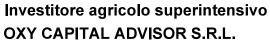
PROGETTO DELLA CENTRALE SOLARE "ENERGIA DELL'OLIO DI SEGEZIA"

da 224,599 MWp a Troia (FG)

R.01

RELAZIONE FENOMENI RIFLESSIONE E ABBAGLIAMENTO



Proponente Peridot Solar Green S.r.l.

Via Alberico Albricci, 7 - 20122 Milano (MI)

Via A. Bertani, 6 - 20154 (MI)

Progetto dell'inserimento paesaggistico e mitigazione

Progettista: Agr. Fabrizio Cembalo Sambiase, Arch. Alessandro Visalli

Coordinamento: Arch. Riccardo Festa

Collaboratori: Urb. Daniela Marrone, Urb. Patrizia Ruggero, Arch. Anna Manzo,

Arch. Paola Ferraioli, Arch. Ilaria Garzillo, Agr. Giuseppe Maria Massa, Agr. Francesco Palombo

Progettazione elettrica e civile

Progettista: Ing. Rolando Roberto, Ing. Giselle Roberto Collaboratori: Ing. Marco Balzano, Ing. Simone Bonacini

Progettazione oliveto superintensivo

Progettista: Agron. Giuseppe Rutigliano

Consulenza geologia

Geol. Gaetano Ciccarelli

Consulenza archeologia ARES archeologia & restauro

via O. Marchione n. 24, 81031 Aversa (CE)

•	2024
0	
þ	
0	
\ \	
0	
0	

rev	descrizione	formato	elaborazione	controllo	approvazione
00	Prima consegna	A4	Rolando Roberto	Giselle Roberto	Rolando Roberto
01					
02					
03					
04					
05					
06					
07					
07					

Sommario

1 DATI TECNICI DEL PROGETTO AGRIVOLTAICO

3		
1.1	Inquadramento generale	3
1.2	Localizzazione e descrizione generale	3
2 AN	NALISI FENOMENI RIFLESSIONI E/O ABBAGLIAMENTO	
9		
2.1	Oggetto della relazione	9
2.2	Condizioni per l'avvio valutativo	
2.3	Assoggettabilità all'iter valutativo	
2.4	Metodo di calcolo	18
2.5	Verifica	19
2.6	Conclusioni	41

1 DATI TECNICI DEL PROGETTO AGRIVOLTAICO

1.1 Inquadramento generale

PERIDOT SOLAR GREEN S.R.L. intende proporre la realizzazione di un impianto agrovoltaico da ubicarsi in Troia (FG), localizzazione 41°22′47.89″N,15°27′6.47″E, progetto in linea con gli obiettivi della Strategia Elettrica Nazionale e del Piano Nazionale integrato per l'Energia e il Clima.

L'obiettivo del presente progetto è la realizzazione di un impianto agrovoltaico di potenza di picco pari a 224.599,20 kWp costituito da 320.856 moduli fotovoltaici in silicio cristallino.

In campo saranno installati n. 593 inverter di stringa di potenza nominale 320 kW.

Lo schema di allacciamento alla RTN prevede che la centrale venga collegata in antenna a 150 kV su una futura Stazione Elettrica (SE) di Trasformazione della RTN a 380/150 kV da inserire in entra-esce alla linea RTN a 380kV "Foggia-Deliceto".

L'impianto sarà esercito in parallelo alla rete elettrica nazionale di TERNA con una potenza massima in immissione pari a 189.760 kW. L'intera produzione sarà immessa in rete e venduta secondo le modalità previste dal mercato libero dell'energia.

La superficie riporta un estensione totale pari 408,6 ha attualmente a destinazione agricola.

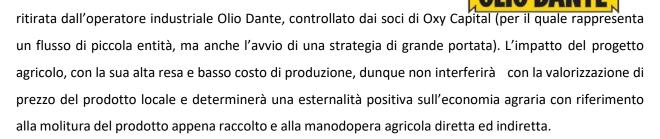
I moduli del generatore erogheranno corrente continua (DC) che, prima di essere immessa in rete, sarà trasformata in corrente alternata (AC) da gruppi di conversione DC/AC (inverter) ed infine elevata dalla bassa tensione (BT) alla media tensione (MT 30 kV) della rete di raccolta interna per il convogliamento alla stazione di trasformazione AT/MT per l'elevazione al livello di tensione della connessione alla rete nazionale.

1.2 Localizzazione e descrizione generale

L'impianto è proposto nel comune di Troia, in Puglia ed in Provincia di Foggia, la connessione nel comune di Troia e Foggia. Si tratta di un territorio a forte vocazione agricola, confermata dal progetto che inserisce un'attività produttiva olivicola di grande impatto e valenza economica. Insieme alla produzione

RELAZIONE FENOMENI RIFLESSIONE E/O
ABBAGLIAMENTO

Pagina 3 / 41


fotovoltaica, necessaria per adempiere agli obblighi del paese, verranno infatti inseriti circa 338.000 alberi di olivo in assetto 'superintensivo', e circa 6.000 in assetto tradizionale, i quali occuperanno il 73 % del terreno lordo recintato (pari a ca 284 ettari), includendo spazi di lavorazione e superfici di manovra mezzi, mentre includendo anche la superficie per apicoltura (una pratica agricola complementare e sinergica, forte di ca. 80 arnie), si arriva al 90%.

Complessivamente solo un terzo (35 %) del terreno sarà interessato dalla proiezione zenitale dei pannelli fotovoltaici (tipicamente a metà giornata), mentre le mitigazioni impegneranno il 24% del terreno lordo oltre aree di compensazione naturalistiche per il 4% (in totale 6.910 alberi e 12.142 arbusti). L'intera superficie sarà protetta da prato permanente (in parte fiorito per ca. 500.000 di mq).

L'impianto, dunque, produce contemporaneamente energia elettrica, miele e olive da olio, impegnando una superficie di gran lunga inferiore a quella che

sarebbe stata interessata da una coltivazione tradizionale *a parità di prodotto*. Le olive saranno molite e raffinate in frantoi locali.

La produzione, che sarà tracciata e produrrà un olio 100% italiano, non interferirà con il mercato locale in quanto sarà interamente

Il progetto agricolo, interamente finanziato in modo indipendente, individua nell'associazione con il fotovoltaico l'occasione per promuovere un olio che entri all'interno del concetto di filiera produttiva: un olio che sia di grande qualità (tracciato e certificato, 100% italiano e sviluppato con tecnologie avanzate tra cui verrà valutato anche l'utilizzo della blockchain), ma allo stesso tempo di prezzo competitivo, tale da rendere possibile l'imbottigliamento e la distribuzione da parte di un operatore industriale come Olio Dante, e quindi non in competizione con la produzione locale di un olio ad alta artigianalità.

L'utilizzo della tecnologia superintensiva e dell'agricoltura di precisione, infatti, grazie a risparmi sugli investimenti ed alla meccanizzazione delle attività di potatura e raccolta, consente alla produzione olivicola promossa di stare sul mercato in modo competitivo, pur conservando una filiera produttiva interamente italiana, tracciata e certificata.

Figura 1 – Rendering impianto

L'impianto è localizzato alle coordinate:

- 41.22.45,34 N
- 15.27.32,17 E

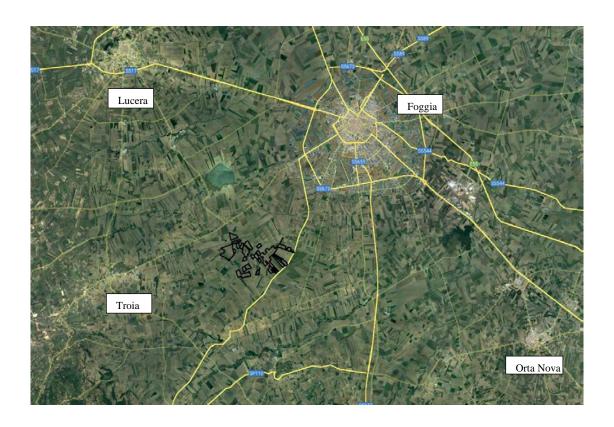


Figura 2 - Inquadramento territoriale

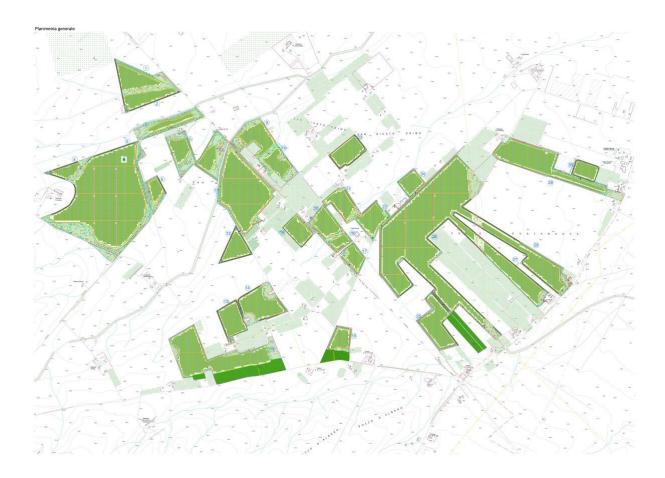


Figura 3 – Layout generale dell'impianto

L'intero impianto, nel comune di Troia, viene a trovarsi su un territorio sostanzialmente pianeggiante, a Nord della via Napoli, SS90, e si sviluppa nello spazio tra questa e la SP 115 diretta a Troia. In pratica viene a trovarsi tra Troia e Foggia.

Le strutture ad inseguimento monoassile di supporto dei moduli fotovoltaici, in acciaio zincato a caldo, avranno un'altezza da terra di circa 2,80 m al mozzo e potranno raggiungere, alla massima inclinazione, un'altezza di circa 4,9 m. Di seguito un estratto della tavola dei particolari costruttivi d'impianto e delle sezioni.

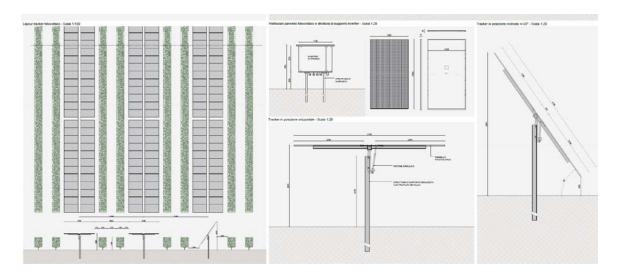


Figura 4 – Particolare costruttivo strutture

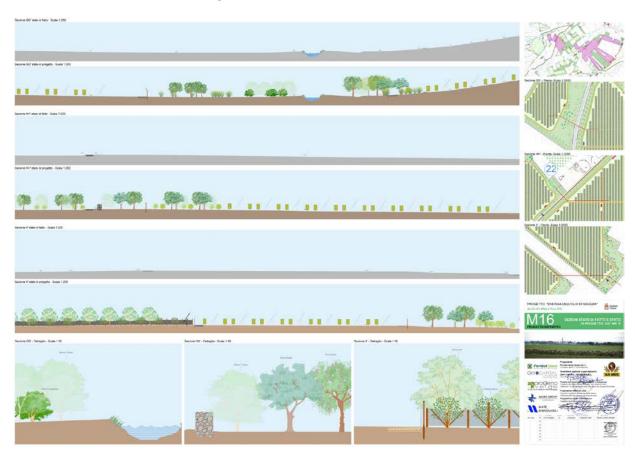


Figura 5 – Sezioni tipo d'impianto

2 ANALISI FENOMENI RIFLESSIONI E/O ABBAGLIAMENTO

2.1 Oggetto della relazione

Il presente studio è relativo ai potenziali fenomeni di riflessione e/o abbagliamento per i piloti e operatori del traffico aereo, generati dalla presenza dell'impianto agri-voltaico in valutazione denominato "Energia dell'Olio di Segezia" collocato ad una distanza di circa 7,0 km dall'aeroporto civile di FOGGIA GINO LISA, aeroporto con procedura strumentale (Latitudine 41 26 00.2348, Longitudine 15 32 05.1011, Altitudine 81 m s.l.m.). In fase di analisi preliminare è risultata un'interferenza dell'area di progetto con il settore 4.

Le opere in progetto si collocano a distanza inferiore a 7 km dal più vicino aeroporto civile con procedure strumentali, così come elencati da ENAC (poco più di 14 km circa dall'Aeroporto di Foggia "Gino Lisa"), e di conseguenza ricadono all'interno del settore 4 per come definito dalla procedura ENAC / ENAV.

⋘ EN	Elementi base per la costruzione dei settori aeroportuali						
Latitudine	Longitudine	Elev IC	CAO	Identificativo Punto	Descrizione Punto	Aggiornamento	
N 41 26 00.2348	E 15 32 05.1011	81.27 LI	IBF	ARP	FOGGIA GINO LISA	19/01/2012	
N 41 25 35.4126	E 15 32 19.4732	81.016 LI	IBF	CWY	CWY 15	19/01/2012	
N 41 26 21.6959	E 15 31 52.6514	79.461 LI	IBF	CWY	CWY 33	19/01/2012	
N 41 25 46.3819	E 015 32 13.1093	81.09 LI	IBF	Profilo Asse Pista	1_RWY3315_01_ENAV	19/01/2012	
N 41 26 04.1784	E 015 32 02.8029	80.458 LI	IBF	Profilo Asse Pista	7_RWY3315_01_ENAV	19/01/2012	
N 41 25 50.7485	E 015 32 10.6059	81.266 LI	IBF	Profilo Asse Pista	40_rwy0826	19/01/2012	
N 41 25 56.3587	E 015 32 07.3593	81.206 LI	IBF	Profilo Asse Pista	53_rwy0826	19/01/2012	
N 41 26 11.1002	E 015 31 58.8129	79.892 LI	IBF	Profilo Asse Pista	88_rwy0826	19/01/2012	
N 41 25 40.5812	E 15 32 16.4770	81.05 LI	IBF	THR	THR33	19/01/2012	
N 41 26 19.9132	E 15 31 53.6845	79.46 LI	IBF	THR	THR15	19/01/2012	

Figura 6 – Localizzazione Aeroporto Foggia Gino Lisa

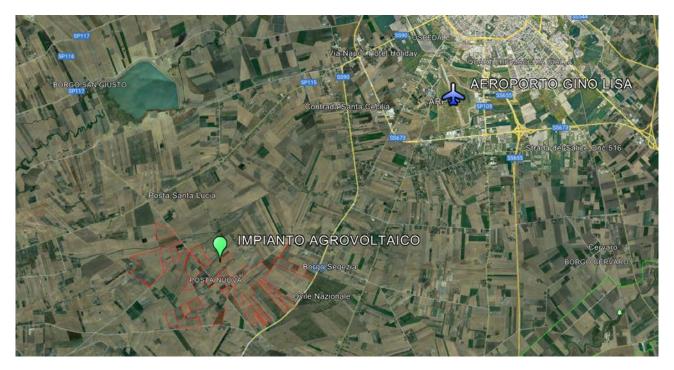


Figura 7 – Localizzazione campo agrofotovoltaico in relazione ad aeroporto

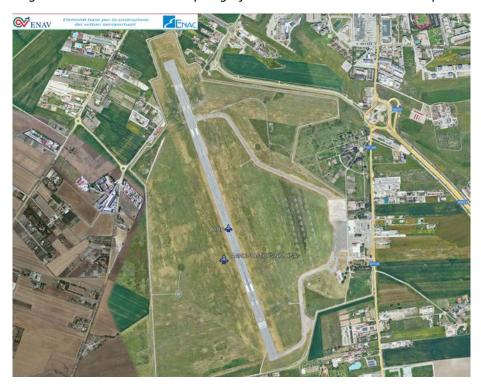


Figura 8 – Localizzazione aeroporto con singola pista

Lo studio è stato sviluppato applicando il metodo di calcolo quantitativo, dapprima analizzando i criteri di carattere selettivo di Enav ed Enac, volti ad individuare le situazioni di potenziali ostacoli e pericoli per la navigazione aerea, quindi utilizzando gli strumenti software forniti dal portale <u>www.forgesolar.com</u>, approvati dalla FAA statunitense.

2.2 Condizioni per l'avvio valutativo

Sono da sottoporre a valutazione di compatibilità per il rilascio dell'autorizzazione dell'ENAC, i nuovi impianti/manufatti e le strutture che risultano:

- a. interferire con specifici settori definiti per gli aeroporti civili con procedure strumentali;
- b. prossimi ad aeroporti civili privi di procedure strumentali;
- c. prossimi ad avio ed elisuperfici di pubblico interesse;
- d. di altezza uguale o superiore ai 100 m dal suolo o 45 m sull'acqua;
- e. interferire con le aree di protezione degli apparati COM/NAV/RADAR (BRA Building Restricted Areas ICAO EUR DOC 015);
- **f.** costituire, per la loro particolarità opere speciali potenziali pericoli per la navigazione aerea (es: aerogeneratori, impianti fotovoltaici o edifici/strutture con caratteristiche costruttive potenzialmente riflettenti, impianti a biomassa, etc.)

2.3 Assoggettabilità all'iter valutativo

a. AEROPORTI CON PROCEDURE STRUMENTALI

Devono essere sottoposti all'iter valutativo i nuovi impianti/manufatti e le strutture in genere che risultano interessare i *Settori* di seguito descritti.

(1) Settore 1: area rettangolare piana che comprende la pista e si estende longitudinalmente oltre i fine pista e relative zone di arresto (stopway) per una distanza di almeno 60 m o, se presenti, alla fine delle clearways, e simmetricamente rispetto all'asse pista per i 150 m (ampiezza complessiva 300 m).

Necessitano di valutazione e del rilascio dell'autorizzazione dell'ENAC tutti i nuovi elementi che, indipendentemente dalla loro altezza, ricadono all'interno del Settore sopra descritto

- (2) Settore 2: piano inclinato, definito per ogni direzione di decollo e atterraggio, che si estende dai bordi del Settore 1 avente le seguenti caratteristiche:
- (a) bordo interno di larghezza ed elevazione pari a quelle del Settore 1 dal quale si origina (ovvero, quota del fine pista o, se presente, del bordo esterno della clearway), limiti laterali, aventi origine dalle estremità dei bordi del Settore 1, con una divergenza uniforme per ciascun lato del 15%;
- (b) pendenza longitudinale valutata lungo il prolungamento dell'asse pista pari a 1.2% (1:83);
- (c) lunghezza di 2.500 m.

Devono essere sottoposti all'iter valutativo i nuovi impianti/manufatti e le strutture che ricadono nei primi 1350 m del Settore 2, indipendentemente dalla loro altezza, anche se al disotto del piano inclinato 1.2%. Dopo detta distanza dovrà essere sottoposto all'iter valutativo solo ciò che risulta penetrare il piano inclinato 1,2%.

- (3) Settore 3: piani inclinati che si estendono all'esterno dei Settori 1 e 2 aventi le seguenti caratteristiche:
- (a) bordo interno di larghezza ed elevazione pari a quelle del Settore 1 dal quale si origina (NB.: l'elevazione del bordo interno segue l'andamento altimetrico del profilo dell'asse pista);
- (b) limiti laterali costituiti dai bordi del Settore 2;
- (c) pendenza longitudinale pari a 1.2% (1:83);
- (d) lunghezza di 2.500 m dal bordo del Settore 1.

Devono essere sottoposti all'iter valutativo i nuovi impianti/manufatti e le strutture che ricadono nei primi 200 m del Settore 3, indipendentemente dalla loro altezza, anche se al disotto del piano inclinato 1.2%. Dopo detta distanza dovrà essere sottoposto all'iter valutativo solo ciò che risulta penetrare il piano inclinato 1,2%.

4) Settore 4: superficie orizzontale posta ad una altezza di 30 m sulla quota della soglia pista più bassa (THR) dell'aeroporto di riferimento, di forma circolare con raggio di 15 km centrato sull'ARP (Aerodrome Reference Point – dato rilevabile dall'AIP-Italia) che si estende all'esterno dei Settori 2 e 3.

Devono essere sottoposti all'iter valutativo i nuovi impianti/manufatti e le strutture che penetrano la superficie sopra descritta.

5) Settore 5: area circolare con centro nell' ARP (Airport Reference Point – dato rilevabile dall'AIP-Italia) che si estende all'esterno del Settore 4 fino ad una distanza di 45 km.

Nell'ambito di detto settore devono essere sottoposti all'iter valutativo i nuovi impianti/manufatti e le strutture con altezza dal suolo (AGL) uguale o superiore a:

(e) 45 m; oppure:

(f) 60 m se situati entro centri abitati, quando nelle vicinanze (raggio di 200 m) sono già presenti ostacoli inamovibili di altezza uguale o superiore a 60 m.

(NB.: Si definisce centro abitato secondo il nuovo Codice della strada (D.Lgs. 30 aprile 1992, n. 285), all'Art. 3 come «insieme di edifici, delimitato lungo le vie di accesso dagli appositi segnali di inizio e fine. Per insieme di edifici si intende un raggruppamento continuo, ancorché intervallato da strade, piazze, giardini o simili, costituito da non meno di venticinque fabbricati e da aree di uso pubblico con accessi veicolari o pedonali sulla strada»

(6) Settore 5 A: area quotata, definita per specifici aeroporti e contenuta nel Settore 5, delimitata da quattro vertici identificati da coordinate geografiche WGS 84. Nell'ambito di detto settore devono essere sottoposti all'iter valutativo i nuovi impianti/manufatti aventi un'altitudine al top (altezza fuori terra della struttura più la quota sul livello medio del mare del terreno alla base) uguale o superiore a quella del Settore 5 A considerato. Per gli impianti/manufatti situati al disotto di detto Settore valgono i parametri selettivi definiti per il Settore 5.

b. AEROPORTI PRIVI DI PROCEDURE STRUMENTALI

Nel caso di aeroporti privi di procedure strumentali si applica quanto segue:

Per gli aeroporti di competenza ENAV S.p.A.

Nel caso di aeroporti dotati di sola cartografia tipo "A":

- eventuali interessamenti delle superfici in essa riportate daranno origine all'iter valutativo;
- i nuovi impianti/manufatti collocati al di fuori dei limiti laterali delle superfici di cui sopra, entro un raggio di 4500 m dall'ARP (Airport Reference Point – dato rilevabile dall'AIP-Italia), devono essere sottoposti all'iter valutativo;

Nel caso di aeroporti dotati di cartografia ostacoli ICAO sia di tipo "A" che di tipo "B":

- i nuovi impianti/manufatti non dovranno interferire con le superfici in essa riportate. Eventuali interessamenti daranno origine all'iter valutativo.

Per gli altri aeroporti

devono essere sottoposti all'iter valutativo i nuovi impianti/manufatti che, indipendentemente dall'altezza, ricadono all'interno di un'area circolare con centro sull'ARP (Airport Reference Point – dato rilevabile dall'AIP-Italia) e raggio pari a 10.000 m per aeroporti di codice 3, 4.300 m per aeroporti di codice 2 e 3.100 m per aeroporti di codice 1.

c. AVIO ED ELISUPERFICI DI PUBBLICO INTERESSE

Nel caso di aviosuperfici destinate ad attività di pubblico interesse devono essere sottoposti all'iter valutativo i nuovi impianti/manufatti e le strutture che interessano le superfici di cui al D.M. Infrastrutture e Trasporti 01/02/2006 "Norme di attuazione della L. 2 aprile 1968, n.518, concernente la liberalizzazione delle aree di atterraggio".

Nel caso di elisuperfici destinate ad attività di pubblico interesse devono essere sottoposti all'iter valutativo i nuovi impianti/manufatti e le strutture che risultano collocati in un'area rettangolare avente le seguenti caratteristiche:

- (1) origine dal centro dell'elisuperficie;
- (2) estensione simmetrica rispetto alla/e traiettoria/e di approdo/decollo, avente origine dal centro dell'elisuperficie;
- (3) lunghezza pari a 4000 m;

(4) larghezza totale pari a 300 m.

I dati caratteristici delle avio ed elisuperfici sono consultabili nella sezione Mappe delle avio-Eli – idrosuperfici.

d. NUOVI IMPIANTI, MANUFATTI E STRUTTURE DI ALTEZZA (AGL) UGUALE O SUPERIORE A 100 M DAL SUOLO O 45 M SULL'ACQUA

Indipendentemente dai casi descritti nei precedenti paragrafi, devono essere sottoposti all'iter valutativo i nuovi impianti, manufatti/strutture in genere che presentano un'altezza uguale o superiore a:

- (1) 100 m sul terreno;
- (2) 45 m sull'acqua.

Qualora il progetto riguardi cavi aerei occorre considerare l'altezza massima (franco verticale massimo) sul terreno e sull'acqua (nel caso di attraversamento di corsi d'acqua) dell'elemento più penalizzante (es.: fune di guardia).

e. AREE DI PROTEZIONE DEGLI APPARATI AERONAUTICI DI COMUNICAZIONE/NAVIGAZIONE/RADAR (CNR)

Al fine di tutelare la propagazione del segnale radioelettrico emesso dagli apparati CNR, installati all'interno e/o all'esterno degli aeroporti, dalla presenza di nuovi impianti/manufatti e strutture (ivi comprese quelle di cantiere), l'ICAO ha definito, per ciascuna tipologia di apparato, delle aree di protezione denominate Building Restricted Areas (BRA - EUR DOC ICAO 015) la cui sintetica descrizione è contenuta nel documento Elementi base per la costruzione delle BRA.

L'eventuale interessamento di dette aree comporta l'avvio dell'iter valutativo, nel corso del quale verrà effettuata una verifica volta ad appurare l'eventuale grado di interferenza del nuovo manufatto/impianto, esclusivamente per posizione e/o dimensione/ingombro, con la propagazione delle onde elettromagnetiche degli apparati CNR. Qualora ritenuto necessario, l'ENAC potrà richiedere all'utenza la presentazione di uno studio di compatibilità elettromagnetica per il successivo rilascio della propria determinazione finale.

Di contro, nessun iter valutativo dovrà essere avviato, per l'aspetto in questione, quando tra gli apparati CNR ed il manufatto in esame siano presenti ostacoli artificiali inamovibili o orografici aventi un ingombro (altezza - larghezza) tale da schermare il manufatto stesso.

In quest'ultimo caso dovrà essere resa all'ENAC un'apposita asseverazione, redatta da un professionista e/o da un tecnico abilitato, che attesti l'esclusione dall'iter valutativo.

NB.: Ogni determinazione riguardante la compatibilità elettromagnetica tra le emissioni dei sistemi aeronautici in argomento e le emissioni di impianti trasmittenti di altra natura e/o di telefonia mobile, viene demandata al Dipartimento per le Comunicazioni del Ministero dello Sviluppo Economico, competente in materia. Ugualmente rientrano nelle competenze del citato Ministero gli aggiornamenti tecnologici che non comportano una modifica plano altimetrica delle strutture che sostengono le antenne.

f. Opere speciali – pericoli per la navigazione aerea (aerogeneratori impianti fotovoltaici, impianti a biomassa, etc.)

(1) AEROGENERATORI

Gli aerogeneratori, costituiti spesso da manufatti di dimensioni ragguardevoli, specie in altezza, con elementi mobili e distribuiti su aree di territorio estese (differenziandosi così dalla tipologia degli ostacoli puntuali), sono una categoria atipica di ostacoli alla navigazione aerea che, ove ricadenti in prossimità di aeroporti o di sistemi di comunicazione/navigazione/radar (CNR), possono costituire elementi di disturbo per i piloti che li sorvolano e/o generare effetti di interferenza sul segnale radioelettrico dei sistemi aeronautici CNR, tali da degradarne le prestazioni e comprometterne l'operatività.

Per tale motivo questa tipologia di struttura dovrà essere sempre sottoposta all'iter valutativo di ENAC se:

- (a) posizionata entro 45 Km dal centro dell'ARP di un qualsiasi aeroporto;
- (b) posizionata entro 16 km da apparati radar e in visibilità ottica degli stessi;
- (c) interferente con le BRA (Building Restricted Areas) degli apparati di comunicazione/navigazione ed in visibilità ottica degli stessi.

In relazione ai punti b. e c. si evidenzia che nessun iter valutativo dovrà essere avviato, quando tra gli apparati CNR ed il manufatto in esame siano presenti ostacoli artificiali inamovibili o orografici aventi un ingombro (altezza - larghezza) tale da schermare il manufatto stesso. In questo caso dovrà essere resa all'ENAC un'apposita asseverazione, redatta da un professionista e/o da un tecnico abilitato, che attesti l'esclusione dall'iter valutativo.

Al di fuori delle condizioni di cui ai punti a., b. e c., dovranno essere sottoposti all'iter valutativo solo le strutture di altezza dal suolo (AGL), al top della pala, uguale o superiore a 100 m (45 m se sull'acqua).

(2) IMPIANTI FOTOVOLTAICI - EDIFICI/STRUTTURE CON CARATTERISTICHE COSTRUTTIVE POTENZIALMENTE RIFLETTENTI

Per le strutture in argomento, che possono dare luogo a fenomeni di riflessione e/o abbagliamento per i piloti, è richiesta l'istruttoria e l'autorizzazione dell'ENAC quando:

(a) sussista una delle condizioni descritte nei precedenti paragrafi che renda necessaria la preventiva istruttoria autorizzativa;

oppure:

(b) risultino ubicati a una distanza inferiore a 6 Km dall'ARP (Airport Reference Point – dato rilevabile dall'AIP-Italia) dal più vicino aeroporto e, nel caso specifico di impianti fotovoltaici, abbiano una superficie uguale o superiore a 500mq, ovvero, per iniziative edilizie che comportino più edifici su singoli lotti, quando la somma delle singole installazioni sia uguale o superiore a 500 mq ed il rapporto tra la superficie coperta dalle pannellature ed il lotto di terreno interessato dalla edificazione non sia inferiore ad un terzo.

La documentazione trasmessa deve contenere anche un apposito studio che certifichi l'assenza di fenomeni di abbagliamento ai piloti.

NB: Sono esclusi dall'iter valutativo gli impianti fotovoltaici/solari termici, con previsione di installazione sul tetto di abitazioni/costruzioni, che, a prescindere dalla distanza dall'aeroporto, hanno una superficie non superiore a 500 mg e non modificano l'altezza massima del fabbricato.

(3) IMPIANTI PER LA PRODUZIONE DI ENERGIA DA BIOMASSE

In conformità al documento Linee guida relative alla valutazione delle fonti attrattive di fauna selvatica in zone limitrofe agli aeroporti, a cui si fa espresso rimando, gli impianti a biomasse, che possono dare luogo a fenomeni di attrazione della fauna selvatica, dovranno essere sottoposti all'iter valutativo di ENAC qualora:

(a) sussista una delle condizioni descritte nei precedenti paragrafi che renda necessaria la preventiva istruttoria autorizzativa;

oppure:

(b) ubicati ad una distanza inferiore a 13 Km dalla recinzione del più vicino aeroporto.

Per tutte le tipologie di impianti oggetto del presente paragrafo f. dovranno essere fornite le informazioni inerenti le linee elettriche ad essi associate quando, per queste, sussista una delle condizioni descritte nei precedenti paragrafi che renda necessario l'avvio dell'iter valutativo.

(4) OPERE SPECIALI - PERICOLI PER LA NAVIGAZIONE AEREA

Tutte le nuove attività non citate in questo capitolo che si configurano come pericoli per la navigazione aerea (par. 12 - cap 4 del Regolamento per la Costruzione e l'Esercizio degli Aeroporti) e che ricadono entro i 15 Km dall'ARP dell'aeroporto più prossimo, devono essere assoggettati dell'iter valutativo di ENAC anche quando non sussistano le condizioni, già descritte nei paragrafi precedenti, per l'avvio di detto iter. Impianti e manufatti con caratteristiche diverse da quelle descritte nei punti precedenti non sono soggetti a preventiva istruttoria autorizzativa da parte dell'ENAC.

2.4 Metodo di calcolo

Il metodo quantitativo utilizzato prevede la dimostrazione analitica dell'assenza di fenomeni dannosi da abbagliamento mediante analisi geometrica o simulazione con software. I punti ove operare tale verifica sono legati alla collocazione dell'osservatore, nella fattispecie l'operatore in torre di controllo ed ovviamente il pilota nelle varie fasi di volo ritenute significative.

Il metodo quantitativo può prevedere modellazioni basate su metodologie analitiche (quali ad esempio le analisi geometriche combinate con la valutazione del tipo di visione coinvolta) o simulazione mediante software. Qualora l'esito della valutazione quantitativa dovesse evidenziare la presenza di un potenziale per immagine residua temporanea, occorrerà modificare il layout dell'installazione o corredare l'analisi con un risk assessment contenente la valutazione dei rischi in relazione alla tipologia di operazioni aeronautiche previste, in particolare:

- un'analisi dell'efficacia delle misure esistenti, se presenti, per mitigare tale abbagliamento (quali ad esempio vetri antiriflesso e tende parasole presso la torre di controllo);
- adozione di eventuali ulteriori misure di mitigazione dell'impatto;
- adozione di misure di monitoraggio

2.5 Verifica

Partendo dunque dalla individuazione dell'Aeroporto di Foggia, si è proceduto alla individuazione della pista funzionale al decollo e atterraggio degli aeromobili dalle quali sono state individuate le rotte di avvicinamento/allontanamento di lunghezza pari a 2 miglia a partire dai recettori FPi.

Successivamente è stato individuato e circoscritto il perimetro di impianto in cui saranno installati i moduli fotovoltaici potenzialmente causa di fenomeni di riflessione e/o abbagliamento.

Le simulazione, effettuate nella configurazione di installazione, evidenzia l'assenza di fenomeni di abbagliamento persistente sia per i piloti in avvicinamento, sia per gli aeromobili in fase di decollo/rullaggio e la totale assenza di riflessione in direzione degli operatori della torre di controllo in ragione della inclinazione (tilt) e dell'orientamento di cui i pannelli sono dotati. L'analisi si basa su una serie di dati di input relativi alla località, alle caratteristiche dell'installazione, alle operazioni aeronautiche previste ed alla posizione degli osservatori in torre di controllo.

Per ogni punto di osservazione, il software è stato in grado di determinare:

- ora del giorno in cui si verifica l'abbagliamento;
- durata giornaliera dell'abbagliamento;
- variazione stagionale dell'abbagliamento;
- posizione dell'abbagliamento sul diagramma di irraggiamento retinale.

L'abbagliamento sperimentato in tutti i punti di osservazione identificati (OP: Observation Points) viene quindi classificato, in base al livello di rischio oculare, in una delle tre categorie di impatto potenziale di immagine residua, secondo il diagramma di irraggiamento retinale (zona verde, gialla o rossa).

La valutazione condotta ha restituito, per ciascuno dei recettori individuati e sopra mostrati, i minuti totali su base annua per cui l'impianto sarà capace di generare fenomeni di riflessione e/o abbagliamento nelle tonalità Verde e Gialla.

Nel dettaglio, al bagliore "verde" è associabile un basso potenziale di causare accecamento (after-image) quando percepito prima di un tipico battito di ciglia mentre al bagliore "giallo" è associabile un potenziale accecamento (after-image) quando percepito prima di un tipico battito di ciglia. Le analisi

dell'abbagliamento non tengono conto degli ostacoli fisici tra riflettori e recettori come edifici, coperture arboree e ostacoli geografici.

Seguono i risultati dello studio condotto attraverso lo strumento certificato Forge Solar Glaze Analisys ().

FORGESOLAR GLARE ANALYSIS

Project: Energia dell'olio di Segezia

Il progetto prevede un impianto di generazione di energia elettrica di nuova costruzione con tecnologia fotovoltaica, localizzato in regione Puglia, provincia di Foggia, nel comune di Troia. Nello spazio libero tra i pannelli, e sotto gli stessi, il terreno sarà adibito ad attività agricole.

Site configuration: Untitled-temp-0

Cllent: Peridot Solar Green S.r.l.

Created 26 Jan, 2024 Updated 26 Jan, 2024 Time-step 1 minute Timezone offset UTC1 Minimum sun altitude 0.0 deg DNI peaks at 1,000.0 W/m² Site ID 110584.19138

Ocular transmission coefficient 0.5 Pupil diameter 0.002 m Eye focal length 0.017 m Sun subtended angle 9.3 mrad PV analysis methodology V2

Glare Policy Adherence

The following table estimates the policy adherence of this glare analysis according to the 2021 U.S. Federal Aviation Administration Policy:

Review of Solar Energy System Projects on Federally-Obligated Airports

This policy may require the following criteria be met for solar energy systems on airport property:

- No glare of any kind for Air Traffic Control Tower(s) ("ATCT") at cab height.
- Default analysis and observer characteristics, including 1-minute time step.

ForgeSolar is not affiliated with the U.S. FAA and does not represent or speak officially for the U.S. FAA. ForgeSolar cannot approve or deny projects - results are informational only. Contact the relevant airport and FAA district office for information on policy and requirements.

COMPONENT	STATUS	DESCRIPTION
Analysis parameters	PASS	Analysis time interval and eye characteristics used are acceptable
ATCT(s)	FAIL	Receptor(s) marked as ATCT receive green and/or yellow glare

The referenced policy can be read at https://www.federalregister.gov/d/2021-09862

Page 1 of 20

Component Data

This report includes results for PV arrays and Observation Point ("OP") receptors marked as ATCTs. Components that are not pertinent to the policy, such as routes, flight paths, and vertical surfaces, are excluded.

PV Arrays

Name: PV array 11-12

AxIs tracking: Single-axis rotation Backtracking: Shade-slope Tracking axIs orientation: 180.0° Max tracking angle: 60.0° Resting angle: 0.0° Ground Coverage Ratio: 0.5

Rated power:

Panel material: Smooth glass without AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	41.385431	15.444838	187.99	0.00	187.99
2	41.380859	15.443551	192.30	0.00	192.30
3	41.379442	15.444495	194.70	0.00	194.70
4	41.376737	15.443036	198.62	0.00	198.62
5	41.377220	15.446426	198.77	0.00	198.77
6	41.378154	15.445568	200.01	0.00	200.01
7	41.381535	15.450245	190.65	0.00	190.65
8	41.385805	15.444881	185.57	0.00	185.57

Name: PV array 1-2

Axis tracking: Single-axis rotation Backtracking: Shade-slope Tracking axis orientation: 180.0° Max tracking angle: 60.0° Resting angle: 0.0° Ground Coverage Ratio: 0.5

Rated power:

Panel material: Smooth glass without AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	41.393942	15.430579	190.92	5.00	195.92
2	41.389402	15.431974	190.48	5.00	195.48
3	41.391076	15.438154	178.75	5.00	183.75
4	41.392799	15.435986	182.77	5.00	187.77
5	41.392380	15.434527	183.81	5.00	188.81
6	41.394264	15.430536	192.70	5.00	197.70

Page 2 of 20

Name: PV array 13-14

Axis tracking: Single-axis rotation Backtracking: Shade-slope Tracking axis orientation: 180.0° Max tracking angle: 60.0° Resting angle: 0.0° Ground Coverage Ratio: 0.5

Rated power: -

Panel material: Smooth glass without AR coating

ReflectIvIty: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	41.374786	15.447921	199.30	0.00	199.30
2	41.372178	15.442256	210.30	0.00	210.30
3	41.369312	15.443801	212.19	0.00	212.19
4	41.369634	15.444487	210.51	0.00	210.51
5	41.370213	15.444230	207.10	0.00	207.10
6	41.372017	15.450453	198.42	0.00	198.42
7	41.373563	15.448779	197.35	0.00	197.35

Name: PV array 15

Axis tracking: Single-axis rotation
Backtracking: Shade-slope
Tracking axis orientation: 180.0°
Max tracking angle: 60.0°
Resting angle: 0.0°
Ground Coverage Ratio: 0.5

Rated power:

Panel material: Smooth glass without AR coating

ReflectIvIty: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	41.369730	15.436505	211.77	0.00	211.77
2	41.366316	15.438436	224.42	0.00	224.42
3	41.367057	15.441655	219.17	0.00	219.17
4	41.365801	15.442084	220.89	0.00	220.89
5	41.367089	15.450023	206.13	0.00	206.13
6	41.369408	15.448393	205.35	0.00	205.35
7	41.368539	15.444702	212.74	0.00	212.74
8	41.367959	15.441440	217.68	0.00	217.68
9	41.371147	15.439595	214.40	0.00	214.40

Page 3 of 20

Axis tracking: Single-axis rotation Backtracking: Shade-slope Tracking axis orientation: 180.0° Max tracking angle: 60.0° Resting angle: 0.0°

Ground Coverage Ratio: 0.5

Rated power:

Panel material: Smooth glass without AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	41.367733	15.454057	199.00	0.00	199.00
2	41.370503	15.455731	192.98	0.00	192.98
3	41.370246	15.457748	190.33	0.00	190.33
4	41.367862	15.457362	194.79	0.00	194.79
5	41.367991	15.456332	195.81	0.00	195.81

Name: PV array 17-18-19-20 Axis tracking: Single-axis rotation Backtracking: Shade-slope Tracking axis orientation: 180.0° Max tracking angle: 60.0° Resting angle: 0.0° Ground Coverage Ratio: 0.5

Rated power: -

Panel material: Smooth glass without AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	41.376654	15.459336	183.68	0.00	183.68
2	41.381291	15.454401	186.69	0.00	186.69
3	41.379681	15.452813	189.42	0.00	189.42
4	41.380583	15.451311	191.52	0.00	191.52
5	41.379327	15.449852	194.02	0.00	194.02
6	41.377524	15.451783	192.71	0.00	192.71
7	41.378876	15.453757	188.71	0.00	188.71
8	41.375108	15.458392	185.73	0.00	185.73

Name: PV array 21-22

Axis tracking: Single-axis rotation Backtracking: Shade-slope Tracking axis orientation: 180.0° Max tracking angle: 60.0° Resting angle: 0.0° Ground Coverage Ratio: 0.5

Rated power: -

Panel material: Smooth glass without AR coating

ReflectIvIty: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	41.381613	15.454830	184.68	0.00	184.68
2	41.382740	15.457233	181.25	0.00	181.25
3	41.380486	15.458778	181.04	0.00	181.04
4	41.381806	15.460838	175.85	0.00	175.85
5	41.380422	15.462383	179.02	0.00	179.02
6	41.379327	15.460881	181.45	0.00	181.45
7	41.378200	15.460194	182.38	0.00	182.38
8	41.379778	15.458435	183.32	0.00	183.32
9	41.379295	15.457448	183.03	0.00	183.03
10	41.380712	15.456203	184.48	0.00	184.48

Name: PV array 23

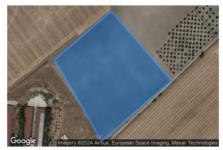
AxIs tracking: Single-axis rotation Backtracking: Shade-slope Tracking axis orientation: 180.0° Max tracking angle: 60.0° Resting angle: 0.0° Ground Coverage Ratio: 0.5

Rated power:

Panel material: Smooth glass without AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	41.387374	15.458049	177.03	0.00	177.03
2	41.385989	15.459765	177.43	0.00	177.43
3	41.384218	15.456675	181.65	0.00	181.65
4	41.385700	15.455302	180.67	0.00	180.67



Axis tracking: Single-axis rotation
Backtracking: Shade-slope
Tracking axis orientation: 180.0°
Max tracking angle: 60.0°
Resting angle: 0.0°
Ground Coverage Ratio: 0.5

Rated power: -

Panel material: Smooth glass without AR coating

ReflectIvIty: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)	
1	41.383510	15.463671	172.43	0.00	172.43	
2	41.384347	15.464958	170.87	0.00	170.87	
3	41.383156	15.466331	173.25	0.00	173.25	
4	41.382125	15.464743	175.62	0.00	175.62	

Name: PV array 25

Axis tracking: Single-axis rotation Backtracking: Shade-slope Tracking axis orientation: 180.0° Max tracking angle: 60.0° Resting angle: 0.0° Ground Coverage Ratio: 0.5

Rated power:

Panel material: Smooth glass without AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	41.368626	15.467812	178.33	0.00	178.33
2	41.368980	15.470065	176.18	0.00	176.18
3	41.370800	15.468027	178.53	0.00	178.53
4	41.371862	15.469400	175.28	0.00	175.28
5	41.373666	15.466954	175.67	0.00	175.67
6	41.373167	15.466053	175.48	0.00	175.48
7	41.372168	15.466890	175.25	0.00	175.25
8	41.371186	15.465216	179.30	0.00	179.30

Page 6 of 20

RELAZIONE FENOMENI RIFLESSIONE E/O ABBAGLIAMENTO

Pagina 26 / 41

Axis tracking: Single-axis rotation Backtracking: Shade-slope Tracking axis orientation: 180.0° Max tracking angle: 60.0° Resting angle: 0.0° Ground Coverage Ratio: 0.5

Rated power:

Panel material: Smooth glass without AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	41.385495	15.469958	168.10	0.00	168.10
2	41.379280	15.461075	181.07	0.00	181.07
3	41.375094	15.460989	182.17	0.00	182.17
4	41.373323	15.463049	182.05	0.00	182.05
5	41.374192	15.464765	177.84	0.00	177.84
6	41.376060	15.463135	178.44	0.00	178.44
7	41.376768	15.464293	175.91	0.00	175.91
8	41.369522	15.473391	174.09	0.00	174.09
9	41.370360	15.474507	171.23	0.00	171.23
10	41.376156	15.466825	175.64	0.00	175.64
11	41.376929	15.468156	173.90	0.00	173.90
12	41.378346	15.466310	176.01	0.00	176.01
13	41.380826	15.470344	171.39	0.00	171.39
14	41.382243	15.472318	168.57	0.00	168.57
15	41.383048	15.472833	167.02	0.00	167.02

Name: PV array 27

Axis tracking: Single-axis rotation Backtracking: Shade-slope Tracking axis orientation: 180.0° Max tracking angle: 60.0° Resting angle: 0.0° Ground Coverage Ratio: 0.5

Rated power:

Panel material: Smooth glass without AR coating

ReflectIvIty: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	41.379763	15.469229	173.02	0.00	173.02
2	41.372292	15.479142	164.98	0.00	164.98
3	41.373323	15.480129	164.48	0.00	164.48
4	41.375963	15.476739	163.59	0.00	163.59
5	41.376897	15.477812	164.18	0.00	164.18
6	41.380407	15.470044	171.85	0.00	171.85

Page 7 of 20

Axis tracking: Single-axis rotation Backtracking: Shade-slope Tracking axis orientation: 180.0° Max tracking angle: 60.0° Resting angle: 0.0° Ground Coverage Ratio: 0.5

Rated power:

Panel material: Smooth glass without AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	41.380491	15.470344	171.40	0.00	171.40
2	41.375049	15.483648	160.48	0.00	160.48
3	41.373519	15.481953	162.52	0.00	162.52
4	41.375967	15.477619	162.80	0.00	162.80
5	41.376788	15.478370	163.23	0.00	163.23

Name: PV array 29-30

Axis tracking: Single-axis rotation Backtracking: Shade-slope Tracking axis orientation: 180.0° Max tracking angle: 60.0° Resting angle: 0.0°

Ground Coverage Ratio: 0.5

Rated power:

Panel material: Smooth glass without AR coating

Reflectivity: Vary with sun
Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	41.382060	15.489035	151.20	0.00	151.20
2	41.383075	15.485838	153.58	0.00	153.58
3	41.384475	15.486353	152.51	0.00	152.51
4	41.385103	15.483628	153.95	0.00	153.95
5	41.383767	15.482962	156.39	0.00	156.39
6	41.384266	15.481010	157.88	0.00	157.88
7	41.385667	15.481482	156.37	0.00	156.37
8	41.387099	15.476139	160.79	0.00	160.79
9	41.384926	15.474637	164.46	0.00	164.46
10	41.381416	15.488606	152.36	0.00	152.36

Page 8 of 20

Axis tracking: Single-axis rotation
Backtracking: Shade-slope
Tracking axis orientation: 180.0°
Max tracking angle: 60.0°
Resting angle: 0.0°
Ground Coverage Ratio: 0.5

Rated power:

Panel material: Smooth glass without AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	41.387937	15.432768	182.92	5.00	187.92
2	41.386907	15.433433	183.10	5.00	188.10
3	41.388952	15.440900	177.36	5.00	182.36
4	41.389756	15.439892	176.21	5.00	181.21
5	41.389080	15.437596	177.26	5.00	182.26
6	41.388774	15.435901	178.59	5.00	183.59
7	41.388613	15.434720	180.42	5.00	185.42

Name: PV array 4-5-6

Axis tracking: Single-axis rotation Backtracking: Shade-slope Tracking axis orientation: 180.0° Max tracking angle: 60.0° Resting angle: 0.0° Ground Coverage Ratio: 0.5

Rated power:

Panel material: Smooth glass without AR coating

Reflectivity: Vary with sun
Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	41.386677	15.432705	184.51	0.00	184.51
2	41.384295	15.423307	197.04	0.00	197.04
3	41.383747	15.425238	195.76	0.00	195.76
4	41.382266	15.425495	200.89	0.00	200.89
5	41.380656	15.423950	213.38	0.00	213.38
6	41.379980	15.422663	213.95	0.00	213.95
7	41.377049	15.430817	203.22	0.00	203.22
8	41.380463	15.435023	193.42	0.00	193.42
9	41.382330	15.436696	187.75	0.00	187.75
10	41.384037	15.435409	188.84	0.00	188.84
11	41.383329	15.433864	192.18	0.00	192.18
12	41.384810	15.433263	188.80	0.00	188.80
13	41.385840	15.433692	186.38	0.00	186.38

Page 9 of 20

RELAZIONE FENOMENI RIFLESSIONE E/O ABBAGLIAMENTO

Pagina 29 / 41

Axis tracking: Single-axis rotation Backtracking: Shade-slope Tracking axis orientation: 180.0° Max tracking angle: 60.0° Resting angle: 0.0° Ground Coverage Ratio: 0.5

Rated power:

Panel material: Smooth glass without AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	41.387083	15.436395	181.92	0.00	181.92
2	41.387614	15.438541	178.76	0.00	178.76
3	41.384974	15.439914	181.85	0.00	181.85
4	41.387534	15.442446	176.85	0.00	176.85
5	41.386681	15.443648	176.30	0.00	176.30
6	41.383461	15.442339	180.22	0.00	180.22
7	41.384813	15.439464	182.68	0.00	182.68
8	41.383606	15.438004	185.42	0.00	185.42

Name: PV array 9-10

Axis tracking: Single-axis rotation Backtracking: Shade-slope Tracking axis orientation: 180.0° Max tracking angle: 60.0° Resting angle: 0.0° Ground Coverage Ratio: 0.5

Rated power:

Panel material: Smooth glass without AR coating

ReflectIvIty: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	41.386803	15.443915	175.72	0.00	175.72
2	41.388396	15.445546	172.44	0.00	172.44
3	41.388879	15.447456	170.93	0.00	170.93
4	41.384018	15.451619	186.18	0.00	186.18
5	41.383084	15.450095	190.06	0.00	190.06
6	41.384114	15.448937	187.14	0.00	187.14
7	41.383889	15.448486	187.43	0.00	187.43
8	41.385660	15.446426	187.08	0.00	187.08
9	41.386094	15.447198	186.25	0.00	186.25
10	41.386674	15.446490	184.16	0.00	184.16
11	41.385837	15.445117	186.03	0.00	186.03

Page 10 of 20

Observation Point ATCT Receptors

Name	ID	Latitude (°)	Longitude (°)	Elevation (m)	Height (m)
1-ATCT	1	41.433894	15.543832	75.79	20.00

Map image of 1-ATCT

Page 11 of 20

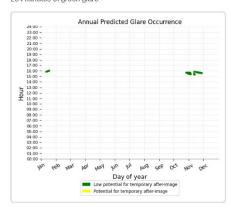
Glare Analysis Results

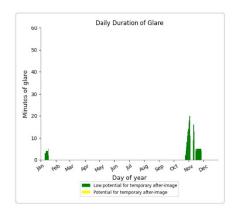
Summary of Results Glare with low potential for temporary after-image predicted

PV Array	Tilt	Orient	Annual Gr	een Glare	Annual Ye	llow Glare	Energ
	0	0	min	hr	min	hr	kWh
PV array 11-12	SA tracking	SA tracking	254	4.2	0	0.0	-
PV array 1-2	SA tracking	SA tracking	0	0.0	0	0.0	-
PV array 13-14	SA tracking	SA tracking	0	0.0	0	0.0	-
PV array 15	SA tracking	SA tracking	0	0.0	0	0.0	-
PV array 16	SA tracking	SA tracking	0	0.0	0	0.0	-
PV array 17-18-19-20	SA tracking	SA tracking	0	0.0	0	0.0	-
PV array 21-22	SA tracking	SA tracking	0	0.0	0	0.0	-
PV array 23	SA tracking	SA tracking	0	0.0	0	0.0	-
PV array 24	SA tracking	SA tracking	0	0.0	0	0.0	-
PV array 25	SA tracking	SA tracking	128	2.1	0	0.0	-
PV array 26	SA tracking	SA tracking	0	0.0	0	0.0	-
PV array 27	SA tracking	SA tracking	0	0.0	0	0.0	-
PV array 28	SA tracking	SA tracking	0	0.0	0	0.0	-
PV array 29-30	SA tracking	SA tracking	0	0.0	0	0.0	-
PV array 3	SA tracking	SA tracking	158	2.6	0	0.0	-
PV array 4-5-6	SA tracking	SA tracking	137	2.3	0	0.0	-
PV array 7-8	SA tracking	SA tracking	246	4.1	0	0.0	-
PV array 9-10	SA tracking	SA tracking	64	1.1	0	0.0	-

Total annual glare received by each receptor; may include duplicate times of glare from multiple reflective surfaces.

Page 12 of 20


Receptor	Annual Gr	Green Glare Annual Yellow		llow Glare
	min	hr	min	hr
1-ATCT	987	16.4	0	0.0


PV: PV array 11-12

Receptor	Annual Gr	Green Glare Annual Ye		ellow Glare	
	min	hr	min	hr	
1-ATCT	254	4.2	0	0.0	

PV array 11-12 and 1-ATCT

Receptor type: ATCT Observation Point 0 minutes of yellow glare 254 minutes of green glare

PV: PV array 1-2

Receptor	Annual Gr	een Glare	Annual Yellow Glare	
	min	hr	min	hr
1-ATCT	0	0.0	0	0.0

PV array 1-2 and 1-ATCT

Receptor type: ATCT Observation Point No glare found

Page 13 of 20

RELAZIONE FENOMENI RIFLESSIONE E/O
ABBAGLIAMENTO

Pagina 33 / 41

PV: PV array 13-14

Receptor	Annual Green Glare		Annual Yellow Glare	
	min	hr	min	hr
1-ATCT	0	0.0	0	0.0

PV array 13-14 and 1-ATCT

Receptor type: ATCT Observation Point No glare found

PV: PV array 15

Receptor	Annual Green Glare		Annual Yel	llow Glare
	min	hr	min	hr
1-ATCT	0	0.0	0	0.0

PV array 15 and 1-ATCT

Receptor type: ATCT Observation Point No glare found

PV: PV array 16

Receptor	Annual Green Glare		Annual Ye	low Glare
	min	hr	min	hr
1-ATCT	0	0.0	0	0.0

PV array 16 and 1-ATCT

Receptor type: ATCT Observation Point No glare found

PV: PV array 17-18-19-20

Receptor	Annual Green Glare		Annual Ye	llow Glare
	min	hr	min	hr
1-ATCT	0	0.0	0	0.0

Page 14 of 20

RELAZIONE FENOMENI RIFLESSIONE E/O
ABBAGLIAMENTO

Pagina 34 / 41

PV array 17-18-19-20 and 1-

ATCT

Receptor type: ATCT Observation Point No glare found

PV: PV array 21-22

Receptor	Annual Gr	een Glare	Annual Yel	llow Glare
	min	hr	min	hr
1-ATCT	0	0.0	0	0.0

PV array 21-22 and 1-ATCT

Receptor type: ATCT Observation Point No glare found

PV: PV array 23

Receptor	Annual Green Glare		Annual Ye	llow Glare
	min	hr	min	hr
1-ATCT	0	0.0	0	0.0

PV array 23 and 1-ATCT

Receptor type: ATCT Observation Point No glare found

PV: PV array 24

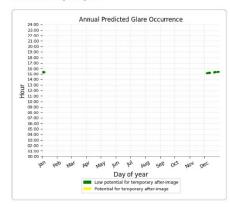
Receptor	Annual Gr	Green Glare Annual Yellow		llow Glare
	min	hr	min	hr
1-ATCT	0	0.0	0	0.0

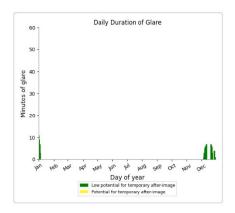
PV array 24 and 1-ATCT

Receptor type: ATCT Observation Point No glare found

PV: PV array 25

1-ATCT 128 2.1	0	0.0
----------------	---	-----




Page 15 of 20

PV array 25 and 1-ATCT

Receptor type: ATCT Observation Point 0 minutes of yellow glare 128 minutes of green glare

PV: PV array 26

Receptor	Annual Gr	een Glare	re Annual Yellow Glare	
	min	hr	min	hr
1-ATCT	0	0.0	0	0.0

PV array 26 and 1-ATCT

Receptor type: ATCT Observation Point No glare found

PV: PV array 27

Receptor	Annual Green Glare		Annual Yellow Glare		
	min	hr	min	hr	
1-ATCT	0	0.0	0	0.0	

PV array 27 and 1-ATCT

Receptor type: ATCT Observation Point No glare found

PV: PV array 28

1-ATCT 0 0.0 0 0.0	
--------------------	--

Page 16 of 20

RELAZIONE FENOMENI RIFLESSIONE E/O
ABBAGLIAMENTO

Pagina 36 / 41

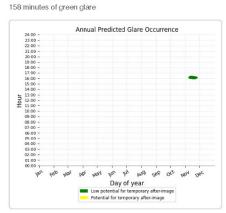
PV array 28 and 1-ATCT

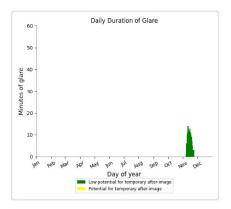
Receptor type: ATCT Observation Point No glare found

PV: PV array 29-30

Receptor	Annual Green Glare		Annual Yellow Glare		
	min	hr	min	hr	
1-ATCT	0	0.0	0	0.0	

PV array 29-30 and 1-ATCT


Receptor type: ATCT Observation Point No glare found


PV: PV array 3

Receptor	Annual Green Glare		Annual Yellow Glare		
	min	hr	min	hr	
1-ATCT	158	2.6	0	0.0	

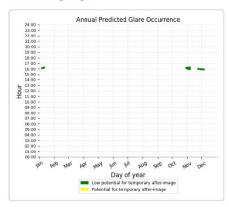
PV array 3 and 1-ATCT

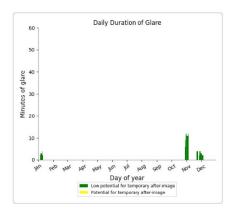
Receptor type: ATCT Observation Point 0 minutes of yellow glare

PV: PV array 4-5-6

1-ATCT 137 2.3 0 0.	0.0
---------------------	-----

Page 17 of 20

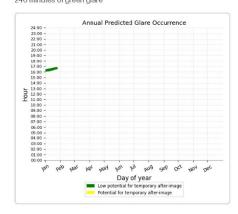


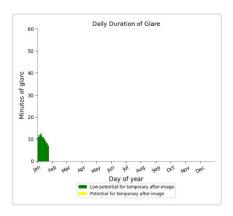

RELAZIONE FENOMENI RIFLESSIONE E/O ABBAGLIAMENTO

Pagina 37 / 41

PV array 4-5-6 and 1-ATCT

Receptor type: ATCT Observation Point 0 minutes of yellow glare 137 minutes of green glare




PV: PV array 7-8

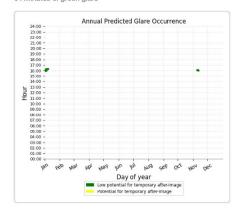
Receptor	Annual Green Glare		Annual Yellow Glare		
	min	hr	min	hr	
1-ATCT	246	4.1	0	0.0	

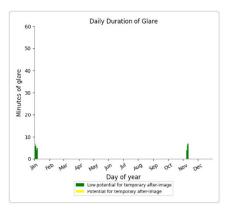
PV array 7-8 and 1-ATCT

Receptor type: ATCT Observation Point 0 minutes of yellow glare 246 minutes of green glare

Page 18 of 20

RELAZIONE FENOMENI RIFLESSIONE E/O
ABBAGLIAMENTO


Pagina 38 / 41


PV: PV array 9-10

Receptor	Annual Gr	Annual Green Glare		llow Glare
	min	hr	min	hr
1-ATCT	64	1.1	0	0.0

PV array 9-10 and 1-ATCT

Receptor type: ATCT Observation Point 0 minutes of yellow glare 64 minutes of green glare

Assumptions

"Green" glare is glare with low potential to cause an after-image (flash blindness) when observed prior to a typical blink response time.

"Yellow" glare is glare with potential to cause an after-image (flash blindness) when observed prior to a typical blink response time.

Times associated with glare are denoted in Standard time. For Daylight Savings, add one hour.

The algorithm does not rigorously represent the detailed geometry of a system; detailed features such as gaps between modules, variable height of the PV array, and support structures may impact actual glare results. However, we have validated our models against several systems, including a PV array causing glare to the air-traffic control tower at Manchester-Boston Regional Airport and several sites in Albuquerque, and the tool accurately predicted the occurrence and intensity of glare at different times and days of the year. Several V1 calculations utilize the PV array centroid, rather than the actual glare spot location, due to algorithm limitations. This may affect results for large PV footprints. Additional analyses of array sub-sections can provide additional information on expected glare. This primarily affects V1 analyses of path receptors.

Random number computations are utilized by various steps of the annual hazard analysis algorithm. Predicted minutes of glare can vary between runs as a result. This limitation primarily affects analyses of Observation Point receptors, including ATCTs. Note that the SGHAT/ForgeSolar methodology has always relied on an analytical, qualitative approach to accurately determine the overall hazard (i.e. green vs. yellow) of expected glare on an annual basis.

The analysis does not automatically consider obstacles (either man-made or natural) between the observation points and the prescribed solar installation that may obstruct observed glare, such as trees, hills, buildings, etc.

The subtended source angle (glare spot size) is constrained by the PV array footprint size. Partitioning large arrays into smaller sections will reduce the maximum potential subtended angle, potentially impacting results if actual glare spots are larger than the sub-array size. Additional analyses of the combined area of adjacent sub-arrays can provide more information on potential glare hazards. (See previous point on related limitations.)

The variable direct normal irradiance (DNI) feature (if selected) scales the user-prescribed peak DNI using a typical clear-day irradiance profile. This profile has a lower DNI in the mornings and evenings and a maximum at solar noon. The scaling uses a clear-day irradiance profile based on a normalized time relative to sunrise, solar noon, and sunset, which are prescribed by a sun-position algorithm and the latitude and longitude obtained from Google maps. The actual DNI on any given day can be affected by cloud cover, atmospheric attenuation, and other environmental factors.

The ocular hazard predicted by the tool depends on a number of environmental, optical, and human factors, which can be uncertain. We provide input fields and typical ranges of values for these factors so that the user can vary these parameters to see if they have an impact on the results. The speed of SGHAT allows expedited sensitivity and parametric analyses.

The system output calculation is a DNI-based approximation that assumes clear, sunny skies year-round. It should not be used in place of more rigorous modeling methods.

Hazard zone boundaries shown in the Glare Hazard plot are an approximation and visual aid based on aggregated research data. Actual ocular impact outcomes encompass a continuous, not discrete, spectrum.

Glare locations displayed on receptor plots are approximate. Actual glare-spot locations may differ.

Refer to the Help page at www.forgesolar.com/help/ for assumptions and limitations not listed here.

Default glare analysis parameters and observer eye characteristics (for reference only):

- Analysis time interval: 1 minute
- Ocular transmission coefficient: 0.5
- Pupil diameter: 0.002 meters
- Eye focal length: 0.017 meters
- · Sun subtended angle: 9.3 milliradians

2016 © Sims Industries d/b/a ForgeSolar, All Rights Reserved

Page 20 of 20

RELAZIONE FENOMENI RIFLESSIONE E/O
ABBAGLIAMENTO

Pagina 40 / 41

2.6 Conclusioni

La simulazione non restituisce la presenza di fenomeni di abbagliamento ricadenti nella zona rossa (danno retinico permanente), né in zona gialla. I risultati della simulazione restituiscono fenomeni di potenziale abbagliamento ricadenti nella sola zona verde del diagramma.

Si sottolinea che per la maggior parte dei PV Array il valore relativo ai fenomeni di abbagliamento è nullo.

Glare Analysis Results

PV Array	Tilt	Orient	Annual Green Glare		Annual Yellow Glare		Energy
	0	0	min	hr	min	hr	kWh
PV array 11-12	SA	SA	254	4.2	0	0.0	-
	tracking	tracking					
PV array 1-2	SA	SA	0	0.0	0	0.0	-
	tracking	tracking					
PV array 13-14	SA	SA	0	0.0	0	0.0	-
	tracking	tracking					
PV array 15	SA	SA	0	0.0	0	0.0	-
	tracking	tracking					
PV array 16	SA	SA	0	0.0	0	0.0	-
	tracking	tracking					
PV array 17-18-19-20	SA	SA	0	0.0	0	0.0	-
	tracking	tracking					
PV array 21-22	SA	SA	0	0.0	0	0.0	-
	tracking	tracking					
PV array 23	SA	SA	0	0.0	0	0.0	_
	tracking	tracking					
PV array 24	SA	SA	0	0.0	0	0.0	-
	tracking	tracking	-	-1-			
PV array 25	SA	SA	128	2.1	0	0.0	-
, and Eo	tracking	tracking	1.20	2	Ü	0.0	
PV arrav 26	SA	SA	0	0.0	0	0.0	_
	tracking	tracking	-	0.10		0.0	
PV array 27	SA	SA	0	0.0	0	0.0	_
r v undy 27	tracking	tracking	Ü	0.0	· ·	0.0	
PV array 28	SA	SA	0	0.0	0	0.0	
r v anay 20	tracking	tracking	0	0.0	O	0.0	
PV array 29-30	SA	SA	0	0.0	0	0.0	-
r v allay 29-30	tracking	tracking	0	0.0	O	0.0	-
PV arrav 3	SA	SA	158	2.6	0	0.0	
PV array 3	tracking	tracking	158	2.0	U	0.0	-
DV 4 F C	-		107	0.0	^	0.0	
PV array 4-5-6	SA tracking	SA tracking	137	2.3	0	0.0	-
DV 7.0			0.40	4.4	^	0.0	
PV array 7-8	SA	SA	246	4.1	0	0.0	-
DV 0.10	tracking	tracking	0.4		•	0.0	
PV array 9-10	SA	SA	64	1.1	0	0.0	-
	tracking	tracking					

Total annual glare received by each receptor; may include duplicate times of glare from multiple reflective surfaces.

