VENTO SOLARE SRL

VIA DELLA CHIMICA 103 - 85100 POTENZA P.IVA 01981860768 ventosolaresrl@pec.it

CODE

SCS.DES.R.CIV.ITA.W.6411.003.00

PAGE

1 di/of 15

AVAILABLE LANGUAGE: IT

IMPIANTO EOLICO SERRACAPRIOLA COMUNE DI SERRACAPRIOLA (FG)

RELAZIONE GITTATA MASSIMA ELEMENTI ROTANTI PER ROTTURA ACCIDENTALE

File name: SCS.DES.R.CIV.ITA.W.6411.003.00_Gittata massima elementi rotanti per rottura accidentale

																	••••••			
										C THE	ECNED:			TNC	FONE			C THE	FONE	DT 4
00	26/10/2023		EM:	ISSIO	NE				SCS INGEGNERIA		LA	SCS INGEGNERIA			SCS INGEGNERIA					
	_0, _0, _0_																	A.S	ergi	
REV																				
N.L.	DATE		DES	CRIPTI	ON				PREPARED			VERIFIED			APPROVED					
ΤΜΡΤΔ	NTO / Plant								-											
	NTO EOLICO								CO	DE										
	CAPRIOLA	GROUP	FUNCION	TYPE	D	ISCIPLI	INE		COUNTR	RY	TEC		PLA	NT		PR	OGRESS	SIVE	REV	ISION
					_	_	1			-			_		_	_	-	1 _		<u> </u>
		SCS	DES	R	C	I	V	I	T	Α	W	6	4	1	1	0	0	3	0	0
CLASSIFICATION:			UTI	LIZA	TION	1	. DE	OCE	TTO DE	ETNIT	T\//	`								
CLAS	SIFICATION:				sco)PE			: PROGETTO DEFINITIVO											

VENTO SOLARE SRL VIA DELLA CHIMICA 103 - 85100 POTENZA

P.IVA 01981860768

ventosolaresrl@pec.it

CODE

SCS.DES.R.CIV.ITA.W.6411.003.00

PAGE

2 di/of 15

1.	INTROI	DUZIONE	3
	1.1.	CONTENUTI DELLA RELAZIONE	3
1.	INQUA	DRAMENTO DEL SITO	4
		ROGENERATORI E IL LORO FUNZIONAMENTO	
3.	ANALIS	SI STORICA DEGLI INCIDENTI	7
4.	ROTTU	RA PALA E CALCOLO DELLA GITTATA MASSIMA	8
	4.1.	INTRODUZIONE E IPOTESI ALLA BASE DEL MODELLO DI CALCOLO	8
	4.2.	AEROGENERATORE DI RIFERIMENTO	9
	4.3.	CALCOLO DELLA GITTATA MASSIMA	11
	4.4.	RISULTATI	13
5	CONCI	USIONI	15

VENTO SOLARE SRL
VIA DELLA CHIMICA 103 - 85100
POTENZA
P.IVA 01981860768
ventosolaresrl@pec.it

CODE

SCS.DES.R.CIV.ITA.W.6411.003.00

PAGE

3 di/of 15

1. INTRODUZIONE

La società Vento Solare S.r.l. è promotrice di un progetto che vede l'installazione di un impianto di generazione da fonte rinnovabile eolica integrato da un sistema di accumulo e relative opere di connessione, all'interno del territorio comunale di Serracapriola, in provincia di Foggia.

Nello specifico, l'impianto prevede la costruzione di sette aerogeneratori di potenza unitaria pari a 6MW, per una potenza complessiva di 42MW. Il sistema di accumulo invece è caratterizzato da una potenza pari a 12MW.

Il punto di connessione individuato per l'immissione dell'energia prodotta dall'impianto eolico integrato dal BESS, è individuato presso l'ampliamento 380/36 kV della costruenda stazione elettrica di trasformazione RTN 380/150 kV Torremaggiore da inserire in entra -esce alla linea RTN "San Severo 380 – Rotello 380", ubicata nel comune di Torremaggiore (provincia di Foggia).

In considerazione dell'allocazione dell'impianto BESS integrativo dell'impianto eolico in prossimità del punto di connessione su Rete di Trasmissione Nazionale suddetto, il vettoriamento dell'energia prodotta dalle torri eoliche verso il punto di connessione viene eseguito a mezzo di un cavidotto AT esercito a 36 kV che si sviluppa a partire dalla Collector Cabin di impianto sino alla Collector Cabin dell'impianto BESS attraversando i territori comunali di Serracapriola e Torremaggiore (entrambi appartenenti alla provincia di Foggia). Da quest'ultima, un cavidotto AT esercito a 36 kV s'attesta definitivamente allo stallo AT 36 kV assegnato all'interno della stazione 380/36 kV di Torremaggiore ai fini dello scambio d'energia con la Rete Elettrica di Trasmissione Nazionale.

1.1. CONTENUTI DELLA RELAZIONE

La presente relazione riporta la valutazione della gittata massima che si ottiene attraverso il moto percorso da una pala distaccatasi dall'aerogeneratore.

Il capitolo 2 descrive in generale il sito e il layout degli aerogeneratori di nuova costruzione.

Il capitolo 3 descrive in generale le caratteristiche tecniche e costruttive di un aerogeneratore moderno di grossa taglia ed espone brevemente il suo funzionamento.

Nel capitolo 4 è riportata una breve analisi storica e statistica degli incidenti sugli aerogeneratori, focalizzato sulle pale.

Il capitolo 5 affronta il metodo di calcolo della gittata massima, mentre nel capitolo 6 sono riportate le conclusioni con riferimento alle posizioni degli aerogeneratori di nuova costruzione in sito.

SCS.DES.R.CIV.ITA.W.6411.003.00

PAGE

4 di/of 15

1. INQUADRAMENTO DEL SITO

Il sito di installazione delle turbine è ubicato nel territorio comunale di Serracapriola (FG). La zona interessata dall'impianto si sviluppa in un'area collinare della Puglia sita a circa 16 km dalla costa Adriatica e 50 km a Nord-Est di Foggia, al confine con la Regione Molise.

Di seguito è riportato l'inquadramento territoriale dell'area di progetto e la configurazione proposta su ortofoto.

Pip Riane di Larino
Chieuti

Monte Arcano
Dururi
Serracapriola
WF Serracapriola

Tronco
San Ragio di Civitate

Santa Croce di Magliano
Bonefro

San Giuliano di Puglia
Torreinaggidre

Figura 2: Individuazione area di impianto su Ortofoto

SCS.DES.R.CIV.ITA.W.6411.003.00

PAGE

5 di/of 15

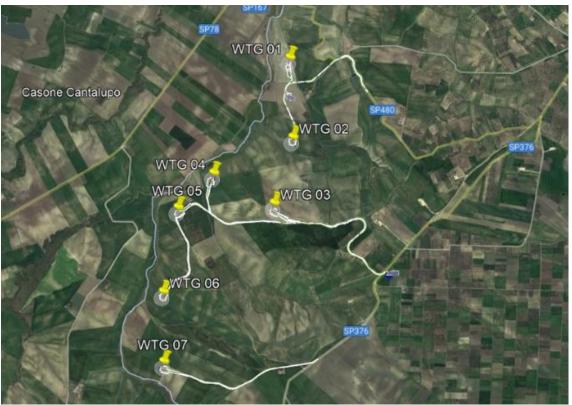


Figura 3 - Individuazione su ortofoto dell'impianto in progetto

Nella tabella che segue sono individuate le coordinate delle turbine eoliche e i riferimenti catastali delle particelle nelle quali ricadono le fondazioni:

SISTEMA D	OI RIFERIMENTO	UTM WGS 84 - FUSO 33N	RIFERIMENTI CATASTALI				
		Posizioni Aeroge	neratori				
WTG	EST [m]	NORD [m]	COMUNE	FG	P.LLA		
WTG 1	509825,14	4626986,16	SERRACAPRIOLA	31	102		
WTG 2	509858,56	4626142,62	SERRACAPRIOLA	42	69		
WTG 3	509662,00	4625446,02	SERRACAPRIOLA	42	22		
WTG 4	509019,20	4625763,85	SERRACAPRIOLA	42	146		
WTG 5	508644,91	4625399,56	SERRACAPRIOLA	42	29		
WTG 6	508493,88	4624513,80	SERRACAPRIOLA	52	22		
WTG 7	508501,91	4623783,32	SERRACAPRIOLA	52	13		

Tabella 1: Coordinate aerogeneratori dell'impianto eolico di Serracapriola

SCS.DES.R.CIV.ITA.W.6411.003.00

PAGE

6 di/of 15

2. GLI AEROGENERATORI E IL LORO FUNZIONAMENTO

Un aerogeneratore (o turbina eolica) è, in generale, costituito dai seguenti sottosistemi principali:

- il rotore eolico, che trasforma l'energia cinetica del vento in energia meccanica mediante alcune pale, opportunamente sagomate secondo un profilo aerodinamico e montate su un asse orizzontale o verticale rispetto al terreno;
- l'apparato di conversione dell'energia meccanica in energia elettrica, basato su un generatore elettrico rotante azionato dal rotore eolico attraverso un sistema di trasmissione, che spesso comprende un moltiplicatore di giri per ottenere la velocità appropriata per il generatore;
- il convertitore statico di frequenza e tensione, se necessario per ottenere una potenza elettrica con caratteristiche diverse da quelle in uscita dal generatore ed appropriate all'impiego.

Nelle macchine ad asse orizzontale, come quelle dell'impianto eolico oggetto della presente relazione, il rotore ha di norma tre pale, generalmente costruite in vetroresina con eventuali rinforzi in fibra di carbonio. Le pale sono a passo variabile, cioè il loro angolo di calettamento al mozzo può essere variato da un servomeccanismo comandato dal sistema di controllo dell'aerogeneratore. Gli aerogeneratori ad asse orizzontale comprendono, oltre al rotore, i seguenti componenti strutturali principali:

- la navicella o gondola, in cui sono alloggiati gli alberi di trasmissione, il moltiplicatore di
 giri, il generatore, eventuali altri componenti elettrici e le apparecchiature ausiliarie e di
 controllo; la navicella viene orientata dal sistema di controllo per mantenere l'asse del
 rotore allineato alla direzione del vento;
- il sostegno, generalmente metallico con struttura tubolare o a traliccio, che ha la funzione di mantenere il rotore ad un'altezza opportuna rispetto al suolo (la velocità del vento tende ad aumentare con l'altezza) e appoggia, a sua volta, su una fondazione in calcestruzzo armato.

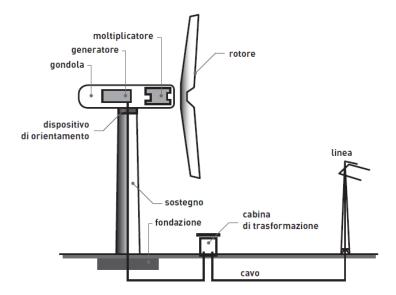


Figura 2-1: Elementi tipici di un aerogeneratore

SCS.DES.R.CIV.ITA.W.6411.003.00

PAGE

7 di/of 15

La figura successiva mostra un dettaglio del rotore e della navicella:

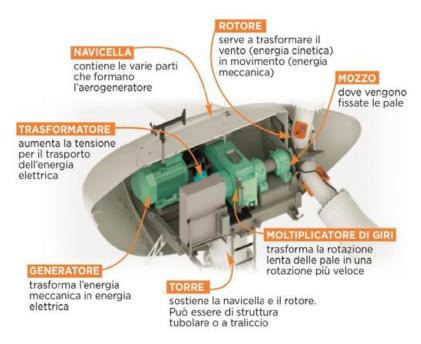


Figura 2-2: Caratteristiche dettagliate dei componenti presenti in una turbina eolica

Il meccanismo di funzionamento della macchina è il seguente: la vena fluida impatta contro le pale della turbina, azionando il moto rotatorio del rotore. Quest'ultimo, che è calettato al generatore elettrico attraverso l'albero lento, il moltiplicatore di giri e l'albero veloce, trasferisce l'energia cinetica al generatore, il quale a sua volta la converte in energia elettrica.

Il trasformatore presente in navicella innalza la tensione dell'energia prodotta e attraverso un sistema di cavidotti l'energia prodotta viene immessa nella rete elettrica nazionale.

3. ANALISI STORICA DEGLI INCIDENTI

Diversi studi¹ condotti a livello internazionale tra il 1990 e il 2014 hanno evidenziato che la probabilità di guasto di una pala in un anno è compresa tra lo 0,1% e lo 0,7%. La variabilità dei dati è dovuta al differente numero di campioni, a differenti tassi di guasto e differenti ore di manutenzione dovute alla rottura.

Inoltre, uno studio² americano del 2013, effettuato su un campione di circa 10,000 aerogeneratori, caratterizzati dall'essere operativi da anni diversi, ha evidenziato che circa il 2% delle turbine (nei 10 anni di funzionamento) richiedono la sostituzione della pala, considerando però anche tutte le sostituzioni che avvengono nei primi due anni di funzionamento dovute a problemi durante il trasporto e la costruzione.

Lo studio evidenzia inoltre che la causa maggiore di rottura delle pale è dovuta all'impatto con i fulmini.

¹ Branner K., Ghadirian A., "Database about blade faults", 2014

² Lantz E. (NREL), "Operations Expenditures: Historical Trends And Continuing Challenges", 2013

VENTO SOLARE SRL
VIA DELLA CHIMICA 103 - 85100
POTENZA
P.IVA 01981860768
ventosolaresrl@pec.it

CODE

SCS.DES.R.CIV.ITA.W.6411.003.00

PAGE

8 di/of 15

4. ROTTURA PALA E CALCOLO DELLA GITTATA MASSIMA

In questa sezione vengono riportate un'introduzione alla problematica della rottura di pala, le specifiche dell'aerogeneratore di riferimento e infine il calcolo della gittata massima.

4.1. INTRODUZIONE E IPOTESI ALLA BASE DEL MODELLO DI CALCOLO

La rottura improvvisa di una pala dell'aerogeneratore (o di un frammento di essa) è un fattore molto importante da analizzare in fase di progettazione e per la localizzazione dell'impianto eolico.

La rottura di una pala, che spesso avviene alla radice di essa, è un evento che ha due cause principali:

- 1. Rottura del giunto di collegamento tra mozzo e pala;
- 2. Fenomeni di fatica sul profilo di pala causati dalla discontinuità della struttura.

Lo studio in oggetto ha lo scopo di analizzare, nell'eventualità che si verifichi il distacco di una pala, il moto di caduta da essa percorsa.

A differenza di un classico moto parabolico (es. moto del proiettile), in cui è possibile definire che l'angolo a cui vi è la gittata massima è 45°, la complessa struttura geometrica ed aerodinamica della pala porta a dover studiare in modo più approfondito il fenomeno del distacco di pala.

Di seguito, vengono riportate alcune definizioni ed ipotesi utili per la definizione e il calcolo della gittata massima, affrontato nei paragrafi successivi:

- **Gittata (L):** è la distanza percorsa lungo l'asse delle ascisse da un corpo lasciato in aria. Essa dipende fortemente dall'angolo di distacco, dalle caratteristiche della pala come dimensione, peso e profilo aerodinamico, dalla velocità di rotazione del corpo, dalla velocità del vento e dalle forze di attrito che agiscono sulla pala durante il volo.
- **Tempo di volo (T):** è l'intervallo di tempo che intercorre tra il distacco del corpo ed il suo arrivo al suolo (il tempo trascorso in aria). Come definito per la gittata, esso dipende dalle caratteristiche della pala, dall'angolo di distacco e dalla velocità di rotazione del corpo.

Il calcolo della gittata massima dell'aerogeneratore necessita, inoltre, di alcune ipotesi semplificative, necessarie a descrivere il modello del moto parabolico:

- Viene considerato <u>il distacco della totalità della pala in modo istantaneo</u>. Questa ipotesi è assolutamente conservativa, dato che non si considera la resistenza posta dalla pala;
- Viene considerata <u>la rotazione massima</u> (massimi giri al minuto) per la turbina al momento del distaccamento:
- Sono considerati solamente gli effetti gravitazionali sul moto e non gli effetti di attrito di aria e vento. Questa ipotesi è conservativa, dato che trascurare gli effetti di aria e vento causa un incremento del valore della gittata massima della pala distaccata a favore di sicurezza. Gli effetti di portanza sul profilo della pala sono trascurati;
- Il moto della pala al momento del distacco è un moto complesso, che dipende strettamente dalle dimensioni della pala, dal suo peso e dalle forze aerodinamiche in gioco. Il modello teorico che meglio descrive il moto della pala è il "moto rotazionale complesso" che permette di descrivere il moto della pala tridimensionalmente. In questa analisi, trascurando gli effetti di aria e vento, il moto della pala distaccata viene descritto

SCS.DES.R.CIV.ITA.W.6411.003.00

PAGE

9 di/of 15

attraverso il movimento del punto del centro di massa (baricentro), posto ad 1/3 della lunghezza di pala. Tali considerazioni sono utili al fine di descrivere un moto dipendente solamente dagli effetti gravitazionali. Tale ipotesi, che non considera effetti di attrito e il moto rotazionale complesso, porta a sovrastimare il valore della gittata a favore di sicurezza;

 Non si considera alcuna mutazione della velocità del vento durante il volo. La velocità del vento durante il volo è bensì assunta pari a quella al momento del distacco e pari alla velocità massima di funzionamento.

4.2. AEROGENERATORE DI RIFERIMENTO

Gli aerogeneratori che verranno installati presso il nuovo impianto oggetto di questo studio saranno selezionati sulla base delle più innovative tecnologie disponibili sul mercato. La potenza nominale delle turbine previste sarà pari a massimo 6,0 MW. Il tipo e la taglia esatta dell'aerogeneratore saranno comunque individuati in seguito della fase di acquisto della macchina e verranno descritti in dettaglio in fase di progettazione esecutiva.

Si riportano di seguito le caratteristiche tecniche dell'aerogeneratore (in grassetto i valori necessari per il calcolo della gittata):

Potenza nominale	6,0 MW		
Diametro del rotore D	163 m		
Lunghezza della pala r _{tip}	79,7 m		
Corda massima della pala	4,15 m		
Area spazzata	20.867 m ²		
Altezza al mozzo H _m	138 m		
Velocità cut-in	3 m/s		
Velocità nominale	13,5 m/s		
Velocità cut-out	26 m/s		
Giri al minuto rotore n	10,7		

Tabella 2 Caratteristiche tecniche aerogeneratore

Nell'immagine seguente è rappresentata una turbina con rotore di diametro pari a 163 m e potenza 6,0 MW:

VENTO SOLARE SRL VIA DELLA CHIMICA 103 - 85100 POTENZA P.IVA 01981860768

ventosolaresrl@pec.it

) (Since the si

CODE

SCS.DES.R.CIV.ITA.W.6411.003.00

PAGE

10 di/of 15

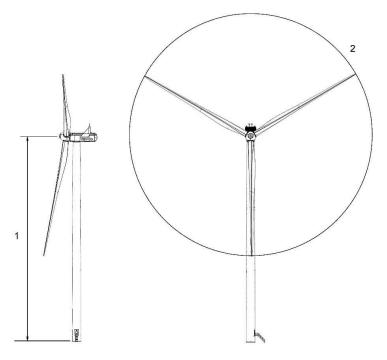


Figura 3-Vista e caratteristiche dell'aerogeneratore di riferimento:1=altezza al mozzo (138m); 2=Diametro Rotore (163m)

Un importante fattore per il calcolo della gittata massima è il <u>raggio baricentrico</u> (r_g). Per il calcolo della gittata, è necessario descrivere il moto parabolico nel centro di massa del corpo. Data la disomogenea distribuzione di massa lungo la pala, una buona approssimazione è considerare che il baricentro di pala è circa a 1/3 della lunghezza di pala. Dunque, per gli aerogeneratori oggetto del presente studio, il <u>raggio baricentrico r_g si trova a una distanza dal centro del mozzo pari a: (79,7/3) + (81,5-79,7) = 28,37 m.</u>

Nel baricentro vengono quindi descritte la velocità angolare, la velocità periferica ed il moto parabolico. Una volta individuata la gittata massima al raggio baricentrico sarà possibile individuare la gittata massima al "tip" della pala, sommando la lunghezza che vi è tra il "tip" e il raggio baricentrico.

Per il calcolo della gittata è stato ipotizzato un numero di giri pari a 10,7 rpm, valore riscontrato da dati tecnici dell'aerogeneratore.

P.IVA 01981860768 ventosolaresrl@pec.it

CODE

SCS.DES.R.CIV.ITA.W.6411.003.00

PAGE

11 di/of 15

4.3. CALCOLO DELLA GITTATA MASSIMA

In questo paragrafo viene riportato il calcolo della gittata massima in accordo alle ipotesi definite al paragrafo 4.1 e per l'aerogeneratore di riferimento definito al paragrafo 4.2.

Il primo passo per il calcolo della gittata massima è la descrizione delle leggi orarie del moto parabolico della pala distaccata. Considerando che la massa e la geometria sono concentrate in un punto (baricentro), che il corpo si trova in un campo di gravità uniforme ed indipendente dal tempo e che si trascurano le forze di attrito legate alla resistenza dell'aria, si applicano le seguenti equazioni di moto:

$$\begin{cases} x(t) = x_o + v_{gx}t \\ y(t) = y_o + v_{gy}t - \frac{1}{2}gt^2 \end{cases}$$
 (5.1)

Dove:

- x_o e y_o sono le posizioni iniziali della pala al momento del distacco. Esse dipendono dall'angolo di distacco e dal raggio baricentrico;
- v_{gx} e v_{gy} sono rispettivamente la componente orizzontale e verticale della velocità iniziale di distacco " v_g , definita al raggio baricentrico. La velocità di distacco " v_g " si calcola a partire dalla velocità angolare " ω " (e quindi dal numero di giri al minuto della turbina "n") e dal raggio baricentrico " r_g " come di seguito:

$$v_g = \omega \cdot r_g = \frac{2\pi n}{60} \cdot r_g = 31,77 \, m/s$$
 (5.2)

- g è la costante di gravitazione universale pari a 9,81 m/s²
- t è la variabile tempo. Impostando y(t) = 0 (corpo arrivato a terra), si ottiene di conseguenza il tempo di volo e la condizione in cui calcolare la gittata.

Per prima cosa, è quindi necessario definire le posizioni iniziali e le velocità del corpo distaccato. Il moto parabolico del corpo viene descritto in Figura 4, dove il rotore della turbina eolica (fino al raggio baricentrico) è rappresentato con il cerchio blu:

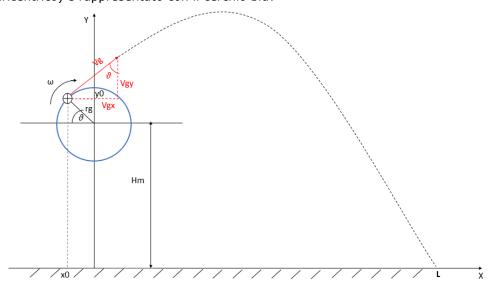


Figura 4: Traiettoria della pala distaccata

VENTO SOLARE SRL VIA DELLA CHIMICA 103 - 85100 POTENZA P.IVA 01981860768

ventosolaresrl@pec.it

) (Security)

CODE

SCS.DES.R.CIV.ITA.W.6411.003.00

PAGE

12 di/of 15

Come visibile dalla Figura 4, le posizioni iniziali (x_o e y_o) e le componenti (v_{gx} e v_{gy}) della velocità di distacco v_g dipendono strettamente dal raggio baricentrico r_g , dall'altezza di mozzo H_m , e dall'angolo di distacco ϑ definito in senso orario tra l'asse della pala e l'orizzontale. Essendo l'angolo di distacco variabile nel tempo, è necessario calcolare la gittata al variare dell'angolo di distacco per evidenziare quale è la condizione in cui si ottiene la massima gittata. Si definiscono quindi:

• Le posizioni iniziali (x_o e y_o) come:

$$x_o = -r_q \cos \vartheta$$
; $y_o = H_m + r_q \sin \vartheta$ (5.3)

• Le componenti (v_{gx} e v_{gy}) della velocità di distacco v_g come:

$$v_{gx} = v_g \sin \vartheta$$
; $v_{gy} = v_g \cos \vartheta$ (5.4)

Sono state quindi definite le condizioni iniziali del distacco di pala. È necessario ora, a partire dalle equazioni di moto (5.1), ottenere i valori di Tempo di volo (T) e Gittata (L) definiti sul baricentro della pala distaccata.

Imponendo y(t) = 0 nell'equazione 5.1, condizione a cui corrisponde il raggiungimento a terra del corpo dopo il volo, e avendo definito le condizioni iniziale nelle equazioni 5.3 e 5.4, si possono calcolare quindi la gittata L e il tempo di volo T:

$$\begin{cases}
L = x_o + v_{gx}T \\
0 = y_o + v_{gy}T - \frac{1}{2}gT^2
\end{cases}$$
(5.5)

Risolvendo la seconda equazione di secondo grado nella variabile T e trascurando i risultati dell'equazione che evidenziano tempi negativi, si può quindi ottenere il valore del tempo di volo T, pari a:

$$T[s] = \frac{v_{gy} + \sqrt{v_{gy}^2 + 2gy_0}}{g} = \frac{v_g \cos \vartheta + \sqrt{(v_g \cos \vartheta)^2 + 2g \cdot (H_m + r_g \sin \vartheta)}}{g} \quad (5.6)$$

Definito il tempo di volo T, dalla prima equazione (5.5), si ottiene quindi la gittata L, definita nel baricentro di pala:

$$L[m] = x_o + v_{gx}T = -r_g\cos\vartheta + v_g\sin\vartheta \cdot \left(\frac{v_g\cos\vartheta + \sqrt{(v_g\cos\vartheta)^2 + 2g\cdot(H_m + r_g\sin\vartheta)}}{g}\right)$$
(5.7)

Ottenuta la gittata nel baricentro di pala L, per ottenere la gittata al "tip" della pala, è sufficiente sommare la distanza tra il "tip" della pala ed il raggio baricentrico (2/3 r_{tip}):

$$L_{tip} = L + \frac{2}{3}r_{tip}$$
 (5.8)

VENTO SOLARE SRL VIA DELLA CHIMICA 103 - 85100 POTENZA P.IVA 01981860768

ventosolaresrl@pec.it

CODE

SCS.DES.R.CIV.ITA.W.6411.003.00

PAGE

13 di/of 15

Come già evidenziato, tutte le grandezze definite precedentemente dipendono dall'angolo di distacco ϑ , variabile nel tempo. Vengono quindi riportati di seguito un riassunto delle ipotesi di calcolo ed i valori di gittata ottenuti al variare dell'angolo ϑ , al fine di individuare la gittata massima e l'angolo a essa corrispondente.

4.4. RISULTATI

I valori assunti per il calcolo della gittata nella presente analisi sono i seguenti:

• Lunghezza di Pala r_{tip}: 79,7 m;

• Altezza mozzo H_m: 138 m;

• Numero di giri n: 10,7 rpm;

• Diametro del Rotore D: 163 m;

• Raggio baricentrico r_g : 79,7/3 + 81,5 - 79,7 = 28,37 m (distanza tra centro mozzo e 1/3 della lunghezza della pala).

Sono riportati di seguito i valori ottenuti di gittata massima, al variare dell'angolo di distacco θ :

Angolo di distacco 0		e iniziale centro	Compo	nenti V _g	Gittatta L [m]	Gittatta @ tip L _{tip} [m]	
[°]	Xg	Yg	V _{gx} [m/s]	V _{gy} [m/s]	[,,,,]	Σαρ [111]	
0	28,37	0,00	0,00	31,78	-28,37	24,77	
5	28,26	2,47	2,77	31,66	-2,00	51,13	
10	27,94	4,92	5,52	31,30	24,29	77,42	
15	27,40	7,34	8,23	30,70	50,00	103,13	
20	26,66	9,70	10,87	29,87	74,66	127,80	
25	25,71	11,98	13,43	28,81	97,84	150,97	
30	24,57	14,18	15,89	27,53	119,15	172,28	
35	23,24	16,26	18,23	26,04	138,27	191,40	
40	21,73	18,23	20,43	24,35	154,95	208,08	
45	20,06	20,05	22,48	22,48	169,02	222,15	
50	18,23	21,72	24,35	20,43	180,39	233,52	
55	16,27	23,23	26,04	18,23	189,04	242,17	
60	14,18	24,56	27,53	15,89	195,04	248,17	
65	11,99	25,70	28,81	13,43	198,49	251,62	
70	9,70	26,65	29,87	10,87	199,59	252,72	
75	7,34	27,40	30,70	8,23	198,54	251,67	
80	4,93	27,93	31,30	5,52	195,60	248,73	
85	2,47	28,26	31,66	2,77	191,03	244,17	
90	0,00	28,37	31,78	0,00	185,11	238,25	
270	0,00	-28,37	-31,78	0,00	-150,27	-203,40	
275	2,47	-28,26	-31,66	2,77	-161,45	-214,59	
280	4,93	-27,95	-31,30	5,52	-171,86	-224,99	
285	7,34	-27,42	-30,70	8,23	-181,13	-234,27	
290	9,70	-26,68	-29,87	10,87	-188,90	-242,04	

SCS.DES.R.CIV.ITA.W.6411.003.00

PAGE

14 di/of 15

Angolo di distacco 0		ne iniziale centro	Compo	nenti V _g	Gittatta L	Gittatta @ tip	
[°]	Xg	Yg	V _{gx} [m/s]	V _{gy} [m/s]	[m]	L _{tip} [m]	
295	11,99	-25,74	-28,81	13,43	-194,80	-247,93	
300	14,18	-24,60	-27,53	15,89	-198,46	-251,59	
305	16,27	-23,28	-26,04	18,23	-199,57	-252,71	
310	18,23	-21,78	-24,35	20,43	-197,88	-251,01	
315	20,06	-20,11	-22,48	22,48	-193,20	-246,33	
320	21,73	-18,30	-20,43	24,35	-185,42	-238,55	
325	23,24	-16,34	-18,23	26,04	-174,53	-227,66	
330	24,57	-14,26	-15,89	27,53	-160,62	-213,75	
335	25,71	-12,06	-13,43	28,81	-143,84	-196,97	
340	26,66	-9,78	-10,87	29,87	-124,46	-177,59	
345	27,40	-7,43	-8,23	30,70	-102,80	-155,93	
350	27,94	-5,01	-5,52	31,30	-79,26	-132,39	
355	28,26	-2,56	-2,77	31,66	-54,29	-107,42	
360	28,37	-0,09	0,00	31,78	-28,37	-81,50	

Tabella 5: Risultati calcolo gittata massima

Dall'analisi si può evidenziare che la massima gittata si ottiene per un angolo di distacco ϑ pari a 70° ed è pari a 252,72 m.

Si riporta di seguito il grafico che mostra la gittata al "tip" in funzione dell'angolo di distacco:

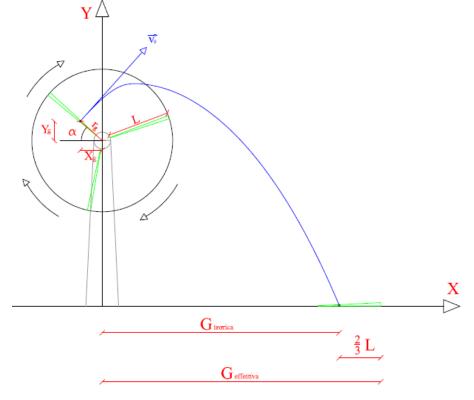


Figura 6: Gittata al tip vs. angolo di distacco

SCS.DES.R.CIV.ITA.W.6411.003.00

PAGE 15 di/of 15

5. CONCLUSIONI

Di seguito viene riportata l'analisi degli elementi sensibili all'eventuale rottura di una pala dell'impianto in progetto.

In particolare, per ciascuna delle posizioni proposte degli aerogeneratori di nuova costruzione si riporta in tabella la distanza del ricettore sensibile "RC" più vicino (unità abitativa) e la distanza dalla strada provinciale o regionale più vicina.

WTG	Distanza da ricettore sensibile più vicino	Distanza da strada provinciale/regionale più vicina
WTG 01	644 m da un D10	307 m da SP480
WTG 02	349 m da un D10	942 m da SP480
WTG 03	421 m da un A04	1301 m da SP376
WTG 04	978 m da un C02	1710 m da SP480
WTG 05	1050 m da un D10	2097 m da SP376
WTG 06	585 m da un D10	1585 m da SP376
WTG 07	882 m da un A04	1318 m da SP376

Tabella 3: Analisi gittata per recettori sensibili e strade provinciali/regionali

Come visibile dalla tabella, tutti gli aerogeneratori si trovano a distanze dagli elementi sensibili superiori rispetto alla gittata massima.

Inoltre, le numerose ipotesi semplificative di calcolo rispetto al caso reale causano anche un aumento del valore reale di gittata massima.

Infine, la probabilità che il rotore, distaccandosi, percorra esattamente la direzione ottimale per l'impatto con l'elemento sensibile è molto bassa e garantisce una riduzione del rischio a priori.