REGIONE DEL VENETO

Comune di Portogruaro e Fossalta di Portogruaro Città Metropolitana di Venezia

PROGETTO DEFINITIVO

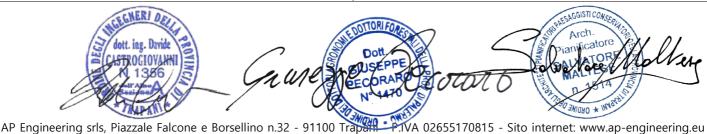
PROGETTO DI UN IMPIANTO FOTOVOLTAICO DA COLLEGARE ALLA RTN CON POTENZA NOMINALE DC 44.185,05 kWp E POTENZA NOMINALE AC 38.025 kW DA REALIZZARSI NEI COMUNI DI PORTOGRUARO E FOSSALTA DI PORTOGRUARO (VE) AREA INDUSTRIALE EASTGATE PARK

DIVVIO		GIO AMBIENTALE
PIAINU	171 1816 /1811 16 /18 /18 /1	UILL AIVIDIFIN AI F

Relazione:	Redatto: Approvato:		Rilasciato:
DEL 12	S. Maltese	AP ENGINEERING	AP ENGINEERING
KEL_15	G. Pecoraro	Foglio A4	Prima Emissione

Progetto: Data: Committente:

IMPIANTO ELITE NORTHERN SOLAR S.R.L. 30/01/2023 **EASTGATE PARK** Via Rosario Livatino, 22 - 84083 Castel San Giorgio (SA)


Cantiere:

Elaborato:

AREA INDUSTRIALE EASTGATE PARK

Progettista:

INDICE

1. PREMESSA	2
2. DESCRIZIONE DEL PROGETTO	4
2.1. Ubicazione del progetto	4
2.2. Caratteristiche generali dell'impianto	8
3. IL PIANO DI MONITORAGGIO AMBIENTALE	11
3.1. Riferimenti normativi comunitari	11
3.2. Riferimenti normativi nazionali	12
4. CONTENUTI DEL PIANO DI MONITORAGGIO AMBIENTALE (PMA)	14
4.1. Fasi della redazione del Piano di Monitoraggio Ambientale	15
4.2. Stazioni e punti di monitoraggio	15
4.3. Articolazione temporale delle attività	16
4.4. Scelta delle componenti ambientali	17
5. COMPONENTE ATMOSFERA	20
5.1. Punti di monitoraggio e modalità di analisi	22
6. COMPONENTE AMBIENTE IDRICO	24
6.1. Acque superficiali	24
6.1.1. Punti di monitoraggio e modalità di analisi	25
6.2. Acque sotterranee	27
7. COMPONENTE SUOLO E SOTTOSUOLO	30
7.1. Punti di monitoraggio e modalità di analisi	31
8. COMPONENTE BIODIVERSITÀ	34
8.1. Punti di monitoraggio e modalità di analisi	36
8.1.1. Vegetazione e flora	36
8.1.2. Fauna	38
9. COMPONENTE AMBIENTALE DEL PATRIMONIO CULTURALE E DEL PAESAGGIO	44
10. AGENTI FISICI	46
10.1. Rumore	46
10.1.1. Punti di monitoraggio e modalità di analisi	47
11. AZIONI DI MONITORAGGIO	50
11.1. Monitoraggio del microclima	50
11.2. Monitoraggio della resilienza ai cambiamenti climatici	50
11.3. Paesaggio e Beni Culturali	50
11.4. Azioni di mitigazione	52
12. CONCLUSIONI	53

REL_13

1. PREMESSA

Il seguente documento costituisce il "Piano di Monitoraggio Ambientale" relativo al Progetto di un impianto per la produzione di energia elettrica con tecnologia fotovoltaica. Tale impianto sarà realizzato nei Comuni di Portogruaro e Fossalta di Portogruaro (VE), all'interno dell'area industriale denominata *Eastgate Park*.

Il soggetto proponente dell'iniziativa è la Società Elite Northern Solar S.r.l., società a responsabilità limitata, costituita il 24 Luglio 2020 le cui quote sono per il 90% di proprietà della Società Millhouse S.r.l. e per il 10% della Società Remant S.r.l. La Società ha sede legale ed operativa in Castel San Giorgio (SA), Via Rosario Livatino n. 22 ed è iscritta nella Sezione Ordinaria della Camera di Commercio Industria Agricoltura ed Artigianato di Salerno, con numero REA SA - 484492, C.F. e P.IVA 05928050656. La Società ha come oggetto sociale lo studio, la progettazione, la costruzione, la gestione e l'esercizio commerciale di impianti per la produzione di energia elettrica, di energia termica e di energia di qualsiasi tipo (quali, a titolo esemplificativo, la cogenerazione, i rifiuti, la fonte solare ed eolica).

L'impianto avrà una potenza complessiva installata di 44.185,05 kWp e l'energia prodotta sarà immessa nella Rete Elettrica di Trasmissione Nazionale.

La Società in data 17 giugno 2022 ha ottenuto una STMG da Terna S.p.a., formalmente accettata dalla stessa ELITE NORTHERN SOLAR SRL in data 06 luglio 2022. La STMG prevede che l'impianto fotovoltaico debba essere collegato in antenna con la sezione a 132 kV della nuova Stazione Elettrica di Smistamento della RTN a 132 kV da inserire in entra-esce alla linea RTN a 132 kV "Latisana-Levada", a cui ricollegare la linea "Zignago-Zignago All" ubicata nel comune di Portogruaro (VE). A seguito del ricevimento della STMG è stato possibile definire puntualmente le opere progettuali da realizzare, che si possono così sintetizzare:

- 1. Impianto fotovoltaico con sistema mobile (tracker monoassiale), della potenza complessiva installata di 44.185,05 kWp, ubicato all'interno dell'Area Industriale denominata Eastgate Park, facente parte dei Comuni di Portogruaro e Fossalta di Portogruaro (VE);
- 2. *Dorsale di collegamento interrata*, in media tensione (30 kV), per il vettoriamento dell'energia elettrica prodotta dall'impianto alla SEU *Eastgate Park*. Il percorso della nuova linea interrata si svilupperà per una lunghezza di circa 6.634 m;
- 3. *Nuova Stazione Elettrica di Trasformazione* (SEU) 30/132 kV, di proprietà della Società, il quale condividerà con eventuali altri produttori lo stallo partenza linea e lo stallo arrivo linea presso la SE "ZIGNAGO", da realizzarsi nel comune di Portogruaro (VE);
- 4. *Elettrodotto a 132 kV condiviso*, per il collegamento tra la futura stazione elettrica di trasformazione 30/132 kV e la nuova Stazione Elettrica RTN "ZIGNAGO", avente una lunghezza di circa 140 m;
- 5. *Nuova Stazione Elettrica RTN 132 kV denominata "ZIGNAGO"*, da ubicare nel comune di Portogruaro (VE), di proprietà del gestore di rete (TERNA S.p.a.).

Le opere di cui al precedente punto 1 e 2 costituiscono il Progetto Definitivo del Campo fotovoltaico Le opere di cui al precedente punto 3 e 4 costituiscono il Progetto Definitivo dell'Impianto di Utenza per la connessione. La Stazione Elettrica RTN 132 kV di cui al punto 5, risulta essere già autorizzata dalla Società Zignago Power S.r.l.

Committente: Progettista:

ELITE NORTHERN SOLAR S.R.L. Progettista:

AP engineering

REL 13

Il Campo fotovoltaico si svilupperà all'interno dell'area denominata "Eastgate Park", il parco integrato logistico, industriale e artigianale più grande del Nord-Est d'Italia. Nota come ex area ENI, interessata tra il 1976 e il 1980 dal progetto di insediamento della raffineria Alto Adriatico, successivamente convertita in deposito per lo stoccaggio e la colorazione degli idrocarburi e, nel 2005, divenuta oggetto di un di Piano di recupero ambientale e di ristrutturazione urbanistica, questa rappresenta un'importante porta di accesso verso l'Est-Europa in quanto si colloca all'interno del corridoio Paneuropeo V, una delle dieci vie di comunicazione dell'Europa centroorientale. L'area ad oggi si presenta già lottizzata ben asservita da strade che dividono i vari lotti industriali, il parco si estenderà su un totale di 12 lotti per una superficie complessiva di circa 75 Ha; i lotti, già spianati, sono attualmente lasciati in stato di abbandono. La Società, nell'ottica di riqualificare le aree e massimizzare l'efficienza dell'impianto a tutela del consumo di suolo, ha scelto di adottare la soluzione impiantistica con tracker monoassiale, in quanto permette di mantenere una distanza significativa tra le strutture di supporto dei moduli fotovoltaici (area libera minima 5,00 m), evitando ombreggiamenti significativi alle strutture che seguono, in particolar modo, alle prime ore del mattino e al calar del sole. Inoltre, la Società ha previsto la realizzazione di una area gioco e due parchi verdi limitrofi all'impianto, in modo da sensibilizzare la cittadinanza alla tutela del bene comune e alla diffusione della produzione di energia da fonti rinnovabili.

Con la soluzione impiantistica proposta, si tenga presente che:

- su 75 Ha di superficie totale, quella effettivamente occupata dai moduli è pari a 21,46 Ha (circa il 28,6% della superficie totale), tale rapporto è dato dal prodotto dell'area del singolo tracker (73,89 m²) per il numero di tracker che compongono l'impianto (2.905);
- la superficie occupata da altre opere di progetto (strade interne all'impianto, cabine di trasformazione e Building Solar Center) è di circa 5,31 Ha;
- l'impianto sarà circondato da una fascia di vegetazione al fine di mitigare l'impatto paesaggistico, avente una larghezza minima di 6 mt;
- la superficie esclusa dall'intervento sarà utilizzata per la creazione di aree a verde;
- copertura permanente con prato sempre verde, per armonizzare l'impianto con il paesaggio limitrofo all'area industriale.

L'intera area è stata opzionata dalla Società, che ha stipulato un contratto preliminare di compravendita con l'attuale proprietario dei lotti oggetto dell'iniziativa.

Il Cavidotto in cavo interrato a 30 kV di collegamento tra il Quadro Generale di Media Tensione del campo fotovoltaico e la Sottostazione di Elettrica Utente, sarà posato per un breve tratto lungo la viabilità esistente a servizio dell'area industriale e per la sua maggiore estensione lungo la SP70, per poi finire la sua corsa nella SEU Eastgate Park, ubicata nel territorio Comunale di Portogruaro foglio di mappa 60, part. 102-98-36.

REL_13

2. DESCRIZIONE DEL PROGETTO

2.1. Ubicazione del progetto

L'area in cui è prevista la realizzazione dell'impianto fotovoltaico ricade all'interno dei Comuni di Portogruaro e Fossalta di Portogruaro (*Città Metropolitana di Venezia*), precisamente all'interno dell'area industriale denominata Eastage Park, oggetto di recupero ambientale della ex Raffineria Alto Adriatico ENI. La superficie, come già accennato, si presenta perfettamente pianeggiante e ben servita dalla viabilità esistente che delimita i lotti dell'area industriale, con quota media di circa 3,0 m s.l.m. L'impianto si svilupperà su un'area estesa per circa di **75 Ha**, dei quali circa il 28,6% (21,46 Ha) sarà effettivamente occupata dai moduli. L'accessibilità ai lotti d'impianto è consentita attraverso l'attuale rete di strade che circoscrive i lotti stessi, mentre le principali strade di confluenza all'area industriale sono la SS14 e la SP70. Inoltre, ogni lotto sarà dotato di un accesso carraio e un accesso pedonale.

Il baricentro dell'impianto è individuato dalle seguenti coordinate:

	Latitudine	Longitudine	h media (s.l.m.)
Parco Fotovoltaico	45° 46′ 01.65″ N	12° 56′ 25.77″ E	3,0 m

Tabella 1 - Coordinate assolute

Figura 1 – Ubicazione area di impianto dal satellite

Il progetto ricade all'interno delle seguenti cartografie e Fogli di Mappa:

- Cartografia I.G.M. in scala 1:50.000, foglio n° 107 Portogruaro;
- Cartografia I.G.M. in scala 1:25.000, tavoletta n° 107 I quadrante Portogruaro
- Carta tecnica regionale CTR, scala 1:10.000, n°107040

Committente:	Progettista:	
ELITE NORTHERN SOLAR S.R.L.	AP engineering	Pag. 4 54

Figura 2 – Inquadramento del sito. IGM in scala 1:25.000, tavoletta n°107 - I quadrante Portogruaro (fuori scala)

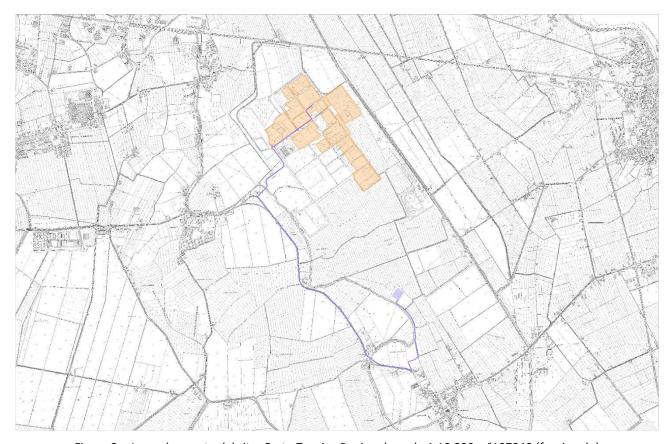


Figura 3 – Inquadramento del sito. Carta Tecnica Regionale scala 1:10.000, n°107040 (fuori scala)

Committente:

Progettista:

Pag. 5 | 54

REL_13

Figura 4 – Inquadramento dell'area e della dorsale di collegamento interrata su ortofoto

L'area, sulla quale è prevista la realizzazione dell'impianto fotovoltaico, è divisa in diversi lotti, nello specifico sono previsti 12 lotti di impianto in altrettanti lotti di terreno. La Società ha provveduto a stipulare e successivamente registrare un contratto preliminare di compravendita con l'attuale proprietà dell'area oggetto dell'iniziativa. Gli estremi catastali dei fondi di terreno oggetto del contratto sono riassunti nella tabella successiva e ricadono interamente all'interno dell'area industriale facente parte dei Comuni di Portogruaro e Fossalta di Portogruaro (VE).

Comune	Foglio	Particella	Estensione	Proprietà	Tipo di contratto
Fossalta di Portogruaro	23	24	09.64.71	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Fossalta di Portogruaro	23	402	00.77.16	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Fossalta di Portogruaro	23	404	00.15.32	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Fossalta di Portogruaro	23	351	03.76.16	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Fossalta di Portogruaro	23	352	02.57.70	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Fossalta di Portogruaro	23	353	04.72.29	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Fossalta di Portogruaro	23	360	01.32.49	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA

Committente:

ELITE NORTHERN SOLAR S.R.L.

Pag. 6 | 54

PROGETTO DI UN IMPIANTO FOTOVOLTAICO DA COLLEGARE ALLA RTN CON POTENZA NOMINALE DC 44.185,05 kWp E POTENZA NOMINALE AC 38.025 kW, DA REALIZZARSI NEI COMUNI DI PORTOGRUARO E FOSSALTA DI PORTOGRUARO (VE) – AREA INDUSTRIALE EASTGATE PARK

PIANO DI MONITO	RAGGIO AMBIE	NTALE			REL_13
Fossalta di Portogruaro	23	378	02.28.16	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Fossalta di Portogruaro	23	382	00.54.20	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Fossalta di Portogruaro	23	385	00.60.19	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Fossalta di Portogruaro	23	387	01.10.88	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Fossalta di Portogruaro	23	399	02.06.68	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Fossalta di Portogruaro	23	410	00.07.10	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Fossalta di Portogruaro	23	411	00.14.51	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Fossalta di Portogruaro	23	412	01.22.32	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Fossalta di Portogruaro	23	113	01.83.80	AGRICOLA LUIGI DI ANDRETTA LUIGI & C. S.S. SOCIETA' AGRICOLA	COMPRAVENDITA
Portogruaro	55	125	01.03.50	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Portogruaro	55	198	08.12.50	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Portogruaro	55	242	01.26.00	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Portogruaro	55	243	01.60.60	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Portogruaro	55	284	06.03.05	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Portogruaro	55	70	00.08.30	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Portogruaro	55	72	00.10.10	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Portogruaro	55	121	00.00.65	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Portogruaro	55	220	01.91.46	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Portogruaro	55	281	00.01.10	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Portogruaro	55	195	00.21.81	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Portogruaro	55	196	00.46.34	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA
Portogruaro	56	36	20.55.75	SPAZIO INDUSTRIALE – FONDO COMUNE DI INVESTIMENTO IMMOBILIARE DI TIPO CHIUSO	COMPRAVENDITA

Tabella 2 – Estremi catastali

Pertanto, la superficie totale del terreno in cui è prevista la realizzazione del campo fotovoltaico è pari a **74 Ha, 24 are, 83 centiare.**

Committente:	Progettista:	
ELITE NORTHERN SOLAR S.R.L.	AP engineering	Pag. 7 54

REL_13

2.2. Caratteristiche generali dell'impianto

Il *layout di impianto*, compresa la disposizione delle strutture di sostegno dei moduli fotovoltaici e delle apparecchiature elettriche all'interno dell'area identificata, è stata determinata sulla base di diversi criteri, conciliando il massimo sfruttamento dell'energia solare incidente con il rispetto dei vincoli paesaggistici e territoriali, in modo da ottenere un'architettura perfettamente contestualizzata con il paesaggio che circonda l'impianto.

In fase di progettazione si è pertanto tenuto conto delle seguenti necessità:

- Realizzare una viabilità interna lungo tutto il confine del campo, avente una larghezza minima di 4 mt, in modo da rispettare una distanza minima di 13 m tra il confine stesso e le strutture di sostegno dei moduli fotovoltaici, in alcuni punti tale distanza supera i 100 mt;
- Installare delle strutture portamoduli (tracker) che si adattano perfettamente all'orografia del terreno, in modo da evitare lavori di movimento terra;
- Realizzare delle piazzuole interne al campo di superficie adeguata per eventuale installazione future di sistemi di accumulo (storage lab);
- Favorire il pascolo apistico, lasciando in terreno in uno stato di sempre verde;
- Ridurre la superficie occupata dai moduli fotovoltaici, utilizzando moduli ad alta resa;
- Installare 4 colonnine di ricarica 22 kW per la ricarica di automobili, sempre nell'ottica di massimizzare l'integrazione dell'impianto nel contesto di tutela ambientale.
- Realizzare due parchi a verde aperti al pubblico, in modo da avvicinare e sensibilizzare i
 cittadini alle problematiche legate al cambiamento climatico e alle soluzioni adottabili
 grazie agli impianti rinnovabili, creando anche una piccola area giochi per i più piccoli;
- Realizzare un edificio di controllo dell'impianto denominato Building Solar Center, che sia di tipo polifunzionale, infatti, l'edificio è stato concepito per ospitare eventi dedicati alle innovazioni e alla ricerca in materia di rinnovabili, incontri didattici e le visite guidate che coinvolgono le scuole, istituzioni e aziende che intendono restare aggiornati rispetto ai temi della transizione ecologica.

Il Campo, nel dettaglio è diviso nel seguente modo:

DATI SOTTOCAMPI

Descrizione	N. tracker	N. moduli	Pdc (kWp)	Pac (kWp)	SANGROW - SG250HX - V113
Sotto campo 1	47	1.222	714,87	675,00	n.3 Inverter
Sotto campo 2	163	4.238	2.479,23	2.025,00	n.9 Inverter
Sotto campo 3	143	3.718	2.175,03	1.800,00	n.8 Inverter
Sotto campo 4	213	5.538	3.239,73	2.700,00	n.12 Inverter
Sotto campo 5	92	2.392	1.399,32	1.125,00	n.5 Inverter
Sotto campo 6	59	1.534	897,39	900,00	n.4 Inverter
Sotto campo 7	136	3.536	2.068,56	1.800,00	n.8 Inverter
Sotto campo 8	159	4.134	2.418,39	2.025,00	n.9 Inverter
Sotto campo 9	89	2.314	1.353,69	1.125,00	n.5 Inverter
Sotto campo 10	75	1.950	1.140,75	900,00	n.4 Inverter
Sotto campo 11	153	3.978	2.327,13	2.025,00	n.9 Inverter
Sotto campo 12	150	3.900	2.281,50	2.025,00	n.9 Inverter
Sotto campo 13	144	3.744	2.190,24	2.025,00	n.9 Inverter

Committente:

Progettista:

PIANO DI MONITORAGGIO	AMBIENTALE				REL_13
Sotto campo 14	144	3.744	2.190,24	2.025,00	n.9 Inverter
Sotto campo 15	160	4.160	2.433,60	2.025,00	n.10 Inverter
Sotto campo 16	153	3.978	2.327,13	2.025,00	n.9 Inverter
Sotto campo 17	153	3.978	2.327,13	2.025,00	n.9 Inverter
Sotto campo 18	131	3.406	1.992,51	1.800,00	n.8 Inverter
Sotto campo 19	144	3.744	2.190,24	1.800,00	n.8 Inverter
Sotto campo 20	198	5.418	3.011,58	2.475,00	n.11 Inverter
Sotto campo 21	199	5.174	3.026,79	2.475,00	n.11 Inverter
Totale	2.905	75.530	44.185,05	38.025,00	n.169 inverter

Ogni stringa è composta da 26 moduli, per un totale di 75.530 moduli. I moduli previsti di tipo monocristallino, hanno una potenza nominale di 585 Wp, con un'efficienza di conversione del 22,60%. Le strutture di sostegno dei moduli saranno disposte in file parallele con asse in direzione Nord-Sud, ad una distanza di interasse pari a 9,80 m. Le strutture saranno equipaggiate con un sistema tracker che permetterà di ruotare ± 55° la struttura porta moduli durante la giornata, posizionando i pannelli nella perfetta angolazione rispetto ai raggi solari.

Figura 5 – Layout impianto fotovoltaico

REL 13

Schematicamente, l'impianto fotovoltaico è dunque caratterizzato dai seguenti elementi:

- N° 21 unità di generazione, costituite da 75.530 moduli fotovoltaici. La potenza totale installata è pari a 44.185,05 kWp;
- N° 169 unità di conversione da 225 kW, dove avviene la conversione DC/AC;
- N° 21 trasformatori elevatori 0,4/30 kV, dove avviene il cambio di tensione da bassa il media;
- N°2 cabine di raccolta, dove viene convogliata l'energia prodotta dai sottocampi 10-11-12-13-14-15-19-20-21;
- N° 3 cabina quadro generale di Media Tensione;
- N° 1 Edificio Controllo (Building Solar Center);

Impianto elettrico e impianto di utenza, costituito da:

- N° 1 rete elettrica interna a bassa tensione per l'alimentazione dei servizi ausiliari di centrale (controllo, sicurezza, illuminazione, TVCC, forza motrice ecc.);
- N° 1 rete telematica interna di monitoraggio in fibra ottica e/o RS485 per il controllo dell'impianto fotovoltaico (parametri elettrici relativi alla generazione di energia) e trasmissione dati via modem o via satellite;
- N° 1 rete di distribuzione dell'energia elettrica in MT in cavidotto interrato costituito da un cavo a 30 kV per la connessione del Campo fotovoltaico alla Sottostazione di Trasformazione AT/MT;
- N° 1 Sottostazione di trasformazione MT/AT e relativo collegamento alla RTN (si faccia riferimento al progetto definitivo dell'Impianto di Utenza);
- N° 1 Sistema di sbarre AT condiviso con altri produttori;
- N° 1 Cavidotto AT 132 kV condiviso con altri produttori;
- N° 1 Stallo arrivo linea a 132 kV condiviso con altri produttori.

Opere civili di servizio, costituite principalmente da basamenti

REL 13

3. IL PIANO DI MONITORAGGIO AMBIENTALE

Le Linee Guida per la predisposizione del Progetto di Monitoraggio Ambientale, redatte con la collaborazione dell'ISPRA e del Ministero dei Beni e delle Attività Culturali e del Turismo, sono finalizzate a:

- fornire indicazioni metodologiche ed operative per la predisposizione del Progetto di Monitoraggio Ambientale (PMA);
- stabilire criteri e metodologie omogenei per la predisposizione dei PMA affinché, nel rispetto delle specificità dei contesti progettuali ed ambientali, sia possibile il confronto dei dati, anche ai fini del riutilizzo.

Con l'entrata in vigore della Parte Seconda del D.Lgs. 152/2006 e ss.mm.ii. il monitoraggio ambientale è entrato a far parte integrante del processo di VIA assumendo, ai sensi dell'art.28, la funzione di strumento capace di fornire la reale "misura" dell'evoluzione dello stato dell'ambiente nelle diverse fasi di attuazione di un progetto e soprattutto di fornire i necessari "segnali" per attivare azioni correttive nel caso in cui le risposte ambientali non siano rispondenti alle previsioni effettuate nell'ambito della VIA.

Nelle more dell'emanazione di nuove norme tecniche in materia di valutazione ambientale ai sensi dell'art.34 del D.Lgs. 152/2006 e ss.mm.ii., il documento costituisce atto di indirizzo per lo svolgimento delle procedure di Valutazione d'Impatto Ambientale, in attuazione delle disposizioni contenute all'art.28 del D. Lgs.152/2006 e ss.mm.ii.

Pertanto, le Linee Guida citate, sono alla base di riferimento del presente studio redatto per il progetto dell'impianto fotovoltaico in oggetto.

3.1. Riferimenti normativi comunitari

Nell'ambito delle direttive comunitarie che si attuano in forma coordinata o integrata alla VIA (art.10 D.Lgs.152/2006 e ss.mm.ii.), per prima la direttiva 96/61/CE sulla prevenzione e la riduzione integrate dell'inquinamento per talune attività industriali ed agricole (sostituita dalla direttiva 2008/1/CE ed oggi confluita nella direttiva 2010/75/UE sulle emissioni industriali) e successivamente la direttiva 2001/42/CE sulla Valutazione Ambientale Strategica di piani e programmi, hanno introdotto il MA rispettivamente come parte integrante del processo di Autorizzazione Integrata Ambientale (AIA) per l'esercizio di un impianto e di controllo sugli impatti significativi sull'ambiente derivanti dall'attuazione dei piani e dei programmi.

Come già consolidato a livello tecnico-scientifico, il monitoraggio ambientale nella VIA rappresenta l'insieme di attività da porre in essere successivamente alla fase decisionale (*EIA follow-up 4*) finalizzate alla verifica dei risultati attesi dal processo di VIA ed a concretizzare la sua reale efficacia attraverso dati quali-quantitativi misurabili (parametri), evitando che l'intero processo si riduca ad una mera procedura amministrativa e ad un esercizio formale. Il follow-up comprende le attività riconducibili sostanzialmente alle seguenti quattro principali fasi:

1. *Monitoraggio* – l'insieme di attività e di dati ambientali caratterizzanti le fasi antecedenti e successive la realizzazione del progetto;

Committente:

Progettista:

Pag.

Pag.

REL 13

- 2. Valutazione la valutazione della conformità con le norme, le previsioni o aspettative delle prestazioni ambientali del progetto;
- 3. *Gestione* la definizione delle azioni appropriate da intraprendere in risposta ai problemi derivanti dalle attività di monitoraggio e di valutazione;
- 4. Comunicazione l'informazione ai diversi soggetti coinvolti sui risultati delle attività di monitoraggio, valutazione e gestione.

3.2. Riferimenti normativi nazionali

D.Lgs.152/2006 e s.m.i.

Il DPCM 27.12.1988 recante "Norme tecniche per la redazione degli Studi di Impatto Ambientale", tutt'ora in vigore in virtù dell'art.34, comma 1 del D.Lgs.152/2006 e s.m.i., nelle more dell'emanazione di nuove norme tecniche, prevede che "...la definizione degli strumenti di gestione e di controllo e, ove necessario, le reti di monitoraggio ambientale, documentando la localizzazione dei punti di misura e i parametri ritenuti opportuni" costituisca parte integrante del Quadro di Riferimento Ambientale (Art. 5, lettera e).

Il D. Lgs.152/2006 e s.m.i. rafforza la finalità del monitoraggio ambientale attribuendo ad esso la valenza di vera e propria fase del processo di VIA che si attua successivamente all'informazione sulla decisione (art.19, comma 1, lettera h). Il monitoraggio ambientale è individuato nella Parte Seconda del D. Lgs.152/2006 e s.m.i., (art.22, lettera e); punto 5-bis dell'Allegato VII) come "descrizione delle misure previste per il monitoraggio" facente parte dei contenuti dello Studio di Impatto Ambientale ed è quindi documentato dal proponente nell'ambito delle analisi e delle valutazioni contenute nello stesso SIA.

Il monitoraggio è infine parte integrante del provvedimento di VIA (art.28 D.Lgs.152/2006 e s.m.i.) che "contiene ogni opportuna indicazione per la progettazione e lo svolgimento delle attività di controllo e monitoraggio degli impatti".

In analogia alla VAS, il processo di VIA non si conclude quindi con la decisione dell'autorità competente ma prosegue con il monitoraggio ambientale per il quale il citato art.28 individua le seguenti finalità:

- controllo degli impatti ambientali significativi provocati dalle opere approvate,
- corrispondenza alle prescrizioni espresse sulla compatibilità ambientale dell'opera,
- individuazione tempestiva degli impatti negativi imprevisti per consentire all'autorità competente di adottare le opportune misure correttive che, nel caso di impatti negativi ulteriori e diversi, ovvero di entità significativamente superiore rispetto a quelli previsti e valutati nel provvedimento di valutazione dell'impatto ambientale, possono comportare, a titolo cautelativo, la modifica del provvedimento rilasciato o la sospensione dei lavori o delle attività autorizzate,
- informazione al pubblico sulle modalità di svolgimento del monitoraggio, sui risultati e sulle eventuali misure correttive adottate, attraverso i siti web dell'autorità competente e delle agenzie interessate.

Committente: Progettista: AP engineering

REL_13

D.Lgs.163/2006 e s.m.i.

Il D. Lgs.163/2006 e s.m.i regolamenta la VIA per le opere strategiche e di preminente interesse nazionale (Legge Obiettivo 443/2001) e definisce per i diversi livelli di progettazione (preliminare, definitiva, esecutiva) i contenuti specifici del monitoraggio ambientale.

Ai sensi dell'Allegato XXI (Sezione II) al D. Lgs.163/2006 e s.m.i.:

- il Progetto di Monitoraggio Ambientale costituisce parte integrante del progetto definitivo (art.8, comma 2, lettera g),
- la relazione generale del progetto definitivo "...riferisce in merito ai criteri in base ai quali si è operato per la redazione del progetto di monitoraggio ambientale con particolare riferimento per ciascun componente impattata e con la motivazione per l'eventuale esclusione di taluna di esse" (art.9, comma 2, lettera i),
- sono definiti i criteri per la redazione del PMA per le opere soggette a VIA in sede statale, e comunque ove richiesto (art.10, comma 3):
 - a) il progetto di monitoraggio ambientale (PMA) deve illustrare i contenuti, i criteri, le metodologie, l'organizzazione e le risorse che saranno impiegate successivamente per attuare il piano di monitoraggio ambientale (PMA), definito come l'insieme dei controlli da effettuare attraverso la rilevazione e misurazione nel tempo di determinati parametri biologici, chimici e fisici che caratterizzano le componenti ambientali impattate dalla realizzazione e/o dall'esercizio delle opere;
 - b) il progetto di monitoraggio ambientale dovrà uniformarsi ai disposti del citato D.M. 1° aprile 2004 del Ministro dell'ambiente e della tutela del territorio; in particolare dovranno essere adottati le tecnologie ed i sistemi innovativi ivi previsti. Secondo quanto stabilito dalle linee guida nella redazione del PMA si devono seguire le seguenti fasi progettuali:
 - analisi del documento di riferimento e pianificazione delle attività di progettazione;
 - definizione del quadro informativo esistente;
 - identificazione ed aggiornamento dei riferimenti normativi e bibliografici;
 - scelta delle componenti ambientali;
 - scelta delle aree da monitorare;
 - strutturazione delle informazioni;
 - programmazione delle attività.

Per consentire una più efficace attuazione di quanto previsto dalla disciplina di VIA delle opere strategiche e considerata la rilevanza territoriale e ambientale delle stesse, l'allora "Commissione Speciale VIA" ha predisposto nel 2003, e successivamente aggiornato nel 2007, le "Linee Guida per il Progetto di Monitoraggio Ambientale (PMA) delle infrastrutture strategiche ed insediamenti produttivi di cui al D.Lgs. 163/2006" che rappresentano un utile documento di riferimento tecnico per la predisposizione del PMA da parte dei proponenti e per consentire alla Commissione stessa di assolvere con maggiore efficacia ai propri compiti (art.185 del D.Lgs.163/2006 e s.m.i.).

REL_13

4. CONTENUTI DEL PIANO DI MONITORAGGIO AMBIENTALE (PMA)

Gli obiettivi del Piano di Monitoraggio Ambientale sono:

- Verificare la conformità alle previsioni di impatto individuate nello Studio di Impatto Ambientale (SIA) per quanto attiene le fasi di costruzione e di esercizio dell'opera;
- Effettuare misure nelle fasi ante-operam, in corso d'opera e post-operam, al fine di documentare l'evolversi della situazione ambientale;
- Garantire, durante la fase di costruzione, il pieno controllo della situazione ambientale, al fine di rilevare prontamente eventuali situazioni non previste e/o criticità ambientali e di predisporre ed attuare tempestivamente le necessarie azioni correttive.
- Verificare l'efficacia delle misure previste per evitare, ridurre ed eventualmente compensare effetti negativi significativi del progetto sull'ambiente;
- Effettuare, nelle fasi di costruzione e di esercizio, gli opportuni controlli sull'esatto adempimento dei contenuti e delle eventuali prescrizioni e raccomandazioni formulate dagli Enti competenti;
- Predisporre ulteriori interventi di mitigazione che dovessero risultare necessari in seguito agli esiti del monitoraggio stesso, provvedendo anche alla loro esecuzione.

Per la redazione del Piano di Monitoraggio ambientale, inoltre, si devono soddisfare i seguenti requisiti:

- Programmazione dettagliata spazio-temporale delle attività di monitoraggio;
- Modalità di rilevamento e uso di strumentazione coerenti con la normativa vigente;
- Tempestività di segnalazione di eventuali insufficienze e anomalie;
- Utilizzo di metodologie validate e di comprovato rigore tecnico-scientifico;
- Individuazione di parametri ed indicatori facilmente misurabili ed affidabili, nonché rappresentativi delle varie situazioni ambientali;
- Scelta del numero, delle tipologie e della distribuzione territoriale delle stazioni di misura in modo rappresentativo delle possibili interferenze e della sensibilità/criticità dell'ambiente interessato;
- Frequenza delle misure adeguata alle componenti che si intendono monitorare;
- Restituzione periodica programmata delle informazioni e dei dati in maniera organica, strutturata e georiferita;
- Agevole fruizione delle informazioni attraverso un'adeguata struttura di banca dati.

Tali obiettivi verranno raggiunti attraverso il monitoraggio dei parametri microclimatici (temperatura, umidità, velocità e direzione del vento, pressione atmosferica, precipitazione e radiazione solare) nonché dei parametri chimico-fisici e microbiologici del suolo (tessitura, pH, calcare totale, calcare attivo, sostanza organica, CSC, N totale, P assimilabile, conduttività elettrica, Ca scambiabile, K scambiabile, Mg scambiabile, rapporto Mg/K, Carbonio e Azoto della biomassa microbica) che descriva metodi di analisi, ubicazione dei punti di misura e frequenza delle rilevazioni durante la vita utile dell'impianto, e preveda una caratterizzazione del sito anteoperam.

Committente:	Progettista:
ELITE NORTHERN SOLAR S.R.L.	AP engineering

REL_13

4.1. Fasi della redazione del Piano di Monitoraggio Ambientale

Per la corretta redazione del Piano di Monitoraggio Ambientale relativo all'impianto fotovoltaico in Progetto si provvederà alla:

- verifica dello scenario ambientale di riferimento utilizzato nello SIA e caratterizzazione delle condizioni ambientali (scenario di base) da confrontare con le successive fasi di monitoraggio mediante la rilevazione dei parametri caratterizzanti lo stato delle componenti ambientali e le relative tendenze in atto prima dell'avvio dei lavori per la realizzazione dell'opera (monitoraggio ante operam o monitoraggio dello scenario di base);
- 2. verifica delle previsioni degli impatti ambientali contenute nello SIA e delle variazioni dello scenario di base mediante la rilevazione dei parametri presi a riferimento per le diverse componenti ambientali soggette ad un impatto significativo a seguito dell'attuazione dell'opera nelle sue diverse fasi (monitoraggio degli effetti ambientali in corso d'opera e post-operam o monitoraggio degli impatti ambientali); tali attività consentiranno di:
 - a) verificare l'efficacia delle misure di mitigazione previste nello SIA per ridurre la significatività degli impatti ambientali individuati in fase di cantiere e di esercizio;
 - b) individuare eventuali impatti ambientali non previsti o di entità superiore rispetto alle previsioni contenute nello SIA e programmare le opportune misure correttive per la loro gestione/risoluzione.
- 3. comunicazione degli esiti delle attività di cui ai punti precedenti (alle autorità preposte ad eventuali controlli, al pubblico).

4.2. Stazioni e punti di monitoraggio

All'interno dell'area di indagine dovranno essere localizzate le stazioni/punti di monitoraggio necessarie alla caratterizzazione dello stato quali-quantitativo di ciascuna componente/fattore ambientale nelle diverse fasi, ante operam, corso d'opera e post operam.

All'interno dell'area di indagine la localizzazione e il numero delle stazioni/punti di monitoraggio dovrà essere effettuata sulla base dei seguenti criteri generali ed integrata con i criteri specifici relativi alle singole componenti/fattori ambientali riportati al par. 4.4. del presente documento:

- Significatività/entità degli impatti attesi (ordine di grandezza qualitativo e quantitativo, probabilità, durata, frequenza, reversibilità, complessità);
- Estensione territoriale delle aree di indagine;
- Sensibilità del contesto ambientale e territoriale (presenza di ricettori "sensibili");
- Criticità del contesto ambientale e territoriale (presenza di condizioni di degrado ambientale, in atto o potenziali, quali ad esempio il superamento di soglie e valori limite di determinati parametri ambientali in relazione agli obiettivi di qualità stabiliti dalla pertinente normativa);
- Presenza di altre reti/stazioni di monitoraggio ambientale gestite da soggetti pubblici o privati che forniscono dati sullo stato quali-quantitativo della componente/fattore ambientale monitorata e costituiscono un valido riferimento per l'analisi e la valutazione dei dati acquisiti nel corso del MA;

Committente:

Progettista:

Pag. 15 | 54

REL_13

Presenza di pressioni ambientali non imputabili all'attuazione dell'opera (cantiere, esercizio) che possono interferire con i risultati dei monitoraggi ambientali e che devono essere, ove possibile, evitate o debitamente considerate durante l'analisi e la valutazione dei dati acquisiti nel corso del MA (es. presenza di derivazioni o immissioni in un corso d'acqua a monte della stazione scelta per il monitoraggio di acque superficiali); la loro individuazione preventiva consente di non comprometterne gli esiti e la validità del monitoraggio effettuato e di correlare a diverse possibili cause esterne (determinanti e pressioni) gli esiti del monitoraggio stesso (valori dei parametri).

Uno degli aspetti più complessi da affrontare da parte di chi analizza e valuta i dati derivanti dal MA risiede infatti nella capacità di discriminare dagli esiti del monitoraggio (valori dei parametri) la presenza di pressioni ambientali "esterne" sia di origine antropica che naturale non imputabili alla realizzazione/esercizio dell'opera, tale aspetto risulta di particolare importanza in relazione all'insorgenza di condizioni anomale o critiche inattese che impongono la necessità di intraprendere azioni correttive, previa verifica dell'effettivo riconoscimento delle cause delle "anomalie" riscontrate. Da ciò discende la necessità di acquisire ogni informazione utile sulla presenza di potenziali sorgenti di impatto nell'area di indagine (localizzate/diffuse, stabili/temporanee) e di monitorare costantemente tali "cause esterne" per operare un efficace confronto tra i dati risultanti dal MA e le possibili cause che generano condizioni anomale inattese. Le scelte localizzative e quantitative delle stazioni/punti di monitoraggio dovranno essere adeguatamente motivate e coerenti con le analisi e le valutazioni contenute nel Progetto e nello SIA, e con le eventuali indagini propedeutiche alla predisposizione del PMA (ad es. indagini in situ per verificare la presenza di eventuali fattori o vincoli di varia natura che possono condizionare le scelte da operare).

4.3. Articolazione temporale delle attività

Le attività di monitoraggio descritte nel PMA dovranno essere articolate nelle diverse fasi temporali, come riportate nella seguente Tabella:

Fase	Descrizione
ANTE- OPERAM (AO)	Periodo che precede l'avvio delle attività di cantiere e che quindi può essere avviato nelle fasi autorizzative successive all'emanazione del provvedimento di VIA.
IN CORSO D'OPERA (CO)	Periodo che comprende le attività di cantiere per la realizzazione dell'opera quali l'allestimento del cantiere, le specifiche lavorazioni per la realizzazione dell'opera, lo smantellamento del cantiere, il ripristino dei luoghi.
POST- OPERAM (PO)	Periodo che comprende le fasi di esercizio e di eventuale dismissione dell'opera, riferibile quindi: al periodo che precede l'entrata in esercizio dell'opera nel suo assetto funzionale definitivo (pre-esercizio), all' esercizio dell'opera, eventualmente articolato a sua volta in diversi scenari temporali di breve/medio/lungo periodo, alle attività di cantiere per la dismissione dell'opera alla fine del suo ciclo di vita

Committente.
ELITE NORTHERN SOLAR S.R.L.

REL_13

4.4. Scelta delle componenti ambientali

Le componenti/fattori ambientali ritenuti significativi, che sono stati analizzati all'interno della presente relazione, sono così intese ed articolate:

- Atmosfera;
- Ambiente idrico;
- Suolo e sottosuolo;
- Biodiversità;
- Agenti fisici.

La scelta dei parametri ambientali (chimici, fisici, biologici) che caratterizzano lo stato qualiquantitativo di ciascuna componente/fattore ambientale, rappresenta l'elemento più rilevante per il raggiungimento degli obiettivi del MA e deve essere focalizzata sui parametri effettivamente significativi per il controllo degli impatti ambientali attesi.

Per ciascun parametro analitico individuato per caratterizzare sia lo scenario di base delle diverse componenti/fattori ambientali (monitoraggio ante operam) che gli effetti ambientali attesi (monitoraggio in corso d'opera e post operam) il PMA indicherà:

- 1. Valori limite previsti dalla pertinente normativa di settore, ove esistenti; in assenza di termini di riferimento saranno indicati i criteri e delle metodologie utilizzati per l'attribuzione di valori standard quali-quantitativi; per questi ultimi casi (generalmente riferibili alle componenti ambientali Vegetazione, Flora, Fauna, Ecosistemi, Paesaggio e beni culturali) si evidenzia la necessità di esplicitare e documentare esaustivamente le metodiche utilizzate in quanto i risultati dei monitoraggi e le relative valutazioni risultano fortemente condizionate dall'approccio metodologico utilizzato;
- 2. Range di naturale variabilità stabiliti in base ai dati contenuti nello SIA, integrati, ove opportuno, da serie storiche di dati, dati desunti da studi ed indagini a carattere locale, analisi delle condizioni a contorno (sia di carattere antropico che naturale) che possono rappresentare nel corso del MA cause di variazioni e scostamenti dai valori previsti nell'ambito dello SIA. La disponibilità di solide basi di dati consente di definire con maggiore efficacia il range di naturale di variabilità di un parametro nello specifico contesto ambientale ed antropico che rappresenta lo scenario di base con cui confrontare i risultati del MA ante operam e fornire elementi utili per la valutazione del contribuito effettivamente attribuibile all'opera rispetto ai valori di "fondo" in assenza della stessa;
- 3. **Valori "soglia"** derivanti dalla valutazione degli impatti ambientali effettuata nell'ambito dello SIA. Tali valori rappresentano i termini di riferimento da confrontare con i valori rilevati con il monitoraggio ambientale in corso d'opera e post operam al fine di:
 - Verificare la correttezza delle stime effettuate nello SIA e l'efficacia delle eventuali misure di mitigazione previste;
 - Individuare eventuali condizioni "anomale" indicatrici di potenziali situazioni critiche in atto, non necessariamente attribuibili all'opera ma meritevoli di adeguati approfondimenti volti ad accertarne le cause e/o di eventuali interventi correttivi.
- 4. **Metodologie analitiche di riferimento** per il campionamento e l'analisi;

REL_13

- 5. Metodologie di controllo dell'affidabilità dei dati rilevati: i dati grezzi rilevati devono risultare significativi in relazione all'obiettivo che si prefigge il MA ed è pertanto necessario stabilire procedure specifiche per ciascuna componente/fattore ambientale che regolamentano le operazioni di validazione dei dati in relazione alle condizioni a contorno; le metodologie possono discendere da standard codificati a livello normativo ovvero da specifiche procedure ad hoc, standardizzate e ripetibili, che devono essere chiaramente stabilite nell'ambito di uno specifico "protocollo operativo" in cui sono indicate, oltre alle modalità operative, i ruoli e le responsabilità di ciascuna figura facente parte del gruppo di lavoro preposto al MA, eventualmente integrato da altri soggetti esterni (es. audit da parte di soggetti terzi con compiti di sorveglianza e controllo quali ARPA, Osservatori Ambientali, ecc.). Particolare importanza per la validazione dei dati risiede nell'accuratezza dell'operatore che effettua il monitoraggio nel corredare il campionamento e le analisi con tutte le possibili indicazioni sulle situazioni a contorno che possono condizionare la significatività del dato rilevato, sia di natura antropica (presenza di pressioni ambientali localizzate/diffuse, stabili/temporanee) che naturale (ad es. condizioni meteo climatiche per la qualità dell'aria, il rumore, l'ambiente idrico, il suolo);
- 6. **Criteri di elaborazione** dei dati acquisiti (ad es. calcolo di specifici parametri statistici richiesti dalla normativa sulla qualità dell'aria quali valori medi e massimi orari, giornalieri);
- 7. **Gestione delle "anomalie":** stabiliti i criteri di elaborazione dei dati e definiti gli ambiti di variabilità di ciascun parametro nei termini sopra indicati, in presenza di "anomalie" evidenziate dal MA nelle diverse fasi (AO, CO, PO) dovranno essere definite le opportune procedure finalizzate prioritariamente ad accertare il rapporto tra l'effetto riscontrato (valore anomalo) e la causa (determinanti e relative pressioni ambientali) e successivamente ad intraprendere eventuali azioni correttive. Si indicano nel seguito le possibili fasi per la gestione di tali situazioni che potranno essere opportunamente adeguate in relazione al caso specifico ed al contesto di riferimento:
 - Descrizione dell'anomalia (in forma di scheda o rapporto) mediante: dati relativi alla rilevazione (data, luogo, situazioni a contorno naturali/antropiche, operatore prelievo, foto, altri elementi descrittivi), eventuali analisi ed elaborazioni effettuate (metodiche utilizzate, operatore analisi/elaborazioni), descrizione dell'anomalia (valore rilevato e raffronto con gli eventuali valori limite di legge e con i range di variabilità stabiliti), descrizione delle cause ipotizzate (attività/pressioni connesse all'opera, altre attività/pressioni di origine antropica o naturale non imputabili all'opera);
 - Definizione delle indicazioni operative di prima fase accertamento dell'anomalia mediante: effettuazione di nuovi rilievi/analisi/elaborazioni, controllo della strumentazione per il campionamento/analisi, verifiche in situ, comunicazioni e riscontri dai soggetti responsabili di attività di cantiere/esercizio dell'opera o di altre attività non imputabili all'opera.

Nel caso in cui a seguito delle attività di accertamento dell'anomalia questa risulti risolta, dovranno essere riportati gli esiti delle verifiche effettuate e le motivazioni per cui la condizione

Progettista:

AP engineening

REL_13

anomala rilevata non è imputabile alle attività di cantiere/esercizio dell'opera e non è necessario attivare ulteriori azioni per la sua risoluzione.

Qualora a seguito delle verifiche di cui sopra l'anomalia persista e sia imputabile all'opera (attività di cantiere/esercizio) per la sua risoluzione è necessaria la definizione delle indicazioni operative di seconda fase per la risoluzione dell'anomalia mediante: comunicazione dei dati e delle valutazioni effettuate agli Organi di controllo, attivazione di misure correttive per la mitigazione degli impatti ambientali imprevisti o di entità superiore a quella attesa in accordo con gli Organo di controllo, programmazione di ulteriori rilievi/analisi/elaborazioni in accordo con gli Organi di controllo.

REL 13

5. COMPONENTE ATMOSFERA

Il Monitoraggio Ambientale relativo alla componente atmosfera, è finalizzato a caratterizzare la qualità dell'aria nelle diverse fasi (ante operam, in corso d'opera e post operam) mediante rilevazioni strumentali, eventualmente integrate da tecniche di modellizzazione, focalizzando l'attenzione sugli inquinanti direttamente o indirettamente immessi nell'atmosfera, in termini di valori di concentrazioni al suolo, a seguito della realizzazione/esercizio della specifica tipologia di opera.

• Descrizione e misure di mitigazione dei probabili impatti sull'atmosfera

Durante la fase di cantiere, per effetto delle lavorazioni legate ai movimenti di terra e al transito degli automezzi, è prevedibile l'innalzamento di poveri nonché le emissioni di gas di scarico di macchine da lavoro e veicoli in genere. Per tale motivo, ante operam e in corso d'opera, saranno adottate tutte le accortezze utili per ridurre tali interferenze.

In particolare si prevedrà quali misure mitigazione degli impatti:

- Periodica e frequente bagnatura dei tracciati interessati dagli interventi di movimento di terra. L'impiego di risorse idriche sarà temporaneo e i consumi limitati infatti, ove possibile, la maggior parte dei movimenti terra, utili alla fase di costruzione, saranno concentrati durante la stagione fredda (con ciò riducendo il sollevamento di polveri e quindi l'impiego di acqua per l'abbattimento);
- Copertura dei cumuli di terreno e altri materiali da ri-utilizzare e/o smaltire a discarica autorizzata;
- Copertura dei carichi nei cassoni dei mezzi di trasporto, quando se ne rischia la dispersione nel corso del moto;
- Impiego di barriere antipolvere temporanee (se necessarie).

Al fine di ridurre le emissioni in atmosfera dei gas di scarico dei macchinari e mezzi, verranno adottate le seguenti misure di mitigazione e prevenzione:

- I mezzi di cantiere saranno sottoposti, a cura di ciascun appaltatore, a regolare manutenzione come da libretto d'uso e manutenzione;
- Nel caso di carico e/o scarico di materiali o rifiuti, ogni autista limiterà le emissioni di gas di scarico degli automezzi, evitando di mantenere acceso il motore inutilmente;
- Manutenzioni periodiche e regolari delle apparecchiature contenenti gas ad effetto serra (impianti di condizionamento e refrigerazione delle baracche di cantiere), avvalendosi di personale abilitato.

Gli impatti relativi alla fase *post operam* sono paragonabili a quelli già individuati nelle fasi precedenti e, quindi, riconducibili essenzialmente a:

- Innalzamento di polveri;
- o Emissioni in atmosfera di gas di scarico.

Pertanto, per questa fase, vale quanto già discusso precedentemente.

Unitamente al monitoraggio dei parametri chimici (inquinanti atmosferici), sarà effettuato il monitoraggio dei parametri meteorologici che caratterizzano lo stato fisico dell'atmosfera, che rappresenta un aspetto di fondamentale importanza per effettuare una corretta analisi e/o

Committente:	Progettista:	
ELITE NORTHERN SOLAR S.R.L.	AP engineering	Pag. 20 54

REL_13

previsione delle modalità di diffusione e trasporto degli inquinanti in atmosfera. In relazione alle diverse fasi del monitoraggio (Ante Operam, in Corso d'Opera, Post Operam) è possibile delineare le seguenti attività ed obiettivi specifici da prevedere nella predisposizione del PMA che saranno applicabili, in tutto o in parte, in funzione della specifica tipologia di opera e del contesto in cui è localizzata.

Monitoraggio Ante-Operam: Sulla base dei dati dello SIA, che dovranno essere aggiornati in relazione all'effettiva situazione ambientale che precede l'avvio dei lavori, il PMA dovrà prevedere:

- l'analisi delle caratteristiche climatiche e meteo diffusive dell'area di studio tramite la raccolta e organizzazione dei dati meteoclimatici disponibili per verificare l'influenza delle caratteristiche meteorologiche locali sulla diffusione e sul trasporto degli inquinanti;
- o l'analisi delle concentrazioni al suolo degli inquinanti atmosferici tramite la raccolta e organizzazione dei dati di qualità dell'aria disponibili, con particolare riferimento alla stazione fissa di rilevamento più vicina esistente (Stazione Fissa Comune di Fossalta di Portogruaro collocata a 3 km a Nord Ovest dall'area oggetto di studio);
- o l'eventuale predisposizione dei dati di ingresso ai modelli di dispersione atmosferica a partire da dati sperimentali o da output di preprocessori meteorologici;
- o l'eventuale analisi delle emissioni di inquinanti in atmosfera per la predisposizione dei dati di ingresso ai modelli di dispersione atmosferica al fine di verificare eventuali variazioni dello scenario emissivo Ante Operam, rispetto alle condizioni definite nell'ambito dello SIA.

Monitoraggio in Corso d'Opera: Il monitoraggio in tale fase dovrà essere connesso all'avanzamento dei lavori di cantierizzazione ed è pertanto fondamentale che il PMA sia elaborato coerentemente alle informazioni contenute nel piano di cantierizzazione dell'opera, con particolare riferimento alla distribuzione spaziale e temporale delle diverse attività di cantiere ed alle specifiche modalità operative (tecniche e gestionali) di realizzazione dell'opera. Definite su tali basi le aree di indagine e le fasi di cantiere maggiormente critiche per la qualità dell'aria, il monitoraggio sarà effettuato secondo il cronoprogramma connesso alle attività di realizzazione dell'opera. In particolare, il PMA dovrà prevedere:

- l'analisi delle caratteristiche climatiche e meteo diffusive dell'area di studio tramite la raccolta e organizzazione dei dati meteoclimatici disponibili per verificare l'influenza delle caratteristiche meteorologiche locali sulla diffusione e sul trasporto degli inquinanti;
- o il monitoraggio delle concentrazioni al suolo degli inquinanti atmosferici (unitamente ai parametri meteorologici) tipicamente connessi alle attività di cantiere ed alle attività indotte (es. movimentazione mezzi e materiali, traffico veicolare, etc.);
- o l'acquisizione dei dati meteo climatici ed emissivi di ingresso ai modelli di dispersione atmosferica, al fine di verificare eventuali variazioni dello scenario emissivo CO, rispetto alle condizioni definite nell'ambito dello SIA.

Monitoraggio Post-Operam: Il monitoraggio in tale fase, sarà effettuato nell'ambito delle aree (stazioni) già utilizzate nelle fasi precedenti del PMA e prevede le medesime attività previste per la fase CO, contestualizzate alla specificità degli inquinanti atmosferici tipicamente connessi alla fase di esercizio dell'opera.

Committente: Progettista:

ELITE NORTHERN SOLAR S.R.L. Progettista:

AP engineering

REL 13

5.1. Punti di monitoraggio e modalità di analisi

La scelta della localizzazione delle aree di indagine e, nell'ambito di queste, dei punti (stazioni) di monitoraggio sarà effettuata sulla base delle analisi e delle valutazioni degli impatti sulla qualità dell'aria contenute nello SIA, considerando:

- La presenza di ricettori sensibili in relazione alla protezione della salute, della vegetazione e degli ecosistemi, dei beni archeologici e monumentali e dei materiali);
- Punti di massima rappresentatività territoriale delle aree potenzialmente interferite e/o dei punti di massima di ricaduta degli inquinanti (CO e PO) in base alle analisi e valutazione condotte mediante modelli e stime nell'ambito dello SIA;
- Caratteristiche microclimatiche dell'area di indagine (con particolare riferimento all'anemologia);
- Presenza di altre stazioni di monitoraggio afferenti a reti di monitoraggio pubbliche/private che permettano un'efficace correlazione dei dati;
- Morfologia dell'area d'indagine;
- Aspetti logistici e fattibilità a macroscala e microscala;
- o Tipologia di inquinanti e relative caratteristiche fisico-chimiche;
- Possibilità di individuare e discriminare eventuali altre fonti emissive, non imputabili all'opera, che possano generare interferenze con il monitoraggio;
- Caratteristiche geometriche (in base alla tipologia puntuale, lineare, areale, volumetrica)
 ed emissive (profilo temporale) della/e sorgente/i (per il monitoraggio CO e PO).

Riguardo al monitoraggio dei *parametri microclimatici* relativi al fattore Atmosfera, il sistema di monitoraggio e controllo sarà costituito da una serie di sensori atti a rilevare, in tempo reale, sia i parametri ambientali che i parametri elettrici del campo e del sistema antintrusione/TVCC dell'impianto, nonché da un sistema di acquisizione ed elaborazione dei dati centralizzato (SAD – Sistema Acquisizione Dati), in accordo alla norma CEI EN 61724.

Pertanto, ogni 7 sottocampi circa, verrà installata una cabina di controllo e monitoraggio, per un totale di 3 cabine (P25). Le stesse saranno dotate da termometro, barometro, piranometri/albedometro, anemometro. I dati raccolti ed elaborati serviranno a valutare le prestazioni e la sicurezza dell'impianto, monitorare la rete elettrica e lo stato dell'ambiente.

REL_13

Figura 6 – Punti di monitoraggio (punti gialli) dei parametri microclimatici

In merito al monitoraggio della *qualità dell'aria*, si farà riferimento alla stazione fissa più vicina al sito in esame, ovvero alla Stazione ubicata nel Fossalta di Portogruaro collocata a 3 km a Nord – Ovest dall'area oggetto di studio.

Nel PMA, la programmazione delle misurazioni strumentali sarà quindi affiancata da attività di "monitoraggio del territorio" con particolare riferimento all'individuazione e caratterizzazione delle attività antropiche a carattere emissivo che possono interferire con le finalità del monitoraggio nelle sue diverse fasi ed aver altresì contribuito a mutare lo scenario AO contenuto nello SIA. Tale attività dovrà essere integrata con la ricognizione delle stazioni di rilevamento della qualità dell'aria afferenti alle reti di monitoraggio (localizzazione, caratteristiche, parametri rilevati).

In corso d'opera i parametri da monitorare dipendono dalla tipologia delle attività e dai mezzi di cantiere e di trasporto utilizzati e, nella fase Post Operam, dalle specificità emissive dell'opera.

REL_13

6. COMPONENTE AMBIENTE IDRICO

6.1. Acque superficiali

Il Monitoraggio Ambientale" relativo alla componente "Ambiente idrico superficiale" è finalizzato a valutare, in relazione alla costruzione e all'esercizio dell'opera, le eventuali variazioni, rispetto alla situazione ante-operam, di tutti i parametri e/o indicatori utilizzati per definire le caratteristiche qualitative e quantitative dei corpi idrici potenzialmente interessati dalle azioni di progetto. Il PMA deve essere contestualizzato nell'ambito della normativa di settore rappresentata a livello comunitario dalla Direttiva Quadro sulle Acque 2000/60/CE (DQA), dalla direttiva 2006/118/CE relativa alla protezione delle acque sotterranee dall'inquinamento e dalla direttiva 2008/56/CE che istituisce un quadro per l'azione comunitaria nel campo della politica per l'ambiente marino (direttiva quadro sulla strategia per l'ambiente marino). Le disposizioni comunitarie sono state recepite dal nostro ordinamento dal D. Lgs. 152/2006 e s.m.i., Parte III - Norme in materia di difesa del suolo e lotta alla desertificazione, di tutela delle acque dall'inquinamento e di gestione delle risorse idriche - (artt. 53 – 176)] e dai suoi Decreti attuativi, unitamente al D.Lgs. n. 30/2009 per le acque sotterranee e al D. Lgs. 190/2010 per l'ambiente marino.

Pertanto, saranno considerati prioritariamente i seguenti riferimenti normativi nazionali:

- DM 16/06/2008, n. 131 Regolamento recante "I criteri tecnici per la caratterizzazione dei corpi idrici, analisi delle pressioni";
- DM 14/04/2009, n. 56 Regolamento recante "Criteri tecnici per il monitoraggio dei corpi idrici e l'identificazione delle condizioni di riferimento per la modifica delle norme tecniche del D.Lgs. 152/2006, recante Norme in materia ambientale, predisposto ai sensi dell'art. 75, comma 3, del D.Lgs.medesimo";
- D.Lgs 16 marzo 2009 n. 30 "Attuazione della direttiva 2006/118/CE, relativa alla protezione delle acque sotterranee dall'inquinamento e dal deterioramento";
- O D. Lgs. 13 ottobre 2010 n. 190 "Attuazione della direttiva 2008/56/CE che istituisce un quadro per l'azione comunitaria nel campo della politica per l'ambiente marino;
- D. Lgs. 10/12/2010, n. 219 Attuazione della direttiva 2008/105/CE relativa a standard di qualità ambientale nel settore della politica delle acque, recante modifica e successiva abrogazione delle direttive 82/176/CEE, 83/513/CEE, 84/156/CEE, 84/491/CEE, 86/280/CEE, nonché modifica della direttiva 2000/60/CE e recepimento della direttiva 2009/90/CE che stabilisce, conformemente alla direttiva 2000/60/CE, specifiche tecniche per l'analisi chimica e il monitoraggio dello stato delle acque;
- D.M. 08/10/2010, n. 260 Regolamento recante i criteri tecnici per la classificazione dello stato dei corpi idrici superficiali, per la modifica delle norme tecniche del decreto legislativo 3 aprile 2006, n. 152, recante norme in materia ambientale, predisposto ai sensi dell'articolo 75, comma 3, del medesimo decreto legislativo;

e le seguenti ulteriori indicazioni comunitarie:

 Decisione della Commissione 2013/480/UE del 20/09/2013. Acque – Classificazione dei sistemi di monitoraggio – Abrogazione decisione 2008/915/CE: decisione che istituisce i

committente:	Progettista:
ELITE NORTHERN SOLAR S.R.L.	AP engineering

REL 13

- valori di classificazione dei sistemi di monitoraggio degli Stati membri risultanti dall'esercizio di intercalibrazione;
- Decisione della Commissione 2010/477/UE del 1/9/2010 sui criteri e gli standard metodologici relativi al buono stato ecologico delle acque marine;
- Direttiva 2013/39/UE del 12/08/2013 che modifica le direttive 2000/60/CE e 2008/105/CE per quanto riguarda le sostanze prioritarie nel settore della politica delle acque. Inoltre, il PMA dovrà essere implementato in conformità alla pianificazione/programmazione inerente la tutela quali-quantitativa delle acque alle diverse scale territoriali e coerente con le indicazioni fornite dal quadro normativo e pianificatorio settoriale di riferimento.

Inoltre, il Piano di Monitoraggio Ambientale prende in considerazione:

- Il Piano regionale di Tutela delle Acque (PTA) 2015-2021 adottato con D.G.R. n. 1333 del 16/07/2019 (primo aggiornamento del PTA, già approvato con D.C.R. n. 230 del 20.10.2009);
- Il Piano di Monitoraggio Qualitativo dei Corpi Idrici superficiali per il triennio 2019-2021 Secondo ciclo sessennale dei Piani di Gestione e dei Piani di Tutela delle Acque (2016-2021) approvato con DGR n. 1045 del 14 luglio 2016, pubblicata sul BURP n. 88 del 29/07/2016.

6.1.1. Punti di monitoraggio e modalità di analisi

Il territorio di Portogruaro e di Fossalta di Portogruaro è parte del settore più occidentale della bassa pianura friulana che, da un punto di vista fisiografico, si estende tra i corsi dei fiumi Torre e Livenza. In particolare, in relazione alla tipologia di opera, in fase di cantiere e in fase di esercizio, la scelta della localizzazione delle aree di monitoraggio e, quindi, l'individuazione dei relativi punti di riferimento, dovrà essere strettamente connessa a:

- Interferenze opera Ambiente idrico e alla valutazione dei relativi impatti;
- Punti di monitoraggio considerati in fase di caratterizzazione ante operam;
- Reti di monitoraggio (nazionale, regionale e locale) meteo idro-pluviometriche e qualiquantitative esistenti, in base alla normativa di settore.

Pertanto, nel PMA sono state individuate delle stazioni di monitoraggio puntuali, strettamente connesse al sito interferito. Pertanto in corrispondenza del Canale Lugugnana (potenzialmente interferito) saranno posizionati due punti di monitoraggio secondo il criterio idrologico "monte (M) – valle (V)", con la finalità di valutare, in tutte le fasi del monitoraggio, la variazione dello stesso parametro/indicatore tra i due punti di misura M-V, al fine di poter individuare eventuali impatti determinanti dalle azioni di progetto.

L'impatto sulla "componente ambiente idrico" generato in questa fase, è da ritenersi trascurabile. L'impiego di risorse idriche in fase di cantiere e di dismissione sarà limitato a:

- L'abbattimento di polveri che si formeranno a causa dei movimenti di terra necessari per la realizzazione delle opere civili di impianto e per la posa dei cavi;
- L'acqua potabile per usi sanitari del personale presente in cantiere;
- L'acqua per l'irrigazione nelle prime fasi di crescita delle colture arboree previste (solo per la fase di cantiere).

Committente:	Progettista:	
ELITE NORTHERN SOLAR S.R.L.	AP engineering	Pag. 25 54

Per quanto concerne l'utilizzo di risorse idriche in fase di esercizio, questi sono riconducibili essenzialmente a:

- attività agricole previste, nella quale le risorse irrigue verranno prelevate dal Consorzio per la Bonifica della Capitanata opera sul comprensorio di intervento;
- consumi idrici legati alle attività di gestione dell'impianto che risultano di entità estremamente limitata, riconducibili unicamente ad usi igienico-sanitari del personale impiegato nelle attività di manutenzione programmata dell'impianto (lavaggio moduli, controlli e manutenzioni, verifiche elettriche, ecc.) e lavaggio periodico dei moduli fotovoltaici.

Per il monitoraggio in corso d'opera (fase di cantiere) e post operam (fase di esercizio), il PMA è finalizzato all'acquisizione di dati relativi alle:

- Variazioni dello stato quali-quantitativo del corpo idrico in relazione agli obiettivi fissati dalla normativa e dagli indirizzi pianificatori vigenti, in funzione dei potenziali impatti individuati;
- Variazioni delle caratteristiche idrografiche e del regime idrologico ed idraulico dei corsi d'acqua e delle relative aree di espansione;
- Interferenze indotte sul trasporto solido naturale, sui processi di erosione e deposizione dei sedimenti fluviali e le conseguenti modifiche del profilo degli alvei, sugli interrimenti dei bacini idrici naturali e artificiali.

Figura 7 – Stazioni di monitoraggio puntuali, secondo il criterio idrologico Monte (cerchio rosso) – Valle (cerchio giallo)

Progettista:

AP engineering

REL_13

La frequenza/durata dei monitoraggi sarà così organizzata:

- Ante-Operam: effettuando una campagna di monitoraggio trimestrale per un anno;
- In Corso d'Opera: durante le diverse fasi di realizzazione dell'opera e almeno una volta l'anno durante la fase di esercizio;
- **Post-Operam:** effettuando una campagna di monitoraggio trimestrale da ripetersi fino al ripristino delle condizioni iniziali.

6.2. Acque sotterranee

Con riferimento al Piano di Gestione delle Acque (II° aggiornamento 2022-2027) sono stati consultati ed analizzati i seguenti elaborati:

- Tav. D Acque sotterranee
- Tav. U Stato chimico delle acque sotterranee

Per quanto riguarda i corpi idrici sotterranei, la Regione del Veneto individua 33 corpi idrici sotterranei nel Distretto delle Alpi Orientali; 4 di questi ricado in parte anche nel Distretto padano ma a seguito di accordi intercorsi tra le Amministrazioni interessate, vengono considerati afferenti interamente al Distretto delle Alpi Orientali.

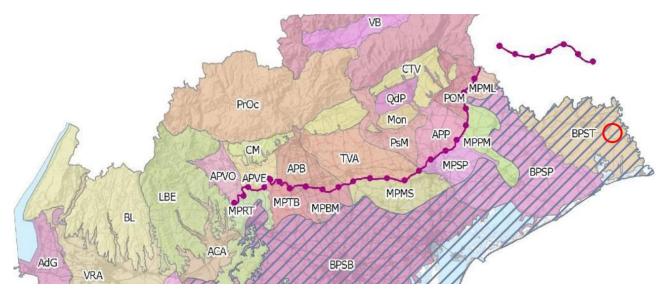


Figura 8 – Stralcio corpi idrici sotterranei della Regione del Veneto

Come si evince dallo stralcio cartografico precedente nonché dall'elaborato Tav.D – *Acque sotterranee* l'impianto in progetto ricade nel *corpo idrico sotterraneo* denominato *"Bassa Pianura Settore Tagliamento – BPST"* (Cod. distrettuale ITAGW00008900VN – Cod. regionale IT05BPST).

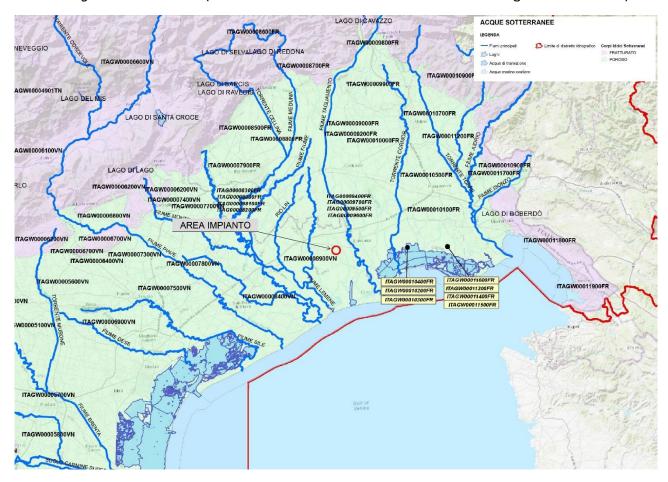


Figura 9 – Tav. D_Acque sotterranee – Piano di Gestione delle Acque

REL_13

Infine, per quanto riguarda lo *Stato chimico delle acque sotterranee* dall'elaborato Tav. D si evince che, lo stato chimico del *corpo idrico sotterraneo* denominato *"Bassa Pianura Settore Tagliamento – BPST"* (Cod. distrettuale ITAGW00008900VN – Cod. regionale IT05BPST) è definito "buono".

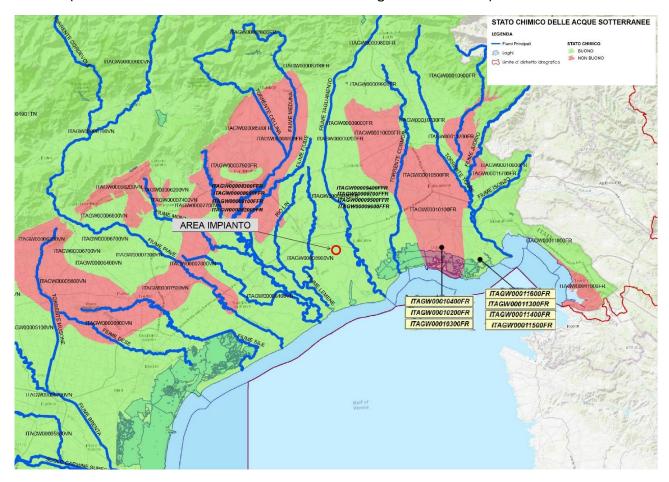


Figura 10 – Tav. U_ Stato chimico delle acque sotterranee – Piano di Gestione delle Acque

REL 13

7. COMPONENTE SUOLO E SOTTOSUOLO

Il Piano di Monitoraggio Ambientale deve essere contestualizzato nell'ambito della normativa di settore rappresentata a livello comunitario dal Dlgs.152/06 e ss.mm. e ii e dal D.M.n.161/12 e ss.mm.ii. Per il monitoraggio in Corso d'Opera e Post-Operam, il PMA per la "componente suolo e sottosuolo" in linea generale dovrà essere finalizzato all'acquisizione di dati relativi alla:

- Sottrazione di suolo ad attività pre-esistenti;
- Entità degli scavi in corrispondenza delle opere da realizzare, controllo dei fenomeni franosi e di erosione sia superficiale che profonda;
- Gestione dei movimenti di terra e riutilizzo del materiale di scavo (Piano Preliminare di Riutilizzo delle terre e rocce da scavo);
- Possibile contaminazione per effetto di sversamento accidentale di olii e rifiuti sul suolo.

Per l'impianto in esame come indicato anche nello SIA, gli impatti diretti significativi per la componente suolo sono così sintetizzati:

- Impatto dovuto a diminuzione di materia organica
- Impatto dovuto a compattazione
- Impatto dovuto a impermeabilizzazione

• Descrizione dei probabili impatti in Corso d'Opera

Per quanto concerne l'utilizzazione di suolo, risulta essere molto limitato, infatti le attività di realizzazione dell'impianto e le relative opere connesse comporteranno l'occupazione temporanea delle aree di cantiere, finalizzate allo stoccaggio dei materiali e all'ubicazione delle strutture temporanee (baracche, bagni chimici, ecc.).

Saranno effettuati degli scavi a sezione obbligata, di larghezza variabile, per la posa dei cavidotti BT e MT che saranno rinterrati con il materiale precedentemente scavato, nonché compattate le aree da destinare alla collocazione delle power stations e delle cabine.

Gli inquinanti emessi dai mezzi di cantiere sono quelli tipici della combustione dei motori diesel dei mezzi, nonché la perdita accidentali di carburante, olii/liquidi a bordo dei mezzi per il loro corretto funzionamento. Pertanto, nella fase di realizzazione dell'impianto, si fa riferimento alla contaminazione del suolo nelle eventuali attività di manutenzione e sosta mezzi e attività varie di officina, nonché depositi di prodotti chimici o combustibili liquidi. Per tale ragione queste verranno effettuate in aree pavimentate, dotate di opportuna pendenza che convogli eventuali sversamenti in pozzetti ciechi a tenuta. Analogamente sarà individuata un'adeguata area adibita ad operazioni di deposito temporaneo.

• Descrizione dei probabili impatti Post-Operam

Lo smantellamento dell'impianto comporta la progressiva riduzione dell'utilizzo del territorio. Ulteriore analisi va fatta sulla dismissione dei cavi MT. In particolare, saranno effettuati degli scavi che saranno chiusi tempestivamente, via via che vengono dismessi i cavi, occupando il territorio per brevi lassi temporali, consegnando all'ambiente tutte le aree impegnate.

Committente:	Progettista:	
ELITE NORTHERN SOLAR S.R.L.	AP engineering	Pag. 30 54

REL 13

7.1. Punti di monitoraggio e modalità di analisi

Le caratteristiche del suolo che si intende monitorare in un campo fotovoltaico sono quelle che influiscono sulla stabilità della copertura pedologica, accentuando o mitigando i processi di degradazione che maggiormente minacciano i suoli delle nostre regioni (cfr. Thematic Strategy for Soil Protection, COM (2006) 231), fra i quali la diminuzione della sostanza organica, l'erosione, la compattazione, la perdita di biodiversità.

La definizione dei *punti di indagine* avverrà in funzione delle tipologie pedologiche presenti nell'area d'impianto, nonché dalla sua estensione. In linea generale i criteri che saranno presi in considerazione sono i seguenti:

- Nelle aree omogenee morfologicamente e pedologicamente si prevedono due campionamenti per *Tipologico*, di cui uno ubicato in posizione ombreggiata dalla presenza del pannello fotovoltaico, l'altro in posizione meno disturbata dell'appezzamento;
- Se alcuni *Tipologici* risultano assimilabili in termini di esigenze pedologiche, si potranno ottimizzare i punti di indagine.

Per quanto riguarda la *profondità e modalità* di indagine, è prevista l'esecuzione di un campionamento del suolo mediante le seguenti indicazioni:

Tipologici con presenza di:	Profondità	Frequenza
Colture erbacee	Strato di terreno da 0 a 30 cm (topsoil)	Annuale per i primi 5 anni di esercizio dell'impianto
Colture arboree	Strato di terreno da 0 a 30 cm (topsoil) Strato di terreno da 30 a 60 cm (subsoil)	Annuale per i primi 5 anni di esercizio dell'impianto

Tabella 3 – Indicazioni sul campionamento del suolo

Le metodologie di analisi cui si dovranno attenere i laboratori sono quelle stabilite dal Decreto Ministeriale 13 settembre 1999 n. 185 - Approvazione dei "*Metodi ufficiali di analisi chimica del suolo*". Per descrizione dei diversi parametri analitici identificati si rimanda alla tabella seguente.

PARAMETRO	U.M.	DESCRIZIONE	FREQUENZA e DURATA
Tessitura (sabbia, limo ed argilla)	g/kg	La tessitura viene definita sulla base del rapporto tra le frazioni granulometriche fini: sabbia, limo e argilla. La tessitura è responsabile di molte proprietà fisiche (es. struttura), idrologiche (es. permeabilità) e chimiche (es. capacità di scambio cationico).	Annuale per i primi 5 anni di esercizio
Reazione del suolo (pH)		Conoscere la reazione di un suolo è importante in quanto le diverse specie vegetali prediligono determinati intervalli di pH e la reazione influenza molto la disponibilità dei nutrienti. È per questo che in condizioni estreme è opportuno utilizzare correttivi in grado di alzare (es. calce, carbonato di calce) o abbassare (zolfo, gesso) il pH. Si prevede di effettuare la determinazione del pH in acqua, tipica per scope agronomici.	Annuale per i primi 5 anni di esercizio
Conduttività elettrica	μS/cm	È una misura che risulta strettamente correlata al livello di salinità del terreno. Le metodiche applicabili sono effettuate mediante estratti acquosi secondo rapporti predefiniti tra terra fine e acqua (es. 1:2 o 1:5) o saturando completamente il suolo con acqua (estratto a saturazione). È evidente che l'interpretazione va riferita al metodo utilizzato.	Annuale per i primi 5 anni di esercizio

Committente:	Progettista:	
ELITE NORTHERN SOLAR S.R.L.	AP engineering	Pag. 31 54

Calcare totale e attivo	g/kg	Il "calcare attivo" costituisce un indice di attività della frazione solubile del calcare per i fenomeni di insolubilizzazione (ferro e fosforo) che può provocare. Valori di calcare attivo al di sopra del 5% sono da considerarsi pericolosi per alcune colture in quanto possono compromettere l'assorbimento del fosforo e del ferro e provocare la comparsa di clorosi.	Annuale per i primi 5 anni di esercizio
Carbonio Organico	g/kg	La frazione organica costituisce una grossa parte delle superfici attive del suolo (rappresenta l'1-3% della fase solida in peso e il 12-15% in volume) e quindi ha un ruolo fondamentale sia per la nutrizione delle piante che per il mantenimento delle proprietà fisiche del terreno. Il giudizio sul livello di sostanza organica (SO) di un suolo andrà formulato in funzione della tessitura poiché le situazioni di equilibrio della SO nel terreno dipendono da fattori quali aerazione e presenza di superfici attive nel legame con molecole cariche come sono i colloidi argillosi. Inoltre, la SO ha un ruolo molto importante per la strutturazione dei terreni e tale effetto è particolarmente evidente per i terreni a tessitura fine (argillosi). Per stimare il valore del contenuto di Carbonio Organico dal contenuto in SO, se non monitorato direttamente, è necessario moltiplicare la quantità di SO per 0,58.	Annuale per i primi 5 anni di esercizio
Azoto totale	g/kg	Il contenuto di S.O. preso singolarmente, non dà indicazioni sulle quote assimilabili per la coltura in quanto le trasformazioni dell'azoto nel terreno sono condizionate dall'andamento climatico e dall'attività biologica. L'azoto (N) nel suolo è presente in varie forme: nitrica (più mobile e disponibile), ammoniacale (meno disponibile in quanto adsorbita nel complesso di scambio) e organico (di riserva, costituisce la quasi totalità del terreno e risulta mineralizzabile). Per avere un'idea dell'andamento dei processi di trasformazione della sostanza organica, si utilizza invece il rapporto carbonio/azoto (C/N). Per stimare il valore del contenuto di Carbonio Organico dal contenuto in SO è necessario moltiplicare la quantità di SO per 0,58.	Annuale per i primi 5 anni di esercizio
Fosforo assimilabile	mg/kg	Il fosforo assimilabile viene determinato con il metodo Olsen e i corrispondenti giudizi utili per quantizzare le somministrazioni di concimi fosfatici alle colture.	Annuale per i primi 5 anni di esercizio
Potassio scambiabile	mg/kg	Potassio, calcio e magnesio fanno parte del complesso di scambio	Annuale per i
Calcio scambiabile	mg/kg	assieme al sodio e nei suoli acidi all'idrogeno e all'alluminio. L'interpretazione della dotazione di questi elementi va quindi messa in relazione con la CSC e con il contenuto in argilla.	primi 5 anni di esercizio
Magnesio scambiabile	mg/kg		
Capacità di scambio cationico	meq/ 100g	La CSC dà un'indicazione della capacità del terreno di trattenere alcuni elementi nutritivi. La CSC è correlata al contenuto in argilla e in sostanza organica per cui, più risultano elevati questi parametri, maggiore sarà il valore della CSC. Un valore troppo elevato della CSC può evidenziare condizioni che rendono non disponibili per le colture alcuni elementi quali potassio, calcio, magnesio. Viceversa, un valore troppo basso è indice di condizioni che rendono possibili perdite per dilavamento degli elementi nutritivi. E' necessario quindi tenere conto di questo parametro nella formulazione dei piani di concimazione.	Annuale per i primi 5 anni di esercizio

Tabella 4 – Parametri analitici di analisi chimica del suolo

Per ogni sondaggio si procederà a compilare una scheda in cui saranno annotati gli elementi descrittivi del rilievo. Si riporta uno schema tipo della scheda di rilevamento per le indagini agronomiche sulla componente suolo.

Committente:	Progettista:	
ELITE NORTHERN SOLAR S.R.L.	AP engineering	Pag. 32 54

REL_13

SCHEDA DI RILEVAMENTO DELLA COMPONENTE SUOLO			RIL n°		
LOCALIZZAZIONE DEL PUNTO DI MISURA:		TIPOLOGICO PROGETTUALE:			
COORDINATE:		Nord	Est		
QUOTA:					
	Foto stazion	e di indagine			
SVOLGIMENTO DEI RILEVAMEN	ITI				
Data:		Ora inizio:			
Condizioni meteo:		Ora conclusione: Condizione del vento:			
NOTE:		Condizione dei Vento.			
RISULTATI					
Profondità di indagine (da mt a	mt)				
Parametro	U.M.	Valore rilevato	Metodo di Riferimento		
NOTE:					

Tabella 5 - Schema tipo della scheda di rilevamento per le indagini agronomiche sulla componente suolo.

Committente:	Progettista:	
ELITE NORTHERN SOLAR S.R.L.	AP engineering	Pag. 33 54

REL_13

8. COMPONENTE BIODIVERSITÀ

Oggetto del monitoraggio sono le componenti vegetazione, flora, fauna.

Gli obiettivi sono quelli di:

- valutare e misurare lo stato delle componenti vegetazione e flora prima, durante e dopo i lavori per la realizzazione del Progetto;
- garantire, durante la realizzazione dei lavori in oggetto e per i primi tre anni di esercizio una verifica dello stato di conservazione della flora e vegetazione al fine di rilevare eventuali situazioni non previste e/o criticità ambientali e di predisporre ed attuare le necessarie azioni correttive;
- verificare l'efficacia delle misure di mitigazione.

La vegetazione da monitorare è quella naturale e seminaturale, e le specie floristiche appartenenti alla flora spontanea.

Il monitoraggio sulla fauna avrà, invece, come obiettivo quello di definire eventuali variazioni delle dinamiche di popolazioni, delle eventuali modifiche di specie target indotte dalle attività di cantiere e/o dall'esercizio dell'opera.

• Descrizione e misure di mitigazione Ante-Operam dei probabili impatti sulla biodiversità

Con riferimento alla flora, il posizionamento dei moduli fotovoltaici sul terreno non arrecherà un danno significativo ad alcuna delle poche emergenze floristiche presenti localmente. Nel sito d'impianto, essendo coltivato a colture estensive (seminativi), non vi sono specie d'interesse comunitario ai sensi della Direttiva 92/43/CEE. Se è vero che in fase di cantiere si verificherà la totale rimozione della cotica erbosa e del soprassuolo vegetale, è anche vero che la localizzazione dei moduli fotovoltaici non comporta la cementificazione. Partendo da queste premesse, il principale effetto nella fase di cantiere sarà il temporaneo predominio delle specie ruderali annuali sulle xeronitrofile perenni dei prati-pascoli intensamente sfruttati. Dal punto di vista della complessità strutturale e della ricchezza floristica non si avrà una grande variazione, per lo meno dal punto di vista qualitativo; semmai si avrà un aumento delle specie annuali opportuniste che tollerano elevati tassi di disturbo. L'impatto provocato sulla fauna è alquanto ridotto, tuttavia non può essere considerato nullo. I problemi e le tipologie di impatto che possono influire negativamente sulla fauna sono sostanzialmente riconducibili alla sottrazione di suolo e di habitat. Non è comunque possibile escludere effetti negativi, anche se temporanei e di entità modesta, durante la fase di cantiere, in quanto, durante questa fase, la fauna subirà un notevole disturbo. Queste attività richiederanno la presenza di operai e pertanto sarà necessaria un'adeguata cautela per ridurre al minimo l'eventuale impatto diretto sulla fauna presente nell'area d'impianto. Tuttavia grazie alla mobilità dei vertebrati in particolare, questi potranno allontanarsi dal sito. Inoltre, data l'attività antropica che nelle aree limitrofe e/o attigue all'area di impianto è sempre presente, la fauna subisce già un'azione di disturbo continuo durante il periodo riproduttivo, per cui si ritiene piuttosto trascurabile il maggiore disagio dovuto all'installazione dell'impianto. Inoltre, gli impianti fotovoltaici su vasta scala possono attrarre uccelli acquatici in migrazione e uccelli costieri attraverso il cosiddetto "effetto lago", gli uccelli migratori percepiscono le superfici riflettenti dei moduli fotovoltaici come corpi d'acqua e si scontrano con le strutture mentre

REL 13

tentano di atterrare sui pannelli. L'impianto fotovoltaico in progetto, si caratterizza per la diversificazione delle colture agricole messe a dimora tra i moduli FV, ma soprattutto tra le superfici circostanti mantenendo così una vasta agro-biodiversità tipica delle aree ad agricoltura intensiva. Questa alternanza tra moduli fotovoltaici e specie agrarie con caratteristiche morfologiche e floricole differenti, crea una discontinuità cromatica dell'impianto, mitigando in questo modo il cosiddetto "effetto lago". I terreni in cui si svilupperà l'impianto sono, attualmente, utilizzati a seminativo. Per minimizzare l'impatto sul territorio e sulla flora (e quindi sull'habitat della fauna presente) si seguiranno i seguenti criteri:

- Minimizzare le modifiche ed il disturbo dell'habitat;
- Contenere i tempi di costruzione;
- Ripristinare le aree di cantiere restituendole al territorio;
- Al termine della vita utile dell'impianto, come previsto dalle norme vigenti, ripristinare il sito allo stato originario.

Durante la fase di realizzazione dell'impianto, per ridurre al minimo l'impatto sulla flora, si farà in modo di impegnare le porzioni di territorio strettamente necessarie.

Per quanto riguarda l'impatto sulla fauna risulta essere temporaneo e di entità modesta, durante la fase di realizzazione dell'impianto.

• Descrizione e misure di mitigazione in Fase di Esercizio dei probabili impatti sulla biodiversità In fase di esercizio non è previsto particolare impatto sulla flora, a meno che non si renda necessario ripristinare totalmente i pannelli fotovoltaici per attività di manutenzione straordinaria. Per quanto riguarda la fauna si fa presente che gli impianti fotovoltaici su vasta scala possono attrarre uccelli acquatici in migrazione e uccelli costieri attraverso il cosiddetto "effetto lago", gli uccelli migratori percepiscono le superfici riflettenti dei moduli fotovoltaici come corpi d'acqua e si scontrano con le strutture mentre tentano di atterrare sui pannelli. L'effetto lago viene descritto per la prima volta da Horvath et al. (2009) come inquinamento luminoso polarizzato (PLP). PLP si riferisce prevalentemente a polarizzazione elevata e orizzontale di luce riflessa da superfici artificiali, che altera i modelli naturali di luce. Un impatto di tipo diretto dovuto alla collisione degli animali con parti dell'impianto appare assai improbabile mentre le interferenze dell'impianto in fase di esercizio saranno praticamente nulle. L'intero impianto fotovoltaico sarà installato al di fuori di: Aree naturali protette; Zone umide Ramsar; Aree Rete Natura 2000; Importants Bird Area (IBA). Per mitigare il cosiddetto "effetto lago", che potrebbe attrarre uccelli acquatici in migrazione e uccelli costieri, le strutture di sostegno dei moduli saranno disposte in file parallele con asse in direzione Nord-Sud, ad una distanza di interasse pari a 5,00 mt. Questa alternanza tra moduli fotovoltaici crea una discontinuità cromatica dell'impianto, mitigando in questo modo il cosiddetto "effetto lago" descritto in precedenza. Inoltre, nella parte superiore dei pannelli fotovoltaici verranno apposte delle fasce colorate (di colore giallo), al fine di interromperne la continuità cromatica e annullare il cosiddetto "effetto lago". Pertanto, si ritiene del tutto trascurabile qualunque tipologia di impatto su flora e fauna.

REL 13

• Descrizione e misure di mitigazione Post-Operam dei probabili impatti sulla biodiversità Considerato che la dismissione dell'impianto avverrà su un'area parzialmente antropizzata non si prevedono impatti né sulla flora né sulla fauna in fase di dismissione.

8.1. Punti di monitoraggio e modalità di analisi

8.1.1. Vegetazione e flora

Sulla componente vegetazione si prevede l'esecuzione di indagini in campo in specifiche stazioni di controllo in due sessioni l'anno: a maggio e a settembre e per i primi 5 anni di esercizio dell'impianto.

Le attività di controllo saranno articolate mediante rilievi fitosociologici, che saranno effettuati secondo il metodo consolidato di *Braun Blanquet*, che consiste nella descrizione della vegetazione in base alle specie vegetali che la compongono, precisando la composizione e la struttura del popolamento vegetale anche attraverso la definizione dei rapporti quantitativi tra le singole specie. I rilievi fitosociologici saranno effettuati individuando dei transetti caratterizzati dal "minimo areale", cioè la minima superficie che rappresenta in modo significativo la composizione floristica della comunità vegetale indagata.

Per ciascun transetto si procederà a compilare una scheda in cui sono saranno annotati preliminarmente gli elementi descrittivi della stazione di rilievo, nonché le caratteristiche della comunità rilevata nel suo complesso quali la copertura complessiva (espressa in percentuale di suolo ricoperta dalla comunità) e la copertura relativa (agli strati della comunità espressa in percentuale di suolo ricoperta dallo strato considerato).

Saranno inoltre valutate l'abbondanza (ovvero la densità con cui gli individui di una specie si manifestano nel rilievo) e la copertura floristica (stimata sulla base della proiezione verticale sul terreno della parte aerea delle piante di una data specie)

INDICE	% COPERTURA
r	Specie presente con rari individui a copertura trascurabile
+	Individui molto poco abbondanti, ricoprimento < 1%
1	Individui abbastanza abbondanti, ricoprimento compreso tra 1 e 5 %
2	Individui molto abbondanti, ricoprimento compreso tra 5 e 25 %
3	Qualunque numero di individui, ricoprimento compreso tra 25 e 50 %
4	Qualunque numero di individui, ricoprimento compreso tra 50 e 75 %
5	Qualunque numero di individui, ricoprimento compreso tra 75 e 100 %

Tabella 6 – Indici e % di copertura secondo il metodo Braun Blanquet

REL_13

Altro indice rappresentativo è costituito dal "grado di associabilità", ovvero la tendenza di ciascuna specie a formare raggruppamenti puri, valutato secondo la seguente scala di valori.

INDICE	% COPERTURA
5	Alta associabilità degli individui tendenti a formare popolamenti puri
4	Disposizione a formare tappeti o colonie estese su più di metà della superficie
3	Individui riuniti in piccole colonie
2	Individui riuniti a gruppi
1	Individui isolati

Tabella 7 – Grado di associabilità

Si ripota uno schema tipo di scheda di rilevamento.

SCHEDA DI RILEVAMENTO DELLA COMPONENTE VEGETAZIONE E FLORA			RIL n	°			
LOCALIZZAZIOI DEL PUNTO DI				TIPOLOGICO PROGETTUALE:			
COORDINATE:				Nord			Est
QUOTA:		ESPOSIZIONE:		INCLINAZIONE:		SUPERFICIE RILEVATA:	
			Foto stazion	e di indagine			
			. 000 000=1011	e ar maagme			
CARATTERISTIC	CHE DELL'AREA						
SVOLGIMENTO	DEI RILEVAMEN	TI					

PROGETTO DI UN IMPIANTO FOTOVOLTAICO DA COLLEGARE ALLA RTN CON POTENZA NOMINALE DC. 44.185,05 kWp E POTENZA NOMINALE AC 38.025 kW, DA REALIZZARSI NEI COMUNI DI PORTOGRUARO E FOSSALTA DI PORTOGRUARO (VE) – AREA INDUSTRIALE EASTGATE PARK PIANO DI MONITORAGGIO AMBIENTALE REL_13 Ora inizio: Data: Ora conclusione: Condizioni meteo: Condizione del vento: NOTE: TIPO FISIONOMICO DELLA VEGETAZIONE: **COPERTURA** % STRATO **STRATO** TOTALE: ARBOREO (A) ARBUSTIVO (B) **STRATO** ERBACEO (C) Altezza Altezza media m media alberi arbusti NOTE: INDICE DI COPERTURA **SPECIE** Grado di associabilità (Braun-Blanquet) Strato arboreo: Strato arbustivo: Strato erbaceo: NOTE:

Tabella 8 – Schema tipo della scheda di rilevamento per le indagini sulla componente vegetazione e flora

8.1.2. Fauna

L'area vasta, pur essendo caratterizzata da ambienti modellati dall'azione dell'uomo, ospita una ricca diversità faunistica. Le specie presenti infatti, sono legate oltre che al mosaico di ambienti agricoli intervallati da boschi, siepi e alberature anche ai solchi gravinali e alle praterie xeriche. Si tratta sia di specie a grande diffusione che per le loro caratteristiche ecologiche, mostrano un generale sensibile calo demografico dovuto in particolare all'intensificazione delle pratiche agricole, che di specie altamente qualificanti in quanto strettamente legate alle gravine e alla pseudo-steppa.

Committente:	Progettista:	
ELITE NORTHERN SOLAR S.R.L.	AP engineering	Pag. 38 54

REL_13

I solchi gravinali, infatti, rappresentano siti elettivi per la riproduzione di specie di Uccelli rupicoli e di Anfibi la cui esistenza è garantita dalle pozze d'acqua, più o meno persistenti, che si formano sul fondo, oltre che costituire veri e propri rifugi per la fauna in generale all'interno di una matrice agricola moderatamente disturbata. La presenza di formazioni erbaceo-arbustive, originatesi per opera del pascolamento, degli incendi, per abbandono delle pratiche agricole o semplicemente esistenti perché localizzate ai margini delle aree coltivate, rappresentano importanti zone di nidificazione, di alimentazione e di rifugio per molte specie animali. Nel caso dell'avifauna, numerosi Passeriformi utilizzano queste formazioni vegetazionali e tra questi diverse specie sono nidificanti e altamente specializzate come la Calandra (Melanocorypha calandra) e la Calandrella (Calandrella brachydactyla). Inoltre, molti rapaci frequentano questi ambienti per l'alimentazione in quanto possono facilmente intercettare le abbondanti prede. La valenza faunistica dell'area vasta va ben oltre i confini regionali e nazionali. Il sito infatti, è molto importante per la presenza di specie quali il Lanario (Falco biarmicus), il Grillaio (Falco naumanni), il Biancone (Circaetus gallicus), il Gufo reale (Bubo bubo) ed il Capovaccaio (Neophron percnopterus). In aggiunta, le gravine dell'arco ionico presentano un'elevata ricchezza di altre specie di rapaci, sia diurni che notturni, quali: Gheppio (Falco tinnunculus), Barbagianni (Tyto alba), Civetta (Athena noctua), Gufo comune (Asio otus) e Assiolo (Otus scops). Gli ambienti rupicoli ospitano il Passero solitario (Monticola solitarius), la Ghiandaia marina (Coracias garrulus), il Corvo imperiale (Corvus corax), la Monachella (Oenanthe hispanica) e lo Zigolo capinero (Emberiza melanocephala); quest'ultimo di particolare valore biogeografico.

I parametri che saranno monitorati sono sostanzialmente relativi allo stato degli individui e delle popolazioni appartenenti alle specie *target* selezionate.

- Stato degli individui
- presenza di patologie/parassitosi,
- o tasso di mortalità/migrazione delle specie chiave,
- o frequenza di individui con alterazioni comportamentali.
- Stato delle popolazioni
- o abbandono/variazione dei siti di alimentazione/riproduzione/rifugio,
- o variazione della consistenza delle popolazioni almeno delle specie target,
- o variazioni nella struttura dei popolamenti,
- o modifiche nel rapporto prede/predatori,
- o comparsa/aumento delle specie alloctone.

Mammiferi

Per quantificare le popolazioni la metodologia sarà basata sull'osservazione e il conteggio di segni di presenza/individui (*pelletgroupcount, spot-light count*) lungo transetti lineari di esemplari con differenti metodologie a seconda della ecologia della specie oggetto di indagine.

Per la cattura delle lepri saranno usate reti nelle quali gli animali vengono convogliati tramite battute, per i conigli trappole con esca (es. granaglie, mele, foglie di cavoli e altri ortaggi appetiti, Trocchi e Riga, 2005).

Committente: Progettista:

ELITE NORTHERN SOLAR S.R.L. Pengineering

REL_13

Il monitoraggio di specie come il Coniglio selvatico sarò condotto tramite il conteggio delle tane occupate. È possibile identificare le tane occupate di recente dai conigli per la presenza all'imboccatura di impronte, di terreno smosso o di peli e feci fresche. La raccolta dati di tipo quantitativo lungo percorsi (es. censimenti con faro) consentirà il calcolo di indici di abbondanza lineari (es. indice chilometrico di abbondanza). La consistenza della popolazione sarà acquisita almeno una volta l'anno, per poter operare un confronto fra le fasi ante operam e post operam. Il periodo dell'anno in cui sarà effettuato il monitoraggio tramite conteggi diretti varierà in funzione della specie. Considerate le difficoltà nel censimento delle lepri verrà effettuato almeno un censimento annuale a fine inverno. Per il Coniglio selvatico la notevole fecondità della specie impone che gli accertamenti si svolgano nell'arco di un breve periodo. Il periodo delle catture sarà circoscritto ad ulteriori 10 giorni in ogni sessione di censimento e deve portare alla cattura della maggior quantità possibile di conigli. Il censimento delle tane sarà effettuato alla fine dell'estate quando è minimo il numero di giovani che ancora non escono dalle tane. Inoltre, si procederà al calcolo di alcuni parametri della struttura di popolazione (rapporto giovani/adulti e rapporto sessi) e ad applicare indici legati alla struttura di età, al ciclo riproduttivo, allo stato di salute degli individui.

Rettili

Per il monitoraggio dei rettili si prevede l'utilizzo del metodo di cattura mediante trappole. Tale metodo consistente in trappole a caduta che saranno posizionate nelle vicinanze degli habitat. Inoltre, per incrementare il successo di cattura, le trappole saranno posizionate insieme a barriere. Per le specie attivi di notte, sarà effettuato il monitoraggio in notturna con l'ausilio di apposite torce. L'unità di campionamento sarà costituita dal metodo dei quadrati campione che prevede la suddivisione dell'area da studiare in quadrati di uguale dimensione (da 1 m² a 25 m² per area), il quadrato rappresenta l'unità di campionamento e può essere posizionato in maniera sistematica o casuale. All'interno dei quadrati selezionati saranno cercati e contati tutti gli esemplari, delimitando ogni plot con pali o linee predefinite. Durante la fase ante operam, i censimenti saranno effettuati con regolarità nell'arco di 12 mesi con una copertura temporale che tiene conto dei differenti cicli vitali delle varie specie (stagione riproduttiva). La frequenza dei campionamenti sarà stagionale e mantenuta anche durante le fasi in corso e post operam.

Uccelli

I metodi di rilevamento dell'avifauna saranno elencati secondo criteri di applicabilità (livello ecologico, biologia/ecologia delle specie), scelti dal rilevatore. Riguardo al livello ecologico oggetto di indagine (individuo, popolazione, comunità), la registrazione e l'analisi dei ritrovamenti di individui deceduti o con problemi (traumi, malattie/parassitosi/tossicosi, turbe comportamentali, ecc.), sono tra i pochi metodi utilizzabili per valutare impatti a livello di singolo individuo. La compilazione di checklist semplici sarà utilizzata come strumento a livello di comunità. Per quanto riguarda le indagini sia sul livello di popolazione che per studiare la struttura di popolamento di una comunità ornitica, verranno utilizzati i metodi dei punti di ascolto e transetti lineari, nonché i conteggi in colonie/dormitori/gruppi di alimentazione. Pertanto, il monitoraggio interesserà il modo in cui le specie si distribuiscono sul territorio interessato:

Committente: Progettista:

ELITE NORTHERN SOLAR S.R.L. Progettista:

AP engineering

REL_13

- per specie ampiamente distribuite: compilazione di checklist semplici e con primo tempo di rilevamento, censimenti a vista, mappaggio, punti di ascolto e transetti lineari di ascolto (con o senza uso di playback), cattura e marcatura.
- per specie raggruppate e/o localizzate: conteggi in colonia riproduttiva, conteggi di gruppi di alimentazione, dormitorio, in volo di trasferimento, cattura-marcaggio-ricattura (anche con utilizzo di tecnologie radio-satellitari).

Si sottolinea che il monitoraggio o il campionamento sarà progettato ed eseguito da ornitologi di comprovata esperienza, sulla base di un'indagine preliminare (bibliografica e/o di campo) volta a individuare le metodologie più idonee al caso in questione.

Per quanto riguarda la frequenza e durata della raccolta dati, tre sono i parametri temporali da considerare: la durata complessiva del monitoraggio oggetto del PMA (fasi ante operam, in corso d'opera, post operam), la durata dei periodi di monitoraggio (campagne) nell'ambito delle diverse fasi del PMA, la frequenza di sessioni di monitoraggio all'interno di ciascuna campagna.

Durata complessiva del PMA: nella fase ante operam, l'obiettivo è stabilire i parametri di stato e i valori di riferimento/obiettivo per le fasi di monitoraggio successive. Durata minima: un anno solare. In corso d'opera e in linea generale dovrebbe consentire di seguire tutta la fase di realizzazione dell'opera, monitorando periodi fenologici interi quale unità minima temporale. Nella fase post operam, la durata deve consentire di definire l'assenza di impatti a medio/lungo termine seguendo il principio di precauzione (minimo 3 anni, con prolungamenti in caso di risultati non rassicuranti), oppure fino al ripristino delle condizioni iniziali o al conseguimento degli obiettivi di mitigazione/compensazione, ove previsti.

Durata delle campagne: per ragioni pratiche si può suddividere il monitoraggio in periodi fenologici: 1) svernamento (metà novembre - metà febbraio); 2) migrazione preriproduttiva (febbraio - maggio); 3) riproduzione (marzo - agosto); 4) migrazione postriproduttiva/post-giovanile (agosto - novembre). Le durate dei periodi sono indicative, nell'ottica di includere intere comunità, in quanto le fenologie variano notevolmente a seconda delle specie, potendo, inoltre, presentare frequentemente periodi sovrapposizione. Il principio generale è quello di programmare le durate in modo che il periodo di indagine contenga sia l'inizio che la fine del fenomeno fenologico delle specie target, basandosi sulla letteratura scientifica di settore.

Frequenza: si tratta dell'aspetto temporale più problematico da programmare. Le frequenze ottimali teoriche non tengono conto di fattori di limitazione della fattibilità "esterne" (economicità, accessibilità, ecc.), tuttavia vanno intese come riferimenti a cui il PMA deve tendere. Considerando i quattro periodi fenologici, la decade (una sessione ogni 10 giorni) è la frequenza minima da considerare per lo svernamento e la riproduzione. Per i monitoraggi della migrazione, la frequenza ottimale è giornaliera, in orari individuati come significativi per le specie target. Dovendo limitare tale frequenza ci si può riferire alla pentade o, in extrema ratio, alla decade. Una soluzione alternativa, per certe specie dalle fenologie migratorie ben note, può essere quella di programmare un certo numero di periodi campione a cadenza giornaliera all'interno del più ampio periodo di migrazione.

REL_13

SCHEDA DI RILEVAMENTO DELLA COMPO		NENTE FAUNA		RIL n	°						
LOCALIZZAZION DEL PUNTO DI				TIPO DI MONITORAGGIO	0:						
COORDINATE:	OORDINATE:		Nord	Nord		Est					
QUOTA:											
			Foto stazion	e di indagine							
CARATTERISTIC	`HE DELL'AREA										
CANATTENISTIC	THE DELL AREA										
SVOLGIMENTO	DEI RILEVAMEN	ΙΤΙ					SVOLGIMENTO DEI RILEVAMENTI				
Data:											
				Ora inizio:							
Condizioni met	90.			Ora conclusione							
Condizioni met	eo:										
	eo:			Ora conclusione							
NOTE:	IICO DELLA VEGI	ETAZIONE:		Ora conclusione							
NOTE:		ETAZIONE: STRATO ARBOREO (A)	%	Ora conclusione		STRATO	%				
NOTE: TIPO FISIONOM COPERTURA	IICO DELLA VEGI	STRATO	% m	Ora conclusione Condizione del v STRATO	vento:	STRATO ERBACEO (C)	%				
NOTE: TIPO FISIONOM COPERTURA	IICO DELLA VEGI	STRATO ARBOREO (A)		Ora conclusione Condizione del v STRATO ARBUSTIVO (B) Altezza media	vento:		%				
NOTE: TIPO FISIONOM COPERTURA TOTALE:	MICO DELLA VEGI	STRATO ARBOREO (A)		Ora conclusione Condizione del v STRATO ARBUSTIVO (B) Altezza media	wento: % m						
NOTE: TIPO FISIONOM COPERTURA TOTALE:	MICO DELLA VEGI	STRATO ARBOREO (A) Altezza media alberi		Ora conclusione Condizione del v STRATO ARBUSTIVO (B) Altezza media arbusti	wento: % m	ERBACEO (C)					

Committente:	Progettista:	
ELITE NORTHERN SOLAR S.R.L.	AP engineering	Pag. 42 54

PROGETTO DI UN IMPIANTO FOTOVOLTAICO DA COLLEGARE ALLA RTN CON POTENZA NOMINALE DC 44.185,05 kWp E POTENZA NOMINALE AC 38.025 kW, DA REALIZZARSI NEI COMUNI DI PORTOGRUARO E FOSSALTA DI PORTOGRUARO (VE) – AREA INDUSTRIALE EASTGATE PARK					
PIANO DI MONITORAGGIO AMBIENTALE			REL_13		
NOTE:					

Tabella 9 – Schema tipo della scheda di rilevamento per le indagini sulla componente fauna

9. COMPONENTE AMBIENTALE DEL PATRIMONIO CULTURALE E DEL PAESAGGIO

L'analisi sul sistema paesaggistico, fa riferimento al *Piano Territoriale di Coordinamento Provinciale di Venezia* che, sulla base dell'interpretazione strutturale del territorio, nonché degli scenari di evoluzione territoriale ed ambientale del contesto regionale, delinea le strategie che riassumono gli orientamenti di governo del territorio di lungo periodo e di larga scala.

Nello specifico, dall'analisi dell'Elaborato 1. 1/3 "Carta dei vincoli e della pianificazione territoriale", emerge che il progetto in esame ricade in Aree a rischio idraulico e idrogeologico in riferimento al PAI. Il sito è interessato dalla presenza, seppur in minima parte, di aree indicate come Vincolo paesaggistico D.lgs.42/2004 – Zone boscate. A circa 200 mt ad ovest dell'impianto, si evidenzia il SIC IT3250044.

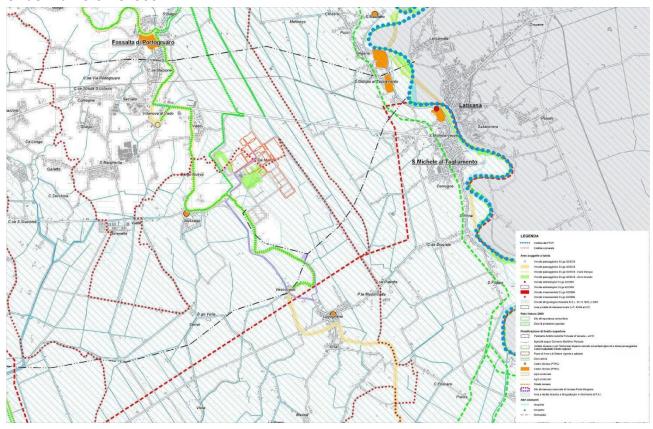


Figura 11 – Piano Territoriale di Coordinamento Provinciale - Provincia di Venezia. Elaborato 1. 1/3 _ Carta dei vincoli e della pianificazione territoriale

Inoltre, l'analisi dell'Elaborato I 1/1 "Sistema insediativo storico beni culturali e del paesaggio", evidenzia dei Siti archeologici prossimi all'area di impianto, ma nessuno interessa direttamente la stessa. Pertanto non si evince nessun tipo di interferenza storico-culturale nell'area interessata dal progetto.

PROGETTO DI UN IMPIANTO FOTOVOLTAICO DA COLLEGARE ALLA RTN CON POTENZA NOMINALE DC. 44.185,05 kWp E POTENZA NOMINALE AC 38.025 kW, DA REALIZZARSI NEI COMUNI DI PORTOGRUARO E FOSSALTA DI PORTOGRUARO (VE) – AREA INDUSTRIALE EASTGATE PARK

PIANO DI MONITORAGGIO AMBIENTALE

REL_13

**Contra principa di l'Ambienta di Portogruaro

S.Michele al Visuali di Portogruaro

LEGENDA

Figura 12 – Piano Territoriale di Coordinamento Provinciale - Provincia di Venezia. Elaborato I 1/1 _ Sistema insediativo storico beni culturali e del paesaggio

REL_13

10. AGENTI FISICI

10.1. Rumore

Il monitoraggio dell'inquinamento acustico, inteso come "l'introduzione di rumore nell'ambiente abitativo o nell'ambiente esterno tale da provocare fastidio o disturbo al riposo ed alle attività umane, pericolo per la salute umana, deterioramento degli ecosistemi, (...)" (art. 2 L. 447/1995), è finalizzato alla valutazione degli effetti/impatti sulla popolazione e su ecosistemi e/o singole specie.

Per quanto riguarda gli impatti dell'inquinamento acustico su ecosistemi e/o singole specie ad oggi non sono disponibili specifiche disposizioni normative, sebbene per alcuni contesti sono disponibili studi ed esperienze operative condotte in base agli obblighi previsti da Accordi e Convenzioni internazionali dedicati all'analisi degli effetti del rumore sulle specie sensibili e che forniscono elementi utili anche per le attività di monitoraggio.

Il monitoraggio ante operam (AO) ha come obiettivi specifici:

- la caratterizzazione dello scenario acustico di riferimento dell'area di indagine;
- la stima dei contributi specifici delle sorgenti di rumore presenti nell'area di indagine;
- l'individuazione di situazioni di criticità acustica, ovvero di superamento dei valori limite, preesistenti alla realizzazione dell'opera in progetto.

Il *monitoraggio in corso d'opera (CO)*, effettuato per tutte le tipologie di cantiere (fissi e mobili) ed esteso al transito dei mezzi in ingresso/uscita dalle aree di cantiere, ha come obiettivi specifici:

- la verifica del rispetto dei vincoli individuati dalle normative vigenti per il controllo dell'inquinamento acustico (valori limite del rumore ambientale per la tutela della popolazione, specifiche progettuali di contenimento della rumorosità per impianti/macchinari/attrezzature di cantiere) e del rispetto di valori soglia/standard per la valutazione di eventuali effetti del rumore sugli ecosistemi e/o su singole specie;
- la verifica del rispetto delle prescrizioni eventualmente impartite nelle autorizzazioni in deroga ai limiti acustici rilasciate dai Comuni;
- l'individuazione di eventuali criticità acustiche e delle conseguenti azioni correttive: modifiche alla gestione/pianificazione temporale delle attività del cantiere e/o realizzazione di adeguati interventi di mitigazione di tipo temporaneo;
- la verifica dell'efficacia acustica delle eventuali azioni correttive.

Il monitoraggio post operam (PO) ha come obiettivi specifici:

- il confronto dei descrittori/indicatori misurati nello scenario acustico di riferimento con quanto rilevato ad opera realizzata;
- la verifica del rispetto dei vincoli individuati dalle normative vigenti per il controllo dell'inquinamento acustico e del rispetto di valori soglia/standard per la valutazione di eventuali effetti del rumore sugli ecosistemi e/o su singole specie;
- la verifica del corretto dimensionamento e dell'efficacia acustica degli interventi di mitigazione definiti in fase di progettazione.

-

Committente:	Progettista:
ELITE NORTHERN SOLAR S.R.L.	AP engineering

REL 13

10.1.1. Punti di monitoraggio e modalità di analisi

La definizione e localizzazione dell'area di indagine e dei punti di monitoraggio è effettuata sulla base di:

- presenza, tipologia e posizione di ricettori e sorgenti di rumore;
- caratteristiche che influenzano le condizioni di propagazione del rumore (orografia del terreno, presenza di elementi naturali e/o artificiali schermanti, presenza di condizioni favorevoli alla propagazione del suono,).

Per l'identificazione dei punti di monitoraggio si fa riferimento allo studio acustico predisposto nell'ambito dello SIA, con particolare riguardo a:

- ubicazione e descrizione dell'opera di progetto;
- ubicazione e descrizione delle altre sorgenti sonore presenti nell'area di indagine;
- individuazione e classificazione dei ricettori posti nell'area di indagine, con indicazione dei valori limite ad essi associati;
- valutazione dei livelli acustici previsionali in corrispondenza dei ricettori censiti;
- descrizione degli interventi di mitigazione previsti (specifiche prestazionali, tipologia, localizzazione e dimensionamento).

Il punto di monitoraggio per l'acquisizione dei parametri acustici sarà generalmente del tipo ricettore-orientato, ovvero ubicato in prossimità del ricettore. I principali criteri su cui orientare la scelta e localizzazione dei punti di monitoraggio consistono in:

- vicinanza dei ricettori all'opera in progetto (monitoraggio AO e PO);
- vicinanza dei ricettori alle aree di cantiere e alla rete viaria percorsa dal traffico indotto dalle attività di cantiere (monitoraggio AO e CO);
- presenza di ricettori per i quali sono stati progettati interventi di mitigazione acustica (monitoraggio PO).

Per ciascun punto di monitoraggio previsto nel Piano di Monitoraggio Ambientale devono essere verificate, anche mediante sopralluogo, le condizioni di:

- assenza di situazioni locali che possono disturbare le misure;
- accessibilità delle aree e/o degli edifici per effettuare le misure all'esterno e/o all'interno degli ambienti abitativi;
- adeguatezza degli spazi ove effettuare i rilievi fonometrici (presenza di terrazzi, balconi, eventuale possibilità di collegamento alla rete elettrica, ecc.).

I *parametri acustici* rilevati nei punti di monitoraggio sono finalizzati a descrivere i livelli sonori e a verificare il rispetto di determinati valori limite e/o valori soglia/standard di riferimento.

La *durata delle misurazioni*, funzione della tipologia della/e sorgente/i in esame, deve essere adeguata a valutare gli indicatori/descrittori acustici individuati; la frequenza delle misurazioni e i periodi di effettuazione devono essere appropriati a rappresentare la variabilità dei livelli sonori, al fine di tenere conto di tutti i fattori che influenzano le condizioni di rumorosità (clima acustico) dell'area di indagine, dipendenti dalle sorgenti sonore presenti e dalle condizioni di propagazione dell'emissione sonora.

Committente:	Progettista:	
ELITE NORTHERN SOLAR S.R.L.	AP engineering	Pag. 47 54

REL_13

			Fasi			
Descrizione della misura	Durata	Parametri	Ante- Operam	In Corso d'Opera	Post- Operam	
			Frequenza di campionar		amento	
Rumore prodotto dal traffico veicolare legato al progetto	Settimana tipo	L _{eq} diurno L _{eq} notturno <i>(se necessario)</i>	Una volta	Trimestrale	Una volta	
Rumore dovuto alle lavorazioni effettuate dall'avanzamento lavori	Settimana tipo	L _{eq} diurno L _{eq} notturno <i>(se necessario)</i>	Una volta	Trimestrale	-	
Rumore dovuto alle lavorazioni effettuate nelle aree di cantiere	Settimana tipo	L _{eq} diurno L _{eq} notturno <i>(se necessario)</i>	Una volta	Trimestrale	-	
Rumore prodotto dal traffico dei mezzi in cantiere	Settimana tipo	L _{eq} diurno L _{eq} notturno <i>(se necessario)</i>	Una volta	Trimestrale	-	

Tabella 10 - Tabella di monitoraggio del rumore

Per il *monitoraggio Ante-Operam* è necessario effettuare misurazioni che siano rappresentative dei livelli sonori presenti nell'area di indagine prima della realizzazione dell'opera ed eventualmente durante i periodi maggiormente critici per i ricettori presenti.

Per il *monitoraggio in Corso d'opera* la frequenza è strettamente legata alle attività di cantiere: in funzione del cronoprogramma della attività, si individueranno le singole fasi di lavorazione significative dal punto di vista della rumorosità e per ciascuna fase si programma l'attività di monitoraggio. Generalmente, i rilievi fonometrici sono previsti:

- ad ogni impiego di nuovi macchinari e/o all'avvio di specifiche lavorazioni impattanti;
- alla realizzazione degli interventi di mitigazione;
- allo spostamento del fronte di lavorazione (nel caso di cantieri lungo linea).

Per lavorazioni che si protraggono nel tempo, e possibile programmare misure con periodicità bimestrale, trimestrale o semestrale, da estendere a tutta la durata delle attività di cantiere.

Il **monitoraggio Post-Operam** deve essere eseguito in concomitanza dell'entrata in esercizio dell'opera (pre-esercizio), nelle condizioni di normale esercizio e durante i periodi maggiormente critici per i recettori presenti.

Si riportano, nella figura seguente, i punti di monitoraggio, che potranno subire variazioni durante lo svolgimento delle misurazioni in funzione delle condizioni reperite in sito, al fine di caratterizzare acusticamente al meglio l'area di interesse. Gli stessi verranno localizzati all'esterno del perimetro dell'impianto con lo scopo di analizzare al meglio i rumori nelle fasi di Ante-Operam, in Corso d'Opera e Post-Operam. Nella scelta preventiva dei punti di monitoraggio, si è tenuto conte delle possibili fonti di disturbo acustiche rappresentata dal traffico veicolare presente nell'area.

REL_13

Figura 13 – Punti di monitoraggio (cerchi blu) per la misurazione del rumore

REL 13

11. AZIONI DI MONITORAGGIO

L'attività di monitoraggio è utile sia alla verifica dei parametri fondamentali, quali la continuità dell'attività agricola sull'area sottostante gli impianti, sia di parametri volti a rilevare effetti sui benefici concorrenti. Gli esiti dell'attività di monitoraggio, sono fondamentali per valutare gli effetti e l'efficacia delle misure stesse.

11.1. Monitoraggio del microclima

Il microclima presente nella zona ove viene svolta l'attività agricola è importante ai fini della sua conduzione efficace. Infatti, l'impatto di un impianto tecnologico sulle colture sottostanti e limitrofe è di natura fisica: la sua presenza diminuisce la superficie utile per la coltivazione in ragione della palificazione, intercetta la luce, le precipitazioni e crea variazioni alla circolazione dell'aria. L'insieme di questi elementi può causare una variazione del microclima locale che può alterare il normale sviluppo della pianta, favorire l'insorgere ed il diffondersi di fitopatie.

Tali aspetti saranni monitorati tramite sensori di temperatura, umidità relativa e velocità dell'aria unitamente a sensori per la misura della radiazione posizionati al di sotto dei moduli fotovoltaici e, per confronto, nella zona immediatamente limitrofa ma non coperta dall'impianto. In particolare, il monitoraggio potrebbe riguardare:

- la temperatura ambiente esterno (acquisita ogni minuto e memorizzata ogni 15 minuti) misurata con sensore (preferibile PT100) con incertezza inferiore a ±0,5°C;
- la temperatura retro-modulo (acquisita ogni minuto e memorizzata ogni 15 minuti) misurata con sensore (preferibile PT100) con incertezza inferiore a ±0,5°C;
- l'umidita dell'aria retro-modulo e ambiente sterno, misurata con igrometri/psicrometri (acquisita ogni minuto e memorizzata ogni 15 minuti);
- la velocità dell'aria retro-modulo e ambiente esterno, misurata con anemometri.

11.2. Monitoraggio della resilienza ai cambiamenti climatici

Come stabilito nella circolare del 30 dicembre 2021, n. 32 recante "Piano Nazionale di Ripresa e Resilienza – Guida operativa per il rispetto del principio di non arrecare danno significativo all'ambiente (DNSH)", dovrà essere prevista una valutazione del rischio ambientale e climatico attuale e futuro in relazione ad alluvioni, nevicate, innalzamento dei livelli dei mari, piogge intense, ecc. Per tale motivo in fase di monitoraggio si effettuerà l'analisi dei rischi climatici fisici del luogo, individuando le eventuali soluzioni di adattamento

11.3. Paesaggio e Beni Culturali

Al fine di identificare gli impatti visivi ed ambientali dell'opera di progetto, sono state analizzate le caratteristiche dell'area, su vasta scala, in rapporto proprio alla morfologia e allo stato ambientale dell'intorno, individuando tutte le situazioni tali da garantire una continuità paesaggistica di qualità nel rispetto del territorio, della flora e della fauna presente.

Committente:	Progettista:	
ELITE NORTHERN SOLAR S.R.L.	AP engineering	Pag. 50 54

REL_13

Durante la fase di costruzione si possono verificare impatti sul paesaggio imputabili essenzialmente ai seguenti eventi:

- intrusione visiva costituita da macchine, mezzi di lavoro e stoccaggi di materiali (tali impatti sono a carattere temporaneo, venendo meno una volta completate le attività in sito);
- variazioni dell'assetto orografico (tale impatto è limitato all'area di progetto e pertanto è considerato trascurabile; peraltro saranno molto limitate e trascurabili le movimentazioni di terreno, sia per la tipologia delle costruzioni, di carattere prefabbricato e transitorio, che non prevedono strutture fondali fisse in cls, sia per le condizioni morfologiche dell'area, caratterizzata da andamento praticamente pianeggiante con pendenze lievi, che non determineranno l'esigenza di realizzare sbancamenti e riporti o particolari interventi di sistemazione e regolarizzazione della superficie topografica);
- alterazioni estetiche e cromatiche (l'impatto visivo in fase di costruzione non è rilevante sia in virtù del carattere temporaneo dell'impatto che delle limitate dimensioni dei mezzi coinvolti).

Per quanto riguarda le opere strutturali e realizzative dell'impianto, cioè l'installazione di manufatti amovibili di modesta dimensione, nonché di opere di fondazione scarsamente invasive, assicurano la possibilità di garantire un ottimale recupero delle aree sotto il profilo esteticopercettivo una volta che si sarà proceduto alla dismissione della centrale.

Pertanto, gli impatti potenziali sono ritenuti poco significativi in considerazione del fatto che:

- le aree di cantiere investono spazi di superficie limitati, nei quali verranno posizionati gli attrezzi di cantiere ed i materiali necessari per la realizzazione dell'impianto;
- i lavori non comporteranno scavi e/o movimentazioni significative di terreno;
- la fase di costruzione e di realizzazione dell'opera sarà temporanea e di breve durata.

L'area di intervento non interessa:

- parchi nazionali e regionali;
- riserve naturali regionali;
- parchi urbani e suburbani,
- oasi di protezione;
- zone di ripopolamento e cattura;
- centri pubblici di riproduzione della fauna selvatica allo stato naturale;
- zone interdette dall'autorità militare;

Gli impatti nella fase di cantiere associati alla componente paesaggio sono da ritenersi reversibile a breve termine, per le eventuali installazioni e strumentazioni necessarie per l'allestimento del cantiere e per le lavorazioni civili. In ogni caso il tutto si limiterà all'effettiva durata della cantierizzazione. In fase di esercizio, per limitare l'impatto visivo, data la presenza dell'impianto, viene prevista la realizzazione di una siepe perimetrale la recinzione. Considerata l'estensione dell'opera e il contesto paesaggistico di riferimento, in fase di esercizio l'impatto potenziale è da ritenersi non significativo. Pertanto, stante la reversibilità dell'impatto e le misure di mitigazione previste, non sono previsti punti di monitoraggio.

REL_13

11.4. Azioni di mitigazione

Di seguito sono indicati, i dettagli sulle azioni di mitigazione che si intende intraprendere qualora l'esito del monitoraggio evidenzi criticità.:

Monitoraggio	Criticità	Azioni di mitigazione
Microclima	Microclima influenzato dalle strutture degli impianti FV: riduzione della ventilazione, incremento delle temperature ed umidità con un conseguente aumento delle fitopatie.	Impiego di varietà autoctone resistenti alle fisiopatie, trattamenti fitosanitari puntuali con zolfo e rame.
Cambiamenti climatici	Rischio ambientale e climatico dovuto ad alluvioni e piogge intense	Analisi dei rischi climatici fisici del luogo, individuando le eventuali soluzioni di adattamento

Committente:

12. CONCLUSIONI

Il Piano di Monitoraggio Ambientale relativo al Progetto di un impianto fotovoltaico, ubicato nei Comuni di Portogruaro e Fossalta di Portogruaro (VE), all'interno dell'area industriale denominata Eastgate Park, risulta idoneo a monitorare le componenti/fattori ambientali ritenuti più significativi per il caso in esame, nelle fasi Ante-Operam, in Corso d'Opera e Post-Operam.

Per quanto riguarda la componente "Atmosfera", come trattato nel Cap.5, il monitoraggio dei parametri microclimatici sarà costituito da una serie di sensori atti a rilevare, in tempo reale, sia i parametri ambientali che i parametri elettrici del campo e del sistema antintrusione/TVCC dell'impianto, nonché da un sistema di acquisizione ed elaborazione dei dati centralizzato (SAD – Sistema Acquisizione Dati), in accordo alla norma CEI EN 61724. Pertanto, ogni 7 sottocampi, verrà installata una cabina di controllo e monitoraggio, per un totale di 3 cabine (P25). Le stesse saranno dotate da termometro, barometro, piranometri/albedometro, anemometro. I dati raccolti ed elaborati serviranno a valutare le prestazioni e la sicurezza dell'impianto, monitorare la rete elettrica e lo stato dell'ambiente. In merito al monitoraggio della qualità dell'aria, si farà riferimento alla stazione fissa più vicina al sito in esame, ovvero la Stazione fissa ubicata nel Comune di Fossalta di Portogruaro collocata a 3 km a Nord – Ovest dall'area oggetto di studio dall'area oggetto di studio.

Relativamente alla componente "Ambiente idrico", come trattato nel Cap.6, sono state individuate delle stazioni di monitoraggio puntuali, strettamente connesse al sito interferito. Pertanto in corrispondenza del Canale Lugugnana (potenzialmente interferito) saranno posizionati due punti di monitoraggio secondo il criterio idrologico "monte (M) – valle (V)", con la finalità di valutare, in tutte le fasi del monitoraggio, la variazione dello stesso parametro/indicatore tra i due punti di misura M-V, al fine di poter individuare eventuali impatti determinanti dalle azioni di progetto.

Relativamente alla componente "Suolo e Sottosuolo", come trattato nel Cap.7, la definizione dei *punti di indagine* avverrà in funzione delle tipologie pedologiche presenti nell'area d'impianto, nonché dalla sua estensione. Per quanto riguarda la *profondità e modalità* di indagine, è prevista l'esecuzione di un campionamento del suolo mediante le indicazioni riportante nella *Tabella 3*, attraverso le metodologie di analisi riportate in *Tabella 4*. Per ogni sondaggio si procederà a compilare una scheda in cui saranno annotati gli elementi descrittivi del rilievo.

Relativamente alla componente "Biodiversità", come trattato nel Cap.8, riguardo la vegetazione si prevede l'esecuzione di indagini in campo in specifiche stazioni di controllo in due sessioni l'anno: a maggio e a settembre e per i primi 5 anni di esercizio dell'impianto. Le attività di controllo saranno articolate mediante rilievi fitosociologici, che saranno effettuati secondo il metodo consolidato di *Braun Blanquet*. Riguardo la fauna, sono state previste delle metodologie di monitoraggio e analisi per ogni ordine e classe faunistica presente nell'area oggetto di studio (mammiferi, rettili, uccelli). Infine, sia per la vegetazione che per la fauna, si procederà alla compilazione della scheda di rilevamento.

Relativamente alla componente ambientale del "Patrimonio culturale e del paesaggio", come trattato nel Cap.9, si evidenzia che le superfici oggetto d'intervento, nonché le linee di connessione, non sono interessati da alcun tipo di bene. Si evidenzia la presenza di Siti

Committente:

Progettista:

Pag. 53 | 54

REL_13

archeologici prossimi all'area di impianto, ma nessuno interessa direttamente la stessa. Pertanto non si evince nessun tipo di interferenza storico-culturale nell'area interessata dal progetto.

Relativamente alla componente "Agenti fisici", come trattato nel Cap.10, si è fatto riferimento all'inquinamento acustico individuando dei punti di monitoraggio localizzati all'esterno del perimetro dell'impianto con lo scopo di analizzare al meglio i rumori nelle fasi di Ante-Operam, in Corso d'Opera e Post-Operam. Gli stessi potranno subire variazioni durante lo svolgimento delle misurazioni in funzione delle condizioni reperite in sito, al fine di caratterizzare acusticamente al meglio l'area di interesse.

Il report contenente gli esiti del monitoraggio sarà trasmesso con frequenza **annuale** (o qualora ci siano delle anomalie) all'Autorità Competente, che provvederà a diffonderle agli Enti e alle Agenzie territoriali di riferimento eventualmente interessate alla valutazione del processo di monitoraggio. Eventuali modifiche o aggiornamenti del presente Piano che si dovessero rendere necessari o utili in itinere, a seguito delle risultanze dell'applicazione pregressa del monitoraggio, saranno proposte nelle stesse relazioni di sintesi annuali. I contenuti minimi del Rapporto annuale contenente gli esiti di monitoraggio che si prevedono sono i seguenti:

1. Informazioni generali:

- Nome dell'impianto
- Dati della Società
- Dati generali dell'impianto

2. Esiti del monitoraggio delle componenti ambientali

- Atmosfera
- Ambiente idrico
- Suolo e sottosuolo
- Biodiversità
- Patrimonio culturale e paesaggio
- Agenti fisici

3. Conclusioni

Nel caso in cui, dalle attività di monitoraggio effettuate, risultino impatti negativi o impatti ulteriori rispetto a quelli previsti e valutati, verrà predisposto e trasmesso agli Enti un nuovo Piano di Monitoraggio in cui verranno riportate le azioni da svolgere. In particolare, il cronoprogramma delle attività sarà il seguente:

- Comunicazione dei dati, delle segnalazioni e delle valutazioni all'Autorità Competente;
- Attivazione tempestiva delle azioni mitigative aggiuntive elencate e descritte nel nuovo piano di monitoraggio;
- Nuova valutazione degli impatti dell'opera a seguito delle evidenze riscontrate in fase di monitoraggio.

Trapani, 30/01/2023

Progettista:

A S.R.L.

Progettista:

AP engineening