REGIONE DEL VENETO

Comune di Portogruaro e Fossalta di Portogruaro Città Metropolitana di Venezia

PROGETTO DEFINITIVO

PROGETTO DI UN IMPIANTO FOTOVOLTAICO DA COLLEGARE ALLA RTN CON POTENZA NOMINALE DC 44.185,05 kWp e potenza nominale ac 38.025 kW da realizzarsi nei comuni di portogruaro e fossalta di portogruaro (VE) area industriale eastgate park

relazione tecnica e	
CALCOLI PRELIMINIARI IMPIANTO	

Relazione:	Redatto:	Approvato:	Rilasciato:
DEL OF		AP ENGINEERING	AP ENGINEERING
KEL_US		Foglio A4	Prima Emissione

Progetto: Data: Committente:

IMPIANTO
EASTGATE PARK

30/01/2023

ELITE NORTHERN SOLAR S.R.L.
Via Rosario Livatino, 22 - 84083 Castel San Giorgio (SA)

Cantiere:

Elaborato:

AREA INDUSTRIALE EASTGATE PARK

Progettista:

INDICE

1	. PREMESSA	2
2	. DEFINIZIONI	4
3	. NORMATIVA DI RIFERIMENTO	6
4	. DESCRIZIONE GENERALE DELL'IMPIANTO FOTOVOLTAICO	9
	4.1. Moduli fotovoltaici	14
	4.2. Quadri parallelo stringhe	15
	4.2.1. Interruttori di manovra sezionatori IMS con fusibili	16
	4.2.2. Diodi di blocco	17
	4.2.3. Sezionatore sottocarico	17
	4.2.4. Scaricatore di sovratensione	17
	4.3. Linee BT in corrente continua	18
	4.4. Inverter	20
	4.5. Trasformatori di Campo	21
	4.6. Linee elettriche MT di interconnessione delle cabine elettriche di trasformazione BT/MT	22
	4.7. Quadro elettrico generale di media tensione QG7	29
	4.8. Quadro elettrico generale di media tensione QG12	30
	4.9. Quadro elettrico generale di media tensione 30 kV	31
	4.10 Servizi Ausiliari delle cabine	33

1. PREMESSA

La presente relazione tecnica è parte integrante del progetto definitivo della "Centrale di Produzione di Energia Elettrica" da fonte energetica rinnovabile attraverso tecnologia fotovoltaica che la Società ELITE NORTHERN SOLAR SRL ("E.S." o "la Società") intende realizzare nei Comuni di Portogruaro e Fossalta di Portogruaro (VE), all'interno dell'area industriale denominata Eastgate Park.

L'impianto ha una potenza di picco, intesa come somma delle potenze dei singoli moduli fotovoltaici scelti in fase di progettazione, pari a **44.185,05 kWp** e conformemente a quanto prescritto dal Gestore della Rete Elettrica di Trasmissione Nazionale RTN con preventivo di connessione del 17 giugno 2022 verrà collegato in antenna con la sezione a 132 kV di una nuova Stazione Elettrica (SE) di Smistamento della RTN a 132 kV da inserire in entra – esce alla linea RTN a 132 kV "Latisana - Levada", a cui ricollegare la linea "Zignago-Zignago All."

Come riscontrabile dalle tavole di progetto allegate, l'impianto di produzione risulta suddiviso in tre sezioni le quali verranno collegate a mezzo di linee elettriche di media tensione opportunamente dimensionate con il quadro elettrico generale a 30 kV della Cabina di raccolta. A mezzo di una dorsale in cavo interrato, il parco di generazione verrà collegato con la sezione MT della SSE di Utenza, a sua volta collegata in antenna con la SE Terna a mezzo di un elettrodotto a 132 kV, come di seguito rappresentato:

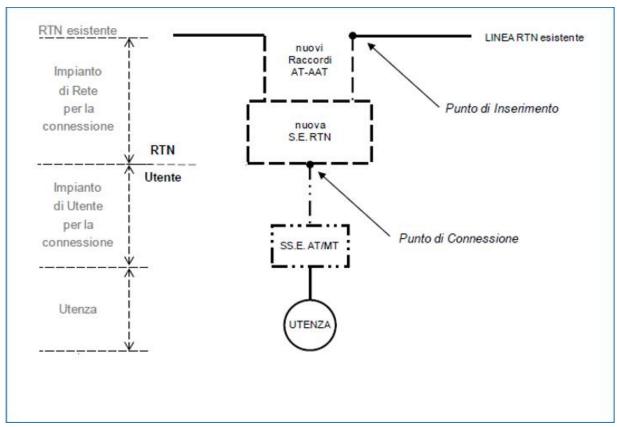


Figura 1: schema tipico di inserimento in antenna su Nuova Stazione RTN

Committente:

RELAZIONE TECNICA E CALCOLI PRELIMINARI IMPIANTO

REL_05

Ai sensi dell'allegato A alla deliberazione Arg/elt 99/08 e s.m.i. dell'Autorità di Regolazione per Energia, Reti e Ambiente, il nuovo elettrodotto in antenna a 132 kV per il collegamento della centrale alla Stazione Elettrica RTN costituisce *l'impianto di utenza per la connessione*, mentre lo Stallo arrivo Produttore a 132 kV, costituisce *impianto di rete per la connessione*. La rimanente parte di impianto costituisce, ai sensi della CEI 0-16, *l'impianto di utenza*.

Nella presente relazione, verranno descritte le caratteristiche delle infrastrutture elettriche costituenti l'Impianto di Utenza.

Progettista:

AP engineening

2. DEFINIZIONI

Distributore

Persona fisica o giuridica responsabile dello svolgimento di attività e procedure di distribuzione di cui è proprietaria.

Dispositivo Di Generatore (DDG)

Apparecchiatura di manovra e protezione la cui apertura (comandata da un apposito sistema di protezione) determina la separazione del gruppo di generazione.

Dispositivo Di Interfaccia (DDI)

Una (o più) apparecchiature di manovra la cui apertura (comandata da un apposito sistema di protezione) assicura la separazione dell'impianto di produzione dalla rete, consentendo all'impianto di produzione stesso l'eventuale funzionamento in isola sui carichi privilegiati.

Dispositivo Generale di utente (DG)

Apparecchiatura di protezione, manovra e sezionamento la cui apertura (comandata dal Sistema di Protezione Generale) assicura la separazione dell'intero impianto dell'Utente dalla rete del Distributore.

Impianto di rete per la connessione

La porzione di impianto per la connessione di competenza del Distributore, compresa tra il punto di inserimento sulla rete esistente e il punto di connessione. L'impianto di rete presso l'utenza, qualora presente, è parte integrante dell'impianto di rete per la connessione.

Impianto di utenza per la connessione

La porzione di impianto per la connessione la cui realizzazione, gestione, esercizio e manutenzione rimangono di competenza dell'Utente;

Impianto per la connessione

L'insieme degli impianti realizzati a partire dal punto di inserimento sulla rete esistente, necessari per la connessione alla rete di un impianto di Utente. L'impianto per la connessione è costituito dall'impianto di rete per la connessione e dall'impianto di utenza per la connessione.

Impianto di utenza

Impianto di produzione o impianto utilizzatore, nella disponibilità dell'Utente.

Punto di consegna

Il punto di confine tra la rete del distributore e la rete di utente, dove l'energia scambiata con la rete del distributore viene contabilizzata e dove avviene la separazione funzionale tra rete del distributore e la rete di utente.

Punto di consegna per utenti attivi

Il punto di consegna per gli utenti attivi si trova, dal punto di vista della rete del distributore, a monte dell'impianto di misura: quest'ultimo viene realizzato a carico dell'utente attivo che ne ha la

AP engineering

completa responsabilità. Il punto di consegna è costituito dal confine tra impianto di rete per la connessione e impianto di utenza per la connessione. Tale punto è posizionato generalmente in prossimità del confine di proprietà degli impianti. Qualora l'impianto di rete per la connessione preveda sistemi di protezione, comando e controllo, deve essere previsto un fabbricato nel quale trovino posto i sistemi di protezione, comando e controllo delle apparecchiature ed equipaggiamenti funzionali al collegamento. Qualora il suddetto fabbricato sia realizzato in area di proprietà dell'Utente, l'accesso in sicurezza a tale fabbricato da parte del distributore deve essere garantito in ogni momento e senza preavviso.

Punto di misura

Il punto di misura è il punto in cui è misurata l'energia elettrica immessa e/o prelevata dalla rete.

Punto di connessione

Punto sulla rete del distributore dal quale, in relazione a parametri riguardanti la qualità del servizio elettrico che deve essere reso o richiesto, è alimentato l'impianto dell'Utente.

Utente della rete del distributore (o utente)

Soggetto che utilizza la rete del distributore per cedere o acquistare energia elettrica.

Utente attivo

Soggetto che converte l'energia primaria in energia elettrica mediante impianti di produzione allacciati alla Rete di distribuzione.

3. NORMATIVA DI RIFERIMENTO

La normativa e le leggi di riferimento da rispettare per la progettazione e realizzazione della linea elettrica di connessione sono:

- D.P.R. n° 547/55: "Norme per la prevenzione degli infortuni sul lavoro";
- D.Lgs.81/08: Per la sicurezza e la prevenzione degli infortuni sul lavoro;
- D.Lgs.37/08: Per la sicurezza elettrica;
- Delibera AEEG N.99/08: "Testo integrato delle connessioni attive TICA" Guida Enel Distribuzione Spa Dicembre 2009: "Guida per le Connessioni alla rete elettrica di Enel Distribuzione" Ed. 1.1;
- Deliberazione n.280/07: Modalità e condizioni tecnico-economiche per il ritiro dell'energia elettrica ai sensi dell'articolo 13, commi 3 e 4, del decreto legislativo 29 dicembre 2003, n. 387/03, e del comma 41 della legge 23 agosto 2004, n. 239/04;
- CEI 11-1: "Impianti elettrici con tensione superiore a 1 kV in corrente alternata";
- CEI 11-4 "Esecuzione delle linee elettriche aeree esterne";
- CEI 11-17 "Impianti di produzione, trasmissione e distribuzione pubblica di energia elettrica
 Linee in cavo" CEI 016 "Regola tecnica di riferimento per la connessione di utenti attivi e passivi alle reti AT ed MT delle imprese distributrici di energia elettrica";
- CEI 0-2 "Guida per la definizione della documentazione degli impianti elettrici";
- CEI 106-11 "Guida per la determinazione delle fasce di rispetto per gli elettrodotti secondo le disposizioni del DPCM 8 luglio 2003 (Art. 6) Parte 1: Linee elettriche aeree e in cavo CEI 211-4 Guida ai metodi di calcolo dei campi elettrici e magnetici generati da linee e stazioni elettriche";
- CEI 11-37 "Guida per l'esecuzione degli impianti di terra di impianti utilizzatori in cui sono presenti sistemi con tensione maggiore di 1 kV";
- CEI 103-6 "Protezione delle linee di telecomunicazione dagli effetti dell'induzione elettromagnetica provocata dalle linee elettriche vicine in caso di guasto";
- CEI 11-20: "Impianti di produzione di energia elettrica e gruppi di continuità collegati a reti di 1°e 2° categoria";
- CEI 64-8: "Impianti elettrici utilizzatori a tensione nominale non superiore a 1000V in corrente alternata e a 1500V in corrente continua";
- CEI EN 60439-1 (CEI 17-13/1): "Apparecchiature soggette a prove di tipo (AS) e apparecchiature parzialmente soggette a prove di tipo (ANS)";

Progettista:

AP engineering

- CEI EN 60439-2 (CEI 17-13/2): "Prescrizioni particolari per i condotti sbarre";
- CEI EN 60439-3 (CEI 17-13/3): "Prescrizioni particolari per apparecchiature di protezione e di manovra destinate ad essere installate in luoghi dove personale non addestrato ha accesso al loro uso - Quadri di distribuzione (ASD)";
- CEI EN 60445 (CEI 16-2): "Principi base e di sicurezza per l'interfaccia uomo-macchina, marcatura e identificazione-Individuazione dei morsetti e degli apparecchi e delle estremità dei conduttori designati e regole generali per un sistema alfanumerico";
- CEI EN 60529 (CEI 70-1): "Gradi di protezione degli involucri (codice IP)";
- UNI 10349: "Riscaldamento e raffrescamento degli edifici. Dati climatici";
- CEI 0-16: "Regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti AT e MT delle imprese distributrici di energia elettrica";
- Norme UNI/ISO: Per le strutture di supporto;
- CEI EN 61000-3-2 Armoniche lato a.c.;
- CEI EN 60099-1-2 Scaricatori;
- CEI 20-19 Cavi isolati con gomma con tensione nominale non superiore a 450/750 V;
- CEI 20-20 Cavi isolati con polivinilcloruro con tensione nominale non superiore a 450/750V;
- CEI 81-1 Protezione delle strutture contro i fulmini;
- CEI 81-3 Valori medi del numero di fulmini a terra per anno e per chilometro quadrato;
- CEI 81-4 Valutazione del rischio dovuto al fulmine;
- DK5940 ed.2.2 Criteri di allacciamento di impianti di produzione alla rete BT di ENEL distribuzione;
- R.D. n. 1775 del 11/12/1933 Testo Unico di Leggi sulle Acque e sugli Impianti Elettrici;
- R.D. n. 1969 del 25/11/1940 Norme per l'esecuzione delle linee aeree esterne;
- D.P.R. n. 1062 del 21/6/1968 "Regolamento di esecuzione della legge 13 dicembre 1964, n. 1341 (2), recante norme tecniche per la disciplina della costruzione ed esercizio di linee elettriche aeree esterne";
- Legge dello Stato n. 339 28/06/1986 "Nuove norme per la disciplina della costruzione e dell'esercizio di linee elettriche aeree esterne";
- D.M. n. 449 del 21/3/1988 "Approvazione delle norme tecniche per la progettazione, l'esecuzione e l'esercizio delle linee aeree esterne" - Norma Linee);

Committente: *Progettista:* AP engineering

- D.M. n. 16/01/1991 "Aggiornamento delle norme tecniche per la disciplina della costruzione e dell'esercizio di linee elettriche aeree esterne";
- Codice Civile (relativamente alla stipula degli atti di costituzione di servitù);
- D.P.C.M del 8/07/2003 "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz)";
- D.Lgs. n. 285/92 Codice della strada (e successive modificazioni);
- Legge n. 1086 del 5/11/1971 "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica" e successive modificazioni;
- Legge n. 64 del 2/02/1974 "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche" e successive modificazioni;
- Legge n. 10 del 28/01/1977 "Edificabilità dei suoli";
- D.P.R. n. 495 del 16/12/1992 "Regolamento di esecuzione e di attuazione del nuovo codice della strada".

I riferimenti di cui sopra possono non essere esaustivi. Ulteriori disposizioni di legge, norme e deliberazioni in materia, anche se non espressamente richiamati, si considerano applicabili. Qualora le sopra elencate norme tecniche siano modificate o aggiornate, si applicano le norme più recenti. Si applicano inoltre per quanto compatibili con le norme elencate, i documenti tecnici emanati dalle società di distribuzione di energia elettrica riportanti disposizioni applicative per la connessione di impianti ad energia rinnovabili collegati alla rete elettrica.

4. DESCRIZIONE GENERALE DELL'IMPIANTO FOTOVOLTAICO

L'impianto oggetto della presente relazione tecnica ha una potenza di picco, intesa come somma delle potenze nominali dei singoli moduli fotovoltaici scelti per realizzare il generatore fotovoltaico valutate in condizioni STC, pari **44.185,05 kWp** ed una potenza nominale, intesa come somma delle potenze nominali degli inverter scelti in fase di progettazione definitiva, pari a **38.025 kW**.

Si tratta di un impianto di produzione di energia elettrica da fonte solare fotovoltaica, combinato con l'attività di coltivazione agricola, il cui layout elettrico prevede l'utilizzo di inverter multistringa. Per la realizzazione del generatore fotovoltaico, si è scelto di utilizzare moduli fotovoltaici *Longi Solar da 585 Wp*, i quali, tra le tecnologie attualmente disponibili in commercio, presentano rendimenti di conversione più elevati, *premettendo che essi verranno acquistati in funzione della disponibilità e del costo di mercato in sede di realizzazione*.

Il dimensionamento del generatore fotovoltaico è stato eseguito tenendo conto della superficie utile disponibile, dei distanziamenti da mantenere tra filari di moduli per evitare fenomeni di auto-ombreggiamento e degli spazi necessari per l'installazione dei locali di conversione e trasformazione, di consegna e ricezione.

Il numero di moduli necessari per la realizzazione del generatore è pari **75.530**, ed è stato calcolato applicando la seguente relazione:

N moduli = (Pn generatore)/(Pn modulo)

dove:

- Pn generatore è la potenza nominale del generatore fotovoltaico in Wp;
- Pn modulo è la potenza nominale del modulo fotovoltaico, in Wp.

Al fine di massimizzare la producibilità energetica, si è scelto di utilizzare inverter multistringa **SUNGROW da 225 kW nominali**, i quali verranno opportunamente dislocati lungo il campo in modo tale da ottimizzare l'estensione delle linee elettriche di bassa tensione:

Definito il layuot di impianto, il numero di moduli della stringa e il numero di stringhe da collegare in parallelo, sono stati determinati coordinando opportunamente le caratteristiche dei moduli fotovoltaici con quelle degli inverter scelti, rispettando le seguenti 4 condizioni:

- la massima tensione del generatore fotovoltaico deve essere inferiore alla massima tensione di ingresso dell'inverter;
- la massima tensione nel punto di massima potenza del generatore fotovoltaico non deve essere superiore alla massima tensione del sistema MPPT dell'inverter;
- la minima tensione nel punto di massima potenza del generatore fotovoltaico non deve essere inferiore alla minima tensione del sistema MPPT dell'inverter;
- la massima corrente del generatore fotovoltaico non deve essere superiore alla massima corrente in ingresso all'inverter.

Per la verifica delle suddette condizioni sono state applicate le formule di seguito riportate.

AP engineering

Verifica della condizione 1 (massima tensione del generatore FV non superiore alla massima tensione di ingresso dell'inverter)

La massima tensione del generatore fotovoltaico è la tensione a vuoto di stringa calcolata alla minima temperatura di funzionamento dei moduli, in genere assunta pari a:

- 10° C per le zone fredde;

0° C per le zone meridionali e costiere.

La tensione massima del generatore fotovoltaico alla minima temperatura di funzionamento dei moduli si calcola con la seguente espressione:

$$U_{MAX FV}$$
 (θ min) = Ns · U_{MAX} modulo (θ min) [V]

dove Ns è il numero di moduli che costituiscono la stringa, U_{MAX} modulo (θmin) è la tensione massima del singolo modulo alla minima temperatura di funzionamento.

Quest'ultima può essere calcolata con la seguente espressione:

$$U_{MAX}$$
 modulo (θ min) = Uoc (25° C) $-\beta \cdot (25 - \theta$ min)

dove

- Uoc (25°C) è la tensione a vuoto del modulo in condizioni standard il cui valore viene dichiarato dal costruttore;
- β è il coefficiente di variazione della tensione con la temperatura, anch'esso dichiarato dal costruttore.

Deve risultare pertanto:

$$U_{MAX \, FV} \left(\theta \text{min}\right) = \text{Ns} \cdot U_{MAX} \, \text{modulo} \left(\theta \text{min}\right) = \text{Ns} \cdot \left[\, \text{Uoc} \left(25^{\circ}\text{C}\right) - \beta \left(25^{\circ}\theta \text{min}\right)\right] \leq U_{MAX} \, \text{inverter}$$
 essendo Umax inverter la massima tensione in ingresso all'inverter, deducibile dai dati di targa.

Verifica della condizione 2 (la massima tensione nel punto di massima potenza del generatore fotovoltaico non deve essere superiore alla massima tensione del sistema MPPT dell'inverter) La massima tensione del generatore fotovoltaico nel punto di massima potenza rappresenta la tensione di stringa calcolata con irraggiamento pari a $1000W/m^2$, e può essere calcolata con la seguente espressione:

$$U_{MPPT MAX FV}(\theta min.) = Ns \cdot U_{MPPT MAX} modulo (\theta min)$$

dove:

- Ns è il numero di moduli collegati in serie;
- U_{MPPT MAX} modulo (θmin) è la massima tensione del modulo FV nel punto di massima potenza calcolabile nel seguente modo:

 $U_{MPPT MAX}$ modulo (θ min) = UMPPT – $\beta \cdot (25 - \theta$ min)

Committente: Progettista: AP engineering

essendo U_{MPPT} la tensione del modulo in corrispondenza del punto di massima potenza, dichiarata dal costruttore.

Ai fini del corretto coordinamento occorre verificare che:

$$U_{MPPT MAX FV}(\theta min.) = Ns \cdot [UMPPT - \beta \cdot (25 - \theta min)] \le U_{MPPT MAX INVERTER}$$

dove U_{MPPT MAX INVERTER} è la massima tensione del sistema MPPT dell'inverter, deducibile dai dati di targa.

Verifica della condizione 3 (la minima tensione nel punto di massima potenza del generatore fotovoltaico non deve essere inferiore alla minima tensione del sistema MPPT dell'inverter)

La minima tensione del generatore fotovoltaico nel punto di massima potenza è la tensione di stringa calcolata con:

- irraggiamento pari a $1000W/m^2$,
- temperatura θmax pari a 70-80°C.

e può essere calcolata con la seguente espressione:

$$U_{MPPT}$$
 min FV = Ns $\cdot U_{MPPT}$ min modulo

dove:

- Ns è il numero di moduli collegati in serie;
- U_{MPPT} min modulo è la tensione minima del modulo nel punto di massima potenza, calcolabile nel seguente modo:

$$U_{MPPT}$$
 min modulo = U_{MPPT} modulo $-\beta \cdot (25-\theta max)$

Ai fini del corretto coordinamento deve risultare:

$$U_{MPPT}$$
 min FV = Ns · $[U_{MPPT}$ modulo – β · $(25-\theta max)] \ge U_{MPPT}$ min INVERTER

essendo U_{MPPT} min INVERTER la minima tensione nel punto di massima potenza del sistema MPPT dell'inverter, deducibile dai dati di targa.

Verifica della condizione 4 (la massima corrente del generatore fotovoltaico non deve essere superiore alla massima corrente in ingresso all'inverter)

La massima corrente del generatore FV è data dalla somma delle correnti massime erogate da ciascuna stringa in parallelo.

La massima corrente di stringa è calcolabile nel seguente modo:

Istringa,
$$Max = 1.25 \cdot Isc$$

dove:

- Istringa, Max è la massima corrente erogata dalla stringa [A];
- Isc è la corrente di cortocircuito del singolo modulo [A];

Committente:	Progettista:	
ELITE NORTHERN SOLAR S.R.L.	AP engineering	Pag. 11 32

1,25 è un coefficiente di maggiorazione che tiene conto di un aumento della corrente di cortocircuito del modulo a causa di di valori di irraggiamento superiori a 1000W/m².

Per il corretto coordinamento occorre verificare che:

$$Imax FV = Np \cdot 1,25 \cdot Isc \leq Imax Inverter$$

dove:

- Imax FV è la massima corrente in uscita dal generatore fotovoltaico [A];
- Np è il numero di stringhe in parallelo;
- Imax inverter è la massima corrente in ingresso all'inverter [A].

Considerando che le strutture di sostegno dei moduli scelte possono alloggiare fino a 26 moduli, è stato verificato il corretto coordinamento supponendo di realizzare stringhe fotovoltaiche da 26 moduli, ottenendo esito positivo.

Le stringhe fotovoltaiche saranno collegate in parallelo tra loro attraverso appositi quadri di parallelo stringhe, alloggiati direttamente sulle strutture di supporto dei moduli fotovoltaici ed in posizione baricentrica, per quanto possibile, in modo tale da ridurre l'estensione delle linee di campo in corrente continua. Da ciascun quadro di parallelo, partirà una linea in corrente continua la quale arriverà fino al gruppo di conversione DC/AC. Il gruppo di conversione, a sua volta, verrà connesso al trasformatore elevatore BT/MT in modo tale da innalzare la tensione del campo, rendendola compatibile con il valore della tensione nominale del punto di inserimento in rete.

Come riscontrabile dalle tavole di progetto allegate, le cabine elettriche di trasformazione BT/MT della sezione 1, verranno interconnesse tra loro e collegate al quadro elettrico generale di media tensione QG1. Diversamente, le cabine di trasformazione BT/MT delle sezioni 2 e 3, verranno collegate a dei quadri elettrici generali di sezione (QG7 e QG12) a loro volta interconnessi con il quadro elettrico generale QG1. Quanto descritto, viene rappresentato nello schema a blocchi di seguito riportato:

Figura 2: Schema a blocchi impianto fotovoltaico

Nei successivi paragrafi verranno descritte le caratteristiche tecniche dei componenti sopra elencati, fermo restando che per maggiori dettagli si rimanda alle schede tecniche allegate.

REL 05

4.1. Moduli fotovoltaici

Premettendo che i moduli verranno acquistati in funzione della disponibilità e del costo di mercato

<u>in sede di realizzazione</u>, a fini del dimensionamento di massima del generatore fotovoltaico si è scelto di utilizzare moduli Longi Solar da 585 Wp, le cui caratteristiche elettriche, misurate in condizioni standard STC (AM=1,5; E=1000 W/m2; T=25 °C) sono di seguito riportate:

Figura 3: Datasheet moduli fotovoltaici

I moduli saranno assemblati meccanicamente su apposite strutture di sostegno e collegati elettricamente in modo tale da formare **stringhe fotovoltaiche da 26 moduli**.

4.2. Quadri parallelo stringhe

I quadri di parallelo stringhe QPS hanno la funzione di collegare in parallelo le varie stringhe di moduli.

I QPS verranno montati direttamente sulle strutture di supporto dei moduli e saranno equipaggiati con le seguenti apparecchiature:

- N. 1 interruttore di manovra sezionatore con fusibile per ciascuna stringa;
- N. 1 diodo di blocco per ciascuna stringa;
- N.1 sezionatore sotto carico, attraverso cui disconnettere l'intero quadro;
- N.1 scaricatore di sovratensione per ogni polo.

La struttura dei QPS sarà in resina autoestinguente con portina frontale trasparente montata su cerniere e munita di battuta in neoprene. Ciascun quadro sarà provvisto di staffe di ancoraggio e di ingressi e uscite cavi muniti di pressacavo.

Figura 4: tipico quadro di parallelo stringhe

Tutte le apparecchiature saranno accessibili singolarmente per il controllo e l'eventuale asportazione senza necessità di rimuovere quelle adiacenti; le sbarre di collegamento saranno di rame elettrolitico e i cavi unipolari di sezione opportuna.

La morsettiera generata conterrà uno o più contatti dell'impianto di terra, dove saranno collegate tutte le parti metalliche facenti parte del quadro stesso.

I quadri, adatti per l'installazione all'esterno, avranno le seguenti caratteristiche:

- a) materiale antiurto ed autoestinguente;
- b) inalterabilità per temperatura -10 / +50 °C;
- c) grado di protezione IP 65.

I criteri applicati ai fini del dimensionamento elettrico dei vari componenti del quadro parallelo stringhe sono di seguito riportati.

4.2.1. Interruttori di manovra sezionatori IMS con fusibili

Per il corretto dimensionamento degli interruttori di manovra e dei fusibili sono state applicate le condizioni di seguito riportate:

Un IMS
$$\geq$$
 1,2 Uoc stringa = 1,2 \times (\approx 1500) = 1800 V
In IMS \geq 1,25 Isc = 1,25 \times 11,51 = 14,4 A
Un Fusibile \geq 1,2 Uoc stringa = 1,2 \times (\approx 1500) = 1800 V
1,25 Isc \leq In Fusibile \leq Imax = 2 \times Isc
14,4 A \leq In Fusibile \leq 23,04 A

Figura 5: fusibili per la protezione delle stringhe fotovoltaiche

4.2.2. Diodi di blocco

Per il corretto dimensionamento dei diodi di blocco sono state applicate le seguenti condizioni:

Un diodo
$$\geq$$
 2 Uoc stringa = 2 × (≈1500) = 3000 V

In diodo
$$\geq$$
 1,25 Isc = 1,25 \times 11,52 =14,4 A

Figura 6: diodi di blocco

4.2.3. Sezionatore sottocarico

Per il corretto dimensionamento dei diodi di blocco sono state applicate le seguenti condizioni:

Un IMS
$$\geq$$
 1,2 Uoc stringa = 1,2 \times (\approx 1500) = 1800 V

In IMS
$$\geq$$
 N stringhe max \times 1,25 Isc = 19 \times 1,25 \times 11,52 = 273,6 A

4.2.4. Scaricatore di sovratensione

Per il corretto dimensionamento degli scaricatori di sovratensione sono state applicate le seguenti condizioni:

Uc ≥ 1,2 Uoc stringa = 1,2 × (
$$\approx$$
1500) = 1800 V

 $Imax \ge 5kA$

Committente:	Progettista:	
ELITE NORTHERN SOLAR S.R.L.	AP engineering	Pag. 17 32

Figura 7: scaricatori di sovratensione per applicazioni fotovoltaiche

Si fa presente che la scelta dei componenti sopra menzionati, verrà fatta in fase di progettazione esecutiva, a valle dell'ottenimento delle Autorizzazioni necessarie alla costruzione dell'impianto.

4.3. Linee BT in corrente continua

Di seguito vengono riportati i criteri applicati ai fini del dimensionamento elettrico dei cavi della sezione in corrente continua.

In questa fase della progettazione, si prevede di utilizzare <u>cavi solari per la connessione delle</u> <u>stringhe ai quadri di parallelo e per la connessione dei quadri di parallelo agli inverter. Eventuali varianti, saranno adottate in fase di progettazione esecutiva.</u>

Per il dimensionamento dei cavi di stringa è stata considerata una corrente di impiego I₀ pari a:

$$I_b = 1,25 \text{ Isc} = 14,4 \text{ A}$$

Ipotizzando delle condizioni di posa di tipo standard, ovvero cavi direttamente esposti alla luce del sole, la condizione applicata ai fini della determinazione della sezione commerciale è la seguente:

$$lb \le lz = lzo K_1$$

Il coefficiente K₁, applicato per tenere conto di una temperatura di posa differente da quella standard, è stato valutato con la seguente relazione:

$$K_1 = \sqrt{\frac{\theta s - \theta a}{\theta s - \theta o}} = \sqrt{\frac{125 - 80}{125 - 60}} = 0.83$$

In questa fase della progettazione la scelta ricade su un cavo avente le seguenti caratteristiche:

$$S = 1x10mm^2$$

$$Izo = 95 A$$

Committente:	Progettista:	
ELITE NORTHERN SOLAR S.R.L.	AP engineering	Pag. 18 32

Uo/U = 1800V dc /1200V ac

Per quanto attiene ai cavi di collegamento dei quadri elettrici di sottocampo al gruppo di conversione, è stata assunta una <u>corrente di impiego pari alla somma delle massime correnti erogabili dalle stringhe interconnesse in parallelo</u>. Facendo riferimento al caso più sfavorevole ed assumendo le stesse condizioni di posa e di installazione, la scelta potrà ricadere su un cavo avente le caratteristiche di seguito indicate:

 $S = 1x95mm^2$

Izo = 410 A

Uo/U = 1800V dc / 1200V ac

Figura 8: esempi di cavi solari per posa in aria

REL 05

4.4. Inverter

In fase di progettazione definitiva, si è scelto di utilizzare inverter multistringa **Sungrow da 225 kW nominali**, i quali verranno distribuiti lungo il campo fotovoltaico in posizione quanto più possibile baricentrica rispetto alle stringhe fotovoltaiche ad essi afferenti, e montati direttamente sulle strutture di supporto dei moduli. Fermo restando che la scelta adottata potrà subire modifiche in fase di progettazione esecutiva, di seguito viene riportato il datasheet del convertitore scelto:

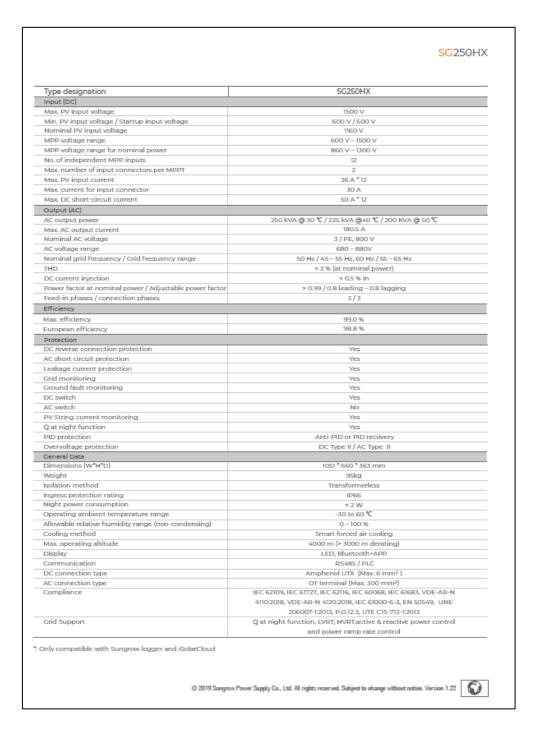


Figura 9: Datasheet inverter

Committente:

4.5. Trasformatori di Campo

Come indicato nello schema elettrico unifilare, l'impianto fotovoltaico è stato suddiviso in **21 sottocampi fotovoltaici**, per ciascuno dei quali è prevista una cabina elettrica di trasformazione BT/MT equipaggiata con un singolo trasformatore di potenza isolato in resina.

Figura 10: trasformatore di potenza isolato in resina

Le macchine sono state dimensionate in funzione della potenza nominale degli inverter sottesi, a mezzo della relazione di seguito riportata:

An trasformatore $\geq \sum An inverter$

I principali dati di targa dei trasformatori previsti sono deducibili dal datasheet di seguito riportato:

Power	Uk *	Po	P _{cc} *	I _o	LwA	LpA	A	В	C	D	Wheel	Weight
kVA	%	W	W	%	dB(A)	dB(A)	mm	mm	mm	mm	mm	Kg
50	6	230	1870	1,4	54	41	1260	670	1525	520	125	850
100	6	320	2250	1	56	43	1290	670	1545	520	125	1020
160	6	460	3190	0,88	57	44	1425	670	1545	520	125	1300
200	6	520	3630	0,85	58	44	1500	820	1600	670	125	1490
250	6	590	4180	0,8	59	45	1500	670	1700	520	125	1670
315	6	710	4980	0,79	60	46	1590	820	1750	670	125	1910
400	6	860	6050	0,78	61	47	1590	820	1850	670	125	2010
500	6	1030	7050	0,76	62	48	1620	820	1880	670	125	2200
630	6	1260	8360	0,75	63	49	1680	820	1980	670	125	2470
800	6	1490	8800	0,71	64	49	1710	1050	2150	820	125	2960
1000	6	1780	9900	0,7	65	50	1830	1050	2300	820	125	3590
1250	6	2070	12100	0,69	67	52	1860	1000	2360	820	150	3890
1600	6	2530	14300	0,67	68	53	2010	1050	2500	820	150	4860
2000	6	2990	17600	0,65	72	56	2100	1300	2595	1070	200	5860
2500	6	3560	20900	0,62	73	57	2250	1300	2625	1070	200	7160
3150	6	4370	24200	0,6	76	60	2340	1300	2805	1070	200	8610
4000	7	6300	26900	0,61	84	68	2520	1300	2835	1070	200	9650
5000	8	6900	35000	0,61	86	70	2610	1300	2835	1070	200	10770

Figura 11: datasheet trasformatori

4.6. Linee elettriche MT di interconnessione delle cabine elettriche di trasformazione BT/MT

Come riscontrabile dallo schema elettrico unifilare, l'impianto fotovoltaico è stato suddiviso in n° 21 sottocampi fotovoltaici, per ciascuno dei quali è prevista la realizzazione di una cabina elettrica di trasformazione BT/MT. Le cabine elettriche di trasformazione, verranno interconnesse tra loro e collegate al quadro elettrico generale di media tensione a 30 kV della Cabina Elettrica di raccolta a mezzo di linee elettriche MT in cavo interrato, secondo l'ordine di seguito riportato:

Linea MT N° 1

Formazione: 3x1x240 mm²

Tipologia di cavo: AREH45EX 18/30 kV

Cabine Interconnesse: 3, 1 e 2.

Linea MT N° 2

Formazione: 3x1x240 mm²

Tipologia di cavo: AREH45EX 18/30 kV Cabine Interconnesse: 17, 18 e 16.

Committente:

Linea MT N° 3

Formazione: 3x1x240 mm²

Tipologia di cavo: AREH45EX 18/30 kV

Cabine Interconnesse: 5, 8 e 7.

Linea MT N° 4

Formazione: 3x1x240 mm²

Tipologia di cavo: AREH45EX 18/30 kV Cabine Interconnesse: 12, 11 e 10.

Linea MT N° 5

Formazione: 3x1x240 mm²

Tipologia di cavo: AREH45EX 18/30 kV Cabine Interconnesse: 13, 15 e 14.

Linea MT N° 6

Formazione: 3x1x185 mm²

Tipologia di cavo: AREH45EX 18/30 kV

Cabine Interconnesse: 19 e 20.

Linea MT N° 7

Formazione: 3x1x185 mm²

Tipologia di cavo: AREH45EX 18/30 kV

Cabine Interconnesse: 21.

Linea MT N° 8

Formazione: 3x1x185 mm²

Tipologia di cavo: AREH45EX 18/30 kV

Cabine Interconnesse: 6 e 9.

Linea MT N° 9

Formazione: 3x1x185 mm²

Tipologia di cavo: AREH45EX 18/30 kV

Cabine Interconnesse: 4.

Linea MT collegamento QG12-QG1

Formazione: 3x1x300 mm²

Tipologia di cavo: AREH45EX 18/30 kV

Linea MT collegamento QG7-QG1

Formazione: 3x1x400mm²

Tipologia di cavo: AREH45EX 18/30 kV.

Il loro dimensionamento è stato condotto applicando il criterio termico, in base al quale il cavo deve avere una sezione tale per cui la sua portata (I_z), nelle condizioni di posa previste dal progetto, sia almeno uguale alla corrente di impego del circuito (I_B).

La portata di un cavo, come è noto, dipende dai parametri che influiscono sul bilancio termico a regime e dunque dalla potenza termica sviluppata (sezione e resistività del conduttore), dalla potenza termica ceduta all'ambiente circostante (condizioni di posa) e dal tipo di isolante. In fase di progettazione definitiva, sono state ipotizzate le seguenti condizioni di posa:

- Profondità di posa pari a 1,2 m;
- Resistività termica del terreno pari a 1 °K m/W;
- Temperatura di posa pari a 20°C;
- Numero di circuiti presenti all'interno della stessa trincea di scavo pari a 2, dato che in parte, la trincea di scavo verrà condivisa (per maggiori dettagli si rimanda alle tavole di progetto allegate);
- Cavi disposti a trifoglio.

In questa fase della progettazione, si è scelto di utilizzare *cavi tripolari ad elica visibile* per posa interrata ARE4H5EX 18/30kV.

Figura 12: cavi MT tripolari ad elica visibile

Definita la tipologia di cavo e le condizioni di posa, ai fini del corretto dimensionamento dei circuiti, è stata applicata la seguente relazione:

$I_B \le I_Z = I_{ZO} K_1 K_2 K_3 K_4$

dove:

- I_B è la corrente di impiego del circuito;
- Iz è la portata del cavo nelle condizioni di posa previste dal progetto;
- Izo è la portata del cavo in condizioni di posa standard, desumibile dalle schede tecniche fornite dai costruttori;
- K₁ è il fattore di correzione della portata da applicare nel caso in cui la temperatura di posa è diversa da 20°C;
- K₂ è il fattore di correzione della portata da applicare nel caso in cui all'interno della stessa trincea di scavo sono presenti più circuiti elettricamente indipendenti;
- K₃ è il fattore di correzione della portata per profondità di posa diversa da 1,2m;
- K₄ è il fattore di correzione della portata da applicare nel caso in cui la resistività termica del terreno sia diversa da 1 °K m/W;

Committente:

Progettista:

Pag. 25 | 32

Il calcolo della corrente di impiego I_B della linea, è stato condotto considerando prudenzialmente la condizione di esercizio più gravosa, che prevede la contemporanea erogazione della potenza apparente nominale dei trasformatori interconnessi, mentre i valori dei coefficienti correttivi della portata sono stati ricavati dalla Norma CEI-UNEL 35026.

Tabella F2.14	Fattore di correzione K	, per temperature de	l terreno diverse da 20 °C	(da norma CEI-UNEL 35026)
---------------	-------------------------	----------------------	----------------------------	---------------------------

	Temperatura	1		Tipo di isola	nte
d	el terreno (°C	()	PVC		EPR-XLPE
	10		1,10		1,07
	15		1,05		1,04
	25		0,95		0,96
	30		0,89		0,93
	35		0,84		0,89
	40		0,77		0,85
	45		0,71		0,80
	50		0,63		0,76
	55		0,55		0,71
	60		0,45		0,65
	65		-		0,60
	70				0,53
	75		-		0,46
	80				0,38

Profondità di posa (m)	0,5 0,8	n amblement	1,2 1,	,5
Fattore di correzione	1,02 1,00	0,98	0,96 0,9	94
lari senza guzina NUZ	emic eminore porraia un el elembra del materiali eto della norma CEI-ID	egione resistiv	Refs coefficients di ri	
North College				
Tabella F2.17 Fattore di correzione Resistività	e K ₄ per differenti valori della resis	tività termica del teri Fattore di cor)26)
	e K ₄ per differenti valori della resis Cavi unipo	Fattore di cor		
Resistività	9.51	Fattore di cor	rezione	
Resistività del terreno (K m/W)	Cavi unipo	Fattore di cor	rezione Cavi multipolari	
Resistività del terreno (K m/W) 1,0	Cavi unipo	Fattore di cor	rezione Cavi multipolari 1,06	
Resistività del terreno (K m/W) 1,0 1,2 1,5	Cavi unipo 1,08 1,05	Fattore di cor	Cavi multipolari 1,06 1,04 1,00	

CAVI MULTIPOLARI IN TU	BI PROTETTIVI INTERRATI (U	IN CAVO PER TUBO))	Change of a
Numero di cavi	.)	Distanza tra tul	bi adiacenti (m)	E OHOUR OIL
	a contatto	0,25	0,5	1
2 Assessable and	0,85	0,90	0,95	0,95
3	0,75	0,85	0,90	0,95
4	0,70	0,80	0,85	0,90
5	0,65	0,80	0,85	0,90
6	0,60	0,80	0,80	0,90
CAVI UNIPOLARI IN TUBI	PROTETTIVI INTERRATI (UN	CAVO PER TUBO)	Lalveje eletak	deili (jäe
Numero di cavi	ntiali serioni manini	Distanza tra tu	bi adiacenti (m)	
	a contatto	0,25	0,5	della c1
2	0,80	0,90	0,90	0,95
adis peni di va di anno	0,70	0,80	0,85	0,90
3				0.00
4	0,65	0,75	0,80	0,90
3 4 5	0,65 0,60	0,75 0,70	0,80	0,90 0,90

Figura 13: fattori correttivi della portata

Committente:	Progettista:	
ELITE NORTHERN SOLAR S.R.L.	AP engineering	Pag. 27 32

Le sezioni scelte, sono state verificate anche dal punto di vista della sollecitazione termica in occasione di guasto, attraverso l'applicazione della relazione di seguito riportata:

$$S \ge (I\sqrt{t})/K$$

dove:

- S è la sezione del cavo scelto;
- I è la corrente di cortocircuito trifase;
- K è un coefficiente che dipende dal tipo di conduttore (rame o alluminio);
- t è il tempo di intervento del dispositivo di protezione, prudenzialmente assunto pari a 1 sec:

ottenendo esito positivo.

Per maggiori dettagli sulle modalità di posa e sul tracciato delle linee, si rimanda alle tavole allegate. La presenza dei cavi sarà segnalata attraverso un nastro di segnalazione posato a 20-30 cm al di sopra del cavo stesso.

Gli eventuali giunti ed i terminali andranno eseguiti a regola d'arte secondo le istruzioni del fabbricante da personale qualificato.

4.7. Quadro elettrico generale di media tensione QG7

Il quadro elettrico di media tensione QG7 verrà installato all'interno della cabina di raccolta di pertinenza e sarà costituito da scomparti predisposti per essere accoppiati tra loro in modo tale da formare un'unica apparecchiatura:

Figura 14: esempio tipico di quadro elettrico di MT

Come riscontrabile dallo schema elettrico unifilare a cui si rimanda per una maggiore comprensione di quanto descritto, il layout del quadro prevede gli scomparti di seguito elencati:

- N° 3 scomparti linea;
- N° 1 scomparto di protezione del trasformatore servizi ausiliari.

Gli scomparti partenza linea MT, ciascuno costituito da un sezionatore di linea ed un interruttore tripolare, saranno dotati delle seguenti protezioni:

- o protezione di massima corrente di fase a due soglie (I>> e I>>>);
- o protezione di massima corrente omopolare a una soglia (I₀>>);
- o protezione direzionale di terra a due soglie (67N.S1 e 67N.S2).

Lo scomparto protezione trasformatore servizi ausiliari costituito da un interruttore di manovra sezionatore con fusibile.

Committente:	Progettista:	
ELITE NORTHERN SOLAR S.R.L.	AP engineering	Pag. 29 32

In generale gli interruttori di linea e l'interruttore generale di media tensione, avranno un potere di interruzione non inferiore a 16 kA e una corrente nominale di 630 A.

In un apposito vano interno al locale Utente, verrà posato in opera un trasformatore MT/BT, per l'alimentazione dei servizi ausiliari, avente le seguenti caratteristiche:

o Potenza nominale: 250kVA;

o Rapporto di trasformazione nominale: 30/0,4kV;

o Tipo di collegamento: Dyn -11.

4.8. Quadro elettrico generale di media tensione QG12

Il quadro elettrico di media tensione QG12 verrà installato all'interno della cabina di raccolta di pertinenza e sarà costituito da scomparti predisposti per essere accoppiati tra loro in modo tale da formare un'unica apparecchiatura:

Figura 15: esempio tipico di quadro elettrico di MT

Come riscontrabile dallo schema elettrico unifilare a cui si rimanda per una maggiore comprensione di quanto descritto, il layout del quadro prevede gli scomparti di seguito elencati:

- N° 3 scomparti linea;
- N° 1 scomparto di protezione del trasformatore servizi ausiliari.

Committente:	Progettista:	
ELITE NORTHERN SOLAR S.R.L.	AP engineering	Pag. 30 32

Gli scomparti partenza linea MT, ciascuno costituito da un sezionatore di linea ed un interruttore tripolare, saranno dotati delle seguenti protezioni:

- protezione di massima corrente di fase a due soglie (I>> e I>>>);
- o protezione di massima corrente omopolare a una soglia (I_O>>);
- o protezione direzionale di terra a due soglie (67N.S1 e 67N.S2).

Lo scomparto protezione trasformatore servizi ausiliari costituito da un interruttore di manovra sezionatore con fusibile.

In generale gli interruttori di linea e l'interruttore generale di media tensione, avranno un potere di interruzione non inferiore a 16 kA e una corrente nominale di 630 A.

In un apposito vano interno al locale Utente, verrà posato in opera un trasformatore MT/BT, per l'alimentazione dei servizi ausiliari, avente le seguenti caratteristiche:

- Potenza nominale: 250kVA;
- o Rapporto di trasformazione nominale: 30/0,4kV;
- o Tipo di collegamento: Dyn -11.

4.9. Quadro elettrico generale di media tensione 30 kV

Il quadro elettrico generale di media tensione verrà installato all'interno della cabina di raccolta, posizionata in prossimità dell'area di accesso al sito, e sarà costituito da scomparti predisposti per essere accoppiati tra loro in modo tale da formare un'unica apparecchiatura:

Figura 16: esempio tipico di quadro elettrico di MT

Come riscontrabile dallo schema elettrico unifilare a cui si rimanda per una maggiore comprensione di quanto descritto, il layout del quadro prevede gli scomparti di seguito elencati:

- N° 8 scomparti linea;
- N° 1 scomparto di protezione del trasformatore servizi ausiliari.

Gli scomparti partenza linea MT, ciascuno costituito da un sezionatore di linea ed un interruttore tripolare, saranno dotati delle seguenti protezioni:

- o protezione di massima corrente di fase a due soglie (I>> e I>>>);
- o protezione di massima corrente omopolare a una soglia (I₀>>);
- o protezione direzionale di terra a due soglie (67N.S1 e 67N.S2).

Lo scomparto protezione trasformatore servizi ausiliari costituito da un interruttore di manovra sezionatore con fusibile.

In generale gli interruttori di linea e l'interruttore generale di media tensione, avranno un potere di interruzione non inferiore a 16 kA e una corrente nominale di 630 A.

In un apposito vano interno al locale Utente, verrà posato in opera un trasformatore MT/BT, per l'alimentazione dei servizi ausiliari, avente le seguenti caratteristiche:

- Potenza nominale: 100kVA;
- Rapporto di trasformazione nominale: 30/0,4kV;
- o Tipo di collegamento: Dyn -11.

4.10. Servizi Ausiliari delle cabine

All'interno dei locali cabine si dovranno prevedere i seguenti servizi di cabina:

- impianto di ventilazione forzata attivato con termostato;
- n. 2 plafoniere 1x36W tutte dotate di kit di emergenza autonomia minima 180 minuti;
- n.2 prese industriali di tipo industriale interbloccate 2P+T e 3P+T da 16;
- n.1 sistema di supervisione e controllo con interfaccia GPRS.

I servizi ausiliari di cabina saranno alimentati a mezzo di una fornitura in bt appositamente dedicata, indipendente dal sistema di generazione locale (trasformatore servizi ausiliari di cabina).