
310	11	7	4	0	0	0	0	0	0
320	27	15	3	2	0	0	0	0	0
330	16	13	1	0	0	0	0	0	0
340	13	4	0	0	0	0	0	0	0
350	4	3	1	0	0	0	0	0	0

Tabella 2: Numero di eventi classificati per direzione e intensità (superiore a 33 nodi)

Per meglio rappresentare i risultati della classificazione, si riportano nei diagrammi polari i medesimi risultati. Per comodità del lettore si è preferito presentare gli esiti in tre diagrammi.

Figura 2: Frequenze di apparizione del vento, di intensità compresa tra 1 e 21 nodi, a Trapani.

Figura 3: Frequenze di apparizione del vento, di intensità compresa tra 21 e 51 nodi, a Trapani.

Figura 4: Frequenze di apparizione del vento, di intensità maggiore a 51 nodi, a Trapani.

Può essere interessante ragionare sull'intensità del vento registrato. A tal proposito si osservi l'istogramma a tal proposito redatto.

Figura 5: Intensità del vento.

Gli eventi con velocità compresa tra 5 e 9 nodi sono i più frequenti, seguiti dagli eventi di calma. Come fisicamente è lecito attendersi,gli eventi cui è associata velocità maggiore sono i meno frequenti.

Studio stagionale del vento

L' analisi stagionale del vento che in questa sede si vuol condurre, principia con l'analisi del vento primaverile.

La più alta frequenza di apparizione compete alla calma che si è presentata per circa il 30% dei casi, gli altri eventi sono sintetizzati nel diagramma polare di fig.6

N° Eventi primaverili

Figura 6- Frequenze primaverili di apparizione del vento a Trapani.

La direzione a cui compete la massima frequenza, appartiene al settore 350°, seguita dalla direzione 150°.

Le osservazioni del vento sono state divise per direzione di provenienza e per intensità. I risultati di tale classificazione sono tabellati di seguito.

Direzione	Tra 1 e 5 nodi	Tra 5 e 9 nodi	Tra 9 e 13 nodi	Tra 13 e 17 nodi	Tra 17 e 21 nodi	Tra 21 e 25 nodi	Tra 25 e 29 nodi	Tra 29 e 33 nodi
0	86	306	344	247	88	14	7	2
10	107	203	136	64	19	4	2	1
20	88	215	123	47	22	4	2	2
30	67	145	61	30	9	2	2	0
40	27	77	37	9	5	1	1	0
50	38	64	15	6	4	0	0	0
60	37	66	14	2	2	1	0	0
70	32	41	10	4	0	0	0	0
80	16	25	9	3	2	0	0	1
90	62	51	22	8	2	0	0	0
100	35	66	22	10	3	3	2	0
110	58	81	33	18	10	6	4	6
120	57	144	73	46	42	28	48	13
130	59	171	127	112	100	64	65	60
140	62	208	163	175	119	101	78	52
150	98	296	212	191	152	69	50	21
160	96	270	168	132	92	40	14	8
170	53	131	102	74	45	17	5	4
180	82	214	150	86	39	10	9	0
190	14	43	46	28	6	3	1	0
200	37	87	66	41	14	6	0	0
210	48	178	159	62	17	2	0	1
220	47	222	191	79	17	8	0	2
230	41	194	130	55	28	7	3	0
240	40	254	145	71	36	14	3	0
250	41	196	136	86	48	19	5	1
260	61	249	187	99	64	27	13	2
270	101	303	179	126	73	30	18	10
280	73	263	163	136	84	38	20	8
290	98	349	330	233	128	42	18	7
300	122	400	348	190	94	30	18	5
310	70	275	211	119	44	9	6	0
320	110	447	317	149	67	13	5	4
330	126	586	426	167	65	15	5	2
340	145	554	440	214	86	27	5	2
350	197	588	422	252	75	12	11	2

Tabella 3: Numero di eventi primaverili classificati per direzione e intensità (tra 1 e 33 nodi)

Direzione	Tra 33 e 37 nodi	Tra 37 e 44 nodi	Tra 44 e 51 nodi	Tra 51 e 58 nodi	Tra 58 e 65 nodi	Tra 65 e 72 nodi	Tra 72 e 79 nodi	Tra 79 e 85 nodi	Maggiori di 85 nod
	0 1	0	C) C) 1	1 (0	J (0 0
	10 1	0	2	! 1	1	1 (0 :	2 4	4 0
	20 2	2 2	3	s C) 1	· ۱	1	ე (D 1
	30 2	2 0	C) C) () (0	J (0 0
	40 C) (C) C) () (0	ე (0 C
	50 C) C	C) C) () (0	J (0 0
	60 C) ()	C) C) () (0	ე (0 C
	70 C) (C) C) () (0) (0 C
	80 C) (C) C) () (0) (0 C
	90 C) ()	C) C) () (0	ე (0 C
1	00 C) (C) C) () (0) (0 C
1	10 3	3 1	C) C) () (0) (0 C
1	20 21	26	3	s C) () (0) (0 0
1	30 38	3 25	13	3 1	1	1 (0) (0 C
1	40 29) 13	2	2 0) () (0) (0 C
1	50 7	′ 4	· 1	C) () (0) (0 0
1	60 5	5 1	C) C) () (0) (0 0
1	70 1	C	C) C) () (0) (0 0
1	80 C) (C) C) () (0) (0 0
1	90 C) ()	C) C) () (0) (0 0
2	00 0) (1	C) () (0) (0 0
2	10 C) (C) C) () (0) () 1
2	20 1	C	C) () () (0) (0 0
2	30 0) (C) () () (0) (0 0
2	40 0) (() 1		0) () ()
2	50 1	U U	C C) () ()	1	J () ()
2	60 1	C C	C) () () (0) (0 0
2	70 3	3 1	() () ()	0) () ()
2	80 3		1				0) (J U
2	90 3	3 1	L.		1		0	J (J U
3	00 0) (()	1) (J U
3	10 1		(0) (J U
3	20 3	s ()					0	J (J U
3	3U U						0	J (J U
3	40 C					J (0	J (J U
3	50 0	, (, (, (, ,	U I	J (J 0

Tabella 4: Numero di eventi primaverili classificati per direzione e intensità (superiore a 33 nodi)

Per meglio rappresentare i risultati della classificazione, si riportano nei diagrammi polari i medesimi risultati. Per comodità del lettore si è preferito presentare gli esiti in tre diagrammi.

Figura 7: Frequenze di apparizione del vento, di intensità compresa tra 1 e 21 nodi, a Trapani. (PRIMAVERA)

Figura 8: Frequenze di apparizione del vento, di intensità compresa tra 21 e 51 nodi, a Trapani. (PRIMAVERA)

Figura 9: Frequenze di apparizione del vento, di intensità maggiore a 51 nodi, a Trapani. (PRIMAVERA)

Figura 10: Intensità del vento. (PRIMAVERA)

Come già osservato in precedenza gli eventi con velocità compresa tra 5 e 9 nodi sono i più frequenti, seguiti dagli eventi di calma.

L' analisi stagionale del vento prosegue con l'analisi del vento estivo

La più alta frequenza di apparizione compete alla calma che si è presentata per circa il 30% dei casi, gli altri eventi sono sintetizzati nel diagramma polare di fig.11

Figura 11- Frequenze estive di apparizione del vento a Trapani.

La direzione a cui compete la massima frequenza, appartiene sempre al settore 350°, seguita dalla direzione 150°. Il diagramma polare estivo è molto meno disperso che non nei precedenti casi. Le direzioni più frequenti sono infatti chiaramente distinte dalle restanti.

Come prima, le osservazioni del vento sono state divise per direzione di provenienza e per intensità. I risultati di tale classificazione sono tabellati di seguito.

Direzione	Tra 1 e 5 nodi	Tra 5 e 9 nodi	Tra 9 e 13 nodi	Tra 13 e 17 nodi	Tra 17 e 21 nodi	Tra 21 e 25 nodi	Tra 25 e 29 nodi	Tra 29 e 33 nodi
0	104	351	474	281	94	27	13	3
10	79	207	179	60	22	3	1	0
20	140	312	152	48	25	5	1	4
30	78	126	48	27	21	6	1	1
40	36	56	39	6	8	0	3	0
50	40	50	15	3	3	0	0	0
60	22	51	5	2	0	0	0	0
70	31	30	6	3	1	0	0	0
80	25	40	5	0	2	0	2	0
90	76	60	9	1	0	1	0	0
100	48	70	18	2	1	1	1	2
110	51	79	27	14	7	4	3	2
120	61	113	57	24	22	11	17	7
130	69	178	124	80	40	30	39	12
140	67	240	182	93	89	51	35	6
150	129	358	171	175	102	53	19	7
160	106	316	192	134	53	22	15	0
170	68	156	120	85	35	8	3	1
180	95	194	159	81	43	4	8	2
190	18	65	47	37	14	2	0	0
200	61	85	82	44	11	8	1	1
210	63	178	190	62	17	3	2	0
220	45	228	200	71	13	2	2	0
230	42	198	119	44	20	3	0	2
240	60	242	120	29	7	2	1	0
250	34	195	95	24	10	3	1	1
260	75	237	133	49	11	7	1	0
270	75	274	112	56	11	8	4	0
280	56	201	138	119	63	32	5	0
290	101	342	262	171	103	13	8	1
300	113	411	287	135	66	17	10	2
310	33	250	216	81	44	16	6	3
320	90	377	337	163	54	8	8	0
330	146	618	507	165	46	11	2	0
340	143	522	568	307	110	30	13	0
350	233	602	577	294	95	26	11	0

Tabella 5: Numero di eventi estivi classificati per direzione e intensità (tra 1 e 33 nodi)

Direzione	Tra 33 e 37 nodi	Tra 37 e 44 nodi	Tra 44 e 51 nodi	Tra 51 e 58 nodi	Tra 58 e 65 nodi	Tra 65 e 72 nodi	Tra 72 e 79 nodi	Tra 79 e 85 nodi Maggiori di 85 noc
0	0	0	0	0	0	0	0	0
10	0	0	0	0	1	0	0	0
20	1	0	1	1	1	0	1	2
30	0	1	0	0	0	0	0	0
40	0	0	0	0	0	0	0	0
50	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0
70	0	0	0	0	0	0	0	0
80	0	0	0	0	0	0	0	0
90	0	0	0	0	0	0	0	0
100	0	0	0	0	0	0	0	0
110	0	1	0	0	0	0	0	0
120	4	4	0	0	0	0	0	0
130	9	2	0	0	0	0	0	0
140	4	1	0	0	0	0	0	0
150	4	2	0	0	0	0	0	0
160	1	0	0	0	0	0	0	0
170	0	0	0	0	0	0	0	0
180	0	0	0	0	0	0	0	0
190	0	0	0	0	0	0	0	0
200	0	0	0	0	0	0	0	0
210	0	0	0	0	0	0	0	0
220	0	0	0	0	0	0	0	0
230	0	1	0	0	0	0	0	0
240	0	0	0	0	0	0	0	0
250	0	0	0	0	0	0	0	0
260	0	0	0	0	0	0	0	0
270	0	0	0	0	0	0	0	0
280	1	0	0	0	0	0	0	0
290	0	1	0	0	1	1	0	0
300	0	0	0	0	0	0	0	0
310	0	0	0	0	0	0	0	0
320	0	0	0	0	0	0	0	0
330	0	0	0	0	0	0	0	0
340	0	0	0	0	0	0	0	0
350	1	0	0	0	0	0	0	0

Tabella 6: Numero di eventi estivi classificati per direzione e intensità (superiore a 33 nodi)

Per meglio rappresentare i risultati della classificazione, si riportano nei diagrammi polari i medesimi risultati. Per comodità del lettore si è preferito presentare gli esiti in tre diagrammi.

Figura 12: Frequenze di apparizione del vento, di intensità compresa tra 1 e 21 nodi, a Trapani. (ESTATE)

Figura 13: Frequenze di apparizione del vento, di intensità compresa tra 21 e 51 nodi, a Trapani. (ESTATE)

Figura 14: Frequenze di apparizione del vento, di intensità maggiore a 51 nodi, a Trapani. (ESTATE)

Figura 15: Intensità del vento. (ESTATE)

Si vuole ora eseguire l'analisi del vento autunnale.

Si rappresentano di seguito in fig. 16 gli eventi autunnali.

N° Eventi autunnali

Figura 16- Frequenze autunnali di apparizione del vento a Trapani.

La direzione a cui compete la massima frequenza, appartiene sempre al settore 150°.

Come prima, le osservazioni del vento sono state divise per direzione di provenienza e per intensità. I risultati di tale classificazione sono tabellati di seguito.

Direzione	Tra 1 e 5 nodi	Tra 5 e 9 nodi	Tra 9 e 13 nodi	Tra 13 e 17 nodi	Tra 17 e 21 nodi	Tra 21 e 25 nodi	Tra 25 e 29 nodi	Tra 29 e 33 nodi
0	73	200	187	94	57	20	10	4
10	59	163	146	67	21	11	5	2
20	92	252	186	82	35	14	5	2
30	79	199	106	50	19	7	6	C
40	51	92	54	21	13	2	3	C
50	78	118	45	10	2	1	1	C
60	68	88	32	8	0	0	0	C
70	52	76	17	1	0	0	0	C
80	50	69	20	1	1	0	0	C
90	140	155	45	3	0	0	0	C
100	102	148	46	12	6	1	3	1
110	89	204	70	37	26	9	16	4
120	83	279	163	93	59	51	55	31
130	82	363	259	186	158	90	82	49
140	93	369	340	234	189	137	81	42
150	123	463	373	252	204	100	43	10
160	145	404	254	185	108	53	37	8
170	91	215	145	95	55	25	14	4
180	82	228	164	105	50	29	13	4
190	15	42	53	33	24	13	4	4
200	58	138	81	36	28	5	6	2
210	57	191	117	62	25	14	13	1
220	46	166	120	65	43	15	2	3
230	23	174	96	55	48	27	15	6
240	33	190	152	83	57	22	12	4
250	36	126	112	85	82	36	13	6
260	49	214	178	145	119	52	29	10
270	84	303	254	160	128	61	55	20
280	58	180	157	182	125	78	44	25
290	88	265	215	194	138	67	48	17
300	73	266	232	177	113	50	33	22
310	37	146	112	90	62	25	23	17
320	68	221	134	98	58	39	27	17
330	91	257	199	114	74	37	28	6
340	72	231	172	86	48	18	14	8
350	131	287	202	96	44	32	15	4

Tabella 7: Numero di eventi autunnali classificati per direzione e intensità (tra 1 e 33 nodi)

Direzione	Tra 33 e 37 nodi	Tra 37 e 44 nodi	Tra 44 e 51 nodi	Tra 51 e 58 nodi	Tra 58 e 65 nodi	Tra 65 e 72 nodi	Tra 72 e 79 nodi	Tra 79 e 85 nodi	Maggiori di 85 nodi
0	1	0	0	0	()	0 0	0 0	0 0
10	0	1	0	0	1 1	1	0 0) ·	1 1
20	2	1	1	0	()	0 0	0 0	0 0
30	0	0	0	0	()	0 0	0 0	0 0
40	0	0	0	0	()	0 0	0 0	0 0
50	0	0	0	0	()	0 0	0 0	0 0
60	0	0	0	0	()	0 0) (0 0
70	0	0	0	0	()	0 0	0 0	0 0
80	0	0	0	0	()	0 0	0 0	0 0
90	0	0	0	0	()	0 0	0 0	0 0
100	0	1	0	0	()	0 0) (0 0
110	3	0	0	0	()	0 0	0 0	0 0
120	12	9	1	2	()	0 0	0 0	0 0
130	23	16	6	1	()	0 0) (0 0
140	10	4	1	0	()	0 0) (0 0
150	5	0	0	0	()	0 0) (0 0
160	3	2	0	0	()	0 0	0 0	0 0
170	2	2	0	0	()	0 0) (0 0
180	1	1	0	0	()	0 0) (0 0
190	0	2	1	0	()	0 0) (0 0
200	1	0	0	0	()	0 0) (0 0
210	3	1	0	0	()	0 0) (0 0
220	0	2	0	0	()	0 0) (0 0
230	1	0	0	0	()	0 0	0 0	0 0
240	4	1	0	0	()	0 0	0 0	0 0
250	8	0	0	0	()	0 0	0 0	0 0
260	3	0	0	0	()	0 0	0 0	0 0
270	9	4	0	0	()	0 0	0 0	0 0
280	13	4	2	0	()	0 0	0 0	0 0
290	6	6	1	0	()	0 0	0 0	0 0
300	6	8	1	0	()	0 0	0 0	0 0
310	5	6	3	0	()	0 0) (0 0
320	12	6	0	0	()	0 0	0 0	0 0
330	8	4	0	0	()	0 0	0 0	0 0
340	5	0	0	0	()	0 0	0 0	0 0
350	1	2	0	0	()	0 (0 (0 0

Tabella 8: Numero di eventi autunnali classificati per direzione e intensità (superiore a 33 nodi)

Per meglio rappresentare i risultati della classificazione, si riportano nei diagrammi polari i medesimi risultati. Per comodità del lettore si è preferito presentare gli esiti in tre diagrammi.

Figura 17: Frequenze di apparizione del vento, di intensità compresa tra 1 e 21 nodi, a Trapani. (AUTUNNO)

Figura 18: Frequenze di apparizione del vento, di intensità compresa tra 21 e 51 nodi, a Trapani. (AUTUNNO)

Figura 19: Frequenze di apparizione del vento, di intensità maggiore a 51 nodi, a Trapani. (AUTUNNO)

Figura 20: Intensità del vento. (AUTUNNO)

Si conclude l'analisi anemometria con l'analisi del vento invernale Si rappresentano di seguito in fig. 21 gli eventi invernali.

Figura 16- Frequenze invernali di apparizione del vento a Trapani.

La direzione a cui compete la massima frequenza, appartiene al settore 150°, seguito da 290°N.

Come per tutti i casi precedenti, le osservazioni stagionali del vento sono state divise per direzione di provenienza e per intensità. I risultati di tale classificazione sono tabellati di seguito.

Direzione	Tra 1 e 5 nodi	Tra 5 e 9 nodi	Tra 9 e 13 nodi	Tra 13 e 17 nodi	Tra 17 e 21 nodi	Tra 21 e 25 nodi	Tra 25 e 29 nodi	Tra 29 e 33 nodi
0	67	235	231	124	81	44	14	10
10	72	151	142	69	28	14	9	10
20	81	284	190	109	54	17	10	3
30	89	180	127	68	34	15	7	4
40	42	109	64	30	11	5	1	0
50	67	153	63	24	13	2	2	1
60	48	100	34	12	8	2	2	0
70	48	74	23	8	3	0	0	0
80	38	61	14	7	3	1	0	0
90	119	133	33	2	2	2	0	0
100	100	132	40	13	4	1	2	0
110	87	188	57	34	18	15	4	7
120	84	257	135	92	48	37	36	25
130	103	300	195	129	116	92	97	77
140	90	339	231	203	174	98	78	50
150	127	426	266	233	137	82	52	26
160	121	393	234	138	97	54	24	9
170	72	168	107	62	39	15	14	7
180	87	264	147	100	46	22	9	1
190	11	49	37	26	21	6	4	1
200	47	147	73	37	26	3	1	2
210	54	174	135	58	19	6	3	1
220	46	157	117	55	27	19	11	2
230	27	152	111	71	33	5	4	4
240	52	182	126	75	55	17	18	3
250	31	121	108	103	74	28	24	7
260	55	220	190	163	114	65	35	18
270	85	274	230	157	115	78	56	25
280	56	177	191	171	179	115	81	49
290	79	257	264	245	170	95	88	43
300	78	293	274	186	154	71	46	19
310	43	163	113	114	75	44	38	21
320	89	235	187	122	91	65	48	23
330	76	258	173	130	103	43	34	22
340	88	267	194	123	83	51	32	13
350	135	292	216	94	57	19	21	9

Tabella 9: Numero di eventi invernali classificati per direzione e intensità (tra 1 e 33 nodi)

Direzione	Tra 33 e 37 nodi	Tra 37 e 44 nodi	Tra 44 e 51 nodi	Tra 51 e 58 nodi	Tra 58 e 65 nodi	Tra 65 e 72 nodi	Tra 72 e 79 nodi	Tra 79 e 85 nodi	Maggiori di 85 nod
) 1	5	2	2 1	(D	0 0) 1	1 0
1	0 6	2	2	2 2		D	0	1 () 1
2) 1	1	() (. (D	0 0) () 0
3	0 C	2) (. (D	0 0) () 0
4	0 C	0) C	. (D	0 () () 0
5	0 C	0) (. (D	0 0) () 0
6	0 C	0) (. (D	0 0) () 0
7	0 C	0) (. (D	0 0) () 0
8	0 C	0) (. (D	0 0) () 1
9	0 C	0) C	. (D	0 () () 0
10	0 C	0) (. (D	0 0) () 0
11) 2	3	۱ ۱	C	. (D	0 () () 0
12) 16	20	8	з с	. (0	0 () () 0
13) 39	34		з с	. (0	0 () () 0
14	23	13	2	2 0	. (D	0 0) () 0
15	3 8	3	. () C	. (0	0 () () 0
16) 3	1	() C	. (0	0 () () 0
17) 2	1	() C	. (0	0 () () 0
18	0 0	0) () C	. (D	0 0) () 0
19	0 0	0) () C	. (D	0 0) () 0
20	0 C	0) () C	. (0	0 () () 1
21	0 C	0) () C	. (0	0	1 () 0
22) 3	0) () C	. (0	0 0) () 0
23) 1	2	. () C	. (0	0 0) () 0
24) 1	0) () C	. (0	0 () () 0
25) 4	4	. () C	. (0	0 0) () 1
26	3 8	0) 1	I C	. (0	0 0) () 0
27) 12	8	4	i C	. (0	0 0) () 0
28	25	18	2	2 0	. (D	0 0) () 0
29) 17	11	1	I C	. (0	0 0) () 0
30) 12	6	1 2	2 0	. (0	0 0) () 0
31	0 5	1	1	I C	. (0	0 0) () 0
32) 12	9) 3	3 2	. (D	0 0) () 0
33	D 8	9) 1	C	. (D	0 0) () 0
34	8 0	4	. () C	. (D	0 0) () 0
35) 2	1	1	(C	. (D	0 0) (0 0

Tabella 10: Numero di eventi invernali classificati per direzione e intensità (superiore a 33 nodi)

Per meglio rappresentare i risultati della classificazione, si riportano nei diagrammi polari i medesimi risultati. Per comodità del lettore si è preferito presentare gli esiti in tre diagrammi.

→ Tra 1 e 5 nodi
📥 Tra 9 e 13 nodi
-X- Tra 13 e 17 nodi

Figura 17: Frequenze di apparizione del vento, di intensità compresa tra 1 e 21 nodi, a Trapani. (INVERNO)

Figura 18: Frequenze di apparizione del vento, di intensità compresa tra 21 e 51 nodi, a Trapani. (INVERNO)

Figura 19: Frequenze di apparizione del vento, di intensità maggiore a 51 nodi, a Trapani. (INVERNO)

Figura 20: Intensità del vento. (INVERNO)

1.3 ULTERIORI DATI DISPONIBILI

Per un'analisi esaustiva del regime dei venti si è fatto riferimento alla tavola tematica pubblicata dal TCI-CNR ove sono riportate le "rose dei venti" delle stazioni gestite dal Servizio Meteorologico dell'Aeronautica Militare (CNMCA).

fig. 1.3.1 - Regime di esposizione ai venti per il mar tirreno centro-meridionale

Dalla figura si evince che il settore di traversia ove si esplicano i fenomeni di generazione delle mareggiate che possono interessare il litorale in esame è dominato dai venti di ponente, maestrale e tramontana. In particolare si è fatto riferimento ai dati delle Stazioni Meteo di Trapani Birgi e Trapani Chinisia gestite dall'Aeronautica Militare (I.T.A.V.-C.N.M.C.A Ispettorato Trasmissioni e Assistenza al Volo – Centro Nazionale di Meteorologia e Climatologia Aeronautica).

Inoltre sono stati esaminati anche i dati relativi alle osservazioni sugli stati di vento effettuate dalla stazione semaforica della Marina Militare posta sull'Isola di Favignana (dati archiviati

dall'Istituto Idrografico della Marina Militare e pubblicati in "Il vento e lo stato del Mare", 1978).

Stazione semaforica di Isola Favignana (Marina Militare) Periodo di osservazione 1930-42 1947-60 Distribuzione delle frequenze annuali(*)

	Direzioni di provenienza degli stati di vento osservati (°Nord)								
Forza vento	337.5	22.5	67.5	112.5	157.5	202.5	247.5	292.5	
(Beaufort)	22.5	67.5	112.5	157.5	202.5	247.5	292.5	337.5	Totale
1 ÷ 2	1.75	2.25	1.00	1.05	2.20	1.65	1.80	2.85	14.55
3 ÷ 4	4.50	5.60	1.35	3.35	6.70	4.30	4.95	10.35	41.10
5 ÷ 6	3.05	3.65	0.70	3.20	5.25	2.40	3.40	7.05	28.70
7 ÷ 12	0.80	1.10	0.20	1.85	2.85	0.70	0.90	2.25	10.65
	10.10	12.60	3.25	9.45	17.00	9.05	11.05	22.50	95.00
	Coordina	1.0.0.0.0.0.0	فالمعاملة		070 COLL	-+ NL - 400	1011	Г	

Coordinate geografiche della stazione: 37° 56' Lat.N ; 12° 19' Long E Stazione posta ad un'altezza di 328 m sul livello del mare

(*) Valori percentuali

1.4 CONCLUSIONI

Dall'esame dei dati rilevati alla stazione di Trapani –Birgi per il periodo considerato, sono emersi tre settori prevalenti di provenienza del vento, centrati sulle direzioni di Scirocco, Ponente e Maestrale, che complessivamente comprendono il 51% dei dati disponibili.

In generale si riscontra che tutti i venti risultano distribuiti piuttosto uniformemente su tutti i mesi, mentre per i venti più intensi si è notata una certa concentrazione negli ultimi mesi dell'anno.

In sintesi i dati raccolti mostrano che:

- <u>i venti regnanti</u> (associati a maggiori frequenze di accadimento) provengono da ponente e tramontana seguiti da quelli provenienti da scirocco;
- <u>i venti dominanti</u> (più intensi con classi di velocità superiori a 24 nodi o forza vento in scala Beaufort superiore a 6) sono quelli provenienti da scirocco.
- la stazione semaforica di Favignana fornisce indicazioni analoghe a quelle delle stazioni meteo di Trapani anche se riferite a tre osservazioni giornaliere a vista.

2. PREVISIONE DEL MOTO ONDOSO A LARGO

Il presente studio è costituito da tre parti: la prima è la ricostruzione della serie ondametrica al largo di Trapani tramite un modello matematico: ciò consente di determinare il clima ondoso al largo. La seconda parte studia il trasferimento delle onde dal largo a sottocosta. L'ultima parte è invece dedicata all'analisi del clima ondoso residuo all'interno della struttura portuale.

La prima parte, si diceva, è lo studio del clima di moto ondoso in un punto al largo del paraggio di Trapani. La definizione del clima di moto ondoso al largo di un paraggio risulta fondamentale per impostare gran parte degli studi che vengono eseguiti nel campo delle costruzioni marittime e più in generale dell'ingegneria costiera.

L'analisi è stato condotta seguendo la classica metodologia, che, partendo delle osservazioni anemometriche registrate nella stazione di Trapani, perviene alle caratteristiche del moto ondoso tramite il metodo detto dell'onda significativa o SMB.

Le osservazioni anemometriche costituiscono l'input del metodo SMB. Un algoritmo matematico consente il calcolo delle altezze e dei periodi delle onde significative.

Nell'ambito del presente approccio si è pervenuti ad una serie di onde "in continuo", e cioè una serie di altezze d'onda e di periodi simili a quelli storici; la conoscenza di tale serie ha consentito, appunto, di determinare il clima ondoso in un punto al largo di Trapani, appresso indicato in figura 1.1.

Figura 1.1. Punto di analisi al largo di Trapani.

La ricostruzione della serie storica delle altezze d'onda e dei relativi periodi è stata eseguita con un modello matematico basato sulle collaudate relazioni fornite da Sverdrup Munk e Breschneider, dal nome dei quali trae origine l'acronimo SMB. Il metodo SMB richiede in input le grandezze fetch, velocità e durata del vento. Come output fornisce l'altezza e il periodo dell'onda significativa.

L'ipotesi base del metodo è strettamente connessa al dominio di taratura del modello stesso.

Il metodo SMB è stato originariamente tarato nei grandi laghi americani e successivamente ulteriormente verificato in una miriade di situazioni differenti, tanto da farne, certamente il criterio maggiormente utilizzato; esso può essere ragionevolmente applicato in situazioni geografiche che presentino fetch limitati, dell'ordine del centinaio di chilometri, condizioni nelle quali è plausibile l'ipotesi secondo cui il campo di vento si possa ritenere costante, in direzione e intensità, su tutta l'estensione della zona di generazione delle onde.

L'applicazione del metodo SMB prevede il calcolo preventivo dello *wind stress factor*, e il calcolo dei fetch efficaci,

I dati di vento vengono forniti in nodi. L'algoritmo SMB richiede invece il cosiddetto *wind stress factor*, ricavabile dai dati di vento, combinando questi con alcune informazioni facilmente reperibili.

Le velocità del vento, espresse in origine in nodi, vengono trasformate in m/s tramite la:

$$U(z) = 0.5144 * U(z)$$

dove a primo membro le velocità sono in nodi, mentre a secondo membro risultano in m/s.

Il vento è stato registrato va ridotto ad un'altezza di 10m s.l.m. Tale operazione viene eseguita tramite l'espressione seguente:

$$U(10) = U(z) \cdot \left(\frac{10}{z}\right)^{\frac{1}{7}}$$

dove z indica, in metri la quota sul livello del mare.

Una ulteriore correzione al vento è quella detta di stabilità. Se la differenza di temperatura tra aria e mare,

 $\Delta T_{as} = T_a - T_s$

è nulla, la superficie di separazione si trova in una sorta di equilibrio instabile, e non è necessaria nessuna correzione. Se ΔT_{as} è negativo la superficie di separazione è instabile e la velocità del vento ha più potere nello generare le onde. Se ΔT_{as} è positivo invece, la superficie di separazione è stabile e la velocità del vento ha meno effetto. Il fattore di correzione, R_{T} , è una funzione di ΔT_{as} ed è stata definita da Resio e Vincent (1977). La relazione è riportata nel grafico 2.2.1 appresso riportato:

Figura 2.2.1 - Determinazione del parametro R_t

La velocità del vento, a seguito dell'introduzione del parametro R_{T_i} si modifica come segue:

$$U = R_T \cdot U(10)$$

Sulle coste siciliane è lecito supporre che, la temperatura del mare è mediamente maggiore di quella dell'aria, e più precisamente è maggiore mediamente di 5°C.

Una ulteriore correzione al vento va fatta se la stazione di misura è situata entroterra, come è nel caso in esame. È possibile *traslare* i dati di vento da condizioni *overland* a situazioni *overwater* qualora il gradiente di pressione sia lo stesso nei differenti punti, e l'unica differenza risieda nel coefficiente di scabrezza delle superfici. Il fattore di locazione è indicato con R_L ed è funzione della velocità registrata entroterra. La relazione è riportata in figura 2.2.3.

Figura 2.2.3 -Determinazione del parametro RL

La velocità del vento, a seguito dell'introduzione del parametro R_L, si modifica come segue:

 $U = R_L \cdot U(10)$

Infine si calcola lo *wind stress factor*, grandezza che poi comparirà in tutte le espressioni del calcolo dell'altezza e del periodo dell'onda significativa, tramite la:

 $U_A = 0.71 \cdot U^{1.23}$

Il fetch è la dimensione dell'area di generazione delle onde nella direzione del vento, velocità e durata hanno un significato più intuitivo.

Il fetch come è noto non è individuabile attraverso come la distanza sopravento della costa più vicina; bensì tenendo in opportuna considerazione il contributo sulla formazione del moto ondoso delle azioni ventose distanze relative alle direzioni adiacenti a quella principale di propagazione; si è pertanto introdotto il concetto di fetch efficace F_e , che mette in conto il rilievo assunto dalle direzioni trasversali rispetto alla prefissata distanza di mare libero.

Il settore di traversia geografico relativo al punto in cui si vuole eseguire l'analisi ondametrica è delimitato a nord est da Capo San Vito, e a sud ovest dall'isola di Marittimo.

Il valore più elevato della lunghezza del fetch geografico si ha secondo la direzione 270°N, e cioè nella direzione delle coste spagnole. La tabella 2.3.1 riporta gli stessi valori in forma numerica.

Dir	Fetch geografico					
Dii.	(m)					
0	383404.5					
10	346641.6					
20	348714.8					
30	302232.2					
40	329466.6					
50	315167.4					
60	328663.4					
70	25841.5					
80	26175.5					
90	19409.7					
100	16720.2					
110	11569.3					
120	11235.5					
130	10846.3					
140	11812.3					
150	12784.4					
160	16238.3					
170	22996.1					
180	536950.8					
190	501734.3					
200	18734.5					
210	12572					
220	11564.6					
230	221870.5					
240	212364.7					
250	33134.2					
260	710687.3					
270	1089568					
280	776075.2					
290	299737.3					
300	269968					
310	295859.8					
320	335662.5					
330	491861.5					
340	536839.5					
350	472620.3					

Tabella 2.3.1 - fetchs geografici

Figura 2.3.1- Fetchs geografici a Trapani

I fetch efficaci F_e si ottengono utilizzando la formula

$$F_{e} = \frac{\sum_{\mathcal{G}=\mathcal{G}_{m}-45^{\circ}}^{\mathcal{G}_{m}+45^{\circ}} F_{g}(\mathcal{G}) \cdot \cos^{3}(\mathcal{G}-\mathcal{G}_{m})}{\cos^{2}\mathcal{G}}$$

E sono riportati nel diagramma polare di figura 2.3.2 e nella tabella 2.3.2. Il fetch efficace massimo ottenuto risulta pari a circa 427 km ed è riferito al settore di 300°N.

Dir.	Fetch geografico				
	(m)				
0	358506.2				
10	348813.2				
20	323378.9				
30	281557.5				
40	240213.8				
50	201067				
60	162366.1				

70	123936.4			
80	89085.4			
90	56918.7			
100	30282.1			
110	14621.3			
120	13165.9			
130	13150.4			
140	36031.6			
150	63871.9			
160	75989.9			
170	84707.9			
180	89396.4			
190	98584.1			
200	106781.2			
210	105109.4			
220	131506.3			
230	184051.9			
240	238676.1			
250	293198.9			
260	338023.5			
270	372808.9			
280	391630.2			
290	408228.5			
300	427423.4			
310	413996.2			
320	372314.1			
330	353654.1			
340	359107.8			
350	361449.8			

Tabella 2.3.2 - Fetchs efficaci

Si vogliono ora riportare i fetches geografici e quelli efficaci calcolati. In verde vengono riportati i fetch geografici, in rosso quelli efficaci.

Figura 3.3.3 - Fetchs geografici (verde) ed efficaci (rosso).

A questo punto sono state elaborate le serie storiche dei dati del vento disponibili (velocità, durata e direzione) ottenendo apposite curve di regolarizzazione generale del vento (a titolo esemplificativo si riportano nelle fig. 2.1 e 2.2 quelle per le direzioni di W e S), nonché, per successiva elaborazione statistica, si sono ottenute delle curve del vento per fissata direzione e tempo di ritorno, che evidenziano l'andamento del legame tra durata e velocità del vento per assegnato tempo di ritorno (nel caso in esame si riportano, nei grafici da fig.2.3 a fig.2.8, le curve del vento per le direzioni foranee principali di W e S e per i tempi di ritorno di 3, 5 e 10 anni).

Si è pertanto proceduto ad elaborare i dati anemometrici al fine di valutare alcuni parametri statistici, relativi all'analisi dei dati stessi (come ad esempio la frequenza storica), nell'intento di ricavare dall'esame della serie storica disponibile i parametri di una serie più lunga. Ciò ha comportato la definizione della frequenza probabile da assegnare, nella nuova serie, ad un evento di cui sia nota la frequenza storica nella più limitata serie originaria. Le tabb. da 2.1 a 2.3 riportano in funzione del tempo di ritorno e della velocità del vento, la durata del vento espressa in ore, per i venti più significativi, della sola stazione di Pantelleria

che presenta valori superiori rispetto a quelli di Ustica, provenienti dalle direzioni d'indagine di 247.50° N, 270.00° N e 292.50°.

Quindi si è proceduto ad una valutazione delle caratteristiche del moto ondoso in termini di tempo di ritorno.

I parametri da cui dipendono le caratteristiche ondametriche sono la velocità del vento U, la relativa durata t e la lunghezza del fetch F.

Per la previsione del moto ondoso al largo si è utilizzato il metodo di Sverdrup-Munk e Bretshineider con il quale è stato possibile ricavare l'altezza dell'onda ed il periodo significativo per ogni prefissata terna di valori del fetch F, della velocità e della durata t del vento, in funzione del tempo di ritorno. Si sono considerate le direzioni: 247.50° N, 270.00° N e 292.50°, ed i relativi fetches. Per ognuna di esse si è fatto variare il tempo di ritorno, da 3 a 100 anni, per 8 classi di velocità del vento, da 30 a 100 nodi.

Per le direzioni d'indagine considerate si sono determinati i valori dell'altezza d'onda significativa H1/3, cioè il valore medio delle altezze possedute dal terzo delle onde più alte, ed i periodi corrispondenti; i risultati (solo quelli relativi alla elaborazione dei dati della stazione di Pantelleria che danno valori superiori) sono stati riportati nelle tabb. da 2.4 a 2.9.

Dall'esame delle superiori tabelle, si evince che le onde più alte al largo, per un intervallo di ricorrenza pari a 30 anni hanno un'altezza pari a 7.49 m e periodo di 10.88 s e sono associate alla direzione di provenienza di 292.50° N. Per un tempo di ritorno di 10 anni l'altezza d'onda si riduce a 6.01, il periodo a 9.75 s con la medesima direzione di provenienza di 292.50° N. Per un tempo di ritorno di 5 anni l'altezza si riduce ulteriormente a 5.14 m ed il periodo a 9.02 s; infine, per un tempo di ritorno di 3 anni l'altezza si riduce ancora a 4,10 m ed il periodo a 8.02 s sempre per la stessa direzione di provenienza al largo di 292.50° N.

3. EVOLUZIONE DEL MOTO ONDOSO SOTTOCOSTA STUDIO DELLA RIFRAZIONE E DEL FRANGIMENTO

Si sono esaminate poi le trasformazioni che il treno d'onde subisce nel propagarsi verso riva; più in particolare, attraverso il fenomeno della rifrazione delle onde le cui caratteristiche al largo sono state precedentemente valutate.

Quando un'onda monocromatica si approssima alla riva, ad uno stesso fronte competono punti caratterizzati da celerità tanto minori quanto più basse sono le profondità. I fronti d'onda subiscono, pertanto, una rotazione che tende a disporli parallelamente alle batimetriche; a ciò consegue una variazione d'altezza d'onda che può essere valutata tracciando le ortogonali, distanti b_0 al largo e b in corrispondenza del paraggio in esame cui compete la profondità h.

Mediante un apposito modello matematico è stato possibile tracciare un numero elevato di ortogonali per ogni valore della direzione di provenienza al largo e del periodo.

Le figg. da 3.1 a 3.4 riportano, a campione, il tracciamento delle ortogonali d'onda aventi al largo la direzione di 270.00° N, per i periodi di 6, 8, 10 e 12 s, mentre le tabelle, da tab. 3.1 a 3.6, riportano le altezze dell'onda per le direzioni 247.50° N, 270.00° N e 292.50° e le corrispondenti direzioni con cui si presentano sottocosta.

La rappresentazione di cui sopra, pur possedendo i requisiti ed i vantaggi di una incisiva visualizzazione del fenomeno, non si presta bene ad una rapida valutazione dell'altezza d'onda sottocosta dal momento che, volendo considerare con dettaglio l'influenza della variazione del periodo, per ogni direzione bisogna tracciare un numero elevatissimo di ortogonali. Si è adottato, inoltre, un sintetico tipo di rappresentazione, in aggiunta al precedente, atto a fornire il valore del coefficiente di altezza nel prefissato punto sottocosta, per un qualunque valore del periodo di un treno d'onde proveniente da qualsivoglia direzione compresa nel settore di traversia effettivo. In un diagramma polare che abbia per anomalia la direzione di provenienza al largo e come modulo il periodo dell'onda, si sono tracciate delle

curve aventi per parametro il coefficiente d'altezza. Tale rappresentazione sintetica consente di concentrare in un unico elaborato di rapida consultazione i risultati dei calcoli relativi ad un numero elevatissimo di periodi e direzioni.

Il grafico di fig. 3.5 permette, infatti, di ricavare il valore del coefficiente di altezza per qualunque coppia di valori del periodo e dell'angolo di incidenza al largo. Il grafico di fig. 3.6 riporta, invece, in funzione della provenienza al largo e del periodo, la rotazione subita dalle ortogonali d'onda allorquando raggiungono un punto posto poco al largo del sito in esame.

L'altezza d'onda più alta sottocosta per un tempo di ritorno di 30 anni si presenta con un valore di 5.07 m ed un'incidenza di 279.14°N proveniente al largo da 292.50° N. Quella relativa ad un tempo di ritorno di 10 anni si presenta, invece, con un valore di 4.39 m ed un'incidenza di 281.37° N proveniente al largo da 292.50° N. Per un tempo di ritorno di 5 anni l'altezza d'onda sottocosta più elevata, si riduce a 3,97 m con direzione 283.03° N proveniente al largo da 292.50° N. Infine, per un tempo di ritorno di 3 anni l'altezza d'onda sottocosta più elevata si riduce a 3,41 m con direzione 284.42° N proveniente al largo sempre da 292.50° N.

Non tutte le suddette onde raggiungono la zona in esame poiché interviene, com'è noto, il fenomeno del frangimento. Un'onda, evolvendosi su fondali prossimi alla riva raggiunge una rapidità (H/L) in corrispondenza della quale diventa instabile e frange.

Con lo studio del frangimento si è proceduto a valutare, attraverso la determinazione delle condizioni di rottura delle onde, le caratteristiche dell'onda frangente e la profondità del frangimento. Nei grafici da fig. 3.7 a fig. 3.12, a titolo di esempio, si riportano i risultati dello studio del frangimento per le direzioni al largo di 270.00° N e 292.50° N.

Inoltre, in unica tabella (tab. 3.7) si sono riportate le caratteristiche del moto ondoso al largo, quelle sottocosta e le caratteristiche dell'onda frangente per gli attacchi ondosi al largo provenienti da 247.50° N, 270.00° N e 292.50° N. e per i tempi di ritorno di 3, 5, 10 e 30 anni.

4. VERIFICA DELL'AGITAZIONE INTERNA

4.1 PREMESSE

La presente relazione riassume in modo sintetico i risultati dello studio che è stato sviluppato per simulare con modello numerico il livello di agitazione del moto ondoso residuo (diffrazione). Si è proceduto partendo dalle analisi meteomarine effettuate nel presente progetto per derivare le condizioni al contorno di base per gli studi di dettaglio sulla penetrazione del moto ondoso nel bacino portuale.

L'obiettivo principale di questo studio è quello di verificare l'agibilità nautica del porto in corrispondenza dello specchio acqueo portuale oggetto della domanda di concessione ai fini di realizzarvi un approdo per imbarcazioni da diporto.

A tal fine viene utilizzato un modello matematico del tipo "agli elementi di contorno", per la cui descrizione si rimanda al paragrafo successivo, che simula la penetrazione del moto ondoso nel bacino governata dai due meccanismi principali della diffrazione e della riflessione sulle opere perimetrali.

4.2 IL MODELLO MATEMATICO "VEGA" DI AGITAZIONE ONDOSA

Il modello numerico VEGA è classificabile come modello irrotazionale lineare bidimensionale per onde armoniche. Il modello è basato sull'equazione di Helmholtz valida sotto le seguenti ipotesi:

- irrotazionalità del moto;
- rapporto H/L<<1 dove H ed L sono rispettivamente l'altezza e la lunghezza d'onda;
- assenza di dissipazioni;
- assenza di forze legate alla rotazione terrestre (forza di Coriolis);
- profondità del fondale costante;
- fondo impermeabile;
- variazione verticale del potenziale della velocità coincidente con la soluzione per onde progressive lineare su fondale costante;
- onde armoniche nel tempo (monocromatiche).

L'equazione di Helmholtz viene usualmente espressa nella seguente forma:

 $\nabla^2 \phi + k^2 \phi = 0$

dove:

k = numero d'onda calcolato tramite la relazione di dispersione della teoria lineare;

$$\omega^2 = gk \cdot tgh(k \cdot h)$$

 $\phi(x,y)$ = potenziale complexivo bidimensionale delle velocità orbitali delle particelle;

 ∇^2 = operatore di Laplace definito nel piano x,y coincidente con il livello medio marino.

Con le ipotesi poste tale equazione è in grado di simulare correttamente il fenomeno combinato di diffrazione-riflessione di onde armoniche lineari. Per risolvere l'equazione di Helmholtz, di tipo ellittico, e necessario porre condizioni al contorno note su tutta la frontiera del dominio di integrazione. Nel caso di bacini portuali si pone lungo l'imboccatura portuale (o comunque lungo i contorni di continuità con semispazio infinito escluso dal dominio di integrazione) che venga soddisfatta una opportuna condizione di radiazione. Contemporaneamente lungo il resto della frontiera vengono imposte condizioni sulla derivata direzionale del potenziale delle velocità (totale o parziale riflessione).

Il modello numerico VEGA risolve l'equazione di Helmholtz tramite la tecnica numerica degli elementi di contorno. La tecnica consiste nel ridurre l'equazione ellittica di Helmholtz definita sul campo bidimensionale di calcolo ad un'equazione integrale definita sulla sola frontiera del campo. La discretizzazione della frontiera permette quindi di ridurre l'equazione integrale ad un sistema di equazioni lineari definite nel campo complesso dove le incognite sono costituite da un sistema di sorgenti distribuite sulla frontiera discretizzata. La risoluzione del sistema di equazioni, che costituisce la parte più onerosa dal punto di vista computazionale del modello numerico, è ottenuta utilizzando il metodo delle eliminazioni successive di Gauss. La dimensione del sistema di equazioni dipende dal numero di sorgenti incognite introdotte sulla frontiera che risulta essere a sua volta funzione della lunghezza d'onda (sono necessarie almeno 5 sorgenti per lunghezza d'onda) e della dimensione dell'elemento (banchina, canale) più corto presente nell'area da simulare (sono necessarie almeno 5 sorgenti per ogni elemento). Risolto il sistema di equazioni è quindi possibile calcolare in ogni punto del campo di potenziale delle velocità orbitali delle particelle idriche in superficie, l'altezza d'onda e la sua fase. Come già accennato, per l'applicazione del modello di propagazione del moto ondoso VEGA il perimetro portuale del porto preso in esame viene schematizzato per mezzo di una serie di "segmenti" ciascuno contraddistinto da una coppia di numeri rappresentanti i vertici (iniziale e finale) del contorno stesso. Ciascun segmento è

caratterizzato da una spezzata con tratti di lunghezza compresi tra 1/6 ed 1/7 della lunghezza d'onda rispettivamente per i periodi simulati assicurandosi in tal modo che in tutte le simulazioni vengano introdotte almeno 5 sorgenti per ogni elemento considerato.

In corrispondenza della retta Y = 0 m del dominio di calcolo vengono imposte le caratteristiche del moto ondoso incidente (altezza, direzione e periodo). Tale retta praticamente rappresenta un generatore di moto ondoso e viene trattata dal modello come un contorno di radiazione, cioè la perturbazione riflessa dalle strutture portuali è libera di transitare per tale contorno irradiandosi al largo nel campo, supposto infinito, posto all'esterno del dominio schematizzato. Inoltre, le resistenze offerte dal fondo sono del tutto trascurabili a causa della limitata area di propagazione presa in esame. Simile considerazione può essere fatta per le dissipazioni viscose interne al fluido che generalmente risultano trascurabili rispetto agli altri fenomeni in gioco; è comunque da sottolineare che trascurando i fenomeni dissipativi si opera in favore di sicurezza.

Il modello VEGA fornisce come risultati i valori dell'altezza d'onda relativa, del potenziale, delle velocità e della fase nei nodi della griglia del dominio. L'analisi dei risultati può essere condotta elaborando i valori di output del modello con un programma di interpolazione.

Il programma di interpolazione restituisce una rappresentazione grafica delle elaborazioni nelle quali i dati vengono interpolati con curve di uguale intensità dell'agitazione ondosa e scale cromatiche differenziate.

I risultati delle elaborazioni, indicano la distribuzione dei coefficienti di diffrazione con una scala di intensità avente una risoluzione di 0.1. Per una migliore esposizione del grafico vengono evidenziate le curve di iso-altezza d'onda pari a 0.1-0.3-0.5 in quanto rappresentano valori di maggiore interesse all'interno del bacino portuale. Essendo il modello lineare, il coefficiente di diffrazione che esprime, com'è noto, il rapporto tra l'altezza d'onda calcolata nel punto e l'altezza dell'onda incidente. Per ottenere il valore dell'altezza d'onda in un punto è sufficiente, quindi, moltiplicare il coefficiente di diffrazione per l'altezza dell'onda incidente in corrispondenza dell'imboccatura.

4.3 DEFINIZIONE DELLE CONDIZIONI DI INPUT

Il modello d'agitazione interna richiede la predefinizione dei principali parametri ondosi (altezza, periodo, direzione) all'esterno dell'imboccatura portuale. A tal fine è necessario ricorrere ai risultati dello studio del regime ondoso al largo ed operarne preliminarmente il "trasferimento" in prossimità della zona di "ingresso" del moto ondoso per l'area discretizzata con il modello. La porzione di mare discretizzata con il modello è contraddistinta da fondali al largo pari a -20 m l.m.m.. Per la definizione delle condizioni di moto ondoso si è fatto riferimento ai piani d'onda redatti nell'ambito del presente progetto.

In definitiva, considerando i risultati dei precedenti studi, si sono assunte come condizioni ondose d'ingresso per le simulazioni del modello quattro direzioni d'attacco con due periodi d'onda differenti.

In ogni situazione sono stati definiti dei coefficienti di riflessione per ogni tratto del contorno portuale.

Le suddette configurazioni geometriche sono illustrate negli schemi che precedono i risultati delle simulazioni, tutte riportate insieme in Appendice.

4.4 RISULTATI DELLE SIMULAZIONI NUMERICHE

I risultati delle elaborazioni (per un totale di 8 simulazioni) sono allegati in sequenza per ogni schema in forma di grafici che indicano la distribuzione in pianta dei coefficienti di agitazione (moltiplicatori dell'altrezza d'onda incidente).

L'esame delle simulazioni permette di formulare alcune osservazioni sullo stato del mare in corrispondenza dello specchio acqueo oggetto della domanda di concessione demaniale.

Si osserva che gli stati di mare provenienti dal largo da cui ci si derivano le altezze d'onda più significative, arrivano sottocosta con direzione compresa tra 247.50° e 270° (cap. 3), e che tali direzioni non incidono sull'area in esame che si presenta completamente riparata.

Per studiare meglio le condizioni meteo- marine, sullo specchio acqueo richiesto in concessione, occorre perciò indagare, non sugli stati di mare che si generano al largo ma bensì sulla previsioni del moto ondoso direttamente incidenti sulle strutture in progetto, caratterizzate quindi da condizioni di bassi fondali e generazione limitata per fetch e non per durata per cui si rimanda al capitolo successivo.

5. PREVISIONE DEL MOTO ONDOSO IN ACQUE BASSE E PER FETCH LIMITATI.

Preliminarmente sono stati determinati i fetches in corrispondenza dell'imboccatura della darsena portuale in progetto. Come si osserva immediatamente la darsena è esposta ai venti provenienti dai quadranti meridionali, pertanto si decide di analizzare due direzioni principali di provenienza del vento e cioè $D= 225^{\circ}$ (libeccio) e $D=135^{\circ}$ (scirocco) per le quali si riportano nelle seguenti tabelle i corrispondenti valori del fetches effettivo.

calcolo del fetches effettivo per D=225°N (libeccio)							
α	rad	$\cos \alpha$	Xi (m)	Xi (miglia)	${f Xicos}lpha$		
42	0,733	0,743	2357	1,46	1,09		
36	0,628	0,809	1699	1,06	0,85		
30	0,524	0,866	872	0,54	0,47		
24	0,419	0,914	911	0,57	0,52		
18	0,314	0,951	2287	1,42	1,35		
12	0,209	0,978	3911	2,43	2,38		
6	0,105	0,995	2631	1,64	1,63		
0	0,000	1,000	1018	0,63	0,63		
6	0,105	0,995	917	0,57	0,57		
12	0,209	0,978	843	0,52	0,51		
18	0,314	0,951	812	0,50	0,48		
24	0,419	0,914	815	0,51	0,46		
30	0,524	0,866	815	0,51	0,44		
36	0,628	0,809	980	0,61	0,49		
42	0,733	0,743	1147	0,71	0,53		
		13,511			12,40	Feff:	
						0,92	miglia
						 1469	metri
						 4818	feet

calcolo del fetches effettivo per D=135°N (scirocco)							
α	rad	$\cos \alpha$	Xi (m)	Xi (miglia)	$\mathbf{Xicos}\alpha$		
42	0,733	0,743	1277	0,79	0,59		
36	0,628	0,809	1220	0,76	0,61		
30	0,524	0,866	1280	0,80	0,69		
24	0,419	0,914	1136	0,71	0,64		
18	0,314	0,951	903	0,56	0,53		
12	0,209	0,978	625	0,39	0,38		
6	0,105	0,995	511	0,32	0,32		
0	0,000	1,000	476	0,30	0,30		
6	0,105	0,995	362	0,22	0,22		
12	0,209	0,978	365	0,23	0,22		
18	0,314	0,951	365	0,23	0,22		
24	0,419	0,914	322	0,20	0,18		
30	0,524	0,866	283	0,18	0,15		
36	0,628	0,809	256	0,16	0,13		
42	0,733	0,743	236	0,15	0,11		
		13,511			5,30	Feff:	
						0,39	miglia
						627	metri
						2058	feet

Per dato valore del fetch i corrispondenti valori dell'altezza d'onda H e del periodo T sono determinati utilizzando le curve di previsione di Bretschneider, fissando i valori della velocità del vento U della profondità media del fondale d e del bottom friction factor che, come d'uso, si assume pari a 0.01. Si avverte che le misure delle distanze sono riportate in piedi perché le curve di previsione di Bretschneider, sono disegnate per tale unità di misura. I valori di U si possono derivare dallo studio anemologico al cap. 1 della presente relazione. Si evidenzia infatti che per entrambe le direzioni considerate si riscontrano eventi di intensità prossima ai 50 nodi. Si osserva inoltre che le relative frequenze di apparizione per tale classe di intensità sono di gran lunga più alte per gli eventi da scirocco (vento dominante).

Per i valori: D=225°N Feff= 4818 feet d= 40 feet U=50 knots Si ottiene dalla curva a) riportata nel seguito H= 2,4 f cioè <u>H= 0.75 m e T= 2.9 s.</u> Per i valori: D=135°N Feff= 2058 feet d= 25 feet U=50 knots Si ottiene dalla curva b) riportata nel seguito H=1,7 f cioè <u>H= 0.51 m e T= 2,4 s</u>

Figura a) curva di previsione di Bretschneider per valori d=40 f

Si nota che i valori di altezza d'onda per D= 225° poiché riferiti a valori del fetches che provengono attraverso l'imboccatura portuale vanno rapportati ai coefficienti di diffrazione (agitazione interna portuale) riportati in allegato per D= 225° , che nello specchio acqueo in esame sono compresi tra 0, 3 e 0,6.

Figura b) curva di previsione di Bretschneider per valori d=25 f

6. VERIFICA DELLA SICUREZZA DEGLI ORMEGGI

Una volta definito il quadro di agitazione prevedibile nello specchio acqueo di cui trattasi, si vuole esaminare se la configurazione progettuale descritta riesca a garantire condizioni di confort alle imbarcazioni che vi si trovano.

Preliminarmente si ricordano i valori di agitazione interna individuati dalle "Raccomandazioni tecniche per la progettazione dei porti turistici" che costituiscono gli "standard di settore prodotti dall'Associazione Internazionale Permanente dei Congressi di Navigazione" approvati dalla terza Sezione del Consiglio Superiore dei Lavori Pubblici che con voto del 27.02.2002 n.212 ha espresso parere favorevole sulle raccomandazioni tecniche di che trattasi. I valori che si prenderanno a riferimento sono pertanto i seguenti: *Valori raccomandati della altezza d'onda significativa ammissibile*

all'interno del porto (con periodi di picco compresi tra 2 e 8 s):

- condizione di "comfort" (particolarmente importante nel caso di porti in cui si prevede la presenza prolungata di persone a bordo delle imbarcazioni):
Hs = 0.15 m per eventi con frequenza massima complessiva indicativamente non superiore a 5 giorni/anno;

- condizione di "sicurezza":
Hs = 0.30 m per eventi con periodo di ritorno indicativamente non inferiore a 5 anni;

- condizione "limite":
Hs = 0.50 m per eventi con periodo di ritorno indicativamente non inferiore a 50 anni.

Premesso tutto ciò, come illustrato nei capitoli precedenti, si è verificato che lo specchio acqueo in esame è soggetto ai venti provenienti dai quadranti meridionali, (con maggiore frequenza di scirocco), che in corrispondenza ad eventi di particolare intensità, generano un moto ondoso caratterizzato da onde corte con periodo di circa 3 s ed altezza pari a 0,5 m – 0,75 m. Tali condizioni, oggi, rendono lo specchio acqueo poco idoneo all'ormeggio dei natanti.

Per tale motivo, come mostrato negli elaborati grafici allegati al progetto, la protezione dello specchio acqueo è stata demandata ad un cosiddetto <u>break water galleggiante</u> che si sviluppa per 92 m in direzione nord-sud, cioè con giacitura perpendicolare alla banchina di riva, e poi per circa 75 m in direzione 230° per massimizzare la protezione dai venti di scirocco.

Il ricorso a tale tipologia di moli frangiflutti è sempre più frequente in Europa e nel mondo per i notevoli vantaggi che comportano, solo per citarne alcuni sono "ecocompatibili":

- non interferiscono con l'equilibrio dell'ambiente marino (non influiscono sui movimenti dei pesci e neppure sul trasporto del sedime);
- non bloccano la visuale tra interno ed esterno come accade invece per le barriere fisse;
- presentano caratteristiche di flessibilità e reversibilità. Sono rimovibili qualora necessario ed opportuno;

Dal punto di vista idraulico, al fine di descrivere i limiti di applicazione delle predette strutture e le attenuazioni ottenibili e valutare quindi l'applicabilità e l'efficacia di queste strutture al caso in specie si fa riferimento ai risultati degli studi condotti in proposito su modello fisico tridimensionale e pubblicati in occasione della V edizione delle Giornate italiane di ingegneria costiera – AIPCN. "Studi sperimentali nelle applicazioni di breakwaters galleggianti" S. Lanzoni – L. Amadori (sistema walcon s.r.l. - Ferrara).

Gli studi disponibili, riepilogati in sintesi nelle seguenti tabelle mostrano che:

- Il breakwaters galleggiante è maggiormente efficace nell'attenuare l'onda che un periodo basso. All'aumentare del periodo il grado di protezione diminuisce annullandosi praticamente a T=6 s;
- il massimo grado di protezione (A=70%) è raggiunto per moto ondoso incidente caratterizzato da basso periodo dell'onda (3s).
- il massimo grado di attenuazione (70%) si ha in corrispondenza delle onde più corte.

Hs (nom.)	Тр	A
m	S	%
0,3	3,0	67,50
0,4	3,0	70,73
0,5	3,0	70,41
0,6	3,0	68,95
1,2	3,5	40,71
1,0	3,5	46,60
0,5	3,5	56,52
1,5	4,0	12,00
1,0	4,0	33,68
0,5	4,0	38,98
0,5	4,5	33,87
1,0	4,5	26,73
1,5	4,5	21,77
1,0	4,5	20,00
1,0	6,0	1,83
2,0	6,0	0,00

Fig. 1 – risultati delle prove per il rilievo del grado di attenuazione dell'onda

La tabella (fig.1) riporta le condizioni nominali di prova e la percentuale di attenuazione dell'onda

Fig. 2 – andamento della percentuale di attenuazione dell'onda in funzione dell'altezza significativa in funzione del periodo

La fig. 2 riporta l'andamento della percentuale di attenuazione in funzione dell'altezza d'onda significativa per diversi valori del periodo dell'onda

Fig. 3 - andamento della percentuale di attenuazione in funzione della lunghezza d'onda incidente

La fig. 3 riporta l'andamento della curva di attenuazione in funzione della lunghezza dell'onda incidente.

In sintesi sulla scorta degli studi sperimentali citati si può concludere che il breakwaters galleggiante è più efficace nell'attenuazione delle onde corte cioè il potere di attenuazione di tale tipologia di strutture è inversamente proporzionale al periodo dell'onda.

Il tipo di protezione prevista in progetto, il break water galleggiante, trova quindi nella situazione meteo marina locale le condizioni ideali d'utilizzo.

Pertanto alla luce di quanto sopra, si ha che per venti provenienti dai quadranti meridionali aventi intensità prossima a 50 nodi, il clima ondoso generato da tali venti (H=0,5 m – 0,7 m), può essere efficacemente abbattuto di valori vicini al 70% attraverso l'istallazione del breakwaters galleggiante di progetto. Tale soluzione riesce a garantire, all'interno dell'approdo, i valori d'altezza d'onda (H=0,1 m – 0,15 m) corrispondenti alle condizioni di *comfort* specificate nelle precitate raccomandazioni ministeriali.