

IMPIANTO AGRIVOLTAICO MARGIANITTA

COMUNE DI GUSPINI

PROPONENTE

Ferrari Agro Energia s.r.l.

Traversa Bacchileddu, n. 22 07100 SASSARI (SS)

VALUTAZIONE DI IMPATTO AMBIENTALE

CODICE ELABORATO

OGGETTO:

Valutazione previsionale di impatto acustico

VIA-R03

COORDINAMENTO

BRUNO MANCA | STUDIO TECNICO DI INGEGNERIA

- Loc. Riu is Piras, SN | 09040 SERDIANA (SU)
- +39 347 5965654
 € P.IVA 02926980927
 SDI: W7YVJK9 ATTESTATO ENAC N° I.APRA.003678
- INGBRUNOMANCA@GMAIL.COM PEC: BRUNO.MANCA@INGPEC.EU

 WWW.BRUNOMANCA.COM (2) WWW.UMBRAS360.COM

Studio Tecnico Dott. Ing Bruno Manca

GRUPPO DI LAVORO S.I.A.

Dott.ssa Geol. Coslma Atzorl Dott. Ing. Fabio Massimo Calderaro Dott. Glullo Casu Dott. Arch. Fabrizio Delussu Dott.ssa Ing. Silvia Exana Dott.ssa Ing. Ilaria Giovagnorio Dott. Glorgio Lal Dott. Federico Loddo Dott. Giovanni Lovigu Dott. Ing Bruno Manca Dott. Ing. Giuseppe Pili Dott. Ing. Michele Pigliaru Dott.ssa Ing. Alessandra Scalas Dott. Nat. Fablo Schirru Dott. Nat. Vincenzo Ferri Dott. Agr. Gluseppe Puggloni Federica Zaccheddu

REDATTORE

Dott. Ing. Fabio Massimo Calderaro Dott. Ing. Vincenzo Buttafuoco

REV.	DATA	DESCRIZIONE REVISIONE
00	Dicembre 2023	Prima emissione

FORMATO

ISO A4 - 297 x 210

Ferrari Agro Energia s.r.l. - TUTTI I DIRITTI SONO RISERVATI A NORMA DI LEGGE

INDICE

1.	. F	PREMESSA	2
2.	. 1	NORMATIVA DI RIFERIMENTO	4
	2.1.	NORMATIVA NAZIONALE	4
3.		NORMATIVA DELLA REGIONE SARDEGNA /ALUTAZIONE DI IMPATTO ACUSTICO	4 5
	3.1.	Descrizione della tipologia dell'opera o attività in progetto, del ciclo produttivo tecnologico, degli impianti, delle attrezzature e dei macchinari di cui è prevedibil l'utilizzo, dell'ubicazione dell'insediamento e del contesto in cui viene inserita (punto "a DGR 62/9 del 14.11.2008)	le
	3.2.	Descrizione delle caratteristiche costruttive dei locali (coperture, murature, serrament vetrate ecc.) con particolare riferimento alle caratteristiche acustiche dei materia utilizzati (punto "b" DGR 62/9 del 14.11.2008)	
	3.3.	Descrizione delle sorgenti rumorose connesse all'opera o attività, con indicazione de dati di targa relativi alla potenza acustica e loro ubicazione (punto "c" DGR 62/9 de 14.11.2008)	
	3.4.	Indicazione degli orari di attività e di quelli di funzionamento degli impianti principali sussidiari (punto "d" DGR 62/9 del 14.11.2008)	e 3
	3.5.	Indicazione della classe acustica cui appartiene l'area di studio (punto "e" DGR 62/del 14.11.2008)	/9 3
	3.6.	Identificazione e descrizione dei ricettori presenti nell'area di studio, con indicazion delle loro caratteristiche utili sotto il profilo acustico (punto "f" DGR 62/9 de 14.11.2008)	
	3.7.	Individuazione delle principali sorgenti sonore già presenti nell'area di studio indicazione dei livelli di rumore preesistenti in prossimità dei ricettori (punto "g" DG 62/9 del 14.11.2008)	
	3.8.	Calcolo previsionale dei livelli sonori generati dall'opera o attività nei confronti de ricettori e dell'ambiente esterno circostante indicando i parametri e i modelli di calcolutilizzati (punto "h" DGR 62/9 del 14.11.2008)	
	3.9.	Calcolo previsionale dell'incremento dei livelli sonori in caso di aumento del traffic veicolare indotto da quanto in progetto nei confronti dei ricettori e dell'ambient circostante (punto "i" DGR 62/9 del 14.11.2008)	
	3.10	Descrizione degli eventuali interventi da adottarsi per ridurre i livelli di emissioni sonor al fine di ricondurli al rispetto dei limiti associati alla classe acustica assegnata ipotizzata per ciascun ricettore (punto "I" DGR 62/9 del 14.11.2008)	
	3.11	. Analisi dell'impatto acustico generato nella fase di realizzazione, o nei siti di cantier (punto "m" DGR 62/9 del 14.11.2008)	re 25
		_, -,, (F,,	to rt. 31
1.	. (CONCLUSIONI	32

1. PREMESSA

Nel presente elaborato viene riportata la Valutazione Previsionale di Impatto Acustico relativa alla realizzazione ed esercizio di un Impianto Agrivoltaico di potenza nominale pari a 27748.85 kWp e potenza in immissione di 24000 kWp, denominato "Margianitta" e sito nel Comune di Guspini (SU).

La relazione tecnica è articolata in base a quanto richiesto dalla Deliberazione N. 62/9 del 14.11.2008 della Regione Sardegna ed in specifico nel documento tecnico denominato "Direttive regionali in materia di inquinamento acustico". Si riporta nel seguito lo stralcio dell'articolo 3 della Parte IV del suddetto documento tecnico in cui sono elencati i contenuti richiesti per la Valutazione Previsionale di Impatto Acustico.

- a) descrizione della tipologia dell'opera o attività in progetto, del ciclo produttivo e tecnologico, degli impianti, delle attrezzature e dei macchinari che verranno utilizzati, dell'ubicazione dell'insediamento e del contesto in cui viene inserita;
- b) descrizione delle caratteristiche costruttive dei locali (coperture, murature, serramenti, vetrate ecc.) con particolare riferimento alle caratteristiche acustiche dei materiali utilizzati;
- c) descrizione delle sorgenti rumorose connesse all'opera o attività, con indicazione dei dati di targa relativi alla potenza acustica e loro ubicazione. In situazioni di incertezza progettuale sulla tipologia o sul posizionamento delle sorgenti sonore che saranno effettivamente installate è ammessa l'indicazione di livelli di emissione stimati per analogia con quelli derivanti da sorgenti simili (nel caso non siano disponibili i dati di potenza acustica, dovranno essere riportati i livelli di emissione in pressione sonora);
- d) indicazione degli orari di attività e di quelli di funzionamento degli impianti principali e sussidiari. Dovranno essere specificate le caratteristiche temporali dell'attività e degli impianti, indicando l'eventuale carattere stagionale, la durata nel periodo diurno e notturno e se tale durata è continua o discontinua, la frequenza di esercizio, la possibilità (o la necessità) che durante l'esercizio vengano mantenute aperte superfici vetrate (porte o finestre), la contemporaneità di esercizio delle sorgenti sonore, eccetera;
- e) indicazione della classe acustica cui appartiene l'area di studio. Nel caso in cui l'amministrazione comunale non abbia ancora approvato e adottato il Piano di classificazione acustica è cura del proponente ipotizzare, sentita la stessa Amministrazione comunale, la classe acustica da assegnare all'area interessata.
- f) identificazione e descrizione dei ricettori presenti nell'area di studio, con indicazione delle loro caratteristiche utili sotto il profilo acustico, quali ad esempio la destinazione d'uso, l'altezza, la distanza intercorrente dall'opera o attività in progetto, con l'indicazione della classe acustica da assegnare a ciascun ricettore presente nell'area di studio avendo particolare riguardo per quelli che ricadono nelle classi I e II;
- g) individuazione delle principali sorgenti sonore già presenti nell'area di studio e indicazione dei livelli di rumore preesistenti in prossimità dei ricettori di cui al punto precedente. L'individuazione dei livelli di rumore si effettua attraverso misure articolate sul territorio con riferimento a quanto stabilito dal D.M. Ambiente 16 marzo 1998 (Tecniche di rilevamento e di misurazione dell'inquinamento acustico);
- h) calcolo previsionale dei livelli sonori generati dall'opera o attività nei confronti dei ricettori e dell'ambiente esterno circostante indicando i parametri e i modelli di calcolo utilizzati. Particolare attenzione deve essere posta alla valutazione dei livelli sonori di emissione e di immissione assoluti, nonché ai livelli differenziali, qualora applicabili, all'interno o in facciata dei ricettori individuati. La valutazione del livello differenziale deve essere effettuata nelle condizioni di potenziale massima criticità del livello differenziale;
- i) calcolo previsionale dell'incremento dei livelli sonori in caso di aumento del traffico veicolare indotto da quanto in progetto nei confronti dei ricettori e dell'ambiente circostante;
- I) descrizione degli eventuali interventi da adottarsi per ridurre i livelli di emissioni sonore al fine di ricondurli al rispetto dei limiti associati alla classe acustica assegnata o ipotizzata per ciascun ricettore. La descrizione di detti interventi è supportata da ogni informazione utile a specificare le loro caratteristiche e a individuare le loro proprietà di riduzione dei livelli sonori, nonché l'entità prevedibile delle riduzioni stesse;

- m) analisi dell'impatto acustico generato nella fase di realizzazione, o nei siti di cantiere, secondo il percorso logico indicato ai punti precedenti, e puntuale indicazione di tutti gli appropriati accorgimenti tecnici e operativi che saranno adottati per minimizzare il disturbo e rispettare i limiti (assoluto e differenziale) vigenti all'avvio di tale fase, fatte salve le eventuali deroghe per le attività rumorose temporanee di cui all'art. 6, comma 1, lettera h, e dell'art. 9 della legge 447/1995:
- n) indicazione del provvedimento regionale con cui il tecnico competente in acustica ambientale, che ha predisposto la documentazione di impatto acustico, è stato riconosciuto "competente in acustica ambientale" ai sensi della legge n. 447/1995, art. 2, commi 6 e 7.

Il documento è stato redatto dagli ingegneri Vincenzo Buttafuoco e Fabio Massimo Calderaro, Tecnici Competenti in Acustica Ambientale regolarmente inseriti nell' Elenco Nazionale dei Tecnici Competenti in Acustica, istituito ai sensi dell'art. 21 del d.lgs. 42/2017 (cfr. https://agentifisici.isprambiente.it/enteca/home.php):

- Dott. Ing. Fabio Massimo Calderaro, n° 4473;
- Dott. Ing. Vincenzo Buttafuoco, n° 4468.

2. NORMATIVA DI RIFERIMENTO

Lo studio acustico è stato sviluppato coerentemente a quanto prescritto dal quadro normativo vigente. Nel seguito si riporta l'elenco delle normative a carattere nazionale e regionale di specifico interesse per la presente relazione.

2.1. NORMATIVA NAZIONALE

- D.lgs 17 febbraio 2017, n. 41 (G.U. 4 aprile 2017 n. 79): "Disposizioni per l'armonizzazione della normativa nazionale in materia di inquinamento acustico con la direttiva 2000/14/CE e con il regolamento (CE) n. 765/2008, a norma dell'articolo 19, comma 2, lettere i), l) e m) della legge 30 ottobre 2014, n. 161"
- D.lgs 17 febbraio 2017, n. 42 (G.U. 4 aprile 2017 n. 79): "Disposizioni in materia di armonizzazione della normativa nazionale in materia di inquinamento acustico, a norma dell'articolo 19, comma 2, lettere a), b), c), d), e), f) e h) della legge 30 ottobre 2014, n. 161"
- D.Lgs. 19/8/2005, n. 194 (G.U. n. 239 del 13/10/2005): "Attuazione della direttiva 2002/49/CE relativa alla determinazione e alla gestione del rumore ambientale"
- Circolare Ministro dell'Ambiente 6/9/2004 (G.U. n. 217 del 15/9/2004): "Interpretazione in materia di inquinamento acustico: criterio differenziale e applicabilità dei valori limite differenziali"
- DPR 30/3/2004, n. 142 (G.U. n. 127 dell'1/6/2004): "Disposizioni per il contenimento e la prevenzione dell'inquinamento acustico derivante dal traffico veicolare, a norma dell'articolo 11 della legge 26 ottobre 1995, n.447"
- DPR 3/4/2001, n. 304 (G.U. n. 172 del 26/7/2001): "Regolamento recante disciplina delle emissioni sonore prodotte nello svolgimento delle attività motoristiche, a norma dell'art. 11 della legge 26 novembre 1995, n. 447"
- DPR 18/11/98 n. 459 (G.U. n. 2 del 4/1/99): "Regolamento recante norme in materia di inquinamento acustico derivante da traffico ferroviario"
- DPCM 31/3/98 (G.U. n. 120 del 26/5/98): "Atto di indirizzo e coordinamento recante criteri generali per l'esercizio dell'attività del tecnico competente in acustica"
- DM Ambiente 16/3/98 (G.U. n. 76 dell'1/4/98): "Tecniche di rilevamento e di misurazione dell'inquinamento acustico"
- DPCM 5/12/97 (G.U. n. 297 del 19/12/97): "Determinazione dei requisiti acustici passivi degli edifici"
- DPCM 14/11/97 (G.U. n. 280 dell'1/12/97): "Determinazione dei valori limite delle sorgenti sonore"
- DM Ambiente 11/12/96(G.U. n. 52 del 4/3/97): "Applicazione del criterio differenziale per gli impianti a ciclo produttivo continuo"
- LEGGE 26/10/1995, n. 447 (G.U. n. 254 del 30/10/95): "Legge quadro sull'inquinamento acustico"
- DPCM 1/3/1991 (G.U. n. 57 dell'8/3/91): "Limiti massimi di esposizione al rumore negli ambienti abitativi e nell'ambiente esterno".

2.2. NORMATIVA DELLA REGIONE SARDEGNA

• Delibera del 14 novembre 2008, n. 62/9: "Direttive regionali in materia di inquinamento acustico ambientale" e disposizioni in materia di acustica ambientale.

3. VALUTAZIONE DI IMPATTO ACUSTICO

3.1. Descrizione della tipologia dell'opera o attività in progetto, del ciclo produttivo o tecnologico, degli impianti, delle attrezzature e dei macchinari di cui è prevedibile l'utilizzo, dell'ubicazione dell'insediamento e del contesto in cui viene inserita (punto "a" DGR 62/9 del 14.11.2008)

L'impianto oggetto di approfondimento è una centrale agrivoltaica per la produzione di energia elettrica da fonte rinnovabile solare denominata "Margianitta".

L'impianto sarà del tipo grid-connected e l'energia elettrica prodotta sarà riversata completamente in rete, salvo gli autoconsumi di centrale, con connessione collegata in antenna a 36 kV sulla sezione 36 kV di una nuova Stazione Elettrica (SE) di trasformazione della RTN da inserire in entra – esce alla linea RTN 220 kV "Sulcis - Oristano".come riportato nel preventivo di connessione di TERNA con Codice Pratica 202102857.

L'impianto avrà una potenza di picco pari a 28748.85 kWp, pari alla somma delle potenze nominali dei moduli fotovoltaici installati, e una potenza nominale di 24000 kW, pari alla somma delle potenze in uscita (lato AC) dei 270 inverter fotovoltaici da 200 kW presenti in impianto.

I moduli fotovoltaici saranno installati a terra mediante tracker monoassiali.

L'impianto è suddiviso in 3 campi fotovoltaici corrispondenti a 3 linee MT a 36 kV ARE4H5EX in cavo tripolare elicordato interrato che collegano le 3 cabine di campo alla cabina di raccolta 36 kV posizionata a bordo impianto. La cabina di raccolta a 36 kV conterrà i quadri MT a 36 kV necessari al collegamento e alla protezione delle linee provenienti dalle cabine di campo. La cabina di raccolta 36 kV conterrà inoltre gli interruttori MT a 36 kV necessari a collegare la cabina stessa allo stallo a 36 kV messo a disposizione da Terna S.p.A. nella nuova Stazione Elettrica.

Ciascun campo fotovoltaico fa capo ad una cabina MT/BT (cabina di campo) contenente un quadro MT 36 kV che raccoglie le linee interrate a 36 kV provenienti dai sottocampi. In ogni cabina di campo è inoltre installato un trasformatore MT/BT 36kV/400V da 100 kVA e un quadro di BT per l'alimentazione dei servizi ausiliari del campo stesso. Sono previste 3 cabine di campo collegate alle cabine di sottocampo secondo il seguente schema:

- Campo fotovoltaico 1:
 - Sottocampo 1-1
 - Sottocampo 1-2
 - Sottocampo 1-3
 - Sottocampo 1-4
 - Sottocampo 1-5
- Campo fotovoltaico 2:
 - Sottocampo 2-1
 - o Sottocampo 2-2
 - o Sottocampo 2-3
 - Sottocampo 2-4
 - Sottocampo 2-5
- Campo fotovoltaico 3:
 - Sottocampo 3-1
 - Sottocampo 3-2
 - o Sottocampo 3-3
 - o Sottocampo 3-4
 - o Sottocampo 3-5.

Ciascun sottocampo fotovoltaico è alimentato da una cabina MT/BT (cabina di sottocampo) contenente al suo interno un quadro MT 36 kV, un trasformatore MT/BT 36 kV/800V da 2000 kVA e un quadro BT. Dal quadro BT sono alimentati gli inverter da 200 kWac dislocati in campo. All'interno di ciascun campo le cabine di sottocampo sono collegate a stella alla rispettiva cabina di campo mediante linee MT a 36 kV ARE4H5EX in cavo tripolare elicordato interrato. Sono presenti in totale 15 cabine di sottocampo.

I moduli fotovoltaici, ciascuno con potenza nominale di picco pari a 575 Wp, saranno raggruppati in stringhe da 26 moduli.

A ciascuna cabina di campo sono sottese 5 cabine di sottocampo.

Dai moduli fotovoltaici alle cabine inverter di ciascun sottocampo sono distribuite le linee DC in cavo interrato che collegano i moduli direttamente allo stadio di ingresso DC degli inverter.

È prevista la fornitura in opera di n. 15 trasformatori MT/BT da 2000 kVA per l'alimentazione dei sottocampi fotovoltaici e di n. 3 trasformatori MT/BT per l'alimentazione degli impianti ausiliari (uno per ogni cabina di campo). I trasformatori dovranno avere le seguenti caratteristiche tecniche:

Potenza nominale	2000 KVA	100 kVA
Tensione nominale Vn ₁ /Vn ₂	36000/800 V	15000/400 V
Collegamento	Dyn11	Dyn11
Tensione di cortocircuito	Vcc 8 %	Vcc 6%
Isolamento	resina	resina
Protezione sovratemperatura 49		
Protezione relè omopolare 51G - corrente	In = 0 A	In = 0 A
Protezione relè omopolare 51G - tempo	t = 0 s	t = 0 s
Rifasamento fisso trasformatore	15 [kvar]	2.5 [kvar]

I moduli fotovoltaici verranno montati su strutture di sostegno ad inseguimento automatico su un asse (tracker monoassiali) e verranno ancorate al terreno mediante profili metallici infissi nel terreno naturale esistente sino ad una determinata profondità, in funzione della tipologia di terreni e dell'azione del vento.

Le strutture di sostegno saranno distanziate, in direzione est-ovest, con un interasse le une dalle altre di circa 5 m, in modo da evitare fenomeni di ombreggiamento reciproco che si manifestano nelle primissime ore e nelle ultime ore della giornata. Ogni tracker, posizionato secondo la direzione Nord-Sud, ruota intorno al proprio asse indipendentemente dagli altri, guidati dal proprio sistema di guida. La figura seguente, unitamente alle dimensioni principali del tracker, mostra le posizioni estreme: la posizione assunta all'alba, al mezzogiorno solare e al tramonto e gli intervalli di rotazione. L'intervallo di rotazione esteso del Tracker è 110 ° (-55 °; + 55 °) e consente rendimenti energetici più elevati rispetto all'indice di riferimento del settore (-45 °; + 45 °). I pannelli fotovoltaici utilizzati, della potenza di 575 W, hanno dimensioni in pianta di 2285 x 1134 mm.

La scelta effettuata sulla scorta delle linee guida sull'agrivoltaico, relativamente all'altezza dei moduli da terra, è stata quella di optare per l'altezza minima da terra di 1.30 m.

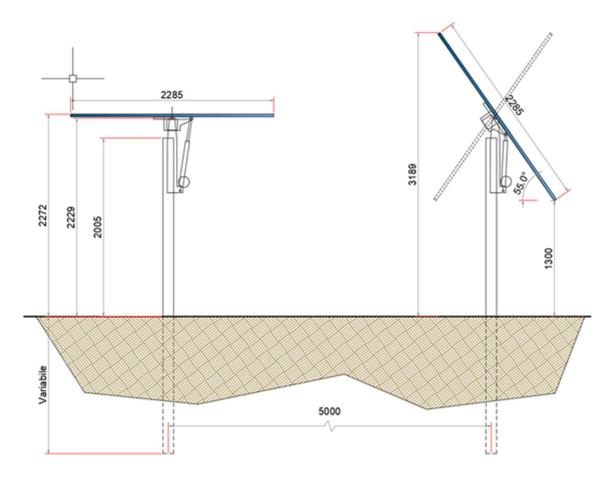


Figura 3.1-1 - Tracker - Inseguitore mono-assiale - intervalli di rotazione

Tutti i cavi di cui si farà utilizzo, sia per il collegamento interno dei sottocampi, sia per la connessione alla nuova SE Terna, saranno cavi multipolari con conduttori in alluminio riuniti in elica visibile. Per l'attraversamento dei fiumi è prevista la posa interrata mediante Trivellazione Orizzontale Controllata (T.O.C.).

Le corografie generali e di dettaglio sono contenute in Figura 3.1-2 ÷ Figura 3.1-3.

Per maggiori approfondimenti tecnici si rimanda alla documentazione progettuale.

Figura 3.1-2 – Corografia Impianto

Figura 3.1-3 – Dettaglio Impianto

3.2. Descrizione delle caratteristiche costruttive dei locali (coperture, murature, serramenti, vetrate ecc.) con particolare riferimento alle caratteristiche acustiche dei materiali utilizzati (punto "b" DGR 62/9 del 14.11.2008)

Le cabine elettriche saranno del tipo prefabbricato in c.a.v., realizzate in conformità alle vigenti normative e adatte per il contenimento delle apparecchiature MT/BT.

Le cabine sono realizzate con calcestruzzo vibrato tipo C28/35 con cemento ad alta resistenza adeguatamente armato e opportunamente additivato con super fluidificante e con impermeabilizzante, idonei a garantire adeguata protezione contro le infiltrazioni di acqua per capillarità. L'armatura metallica interna a tutti i pannelli sarà costituita da doppia rete elettrosaldata e ferro nervato, entrambi B450C. Il pannello di copertura è calcolato e dimensionato secondo le prescrizioni delle NTC DM 17 01 2018, ma comunque per supportare sovraccarichi accidentali minimi di 480 kg/m2. Tutti i materiali utilizzati sono certificati CE.

Il tetto della cabina sarà a falde con copertura in coppi.

Il raffreddamento dei locali sarà effettuato con sistemi di aereazione naturale.

I manufatti garantiranno un potere fonoisolante complessivo dell'involucro pari ad almeno 20 dB.

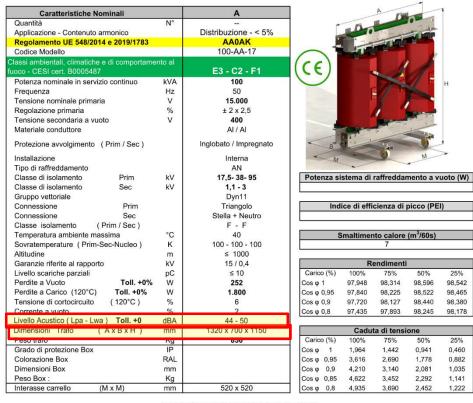
3.3. Descrizione delle sorgenti rumorose connesse all'opera o attività, con indicazione dei dati di targa relativi alla potenza acustica e loro ubicazione (punto "c" DGR 62/9 del 14.11.2008)

Le sorgenti sonore associate all'esercizio dell'impianto sono costituite da:

- Inverter;
- Trasformatori da 100, 2000 kVA (alloggiati all'interno di cabine).

Nelle **Figura 3.3-1**÷ **Figura 3.3-2** si riportano le emissioni acustiche fornite dalle schede tecniche di tipologie dei suddetti componenti reperibili sul mercato e con caratteristiche conformi alle esigenze del progetto.

In questa fase progettuale non è possibile definire con certezza il modello dei macchinari che verranno impiegati, in ogni caso le emissioni riportate nel seguito e utilizzate per caratterizzare le sorgenti acustiche inserite nel modello previsionale (**cfr. Paragrafo 3.8**) sono da considerarsi rappresentative delle emissioni tipiche degli impianti di cui si prevede l'installazione.


MBUS	BUS Supported Supported Supported		rted	Supported		
		Ge	neral Data			
Topology	Transformerless	Tran	sformerless	Transform	nerless	Transformerless
Dimensions (W x H x D)	1035mm*700mm* 365mm		mm*700mm* 365mm	1035mm*700mm* 365mm		1035mm*700mm* 365mm
Weight	84(±1)kg	8	34(±1)kg	84(±1)kg	84(±1)kg
Operating temperature	-25°C to +60°C	-25°	C to +60°C	-25°C to	+60°C	-25°C to +60°C
Cooling	Smart air cooling	Sma	rt air cooling	Smart air	cooling	Smart air cooling
Humidity	0%-100% RH	0%	-100% RH	0%-100	% RH	0%-100% RH
Operating altitude	4000m		4000m	4000	m	4000m
Input terminal			Staubli M	IC4 EVO2		
Output terminal			OT Co	nnector		
Enclosure Protection (IP)	IP 66		IP 66	IP 66		IP 66
Protective class	Class I		Class I	Class	s I	Class I
Internal consumption at Night	3,3W		3,3W	3,3V	V	3,3W
Noise	≤ 65 dB(A)	≤	65 dB(A)	≤ 65 di	B(A)	≤ 65 dB(A)
Firmware version	V300R001	V	300R001	V300R	001	V300R001
Technical specifications			H0 SUN2000-200KTL-H		H2 SUN2000-215KTL-H	
			Input			
Max. input voltage	Max. input voltage 1500V		150	0V		1500V
Max. input current (per MPPT circuit)			A		30A	
Max. short-circuit current (per MPPT circuit)	50A	50A		50A		50A

Noise = livello di pressione sonora a 1 metro di distanza dalla macchina operante alla potenza nominale con strumento di misura verso il lato frontale secondo standard IEC/EN62477

Figura 3.3-1 - Emissioni acustiche inverter

TRASFORMATORE TRIFASE IN RESINA

TRASFORMATORE TRIFASE IN RESINA

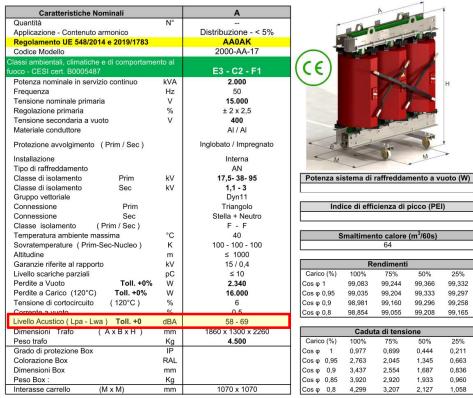


Figura 3.3-2 - Emissioni acustiche trasformatori

3.4. Indicazione degli orari di attività e di quelli di funzionamento degli impianti principali e sussidiari (punto "d" DGR 62/9 del 14.11.2008)

L'attività dell'impianto è strettamente connessa alla presenza di radiazione solare e, di conseguenza, il suo orario dipenderà dal periodo dell'anno e dalle condizioni meteorologiche.

Il funzionamento delle potenziali sorgenti di impatto acustico, inverter e sistemi di condizionamento dei locali di trasformazione, sarà legato all'effettiva attività dei pannelli e, pertanto, si può escludere qualunque emissione sonora in periodo notturno.

3.5. Indicazione della classe acustica cui appartiene l'area di studio (punto "e" DGR 62/9 del 14.11.2008)

L'impianto oggetto di approfondimento ricade nel territorio del Comune di Guspini. Anche il cavidotto che collega l'impianto alla Sottostazione Elettrica di Terna attraversa esclusivamente il comune di Guspini.

Il Comune di Guspini dispone di un Piano di Classificazione Acustica del proprio territorio approvato con Deliberazione del Consiglio Comunale n. 8 del 08.04.2010 di cui si riporta uno stralcio relativamente alle porzioni di territorio interessate dal progetto in **Figura 3.5-1.**

Come si può osservare il Parco Agrivoltaico ed i ricettori ad esso maggiormente prossimi ricadono in un'area di Classe II, mentre il tracciato del cavidotto interrato che lo collega alla SE si sviluppano in aree di Classe II. III. IV e V.

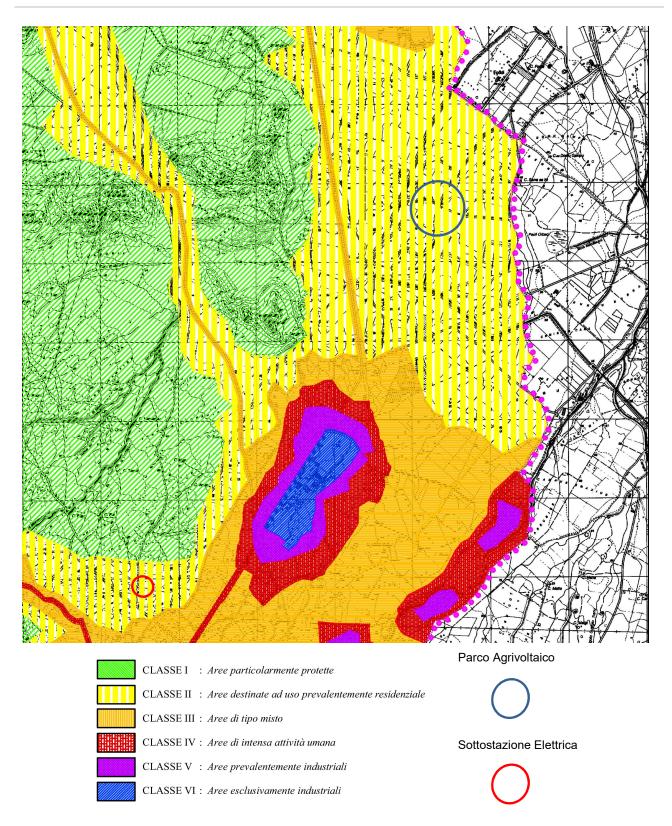


Figura 3.5-1 – Stralcio Classificazione Acustica - Guspini

3.6. Identificazione e descrizione dei ricettori presenti nell'area di studio, con indicazione delle loro caratteristiche utili sotto il profilo acustico (punto "f" DGR 62/9 del 14.11.2008)

L'area di impianto ricade in comune di Guspini (SS) in località "Margianitta". Il sito che accoglierà l'impianto agrivoltaico si compone di unico grande appezzamento di terreno con un'estensione complessiva pari a circa di 38.23 ettari. Ciononostante, per quanto l'area risulti idonea alla realizzazione dell'impianto, la superficie utile è limitata dalla presenza di un Elemento idrico Strahler ordine 2 che impone una fascia di rispetto di 25 m per lato.

Dal punto di vista geomorfologico l'area di progetto presenta una morfologia sub-orizzontale dominata prevalentemente da ruscellamenti superficiali e dalle acque che da monte scorrono verso la pianura del Campidano. Le acque dei torrenti montani raggiungono spesso delle considerevoli velocita dato il brusco passaggio dalle pendenze montane a quelle di pianura.

L'impianto è raggiungibile tramite la SS126 e viabilità locali.

Attualmente l'area è occupata da terreni impiegati come seminativi (cfr. Figura 3.6-1).

Dal punto di vista strettamente antropico nella fascia di 250 m dal confine dell'impianto sono presenti alcuni ricettori isolati a carattere rurale/residenziale.

In un'ottica di estrema cautela tutti gli edifici sono stati consideranti potenzialmente oggetto di presenza umana in periodo diurno (periodo in cui le potenziali sorgenti di rumore saranno attive) e pertanto meritevoli della verifica del rispetto dei limiti normativi in ambiente esterno ed abitativo. Operativamente le verifiche sono state effettuate in corrispondenza dei ricettori maggiormente prossimi al confine dell'impianto (cfr. **Paragrafo 3.11**), gli esiti delle valutazioni sono pertanto rappresentativi degli impatti su tutto il sistema ricettore.

In **Figura 3.6-2** ÷ **Figura 3.6-3** si riporta la veduta su ortofoto dell'ambito territoriale interessato dall'impianto e l'ubicazione dei ricettori di controllo. Sono anche indicate le fasce di 250, 500 e 1000 m che consentono di delimitare l'**area di studio** intesa come la porzione di territorio entro la quale incidono gli effetti della componente rumore prodotti durante la realizzazione e l'esercizio dell'opera o attività in progetto e oltre la quale possono essere considerati trascurabili. Nello specifico, in ragione dei livelli di potenza medi delle sorgenti presenti, la fascia dei 250 m indentifica l'area di studio relativamente alla fase di esercizio, la fascia di 500 m quella relativa alla fase di cantiere. A completamente dell'analisi su scala vasta è stata indicata anche la fascia di 1000 m.

In **Figura 3.1-2** è evidenziato, su ortofoto, il percorso del cavidotto che, come si può osservare, attraversa prevalentemente aree rurali scarsamente antropizzate, lambendo il confine nord della Zona Industriale di Guspini. Si segnala la presenza di ricettori rurali/residenziali a distanze inferiori a 50 m dal tracciato.

Figura 3.6-1 – Documentazione fotografica dell'area in cui sorgerà impianto agrivoltaico

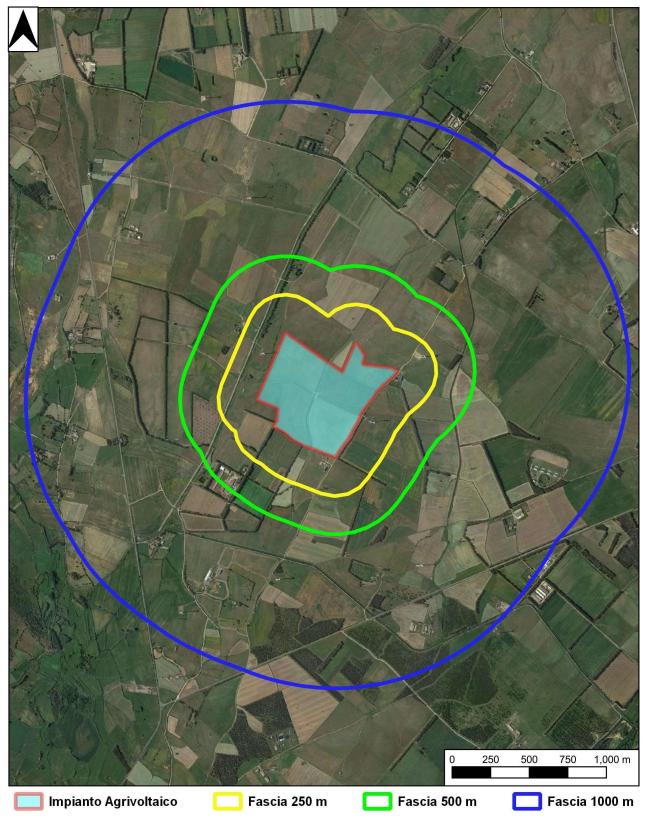


Figura 3.6-2 - Localizzazione impianto - Area vasta

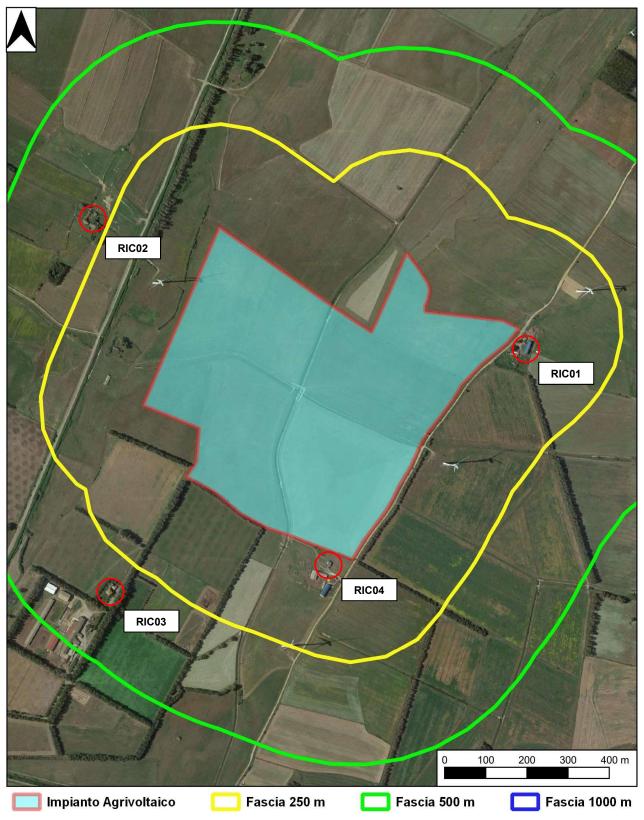


Figura 3.6-3 - Localizzazione impianto - dettaglio

3.7. Individuazione delle principali sorgenti sonore già presenti nell'area di studio e indicazione dei livelli di rumore preesistenti in prossimità dei ricettori (punto "g" DGR 62/9 del 14.11.2008)

La caratterizzazione acustica di un ambiente o di una sorgente richiede la definizione di una serie di indicatori fisici (Leq, Ln, Lmax...) per mezzo dei quali "etichettare" il fenomeno osservato.

Tale caratterizzazione, ottenuta con strumentazione conforme alle prescrizioni contenute nelle direttive comunitarie/leggi nazionali o fornite in sede di regolamentazione tecnica delle misure del rumore, deve riguardare le condizioni di esercizio o di funzionamento in cui può normalmente operare la sorgente o il mix di sorgenti di emissione presenti nell'area.

La valutazione dei livelli di rumore che attualmente caratterizzano l'area in oggetto è stata effettuata attraverso una specifica campagna di rilevamenti fonometrici in corrispondenza di un punto con metodica spot. Coerentemente agli orari di attività dell'impianto, i rilievi sono stati effettuati in periodo diurno.

Al fine di garantire l'attendibilità dei risultati sono state rispettate alcune prescrizioni generali relativamente alla calibrazione e alle condizioni meteorologiche.

Calibrazione

All'inizio e alla fine di ogni serie di misurazioni il fonometro è stato calibrato con uno strumento di Classe 1. Le misure fonometriche sono state considerate valide se le due calibrazioni differivano al massimo di 0.5 dB.

Condizioni meteorologiche

Le misure non sono state eseguite nelle seguenti condizioni meteorologiche:

- in caso di precipitazioni (pioggia, neve)
- con velocità del vento superiore a 5 m/s
- in periodi di gelo
- con il suolo coperto da uno strato di neve.

In ogni caso i rilevamenti sono stati effettuati utilizzando la "cuffia" antivento, a protezione del microfono.

I rilievi sono stati svolti con strumentazione conforme alle prescrizioni normative vigenti e alle indicazioni della normativa tecnica di settore. Nel seguito si riporta l'elenco dei principali riferimenti normativi a cui ci si è attenuti nella definizione della catena di misura.

EN 60651-1994	Class 1 Sound Level Meters (CEI 29-1)
EN 60804-1994	Class 1 Integrating-averaging sound level meters (CEI29-10)
EN 61094/1-1994	Measurements microphones Part 1: Specifications for laboratory standard microphones
EN 61094/2-1993	Measurements microphones Part 2: Primary method for pressure calibration of laboratory standard microphones by the reciprocity technique
EN 61094/3-1994	Measurements microphones Part 3: Primary method for free-field calibration of laboratory standard microphones by the reciprocity technique
EN 61094/4-1995	Measurements microphones Part 4: Specifications for working standard microphones
EN 61260-1995	Octave Band and fractional O.B. filters (CEI 29-4)
IEC 942-1988	Electroacoustics - Sound calibrators (CEI 29-14)
ISO 226-1987	Acoustics - Normal equal - loudness level contours
UNI 9884-1991	Caratterizzazione acustica del territorio mediante la descrizione del rumore ambientale

DPCM 1/3/1991 Limiti massimi di esposizione al rumore negli ambienti abitativi e nell'ambiente esterno

Legge 447-1996 Legge quadro sull'inquinamento acustico

DPCM 14/11/1997 Determinazione dei valori limite delle sorgenti sonore

DM 16/03/1998 Tecniche di rilevamento e di misurazione dell'inquinamento acustico.

Tutti i rilievi sono stati effettuati con strumentazione in Classe 1, la catena di misura impiegata è riportata in **Tabella 3.7-1**.

Postazione	Catena di misura		
	LD831		
P01	Fonometro Integratore Real Time Larson Davis mod. 831		
	Preamplificatore PRM 831 - Microfono Larson Davis 377B02		

Tabella 3.7-1 - Strumentazione impiegata

Nello specifico sono stati effettuati due rilievi da 30' in periodo diurno. In **Figura 3.7-1** e in **Figura 3.7-2** si riportano l'ubicazione e la documentazione fotografica della postazione di monitoraggio.

I risultati dei rilievi sono contenuti nelle schede tecniche riportate in **Allegato 2** e sintetizzati in **Tabella 3.7-2**.

Postazione	Data	Orario	Durata	LAeq L90		Limite immissione PZA	Limite DPR n. 142 del 30/03/2004
			[min]	[dB(A)]	[dB(A)]	[dB(A)]	[dB(A)]
P01	17/10/22	10:23	30'	49.0	32.8	55	-
PUI	17/10/22	16:14	30'	39.0	29.2	55	-

Tabella 3.7-2 - Sintesi dei rilievi fonometrici effettuati

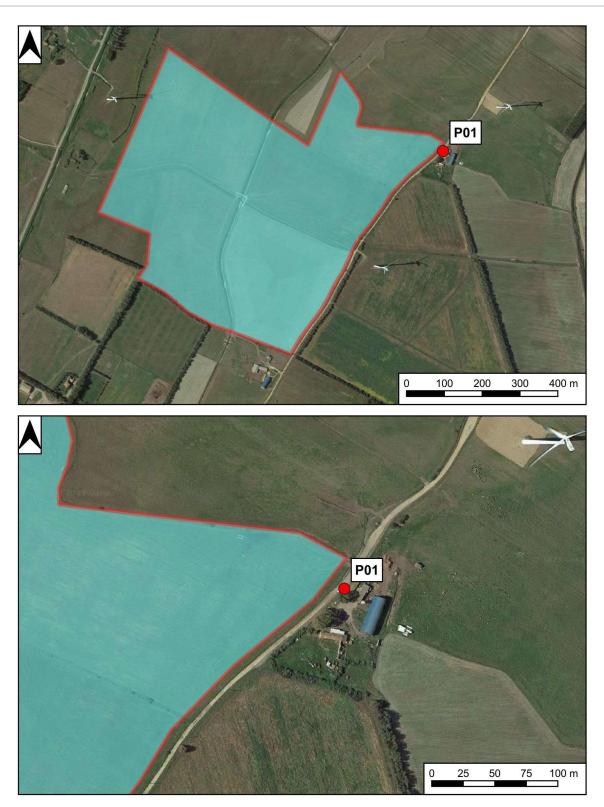


Figura 3.7-1 - Localizzazione postazione di monitoraggio

Figura 3.7-2 - Documentazione fotografica postazione di monitoraggio

I livelli di rumore documentati dai rilievi fonometrici sono compresi tra 39.0 e 49.0 dBA e pertanto compatibili sia con i limiti normativi di Classe II, limite immissione diurna pari a 55 dBA, in cui il ricettore oggetto di monitoraggio è inserito in base alla Classificazione Acustica di Guspini (cfr. **Paragrafo 3.5**).

L'area a connotazione rurale risulta caratterizzata da una buona qualità acustica. Le sorgenti di rumore antropico che influiscono sul clima acustico dell'area sono costituite dal traffico circolante sulle limitrofe strade rurali, dalle attività di lavorazione dei campi e dal rumore emesso dagli aerogeneratori presenti nelle vicinanze. La componente biotica è ascrivibile soprattutto al cinguettio dell'avifauna ed al belare delle pecore.

3.8. Calcolo previsionale dei livelli sonori generati dall'opera o attività nei confronti dei ricettori e dell'ambiente esterno circostante indicando i parametri e i modelli di calcolo utilizzati (punto "h" DGR 62/9 del 14.11.2008)

L'analisi degli impatti acustici dell'opera considera le seguenti potenziali sorgenti:

- Impianto agrivoltaico;
- Cavidotto interrato.

Per ciò che riguarda il **cavidotto interrato** non sono previsti impatti acustici associati al suo esercizio.

Per l'Impianto Agrivoltaico la verifica del rispetto delle prescrizioni normative in materia di impatto acustico è sviluppata attraverso una dettagliata analisi critica dei risultati di valutazioni modellistiche numeriche che hanno consentito di stimare il contributo al clima acustico dell'area direttamente riconducibile al funzionamento dell'impianto oggetto di valutazione.

Le valutazioni modellistiche hanno considerato le sorgenti di emissione descritte nel **Paragrafo 3.3** e sono state sviluppate con il supporto del modello previsionale SoundPLAN 8.2.

Il modello consente di considerare le caratteristiche geometriche e morfologiche del territorio e dell'edificato esistente e previsto nell'area di studio, la tipologia delle superfici, le caratteristiche emissive delle sorgenti, la presenza di schermi naturali o artificiali alla propagazione del rumore. Nel caso specifico le valutazioni sono state effettuate utilizzando l'implementazione dello Standard CNOSSOS-EU:2021/2015.

CNOSSOS-EU è lo standard europeo che la Direttiva della Commissione Europea UE 2015/996/CE ha individuato come metodo comune obbligatorio per la redazione delle mappature

strategiche a partire dal 31 dicembre 2018, identificando un approccio comune per il calcolo del rumore stradale, ferroviario e industriale.

Il metodo CNOSSOS-EU è stato sviluppato tramite un lungo processo che ha visto coinvolti la Commissione Europea, l'agenzia europea per l'ambiente (EEA), l'agenzia europea per la sicurezza aerea (EASA), la sezione europea dell'organizzazione mondiale della sanità (WHO-Europe) e più di 150 esperti di rumore. Una prima fase di sviluppo ha portato alla definizione nel 2012 del quadro operativo definendo in particolare gli obiettivi e i requisiti del metodo, i modelli di emissione e propagazione delle sorgenti stradali, ferroviarie e industriali, la metodologia e il database per la stima del rumore aeroportuale e infine la metodologia per l'assegnazione dei livelli alla popolazione.

Una seconda fase ha visto l'implementazione della metodica tra gli stati membri, realizzando in particolare la creazione di una serie di dati di input per le sorgenti stradali, ferroviarie e industriali, un software open-source per testare la metodica punto-punto e verificare le differenti capacità di tre metodi di propagazione possibili (ISO 9613, NMPB 2008, HARMO-NOISE). Nella seconda fase sono state infine realizzate le linee guida per la definizione dell'emissione e la validazione del modello di propagazione sonora. La valutazione dei tre metodi di propagazione sonora si è resa necessaria in considerazione dei diversi approcci nella modellizzazione degli ostacoli e degli effetti meteorologici. In particolare, si è tenuto conto di diversi aspetti quali la precisione e l'accuratezza richiesta come fattori principali, secondariamente della velocità computazionale ma anche della flessibilità e della semplicità del metodo nonché del numero di parametri da gestire.

Tale fase si è conclusa con la scelta del metodo NMPB 2008 in quanto le prestazioni superiori del metodo HARMONOISE non risultano essere significative a livello delle valutazioni necessarie nell'ambito delle mappature strategiche dal momento che richiedono tempi di calcolo molto più ampi. Questa fase ha inoltre prodotto dei documenti per stabilire relazioni di equivalenza tra i modelli ad interim precedentemente in vigore e il nuovo metodo CNOSSOS-EU ad esclusione della sorgente aeroportuale per il quale è stato di fatto confermata la stessa metodologia già vigente.

I calcoli relativi alla mappatura di impatto acustico sono stati realizzati con le seguenti impostazioni:

- Maglia di calcolo: quadrata a passo 5x5 m.
- Riflessioni: vengono considerate riflessioni del 3° ordine sulle superfici riflettenti.
- Coefficienti assorbimento degli edifici: si considera in forma generalizzata un valore di
 perdita per riflessione intermedia pari a 1 al fine di considerare la presenza di facciate
 generalmente lisce, che utilizzano anche materiali parzialmente fonoassorbenti (intonaco
 grossolano, rivestimenti in lastre di cemento, ecc.) e di balconi.
- Coefficiente di assorbimento copertura terreno: sono stati assegnati considerando in SoundPLAN un coefficiente G (Ground Absorption Coefficient) pari a zero in presenza di superfici dure (pavimentazioni pedonali e stradali, banchine ferroviarie, ecc), coefficiente pari a 1 in presenza di superfici soffici o molto fonoassorbenti (area parco, ballast scalo ferroviario, ecc.), coefficiente intermedio pari a 0,5 alle aree in cui sono generalmente compresenti superfici caratterizzate da impedenza variabile (aree private/pubbliche intercluse tra i fronti edificati).

La scala di colore adottata nella mappatura è a campi omogenei delimitati da isolivello a passo 5 dB(A).

Per una corretta interpretazione dei livelli documentati dalle valutazioni modellistiche si ritiene opportuno sottolineare che tutte le sorgenti sono state considerate cautelativamente costantemente funzionanti.

I livelli documentati possono pertanto essere ragionevolmente considerati dei livelli di impatto massimi assoluti.

Gli esiti delle valutazioni sono rappresentati al continuo mediante mappe cromatiche delle curve isofoniche dei livelli equivalenti in periodo diurno, unico periodo in cui gli impianti sono attivi (Leq 6-22) (cfr. **Allegato 1**). Inoltre per i ricettori di controllo individuati ed evidenziati nella **Figura 3.6-3** sono riportati nelle **Tabella 3.8-1** e **Tabella 3.8-2** i risultati puntuali delle valutazioni.

Come valore di fondo ("residuo") è stato considerato cautelativamente il valore di L90 più basso tra quelli rilevati in occasione della campagna di monitoraggio di caratterizzazione effettuata e documentata nel **Paragrafo 3.7** pari a 29.2 dBA.

Per la stima dei livelli in ambiente abitativo a finestre aperte e chiuse, necessaria per la verifica di applicabilità del limite, si è ipotizzato un potere di fonoisolante della facciata pari a 21 dB a finestre chiuse e una riduzione dei livelli a finestre aperte (fattore di forma) pari a 5 dBA¹.

Ric.	Classe Zon.	Impatto [dBA]	Residuo [dBA]	Ambientale [dBA]	Limite emissione [dBA]	Limite immissione [dBA]	Esubero emissione [dBA]	Esubero immissione [dBA]
			6-22		6-22	6-22	6-22	6-22
RIC01	П	37.5	29.2	38.1	50.0	55.0	-	-
RIC02	II	20.1	29.2	29.7	50.0	55.0	-	-
RIC03	II	14.9	29.2	29.4	50.0	55.0	-	-
RIC04	П	37.2	29.2	37.8	50.0	55.0	-	-

Tabella 3.8-1 - Livelli di impatto in facciata e confronto con i limiti di Emissione ed Immissione

		Livelli equiv	Ambientale	Ambientale		
Ricettore	Impatto	Residuo	Ambientale	Differenziale	interno f.a.	interno f.c.
		6-22		6-22	6-22	6-22
RIC01	37.5	29.2	38.1	N.A.	33.1	17.1
RIC02	20.1	29.2	29.7	N.A.	24.7	8.7
RIC03	14.9	29.2	29.4	N.A.	24.4	8.4
RIC04	37.2	29.2	37.8	N.A.	32.8	16.8
	Limite d	5				
	S	oglia di applical	bilità		50	35

Tabella 3.8-2 – Livelli in ambiente abitativo e verifica limiti differenziali

Gli esiti delle valutazioni documentano il pieno rispetto dei limiti di legge:

- Il contributo delle **emissioni** acustiche presso i ricettori di controllo è compreso tra 14.1 e 37.5 dBA. Per tutti i punti i livelli sono inferiori ai limiti di emissione diurni.
- I **limiti di immissione**, stimando il livello ambientale considerando gli attuali livelli di rumore documentati dai rilievi fonometrici e le emissioni calcolate, risultano rispettati.

¹ Cfr. Planning Policy Guidance 24: Planning and Noise, UK Department for Communities and Local Government; NANR116:"Open/closed window research – sound insulation through ventilated domestic windows, The Building Performance centre, Napier University, 2007; "Night noise guidelines for Europe", capp. 1 e 5, WHO Regional Office for Europe, 2009.

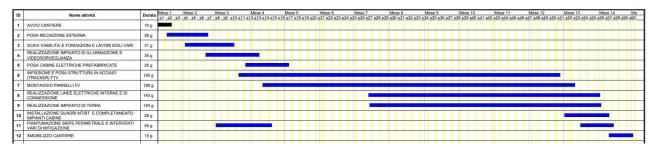
.

- Il **limite differenziale**, calcolato considerando cautelativamente come livello residuo il parametro statistico L90 più basso tra quelli documentati dai rilievi fonometrici, risulta non applicabile presso tutti i ricettori come evidenziato in **Tabella 3.8-2**. In ogni caso, anche utilizzando il valore di L90 più alto, il criterio differenziale risulterebbe non applicabile.
- 3.9. Calcolo previsionale dell'incremento dei livelli sonori in caso di aumento del traffico veicolare indotto da quanto in progetto nei confronti dei ricettori e dell'ambiente circostante (punto "i" DGR 62/9 del 14.11.2008)

L'esercizio dell'impianto non determinerà traffico indotto e, pertanto, i livelli di rumore ad esso associati possono essere considerati nulli.

3.10. Descrizione degli eventuali interventi da adottarsi per ridurre i livelli di emissioni sonore al fine di ricondurli al rispetto dei limiti associati alla classe acustica assegnata o ipotizzata per ciascun ricettore (punto "I" DGR 62/9 del 14.11.2008)

Gli esiti delle valutazioni hanno documentato livelli di impatto pienamente conformi ai limiti di legge con buoni margini di sicurezza. Non risulta pertanto necessario alcun specifico intervento di mitigazione.


Al fine di garantire la massima tutela rispetto al sistema ricettore potenzialmente impattato, quando l'impianto sarà a pieno regime, potrà essere concordata con gli Enti di controllo competenti una campagna di rilievi fonometrici di verifica.

3.11. Analisi dell'impatto acustico generato nella fase di realizzazione, o nei siti di cantiere (punto "m" DGR 62/9 del 14.11.2008)

Nel presente paragrafo è analizzato il potenziale impatto acustico determinato dalla cantierizzazione necessaria per la realizzazione dell'opera oggetto di approfondimento.

In **Figura 3.11-1** si riporta il cronoprogramma dei lavori che dureranno complessivamente circa 15 mesi.

ID	Nome attività	Durata
1	AVVIO CANTIERE	10 g
2	POSA RECINZIONE ESTERNA	26 g
3	SCAVI VIABILITA' E FONDAZIONI E LAVORI EDILI VARI	31 g
4	REALIZZAZIONE IMPIANTO DI ILLUMINAZIONE E VIDEOSORVEGLIANZA	35 g
5	POSA CABINE ELETTRICHE PREFABBRICATE	26 g
6	INFISSIONE E POSA STRUTTURA IN ACCIAIO (TRACKER) FTV	195 g
7	MONTAGGIO PANNELLI FV	188 g
8	REALIZZAZIONE LINEE ELETTRICHE INTERNE E DI CONNESSIONE	140 g
9	REALIZZAZIONE IMPIANTO DI TERRA	140 g
10	INSTALLAZIONE QUADRI MT/BT E COMPLETAMENTO IMPIANTI CABINE	28 g
11	PIANTUMAZIONE SIEPE PERIMETRALE E INTERVENTI VARI DI MITIGAZIONE	55 g
12	SMOBILIZZO CANTIERE	15 g

Figura 3.11-1 – Cronoprogramma lavori

3.11.1. Impianto agrivoltaico

L'installazione dell'impianto determinerà inevitabilmente degli impatti sulla componente rumore connessi all'impiego di macchinari intrinsecamente rumorosi.

La rumorosità è strettamente connessa alle tipologie di macchinari che verranno impiegati e alle scelte operative delle imprese che realizzeranno l'opera; pertanto, una valutazione di dettaglio degli impatti potrà essere effettuate solo in presenza di un progetto esecutivo della cantieristica. In ogni caso alcune indicazioni di massima possono essere ottenute dall'analisi della letteratura tecnica di settore ed in particolare della pubblicazione "Conoscere per prevenire N° 11: La valutazione dell'inquinamento acustico prodotto dai cantieri" redatta dal Comitato Paritetico Territoriale per la prevenzione infortuni, l'igiene e l'ambiente di lavoro di Torino e Provincia. La pubblicazione raccoglie i risultati di una serie di rilievi fonometrici effettuati in corrispondenza dei principali macchinari utilizzati nei cantieri edili al fine di determinarne i livelli di potenza sonora. Vengono, inoltre, fornite delle "schede lavorazioni" che per le principali tipologie di lavorazioni edili forniscono l'elenco dei macchinari impiegati e una stima delle percentuali di utilizzo.

Oltre le lavorazioni riportate nella suddetta pubblicazione è stata anche considerata la fase di posa dei supporti dei pannelli mediante macchinario battipalo le cui emissioni sono state desunte dalle schede tecniche di macchinari presenti in commercio.

Nella **Tabella 3.11-1** si riportano i livelli di potenza acustica delle attività che presumibilmente saranno effettuate per la realizzazione dell'opera, valutati sulla base delle informazioni fornite dei progettisti e dalle indicazioni dalla suddetta pubblicazione. Per una migliore comprensione della tabella si specifica che per "% di impiego" si intende il rapporto percentuale tra le ore di effettivo lavoro dalla macchina nell'ambito della giornata rispetto all'intero turno di lavoro, mentre per "% attività effettiva" si intendono i tempi di effettiva produzione del rumore sottratti i tempi delle pause

durante l'utilizzo della macchina. Come si può osservare i livelli di potenza sonora risultano al massimo pari a 110 dBA per l'attività di scavo e sbancamento.

Noti i livelli di potenza complessiva delle varie lavorazioni è stato possibile, applicando le relazioni matematiche che descrivono la propagazione delle onde sonore in campo aperto ed in presenza di terreni fonoassorbenti tipici delle aree rurali, stimare i livelli di pressione sonora che il cantiere, in funzione delle diverse attività, determinerà nell'intorno delle aree di lavorazione. Gli esiti delle valutazioni sono riportati in **Figura 3.11-2**.

Analizzando il contesto insediativo, in base a quanto indicato dalla Classificazione Acustica del Comune di Sassari, si osserva la presenza di ricettori rurali/residenziali ricadenti in un'area di Classe III (limite di emissione 55 dBA) nelle immediate vicinanze del confine dell'impianto (d< 50m).

In base ai decadimenti riportati in **Figura 3.11-2** si osserva che, in corrispondenza delle lavorazioni maggiormente rumorose, i livelli di impatto presso i suddetti ricettori potrebbero non essere conformi ai limiti normativi. Per lo scavo di sbancamento il limite di classe II (55 dBA) viene infatti rispettato oltre i 250 m dalle lavorazioni.

Si ritiene pertanto opportuno che l'impresa che realizzerà i lavori richieda deroga ai limiti presso il comune di Guspini, ai sensi della Parte V del documento tecnico denominato "Direttive regionali in materia di inquinamento acustico" inserito nella Deliberazione N. 62/9 del 14.11.2008 della Regione Sardegna.

Fase	Macchinario	Lw [dBA]	% impiego	% attività effettiva	Lw _{eff} [dBA]
	Escavatore gommato	107.5	100%	85%	
Scavo di sbancamento	Pala meccanica gommata	107.4	60%	85%	110.4
	Autocarro	106.1	100%	85%	
Scavi di fondazione	Escavatore mini	97.4	100%	85%	96.7
	Escavatore gommato	107.5	10%	85%	
5 ();	Autocarro	106.1	20%	85%	400.4
Posa manufatti	Autogrù	110.0	60%	85%	108.1
	Motosaldatrice	103.7	10%	85%	
Posa manufatti - battipalo	Battipalo	105.9	100%	85%	105.2
Getti	Autobetoniera	100.2	70%	85%	97.9

Tabella 3.11-1 – Livelli di rumorosità associati alle attività per la posa dei pannelli solari

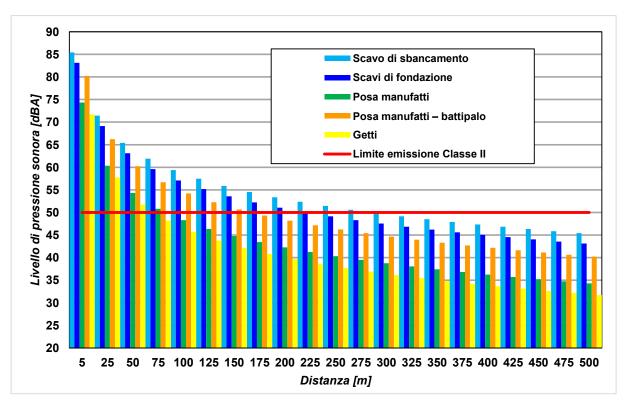


Figura 3.11-2 – Livelli di impatto determinati dal cantiere per la realizzazione dell'impianto

3.11.2. Elettrodotto interrato

Anche il fronte di avanzamento lavori per la realizzazione del cavidotto interrato potrà determinare impatti sulla componente rumore. Tali attività sono comunque molto limitate nel tempo.

Per la realizzazione dell'elettrodotto interrato le principali attività che potranno produrre alterazione del clima acustico possono essere riassunte nelle seguenti fasi:

- 1. Demolizione manto stradale e scavo cavidotto con escavatore;
- 2. Posa cavo e riempimento scavo mediante mezzi meccanici;
- 3. Posa e rullaggio del manto di usura.

L'attività di posa dei cavi è acusticamente irrilevante.

La tipologia di lavorazione in oggetto, in considerazione della mobilità della stessa, risulta disturbante quando svolta in corrispondenza di uno o più ricettori residenziali. Considerando uno sviluppo lineare del cantiere tipo di 30 m è possibile stimare le tempistiche di lavorazione indicate in **Tabella 3.11-2.** In sostanza in una giornata lavorativa è possibile ipotizzare la realizzazione di un tratto di 30 m di elettrodotto interrato dall'inizio alla fine del processo.

	Fase di Lavoro	Durata [ore]
1	Demolizione manto stradale e scavo cavidotto con escavatore	3.5
2	Riempimento scavo mediante mezzi meccanici	1.5
3	Posa e rullaggio del manto di usura	2

Tabella 3.11-2 – Durata stimata delle principali fasi lavorative per uno scavo di 30 m in centro abitato [Fonte e-distribuzione]

Impianto agrivoltaico "Margianitta" Comune di Guspini (SU) La rumorosità delle suddette attività è strettamente connessa alle tipologie di macchinari che verranno impiegati e alle scelte operative delle imprese che realizzeranno l'opera; pertanto, una valutazione di dettaglio degli impatti potrà essere effettuate solo in presenza di un progetto esecutivo della cantieristica. Anche in questo caso è possibile desumere alcune indicazioni preliminari dall'analisi della letteratura tecnica di settore ed in particolare della pubblicazione "Conoscere per prevenire N° 11: La valutazione dell'inquinamento acustico prodotto dai cantieri" redatta dal Comitato Paritetico Territoriale per la prevenzione infortuni, l'igiene e l'ambiente di lavoro di Torino e Provincia.

Nella **Tabella 3.11-3** si riportano i livelli di potenza acustica delle attività che presumibilmente saranno effettuate per la realizzazione dell'opera, valutati sulla base delle indicazioni fornite dalla suddetta pubblicazione.

	Fase di Lavoro	Lw [dB(A)]
1a	Demolizione manto stradale	113.2
1b	Scavo cavidotto con escavatore	110.4
2	Riempimento scavo mediante mezzi meccanici	101.1
3	Posa e rullaggio del manto di usura	104.1

Tabella 3.11-3 – Livelli di rumorosità associati alle attività per la realizzazione dell'elettrodotto interrato

Noti i livelli di potenza complessiva delle varie lavorazioni è stato possibile, applicando le relazioni matematiche che descrivono la propagazione delle onde sonore in campo aperto ed in presenza di terreni fonoriflettenti tipici delle viabilità asfaltate, stimare i livelli di pressione sonora che il cantiere, in funzione delle diverse attività, determinerà nell'intorno delle aree di lavorazione. Gli esiti delle valutazioni sono riportati in **Figura 3.11-3**.

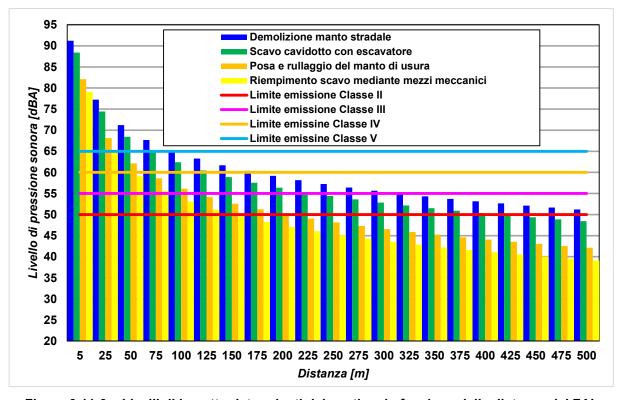


Figura 3.11-3 – Livelli di impatto determinati dal cantiere in funzione della distanza dal FAL

Come documentato nel **Paragrafo 3.5** il tracciato dell'elettrodotto ricade in aree classificate in Classe II, III, IV e V con limiti di emissioni diurni pari a 50, 55, 60 e 65 dBA. Analizzando i decadimenti riportati in **Figura 3.11-3** si può osservare che l'area di potenziale non conformità dei limiti normativi, variabile in funzione dell'azzonamento previsto dalla classificazione acustica, è pari a circa 500 m per la classe II, 300 per la classe III, 150 per la classe IV e 100 per la classe V. All'interno di tale ambito spaziale sono presenti alcuni ricettori rurali, non si possono pertanto escludere esuberi sul sistema ricettore locale, seppur per un tempo limitato (1/2 gg).

Si ritiene pertanto opportuno che l'impresa che realizzerà i lavori di posa dell'elettrodotto interrato verifichi la necessità di richiesta di deroga ai limiti presso il Comune di Guspini ai sensi della Parte V del documento tecnico denominato "Direttive regionali in materia di inquinamento acustico" inserito nella Deliberazione N. 62/9 del 14.11.2008 della Regione Sardegna.

3.11.3. Interventi di mitigazione

Anche in presenza di specifica deroga ai limiti acustici rilasciata dai comuni interessati dagli interventi dovrà essere cura delle imprese che opereranno porre in atto le seguenti prescrizioni ed attenzioni finalizzate alla riduzione del carico acustico immesso nell'ambiente.

Scelta delle macchine, delle attrezzature e miglioramenti prestazioni:

- selezione di macchine ed attrezzature omologate in conformità alle direttive della Comunità Europea e ai successivi recepimenti nazionali;
- impiego, se possibile, di macchine movimento terra ed operatrici gommate piuttosto che cingolate;
- installazione, se già non previsti e in particolare sulle macchine di una certa potenza, di silenziatori sugli scarichi.

Manutenzione dei mezzi e delle attrezzature:

- eliminazione degli attriti attraverso operazioni di lubrificazione;
- sostituzione dei pezzi usurati e che lasciano giochi;
- controllo e serraggio delle giunzioni;
- bilanciatura delle parti rotanti delle apparecchiature per evitare vibrazioni eccessive;
- verifica della tenuta dei pannelli di chiusura dei motori;
- svolgimento di manutenzione alle sedi stradali interne alle aree di cantiere e sulle piste esterne, mantenendo la superficie stradale livellata per evitare la formazione di buche.

Modalità operazionali e predisposizione del cantiere:

- imposizione di direttive agli operatori tali da evitare comportamenti inutilmente rumorosi (evitare di far cadere da altezze eccessive i materiali o di trascinarli quando possono essere sollevati...);
- divieto di uso scorretto degli avvisatori acustici, sostituendoli quando possibile con avvisatori luminosi.

Transito dei mezzi pesanti

- riduzione delle velocità di transito in presenza di residenze nelle immediate vicinanze dei percorsi;
- evitare il transito dei mezzi nelle prime ore della mattina e nel periodo serale;
- attenta pianificazione dei trasporti al fine di limitarne il numero per giorno.
- 3.12. Indicazione del provvedimento regionale con cui il tecnico competente in acustica ambientale, che ha predisposto la documentazione di impatto acustico, è stato riconosciuto "competente in acustica ambientale" ai sensi della legge n. 447/1995, art. 2, commi 6 e 7 (punto "n" DGR 62/9 del 14.11.2008)

La relazione e le relative valutazioni sono state effettuate dai seguenti Tecnici Acustici regolarmente inseriti nell' Elenco Nazionale dei Tecnici Competenti in Acustica, istituito ai sensi dell'art. 21 del d.lgs. 42/2017 (cfr. https://agentifisici.isprambiente.it/enteca/home.php):

- Dott. Ing. Fabio Massimo Calderaro, n° 4473;
- Dott. Ing. Vincenzo Buttafuoco, n° 4468.

4. CONCLUSIONI

Le analisi svolte in merito al potenziale impatto sulla componente rumore determinato dalla realizzazione ed esercizio di un Impianto Agrivoltaico denominato "Margianitta" sito nel Comune di Guspini (SS), hanno documentato la **piena compatibilità dell'intervento**.

Le valutazioni relative alla **fase di esercizio** (cfr. **Paragrafo 3.8**), sviluppate con l'ausilio di modelli previsionali di dettaglio, hanno evidenziato livelli di impatto pienamente conformi ai limiti normativi con adeguati margini di sicurezza.

Relativamente alla **fase di cantiere** (cfr. **Paragrafo 3.11**), sono stati evidenziati potenziali impatti completamente reversibili che potranno essere efficacemente ridotti attraverso specifiche attenzioni operative. Per tale fase si ritiene in ogni caso opportuno prevedere la richiesta di deroga ai limiti di emissione acustica ai sensi della Parte V del documento tecnico denominato "Direttive regionali in materia di inquinamento acustico" inserito nella Deliberazione N. 62/9 del 14.11.2008 della Regione Sardegna ai Comuni interessati dalle opere oggetto di approfondimento.

ALLEGATO 1

ESITI DELLE VALUTAZIONI MODELLISTICHE

ALLEGATO 2

SCHEDE TECNICHE DI MONITORAGGIO

Nome misura		Data e ora di inizio	Operatore
P01 - Guspini Margianitta		17/10/2022	Ing. Calderaro - per.naut.Sannino
Tipologia misura	Filtri - Costante di tempo - Delta Time		Strumentazione
RUMORE 20÷2000		00 Hz - Fast - 1 s	Larson-Davis 831
Ricettore			Calibrazione
Latitudine: 39.602152° - Longitudine: 8.683376°			Larson Davis CAL200

Postazione di misura / Note

Microfono ubicato in corrispondenza della recinzione di confine di un ricettore a destinazione d'uso agricola con possibilità di soggiorno, potenzialmente più impattati dalle emissioni sonore dell'impianto, ad un'altezza di circa 4 m dal piano di campagna.

CARATTERISTICHE DEL RICETTORE

Descrizione

Edifici a destinazione d'uso rurale con possibilità di soggiorno, struttutati su 1/2 piani fuori terra. Il ricettore è localizzato in un'area periferica ed isolata rispetto all'abitato di Guspini (SU).

Zonizzazione acustica e limiti di immissione diurni e notturni

ZONIZZAZIONE ACUSTICA COMUNALE: Il Comune di Guspini dispone di un Piano di Classificazione Acustica del proprio territorio approvato con Deliberazione del Consiglio Comunale n. 8 del 08.04.2010

CLASSE ACUSTICA: II - Aree prevalentemente residenziali - Immissione 55/45 dB(A)

Classificazione ex. DPR n. 142 del 30/03/2004: -

CARATTERISTICHE DELLE SORGENTI DI RUMORE

Descrizione

L'area a connotazione rurale risulta caratterizzata da una buona qualità acustica. Le sorgenti di rumore antropico che influiscono sul clima acustico dell'area sono costituite dal traffico circolante sulle limitrofe strade rurali, dalle attività di lavorazione dei campi e dal rumore emesso dagli aerogeneratori presenti nelle vicinanze.

La componente biotica è ascrivibile soprattutto al cinquettio dell'avifauna ed al belare delle pecore.

METEO

Condizioni cielo:

sereno

Temperature:

24.8 ÷ 26.7 °C

Umidità:

58 ÷ 71 %

Vento:

 $0.3 \div 1.4 \text{ m/s}$

SINTESI DEI LIVELLI RILEVATI:

	Data	Ora	L _{Aeq} [dBA]	Limite Zonizzazione [dBA]	Limite DPR n. 142 del 30/3/2004 [dBA]
Day-1	17/10/2022	10:23:16	49.0	55	-
Day-2	17/10/2022	16:14:27	39.0	55	-

Data

Operatore

17/10/2022

Ing. Calderaro - per.naut.Sannino

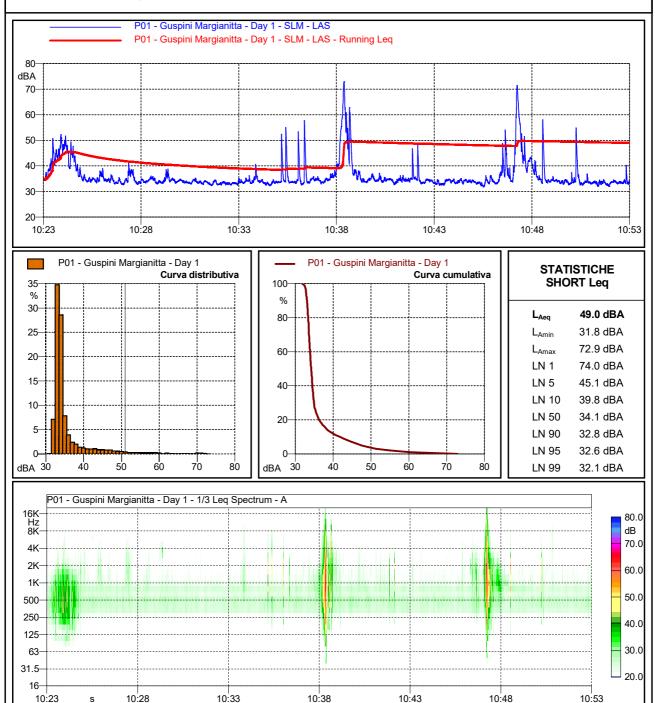
Firma e timbro Dott. Ing. Fabio Massimo Calderaro TECNICO COMPETENTE L. 447/95 D.D. Regione Piemonte n. 11 del 18/01/2007

Nome misura		Data e ora di inizio	Operatore
P01 - Guspini Margianitta		17/10/2022	Ing. Calderaro - per.naut.Sannino
Tipologia misura	ura Filtri - Costante di tempo - Delta Time		Strumentazione
RUMORE 20÷2000		0 Hz - Fast - 1 s	Larson-Davis 831
Ricettore			Calibrazione
Latitudine: 39.602152° - Longitudine: 8.683376°			Larson Davis CAL200

Postazione di misura / Note

Microfono ubicato in corrispondenza della recinzione di confine di un ricettore a destinazione d'uso agricola con possibilità di soggiorno, potenzialmente più impattati dalle emissioni sonore dell'impianto, ad un'altezza di circa 4 m dal piano di campagna.

Foto Postazione Foto Postazione

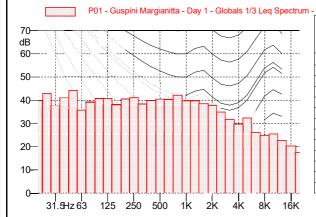

Stralcio planimetrico

Nome misura		Data e ora di inizio	Operatore	
P01 - Guspini Margianitta - Day 1		17/10/2022 - 10:23:16	Ing. Calderaro - per.naut.Sannino	
Tipologia misura Filtri - Costante di tempo - Delta Time		nte di tempo - Delta Time	Strumentazione	
RUMORE 20÷2000		00 Hz - Fast - 1 s	Larson-Davis 831	
Ricettore			Calibrazione	
Latitudine: 39.602152° - Longitudine: 8.683376°			Larson Davis CAL200	

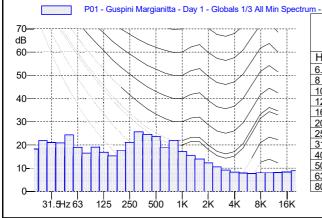
Postazione di misura / Note

Microfono ubicato in corrispondenza della recinzione di confine di un ricettore a destinazione d'uso agricola con possibilità di soggiorno, potenzialmente più impattati dalle emissioni sonore dell'impianto, ad un'altezza di circa 4 m dal piano di campagna.

Durante la misura si segnala il sorvolo di un elicottero.



Nome misura		Data e ora di inizio	Operatore
P01 - Guspini Margianitta - Day 1		17/10/2022 - 10:23:16	Ing. Calderaro - per.naut.Sannino
Tipologia misura Filtri - Costante di tempo - Delta Time		nte di tempo - Delta Time	Strumentazione
RUMORE 20÷2000		00 Hz - Fast - 1 s	Larson-Davis 831
Ricettore			Calibrazione
Latitudine: 39.602152° - Longitudine: 8.683376°			Larson Davis CAL200

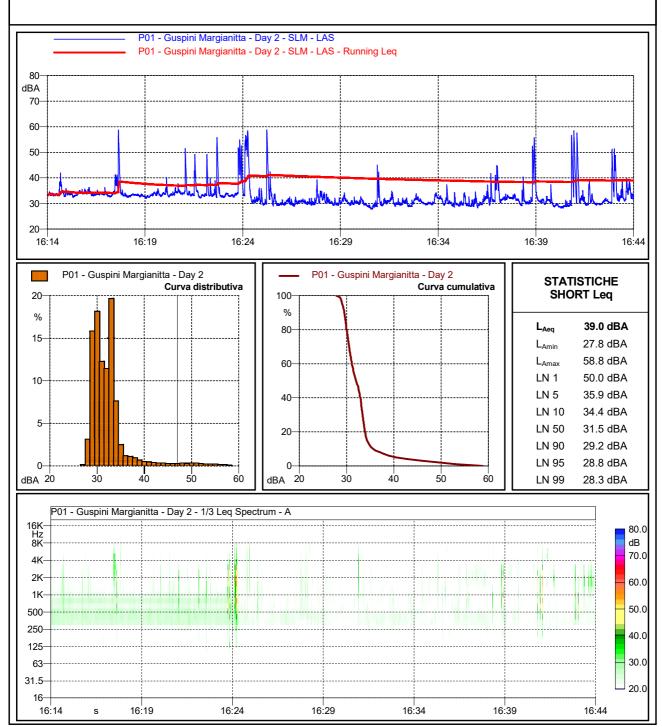

Postazione di misura / Note

Microfono ubicato in corrispondenza della recinzione di confine di un ricettore a destinazione d'uso agricola con possibilità di soggiorno, potenzialmente più impattati dalle emissioni sonore dell'impianto, ad un'altezza di circa 4 m dal piano di campagna.

Durante la misura si segnala il sorvolo di un elicottero.

P01 - Guspini Margianitta - Day 1 Globals 1/3 Leq Spectrum -					
			5 204 Opooli 0		
Hz	dB	Hz	dB	Hz	dB
6.3	48.8	100	40.6	1600	38.5
8	46.7	125	40.8	2000	37.7
10	44.6	160	38.1	2500	34.9
12.5	42.1	200	40.5	3150	31.6
16	39.9	250	41.1	4000	29.7
20	39.8	315	38.3	5000	32.3
25	42.9	400	39.9	6300	26.1
31.5	37.8	500	40.5	8000	24.8
40	40.9	630	40.2	10000	25.4
50	44.2	800	42.1	12500	22.6
63	35.6	1000	39.7	16000	20.2
80	39.1	1250	39.7	20000	17.5

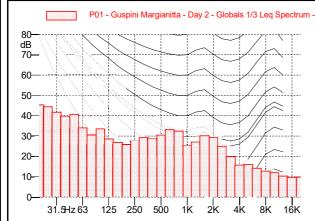
P01 - Guspini Margianitta - Day 1					
	Globa	ıls 1/3 /	All Min Spect	rum -	
11_	-10		-ID	· · · ·	-10
Hz	dB	Hz	dB	Hz	dB
6.3	12.1	100	19.1	1600	14.0
8	18.1	125	16.9	2000	12.3
10	19.8	160	15.2	2500	10.6
12.5	15.2	200	17.7	3150	9.2
16	21.0	250	21.1	4000	8.3
20	18.2	315	25.7	5000	7.8
25	21.9	400	24.6	6300	7.7
31.5	21.0	500	23.6	8000	8.0
40	20.9	630	19.0	10000	7.9
50	24.3	800	21.9	12500	8.1
63	19.0	1000	17.2	16000	8.3
80	16.4	1250	15.6	20000	8.9

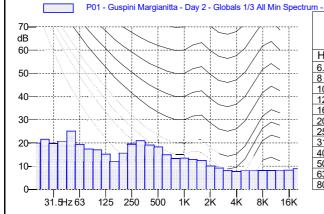

P01 - Guspini Margianitta - D	ay 1 - Globals 1/3 Max Spectrum
100— dB 90	
80-	
70-	
60	
50—	
40-	
30————————————————————————————————————	2K 4K 8K 16K
31.31263 125 250 500 IK	2N 4N ON 10N

P01 - Guspini Margianitta - Day 1 Globals 1/3 Max Spectrum -						
Hz	dB	Hz	dB	Hz	dB	
6.3	43.4	100	67.7	1600	64.9	
8	46.5	125	69.1	2000	61.8	
10	40.4	160	64.7	2500	60.4	
12.5	43.0	200	67.3	3150	57.7	
16	46.0	250	68.5	4000	52.6	
20	44.0	315	63.3	5000	50.4	
25	51.1	400	64.7	6300	49.7	
31.5	55.8	500	66.2	8000	47.3	
40	69.6	630	66.5	10000	45.7	
50	69.4	800	69.7	12500	42.1	
63	59.2	1000	67.8	16000	41.4	
80	66.5	1250	68.2	20000	40.6	

Nome misura		Data e ora di inizio	Operatore
P01 - Guspini Margianitta - Day 2		17/10/2022 - 16:14:27	Ing. Calderaro - per.naut.Sannino
Tipologia misura Filtri - Costante di tempo - Delta Time		nte di tempo - Delta Time	Strumentazione
RUMORE 20÷2000		00 Hz - Fast - 1 s	Larson-Davis 831
Ricettore			Calibrazione
Latitudine: 39.602152° - Longitudine: 8.683376°			Larson Davis CAL200

Postazione di misura / Note


Microfono ubicato in corrispondenza della recinzione di confine di un ricettore a destinazione d'uso agricola con possibilità di soggiorno, potenzialmente più impattati dalle emissioni sonore dell'impianto, ad un'altezza di circa 4 m dal piano di campagna.


Nome misura		Data e ora di inizio	Operatore
P01 - Guspini Margianitta - Day 2		17/10/2022 - 16:14:27	Ing. Calderaro - per.naut.Sannino
Tipologia misura Filtri - Costante di tempo - Delta Tir		nte di tempo - Delta Time	Strumentazione
RUMORE 20÷2000		00 Hz - Fast - 1 s	Larson-Davis 831
Ricettore			Calibrazione
Latitudine: 39.602152° - Lo	ngitudine	8.683376°	Larson Davis CAL200

Postazione di misura / Note

Microfono ubicato in corrispondenza della recinzione di confine di un ricettore a destinazione d'uso agricola con possibilità di soggiorno, potenzialmente più impattati dalle emissioni sonore dell'impianto, ad un'altezza di circa 4 m dal piano di campagna.

P01 - Guspini Margianitta - Day 2 Globals 1/3 Leq Spectrum -					
Hz	dB	Hz	dB	Hz	dB
6.3	54.9	100	33.5	1600	30.2
8	52.8	125	28.6	2000	29.3
10	50.6	160	26.9	2500	25.0
12.5	48.9	200	25.8	3150	19.9
16	47.1	250	27.6	4000	15.7
20	45.4	315	29.3	5000	16.0
25	44.4	400	28.8	6300	14.2
31.5	41.8	500	30.4	8000	12.8
40	39.7	630	33.1	10000	12.0
50	40.7	800	32.5	12500	10.4
63	34.0	1000	25.4	16000	9.8
80	30.4	1250	27.1	20000	9.8

P01 - Guspini Margianitta - Day 2 Globals 1/3 All Min Spectrum -					
	Globa	ils 1/3	All Min Specti	rum -	
Hz	dB	Hz	dB	Hz	dB
6.3	13.4	100	17.0	1600	12.5
8	11.6	125	15.2	2000	10.1
10	12.0	160	12.0	2500	9.2
12.5	13.1	200	15.6	3150	8.1
16	16.6	250	19.5	4000	7.7
20	19.9	315	21.0	5000	8.0
25	21.6	400	19.1	6300	8.0
31.5	19.7	500	18.3	8000	8.1
40	20.7	630	14.9	10000	8.1
50	25.2	800	13.3	12500	8.2
63	19.4	1000	13.5	16000	8.3
80	17.4	1250	12.9	20000	8.9
00		1200	12.0	20000	

	P01 - Guspini Margianii	tta - Day 2 - Globals 1/3 Max Spectrum
90— dB 80—		
70—		
60		
50		
30-		
31.5Hz 63	125 250 500	1K 2K 4K 8K 16K

Globals 1/3 Max Spectrum -					
Hz	dB	Hz	dB	Hz	dB
6.3	64.4	100	33.0	1600	58.4
8	58.7	125	34.4	2000	55.9
10	53.9	160	44.0	2500	45.1
12.5	52.4	200	49.8	3150	35.8
16	48.9	250	42.6	4000	27.8
20	49.5	315	37.7	5000	29.5
25	45.7	400	46.8	6300	29.6
31.5	39.7	500	45.9	8000	21.3
40	37.8	630	56.8	10000	17.4
50	42.4	800	58.5	12500	16.0
63	35.4	1000	50.4	16000	12.5
80	30.5	1250	49.2	20000	11.1

P01 - Guspini Margianitta - Day 2