REGIONE SICILIANA

Provincia di Agrigento
Comuni di FAVARA e AGRIGENTO

PROGETTO:

IMPIANTO AGRI-VOLTAICO "FAVARA 1"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO FOTOVOLTAICO DI POTENZA PARI A DA 51,72 MWp IN CONTRADA S. BENEDETTO nei comuni di FAVARA (AG) e AGRIGENTO"

PROGETTO DEFINITIVO

COMMITTENTE


10PIU' ENERGIA SRL

Via Aldo Moro, 28 - 25043 Breno (BS)

P.I. 04309260984 - PEC: 10piuenergia@pec.it

PROGETTAZIONE

PROTECNA s.r.l.

via XX Settembre, 25 00062 Bracciano (RM) PEC: protecnasrl@pec.it Il Tecnico Geol. Giovanni Pantaleo

ELABORATO

Studio sul trasporto solido e sui sedimenti

CODICE	SCALA	FORMATO	CODIFICA INTERNA
CTVA_3.1.10	1:	A4	R.40_10PN2201PDRnat4.0R0

00	08/01/2024	INTEGRAZIONI CTVA			
REV.	DATA	DESCRIZIONE REVISIONE	REDATTO	VERIFICATO	APPROVATO

COMUNI DI FAVARA E AGRIGENTO

(Libero consorzio comunale di Agrigento)

IMPIANTO AGRI - VOLTAICO FAVARA 1

CALCOLO DELLA CAPACITÀ DI TRASPORTO SOLIDO

1. PREMESSE

L'erosione del suolo è il fenomeno per cui la superficie terrestre attaccata dai vari agenti chimici, fisici, biologici e antropici subisce una continua demolizione; a questo processo di asportazione del suolo sono connessi quelli di trasporto e di deposito.

Sul campo è possibile distinguere un' erosione di tipo diffusa dovuta all'impatto della pioggia ed al deflusso laminare e un' erosione per rigagnoli connessa al deflusso idrico superficiale nei rivoli.

L'erosione da impatto, funzione dell'energia cinetica della pioggia, dell' intensità e dalla dimensione delle gocce, da origine ad un deflusso laminare caratterizzato dal trasporto delle particelle terrose lungo la linea di massima pendenza a opera del velo d'acqua che ricopre diffusamente il suolo.

Il fenomeno è caratterizzato dalla formazione di un finissimo reticolo di minuti rivoletti i quali si distribuiscono sul pendio in maniera diversa da una precipitazione all'altra.

L'erosione per rigagnoli si verifica come evoluzione dell'erosione diffusa, in quanto si formano progressivamente sottili correnti idriche che finiscono per concentrarsi e canalizzarsi in incisioni già esistenti o aperte dalla stessa corrente.

Il trasporto solido che si viene a generare nelle due condizioni anzidette è un fenomeno funzione di numerosi fattori quali: il clima, i caratteri idraulici della corrente, la litologia, la morfologia e le dimensioni del bacino idrografico.

Le correnti idriche che si vengono a formare, in relazione ai valori di velocità e ai caratteri della loro turbolenza, sono in grado di trasportare materiali solidi di differente granulometria originati dall'erosione dei versanti che quelli provenienti dall'evoluzione naturale del reticolo idrografico (fenomeni di scavo del fondo alveo, di erosione delle sponde etc.)

Detto materiale, che la corrente liquida rimuove, può essere trasportato, per tratti più o meno lunghi, con balzi, rotolamenti, oppure in sospensione, a seconda del tipo di sedimento (coesivo o non), delle sue proprietà fisiche (dimensione dei grani, forma e densità), della velocità di sedimentazione e delle caratteristiche della corrente idrica (velocità, altezza idrica etc.).

Sostanzialmente il trasporto solido può avvenire secondo due differenti modalità:

- trasporto al fondo costituito da sedimenti di grosse dimensioni che stazionano o si muovono sul fondo o a bassa distanza da questo, per saltazione, rotolamento, trascinamento, ecc. e da materiale più fine che rimane in sospensione nell'acqua e che può essere sedimentato nell'alveo stesso in zone o in periodi di minore capacità di trasporto della corrente.
- trasporto in sospensione, costituito da sedimenti a granulometria più fine del precedente (argilla, limo e sabbia), che si muovono in seno alla corrente sostenute dalla sua agitazione turbolenta, che vengono trasportati dall'acqua direttamente fino alle zone di sedimentazione senza però intervenire nella dinamica dell'alveo.

La sommatoria del trasporto al fondo e quello in sospensione costituiscono quello che nella letteratura specialistica viene definito come trasporto solido totale.

Nel presente studio, finalizzato alla valutazione del trasporto solido medio annuo all' interno delle aree in studio, ai fini del calcolo è stato utilizzato il modello multi parametrico di Gavrilovic, modificato da Zemljic (Gavrilovic, 1959; Zemljic, 1971; Gavrilovic, 1972), da noi scelto perchè sviluppato in ambiente mediterraneo e su bacini di piccole dimensioni, a carattere torrentizio, come quelli presenti all' interno dell'area in studio.

Operativamente nello sviluppo dello studio si è proceduto secondo le seguenti fasi attuative:

- analisi e valutazione delle caratteristiche geologiche dei bacini idrografici;
- analisi dell'uso del suolo e della copertura vegetale rilievi sul campo mediante fotointerpretazione di riprese aeree e valutazione della suscettività all'erosione delle diverse classi ai processi d'erosione;
- analisi morfometrica dei piccoli bacini idrografici sottesi dall'unità fisiografica;
- applicazione del modello di Gavrilovic con conseguente valutazione della quantità di sedimento trasportato all'interno del bacino entro cui ricade l'impianto agrifotovoltaico.

2. ANALISI DELLE CARATTERISTICHE DEI BACINI IDROGRAFICI

L'area d'impianto del campo agrivoltaico Favara 1, che interessa i comuni di Favara ed Agrigento, si articola in più lotti: A, B, C, D, E, ed F.

Di seguito, al fine di calcolare il trasporto solido potenziale e la quantità di materiale trasportato alla sezione di chiusura, si descrivono le caratteristiche dei singoli lotti e se ne calcola i parametri anzi declamati.

LOTTO "A"

Il lotto A è allocato in c.da S. Benedetto lungo il versante destro dell' omonimo vallone.

Esso, situato tra le quote 260 e 211 s.l.m., intagliato nelle argille del Tortoniano, è caratterizzato da una pendenza che aumenta man mano ci si approssima al vallone che ne costituisce il limite meridionale, variando da 5 gradi circa nella sua parte a monte, ai 7-8 gradi in vicinanza al vallone.

I pannelli, per le caratteristiche morfologiche dei luoghi, sono allocati nella porzione più alta dell'areale e nella sua porzione più bassa.

il versante vallivo non è interessato da un reticolo idrografico vero e proprio ma da rigagnoli connessi al deflusso idrico superficiale.

Ai fini del calcolo, sulla base della carta flow accumulation e dei bacini secondari individuati, sono stati presi in considerazione le porzione di bacino idrografico che più fanno risentire i loro effetti all'interno dell'area in studio.

Si sono così definiti n.5 sottobacini:

Sottobacino A1: superficie 0.007645 km², perimetro 0.77 Km, pendenza media 5-6 gradi.

Sottobacino A2: superficie 0.055896 km², perimetro 1.620 Km, pendenza media 5-6 gradi .

Sottobacino A3: superficie 0.090411 km², perimetro 3.365 Km, pendenza media 5-6 gradi.

Sottobacino A4: superficie 0.050962 km², perimetro 2.118 Km, pendenza media 5-6 gradi.

Sottobacino A5: superficie 0.054029 km², perimetro 1.442 Km, pendenza media 5-6 gradi.

Dalla Carta Corinne Land Cover si rileva che i terreni ricadenti all'interno dell' impianto sono in parte incolti, in parte coltivati ad uliveti.

LOTTO "B"

Il lotto B, allocato in c.da S. Benedetto tra le quote 256 e 165 s.l.m., intagliato nelle argille del Tortoniano, è caratterizzato da una pendenza prossima a 9-10 gradi.

Il versante vallivo è contraddistinto dalla presenza di due valloni di modesta dimensione, ad andamento subparallelo, che incidono il substrato argilloso prima di riversarsi nel vallone principale e da un reticolo idrografico formato da rigagnoli connessi al deflusso idrico superficiale.

Ai fini del calcolo, sulla base della carta della flow accumulation e su quella del drainage basin sono stati individuati i seguenti bacini secondari:

Sottobacino B1: superficie 0.052390 km², perimetro 1.746 Km, pendenza media 8-10 gradi

Sottobacino B2: superficie 0.101118 km², perimetro 2.007 Km, pendenza media 8-10 gradi

Sottobacino B3: superficie 0.115133 km², perimetro 2.831 Km, pendenza media 8-10 gradi

Sottobacino B4: superficie 0.057462 km², perimetro 1.894 Km, pendenza media 8-10 gradi.

Dalla Carta Corinne Land Cover si rileva che i terreni ricadenti all'interno dell' impianto sono in parte coltivati a frumento in parte incolti.

Dalla cartografia PAI si rileva che buona parte dell'area d'impianto è censita come area interessata da frane complesse quiescenti.

LOTTO "C"

Il lotto C è allocato in c.da S. Benedetto lungo il versante sinistro di un vallone senza toponimo affluente in riga sinistra del vallone S. Benedetto.

Esso, intagliato nelle argille del Tortoniano, è caratterizzato da una pendenza che aumenta man mano ci si approssima al vallone che ne costituisce il limite meridionale, variando da 7 gradi circa nella sua parte più alta, ai 12-13 gradi in vicinanza al vallone.

I pannelli per le caratteristiche morfologiche dei luoghi sono allocati nella porzione più alta dell'areale.

Il versante vallivo, caratterizzato da erosione accelerata attiva (vedi PAI), è contraddistinto dalla presenza di una miriade di rivoli e rivoletti subparalleli, di modesta dimensione, che incidono il substrato argilloso prima di riversarsi nel vallone.

Al fine del calcolo, sulla base della carta della flow accumulation e su quella del drainage basin sono stati individuati i seguenti bacini secondari:

Sottobacino C1: superficie 0.023982 km², perimetro 0.865 Km, pendenza media 8-10 gradi.

Sottobacino C2: superficie 0.030610 km², perimetro 1.552 Km, pendenza media 8-10 gradi .

Sottobacino C3: superficie 0.013259 km², perimetro 1.135 Km, pendenza media 8-10 gradi.

Sottobacino C4: superficie 0.062122 km², perimetro 1.693 Km, pendenza media 8-10 gradi.

Sottobacino C5: superficie 0.010038 km², perimetro 0.917 Km, pendenza media 8-10 gradi.

Dalla Carta Corinne Land Cover si rileva che i terreni ricadenti all'interno dell' impianto sono indicati come seminativi non irrigui anche se nella realtà risultano incolti.

Nella cartografia PAI la porzione meridionale dell'area d' impianto è censita come area ad erosione accelerata, attiva, contraddistinta da forte inclinazione e interessata dalla presenza di dissesti e di scarpate attive.

LOTTO "D"

Il lotto D, incuneato tra il lotto C ed il Lotto E, si sviluppa tra le quote 228 e 182 sulle argille del Tortoniano. La sua pendenza è prossima a 7-8 gradi.

Il versante vallivo non presenta un reticolo idrografico vero e proprio ma delle modestissime ma da una miriade di rivoli e rivoletti subparalleli, di modesta dimensione, che incidono il substrato argilloso prima di riversarsi nel vallone.

Al fine del calcolo, sulla base della carta della flow accumulation e su quella del drainage basin sono stati individuati i seguenti bacini secondari:

Sottobacino D1: superficie 0.031385 km², perimetro 1.108 Km, pendenza media 7-8 gradi.

Sottobacino D2: superficie 0.026141 km², perimetro 1.294 Km, pendenza media 7-8 gradi.

Dalla Carta Corinne Land Cover si rileva che i terreni ricadenti all'interno dell' impianto sono incolti.

L'area è interessata da un colamento lento attivo.

LOTTO "E"

Il lotto E è allocato su una sorta di dorsale, il cui colmo si sviluppa tra le quote 230 e 250, racchiusa tra due valloni di modesta entità.

Da questa linea di colmo si dipartono versanti simmetrici aventi pendenza di 9-10 gradi.

I versanti vallivi, poiché intagliati nelle argille Tortoniane, sono contraddistinti dalla presenza di una miriade di rivoli e rivoletti subparalleli, di modesta dimensione, che incidono il substrato argilloso prima di riversarsi nei valloni esistenti alla base.

E' stata definita la presenza dei seguenti bacini secondari:

Sottobacino E1: superficie 0.013484 km², perimetro 0.915 Km, pendenza media 7-8 gradi.

Sottobacino E2: superficie 0.035932 km², perimetro 1.178 Km, pendenza media 7-8 gradi.

Sottobacino E3: superficie 0.019911 km², perimetro 1.118 Km, pendenza media 7-8 gradi .

Sottobacino E4: superficie 0.033634 km², perimetro 1.198 Km, pendenza media 7-8 gradi.

Sottobacino E5:superficie 0.009619 km², perimetro 1.073 Km, pendenza media 7-8 gradi.

Sottobacino E46: superficie 0.017212 km², perimetro 0.787 Km, pendenza media 7-8 gradi.

Dalla Carta Corinne Land Cover si rileva che i terreni ricadenti all'interno dell' impianto sono incolti.

LOTTO "F"

Anche il lotto F è allocato su una sorta di dorsale, il cui colmo si sviluppa tra le quote 281 e 266, racchiusa tra due valloni di modesta entità.

Da questa linea di colmo si dipartono versanti simmetrici aventi pendenza di 5-6 gradi.

I versanti vallivi, poiché intagliati nelle argille Tortoniane, sono contraddistinti dalla presenza di una miriade di rivoli e rivoletti subparalleli, di modesta dimensione, che incidono il substrato argilloso prima di riversarsi nei valloni esistenti alla base.

Sulla base della carte della flow accumulation e di quella del drainage basin sono stati definiti i seguenti bacini:

Sottobacino F1:superficie 0.059176 km², perimetro 1.704 Km, pendenza media 5-6 gradi.

Sottobacino F2:superficie 0.021728 km², perimetro 0.872 Km, pendenza media 5-6 gradi.

Sottobacino F3:superficie 0.011831 km², perimetro 0.546 Km, pendenza media 5-6 gradi .

Sottobacino F4: superficie 0.028953 km², perimetro 0.942 Km, pendenza media 5-6 gradi.

Sottobacino F5: superficie 0.037144 km², perimetro 1.189 Km, pendenza media 5-6 gradi.

Sottobacino F6:superficie 0.175806 km², perimetro 2.478 Km, pendenza media 5-6 gradi

I terreni ricadenti all'interno di detta porzione dell' impianto in parte sono incolti, in parte coltivati ad uliveto.

3. DESCRIZIONE DEL METODO DI GRAVRILOVIC

Il metodo dell'erosione potenziale di Gavrilovic (1988) è un metodo empirico per la stima del volume di sedimento prodotto per erosione in un bacino idrografico e, attraverso un coefficente di riduzione, la determinazione della quantità annua di detriti trasportati dai corsi d'acqua alla sezione di chiusura del bacino stesso.

La valutazione del trasporto solido medio annuo è stata condotta utilizzando il metodo empirico di Gavrilovic S. (1959) che permette di stimare il volume di sedimento prodotto per erosione in un bacino idrografico e, attraverso un coefficente di riduzione la determinazione della quantità annua di detriti trasportati dai corsi d'acqua alla sezione di chiusura del bacino stesso, in funzione del "peso" attribuito, sulla base di analisi statistiche, alle differenti variabili indipendenti considerate: fisiografia, piovosità, termometria, utilizzazione del territorio e assetto vegetazionale, erodibilità del substrato roccioso, condizioni di dissesto idrogeologico in atto.

Il calcolo è stato eseguito utilizzando la seguente formula analitica:

$$Z = X * Y * (G' + I')$$

Dove:

X : fattore di protezione del suolo;

- Y: fattore geolitologico di erodibilità del suolo;

- **G**: coefficiente di degrado

- **lm** : pendenza media del bacino.

L'attribuzione di pesi ai coefficienti X, Y e G è avvenuta mediante l'uso di tabelle proposte dagli autori (Gavrilovic e Zemljic 1971) e sulla base di stime operate all'interno del bacino in studio in funzione dei fattori: uso del suolo e/o copertura vegetale, geologia, processi geomorfologici.

CODICE	VOCI DESCRITTIVE DI LEGENDA	VALORI D
1111	Centro città con uso misto, tessuto urbano continuo molto denso	0,15
1121	Tessuto urbano discontinuo denso con uso misto	0,10
1132	Strutture residenziali isolate	0,50
1131	Complessi residenziali comprensivi di area verde	0,25
131	Aree estrattive	1,00
1213	Aree destinate a servizi pubblici, militari e privati	0,15
1223	Rete ferroviaria con territori associati	0
1221	Rete stradale veloce con territori associati	0
1214	Infrastrutture di supporto	0
123	Aree portuali	0
132	Discariche	0,70
133	Aree in costruzione	1,00
141	Aree verdi urbane	0,60
14	Spazi verdi artificiali non agricoli (extraurbani)	0,85
142	Aree ricreative e sportive	0
2127	Sementi in aree irrigue	0,90
2112	Colture estensive	0,95
2124	Colture orticole in serra o sotto tendoni in aree irrigue	0,10
221	Vigneti	0,70
222	Frutteti (e frutti minori)	0,70
223	Oliveti	0,70
332	Rocce nude	1,00
32211	Arbusteti (Brughiere e cespuglietti)	0,10
3232	Macchia bassa e garighe	0,65
3231	Macchia alta	0,10
313	Boschi misti di conifere e latifoglie	0.05

Tabella dei valori del coefficiente X o Fattore di protezione suolo secondo il Codice CORINE 2000.

VALORI DEL FATTORE Y DI ERODIBILITA' DEL SUOLO	
VOCI DESCRITTIVE DI LEGENDA	Valori di Y
Rocce dure, resistenti all'erosione come porfidi, graniti, quarziti, sieniti, gneiss e serpentiniti	0,40
Rocce con moderata resistenza all'erosione come dioriti, brecce calcaree, dolomie e calcari	0,80
Rocce friabili, stabilizzate come arenarie, travertini, ardesie, calcareniti e tufi	1,20
Rocce sedimentarie poco resistenti, come sabbie, ghiaie, morene ed argille	1,80
Sedimenti molto fini non resistenti come loess e limi	2,00

Tabella dei valori del coefficiente Y o Fattore geolitologico di erodibilità del suolo.

VALORI DEL FATTORE G D'INTENSITA' EROSIVA DEI PROCESSI GEOMEORFOLOGICI			
VOCI DESCRITTIVE DI LEGENDA	Valori di G		
Processi di erosione eolica costiera (molto debole: < 20 % del bacino)	0,10		
Processi di erosione laminare debole (< 50 % del bacino)	0,30		
Processi di erosione laminare intensa, detriti di falda e depositi incisi, erosione carsica (> 50 % del bacino)	0,60		
Processi di erosione laminare intensa e formazione di franamenti (< 80 % del bacino)	0,80		
Processi di erosione lineare da deflusso in talweg, di erosione di sponda, di incisione di canali e franamenti (> 80 % del bacino)	1,00		

Tabella dei valori del Coefficiente G o Fattore d'intensità d'erosione di processi geomorfologici.

Il valore di protezione del suolo dato dalla vegetazione (X) è stato valutato per ogni subarea bacinale fino ad ottenere un valore medio pesato sull'area totale del bacino.

$$X = \frac{\left(A \cdot 0.2 + B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U\right)}{S}$$

La parametrizzazione del coefficiente di erodibilità del suolo in funzione della litologia (Y) è stata ottenuta associando dei valori ad ogni superficie caratterizzata da un particolare substrato geologico; successivamente i risultati sono stati rivalutati secondo un valore medio pesato sull'area totale del bacino

$$Y = \frac{(J \cdot 1, 6 + K \cdot 0, 8 + L \cdot 0, 3)}{S}$$

Per la valutazione del coefficiente di degrado (G) si è proceduto in prima analisi alla mappatura, per aero fotointerpretazione e rilievo di campo, delle superfici interessate da diverse forme e processi geomorfologici erosivi di vario grado. Successivamente si è proceduto alla attribuzione dei singoli valori G alle superfici distinte secondo la mappatura e caratterizzate da un particolare processo geomorfologico erosivo, quindi sono stati rivalutati i valori secondo un valore medio pesato sulla superficie totale del bacino.

$$G = \frac{(N \cdot 7 + P \cdot 4 + Q \cdot 2)}{S} \cdot 100$$

Variazione di G					
se 0<=G<=0,5 allora G'=0,1+V*0,4 115,1					
se 0,5 <g<2< td=""><td>allora</td><td>G'=0,134*G+0,133</td><td>38,658</td></g<2<>	allora	G'=0,134*G+0,133	38,658		
se 2<=G<=8	allora	G'=G/10+0,2	30,75		
se G>8	allora	G'=1	1		

Il valore d'<u>inclinazione</u> (l') è stato calcolato attraverso un processo di analisi spaziale condotto sul *raster* delle pendenze.

Il valore della <u>precipitazione media annua</u> (h) deriva dall'interpolazione e dall'analisi statistica condotta sui dati delle altezze di pioggia medie annuali registrate alla stazione meteoclimatica di Aragona individuata individuata utilizzando il reticolo di Thiessen.

I dati termo-pluviometrici utilizzati, desunti dagli Annali idrogeologici pubblicati sul sito Web dell' Autorità di bacino del Distretto Idrografico della Sicilia, riguardano le piogge e le temperature registrate nell'intervallo temporale 1992-2018.

I parametri termo pluviometri utilizzati nel calcolo fanno riferimento rispettivamente alla stazione termometrica di Agrigento situata alla quota di 184 m s.l.m., alle coordinate geografiche X= 374875, Y= 4129476, tipo acquisizione SIAP+MICROS DA9000, sensori P.T. ed alla stazione pluviometrica di Aragona situata alla quota di 316 m s.l.m., alle coordinate geografiche X= 380045, Y=4135639, tipo acquisizione NESA TMF100, sensori P.T..

PRECIPITA	ZIONI	TEMPERATURE		
Precipitazione media	571.06	Temperatura media	19.21	

4. TRASPORTO SOLIDO METODO DI GRAVRILOVIC

D	ai fisia masfisi.		
S =	ri fisiografici:	0,007645	(Km ²)
) = =	superficie bacino	0,007043	(%)
l' = √l	pendenza media bacino	0,09	(70)
1 – 11		0,50	
Parameti	ri climatici:		
t =	temperatura media annua	19,21	۰
t' =	√t*0,1+0,1 coeff. di temperatura	1,42	
h =	precipitazione media annua	571,06	(mm)
Uso del	suolo:		
A =	sup. a boschi e frutteti	0	(Km²)
B =	sup. a prati e pascoli	0	(Km ²)
C =	sup. a seminativi e coltivi varii	0	(Km ²)
D =	sup. sterile	0,007645	(Km ²)
U =	sup. paviment. e urbanizzata	0	(Km ²)
	casella di controllo	0,007645	
Litologia	n:		
J =	sup. rocce incoerenti	0	(Km²)
K =	sup. rocce pseudoc. e semicoer.	0,007645	(Km ²)
L =	sup. rocce coerenti	0	(Km ²)
	casella di controllo	0,007645	(Km ²)
Dissesti:			
N =	sup. con frane	0	(Km²)
P =	sup. con erosione accentuata	0	(Km²)
Q =	sup. con valanghe	0	(Km ²)
Coeff. d	2+B·0,5+C·0,8+D·1,0+0,05·U) S i erodibilità del suolo dato dalla litologia	1	
$Y = \frac{(J \cdot I)}{I}$	$1,6 + K \cdot 0,8 + L \cdot 0,3$	0,800	
	3		
	i degrado		
$G = \frac{(\lambda)}{(\lambda)}$	$\frac{V \cdot 7 + P \cdot 4 + Q \cdot 2}{S} \cdot 100$	0.000	
	S		
	i erosione relativa		
Z = X * Y	/ * (G' + l')	0,320	
	to solido potenziale $1 \cdot h \cdot \pi \cdot \sqrt{2^3}$	2.520	(m³/a)
W = 5 * t	Γ*h*π* νΖ ⁻	3,528	(m ⁻ /a)
Profond	ità erosione media		
Trasp pot	enz. : area =	0,461	mm
	e trasportato alla sezione di chiusura	0.577	, 2
G = W *		0,272	(m³/a)
Ku = 4(C)	D*D) ^{1/2} /(L+10)	0,077	
Con:		6 77	
	metro del bacino	0,770	(Km)
D =		0,050	(Km)
L = lungh	ezz asta principale del bacino	0,196	(Km)

Parametr	i fisiografici:		
S =	superficie bacino	0,055896	(Km ²)
) = =		0,09	(%)
l' = √l	pendenza media bacino	0,09	(10)
. — vi		0,50	
Parametr	i climatici:		
t =	temperatura media annua	19,21	۰
t' =	$\sqrt{t*0,1+0,1}$ coeff. di temperatura	1,42	
h =	precipitazione media annua	571,06	(mm)
Uso del s	suolo:		
A =	sup. a boschi e frutteti	0	(Km ²)
B =	sup. a prati e pascoli	0	(Km ²)
C =	sup. a seminativi e coltivi varii	0,027948	(Km ²)
D =	sup. sterile	0,027948	(Km ²)
U =	sup. paviment. e urbanizzata	0	(Km ²)
	casella di controllo	0,055896	
Litologia:		0	// 2\
J =	sup. rocce incoerenti	0	(Km²)
K =	sup. rocce pseudoc. e semicoer.	0,055896	(Km ²)
L =	sup. rocce coerenti	0	(Km²)
	casella di controllo	0,055896	(Km ²)
Dissesti:			// ² ·
N =	sup. con frane	0	(Km²)
P =	sup. con erosione accentuata	0	(Km ²)
Q =	sup. con valanghe	0	(Km ²)
	protezione del suolo data dalla vegetazion		
$X = \frac{(A \cdot 0.2)^2}{2}$	$2 + B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U$ S	0,9	
$X = \frac{(A \cdot 0.2)^2}{\text{Coeff. di}}$	S S S erodibilità del suolo dato dalla litologia	0,9	
$X = \frac{(A \cdot 0.2)^2}{\text{Coeff. di}}$	S S S erodibilità del suolo dato dalla litologia		
$X = \frac{(A \cdot 0.2)^2}{\text{Coeff. di}}$	$2 + B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U$ S	0,9	
$X = \frac{(A \cdot 0.2)^2}{\text{Coeff. di}}$	S S S erodibilità del suolo dato dalla litologia	0,9	
Coeff. di $Y = \frac{(A \cdot 0.2)^2}{(J \cdot 1)^2}$	S S S erodibilità del suolo dato dalla litologia	0,9	
Coeff. di $X = \frac{(A \cdot 0.2)^2}{(A \cdot 0.2)^2}$ Coeff. di	$\frac{2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ erodibilità del suolo dato dalla litologia $\frac{1}{S}$ $\frac{1}{S}$ degrado	0,9	
Coeff. di $X = \frac{(A \cdot 0.2)^2}{(A \cdot 0.2)^2}$ Coeff. di	$\frac{2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ erodibilità del suolo dato dalla litologia $\frac{1}{S}$ $\frac{1}{S}$ degrado	0,9	
Coeff. di $X = \frac{(A \cdot 0.2)^2}{(A \cdot 0.2)^2}$ Coeff. di	$\frac{S}{S}$ erodibilità del suolo dato dalla litologia $\frac{S}{S}$ S	0,9	
Coeff. di $X = \frac{(A \cdot 0.2)^2}{(A \cdot 0.2)^2}$ Coeff. di	$\frac{2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ erodibilità del suolo dato dalla litologia $\frac{1}{S}$ $\frac{1}{S}$ degrado	0,9	
Coeff. di $X = \frac{(A \cdot 0.2)^2}{(A \cdot 0.2)^2}$ Coeff. di $G = \frac{(N)^2}{(N)^2}$ Coeff. di	$\frac{2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ $\frac{1}{S}$ erodibilità del suolo dato dalla litologia $\frac{1.6+K\cdot 0.8+L\cdot 0.3)}{S}$ $\frac{S}{S}$ $\frac{1}{S}$ degrado $\frac{1.7+P\cdot 4+Q\cdot 2)}{S}\cdot 100$ erosione relativa	0,9	
Coeff. di $X = \frac{(A \cdot 0.2)^2}{(A \cdot 0.2)^2}$ Coeff. di $G = \frac{(N)^2}{(N)^2}$ Coeff. di	$\frac{2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ $\frac{1}{S}$ erodibilità del suolo dato dalla litologia $\frac{1.6+K\cdot 0.8+L\cdot 0.3)}{S}$ $\frac{1}{S}$ $\frac{1}{S}$ degrado $\frac{1.7+P\cdot 4+Q\cdot 2)}{S}\cdot 100$	0,9	
Coeff. di $Y = \frac{(J \cdot 1)^2}{I}$ Coeff. di $G = \frac{I}{I}$ Coeff. di $Z = X * Y$	$\frac{(2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ $\frac{(2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ $\frac{(3+B\cdot 0.5+C\cdot 0.8+L\cdot 0.3)}{S}$	0,9	
Coeff. di $X = \frac{(A \cdot 0.2)}{(A \cdot 0.2)}$ Coeff. di $G = \frac{(N)}{(A \cdot 0.2)}$ Coeff. di $Z = X * Y$ Trasporto	$\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.0 + D \cdot 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.0 + D \cdot 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.0 + D \cdot 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.0 + D \cdot 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.0 + D \cdot 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.0 + D \cdot 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.0 + D \cdot 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.0 + D \cdot 0.05 \cdot U)}{S}$ $\frac{(C+B \cdot 0.5 + C \cdot 0.0 + D \cdot 0.05 \cdot U)}{S}$ $(C+B $	0,9 0,800 0,000	
Coeff. di $X = \frac{(A \cdot 0.2)}{(A \cdot 0.2)}$ Coeff. di $G = \frac{(N)}{(A \cdot 0.2)}$ Coeff. di $Z = X * Y$ Trasporto	$\frac{(2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ $\frac{(2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ $\frac{(3+B\cdot 0.5+C\cdot 0.8+L\cdot 0.3)}{S}$	0,9	(m³/a)
Coeff. di $Y = \frac{(A \cdot 0.2)}{(J \cdot 1)}$ Coeff. di $G = \frac{(N)}{(J \cdot 1)}$ Coeff. di $Z = X * Y$ Trasporte $W = S * t'$	$\frac{(2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ $\frac{1}{S}$ 1	0,9 0,800 0,000	(m³/a)
Coeff. di $Y = \frac{(J \cdot 1)}{(J \cdot 1)}$ Coeff. di $G = \frac{(N)}{(J \cdot 1)}$ Coeff. di $Z = X * Y$ Trasporte $W = S * t'$ Spessore	$\frac{(2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ $\frac{1}{S}$ erodibilità del suolo dato dalla litologia $\frac{(.6+K\cdot 0.8+L\cdot 0.3)}{S}$ $\frac{S}{S}$ $\frac{1}{S}$ degrado $\frac{(.7+P\cdot 4+Q\cdot 2)}{S}\cdot 100$ $\frac{S}{S}$ erosione relativa $\frac{(.6+B)}{S}$ $\frac{(.6+B)}{S}$ o solido potenziale $\frac{(.6+B)}{S}$ medio del materiale eroso	0,9 0,800 0,000 0,288	(m³/a)
Coeff. di $Y = \frac{(J \cdot 1)}{(J \cdot 1)}$ Coeff. di $G = \frac{(N)}{(J \cdot 1)}$ Coeff. di $Z = X * Y$ Trasporte $W = S * t'$ Spessore	$\frac{(2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ $\frac{1}{S}$ 1	0,9 0,800 0,000	
Coeff. di $Y = \frac{(J \cdot 1)}{(J \cdot 1)}$ Coeff. di $G = \frac{(N)}{(J \cdot 1)}$ Coeff. di $Z = X * Y$ Trasporte $W = S * t'$ Spessore Trasp pote	$\frac{(2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ $\frac{1}{S}$ erodibilità del suolo dato dalla litologia $\frac{(.6+K\cdot 0.8+L\cdot 0.3)}{S}$ $\frac{S}{S}$ $\frac{1}{S}$ degrado $\frac{(.7+P\cdot 4+Q\cdot 2)}{S}\cdot 100$ $\frac{S}{S}$ erosione relativa $\frac{(.6+B)}{S}$ $\frac{(.6+B)}{S}$ o solido potenziale $\frac{(.6+B)}{S}$ medio del materiale eroso	0,9 0,800 0,000 0,288	
Coeff. di $Y = \frac{(J \cdot 1)}{J \cdot 1}$ Coeff. di $G = \frac{N}{J \cdot 1}$ Coeff. di $Z = X * Y$ Trasporte $W = S * t'$ Spessore Trasp pote	erosione relativa * (G' + I') so solido potenziale * $\pi \times \pi \times \sqrt{Z^3}$ medio del materiale eroso enz. : area =	0,9 0,800 0,000 0,288	,
Coeff. di $Y = \frac{(J \cdot 1)}{(J \cdot 1)}$ Coeff. di $G = \frac{(N)}{(J \cdot 1)}$ Coeff. di $Z = X * Y$ Trasporte $W = S * t'$ Spessore Trasp pote $Trasp = M$ Materiale $G = W * 1$	erosione relativa * (G' + I') so solido potenziale * $\pi \times \pi \times \sqrt{Z^3}$ medio del materiale eroso enz. : area =	0,9 0,800 0,000 0,288 22,022	mm
Coeff. di $Y = \frac{(J \cdot 1)}{(J \cdot 1)}$ Coeff. di $G = \frac{(N)}{(J \cdot 1)}$ Coeff. di $Z = X * Y$ Trasporte $W = S * t'$ Spessore Trasp pote $Trasp = M$ Materiale $G = W * 1$	$S = \frac{1}{S} + $	0,9 0,800 0,000 0,288 22,022 0,394 2,139	mm
Coeff. di $Y = \frac{(J \cdot 1)}{(J \cdot 1)}$ Coeff. di $G = \frac{(N)}{(J \cdot 1)}$ Coeff. di $Z = X * Y$ Trasporte $W = S * t'$ Spessore Trasp pote $G = W * 1$ Ru = 4(Co	$S = \frac{1}{S} + $	0,9 0,800 0,000 0,288 22,022 0,394 2,139	mm
$X = \frac{(A \cdot 0.2)}{(A \cdot 0.2)}$ Coeff. di $Y = \frac{(J \cdot 1)}{(J \cdot 1)}$ Coeff. di $Z = X * Y$ Trasporte $W = S * t'$ Spessore Trasp pote $Materiale$ $G = W * 1$ $Ru = 4(C)$ Con:	degrado $ \begin{array}{c} (A+B+O.5+C+O.8+D+I.0+0.05+U) \\ (A+B+O.5+C+O.8+D+I.0+0.05+U) \\ (A+B+O.5+C+O.8+L+O.3) \\ (A+B+O.8+L+O.3) \\ $	0,9 0,800 0,000 0,288 22,022 0,394 2,139	mm
Coeff. di $Y = \frac{(J \cdot 1)}{(J \cdot 1)}$ Coeff. di $G = \frac{N}{(J \cdot 1)}$ Coeff. di $Z = X * Y$ Trasporte $W = S * t'$ Spessore Trasp pote $G = W * t$ Ru = 4(C) $Con:$ $O = perim$	$S = \frac{1}{S} + $	0,9 0,800 0,000 0,288 22,022 0,394 2,139 0,097	mm (m³/a)
Coeff. di $Y = \frac{(J \cdot 1)}{(J \cdot 1)}$ Coeff. di $G = \frac{N}{(J \cdot 1)}$ Coeff. di $Z = X * Y$ Trasporte $W = S * t'$ Spessore Trasp pote $Materiale$ $G = W * I$ $Ru = 4(O$ Con: $O = perim$ $D = \frac{N}{(J \cdot 1)}$	degrado $ \begin{array}{c} (A+B+O.5+C+O.8+D+I.0+0.05+U) \\ (A+B+O.5+C+O.8+D+I.0+0.05+U) \\ (A+B+O.5+C+O.8+L+O.3) \\ (A+B+O.8+L+O.3) \\ $	0,9 0,800 0,000 0,288 22,022 0,394 2,139 0,097	mm (m²/a)

	i fisiografici:		
S =	superficie bacino	0,090411	(Km ²)
s = l =	·		(%)
ı = l' = √l	pendenza media bacino	0,09	(70)
i = vi		0,30	
Parametr	i climatici:		
t =	temperatura media annua	19,21	۰
t' =	√t*0,1+0,1 coeff. di temperatura	1,42	
h =	precipitazione media annua	571,06	(mm)
Uso del s	suolo:		
A =	sup. a boschi e frutteti	0	(Km ²)
B =	sup. a prati e pascoli	0	(Km ²)
C =	sup. a seminativi e coltivi varii	0,0316439	(Km ²)
D =	sup. sterile	0,0587672	(Km ²)
U =	sup. paviment. e urbanizzata	0	(Km ²)
	casella di controllo	0,090411	
Litologia			2
J =	sup. rocce incoerenti	0	(Km ²)
K =	sup. rocce pseudoc. e semicoer.	0,090411	(Km ²)
L =	sup. rocce coerenti	0	(Km ²)
	casella di controllo	0,090411	(Km ²)
Dissesti:			
N =	sup. con frane	0	(Km ²)
P =	sup. con erosione accentuata	0	(Km ²)
Q =	sup. con valanghe	0	(Km ²)
C EE - J:			
Coerr. ai	i protezione dei suoio data dalla vegetazior	ie	
	i protezione del suolo data dalla vegetazion	0,93	
	protezione dei suolo data dalla vegetazion $2+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U$		
$X = \frac{(A \cdot 0.2)^2}{2}$	2 + B · 0,5 + C · 0,8 + D · 1,0 + 0,05 · U) S		
$X = \frac{(A \cdot 0.2)^2}{\text{Coeff. di}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,93	
$X = \frac{(A \cdot 0.2)^2}{\text{Coeff. di}}$	2 + B · 0,5 + C · 0,8 + D · 1,0 + 0,05 · U) S		
$X = \frac{(A \cdot 0.2)^2}{\text{Coeff. di}}$	$\frac{2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ i erodibilità del suolo dato dalla litologia $.6+K\cdot 0.8+L\cdot 0.3)$	0,93	
$X = \frac{(A \cdot 0.2)^2}{\text{Coeff. di}}$ $Y = \frac{(J \cdot 1)^2}{2}$	S i erodibilità del suolo dato dalla litologia $(3.6+K\cdot0.8+L\cdot0.3)$ S	0,93	
Coeff. di	$\frac{2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ is erodibilità del suolo dato dalla litologia $\frac{1.6+K\cdot 0.8+L\cdot 0.3)}{S}$	0,93	
Coeff. di	$\frac{2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ is erodibilità del suolo dato dalla litologia $\frac{1.6+K\cdot 0.8+L\cdot 0.3)}{S}$	0,93	
Coeff. di	S i erodibilità del suolo dato dalla litologia $(3.6+K\cdot0.8+L\cdot0.3)$ S	0,93	
Coeff. di	$\frac{2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ is erodibilità del suolo dato dalla litologia $\frac{1.6+K\cdot 0.8+L\cdot 0.3)}{S}$	0,93	
Coeff. di	$\frac{2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ is erodibilità del suolo dato dalla litologia $\frac{1.6+K\cdot 0.8+L\cdot 0.3)}{S}$	0,93	
Coeff. di $Y = \frac{(A \cdot 0.2)^2}{(J \cdot 1)^2}$ Coeff. di $G = \frac{(N \cdot 1)^2}{(N \cdot 1)^2}$	$\frac{2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ is erodibilità del suolo dato dalla litologia $\frac{1.6+K\cdot 0.8+L\cdot 0.3)}{S}$	0,93	
Coeff. di $C = \frac{(A \cdot 0.2)}{(J \cdot 1)}$ $C = \frac{(J \cdot 1)}{(J \cdot 1)}$ $C = \frac{(N \cdot 1)}{(N \cdot 1)}$	$\frac{2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ is erodibilità del suolo dato dalla litologia $\frac{1.6+K\cdot 0.8+L\cdot 0.3)}{S}$ is degrado $\frac{1.7+P\cdot 4+Q\cdot 2)}{S}\cdot 100$	0,93	
Coeff. di $C = \frac{(A \cdot 0.2)}{(J \cdot 1)}$ $C = \frac{(J \cdot 1)}{(J \cdot 1)}$ $C = \frac{(N \cdot 1)}{(N \cdot 1)}$	$\frac{2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ is erodibilità del suolo dato dalla litologia $\frac{1.6+K\cdot 0.8+L\cdot 0.3)}{S}$ is degrado $\frac{1.7+P\cdot 4+Q\cdot 2)}{S}\cdot 100$ is erosione relativa	0,93	
Coeff. di $X = \frac{(A \cdot 0.2)^2}{(A \cdot 0.2)^2}$ Coeff. di $G = \frac{(N)^2}{(N)^2}$ Coeff. di $Z = X * Y$	i erodibilità del suolo dato dalla litologia $(3.6+K\cdot0.8+L\cdot0.3)$ S i degrado $(3.7+P\cdot4+Q\cdot2)$ S i erosione relativa	0,93	
Coeff. di	$\frac{2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ is erodibilità del suolo dato dalla litologia $\frac{1.6+K\cdot 0.8+L\cdot 0.3)}{S}$ is degrado $\frac{1.7+P\cdot 4+Q\cdot 2)}{S}\cdot 100$ is erosione relativa	0,93	(m³/a)
Coeff. di $ Coeff. di $ Coeff. di $ Coeff. di $	$\frac{2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ is erodibilità del suolo dato dalla litologia $\frac{1.6+K\cdot 0.8+L\cdot 0.3)}{S}$ is degrado $\frac{1.7+P\cdot 4+Q\cdot 2)}{S}\cdot 100$ is erosione relativa $\frac{1.7+C\cdot 4+C\cdot 2}{S}\cdot 100$ o solido potenziale	0,93	(m³/a)
Coeff. di	$\frac{2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ is erodibilità del suolo dato dalla litologia $\frac{1.6+K\cdot 0.8+L\cdot 0.3)}{S}$ is degrado $\frac{1.7+P\cdot 4+Q\cdot 2)}{S}\cdot 100$ is erosione relativa $\frac{1.7+C\cdot 4+C\cdot 2}{S}\cdot 100$ o solido potenziale	0,93	(m³/a)
Coeff. di $X = \frac{(A \cdot 0.2)}{(J \cdot 1)}$ Coeff. di $G = \frac{(N)}{(J \cdot 1)}$ Coeff. di $Z = X * Y$ Trasporte $W = S * t'$ Spessore	$\frac{2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ if erodibilità del suolo dato dalla litologia $\frac{1.6+K\cdot 0.8+L\cdot 0.3}{S}$ if degrado $\frac{1.7+P\cdot 4+Q\cdot 2}{S}\cdot 100$ S if erosione relativa $\frac{1.8+C\cdot 0.8+L\cdot 0.3}{S}$ o solido potenziale $\frac{1.8+C\cdot 0.8+L\cdot 0.3}{S}$	0,93	(m³/a)
Coeff. di $X = \frac{(A \cdot 0.2)}{(J \cdot 1)}$ Coeff. di $G = \frac{(N)}{(J \cdot 1)}$ Coeff. di $Z = X * Y$ Trasporte $W = S * t'$ Spessore	$\frac{2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ is erodibilità del suolo dato dalla litologia $\frac{1.6+K\cdot 0.8+L\cdot 0.3)}{S}$ is degrado $\frac{1.7+P\cdot 4+Q\cdot 2)}{S}\cdot 100$ is erosione relativa $\frac{1.7+P\cdot 4+Q\cdot 2}{S}\cdot 100$ o solido potenziale $\frac{1.7+P\cdot 4+Q\cdot 2}{S}\cdot 100$ medio del materiale eroso	0,93 0,800 0,000 0,298	
Coeff. di $Y = \frac{(J \cdot 1)}{(J \cdot 1)}$ Coeff. di $G = \frac{(N)}{(J \cdot 1)}$ Coeff. di $Z = X * Y$ Trasport. $W = S * t$ Spessore Trasp pote	i erodibilità del suolo dato dalla litologia $A_1 + A_2 + A_3 + A_4 + A$	0,93 0,800 0,000 0,298	
Coeff. di $Y = \frac{(J \cdot 1)}{(J \cdot 1)}$ Coeff. di $G = \frac{(N)}{(J \cdot 1)}$ Coeff. di $Z = X * Y$ Trasporte $W = S * t$ Spessore Trasp pote	i erodibilità del suolo dato dalla litologia $A_1 + A_2 + A_3 + A_4 + A$	0,93 0,800 0,000 0,298 37,417	
Coeff. di $Y = \frac{(J \cdot 1)}{(J \cdot 1)}$ Coeff. di $G = \frac{(N)}{(J \cdot 1)}$ Coeff. di $Z = X \times Y$ Trasport. $W = S \times Y$ Spessore Trasp pote $Trasp = M$ Materiale $G = W \times Y$	i erodibilità del suolo dato dalla litologia $A_1 + A_2 + A_3 + A_4 + A$	0,93 0,800 0,000 0,298 37,417 0,414	mm
Coeff. di $Y = \frac{(J \cdot 1)}{(J \cdot 1)}$ Coeff. di $G = \frac{(N)}{(J \cdot 1)}$ Coeff. di $Z = X \times Y$ Trasport. $W = S \times Y$ Spessore Trasp pote $Trasp = M$ Materiale $G = W \times Y$	i erodibilità del suolo dato dalla litologia $A_1 + A_2 + A_3 + A_4 + A$	0,93 0,800 0,000 0,298 37,417	mm
Coeff. di $Y = \frac{(A \cdot 0.2)}{(J \cdot 1)}$ Coeff. di $G = \frac{(N)}{(J \cdot 1)}$ Coeff. di $Z = X * Y$ Trasporte $W = S * t$ Spessore Trasp pote $G = W * t$ Ru = 4(Co	i erodibilità del suolo dato dalla litologia $A_1 + A_2 + A_3 + A_4 + A$	0,93 0,800 0,000 0,298 37,417 0,414	mm
Coeff. di $Y = \frac{(A \cdot 0.2)}{(J \cdot 1)}$ Coeff. di $G = \frac{(N)}{(J \cdot 1)}$ Coeff. di $Z = X * Y$ Trasporte $W = S * t'$ Spessore Trasp pote $G = W * t'$ Ru = 4(Con:	$\frac{2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ if erodibilità del suolo dato dalla litologia $\frac{1}{1.6+K\cdot 0.8+L\cdot 0.3}$ $\frac{1}{S}$ if degrado $\frac{1}{1.7+P\cdot 4+Q\cdot 2}\cdot 100$ $\frac{1}{S}$ if erosione relativa $\frac{1}{1.8+3}\cdot \frac{1}{1.8+3}\cdot \frac{1}{1.8+3}$ if erosione relativa $\frac{1}{1.8+3}\cdot \frac{1}{1.8+3}\cdot \frac{1}{1.8+3}\cdot \frac{1}{1.8+3}$ if erosione relativa $\frac{1}{1.8+3}\cdot \frac{1}{1.8+3}\cdot \frac{1}{1.8+3}\cdot$	0,93 0,800 0,000 0,298 37,417 0,414 5,110 0,137	mm (m³/a)
Coeff. di $Y = \frac{(A \cdot 0.2)}{(J \cdot 1)}$ Coeff. di $G = \frac{(N)}{(J \cdot 1)}$ Coeff. di $Z = X * Y$ Trasporte $W = S * t'$ Spessore Trasp pote $Materiale$ $G = W *$ $Ru = 4(C)$ Con: $O = perin$	i erodibilità del suolo dato dalla litologia $A_1 + A_2 + A_3 + A_4 + A$	0,93 0,800 0,000 0,000 0,298 37,417 0,414 5,110 0,137 3,365	mm (m³/a)
Coeff. di $Y = \frac{(A \cdot 0.2)}{(J \cdot 1)}$ Coeff. di $G = \frac{N}{(J \cdot 1)}$ Coeff. di $Z = X * Y$ $Z = X * Y$ Trasporte $W = S * t'$ Spessore $Trasp \text{ pote}$ $G = W * t'$ $Ru = 4(C)$ Con: $C = \text{ perin}$ $D = \text{ perin}$	$\frac{2+B\cdot 0.5+C\cdot 0.8+D\cdot 1.0+0.05\cdot U)}{S}$ if erodibilità del suolo dato dalla litologia $\frac{1}{1.6+K\cdot 0.8+L\cdot 0.3}$ $\frac{1}{S}$ if degrado $\frac{1}{1.7+P\cdot 4+Q\cdot 2}\cdot 100$ $\frac{1}{S}$ if erosione relativa $\frac{1}{1.8+3}\cdot \frac{1}{1.8+3}\cdot \frac{1}{1.8+3}$ if erosione relativa $\frac{1}{1.8+3}\cdot \frac{1}{1.8+3}\cdot \frac{1}{1.8+3}\cdot \frac{1}{1.8+3}$ if erosione relativa $\frac{1}{1.8+3}\cdot \frac{1}{1.8+3}\cdot \frac{1}{1.8+3}\cdot$	0,93 0,800 0,000 0,298 37,417 0,414 5,110 0,137	mm (m³/a)

_	.				
	fisiografici			0.050050	(14 2s
S =	superficie b			0,050962	(Km²)
1 =	pendenza i	media bacin	0	0,09	(%)
l' = √l				0,30	
Parametri	climatici				
t =		a media anı	านล	19,21	0
t' =	<u> </u>	coeff. di te		1,42	
h =		one media a		571,06	(mm)
Uso del si	uolo:				
A =		:hi e frutteti		0	(Km ²)
B =	sup. a prat			0	(Km ²)
C =		nativi e colt	ivi varii	0	(Km²)
D =	sup. sterile			0,050962	(Km ²)
U =	•	ient. e urbar	nizzata	0	(Km ²)
_			casella di controllo	0,050962	
Litologia:					
J =	sup. rocce	incoerenti		0	(Km ²)
K =	sup. rocce	pseudoc. e	semicoer.	0,050962	(Km ²)
L =	sup. rocce	coerenti		0	(Km ²)
			casella di controllo	0,050962	(Km ²)
Dissesti:					
N =	sup. con fr	ane		0	(Km ²)
P =	sup. con e	rosione acce	entuata	0	(Km ²)
Q =	sup. con v	alanghe		0	(Km ²)
			data dalla vegetazion	e	
$V = (A \cdot 0.2)$	$+B \cdot 0.5 + C \cdot 0.8$	$3 + D \cdot 1,0 + 0,0$	5·U)	1	
Λ -	S				
Coeff. di	erodibilità	del suolo	dato dalla litologia		
$-Y = \frac{(J \cdot 1, \dots)}{(J \cdot 1, \dots)}$	$6+K\cdot 0.8+L$.0,3)		0,800	
	S				
Coeff. di	degrado				
(N	$\cdot 7 + P \cdot 4 +$	(0.2)		0.000	
G =	$\frac{\cdot 7 + P \cdot 4 +}{S}$	~ -7.100	0	0,000	
	+				
	erosione re	lativa		0.220	
Z = X * Y	* (G' + l')			0,320	
T					
	solido pot * h * π * √Z ^Ξ			23,516	(m ³ /a)
w = 3 ·· t	·· 11 ·· 11 ·· 12			25,510	(III /d)
Speciare	medio del r	natorialo o	roco		
Trasp poter		ilateriale e	1030	0,461	mm
Trasp potei	iz ai ea —			0,401	
Materials	tracnortato	alla cezio	ne di chiusura		
G = W * R	•	ana 36210	no ar emujura	2,646	(m³/a)
	.u *Ď) ^{1/2} /(L+10)			0,113	, / ω/
4(0	J) /(L⊤10)			0,110	
Con:					
	etro del bacir	20		2,118	(Km)
D = perim	The del pacif			0,042	(Km)
	zz asta princij	nale del bes	ino	0,601	(Km)
L – lungne	LL asia Princi	Jaie dei Dac	IIIO III	0,001	(INIII)

Davamatri	fisiografici:		
S =	superficie bacino	0,054029	(Km²)
1 =	pendenza media bacino	0,09	(%)
l' = √l	periodriza media baemo	0,30	(1-)
. ,,		5,55	
Parametri	climatici:		
t =	temperatura media annua	19,21	۰
t' =	√t*0,1+0,1 coeff. di temperatura	1,42	
h =	precipitazione media annua	571,06	(mm)
Uso del si	uolo:		
A =	sup. a boschi e frutteti	0	(Km²)
B =	sup. a prati e pascoli	0	(Km ²)
C =	sup. a seminativi e coltivi varii	0	(Km ²)
D =	sup. sterile	0,054029	(Km ²)
U =	sup. paviment. e urbanizzata	0	(Km ²)
	casella di controllo	0,054029	
Litalogia			
Litologia:	sup. rocce incoerenti	0	(Km²)
K =	sup. rocce pseudoc. e semicoer.	0,054029	(Km²)
L =	sup. rocce coerenti	0	(Km²)
	casella di controllo		(Km²)
Dissesti:	cascila di controllo	, 0,001021	()
N =	sup. con frane	0	(Km²)
P =	sup. con erosione accentuata	0	(Km²)
Q =	sup. con valanghe	0	(Km²)
~			
Coeff. di	protezione del suolo data dalla vegetazi	ione	
		1	
$X = \frac{(X - 0)^2}{2}$	$+B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U$		
Coeff. di	erodibilità del suolo dato dalla litologia		
$Y = \frac{(J \cdot 1,)}{(J \cdot 1,)}$	$6+K\cdot 0,8+L\cdot 0,3$	0,800	
1	S		
Coeff. di	degrado		
(M	7 - 8 4 - 0 2)		
$G = \frac{1}{\sqrt{N}}$	$\frac{\cdot 7 + P \cdot 4 + Q \cdot 2}{S} \cdot 100$	0,000	
	3		
	erosione relativa		
Z = X * Y	* (G' + l')	0,320	
	solido potenziale		
W = S * t'	* h * π * √Z³	24,931	(m³/a)
Spessore	medio del materiale eroso		
Trasp poter	nz. : area =	0,461	mm
	trasportato alla sezione di chiusura		. 3
G = W * R		2,636	(m³/a)
Ru = 4(O)	*D) ^{1/2} /(L+10)	0,106	
C			
Con:		1.440	(1/2)
	etro del bacino	1,442	(Km)
D =		0,054	(Km)
L = lunghe	zz asta principale del bacino	0,555	(Km)

_						
	fisiografici:					, ^
S =	superficie baci	no			0,05239	(Km ²)
l =	pendenza med	dia bacino			0,09	(%)
l' = √l					0,30	
Parametri						
t =	temperatura m				19,21	۰
t' =	√t*0,1+0,1 co	eff. di tem	peratura		1,42	
h =	precipitazione	media an	nua		571,06	(mm)
Uso del si	ıolo:					
A =	sup. a boschi e	frutteti			0,005239	(Km ²)
B =	sup. a prati e p	pascoli			0	(Km²)
C =	sup. a seminati	ivi e coltiv	i varii		0	(Km ²)
D =	sup. sterile				0,047151	(Km ²)
U =	sup. paviment	. e urbaniz	zzata		0	(Km²)
			casella c	li controllo	0,05239	
Litologia:						
J =	sup. rocce inc	oerenti			0	(Km²)
K =	sup. rocce pse		micoer.		0,05239	(Km²)
L =	sup. rocce coe		inicoci.		0	(Km²)
_	Jup. Focce coc	- CINI	casella d	li controllo	0,05239	(Km²)
Dissesti:			cascila c	ii controllo	0,03233	()
N =	sup. con frane				0,047151	(Km ²)
P =	sup. con erosi		tuata		0	(Km²)
Q =	sup. con valan	ighe			0	(Km ²)
	$+B \cdot 0.5 + C \cdot 0.8 + D$ S erodibilità del			litologia	0,92	
$J \cdot 1$	$6 + K \cdot 0.8 + L \cdot 0.3$	3)	ato dane	intologia	0,800	
_ <i>I</i> =	S					
Coeff. di	degrado					
(N	$.7 \pm P.4 \pm O.$.2)				
G = (1)	$\frac{7+P\cdot 4+Q}{S}$	2) ·100			630,000	
Coeff. di	erosione relati	iva				
Z = X * Y	* (G' + l')				0,957	
Trasporto	solido poten:	ziale				
W = S * t'	* h * π * √Z³				124,990	(m³/a)
Spessore i	nedio del mat	eriale er	oso			
Trasp poter					2,386	mm
	• • • • • • • • • • • • • • • • • • • •	1				
	trasportato al	ia sezion	e aı chiu	isura	10 777	(m³/-)
G = W * R					18,777	(m³/a)
κu = 4(O	(D) ^{1/2} /(L+10)				0,150	
Con:						
	etro del bacino				1,746	(Km)
D =					0,090	(Km)
	zz asta principale	del bacin	0		0,555	(Km)
.36.10	p					

LOTTO B - SOTTOBACINO B2

Darametri	fisiografici				
				0,101118	(Km ²)
S = I =	superficie b		_	0,09	(%)
l' = √l	pendenza i	nedia bacin	0	0,09	(70)
1 = 11				0,30	
D	alima aki ai				
	climatici:	1.		10.21	۰
t =	· ·	a media an		19,21	
t' =	Vt^U,1+U,1	coeff. di te	emperatura	1,42	
h =	precipitazio	one media a	annua	571,06	(mm)
Uso del s	uolo:				
A =	sup. a boso	hi e frutteti		0	(Km ²)
B =	sup. a prat	i e pascoli		0	(Km ²)
C =	sup. a semi	nativi e colt	tivi varii	0	(Km ²)
D =	sup. sterile			0,101118	(Km ²)
U =		ent. e urbai	nizzata	0	(Km ²)
	1		casella di controllo	0,101118	
			Casena di Controllo	,	
Litologia:					
J =	sup. rocce	incoerenti		0	(Km ²)
K =	sup. rocce	pseudoc. e	semicoer.	0,101118	(Km ²)
L =	sup. rocce	coerenti		0	(Km ²)
			casella di controllo	0,101118	(Km²)
Dissesti:					
N =	sup. con fr	ane		0,101118	(Km ²)
P =	•	osione acce	entuata	0	(Km ²)
Q =	sup. con v			0	(Km ²)
~	Japr com r				. ,
$X = \frac{(1 - 3)^2}{2}$	$+B \cdot 0.5 + C \cdot 0.8$	1,0 1,0 1 0,0			
Coeff. di	erodibilità	del suolo	dato dalla litologia		
$Y = \frac{(J \cdot 1, J)}{(J \cdot 1, J)}$	$6+K\cdot 0,8+L$.0,3)		0,800	
	S				
Coeff. di	degrado				
(N	$\cdot 7 + P \cdot 4 +$	0.2)			
G = (3)	$\frac{\cdot 7 + P \cdot 4 + }{S}$	2 -/ ·10	0	700,000	
	erosione re	lativa		1.0.40	
Z = X * Y	* (G' + l')			1,040	
Trasporto	solido pot	enziale			
	* h * π * √Z ³			273,384	(m³/a)
., .				2.0,001	,
Spessore	medio del r	nateriale <i>e</i>	eroso		
	nz.: area =		-	2,704	mm
P 5101					
Materiale	trasportato	alla sezio	one di chiusura		
G = W * R		3 30210		46,331	(m³/a)
	*Ď) ^{1/2} /(L+10)			0,169	(111 / 4)
Nu - 4(U	(LTIU)			0,109	
C = =					
Con:				2.007	77.
	etro del bacir	10		2,007	(Km)
D =				0,100	(Km)
L = lunghe	zz asta princiį	oale del bac	ino	0,574	(Km)

LOTTO B - SOTTOBACINO B3

Danam atu:	fisioanofisi				
	fisiografici			0,115133	(Km²)
S =	superficie l		_		
$\frac{1}{l'} = \sqrt{l}$	pendenza	media bacin	0	0,09	(%)
I = VI				0,30	
Parametri	climatici:				
t =		ra media anr	าแล	19,21	۰
t' =	-	l coeff. di te		1,42	
				571,06	(mm)
h =	precipitazi	one media a	nnua	371,00	()
Uso del su	iolo:				
A =		chi e frutteti		0	(Km ²)
B =	sup. a prat			0	(Km²)
C =		inativi e colt	ivi varii	0	(Km²)
D =	sup. sterile			0,115133	(Km ²)
U =		nent. e urbar	nizzata	0	(Km ²)
_	1		casella di controllo	0,115133	
			121		
Litologia:					
J =	sup. rocce	incoerenti		0	(Km ²)
K =	-	pseudoc. e	semicoer.	0,115133	(Km ²)
L =	sup. rocce			0	(Km ²)
			casella di controllo	0,115133	(Km ²)
Dissesti:					
N =	sup. con fi	rane		0,1036197	(Km²)
P =	sup. con e	rosione acce	ntuata	0	(Km²)
Q =	sup. con v	alanghe		0	(Km ²)
Coeff. di	protezione	del suolo	data dalla vegetazion	ie	
(A · 0,2 +	$+B \cdot 0.5 + C \cdot 0.8$	$8 + D \cdot 1,0 + 0,05$	5·U)	1	
X = -	S				
			dato dalla litologia		
$-Y = \frac{(J \cdot 1, \epsilon)}{(J \cdot 1, \epsilon)}$	$5+K\cdot 0.8+L$. 0,3)		0,800	
	<i>S</i>				
Coeff. di	degrado				
(N.	$\frac{1}{7+P\cdot 4+}$	(0,2)			
$C = \frac{1}{\sqrt{1}}$	7 + F · 4 +	$\frac{(Q^{+2})}{100}$)	630,000	
	S				
	erosione re	elativa			
Z = X * Y *	' (G' + l')			1,040	
	solido po				_
W = S * t'	[*] h * π * √Z	,		311,275	(m³/a)
_					
	nedio del 1	materiale e	roso		
Trasp poter	z.: area =			2,704	mm
		.,			
		alla sezio	ne di chiusura	107.021	/3/ \
G = W * R	_			127,231	(m³/a)
	D) 1/2/(L+10)	1		0,409	
Ru = 4(O*					
Con:				2.021	<i>(u.</i>)
Con: O = perime	etro del baci	no		2,831	(Km)
Con: O = perime D =	etro del baci			2,831 0,420 0,671	(Km) (Km) (Km)

LOTTO B - SOTTOBACINO B4

_					
	fisiografici			0.5=====	400.0
S =	superficie l	oacino		0,057462	(Km ²)
1 =	pendenza	media bacin	10	0,09	(%)
l' = √l				0,30	
Parametri					•
t =		ra media an		19,21	۰
t' =	√t*0,1+0,	l coeff. di te	emperatura	1,42	
h =	precipitazi	one media a	annua	571,06	(mm)
Uso del si	uolo:				
A =	sup. a boss	chi e frutteti		0	(Km ²)
B =	sup. a prat	i e pascoli		0	(Km ²)
C =	sup. a sem	inativi e col	tivi varii	0,0344772	(Km ²)
D =	sup. sterile			0,0229848	(Km ²)
U =	sup. pavim	nent. e urba	nizzata	0	(Km ²)
			casella di controllo	0,057462	
likalagia					
Litologia:	6115 · · · ·	inec		0	(Km²)
J = K =		incoerenti		0,057462	(KIII)
	-	pseudoc. e	semicoer.	0,037462	(Km²)
L =	sup. rocce	coerenti	lla di sambualla	0,057462	(Km²)
Dissesti:			casella di controllo	0,057462	(KIII)
				0	(Km ²)
N =	sup. con fi			0	(KIII)
P =		rosione acce	entuata	0	(Km²)
Q =	sup. con v	alangne		U	(KIII)
Cooff di	nrotoziono	dal avala	data dalla vegetazion		
				0,88	
$X = \frac{(A \cdot 0,2)}{A}$	$+B\cdot0.5+C\cdot0.8$	$8 + D \cdot 1,0 + 0,0$	5.0)	0,00	
Coeff. di	erodibilità	del suolo	dato dalla litologia		
	$6+K\cdot 0.8+L$			0,800	
_ Y =	S				
Coeff di	dograda				
Coeff. di					
$G = \frac{(N)}{N}$	$\cdot 7 + P \cdot 4 +$	$(Q \cdot 2)_{-10}$	0	0,000	
<u> </u>	S			0,000	
Coeff di	erosione re	dativa			
Z = X * Y	_	eialiva		0,282	
Z = X ·· 1	·· (G +1)			0,282	
Tuesmoute	solido po	tonniolo			
	* h * π * \sqrt{Z}			21,889	(m³/a)
w = 3 ·· t	· 11 · 11 · 12			21,009	(111 / a)
Spessore	medio del 1	nateriale e	Proso		
Trasp poter				0,381	mm
Trusp poter	12 urcu —			0,301	
Materiale	trasportato	alla sezio	one di chiusura		
G = W * R				8,891	(m³/a)
	(L+10)			0,406	. , ,
1(0	_, ,(E110)			3, 100	
Con:					
	etro del baci	no		1,894	(Km)
D =	The delibacii			0,620	(Km)
	zz asta princi	nale del bac	ino	0,671	(Km)
L - lungne	LL asia PITICI	paie del Dac		0,071	(1511)

Parametri	fisiografici:				
S =	superficie ba	ncino		0,023982	(Km²)
1 =	pendenza n		0	0,18	(%)
l' = √l	pendenza n	iedia Daciii	0	0,18	(70)
1 - 11				0,12	
Parametri	climatici:				
t =	temperatura	a media anr	nua	19,21	0
t' =	√t*0,1+0,1			1,42	
h =	precipitazio			571,06	(mm)
-	precipitazio	ne media a	iiiida		
Uso del su	ıolo:				
A =	sup. a bosch	ni e frutteti		0	(Km ²)
B =	sup. a prati			0	(Km ²)
C =	sup. a semir		ivi varii	0	(Km ²)
D =	sup. sterile			0,023982	(Km²)
U =	sup. pavime	ent. e urbar	nizzata	0	(Km ²)
			casella di controllo	0,023982	
Litologia:					
J =	sup. rocce i	ncoerenti		0	(Km ²)
K =	sup. rocce p	oseudoc. e	semicoer.	0,023982	(Km ²)
L =	sup. rocce o	oerenti		0	(Km ²)
			casella di controllo	0,023982	(Km ²)
Dissesti:					
N =	sup. con fra	ine		0,0191856	(Km²)
P =	sup. con er	osione acce	entuata	0,0047964	(Km ²)
Q =	sup. con va	langhe		0	(Km ²)
Coeff. di	protezione	del suolo	data dalla vegetazion	e	
$X = \frac{(A \cdot 0.2)^{-1}}{(A \cdot 0.2)^{-1}}$	$+B\cdot0.5+C\cdot0.8$	$+D\cdot 1,0+0,05$	5·U)	1	
	S				
			dato dalla litologia	0.000	
$Y = \frac{(J \cdot 1, 0)}{(J \cdot 1, 0)}$	$\frac{6+K\cdot 0,8+L\cdot}{S}$	0,3)		0,800	
	3				
Coeff. di					
(N	$\cdot 7 + P \cdot 4 + 9$	(0.2)			
G = (1.)	S	2 -/ ·100	0	640,000	
	+ -				
	erosione rel	ativa		1.100	
Z = X * Y	* (G' + l')			1,139	
	19.4				
	solido pote * h * π * $\sqrt{Z^3}$	enziale		74.252	(³ ()
w = 5 * t'	nnπ * √Ζ³			74,353	(m³/a)
Charrent	 	atoris!			
	medio del m	iateriale e	1080	3,100	mm
Trasp poter	ız. : area =			3,100	mm
Matariala	trace outst-	alla so-i-	no di chiusura		
G = W * R		ana sezio	ne di chiusura	6,768	(m³/a)
	u (D) ^{1/2} /(L+10)			0,091	(III /d)
Nu - 4(U)	υ) /(L+10)			0,091	
Con					
Con:	atno dal basis	•		0.017	(K)
O = perim	etro del bacin	U		0,917	(Km) (Km)
	77 octo pri'	ala dal E-	ino	0,060	
L = lunghez	zz asta princip	ale del pac	IIIO	0,507	(Km)

Darametri	fisiografici:			
S =	superficie bacino		0,03061	(Km²)
l =	pendenza media bacing	2	0,18	(%)
l' = √l	perideriza media bacin		0,42	(/
. ,,			0, 12	
Parametri	climatici:			
t =	temperatura media ann	nua	19,21	۰
t' =	√t*0,1+0,1 coeff. di ter	mperatura	1,42	
h =	precipitazione media a	nnua	571,06	(mm)
Uso del si	olo:			
A =	sup. a boschi e frutteti		0	(Km ²)
B =	sup. a prati e pascoli		0	(Km²)
C =	sup. a seminativi e colti	vi varii	0	(Km ²)
D =	sup. sterile		0,03061	(Km²)
U =	sup. paviment. e urban	izzata	0	(Km²)
	Japr pariment e area.	casella di controllo	0,03061	
Litologia:				
J =	sup. rocce incoerenti		0	(Km ²)
K =	sup. rocce pseudoc. e	semicoer.	0,03061	(Km ²)
L =	sup. rocce coerenti		0	(Km ²)
		casella di controllo	0,03061	(Km ²)
Dissesti:				
N =	sup. con frane		0,0076525	(Km²)
P =	sup. con erosione acce	ntuata	0,0229575	(Km²)
Q =	sup. con valanghe		0	(Km ²)
		data dalla vegetazion		
$X = \frac{A \cdot 0.2}{A \cdot 0.2}$	$\frac{B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05}{S}$	·U)	1	
	S'			
C		1.1.11.12.12.1		
	erodibilità del suolo (dato dalla litologia	0,800	
$Y = \frac{(J-1)^2}{2}$	$S + K \cdot 0.8 + L \cdot 0.3$		0,800	
	5			
Coeff. di	degrado			
(N	$7 + P \cdot 4 + O \cdot 2$)			
G =	$\frac{7 + P \cdot 4 + Q \cdot 2)}{S} \cdot 100$)	475,000	
	erosione relativa			
Z = X * Y	' (G' + l')		1,139	
_				
	solido potenziale			. 2
W = S * t'	h * π * √Z³		94,903	(m³/a)
	nedio del materiale e	roso		
Trasp poter	z. : area =		3,100	mm
	trasportato alla sezio	ne di chiusura		. 3
G = W * R			8,639	(m³/a)
Ru = 4(O)	D) ^{1/2} /(L+10)		0,091	
Con:				
	etro del bacino		0,917	(Km)
D =			0,060	(Km)
L = lunghe	z asta principale del baci	no	0,307	(Km)

Davamatri	ficiografici				
S =	fisiografici			0,013259	(Km²)
	superficie b				
1 =	pendenza i	media bacin	0	0,18	(%)
l' = √l				0,42	
Parametri	climatici:				
t =		ra media anr	nua	19,21	۰
t' =		coeff. di te		1,42	
h =	precipitazio	one media a	nnua	571,06	(mm)
Uso del s		1: 6 11 11		0	(Km ²)
A =		hi e frutteti		0	(Km²)
B =	sup. a prat				
C =	•	inativi e colt	ivi varii	0	(Km²)
D =	sup. sterile			0,013259	(Km²)
U =	sup. pavim	ient. e urbar	•	0	(Km ²)
			casella di controllo	0,013259	
Litologia:					
J =	sup. rocce	incoerenti		0	(Km ²)
K =		pseudoc. e	semicoer.	0,013259	(Km ²)
L =	sup. rocce			0	(Km ²)
	21.0000		casella di controllo	0,013259	(Km ²)
Dissesti:				, .====	
N =	sup. con fr	ane		0,0119331	(Km ²)
P =	· ·	rosione acce	ntuata	0,0013259	(Km ²)
Q =	sup. con v		rituata	0	(Km²)
Q –	sup. con v	alarigne			(1411)
	$+B \cdot 0.5 + C \cdot 0.8$				
	$\frac{6 + K \cdot 0.8 + L}{S}$		dato dalla litologia	0,800	
	3				
Coeff. di	degrado				
(N	$\cdot 7 + P \cdot 4 +$	$Q \cdot 2)_{100}$	\	(70,000	
G = (5)	S	<u>~</u> ·100)	670,000	
	erosione re	lativa			
Z = X * Y	* (G' + l')			1,139	
Trasporto	solido poi	tenziale			
W = S * t'	* h * π * √Z ³	3		41,108	(m³/a)
Spessore	medio del r	nateriale e	roso		
Trasp pote	nz.: area =			3,100	mm
Materials	tracportato	alla cezio	ne di chiusura		
G = W * F	•	una sezio	no ar cinusura	3,742	(m³/a)
Ru = 4(O	*Ď) ^{1/2} /(L+10)			0,091	
_					
Con:					
O = perim	etro del bacir	10		0,917	(Km)
O = perim D =	etro del bacir zz asta princi			0,917 0,060 0,307	(Km) (Km) (Km)

S =	ri fisiografici:	0.04010-	/// 25
	superficie bacino	0,062122	(Km ²)
1 =	pendenza media bacino	0,18	(%)
l' = √l		0,42	
Parametr	ri climatici:		
t =	temperatura media annua	19,21	۰
t' =	√t*0,1+0,1 coeff. di temperatura	1,42	
h =	precipitazione media annua	571,06	(mm)
11	1-		
Uso del :		0	(V ²)
A =	sup. a boschi e frutteti		(Km ²)
B =	sup. a prati e pascoli	0	(Km²)
C =	sup. a seminativi e coltivi varii	0	(Km ²)
D =	sup. sterile	0,062122	(Km ²)
U =	sup. paviment. e urbanizzata	0	(Km ²)
	casella di contr	ollo 0,062122	
Litologia	1:		
J =	sup. rocce incoerenti	0	(Km ²)
K =	sup. rocce pseudoc. e semicoer.	0,062122	(Km ²)
L =	sup. rocce coerenti	0	(Km ²)
_	casella di contr		(Km²)
Dissesti:	Casella di CONT	0,002122	(1311)
	sup son fron-		(Km²)
N =	sup. con frane	0.062122	
P =	sup. con erosione accentuata	0,062122	(Km²)
Q =	sup. con valanghe	0	(Km ²)
Coeff. d			
(.j.:	i erodibilità del suolo dato dalla litolo $1.6 + K \cdot 0.8 + L \cdot 0.3$	_	
$Y = \frac{(J \cdot I)}{I}$	i erodibilità del suolo dato dalla litolo $1,6+K\cdot 0,8+L\cdot 0,3$	0,800	
$Y = \frac{(J \cdot 1)^{-1}}{2}$	$1,6+K\cdot 0,8+L\cdot 0,3$	_	
Coeff. d	1,6+K·0,8+L·0,3) S i degrado	_	
Coeff. d	$\frac{1.6+K\cdot 0.8+L\cdot 0.3)}{S}$ i degrado $1\cdot 7+P\cdot 4+Q\cdot 2)\cdot 100$	_	
Coeff. d	S S	0,800	
Coeff. d $G = \frac{(\Lambda)}{(\Lambda)^2}$	$\frac{1.6+K\cdot 0.8+L\cdot 0.3)}{S}$ i degrado $1\cdot 7+P\cdot 4+Q\cdot 2)\cdot 100$	0,800	
Coeff. d $G = \frac{(\Lambda)}{(\Lambda)}$ Coeff. d	i degrado $ \frac{1.6+K\cdot0.8+L\cdot0.3)}{S} $ i degrado $ \frac{1.7+P\cdot4+Q\cdot2)}{S}\cdot100 $ i erosione relativa	400,000	
Coeff. d $G = \frac{(\Lambda)}{(\Lambda)}$ Coeff. d	i degrado $ \frac{1.6+K \cdot 0.8+L \cdot 0.3)}{S} $ $ \frac{1}{S} \cdot 100 $	0,800	
Coeff. d Coeff. d $Z = X \times Y$ Trasport	i degrado $I \cdot 7 + P \cdot 4 + Q \cdot 2$ S i erosione relativa $I \cdot (G' + I')$ so solido potenziale	400,000	
Coeff. d Coeff. d $Z = X \times Y$ Trasport	i degrado $I \cdot 7 + P \cdot 4 + Q \cdot 2$ S i erosione relativa $I \cdot (G' + I')$	400,000	(m³/a)
Coeff. d $G = \frac{\left(N\right)}{\left(N\right)^{2}}$ Coeff. d $Z = X * Y$ Trasport $W = S * t$	i degrado $I \cdot 7 + P \cdot 4 + Q \cdot 2$ S i erosione relativa $I \cdot (G' + I')$ so solido potenziale	0,800 400,000 1,139	(m³/a)
Coeff. d $G = \frac{N}{N}$ Coeff. d $Z = X * Y$ Trasport $W = S * t$ Spessore	i degrado $I \cdot 7 + P \cdot 4 + Q \cdot 2) \cdot 100$ S i erosione relativa $V * (G' + I')$ To solido potenziale $V * h * \pi * \sqrt{Z^3}$	0,800 400,000 1,139	(m³/a)
Coeff. d $G = \frac{(N)}{(N)^2}$ Coeff. d $Z = X * Y$ Trasport $W = S * t$ Spessore Trasp pote	i degrado $I \cdot 7 + P \cdot 4 + Q \cdot 2 \cdot 100$ i erosione relativa $I \cdot (G' + I')$ to solido potenziale $I \cdot (G' + I')$ medio del materiale eroso	0,800 400,000 1,139	
Coeff. d $G = \frac{N}{N}$ Coeff. d $Z = X * Y$ Trasport $W = S * t$ Spessore Trasp pote	i degrado $I \cdot 7 + P \cdot 4 + Q \cdot 2$ S i erosione relativa $I \cdot (G' + I')$ To solido potenziale $I \cdot (G' + I')$ To solido	0,800 400,000 1,139	mm
Coeff. d $G = \frac{N}{N}$ Coeff. d $Z = X * Y$ Trasport $W = S * t$ Spessore Trasp pote $Materiale$ $G = W *$	i degrado $I \cdot 7 + P \cdot 4 + Q \cdot 2$ S i erosione relativa $I \cdot (G' + I')$ To solido potenziale $I \cdot (G' + I')$ To solido	0,800 400,000 1,139 192,602	mm
Coeff. d $G = \frac{N}{N}$ Coeff. d $Z = X * Y$ Trasport $W = S * t$ Spessore Trasp pote $G = W * Ru = 4(C)$	i degrado $I \cdot 7 + P \cdot 4 + Q \cdot 2$ S i erosione relativa $I \cdot (G' + I')$ so solido potenziale $I \cdot (G' + I')$ medio del materiale eroso enz. : area = e trasportato alla sezione di chiusura Ru	0,800 400,000 1,139 192,602 3,100	(m³/a) mm (m³/a)
Coeff. d $G = \frac{N}{N}$ Coeff. d $Z = X * Y$ Trasport $W = S * t$ Spessore Trasp pote $Materials$ $G = W * Ru = 4(C)$ Con:	i degrado $V \cdot 7 + P \cdot 4 + Q \cdot 2$ S i erosione relativa $V \cdot (G' + I')$ to solido potenziale $V \cdot (G' + I')$ medio del materiale eroso enz.: area = e trasportato alla sezione di chiusura Ru $V \cdot (C \cdot I')$	0,800 400,000 1,139 192,602 3,100 17,533 0,091	mm (m³/a)
Coeff. d $G = \frac{N}{N}$ Coeff. d $Z = X * Y$ Trasport $W = S * t$ Spessore Trasp pote Materials $G = W * t$ $Ru = 4(C)$ Con: $O = perir$	i degrado $I \cdot 7 + P \cdot 4 + Q \cdot 2$ S i erosione relativa $I \cdot (G' + I')$ so solido potenziale $I \cdot (G' + I')$ medio del materiale eroso enz. : area = e trasportato alla sezione di chiusura Ru	0,800 400,000 1,139 192,602 3,100 17,533 0,091	mm (m³/a)
Coeff. d $G = \frac{N}{N}$ Coeff. d $Z = X * Y$ Trasport $W = S * t$ Spessore Trasp pote Materials $G = W * Ru = 4(C)$ Con: $O = perin$ $D = C$	i degrado $V \cdot 7 + P \cdot 4 + Q \cdot 2$ S i erosione relativa $V \cdot (G' + I')$ to solido potenziale $V \cdot (G' + I')$ medio del materiale eroso enz.: area = e trasportato alla sezione di chiusura Ru $V \cdot (C \cdot I')$	0,800 400,000 1,139 192,602 3,100 17,533 0,091	mm (m³/a)

Parametri	fisiografici:				
S =	superficie b			0,010038	(Km²)
1 =	pendenza r	nedia bacin	0	0,18	(%)
l' = √l	·			0,42	
Parametri	climatici:				
t =	temperatur	a media anı	nua	19,21	0
t' =	√t*0,1+0,1	coeff. di te	mperatura	1,42	
h =	precipitazio	one media a	nnua	571,06	(mm)
Uso del si	ıolo:				
A =	sup. a bosc	hi e frutteti		0	(Km²)
B =	sup. a prati			0	(Km²)
C =	-	nativi e colt	ivi varii	0	(Km²)
D =	sup. sterile	ilativi e con	IVI Valii	0,010038	(Km²)
U =	sup. pavim	ent e urhar	nizzata	0	(Km²)
U =	Jup. puviiii	crit. c urbur	casella di controllo	0,010038	(/
Litologia:				0	(V 2)
J = K =	sup. rocce			0 010039	(Km ²)
	-	pseudoc. e 	semicoer.	0,010038	
L =	sup. rocce	coerenti	11 12 1 11		(Km ²)
D			casella di controllo	0,010038	(KM)
Dissesti:				0.0070266	(V m²)
N =	sup. con fr			0,0070266	(Km ²)
P =	· ·	osione acce	ntuata		(KIII)
Q =	sup. con va	alanghe		0	(Km)
			dato dalla litologia	0.800	
$Y = \frac{(J \cdot 1)}{I}$	$\frac{6+K\cdot 0,8+L}{S}$.0,3)		0,800	
	3				
Coeff. di	degrado				
	$\cdot 7 + P \cdot 4 +$	0.2)			
$G = \frac{1}{\sqrt{11}}$	S	$\frac{2^{(12)}}{100}$)	610,000	
	3				
	erosione re	lativa		1.120	
Z = X * Y	* (G' + l')			1,139	
Trasporto	solido pot	enziale			
	* h * π * √Z³			31,122	(m³/a)
	ļ				
	nedio del n	nateriale e	roso	2.100	
Trasp poter	nz.: area =			3,100	mm
Materiale	trasportato	alla sezio	ne di chiusura		
G = W * R				2,833	(m³/a)
$Ru = 4(O^3)$	(L+10)			0,091	
Con:					
Con:		_		0.017	(K)
O = perim	etro del bacin	Ю		0,917	(Km) (Km)
υ =					
1 1	zz asta princip			0,307	(Km)

	fisiografici			0.0211205	(V m²)
S =	superficie b			0,0311385	(Km²)
1 =	pendenza i	media bacino	0	0,14	(%)
l' = √l				0,37	
Parametri	climatici:				
t =	temperatur	a media anr	nua	19,21	۰
t' =		coeff. di ter		1,42	
h =		one media a		571,06	(mm)
Uso del si A =	1	L: _ £		0	(Km ²)
		hi e frutteti			
B =	sup. a prat			0	(Km²)
C =		nativi e colti	ivi varii	0	(Km²)
D =	sup. sterile			0,0311385	(Km ²)
U =	sup. pavim	ient. e urban	izzata	0	(Km ²)
			casella di controllo	0,0311385	
Litologia:					
J =	sup. rocce	incoerenti		0	(Km ²)
K =		pseudoc. e	semicoer.	0,0311385	(Km²)
L =	sup. rocce		Jerricoer.	0	(Km²)
	sup. rocce	COEFEIRI	casella di controllo	0,0311385	(Km²)
Dissesti:			Casella di Controllo	0,0311303	(KIII)
N =				0,0124554	(Km²)
	sup. con fr				(Km²)
P =		rosione acce	ntuata	0,0186831	
Q =	sup. con va	alanghe		0	(Km ²)
Coeff di	nrotezione	del suolo	data dalla vegetazion	ie –	
				1	
$X = \frac{(A \cdot 0, 2)}{A \cdot 0, 2}$	$+B \cdot 0.5 + C \cdot 0.8$	+ D · 1,0 + 0,03			
Coeff di	erodibilità	del cuolo d	dato dalla litologia		
(1.1	$6+K\cdot 0.8+L$.03)	uato dalla litologia	0,800	
$Y = \frac{(S^{-1})^{3}}{2}$	C C	-0,5)		0,800	
	- B				
Coeff. di					
(N	$\cdot 7 + P \cdot 4 +$	$(Q \cdot 2)_{100}$		500,000	
G = (1.1)	S	<u>~</u> ·100)	520,000	
	erosione re	lativa			
Coeff. di Z = X * Y	_	lativa		1,099	
	_	lativa		1,099	
Z = X * Y Trasporto	* (G' + l') solido pot	tenziale		1,099	
Z = X * Y Trasporto	* (G' + l')	tenziale		1,099	(m³/a)
Z = X * Y Trasporto	* (G' + l') solido pot	tenziale			(m³/a)
Z = X * Y Trasporto W = S * t'	* (G' + l') solido pot	tenziale	roso		(m³/a)
Z = X * Y Trasporto W = S * t'	* (G' + l') solido pot h * π * $\sqrt{Z^3}$ medio del r	tenziale	roso		(m³/a)
Z = X * Y Trasporto $W = S * t'$ Spessore 1	* (G' + l') solido pot h * π * $\sqrt{Z^3}$ medio del r	tenziale	roso	91,493	, , ,
Z = X * Y Trasporto W = S * t' Spessore i Trasp poter	* (C' + I') solido pot * h * π * $\sqrt{Z^3}$ medio del r nz. : area =	tenziale		91,493	, , ,
Z = X * Y Trasporto $W = S * t'$ Spessore is Trasp potei	* (C' + l') solido pot * h * π * $\sqrt{Z^3}$ medio del r nz. : area = trasportato	tenziale	roso ne di chiusura	91,493	mm
Z = X * Y Trasporto $W = S * t'$ Spessore i Trasp poten Materiale $G = W * R$	* (C' + I') solido pot * h * π * $\sqrt{Z^3}$ medio del r nz. : area = trasportato	nateriale e		91,493 2,938 8,350	
Z = X * Y Trasporto $W = S * t'$ Spessore i Trasp poten Materiale $G = W * R$	* (C' + l') solido pot * h * π * $\sqrt{Z^3}$ medio del r nz. : area = trasportato	nateriale e		91,493	mm
$Z = X * Y$ Trasporto $W = S * t'$ Spessore I Trasp poter Materiale $G = W * R$ $Ru = 4(O^{3})$	* (C' + I') solido pot * h * π * $\sqrt{Z^3}$ medio del r nz. : area = trasportato	nateriale e		91,493 2,938 8,350	mm
$Z = X * Y$ Trasporto $W = S * t'$ Spessore I Trasp poter Materiale $G = W * R$ $Ru = 4(O^{3})$ Con:	* (G' + I') • solido pot * h * π * $\sqrt{Z^3}$ medio del r nz. : area = trasportato	nateriale e		91,493 2,938 8,350 0,091	mm (m³/a)
$Z = X * Y$ Trasporto $W = S * t'$ Spessore I Trasp poten Materiale $G = W * R$ $Ru = 4(O^{2})$ Con: $O = perim$	* (C' + I') solido pot * h * π * $\sqrt{Z^3}$ medio del r nz. : area = trasportato	nateriale e		91,493 2,938 8,350 0,091	mm (m³/a)
$Z = X * Y$ Trasporto $W = S * t'$ Spessore I Trasp poten Materiale $G = W * R$ $Ru = 4(O^{3})$ Con: $O = perim$ $D =$	* (G' + I') • solido pot * h * π * $\sqrt{Z^3}$ medio del r nz. : area = trasportato	nateriale e	ne di chiusura	91,493 2,938 8,350 0,091	mm (m³/a)

LOTTO D – SOTTOBACINO D2

	fisiografici				2.
S =	superficie b	oacino		0,026141	(Km ²)
1 =	pendenza i	media bacin	0	0,14	(%)
l' = √l				0,37	
Parametri	climatici:				
t =	temperatur	a media anı	nua	19,21	۰
t' =	√t*0,1+0,1	coeff. di te	mperatura	1,42	
h =	precipitazio	one media a	innua	571,06	(mm)
Uso del si	uolo:				
A =	sup. a boso	hi e frutteti		0	(Km ²)
B =	sup. a prat	i e pascoli		0	(Km ²)
C =	sup. a semi	nativi e colt	ivi varii	0	(Km ²)
D =	sup. sterile			0,026141	(Km²)
U =		ent. e urbar	nizzata	0	(Km ²)
	· · ·		casella di controllo	0,026141	
			cuscilu di controllo	,	
Litologia:					
J =	sup. rocce	incoerenti		0	(Km ²)
K =		pseudoc. e	semicoer.	0,026141	(Km²)
L =	sup. rocce	•		0	(Km²)
	Jup. Toecc	Cocrenii	casella di controllo	0,026141	(Km²)
Dissesti:			casella di conti olio	0,020111	(1411)
N =	sup. con fr	ane		0,0073195	(Km²)
P =		rosione acce	entuata	0,0073133	(Km²)
			iituata	0,0100213	(Km²)
Q =	sup. con v	alaligne		0	(KIII)
Coeff. di	$+B \cdot 0.5 + C \cdot 0.8$ S erodibilità $6 + K \cdot 0.8 + L$	del suolo	dato dalla litologia	0,800	
$-Y=\frac{(v-1)}{v}$	S			0,000	
Coeff. di					
(N	$\cdot \overset{\perp}{7} + P \cdot 4 +$	$Q \cdot 2)_{10}$	2	484,000	
G = (1)	S		J	484,000	
C CC 41		1-19			
Z = X * Y	erosione re	lativa		1.000	
Z = X * Y	* (G' + l')			1,099	
	solido poi				
W = S * t'	* h * π * √Z ³	3		76,809	(m³/a)
Spessore	medio del r	nateriale e	roso		
Trasp poter	nz.: area =			2,938	mm
Materiale	trasportato	alla cezio	ne di chiusura		
G = W * R	•	. unu 36210	ne ar emajura	7,543	(m³/a)
	tu *Ď) ^{1/2} /(L+10)				(III /a)
κu = 4(O	رن /(L+10)			0,098	
Con:					
	etro del bacir	10		1,294	(Km)
D =	To dei baell			0,050	(Km)
	zz asta princij	nale del bos	ino	0,361	(Km)
L - lungne.	LL asia Princi	Dale del Dac		0,301	(1311)

Parametri	fisiografici	:			
S =	superficie l			0,013484	(Km ²)
1 =	pendenza	media bacin	0	0,19	(%)
l' = √l				0,44	
Parametri	climatici:				
t =	temperatu	ra media an	nua	19,21	۰
t' =		l coeff. di te		1,42	
				571,06	(mm)
h =	precipitazi	one media a	annua	371,00	()
Uso del su	.ala.				
A =		-l-: - £		0	(Km ²)
		chi e frutteti		0	(Km²)
B =	sup. a prat				(Km²)
C =	· ·	inativi e col	IVI Varii	0 012404	
D =	sup. sterile			0,013484	(Km²)
U =	sup. pavim	nent. e urba	· · · · · · · · · · · · · · · · · · ·	0	(Km ²)
			casella di controllo	0,013484	
Litologia:					
J =	sup. rocce	incoerenti		0	(Km ²)
K =	sup. rocce	pseudoc. e	semicoer.	0,013484	(Km ²)
L =	sup. rocce	coerenti		0	(Km ²)
			casella di controllo	0,013484	(Km ²)
Dissesti:					
N =	sup. con fr	ane		0,0040452	(Km ²)
P =	sup. con e	rosione acce	entuata	0,0094388	(Km ²)
Q =	sup. con v	alanghe		0	(Km ²)
Coeff. di	protezione	del suolo	data dalla vegetazior	ne	
				1	
$X = \frac{(A \cdot 0, 2)}{A}$	$+B\cdot0.5+C\cdot0.8$	8 + D · 1,0 + 0,0	5.0)		
Coeff di	erodibilità	del cuolo	dato dalla litologia		
(1.1)	$6+K\cdot0.8+L$.03)	dato dalla litologia	0.800	
$Y = \frac{(3^{-1})^{-1}}{(3^{-1})^{-1}}$	S S			0,800	
	+ 5				
Coeff. di	degrado				
(M	7 . D 4 .	(0, 2)			
$G = \frac{\sqrt{N}}{\sqrt{N}}$	$\frac{.7 + P \cdot 4 +}{s}$	$\frac{(Q\cdot 2)}{\cdot 10}$	0	490,000	
	S				
Coeff. di	erosione re	lativa			
Z = X * Y	_			1,149	
_	(0 1 1)			1,1.12	
Tracporto	solido po	tonzielo			
				42,318	(3()
\V/ _ C * +1 :					
W = S * t'	11 11 1/2			42,310	(m³/a)
				42,310	(m ⁻ /a)
Spessore r	medio del r		eroso		
	medio del r		Proso	3,138	mm
Spessore r Trasp poter	medio del r nz. : area =	materiale e			
Spessore r Trasp poter Materiale	medio del r nz. : area = trasportato	materiale e	eroso ene di chiusura	3,138	mm
Spessore r Trasp poter Materiale G = W * R	medio del r nz.: area = trasportato	materiale e			
Spessore r Trasp poter Materiale G = W * R	medio del r nz. : area = trasportato	materiale e		3,138	mm
Spessore r Trasp poter Materiale G = W * R	medio del r nz.: area = trasportato	materiale e		3,138	mm
Spessore r Trasp poter Materiale G = W * R	medio del r nz.: area = trasportato	materiale e		3,138	mm
Spessore r Trasp poter Materiale $G = W * R$ $Ru = 4(O^{9})$ Con:	medio del r nz.: area = trasportato	materiale e		3,138	mm
Spessore r Trasp poter Materiale $G = W * R$ $Ru = 4(O^{9})$ Con:	medio del r nz. : area = trasportato u tro) ^{1/2} /(L+10)	materiale e		3,138 3,516 0,083	mm (m³/a)
Spessore r Trasp poter Materiale $G = W * R$ $Ru = 4(O^{3})$ Con: $O = perime$ $D = M$	medio del r nz. : area = trasportato u tro) ^{1/2} /(L+10)	nateriale e	ne di chiusura	3,138 3,516 0,083	mm (m³/a)

Parametri fisiografici: 0,035932 I = pendenza media bacino 0,19 I' = √I 0.44 Parametri climatici: t = temperatura media annua 19,21 t' = √t*0,1+0,1 coeff. di temperatura 1,42 h = precipitazione media annua 571,06 Uso del suolo: A = sup. a boschi e frutteti 0 B = sup. a prati e pascoli 0 C = sup. a seminativi e coltivi varii 0 D = sup. sterile 0,035932 U = sup. paviment. e urbanizzata 0 Casella di controllo 0,035932 Litologia: 0 L = sup. rocce incoerenti 0 K = sup. rocce pseudoc. e semicoer. 0,035932 L = sup. rocce coerenti 0 Casella di controllo 0,035932 Dissesti: 0 N = sup. con frane 0 P = sup. con erosione accentuata 0,035932 Q = sup. con valanghe 0	(Km²) (%) (mm) (Km²) (Km²) (Km²) (Km²) (Km²) (Km²)
I =	(%) (mm) (Km²) (Km²) (Km²) (Km²) (Km²)
I' = √I 0,44 Parametri climatici: t = temperatura media annua 19,21 t' = √t*0,1+0,1 coeff. di temperatura 1,42 h = precipitazione media annua 571,06 Uso del suolo: A = sup. a boschi e frutteti 0 B = sup. a prati e pascoli 0 C = sup. a seminativi e coltivi varii 0 D = sup. sterile 0,035932 U = sup. paviment. e urbanizzata 0 Casella di controllo 0,035932 Litologia: J = sup. rocce incoerenti 0 K = sup. rocce pseudoc. e semicoer. 0,035932 Litologia: 0 0 L = sup. rocce coerenti 0 Casella di controllo 0,035932 Dissesti: N sup. con frane 0 P = sup. con erosione accentuata 0,035932	(mm) (Km²) (Km²) (Km²) (Km²) (Km²) (Km²)
Parametri climatici: t = temperatura media annua 19,21 t' = √t*0,1+0,1 coeff. di temperatura 1,42 h = precipitazione media annua 571,06 Uso del suolo: 0 A = sup. a boschi e frutteti 0 B = sup. a prati e pascoli 0 C = sup. a seminativi e coltivi varii 0 D = sup. sterile 0,035932 U = sup. paviment. e urbanizzata 0 casella di controllo 0,035932 Litologia: 0 J = sup. rocce incoerenti 0 K = sup. rocce pseudoc. e semicoer. 0,035932 Litosesti: 0 N = sup. con frane 0 P = sup. con erosione accentuata 0,035932	(Km²) (Km²) (Km²) (Km²) (Km²) (Km²) (Km²)
t = temperatura media annua 19,21 t' = √t*0,1+0,1 coeff. di temperatura 1,42 h = precipitazione media annua 571,06 Uso del suolo: A = sup. a boschi e frutteti 0 B = sup. a prati e pascoli 0 C = sup. a seminativi e coltivi varii 0 D = sup. sterile 0,035932 U = sup. paviment. e urbanizzata 0	(Km²) (Km²) (Km²) (Km²) (Km²) (Km²) (Km²)
t = temperatura media annua 19,21 t' = √t*0,1+0,1 coeff. di temperatura 1,42 h = precipitazione media annua 571,06 Uso del suolo: A = sup. a boschi e frutteti 0 B = sup. a prati e pascoli 0 C = sup. a seminativi e coltivi varii 0 D = sup. sterile 0,035932 U = sup. paviment. e urbanizzata 0	(Km²) (Km²) (Km²) (Km²) (Km²) (Km²) (Km²)
t' = Vt*0,1+0,1 coeff. di temperatura h = precipitazione media annua 571,06 Uso del suolo: A = sup. a boschi e frutteti 0 B = sup. a prati e pascoli 0 C = sup. a seminativi e coltivi varii 0 D = sup. sterile 0,035932 U = sup. paviment. e urbanizzata 0 casella di controllo 0,035932 Litologia: J = sup. rocce incoerenti 0 K = sup. rocce pseudoc. e semicoer. 0,035932 L = sup. rocce coerenti 0 Casella di controllo 0,035932 Dissesti: 0 N = sup. con frane 0 P = sup. con erosione accentuata 0,035932	(Km²) (Km²) (Km²) (Km²) (Km²) (Km²) (Km²)
h = precipitazione media annua 571,06 Uso del suolo: 0 A = sup. a boschi e frutteti 0 B = sup. a prati e pascoli 0 C = sup. a seminativi e coltivi varii 0 D = sup. sterile 0,035932 U = sup. paviment. e urbanizzata 0 casella di controllo 0,035932 Litologia: 0 J = sup. rocce incoerenti 0 K = sup. rocce pseudoc. e semicoer. 0,035932 L = sup. rocce coerenti 0 Casella di controllo 0,035932 Dissesti: N = sup. con frane P = sup. con erosione accentuata 0,035932	(Km²) (Km²) (Km²) (Km²) (Km²) (Km²) (Km²)
Uso del suolo: 0 A = sup. a boschi e frutteti 0 B = sup. a prati e pascoli 0 C = sup. a seminativi e coltivi varii 0 D = sup. sterile 0,035932 U = sup. paviment. e urbanizzata 0 Casella di controllo 0,035932 Litologia: 0 J = sup. rocce incoerenti 0 K = sup. rocce pseudoc. e semicoer. 0,035932 L = sup. rocce coerenti 0 Casella di controllo 0,035932 Dissesti: N = sup. con frane P = sup. con erosione accentuata 0,035932	(Km²) (Km²) (Km²) (Km²) (Km²) (Km²) (Km²)
A = sup. a boschi e frutteti 0 B = sup. a prati e pascoli 0 C = sup. a seminativi e coltivi varii 0 D = sup. sterile 0,035932 U = sup. paviment. e urbanizzata 0 Casella di controllo 0,035932 Litologia: 0 J = sup. rocce incoerenti 0 K = sup. rocce pseudoc. e semicoer. 0,035932 L = sup. rocce coerenti 0 Casella di controllo 0,035932 Dissesti: N = sup. con frane P = sup. con erosione accentuata 0,035932	(Km²) (Km²) (Km²) (Km²) (Km²) (Km²)
B = sup. a prati e pascoli 0 0 0 0 0 0 0 0 0	(Km²) (Km²) (Km²) (Km²) (Km²) (Km²)
C = sup. a seminativi e coltivi varii 0 D = sup. sterile 0,035932 U = sup. paviment. e urbanizzata 0 Litologia: casella di controllo 0,035932 Litologia: 0 K = sup. rocce incoerenti 0 K = sup. rocce pseudoc. e semicoer. 0,035932 L = sup. rocce coerenti 0 Casella di controllo 0,035932 Dissesti: N = sup. con frane P = sup. con erosione accentuata 0,035932	(Km²) (Km²) (Km²) (Km²)
D = sup. sterile 0,035932 U = sup. paviment. e urbanizzata 0 casella di controllo 0,035932 Litologia: 0 K = sup. rocce incoerenti 0 K = sup. rocce pseudoc. e semicoer. 0,035932 L = sup. rocce coerenti 0 Casella di controllo 0,035932 Dissesti: N = sup. con frane P = sup. con erosione accentuata 0,035932	(Km²) (Km²) (Km²)
U = sup. paviment. e urbanizzata 0 casella di controllo 0,035932 Litologia: 0 J = sup. rocce incoerenti 0 K = sup. rocce pseudoc. e semicoer. 0,035932 L = sup. rocce coerenti 0 casella di controllo 0,035932 Dissesti: N = sup. con frane P = sup. con erosione accentuata 0,035932	(Km²) (Km²) (Km²)
Litologia: J = sup. rocce incoerenti 0 K = sup. rocce pseudoc. e semicoer. 0,035932 L = sup. rocce coerenti 0 L = sup. rocce coerenti 0 Casella di controllo 0,035932 Dissesti: N = sup. con frane P = sup. con erosione accentuata 0,035932	(Km²)
Litologia: 0 J = sup. rocce incoerenti 0 K = sup. rocce pseudoc. e semicoer. 0,035932 L = sup. rocce coerenti 0 casella di controllo 0,035932 Dissesti: N = sup. con frane P = sup. con erosione accentuata 0,035932	(Km²)
J = sup. rocce incoerenti 0 K = sup. rocce pseudoc. e semicoer. 0,035932 L = sup. rocce coerenti 0 casella di controllo 0,035932 Dissesti: N = sup. con frane P = sup. con erosione accentuata 0,035932	(Km²)
J = sup. rocce incoerenti 0 K = sup. rocce pseudoc. e semicoer. 0,035932 L = sup. rocce coerenti 0 casella di controllo 0,035932 Dissesti: N = sup. con frane P = sup. con erosione accentuata 0,035932	(Km²)
K = sup. rocce pseudoc. e semicoer. 0,035932 L = sup. rocce coerenti 0 casella di controllo 0,035932 Dissesti: N = sup. con frane P = sup. con erosione accentuata 0,035932	(Km²)
L = sup. rocce coerenti 0 casella di controllo 0,035932 Dissesti: N = N = sup. con frane 0 P = sup. con erosione accentuata 0,035932	- - ` - :
Dissesti: 0 N = sup. con frane 0 P = sup. con erosione accentuata 0,035932	
Dissesti: 0 N = sup. con frane 0 P = sup. con erosione accentuata 0,035932	(Km ²)
N = sup. con frane 0 $P = $ sup. con erosione accentuata $0,035932$	(Km ²)
P = sup. con erosione accentuata 0,035932	
	(Km ²)
Q = sup. con valanghe 0	(Km ²)
	(Km ²)
$X = \frac{\left(A \cdot 0.2 + B \cdot 0.5 + C \cdot 0.8 + D \cdot 1.0 + 0.05 \cdot U\right)}{S}$ Coeff. di erodibilità del suolo dato dalla litologia $V = \frac{\left(J \cdot 1.6 + K \cdot 0.8 + L \cdot 0.3\right)}{S}$ 0,800	
$Y = \frac{(J \cdot 1, 6 + K \cdot 0, 8 + L \cdot 0, 3)}{S}$	
Coeff. di degrado	
$G = \frac{(N \cdot 7 + P \cdot 4 + Q \cdot 2)}{S} \cdot 100$	
S	
Coeff. di erosione relativa	
Z = X * Y * (G' + I') 1,149	
Trasporto solido potenziale	
$W = S * t' * h * \pi * \sqrt{Z^3}$ 112,770	(m³/a)
Spessore medio del materiale eroso	
Trasp potenz. : area = 3,138	mm
Materiale trasportato alla sezione di chiusura	
G = W * Ru 13,297	(m³/a)
$Ru = 4(O*D)^{1/2}/(L+10)$ 0,118	
Con:	
O = perimetro del bacino	(Km)
1,170	(Km)
D = 0,080	

	fisiografici	:			_
S =	superficie b	oacino		0,019911	(Km ²)
1 =	pendenza	media bacin	0	0,19	(%)
l' = √l				0,44	
	•• ••				
Parametri				10.01	•
t =	· · · ·	a media anı		19,21	
t' =	√t*0,1+0,1	coeff. di te	mperatura	1,42	
h =	precipitazi	one media a	nnua	571,06	(mm)
Uso del si	iolo:				
A =	sup. a boss	hi e frutteti		0	(Km ²)
B =	sup. a prat	i e pascoli		0	(Km ²)
C =	sup. a semi	nativi e colt	ivi varii	0	(Km ²)
D =	sup. sterile			0,019911	(Km ²)
U =	sup. pavim	ent. e urbar	nizzata	0	(Km ²)
			casella di controllo	0,019911	
Litologia:					
J =	sup. rocce	incoerenti		0	(Km²)
K =	•	pseudoc. e	semicoer.	0,019911	(Km²)
L =	sup. rocce			0,019911	(Km²)
-	зир. госсс	Cocrenii	casella di controllo	0,019911	(Km²)
Dissesti:			casella di conti olio	0,017711	(1411)
N =	sup. con fr	ano		0	(Km²)
P =			ntuata	0,019911	(Km²)
	•	rosione acce	ntuata	0,019911	(Km²)
Q =	sup. con v	aiangne		0	(KIII)
Coeff. di	+ B · 0,5 + C · 0,8 S erodibilità	del suolo	dato dalla litologia	0.000	
$Y = \frac{(J \cdot 1, 0)}{(J \cdot 1, 0)}$	$6+K\cdot 0.8+L$.0,3)		0,800	
	3				
Coeff. di					
(N	$\frac{.7 + P \cdot 4 +}{S}$	$Q \cdot 2)_{100}$)	400,000	
G =	S		,	400,000	
C (C - 4)		1-11			
Coeff. di $Z = X * Y$	erosione re	iativa		1.140	
Z = X * Y	* (G' + l')			1,149	
	solido po				
	* h * π * √Z			62,489	(m³/a)
-	medio del r	nateriale e	roso		
Trasp poter	nz.: area =			3,138	mm
	•	alla sezio	ne di chiusura		. 3
G = W * R				7,371	(m³/a)
Ru = 4(O)	*D) ^{1/2} /(L+10)			0,118	
Con:					
	etro del bacii	10		1,118	(Km)
D = perim	To del Dacil			0,080	(Km)
	77 acts n=!= :!:	aala dal E	ino	0,080	(Km)
r = inualie	zz asta princi _l	raie dei paci	IIIO	0,142	(INIII)

LOTTO E – SOTTOBACINO E4

Parametri	fisiografici	:			
S =	superficie l	oacino		0,033634	(Km ²)
l =	pendenza	media bacin	o	0,19	(%)
l' = √l				0,44	
Parametri	climatici:				
t =		ra media anı		19,21	۰
t' =	√t*0,1+0,1	coeff. di te	mperatura	1,42	
h =	precipitazi	one media a	innua	571,06	(mm)
Uso del su	iolo:				
A =	sup. a boso	:hi e frutteti		0	(Km ²)
B =	sup. a prat	i e pascoli		0	(Km ²)
C =	sup. a sem	inativi e colt	ivi varii	0	(Km ²)
D =	sup. sterile			0,033634	(Km ²)
U =	<u> </u>	nent. e urbar	nizzata	0	(Km ²)
	Jupi purm		casella di controllo	0,033634	
Litologia:					
J =	sup. rocce	incoerenti		0	(Km²)
K =	sup. rocce	pseudoc. e	semicoer.	0,033634	(Km²)
L =	sup. rocce	•		0	(Km²)
			casella di controllo	0,033634	(Km²)
Dissesti:					
N =	sup. con fr	ane		0	(Km ²)
P =	· ·	rosione acce	entuata	0,033634	(Km²)
Q =	sup. con v			0	(Km²)
_	Jupi com r				, ,
Coeff. di		del suolo	dato dalla litologia		
$Y = \frac{(J \cdot 1, \epsilon)}{(J \cdot 1, \epsilon)}$	$\frac{5+K\cdot 0,8+L}{S}$.0,3)		0,800	
	S				
Coeff. di	degrado				
$G = \frac{(N \cdot)}{(N \cdot)}$	$7 + P \cdot 4 +$	$Q \cdot 2)_{100}$	0	400,000	
G =	S	.10		400,000	
Coeff. di	erosione re	lativa			
Z = X * Y *	_			1,149	
_	(0 1 1)			.,	
Trasporto	solido po	tenziale			
	h * π * √Z			105,558	(m³/a)
•	nedio del r	nateriale e	roso		
Trasp poten	z.: area =			3,138	mm
Matautala		!!!.	- di abirraria		
G = W * R	•	, and sezio	ne di chiusura	12,595	(m³/a)
					(m /a)
κu = 4(O [∞]	D) ^{1/2} /(L+10)			0,119	
Con:					
	etro del baci	no		1,198	(Km)
D =	1			0,080	(Km)
	z asta princi	pale del bac	ino	0,378	(Km)
L - luligilez	L usta princi	paic dei bac		0,510	, <i>y</i>

LOTTO E – SOTTOBACINO E5

D	C! -! C! -!				
	fisiografici			0.000610	(1/2)
S =	superficie b			0,009619	(Km²)
1 =	pendenza i	media bacin	0	0,19	(%)
l' = √l				0,44	
Parametri	climatici:				
t =	temperatur	a media anr	nua	19,21	۰
t' =		coeff. di te		1,42	
h =		one media a		571,06	(mm)
–	precipitazi	one media a	milaa		
Uso del su					
A =	sup. a boso	hi e frutteti		0	(Km ²)
B =	sup. a prat	i e pascoli		0	(Km ²)
C =	sup. a semi	nativi e colt	ivi varii	0	(Km ²)
D =	sup. sterile			0,009619	(Km ²)
U =	-	ent. e urban	izzata	0	(Km ²)
			casella di controllo	0,009619	
Litologia: J =	sup. rocce	incoerenti		0	(Km²)
	-		camica au		(Km²)
K =	· ·	pseudoc. e	semicoer.	0,009619	
L =	sup. rocce	coerenti		0	(Km²)
			casella di controllo	0,009619	(Km ²)
Dissesti:					
N =	sup. con fr	ane		0	(Km ²)
P =	sup. con e	rosione acce	ntuata	0,009619	(Km ²)
Q =	sup. con v	alanghe		0	(Km²)
Coeff. di	protezione	del suolo	data dalla vegetazion	e	
(A·0,2-	$+B\cdot0.5+C\cdot0.8$	$3 + D \cdot 1.0 + 0.05$	$(\cdot U)$	1	
X = -	S				
Coeff. di	erodibilità	del suolo	dato dalla litologia		
	$6+K\cdot 0.8+L$			0,800	
_ Y = -	S				
Coeff. di	daguada				
		2.2)			
$G = \frac{(N \cdot)}{(N \cdot)}$	$7+P\cdot 4+$	$\frac{Q \cdot 2)}{\cdot 100}$)	400,000	
	S				
Coeff di	orodono ro	Jatina			
	erosione re	lativa		1140	
Coeff. di (_	lativa		1,149	
Z = X * Y *	(G' + l')			1,149	
Z = X * Y * Trasporto	(G' + l') solido pot	tenziale			(m³/a)
Z = X * Y * Trasporto	(G' + l')	tenziale		1,149	(m³/a)
Z = X * Y * Trasporto W = S * t' *	solido pot $\pi \times \sqrt{Z^2}$	tenziale	roso		(m³/a)
Z = X * Y Trasporto $W = S * t'$ Spessore in	solido por $h * \pi * \sqrt{Z^2}$	tenziale	roso	30,188	(m³/a)
Z = X * Y * Trasporto W = S * t' *	solido por $h * \pi * \sqrt{Z^2}$	tenziale	roso		
Z = X * Y * Trasporto W = S * t' * Spessore n Trasp poten	solido poi $^{\circ}$ $^{\circ$	ienziale nateriale e		30,188	
Z = X * Y Trasporto $W = S * t'$ Spessore in Trasp poten	solido pot $h \times \pi \times \sqrt{Z^2}$ nedio del r trasportato	ienziale nateriale e	roso ne di chiusura	30,188	mm
Z = X * Y Trasporto $W = S * t'$ Spessore in Trasp poten Materiale $G = W * R$	solido por	nateriale e		30,188 3,138 3,216	
Z = X * Y Trasporto $W = S * t'$ Spessore in Trasp poten Materiale $G = W * R$	solido pot $h \times \pi \times \sqrt{Z^2}$ nedio del r trasportato	nateriale e		30,188	mm
Z = X * Y Trasporto $W = S * t'$ Spessore in Trasp poten Materiale $G = W * R$ $Ru = 4(O*)$	solido por	nateriale e		30,188 3,138 3,216	mm
Z = X * Y * Trasporto $W = S * t' *$ Spessore in Trasp poten Materiale $G = W * R$ $Ru = 4(O*)$ Con:	solido por solido por solido por solido por solido por solido del resulta esta esta esta esta esta esta esta es	nateriale e		30,188 3,138 3,216 0,107	mm (m³/a)
Z = X * Y Trasporto $W = S * t'$ Spessore in Trasp poten Materiale $G = W * R$ $Ru = 4(O* Con: O = perime$	solido por	nateriale e		30,188 3,138 3,216 0,107	mm (m³/a)
Z = X * Y * Trasporto $W = S * t' *$ Spessore in Trasp poten Materiale $G = W * R$ $Ru = 4(O*$ Con: $O = perime$ $D = M * R * R * R * R * R * R * R * R * R *$	solido por solido por solido por solido por solido por solido del resulta esta esta esta esta esta esta esta es	nateriale e	ne di chiusura	30,188 3,138 3,216 0,107	mm (m³/a)

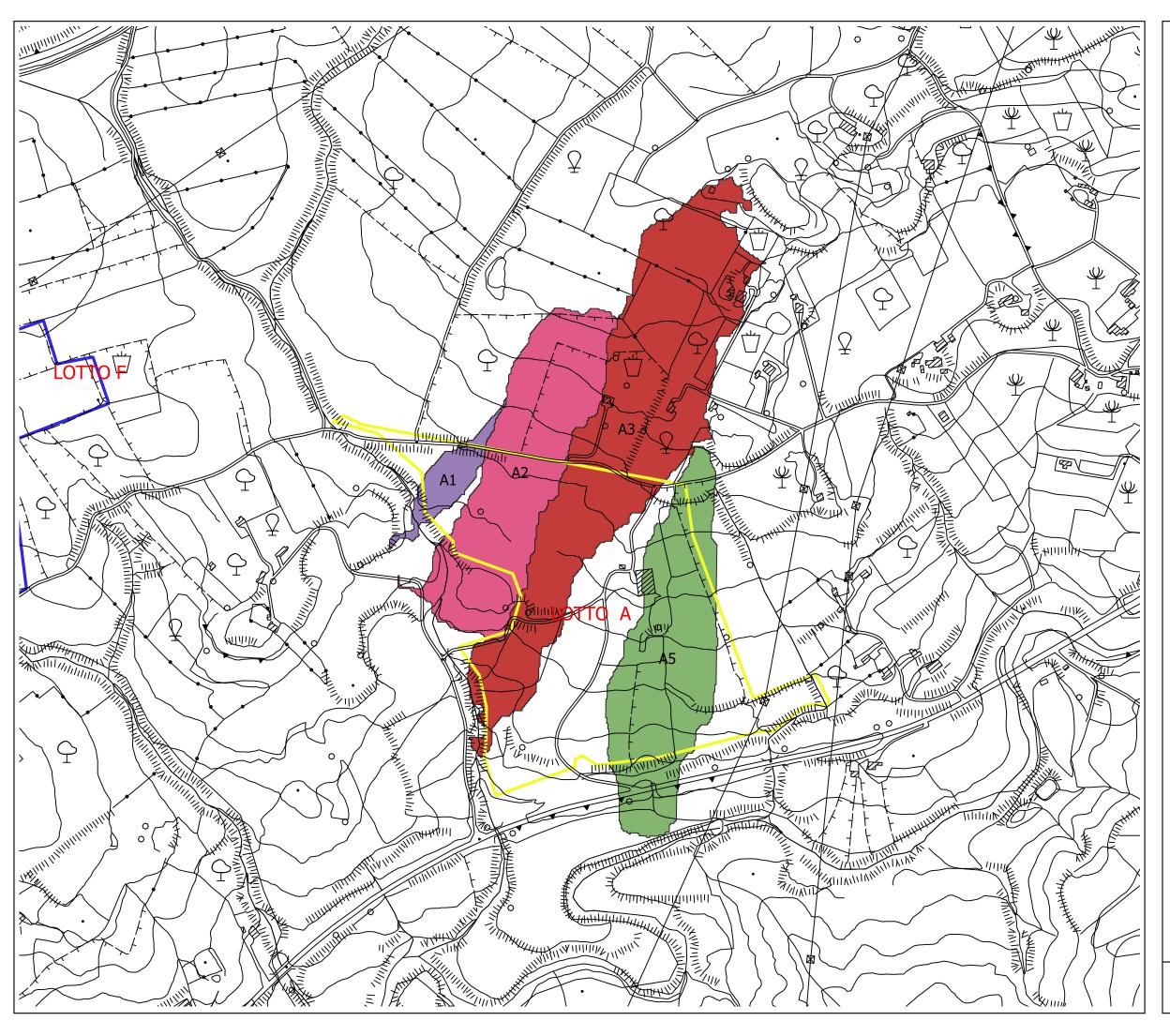
	fisiografici			0.017010	4 2.
S =	superficie l			0,017212	(Km ²)
1 =	pendenza	media bacino	0	0,19	(%)
1' = √1				0,44	
Parametri	climatici				
t =		ra media anr	nua .	19,21	0
t' =		l coeff. di te		1,42	
				571,06	()
h =	precipitazi	one media a	nnua	371,06	(mm)
Uso del su	iolo:				
A =	sup. a boss	chi e frutteti		0	(Km ²)
B =	sup. a prat	ti e pascoli		0	(Km ²)
C =	sup. a sem	inativi e colt	ivi varii	0	(Km ²)
D =	sup. sterile			0,017212	(Km ²)
U =	-	nent. e urban	izzata	0	(Km²)
	Jupi puriii		casella di controllo	0,017212	
Litologia:					
J =	sup. rocce	incoerenti		0	(Km ²)
K =	sup. rocce	pseudoc. e	semicoer.	0,017212	(Km ²)
L =	sup. rocce	coerenti		0	(Km ²)
	i i		casella di controllo	0,017212	(Km ²)
Dissesti:					
N =	sup. con fr	rane		0	(Km²)
P =	•	rosione acce	ntuata	0,017212	(Km²)
Q =	sup. con v		indutu	0	(Km ²)
Q -	sup. com v	alarigne		- U	()
Coeff. di	protezione	del suolo	data dalla vegetazior	ne	
				1	
$X = \frac{(A \cdot 0, 2)}{}$	$+B\cdot0.5+C\cdot0.8$	3+D-1,0+0,03			
Coeff. di	erodibilità	del suolo	dato dalla litologia		
(J·1,0	$6+K\cdot 0.8+L$.0,3)		0,800	
_ Y =	S				
C 66 - d:					
Coeff. di					
$G = \frac{(N \cdot N)}{(N \cdot N)}$	$\frac{1}{7} + P \cdot 4 +$	$(Q \cdot 2)_{\cdot,100}$)	400,000	
<u> </u>	S	-100	,	100,000	
Coeff di	erosione re	alatina			
Z = X * Y	_	eiativa		1,149	
Z = X ^ Y ^	· (G + I)			1,149	
Tuner and -	rolida = =	tonaicle			
	solido po h * π * \sqrt{Z}			E 4 010	(m³/-)
w = 5 * t' '	·n ^ π * √Z			54,019	(m³/a)
	nedio del 1	materiale e	roso		
Trasp poter	nz.: area =			3,138	mm
		alla sezio	ne di chiusura		, 3
G = W * R				4,950	(m³/a)
Ru = 4(O*	D) ^{1/2} /(L+10)			0,092	
Con:					
O = perime	etro del baci	no		0,787	(Km)
D =				0,070	(Km)
	z asta princi		no	0,070 0,246	(Km) (Km)

	fisiografici	:			
S =	superficie b			0,017212	(Km ²)
1 =	pendenza i	media bacin	0	0,19	(%)
l' = √l				0,44	
Parametri	1			10.21	۰
t =	-	ra media anı coeff. di te		19,21	
t' =				1,42	()
h =	precipitazio	one media a	innua	571,06	(mm)
Uso del su	ıolo:				
A =		hi e frutteti		0	(Km²)
B =	sup. a prat	i e pascoli		0	(Km²)
C =	sup. a semi	inativi e colt	ivi varii	0,017212	(Km²)
D =	sup. sterile			0	(Km²)
U =	sup. pavim	nent. e urbar	nizzata	0	(Km²)
			casella di controllo	0,017212	
Litologia:					
J =	sup. rocce	incoerenti		0	(Km ²)
K =	sup. rocce	pseudoc. e	semicoer.	0,017212	(Km ²)
L =	sup. rocce	coerenti		0	(Km ²)
			casella di controllo	0,017212	(Km ²)
Dissesti:					
N =	sup. con fr	ane		0	(Km ²)
P =	sup. con e	rosione acce	entuata	0	(Km²)
Q =	sup. con v	alanghe		0	(Km ²)
Coeff. di	protezione	del suolo	data dalla vegetazion		
$X = \frac{A \cdot 0.2}{A \cdot 0.2}$	$+B\cdot0.5+C\cdot0.8$	$3 + D \cdot 1,0 + 0,0$	5·U)	8,0	
	5				
C 45 - 4:		d=1=1=	data dalla litala mia		
(1.1)	$6+K\cdot0,8+L$.03)	dato dalla litologia	0,800	
$Y = \frac{(b-1)^n}{n}$	S S			0,000	
Coeff. di	degrado				
(N	$\frac{\cdot 7 + P \cdot 4 + \cdot }{\circ}$	$Q \cdot 2)_{10}$	n	0.000	
G =	S	<u>~</u> .100	J	0,000	
Cooff di	erosione re	lativa			
Z = X * Y		ialiva		0,343	
Z = X ·· 1	(0 +1)			0,575	
Tracporto	solido poi	tenziale			
	* h * π * √Z ³			8,813	(m³/a)
vv – 5 t	11 11 112			0,013	(11174)
Spessore r	nedio del r	nateriale e	roso		
Trasp poter		ilateriale e	1030	0,512	mm
тар рото				-,-,-	
Materiale	trasportato	alla sezio	ne di chiusura		
G = W * R				0,984	(m³/a)
	D) 1/2/(L+10)			0,112	
, ,					
Con:					
	etro del bacir	no		1,704	(Km)
D =	1			0,048	(Km)
	zz asta princij	pale del bac	ino	0,246	(Km)
	,1				

LOTTO F – SOTTOBACINO F 2

Parametr	i fisiografici	•			
S =	superficie l			0,021728	(Km²)
1 =	-	media bacin	0	0,19	(%)
!' = √l	periacriza	Incaia baciii		0,44	,
				-,,,,	
Parametr	i climatici:				
t =	temperatu	ra media anı	nua	19,21	۰
t' =	√t*0,1+0,1	l coeff. di te	mperatura	1,42	
h =	precipitazi	one media a	annua	571,06	(mm)
Uso del s	suolo:				
A =	sup. a boss	chi e frutteti		0	(Km ²)
B =	sup. a prat	i e pascoli		0	(Km ²)
C =	sup. a sem	inativi e colt	ivi varii	0,021728	(Km ²)
D =	sup. sterile			0	(Km ²)
U =	sup. pavim	nent. e urbar	nizzata	0	(Km ²)
			casella di controllo	0,021728	
Litologia					_
J =		incoerenti		0	(Km²)
K =	sup. rocce	pseudoc. e	semicoer.	0,021728	(Km²)
L =	sup. rocce	coerenti		0	(Km ²)
			casella di controllo	0,021728	(Km ²)
Dissesti:					
N =	sup. con fi			0	(Km²)
P =	· ·	rosione acce	entuata	0	(Km²)
Q =	sup. con v	alanghe		0	(Km ²)
		ļ.,			
			data dalla vegetazion		
$X = \frac{(A \cdot 0, 2)}{A \cdot 0}$	$\frac{2+B\cdot 0.5+C\cdot 0.8}{S}$	$8 + D \cdot 1,0 + 0,0$	5· <i>U</i>)	0,8	
	3				
Coeff di	orodibilità	dal avala	dato dalla litologia		
	$\frac{1}{1,6+K\cdot0,8+L}$.0.3)	dato dana intologia	0,800	
$Y = \frac{C}{C}$	S			0,000	
C					
	degrado				
$G = \frac{N}{N}$	$7 \cdot 7 + P \cdot 4 +$	$(Q \cdot 2)_{10}$	0	0,000	
G =	S	.100	0	0,000	
Cooff di	i aradana ra	lativa			
	erosione re	elativa		0.343	
Coeff. di		elativa		0,343	
Z = X * Y	* (G' + l')			0,343	
Z = X * Y Trasporte	(G' + l') o solido po	tenziale			(m³/a)
Z = X * Y Trasporte	* (G' + l')	tenziale		0,343	(m³/a)
Z = X * Y Trasporte W = S * t'	* (G' + l') o solido po '* h * π * $\sqrt{2}$	tenziale	Proso		(m³/a)
Z = X * Y Trasporte W = S * t' Spessore	* (G' + l') o solido po '* h * π * \sqrt{Z} medio del l	tenziale	roso	11,125	(m³/a)
Z = X * Y Trasporte W = S * t' Spessore	* (G' + l') o solido po '* h * π * $\sqrt{2}$	tenziale	Proso		
Z = X * Y Trasporto $W = S * t'$ Spessore Trasp pote	* $(G' + I')$ o solido po * $h * \pi * \sqrt{Z}$ medio del I	tenziale 3 materiale e		11,125	
Z = X * Y Trasporte W = S * t' Spessore Trasp pote	* $(G' + I')$ o solido po * $h * \pi * \sqrt{2}$ medio del I enz.: area =	tenziale 3 materiale e	eroso ne di chiusura	11,125	
$Z = X * Y$ Trasporte $W = S * t^{t}$ Spessore Trasp pote Materiale $G = W * t^{t}$	* $(G' + I')$ o solido po * $h * \pi * \sqrt{Z}$ medio del r enz.: area =	materiale e		0,512	mm
$Z = X * Y$ Trasporte $W = S * t^{t}$ Spessore Trasp pote Materiale $G = W * t^{t}$	* $(G' + I')$ o solido po * $h * \pi * \sqrt{2}$ medio del I enz.: area =	materiale e		0,512 0,893	mm
$Z = X * Y$ Trasporte $W = S * t^{t}$ Spessore Trasp pote Materiale $G = W * t^{t}$	* $(G' + I')$ o solido po * $h * \pi * \sqrt{Z}$ medio del r enz.: area =	materiale e		0,512 0,893	mm
Z = X * Y Trasporte W = S * t' Spessore Trasp pote Materiale G = W * Ru = 4(C)	* $(G' + I')$ o solido po * $h * \pi * \sqrt{Z}$ medio del II enz. : area = e trasportato Ru * $D^{1/2}/(L+10)$	tenziale materiale e alla sezio		0,512 0,893	mm
Z = X * Y Trasporte W = S * t' Spessore Trasp pote Materiale G = W * Ru = 4(C)	* $(G' + I')$ o solido po * $h * \pi * \sqrt{Z}$ medio del r enz.: area =	tenziale materiale e alla sezio		0,512 0,893 0,080	mm (m³/a)

Parametri	fisiografici	:			
S =	superficie b			0,011831	(Km²)
l =		media bacin	•	0,19	(%)
l' = √l	pendenza	niedia baciii		0,44	(70)
1 - 11				0,11	
Parametri	climatici:				
t =		a media anı	nua	19,21	۰
t' =		coeff. di te		1,42	
h =		one media a		571,06	(mm)
11 =	precipitazi	one media a	IIIIua	,	, ,
Uso del su	olo:				
A =		hi e frutteti		0	(Km²)
B =	sup. a prat			0	(Km²)
C =		inativi e colt	ivi varii	0,011831	(Km²)
D =	sup. sterile			0	(Km²)
U =		ient. e urbar	nizzata	0	(Km²)
	sapi pariii		casella di controllo	0,011831	` ,
Litologia:					
J =	sup. rocce	incoerenti		0	(Km²)
K =		pseudoc. e	semicoer.	0,011831	(Km ²)
L =	sup. rocce			0	(Km²)
	· ·		casella di controllo	0,011831	(Km²)
Dissesti:					
N =	sup. con fr	ane		0	(Km²)
P =	sup. con e	rosione acce	entuata	0	(Km²)
Q =	sup. con v	alanghe		0	(Km²)
Coeff. di		del suolo	dato dalla litologia		
$Y = \frac{(J \cdot 1, \epsilon)}{(J \cdot 1, \epsilon)}$	$\frac{5+K\cdot 0,8+L}{S}$.0,3)		0,800	
	S				
Coeff. di	degrado				
(M	7 . D 4 .	0.2)			
$G = \frac{(N \cdot)}{(N \cdot)}$	7 + P · 4 +	$(2) \cdot 100$	0	0,000	
	3				
	erosione re	lativa			
Z = X * Y *	(G' + l')			0,343	
	solido po				
W = S * t'	h * π * √Z ³			6,058	(m³/a)
Spessore n	nedio del r	nateriale e	roso		
Trasp poten	z. : area =			0,512	mm
	•	alla sezio	ne di chiusura		, 2
G = W * R				0,278	(m³/a)
Ku = 4(O*	D) ^{1/2} /(L+10)			0,046	
Con:				0.543	712
	etro del bacin	no		0,546	(Km)
D =				0,025	(Km)
L = lunghez	z asta princij	oale del bac	ino	0,169	(Km)


LOTTO F – SOTTOBACINO F 4

Darametri	fisiografici				
				0,028953	(Km²)
S =	superficie b				
1 =	pendenza	media bacin	0	0,19	(%)
l' = √l				0,44	
Parametri	climatici:				
t =		a media anı	าแล	19,21	۰
t' =		coeff. di te		1,42	
ι =	VC 0,110,1	coen. ur te	Imperatura		
h =	precipitazi	one media a	nnua	571,06	(mm)
Uso del s	uolo:				
A =		hi e frutteti		0	(Km²)
B =	sup. a prat			0	(Km²)
C =		inativi e colt	iui uovii	0,028953	(Km²)
	· ·		IVI Valii	0,020755	(Km²)
D =	sup. sterile				
U =	sup. pavim	ent. e urbar	nizzata	0	(Km ²)
			casella di controllo	0,028953	
Litologia:					
J =	sup. rocce	incoerenti		0	(Km ²)
K =		pseudoc. e	semicoer	0,028953	(Km²)
			serricoer.	0,020755	(Km²)
L =	sup. rocce	coerenti			
			casella di controllo	0,028953	(Km ²)
Dissesti:					
N =	sup. con fr	ane		0	(Km ²)
P =	sup. con e	rosione acce	ntuata	0	(Km ²)
Q =	sup. con v	alanghe		0	(Km ²)
	·				
			dato dalla litologia		
$-Y = \frac{(J \cdot 1, J)}{(J \cdot 1, J)}$	$6+K\cdot 0,8+L$.0,3)		0,800	
	S				
<i>c</i>					
Coeff. di					
$G = \frac{(N)}{N}$	$\frac{\cdot 7 + P \cdot 4 + \cdots}{S}$	$\frac{Q \cdot 2)}{100}$)	0,000	
	S				
	erosione re	elativa		0.040	
Z = X * Y	* (G' + l')			0,343	
Trasporto	solido poi	tenziale			
	* h * π * √Z ³			14,824	(m ³ /a)
	. , , , , ,			,.2 .	. , ,
Spessore	medio del r	nateriale e	roso		
Trasp pote	nz.: area =			0,512	mm
Matariala	tracacretate	alla cazio	no di chiusura		
	•	ana sezio	ne di chiusura	0.997	(m ³ /a)
G = W * F	_			0,887	(m³/a)
Ku = 4(O)	*Ď) ^{1/2} /(L+10)			0,060	
Con:					
				0.042	///
	etro del bacir	10		0,942	(Km)
D =				0,025	(Km)
	zz asta princij			0,261	(Km)

LOTTO F – SOTTOBACINO F 5

Parametri	fisiografici	•			
S =	superficie l			0,037144	(Km²)
1 =		media bacin	0	0,19	(%)
l' = √l	perideriza	Incaia bacin		0,44	()
				0,11	
Parametri	climatici:				
t =		ra media anı	nua	19,21	0
t' =	-	l coeff. di te		1,42	
h =		one media a		571,06	(mm)
-	precipitazi	One media a	iiiiua		
Uso del su	ıolo:				
A =		chi e frutteti		0	(Km²)
B =	sup. a prat			0	(Km ²)
C =		inativi e colt	ivi varii	0,037144	(Km ²)
D =	sup. sterile			0	(Km ²)
U =		nent. e urbar	nizzata	0	(Km ²)
	<u> </u>		casella di controllo	0,037144	
Litologia:					
J =	sup. rocce	incoerenti		0	(Km²)
K =	sup. rocce	pseudoc. e	semicoer.	0,037144	(Km ²)
L =	sup. rocce	coerenti		0	(Km ²)
			casella di controllo	0,037144	(Km²)
Dissesti:					
N =	sup. con fi	ane		0	(Km ²)
P =	sup. con e	rosione acce	ntuata	0	(Km ²)
Q =	sup. con ν	alanghe		0	(Km ²)
Coeff, di	erodibilità	del suolo	dato dalla litologia		
$Y = \frac{(J \cdot 1, 0)}{(J \cdot 1, 0)}$	$6+K\cdot 0,8+L$.0,3)		0,800	
	S				
Coeff. di	degrado				
(N	$\cdot 7 + P \cdot 4 +$	(0,2)			
$G = \frac{1}{\sqrt{N}}$	S	$\frac{(Q^{+2})}{100}$	0	0,000	
	٥				
	erosione re	elativa			
Z = X * Y	* (G' + l')			0,343	
_					
Frasporto	solido po h * π * \sqrt{Z}	tenziale		10.010	, 3, ,
w = 5 * t'	^ n * π * √Z			19,018	(m³/a)
C					
_	nedio del 1	nateriale e	roso	0.512	mm
Trasp poter	ız. : area =			0,512	mm
Matariala	tracocritat	alla sari-	ne di chiusura		
G = W * R	-	, and sezio	ne ur cinusurd	1,278	(m³/a)
	u ⁽ D) ^{1/2} /(L+10)			0,067	,,α)
1(0	J, /(L110)			3,007	
Con:					
	etro del baci	no		1,189	(Km)
D =	aci bucii			0,025	(Km)
	zz asta princi	pale del hac	ino	0,259	(Km)
	Pci				

	fisiografici	:			
S =	superficie	bacino		0,175806	(Km ²)
l =	pendenza	media bacin	О	0,19	(%)
l' = √l				0,44	
Darametri	climatici:				
t =		ra media anı	nua	19,21	۰
t' =		l coeff. di te		1,42	
h =		one media a		571,06	(mm)
	ртостртиал				
Uso del s					2.
A =		chi e frutteti		0	(Km ²)
B =		ti e pascoli		0	(Km ²)
C =	sup. a sem	inativi e colt	ivi varii	0,175806	(Km ²)
D =	sup. sterile			0	(Km ²)
U =	sup. pavin	nent. e urbar	nizzata	0	(Km ²)
			casella di controllo	0,175806	
Litologia:					
J =		incoerenti		0	(Km ²)
J = К =			comicoor	0,175806	(Km²)
		pseudoc. e	semicoer.	0,173806	(Km ²)
L =	sup. rocce	coerenti	. 11 12 . 11	· ·	
Dissesti:			casella di controllo	0,175806	(Km ²)
N =	sup. con f	rane		0	(Km²)
P =		rosione acce	ontuata	0	(Km²)
	-		entuata	0	
Q =	sup. con v	alangne		U	(Km²)
Coeff. di	protezione	del suolo	data dalla vegetazion	e	
			data dalla vegetazion $_{5\cdot U)}$	e 0,8	
	+ B · 0,5 + C · 0,8				
$X = \frac{(A \cdot 0.2)}{A \cdot 0.2}$	$+B\cdot0.5+C\cdot0.5$	$8 + D \cdot 1,0 + 0,05$	5.U)		
$X = \frac{(A \cdot 0.2)^2}{\text{Coeff. di}}$	$+B \cdot 0.5 + C \cdot 0.5$	8+D·1,0+0,05		8,0	
$X = \frac{(A \cdot 0.2)^2}{\text{Coeff. di}}$	$+B \cdot 0.5 + C \cdot 0.3$ S erodibilità $6 + K \cdot 0.8 + L$	8+D·1,0+0,05	5.U)		
$X = \frac{(A \cdot 0.2)^2}{\text{Coeff. di}}$	$+B \cdot 0.5 + C \cdot 0.5$	8+D·1,0+0,05	5.U)	8,0	
Coeff. di $Y = \frac{(A \cdot 0.2)}{(A \cdot 0.2)}$	$B \cdot 0.5 + C \cdot 0.3$ S erodibilità $6 + K \cdot 0.8 + L$ S	8+D·1,0+0,05	5.U)	8,0	
Coeff. di $Y = \frac{(A \cdot 0.2)}{(J \cdot 1)}$ Coeff. di	$ \begin{array}{c c} +B \cdot 0.5 + C \cdot 0.3 \\ \hline S \\ \hline \\ erodibilità \\ 6 + K \cdot 0.8 + L \\ \hline S \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	del suolo ⋅ 0,3	dato dalla litologia	8,0	
Coeff. di $Y = \frac{(A \cdot 0.2)}{(J \cdot 1)}$ Coeff. di	$ \begin{array}{c c} +B \cdot 0.5 + C \cdot 0.3 \\ \hline S \\ \hline \\ erodibilità \\ 6 + K \cdot 0.8 + L \\ \hline S \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	del suolo ⋅ 0,3	dato dalla litologia	0.8	
Coeff. di $Y = \frac{(A \cdot 0.2)}{(J \cdot 1)}$ Coeff. di	$B \cdot 0.5 + C \cdot 0.3$ S erodibilità $6 + K \cdot 0.8 + L$ S	del suolo ⋅ 0,3	dato dalla litologia	8,0	
Coeff. di $Y = \frac{(A \cdot 0.2)}{(J \cdot 1)}$ Coeff. di	$+B \cdot 0.5 + C \cdot 0.3$ S erodibilità $6 + K \cdot 0.8 + L$ S degrado $+7 + P \cdot 4 + C$	del suolo ⋅ 0,3	dato dalla litologia	0.8	
$X = \frac{(A \cdot 0.2)}{(A \cdot 0.2)}$ Coeff. di $G = \frac{(N)}{(N)}$ Coeff. di	erodibilità $6+K\cdot0.8+L$ S degrado $\cdot7+P\cdot4+$ S erosione re	$del suolo \\ \cdot \cdot 0.3)$	dato dalla litologia	0,800	
$X = \frac{(A \cdot 0.2)}{(A \cdot 0.2)}$ Coeff. di $G = \frac{(N)}{(N)}$ Coeff. di	erodibilità $6+K\cdot0.8+L$ S degrado $\cdot7+P\cdot4+$ S erosione re	$del suolo \\ \cdot \cdot 0.3)$	dato dalla litologia	0.8	
Coeff. di $G = \frac{(A \cdot 0.2)}{(A \cdot 0.2)}$ Coeff. di $G = \frac{(N)}{(N)}$ Coeff. di $Z = X * Y$	erodibilità $6+K\cdot0.8+L$ S degrado $\cdot 7+P\cdot 4+S$ erosione re * (G'+l')	$del suolo \\ \cdot 0.3)$ $Q \cdot 2 \cdot 100$ elativa	dato dalla litologia	0,800	
Coeff. di $Y = \frac{(J \cdot 1)}{J}$ Coeff. di $G = \frac{N}{J}$ Coeff. di $Z = X \cdot Y$ Trasporto	erodibilità $6+K\cdot0.8+L$ S degrado $\cdot 7+P\cdot 4+S$ erosione re * (G'+l')	$del suolo \\ \cdot 0.3)$ $Q \cdot 2) \cdot 100$ elativa	dato dalla litologia	0,800 0,800 0,000	(m³/a)
Coeff. di $ Y = \frac{(J \cdot 1)}{J} $ Coeff. di $ G = \frac{N}{J} $ Coeff. di $ Z = X * Y $ Trasporto	erodibilità $6+K\cdot0.8+L$ S degrado $\cdot 7+P\cdot 4+S$ erosione re * (G'+l')	$del suolo \\ \cdot 0.3)$ $Q \cdot 2) \cdot 100$ elativa	dato dalla litologia	0,800	(m³/a)
Coeff. di $Coeff. di$ $Coeff. di$ $Coeff. di$ $C = \frac{(N)}{N}$ $Coeff. di$ $C = X * Y$ $Coeff. di$ $C = X * Y$ $Coeff. di$ $C = X * Y$	erodibilità $6+K\cdot0.8+L$ S degrado $\cdot 7+P\cdot 4+S$ erosione re * (G'+l')	$del suolo \\ \cdot 0,3)$ $Q \cdot 2) \cdot 100$ elativa	dato dalla litologia	0,800 0,800 0,000	(m²/a)
$X = \frac{(A \cdot 0.2)}{(A \cdot 0.2)}$ Coeff. di $G = \frac{(N)}{(A \cdot 0.2)}$ Coeff. di $Z = X * Y$ Trasporto $W = S * t'$ Spessore	$+B \cdot 0.5 + C \cdot 0.3$ S erodibilità $6 + K \cdot 0.8 + L$ S degrado $\cdot 7 + P \cdot 4 + S$ S erosione ro $* (G' + I')$ o solido po $* h * \pi * \sqrt{Z}$	$del suolo \\ \cdot 0,3)$ $Q \cdot 2) \cdot 100$ elativa	dato dalla litologia	0,800 0,800 0,000	(m²/a)
Coeff. di $Y = \frac{(J \cdot 1, J)}{J \cdot 1, J}$ Coeff. di $Z = X * Y$ Coeff. di $Z = X * Y$ Trasporto $Z = X * Y$ Trasporto $Z = X * Y$ Trasporto	erodibilità $6+K\cdot0.8+L$ S degrado $\cdot 7+P\cdot 4+S$ erosione re * (G'+l') p solido po * h * π * \sqrt{Z} medio del nz. : area =	$\frac{del \ suolo}{del \ suolo} \cdot \frac{Q \cdot 2}{100} \cdot 100$	dato dalla litologia	0,800 0,800 0,000 0,343	
Coeff. di $Y = \frac{(J \cdot 1, J)}{J \cdot 1, J}$ Coeff. di $Z = X * Y$ Coeff. di $Z = X * Y$ Trasporto $Z = X * Y$ Spessore Trasp pote	erodibilità $6+K\cdot0.8+L$ S degrado $\cdot 7+P\cdot 4+S$ erosione re * (G'+l') o solido po * h * π * $\sqrt{2}$ medio del la nz. : area = trasportato	$\frac{del \ suolo}{del \ suolo} \cdot \frac{Q \cdot 2}{100} \cdot 100$	dato dalla litologia	0,800 0,800 0,000 0,343 90,014	
$X = \frac{(A \cdot 0, 2)}{A \cdot 0}$ Coeff. di $G = \frac{N}{A}$ Coeff. di $Z = X * Y$ Trasporto $W = S * t'$ Spessore Trasp pote $Materiale$ $G = W * F$	erodibilità $6+K\cdot0.8+L$ S degrado $\cdot 7+P\cdot 4+S$ erosione re *(G'+l') o solido po *h * π * \sqrt{Z} medio del nz.: area =	del suolo $Q \cdot 2$ $\cdot 100$ elativa	dato dalla litologia	0,800 0,800 0,000 0,343 90,014 0,512	mm
$X = \frac{(A \cdot 0, 2)}{A \cdot 0}$ Coeff. di $G = \frac{N}{A}$ Coeff. di $Z = X * Y$ Trasporto $W = S * t'$ Spessore Trasp pote $Materiale$ $G = W * F$	erodibilità $6+K\cdot0.8+L$ S degrado $\cdot 7+P\cdot 4+S$ erosione re * (G'+l') o solido po * h * π * $\sqrt{2}$ medio del la nz. : area = trasportato	del suolo $Q \cdot 2$ $\cdot 100$ elativa	dato dalla litologia	0,800 0,800 0,000 0,343 90,014	mm
$X = \frac{(A \cdot 0, 2)}{A \cdot 0}$ Coeff. di $G = \frac{N}{A}$ Coeff. di $Z = X * Y$ Trasporto $Z = X * Y$ Spessore Trasp pote $Z = X * Y$ Materiale $Z = X * Y$ Materiale $Z = X * Y$	erodibilità $6+K\cdot0.8+L$ S degrado $\cdot 7+P\cdot 4+S$ erosione re *(G'+l') o solido po *h * π * \sqrt{Z} medio del nz.: area =	del suolo $Q \cdot 2$ $\cdot 100$ elativa	dato dalla litologia	0,800 0,800 0,000 0,343 90,014 0,512	mm
Coeff. di $Y = \frac{(J \cdot 1, V)}{(J \cdot 1, V)}$ Coeff. di $Z = X \cdot Y$ Coeff. di $Z = X \cdot Y$ Trasporto $Z = X \cdot Y$ Spessore Trasp pote $Z = X \cdot Y$ Materiale $Z = X \cdot Y$ Con:	erodibilità $6+K\cdot0.8+L$ S degrado $\cdot 7+P\cdot 4+S$ erosione re * (G'+l') o solido po * h * π * $\sqrt{2}$ medio del nz.: area = trasportato	del suolo $\cdot \cdot \cdot$	dato dalla litologia	0,800 0,800 0,000 0,343 90,014 0,512	mm
Coeff. di $Y = \frac{(J \cdot 1, V)}{(J \cdot 1, V)}$ Coeff. di $Z = X \cdot Y$ Coeff. di $Z = X \cdot Y$ Trasporto $Z = X \cdot Y$ Spessore Trasp pote $Z = X \cdot Y$ Materiale $Z = X \cdot Y$ Con:	erodibilità $6+K\cdot0.8+L$ S degrado $\cdot 7+P\cdot 4+S$ erosione re *(G'+l') o solido po *h * π * \sqrt{Z} medio del nz.: area =	del suolo $\cdot \cdot \cdot$	dato dalla litologia	0,800 0,800 0,000 0,343 90,014 0,512 8,422 0,094	mm (m³/a)

Comuni di Favara e Agrigento IMPIANTO AGRI-VOLTAICO "FAVARA 1"

Trasporto solido

Carta dei sottobacini Scala 1: 5.000

LOTTO A

LEGENDA

C.T.R.

---- 636080_V entities

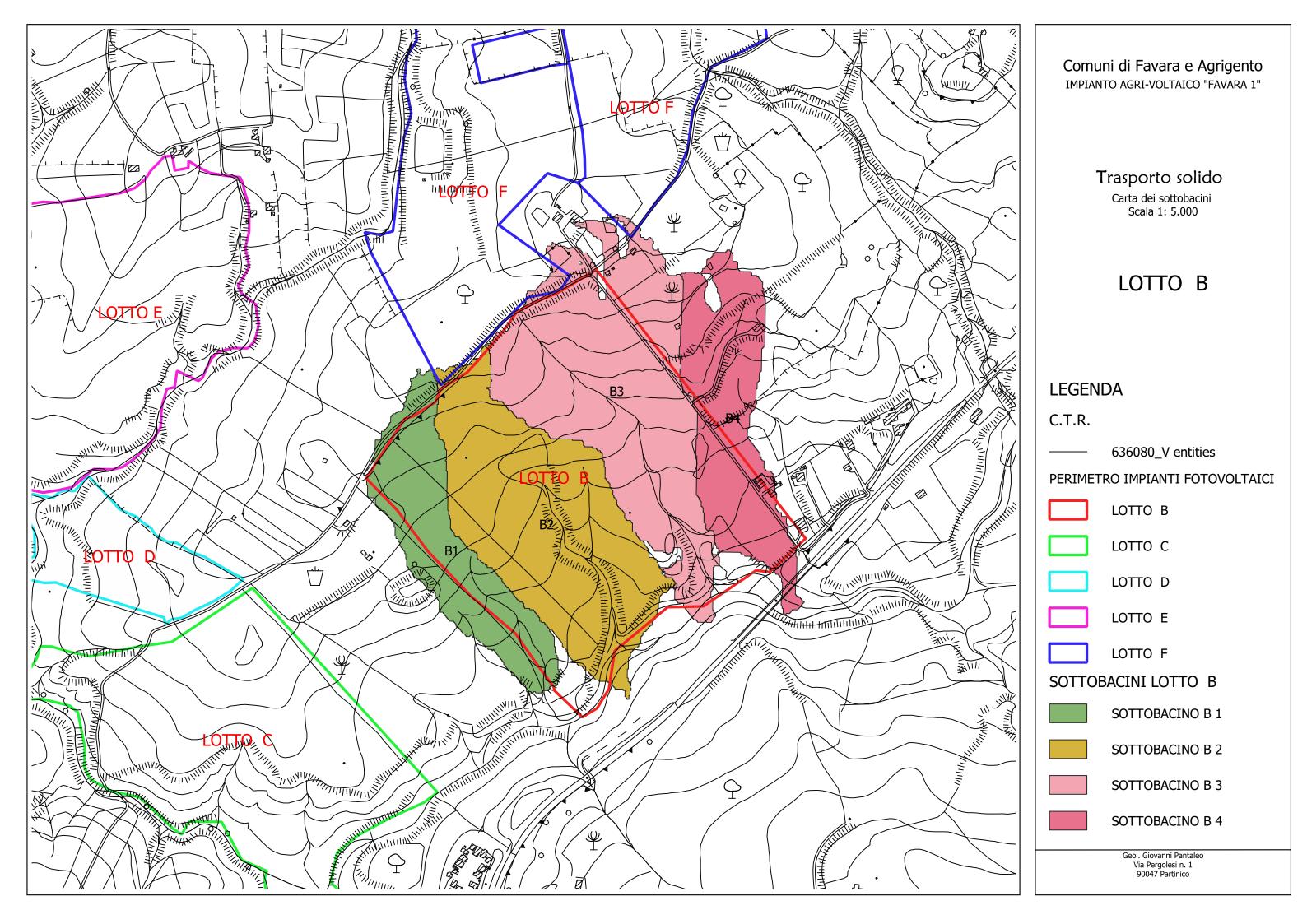
---- 636040_V entities

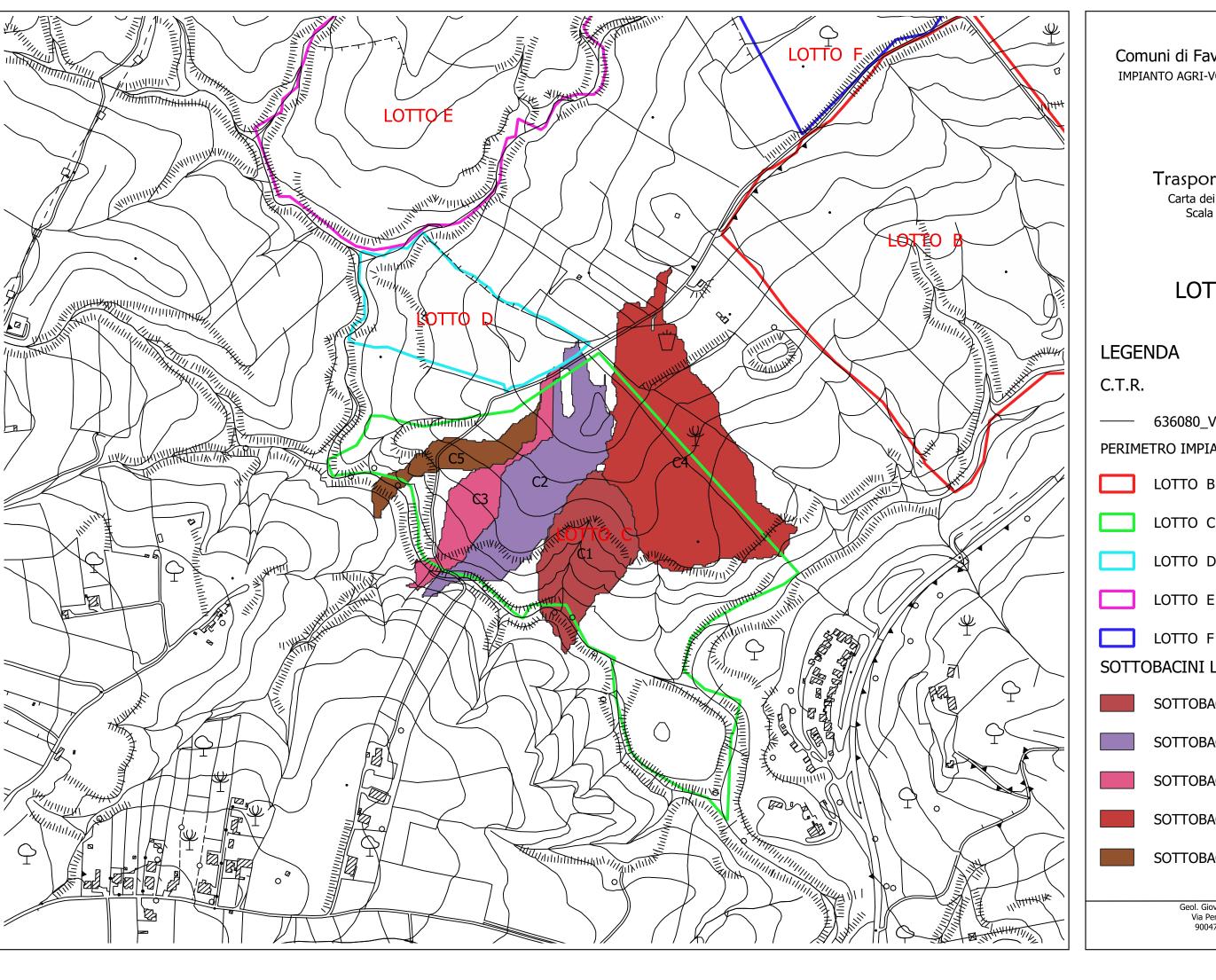
PERIMETRO IMPIANTI FOTOVOLTAICI

LOTTO A

LOTTO F

SOTTOBACINO LOTTO A


SOTTOBACINO A 1


SOTTOBACINO A 2

SOTTOBACINO A3

SOTTOBACINO A 5

Geol. Giovanni Pantaleo Via Pergolesi n. 1 90047 Partinico

Comuni di Favara e Agrigento IMPIANTO AGRI-VOLTAICO "FAVARA 1"

Trasporto solido

Carta dei sottobacini Scala 1: 5.000

LOTTO C

636080_V entities

PERIMETRO IMPIANTI FOTOVOLTAICI

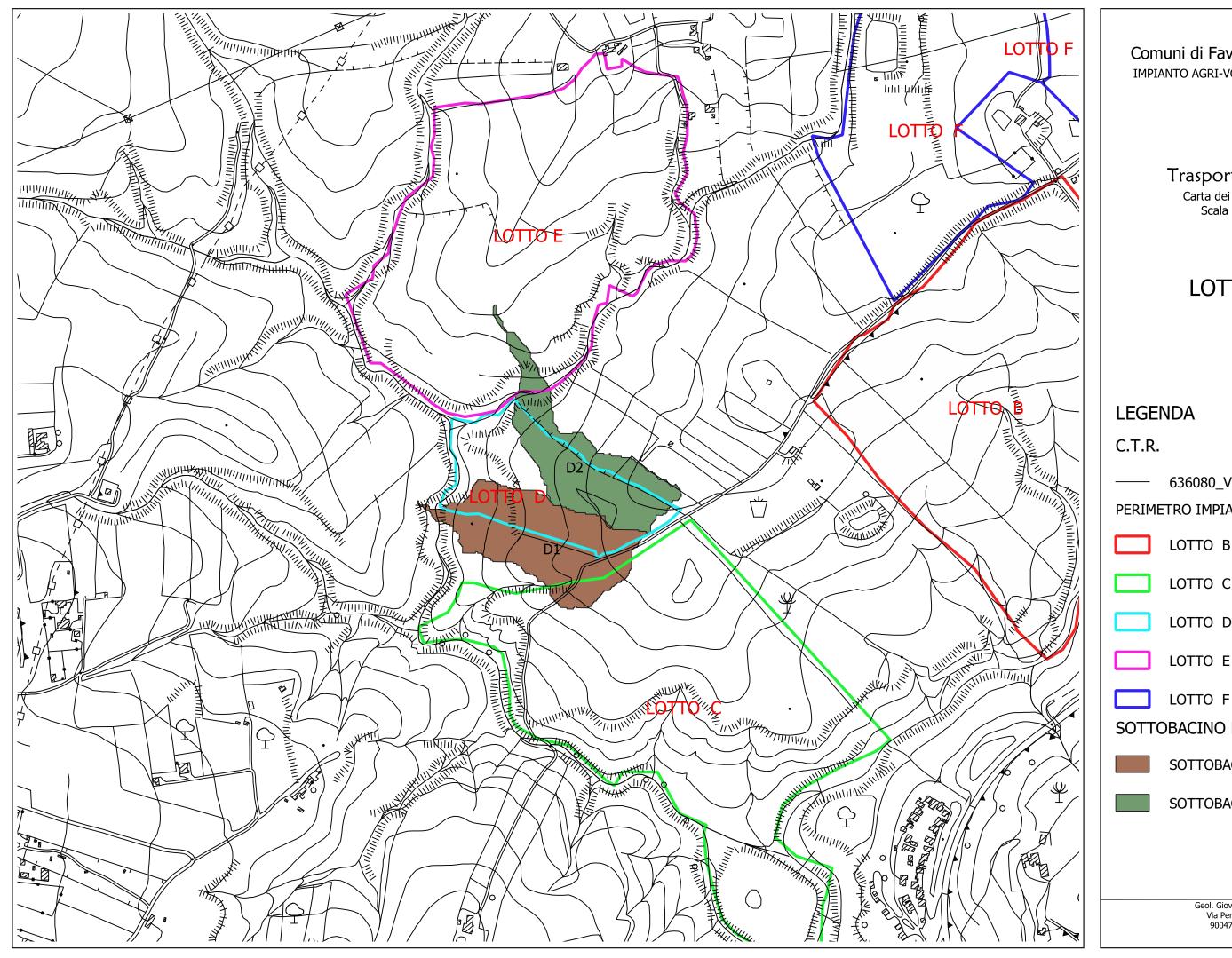
LOTTO B

LOTTO C

LOTTO D

SOTTOBACINI LOTTO C

SOTTOBACINO C 1


SOTTOBACINO C 2

SOTTOBACINO C 3

SOTTOBACINO C 4

SOTTOBACINO C 5

Geol. Giovanni Pantaleo Via Pergolesi n. 1 90047 Partinico

Comuni di Favara e Agrigento IMPIANTO AGRI-VOLTAICO "FAVARA 1"

Trasporto solido

Carta dei sottobacini Scala 1: 5.000

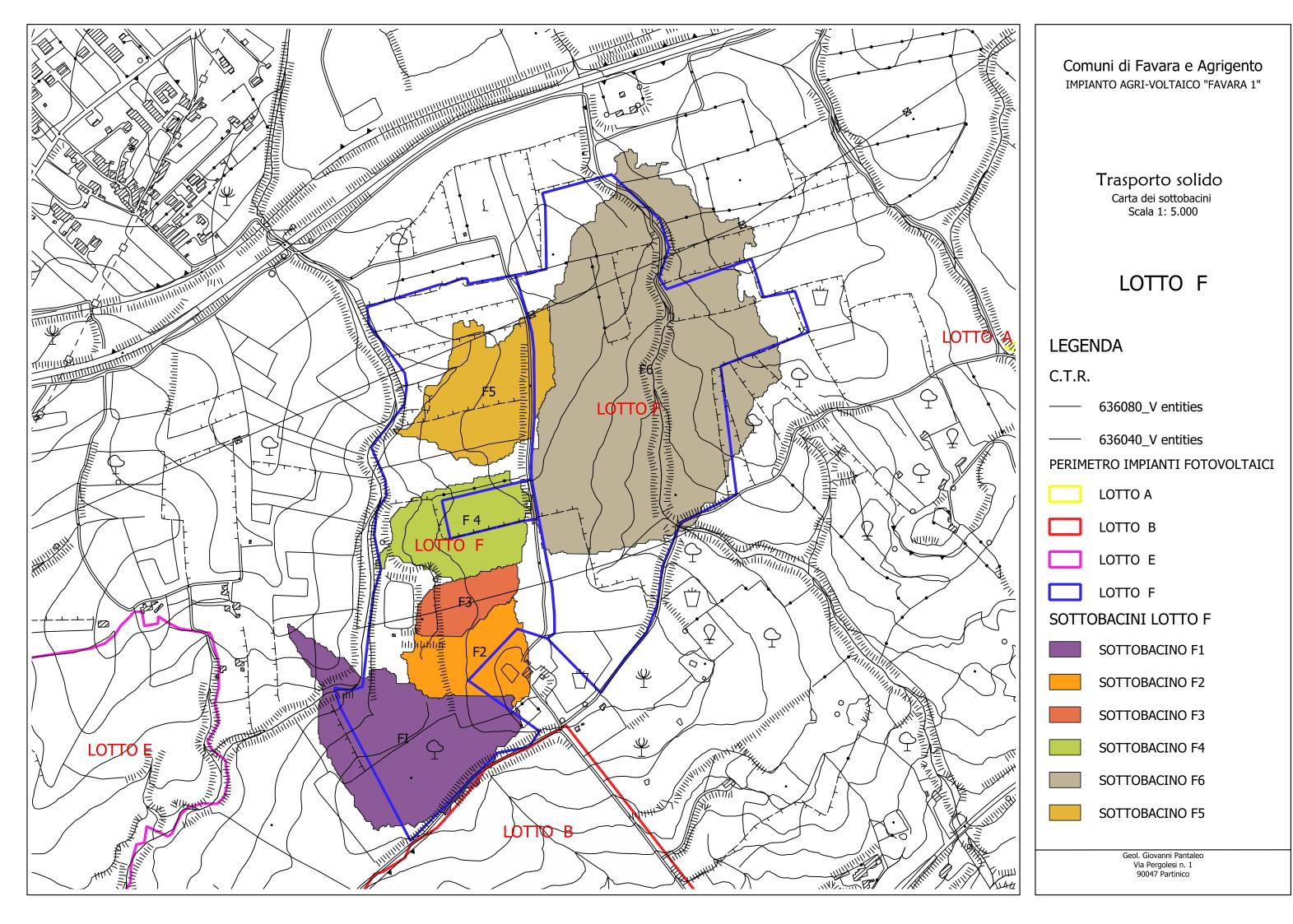
LOTTO D

636080 V entities

PERIMETRO IMPIANTI FOTOVOLTAICI

LOTTO B


LOTTO D


SOTTOBACINO LOTTO D

SOTTOBACINO D1

SOTTOBACINO D2

Geol. Giovanni Pantaleo Via Pergolesi n. 1 90047 Partinico

