	PROGETTISTA	SAIPEM	unità 000	COMMESSA 023113_225A
snam V/\V	LOCALITÀ	Regione Veneto	SPC. 00-BH-	E-94761
		. Mestre-Trieste: Rifacimento tratto Sile-Gonars ed Opere Connesse	Pag. 1 di 64	Rev. 0

METANODOTTO MESTRE-TRIESTE DN 400 (16") DP 75 bar ED OPERE CONNESSE

REGIONE VENETO

COMPONENTE AMBIENTALE ACQUE SUPERFICIALI FASE DI CANTIERE - MONITORAGGIO IN CORSO D'OPERA ANNO 2023

0 Emissione Rocchetti Schillaci Caffarelli Gen.'24
Rev. Descrizione Elaborato Verificato Approvato Data

PROGETTISTA	SAIPEM	unità 000	COMMESSA 023113_225A
LOCALITÀ	Regione Veneto	SPC. 00-BH-	E-94761
	Mestre-Trieste: Rifacimento tratto ile-Gonars ed Opere Connesse	Pag. 2 di 64	Rev. 0

INDICE

1	1 PREMESSA			
2	FAS	SE DI CAMPIONAMENTO	5	
	2.1	Localizzazione delle sezioni e tempi adottati	5	
3	INT	ERPRETAZIONE DEI RISULTATI	8	
	3.1	Analisi chimico-fisiche e microbiologiche della matrice acqua	8	
	3.2	Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (LI $M_{ ext{eco}}$)	8	
	3.3	Nota metodologica relativa ai risultati delle analisi chimiche	9	
	3.4	Modalità di confronto spaziale e temporale dei risultati conseguiti	9	
4	RIS (20	SULTATI DEL MONITORAGGIO IN CORSO D'OPERA 23)	11	
	4.1	Fiume Vallio (Stazioni VAS02M e VAS02V)	11	
	4.2	Fiume Meolo (Stazioni VAS03M e VAS03V)	12	
	4.3	Canale Grassaga (Stazioni VAS04M e VAS04V)	14	
	4.4	Canale Bidoggia (Stazioni VAS05M e VAS05V)	16	
	4.5	Canale Piavon (Stazioni VAS06M e VAS06V)	18	
	4.6	Fiume Lison (Stazioni VAS07M e VAS07V)	19	
	4.7	Fiume Reghena (Stazioni VAS08M e VAS08V)	21	
	4.8	Roggia Versiola (Stazioni VAS09M e VAS09V)	23	
	4.9	Fiume Lemene (Stazioni VAS10M e VAS10V)	25	
	4.10	Fosso Dosson (Stazioni VAS11M e VAS11V)	26	
5	SPI	ECIFICHE TECNICHE DEI METODI ADOTTATI	29	
	5.1	Matrice acqua: analisi fisiche, chimiche e microbiologiche	29	
	5.2	Livello di Inquinamento dai Macrodescrittori per lo stato ecologico (Indice LIM _{eco})	32	

PROGETTISTA	SAIPEM	UNITÀ 000	COMMESSA 023113_225A
LOCALITÀ	Regione Veneto	SPC. 00-BH-	E-94761
PROGETTO: Met. Mestre-Trieste: Rifacimento tratto Casale sul Sile-Gonars ed Opere Connesse		Pag. 3 di 64	Rev. 0

6	BIBLIOGRAFIA	33
ALLE	EGATO A: RISULTATI PRODOTTI	34
ALLE	EGATO B RAPPORTI DI PROVA	

	PROGETTISTA	SAIPEM	unità 000	COMMESSA 023113_225A
snam //\	LOCALITÀ	Regione Veneto	SPC. 00-BH-	E-94761
		. Mestre-Trieste: Rifacimento tratto sile-Gonars ed Opere Connesse	Pag. 4 di 64	Rev. 0

1 PREMESSA

Il presente documento riporta, confronta ed interpreta i risultati della caratterizzazione fisica, chimica e microbiologica delle acque superficiali eseguita per l'anno 2023 nella fase di cantiere o terzo anno di corso d'opera del Piano di Monitoraggio Ambientale (PMA) relativo al progetto denominato "Metanodotto Mestre-Trieste: Rifacimento tratto Casale sul Sile-Gonars ed Opere Connesse" (SPC. 00-BH-E-94700) nel tratto che attraversa la Regione Veneto.

Nella fase in corso d'opera (CO), l'attività di monitoraggio programmata nel PMA è stata eseguita durante la realizzazione delle opere al fine di analizzare l'evoluzione degli indicatori ambientali, rilevati nella fase anteoperam e rappresentativi di fenomeni soggetti a modifiche indotte dalla realizzazione delle opere in progetto.

Il PMA prevede, nella fase di cantiere (CO), per ciascun punto di monitoraggio durante il periodo in cui sarà presente il cantiere per l'attraversamento del corso d'acqua potrà essere prevista una campagna di misura da effettuare immediatamente dopo la posa o rimozione della condotta, limitatamente ai parametri chimici e fisico-chimici. Quindi, sinteticamente, l'attività di controllo dello stato delle acque superficiali è la seguente:

- Parametri da analizzare: Analisi Chimiche, Fisiche e Microbiologiche delle acque
- Frequenza: Singolo campionamento
- Localizzazione: a Monte ed a Valle delle attività di cantiere
- Indicazione temporale: Dopo la fase di posa della condotta

Più in particolare, in ottemperanza all'articolazione spaziale e temporale del Piano di Monitoraggio Ambientale (PMA) riguardante la Regione Veneto, le indagini sulle acque sono state eseguite nelle due sezioni, già analizzate nella fase anteoperam, localizzate a monte (M) ed a valle (V) rispetto al transetto nel quale è stata collocata, la condotta del metanodotto.

	PROGETTISTA	unità 000	COMMESSA 023113_225A	
snam V/\V	LOCALITÀ Regione Veneto	SPC. 00-BH-E-94761		
	PROGETTO: Met. Mestre-Trieste: Rifacimento tratto Casale sul Sile-Gonars ed Opere Connesse	Pag. 5 di 64	Rev. 0	

2 FASE DI CAMPIONAMENTO

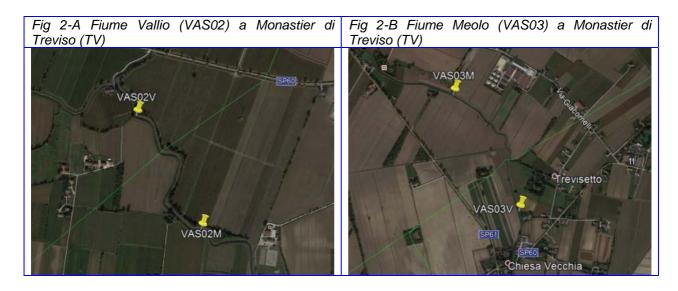
2.1 Localizzazione delle sezioni e tempi adottati

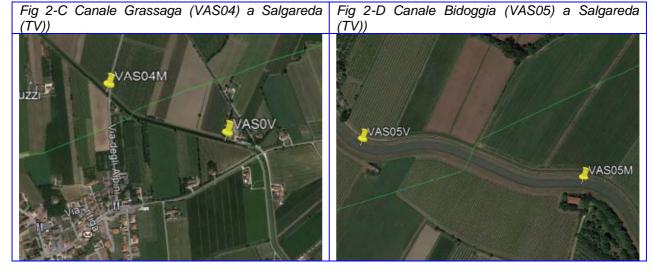
Nel corso del 2023, in ottemperanza al PMA prescritto dalla Regione Veneto, sono stati eseguiti i campionamenti delle acque superficiali che potrebbero subire interferenze e/o impatti dalle attività di cantiere finalizzate alla realizzazione del metanodotto Mestre-Trieste.

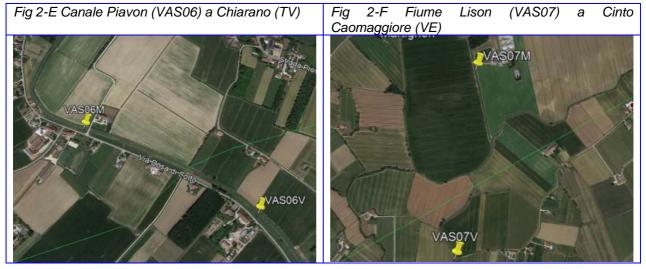
La successiva Tab 2.1-A riporta il codice univoco, la posizione rispetto al cantiere, la data di campionamento, l'ambito comunale e la geolocalizzazione delle specifiche sezioni monitorate, nei singoli corsi d'acqua, in fase d'opera.

Tab 2.1-A Localizzazione delle sezioni monitorate.

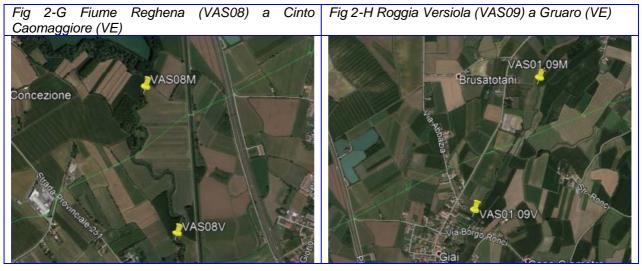
Cadiaa	Carra diagram	Dooiniono	Doto	Data Camuna	Coordinate Wo	Coordinate WGS84 UTM33T	
Codice	Corso d'acqua	Posizione	Data	Comune	Est	Nord	
VAS02M 3/23	Fiume Vallio	Monte	31/03/2023	31/03/2023 Monastier di Treviso (TV)		5058487,0	
VAS02V 3/23	Fiume Vallio	Valle	31/03/2023	Monastier di Treviso (TV)	296917,3	5058932,4	
VAS03M 3/23	Fiume Meolo	Monte	14/03/2023	Monastier di Treviso (TV)	298956,2	5059815,8	
VAS03V 3/23	Fiume Meolo	Valle	14/03/2023	Monastier di Treviso (TV)	298564,2	5060566,4	
VAS04M 7/23	Canale Grassaga	Monte	14/07/2023	Salgareda (TV)	308887,8	5064465,6	
VAS04V 7/23	Canale Grassaga	Valle	14/07/2023	Salgareda (TV)	308398,0	5064675,6	
VAS05M 7/23	Canale Bidoggia	Monte	14/07/2023	Salgareda (TV)	310204,1	5065031,8	
VAS05V 7/23	Canale Bidoggia	Valle	14/07/2023	Salgareda (TV)	309904,7	5065091,0	
VAS06M 11/23	Canale Piavon	Monte	13/11/2023	Chiarano (TV)	311415,5	5066056,8	
VAS06V 11/23	Canale Piavon	Valle	13/11/2023	Chiarano (TV)	312031,9	5065722,4	
VAS07M 7/23	Fiume Lison	Monte	07/07/2023	Cinto Caomaggiore (VE)	326094,1	5074494,6	
VAS07V 7/23	Fiume Lison	Valle	07/07/2023	Cinto Caomaggiore (VE)	325946,9	5073418,1	
VAS08M 7/23	F. Reghena	Monte	28/07/2023	Cinto Caomaggiore (VE)	329596,5	5075924,5	
VAS08V 7/23	F. Reghena	Valle	28/07/2023	Cinto Caomaggiore (VE)	329733,0	5075189,2	
VAS09M 7/23	Roggia Versiola	Monte	28/07/2023	Gruaro (VE)	331393,6	5076827,4	
VAS09V 7/23	Roggia Versiola	Valle	28/07/2023	Gruaro (VE)	330901,4	5075898,1	
VAS10M 9/23	Fiume Lemene	Monte	11/09/2023	Gruaro (VE)	333469,4	5077342,0	
VAS10V 9/23	Fiume Lemene	Valle	11/09/2023	Gruaro (VE)	333409,9	5077120,9	
VAS11M 3/23	Fosso Dosson	Monte	14/03/2023	Casier (TV)	287509,1	5057135,2	
VAS11V 3/23	Fosso Dosson	Valle	14/03/2023	Casier (TV)	288014,5	5057586,4	

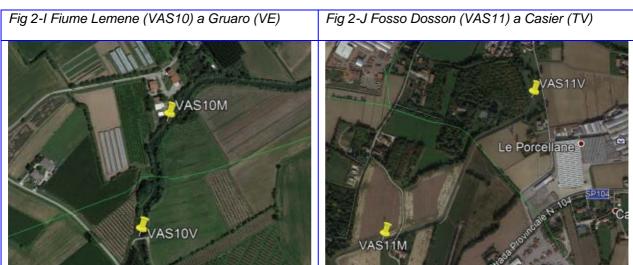

Il codice riporta:


- il numero della stazione, indicativo della posizione indicata nel PMA Regione Veneto;
- la localizzazione della sezione o tratto: M = monte o V = valle.


Al fine di facilitare i confronti fra i risultati delle indagini eseguite nella fase antecedente le attività di cantiere, nel corso d'opera e nel post operam, si riporta nel codice della stazione di monitoraggio anche la data di riferimento nella quale si sono eseguiti i campionamenti.

Le stazioni di monitoraggio analizzate nella fase di cantiere sono identiche a quelle campionate nei monitoraggi condotti nell'anteoperam e la loro localizzazione è riportata nelle successive mappe.


	PROGETTISTA	SAIPEM	UNITÀ 000	COMMESSA 023113_225A
	LOCALITÀ	Regione Veneto	SPC. 00-BH-	E-94761
-	PROGETTO: Met. Mestre-Trieste: Rifacimento tratto Casale sul Sile-Gonars ed Opere Connesse		Pag. 6 di 64	Rev. 0



PROGETTISTA	SAIPEM	unità 000	COMMESSA 023113_225A
LOCALITÀ	Regione Veneto	SPC. 00-BH-	E-94761
	Mestre-Trieste: Rifacimento tratto ile-Gonars ed Opere Connesse	Pag. 7 di 64	Rev. 0

	PROGETTISTA	SAIPEM	unità 000	COMMESSA 023113_225A
snam //\V	LOCALITÀ Regione Veneto		SPC. 00-BH-E-94761	
		. Mestre-Trieste: Rifacimento tratto Sile-Gonars ed Opere Connesse	Pag. 8 di 64	Rev. 0

3 INTERPRETAZIONE DEI RISULTATI

3.1 Analisi chimico-fisiche e microbiologiche della matrice acqua

I risultati delle indagini analitiche eseguite sui campioni di acqua superficiale, prelevati dagli ambienti monitorati, sono stati valutati facendo riferimento ai limiti riportati nella Tab 5.1-B e riguardano:

- I valori imperativi e guida indicanti l'idoneità delle acque per la sopravvivenza dei Salmonidi e Ciprinidi (Allegato 2, Sezione B, Tab. 1/B del D.Lgs. 152/06);
- I limiti di qualità delle acque destinate all'irrigazione e all'abbeveraggio del bestiame (Casalicchio e Matteucci, 2000).

I risultati ottenuti dalle analisi chimiche, fisiche e microbiologiche delle acque consentono di esprimere una circostanziata valutazione dello stato chimico delle acque in ragione dei valori di riferimento o standard di qualità (SQA) relativi a varie sostanze identificate come prioritarie (P), pericolose-prioritarie (PP), altre (E) e dei valori soglia fissati per il buono stato di qualità nel D.M. 260/2010 e D.Lgs. 172/2015. Più in particolare (Tab 5.1-C) si è fatto riferimento a due livelli di conoscenza per cui sono stati usati per il confronto:

- i limiti relativi alle acque superficiali riportati nella Tab. 1/A (Standard di qualità nella colonna d'acqua per le sostanze dell'elenco di priorità) e nella Tab. 1/B (Standard di qualità ambientale nella colonna d'acqua per alcune delle sostanze non appartenenti all'elenco di priorità) del D.M. 260/2010 con le modifiche apportate dal D.Lgs. 172/2015;
- i valori soglia, indicati nella Tabella 3 dello stesso D.M. 260/2010, per individuare il buono stato chimico delle acque sotterranee.
- L'aver utilizzato, oltre i limiti SQA, anche i valori soglia, indicati per le acque sotterranee, scaturisce da una loro possibile diretta attinenza con le acque superficiali, contemplata nel D.M. 260/2010 che espressamente indica: "I valori soglia di cui alla tabella 3 si basano sui seguenti elementi: l'entità delle interazioni tra acque sotterranee ed ecosistemi acquatici associati ed ecosistemi terrestri che dipendono da essi; l'interferenza con legittimi usi delle acque sotterranee, presenti o futuri; la tossicità umana, l'ecotossicità, la tendenza alla dispersione, la persistenza e il loro potenziale di bioaccumulo."

I limiti usati sono riportati nella Tab 5.1-C e nei casi in cui sono presenti due dissimili valori limite, si sono scelti quelli a minore concentrazione, quindi i più cautelativi.

3.2 Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (LIM_{eco})

Come ulteriore, importante, fase interpretativa dei risultati delle analisi chimiche delle acque è stato calcolato il Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (LIM_{eco}) mediante la procedura indicata nel D.M. 260/2010 per elaborare le concentrazioni di quattro macrodescrittori (percentuale di saturazione dell'Ossigeno disciolto, Azoto ammoniacale, Azoto nitrico e Fosforo totale).

La procedura di calcolo prevede di assegnare un punteggio sulla base della concentrazione misurata e le soglie di concentrazione per il calcolo del LIM_{eco} sono indicate nella sequente Tab 3.2-A.

Tab 3.2-A Soglie per l'assegnazione dei punteggi ai singoli macrodescrittori

Parametro	Livello 1	Livello 2	Livello 3	Livello 4	Livello 5
100-OD (%sat.)	≤ 10	≤ 20	≤ 40	≤ 80	> 80
NH ₄ (mg/l)	< 0,03	≤ 0,06	≤ 0,12	≤ 0,24	> 0,24
NO ₃ (mg/l)	< 0,6	≤ 1,2	≤ 2 ,4	≤ 4,8	> 4,8
Fosforo totale (P mg/l)	< 0,05	≤ 0,1	≤ 0,2	≤ 0,4	> 0,4
Punteggio da attribuire	1	0,5	0,25	0,125	0

Dalla media dei punteggi attribuiti ai singoli macrodescrittori si ottiene un unico valore che è usato per la classificazione di qualità in ragione dei valori limite sotto riportati nella Tab 3.2-B.

Tab 3.2-B Classificazione di qualità secondo i valori del LIMeco

> 0,66	1	ELEVATO
0,66-0,50	- II	BUONO
0,50-0,33	Ш	SUFFICIENTE
0,33-0,17	IV	SCARSO
< 0,17	V	CATTIVO

3.3 Nota metodologica relativa ai risultati delle analisi chimiche

Nei casi in cui le concentrazioni degli elementi e dei composti analizzati sono risultate inferiori al limite di rilevamento (LOQ) tutte le elaborazioni come l'indice LIM_{eco} ed i confronti spaziali (Monte vs Valle) e temporali (Corso d'opera vs Anteoperam) sono stati condotti considerando le concentrazioni pari al limite stesso.

3.4 Modalità di confronto spaziale e temporale dei risultati conseguiti

Al fine di valutare l'eventuale impatto delle attività di cantiere sul corso d'acqua si è operato uno specifico confronto spazio-temporale tra la condizione rilevata nella sezione di valle rispetto a quella di monte, sicuramente non coinvolta dai lavori di realizzazione e/o dismissione del metanodotto.

Il confronto è stato effettuato su tre diverse scale di giudizio. Ha riguardato:

- sia la condizione istantanea, quella relativa all'attività di cantiere monitorata, dovuta ad eventuali differenze fra Valle e Monte. Si fornirà la segnalazione di allerta (indicata con il colore rosa) nei casi in cui i risultati conseguiti nel tratto di valle siano negativamente dissimili rispetto a quelli di monte. Trattandosi per lo più di concentrazioni si considerano "peggiori" le condizioni nelle quali la differenza Valle-Monte è maggiore di zero (V-M > 0);
- sia la condizione rispetto ai dati pregressi acquisiti nel monitoraggio anteoperam. In questo caso l'eventuale differenza V-M sarà considerata rispetto al range di variazione riscontrato fra il valore massimo e quello minimo rilevati in entrambe le sezioni (monte e valle) nel monitoraggio anteoperam. Quindi, la precedente segnalazione (V-M > 0), qualora fosse nettamente dissimile in negativo rispetto alla variabilità massima rilevata nell'anteoperam, assume un significato di allarme più critico, perentorio e significativo (indicato con il colore giallo);

• inoltre, i risultati ottenuti con il monitoraggio in corso d'opera sono stati confrontati con i limiti di legge (D.Lgs. 152/06; D.M. 260/2010; D.Lgs. 172/2015) e gli eventuali superamenti sono stati segnalati come criticità alle quali rivolgere la massima attenzione (indicate con il colore rosso).

In sintesi, per distinguere le diverse situazioni comparate in questa relazione sulla condizione delle acque superficiali si è usata, nelle specifiche tabelle, una visualizzazione cromatica di aiuto e di facile, ampia comprensione:

- <u>assenza di colore</u> → assenza di effetto. Quando non si rilevano differenze spaziali o la condizione della sezione di monte (M) è peggiore di quella di valle (V) quindi: V-M ≤ 0;
- colore rosa → lieve effetto. Nei casi in cui la condizione istantanea rilevata in corso d'opera evidenzia concentrazioni più elevate a valle rispetto alla condizione di monte e quindi la differenza è maggiore di zero (V-M > 0);
- <u>colore giallo</u> → moderato effetto. Nei casi in cui la diversa condizione di valle, rispetto al monte, è significativamente rilevante rispetto alla variazione massima rilevata nell'anteoperam;
- <u>colore rosso</u> → alto effetto. Quando si rileva una reale criticità relativa al superamento dei limiti fissati per lo stato di qualità chimica (D.M. 260/2010; D.Lgs. 172/2015).

A questo quadro comparativo dei singoli elementi e composti chimici, analizzati nelle fasi anteoperam e corso d'opera, si aggiunge la condizione integrata di più parametri espressa dall'Indice LIM_{eco} (Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico) per cui si prenderanno in considerazione e si valuteranno, con la massima obiettività:

- sia gli eventuali e specifici declassamenti riscontrabili fra le acque campionate a monte ed a valle delle attività di cantiere;
- sia lo stato chimico della fase di cantiere rispetto alle condizioni riscontrate, nelle stesse sezioni, nel monitoraggio anteoperam.

snam // V	PROGETTISTA	SAIPEM	unità 000	COMMESSA 023113_225A
	LOCALITÀ	Regione Veneto	SPC. 00-BH-	E-94761
		Mestre-Trieste: Rifacimento tratto ile-Gonars ed Opere Connesse	Pag. 11 di 64	Rev. 0

4 RISULTATI DEL MONITORAGGIO IN CORSO D'OPERA (2023)

4.1 Fiume Vallio (Stazioni VAS02M e VAS02V)

La complessiva visione di tutti i risultati acquisiti in entrambe le fasi (anteoperam e corso d'opera) del PMA delle Acque superficiali del Fiume Vallio è riportata nel ALLEGATO A: RISULTATI PRODOTTI nelle seguenti tabelle:

- Confronto dei Risultati delle analisi fisiche, chimiche e microbiologiche delle acque campionate in fase di cantiere e nell'anteoperam (Tab. 1 e Tab. 2).
- Confronto corso d'opera verso anteoperam del Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (Indice LIM_{eco}) (Tab. 3).

Il 31/3/2023 si sono eseguiti i campionamenti delle acque in concomitanza con un deflusso istantaneo di 1,289 m³/s nella sezione di monte e di 1,362 m³/s nella sezione di valle.

Le caratteristiche fisiche, chimiche e microbiologiche delle acque analizzate nel corso delle attività di cantiere, nelle sezioni di monte e di valle del Fiume Vallio, rientrano tutte nei limiti stabiliti per la vita acquatica (D.Lgs. 152/06 e smi) con la sola eccezione:

 Ossigeno disciolto (per sottosaturazione) misurato nelle acque di entrambe le sezioni.

Le indagini analitiche eseguite sulle acque della Fiume Vallio nella fase del corso d'opera hanno, in entrambe le sezioni, prodotto risultati inferiori ai limiti ritenuti idonei per l'uso irriguo e zootecnico delle acque superficiali (Casalicchio e Matteucci, 2000). Dal confronto dei risultati delle analisi chimiche eseguite nella fase di cantiere con i valori limite degli standard di qualità (SQA-MA) indicati nelle Tab. 1/A e Tab. 1/B (D.M. 260/2010 e D.Lgs. 172/2015) e con i valori soglia proposti nella Tabella 3 del D.M. 260/2010 e D.Lgs. 172/2015 si rileva che nessun elemento, composto o sostanza supera questi limiti.

Con i criteri di confronto, esplicitati nel cap. 3.4, si sono valutate le differenze spaziali e temporali dei risultati ottenuti con il monitoraggio fisico, chimico e batteriologico delle acque superficiali campionate nella fase anteoperam e corso d'opera nel Fiume Vallio. L'elaborazione ed il confronto di tutti i risultati ha messo in evidenza i parametri a cui prestare la maggiore attenzione. Si tratta degli elementi e dei composti presenti nelle acque della sezione di valle con valori più "critici" rispetto a quelli analizzati a monte e rispetto al massimo range di variazione rilevato nel monitoraggio anteoperam (Tab 4.1-A).

Tab 4.1-A Parametri con condizioni di valle peggiori di quelle di monte (colore rosa) e/o peggiori rispetto al range di variazione anteoperam (colore giallo)

Firms Vallis (VASO)	Corso	d'opera	Ante operam		
Fiume Vallio (VAS0	VAS0	2 3/23	Min	Max	
Parametro	U.M.	М	V	IVIII	Max
Ossigeno disciolto saturazione	%	46,7	37,7	68,1	85,3
Alcalinità come CaCO₃	mg/L	225	228	230	270
COD	mg/L	3,99	9,2	4,8	7,9
Solidi sospesi totali	mg/L	26,5	30,5	14	32
Carbonio organico disciolto (DOC)	mg/L	0,85	0,94	1,1	1,3
Arsenico	μg/L	0,56	0,62	0,78	1,9
Mercurio	μg/L	0,029	0,030	<0,085	0,12
Escherichia coli	UFC/100 ml	1200	1300	4	2400

	PROGETTISTA	SAIPEM	unità 000	COMMESSA 023113_225A
	LOCALITÀ Re	egione Veneto	SPC. 00-BH-	E-94761
•		estre-Trieste: Rifacimento tratto Gonars ed Opere Connesse	Pag. 12 di 64	Rev. 0

La precedente tabella segnala con il colore giallo i parametri più critici, quelli che superano il range di variabilità riscontrato nei monitoraggi anteoperam:

- la bassa percentuale di saturazione dell'Ossigeno disciolto in entrambe le sezioni;
- la richiesta chimica di ossigeno per la decomposizione della sostanza organica (COD) nelle acque della sezione di valle.

Lo stesso COD (richiesta chimica di ossigeno per la decomposizione della sostanza organica) è il parametro per il quale I confronto (Tab 4.1-A) monte vs valle è più "pesante", cioè quello in cui si ha la massima differenza fra le due sezioni (+131%).

Con la procedura indicata nel D.M. 260/2010 per la valutazione del Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (LIM_{eco}) si è elaborata lo stato Chimico riportato e confrontato nella tabella a seguire.

Corso d'opera Ante operam Fiume Vallio VAS02 9/19 VAS02 6/19 VAS02 11/19 VAS02 1/20 VAS02 3/23 (VAS02) М М М ν М М 100-O₂%sat. 0,250 0,125 0,125 0,500 0.500 0,250 0,250 0,250 0,500 0.500 N-NH₄ (mg/l) 1,000 0,000 0.125 0.125 0,125 0,125 1.000 0,250 0.250 0.000 N-NO₃ (mg/l) 0,500 0,500 0,250 0,250 0,250 0,250 0,250 0,125 0,250 0,250 Fosforo (µg/I) 0,500 0,500 0,500 0,250 0,500 0,500 1,000 1.000 1,000 1,000 Media LIM 0.313 0.313 0.344 0.281 0.500 0.500 0.438 0.406 0.438 0.438 CLASSE Ш IV Ш STATO SCARSO SCARSO SUFF. SCARSO BUONO BUONO SUFF. SUFF.

Tab 4.1-B Valori dell'Indice LIMeco in fase di cantiere e nel monitoraggio anteoperam

L'Indice LIM_{eco}, calcolato con i risultati analitici rilevati in corso d'opera, evidenzia che nel Fiume Vallio scorrono acque che sono di:

• IV Classe (Scarso) in entrambe le sezioni di monte e di valle.

Il Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (LIM_{eco}) risulta sicuramente inferiore alla condizione media rilevata nel monitoraggio anteoperam e i macrodescrittori da considerare più critici sono le basse percentuali di saturazione dell'Ossigeno disciolto e le elevate concentrazioni di Azoto ammoniacale riscontrate sia a monte sia a valle.

Lo Stato Chimico, espresso dall'Indice LIM_{eco} in corso d'opera è da considerare una condizione negativa che interessa entrambe le sezioni per cui è coerente pensare che non sia stato causato dalle attività di cantiere.

4.2 Fiume Meolo (Stazioni VAS03M e VAS03V)

La complessiva visione di tutti i risultati acquisiti in entrambe le fasi (anteoperam e corso d'opera) del PMA delle Acque superficiali del Fiume Meolo è riportata nel ALLEGATO A: RISULTATI PRODOTTI nelle seguenti tabelle:

- Confronto dei Risultati delle analisi fisiche, chimiche e microbiologiche delle acque campionate in fase di cantiere e nell'anteoperam (Tab. 4 e Tab. 5).
- Confronto corso d'opera verso anteoperam del Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (Indice LIM_{eco}) (Tab. 6).

PROGETTISTA	SAIPEM	UNITÀ 000	COMMESSA 023113_225A
LOCALITÀ 	Regione Veneto	SPC. 00-BH-	E-94761
	lestre-Trieste: Rifacimento tratto e-Gonars ed Opere Connesse	Pag. 13 di 64	Rev.

Il 14/3/2023 si sono eseguiti i campionamenti delle acque in concomitanza con un deflusso istantaneo di $1,35~\text{m}^3/\text{s}$ nella sezione di monte e di $1,64~\text{m}^3/\text{s}$ nella sezione di valle.

Le caratteristiche fisiche, chimiche e microbiologiche delle acque analizzate nel corso delle attività di cantiere, nelle sezioni di monte e di valle del Fiume Meolo rientrano quasi tutte nei limiti stabiliti per la vita acquatica (D.Lgs. 152/06 e smi) con la sola eccezione delle concentrazioni del

Fosforo totale misurato nelle acque di entrambe le sezioni.

Le indagini analitiche eseguite sulle acque della Fiume Meolo nella fase del corso d'opera hanno, in entrambe le sezioni, prodotto risultati inferiori ai limiti ritenuti idonei per l'uso irriguo e zootecnico delle acque superficiali (Casalicchio e Matteucci, 2000). Dal confronto dei risultati delle analisi chimiche eseguite nella fase di cantiere con i valori limite degli standard di qualità (SQA-MA) indicati nelle Tab. 1/A e Tab. 1/B (D.M. 260/2010 e D.Lgs. 172/2015) e con i valori soglia proposti nella Tabella 3 del D.M. 260/2010 e D.Lgs. 172/2015 si rileva che nessun elemento, composto o sostanza supera questi limiti.

Con i criteri di confronto, esplicitati nel cap. 3.4, si sono valutate le differenze spaziali e temporali dei risultati ottenuti con il monitoraggio fisico, chimico e batteriologico delle acque superficiali campionate nella fase anteoperam e corso d'opera nella Fiume Meolo. L'elaborazione ed il confronto di tutti i risultati ha messo in evidenza i parametri a cui prestare la maggiore attenzione. Si tratta degli elementi e dei composti presenti nelle acque della sezione di valle con valori più "critici" rispetto a quelli analizzati a monte e rispetto al massimo range di variazione rilevato nel monitoraggio anteoperam (Tab 4.2-A).

Tab 4.2-A Parametri con condizioni di valle peggiori di quelle di monte (colore rosa) e/o peggiori rispetto al range di variazione anteoperam (colore giallo)

Fiume Meolo (VAS0	Corso d	'opera	Ante operam		
Fiume Medio (VASO	VAS03	3/23	Min	Max	
Parametro	U.M.	M	V	IVIII	IVIAX
Azoto ammoniacale come NH4	mg/L	0,74	0,70	<0,17	0,45
Nitrati	mg/L	6,19	6,46	8	8,6
Solfati	mg/L	47,6	48,1	41	46
Cloroformio	μg/L	<0,013	0,047	<0,013	<0,013
Tetracloroetilene	μg/L	0,096	0,121	<0.069	0,100
- Solventi clorurati totali	μg/L	0,167	0,168	<0,070	<0,070

La precedente tabella segnala con il colore giallo i parametri più critici, quelli che superano il range di variabilità riscontrato nei monitoraggi anteoperam. Si tratta di:

- Azoto ammoniacale nelle acque di entrambe le sezioni;
- Cloroformio nelle acque della sezione di valle;
- Tetracloroetilene nelle acque della sezione di valle;
- Solventi clorurati totali nelle acque di entrambe le sezioni.

Con la procedura indicata nel D.M. 260/2010 per la valutazione del Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (LIM_{eco}) si è elaborata lo stato Chimico riportato e confrontato nella tabella a seguire.

PROGETTISTA	SAIPEM	UNITÀ 000	COMMESSA 023113_225A
LOCALITÀ	Regione Veneto	SPC. 00-BH-	E-94761
	. Mestre-Trieste: Rifacimento tratto Sile-Gonars ed Opere Connesse	Pag. 14 di 64	Rev. 0

Tab 4.2-B Valori dell'Indice LIMeco in fase di cantiere e nel monitoraggio anteoperam

Fiume Meolo	Corso	d'opera	Ante operam							
	VAS03 3/23		VAS03 6/19		VAS03 9/19		VAS03 11/19		VAS03 1/20	
(VAS03)		V	M	٧	M	V	M	V	M	V
100-O₂%sat.	0,500	0,500	1,000	1,000	0,250	0,250	0,500	0,500	0,500	1,000
N-NH₄ (mg/l)	0,000	0,000	0,125	0,125	1,000	1,000	0,000	0,000	0,000	0,000
N-NO₃ (mg/l)	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250
Fosforo totale (µg/l)	0,250	0,250	0,250	0,250	0,250	0,500	0,500	0,500	1,000	1,000
Media LIM _{eco}	0,250	0,250	0,406	0,406	0,438	0,500	0,313	0,313	0,438	0,563
CLASSE	IV	IV	III	III	III	II .	IV	IV	III	ll ll
STATO	SCARSO	SCARSO	SUFF.	SUFF.	SUFF.	BUONO	SCARSO	SCARSO	SUFF.	BUONO

L'Indice LIM $_{\rm eco}$, calcolato con i risultati analitici rilevati in corso d'opera, evidenzia che nel Fiume Meolo scorrono acque che sono di:

• IV Classe (Scarso) in entrambe le sezioni di monte e di valle.

Il Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (LIM_{eco}) risulta sicuramente inferiore alla condizione media rilevata nel monitoraggio anteoperam in cui lo stato chimico scarso (IV classe) si era individuato, sempre in entrambe le sezioni, nel solo campionamento del novembre 2019.

Nel monitoraggio in corso d'opera i macrodescrittori da considerare più critici sono le elevate concentrazioni di Azoto ammoniacale riscontrate sia a monte sia a valle.

Il negativo Stato Chimico, espresso dall'Indice LIM_{eco}, rilevato in corso d'opera interessa entrambe le sezioni per cui è coerente pensare che non sia stato causato dalle attività di cantiere.

4.3 Canale Grassaga (Stazioni VAS04M e VAS04V)

La complessiva visione di tutti i risultati acquisiti in entrambe le fasi (anteoperam e corso d'opera) del PMA delle Acque superficiali del Canale Grassaga è riportata nel ALLEGATO A: RISULTATI PRODOTTI nelle seguenti tabelle:

- Confronto dei Risultati delle analisi fisiche, chimiche e microbiologiche delle acque campionate in fase di cantiere e nell'anteoperam (Tab. 7 e Tab. 8);
- Confronto corso d'opera verso anteoperam del Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (Indice LIM_{eco}) (Tab. 9).

Il 14/7/2023 si sono eseguiti i campionamenti delle acque in concomitanza con un deflusso istantaneo di $0,357~\text{m}^3/\text{s}$ nella sezione di monte e di $0,378~\text{m}^3/\text{s}$ nella sezione di valle.

Le caratteristiche fisiche, chimiche e microbiologiche delle acque analizzate nel corso delle attività di cantiere, nelle sezioni di monte e di valle del Canale Grassaga rientrano in parte nei limiti stabiliti per la vita acquatica (D.Lgs. 152/06 e smi). Fanno eccezione i sequenti parametri misurati nella sola sezione di monte:

- la concentrazioni di Fosforo totale;
- la concentrazioni di Azoto ammoniacale:
- la sovrasaturazione di Ossigeno disciolto.

PROGETTISTA	SAIPEM	unità 000	COMMESSA 023113_225A
LOCALITÀ	Regione Veneto	SPC. 00-BH-	E-94761
	. Mestre-Trieste: Rifacimento tratto ile-Gonars ed Opere Connesse	Pag. 15 di 64	Rev. 0

Le indagini analitiche eseguite sulle acque del Canale Grassaga nella fase del corso d'opera hanno, in entrambe le sezioni, prodotto risultati inferiori ai limiti ritenuti idonei per l'uso irriguo e zootecnico delle acque superficiali (Casalicchio e Matteucci, 2000).

Dal confronto dei risultati delle analisi chimiche eseguite nella fase di cantiere con i valori limite degli standard di qualità (SQA-MA) indicati nelle Tab. 1/A e Tab. 1/B (D.M. 260/2010 e D.Lgs. 172/2015) e con i valori soglia proposti nella Tabella 3 del D.M. 260/2010 e D.Lgs. 172/2015 si rileva che nessun elemento, composto o sostanza supera questi limiti.

Con i criteri di confronto, esplicitati nel cap. 3.4, si sono valutate le differenze spaziali e temporali dei risultati ottenuti con il monitoraggio fisico, chimico e batteriologico delle acque superficiali campionate nella fase anteoperam e corso d'opera nel Canale Grassaga.

L'elaborazione ed il confronto di tutti i risultati ha messo in evidenza i parametri a cui prestare la maggiore attenzione. Si tratta degli elementi e dei composti presenti nelle acque della sezione di valle con valori più "critici" rispetto a quelli analizzati a monte e rispetto al massimo range di variazione rilevato nel monitoraggio anteoperam (Tab 4.3-A).

Tab 4.3-A Parametri con condizioni di valle peggiori di quelle di monte (colore rosa) e/o peggiori rispetto al range di variazione anteoperam (colore giallo)

Canala Crassaga (VAS)	Corso	l'opera	Ante operam		
Canale Grassaga (VAS	VAS04	17/23	Min	Max	
Parametro	U.M.	M	V	IVIIII	IVIAX
Conducibilità a 25°C	μS/cm	390	422	530	620
Solidi sospesi totali	mg/L	10,0	20,5	34	49
Nitrati	mg/L	<0,19	5,60	6,9	19
Solfati	mg/L	28,3	32,6	42	46
Calcio	μg/L	51000	54000	70000	110000
Nichel	μg/L	0,73	1,10	0,00023	0,0021
Piombo	μg/L	0,187	1,30	0,93	1,1
Rame	μg/L	1,76	2,38	0,0016	0,015
Cloroformio	μg/L	<0,013	0,047	<0,013	<0,013
Tetracloroetilene	μg/L	0,096	0,121	<0.069	0,100
Toluene	μg/L	0,077	0,084	<0,070	<0,070

La precedente tabella segnala con il colore giallo i parametri più critici, quelli che superano il range di variabilità riscontrato nei monitoraggi anteoperam. Si tratta di:

- Piombo nelle acque della sezione di valle;
- Tetracloroetilene nelle acque della sezione di valle;
- Toluene nelle acque di entrambe le sezioni.

La concentrazione dell'Azoto nitrico è il parametro per il quale il confronto (Tab 4.3-A) monte vs valle è più "pesante", cioè quello in cui si ha la massima differenza fra le due sezioni.

Con la procedura indicata nel D.M. 260/2010 per la valutazione del Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (LIM_{eco}) si è elaborata lo stato Chimico riportato e confrontato nella tabella a seguire.

L'Indice LIM_{eco}, calcolato con i risultati analitici rilevati in corso d'opera, evidenzia che nel del Canale Grassaga scorrono acque che sono di:

• III Classe (Sufficiente) in entrambe le sezioni di monte e di valle.

PROGETTISTA	SAIPEM	UNITÀ 000	COMMESSA 023113_225A
LOCALITÀ	Regione Veneto	SPC. 00-BH-	E-94761
	Mestre-Trieste: Rifacimento tratto Bile-Gonars ed Opere Connesse	Pag. 16 di 64	Rev. 0

Tab 4.3-B Valori dell'Indice LIMeco in fase di cantiere e nel monitoraggio anteoperam

Canala Crassana	Corso	d'opera				Ante oper	ram			
Canale Grassaga	VAS0	4 7/23	VAS04 6/19		VAS04 9/19		VAS04 11/19		VAS04 1/20	
(VAS04)	М	V	М	٧	M	V	М	V	M	٧
100-O₂%sat.	0,500	0,250	0,250	0,250	1,000	1,000	0,500	0,500	1,000	1,000
N-NH ₄ (mg/l)	0,000	1,000	0,000	0,000	0,250	1,000	0,000	0,000	0,000	0,000
N-NO₃ (mg/l)	1,000	0,250	0,250	0,250	0,250	0,250	0,125	0,125	0,250	0,250
Fosforo totale (µg/l)	0,000	0,250	0,125	0,125	0,500	0,500	1,000	1,000	1,000	1,000
Media LIM _{eco}	0,375	0,438	0,156	0,156	0,500	0,688	0,406	0,406	0,563	0,563
CLASSE	III	III	V	V	ll l	1.0	III	III	ll l	ll l
STATO	SUFF.	SUFF.	CATTIVO	CATTIVO	BUONO	ELEVATO	SUFF.	SUFF.	BUONO	BUONO

Il Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (LIM_{eco}) risulta identico a quello rilevato nel monitoraggio anteoperam eseguito nel novembre 2019 e rispecchia la condizione molto variabile (dalla I alla V classe) descritta nella fase di anteoperam del PMA.

4.4 Canale Bidoggia (Stazioni VAS05M e VAS05V)

La complessiva visione di tutti i risultati acquisiti in entrambe le fasi (anteoperam e corso d'opera) del PMA delle Acque superficiali del Canale Bidoggia è riportata nel ALLEGATO A: RISULTATI PRODOTTI nelle seguenti tabelle:

- Confronto dei Risultati delle analisi fisiche, chimiche e microbiologiche delle acque campionate in fase di cantiere e nell'anteoperam (Tab. 10 e Tab. 11).
- Confronto corso d'opera verso anteoperam del Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (Indice LIM_{eco}) (Tab. 12).

Il 14/7/2023 si sono eseguiti i campionamenti delle acque in concomitanza con un deflusso istantaneo di 0,173 m³/s nella sezione di monte e di 1,125 m³/s nella sezione di valle.

Le caratteristiche fisiche, chimiche e microbiologiche delle acque analizzate nel corso delle attività di cantiere, nelle sezioni di monte e di valle del Canale Bidoggia rientrano tutte nei limiti stabiliti per la vita acquatica (D.Lgs. 152/06 e smi).

Le indagini analitiche eseguite sulle acque del Canale Bidoggia nella fase del corso d'opera hanno, in entrambe le sezioni, prodotto risultati inferiori ai limiti ritenuti idonei per l'uso irriguo e zootecnico delle acque superficiali (Casalicchio e Matteucci, 2000).

Dal confronto dei risultati delle analisi chimiche eseguite nella fase di cantiere con i valori limite degli standard di qualità (SQA-MA) indicati nelle Tab. 1/A e Tab. 1/B (D.M. 260/2010 e D.Lgs. 172/2015) e con i valori soglia proposti nella Tabella 3 del D.M. 260/2010 e D.Lgs. 172/2015 si rileva che nessun elemento, composto o sostanza supera questi limiti.

Con i criteri di confronto, esplicitati nel cap. 3.4, si sono valutate le differenze spaziali e temporali dei risultati ottenuti con il monitoraggio fisico, chimico e batteriologico delle acque superficiali campionate nella fase anteoperam e corso d'opera nel Canale Bidoggia.

L'elaborazione ed il confronto di tutti i risultati ha messo in evidenza i parametri a cui prestare la maggiore attenzione. Si tratta degli elementi e dei composti presenti nelle acque della sezione di valle con valori più "critici" rispetto a quelli analizzati a monte e

PROGETTISTA	SAIPEM	unità 000	COMMESSA 023113_225A
LOCALITÀ Re	gione Veneto	SPC. 00-BH-	E-94761
	stre-Trieste: Rifacimento tratto Sonars ed Opere Connesse	Pag. 17 di 64	Rev. 0

rispetto al massimo range di variazione rilevato nel monitoraggio anteoperam (Tab 4.4-A).

Tab 4.4-A Parametri con condizioni di valle peggiori di quelle di monte (colore rosa) e/o peggiori rispetto al range di variazione anteoperam (colore giallo)

Canala Pidaggia (VAS)	Corso	d'opera	Ante	operam	
Canale Bidoggia (VAS0	VAS0	5 7/23	Min	Max	
Parametro	U.M.	M	V	IVIIII	IVIAX
Conducibilità a 25°C	μS/cm	544	584	550	600
Alcalinità come CaCO ₃	mg/L	233	241	240	300
COD	mg/L	8,7	10,5	4,5	9,6
Cloruri	mg/L	9,0	9,2	6	11
Solfati	mg/L	44,3	46,4	46	48
Cromo totale	μg/L	0,92	1,36	1,1	3,6
Piombo	μg/L	<0,15	0,420	0,81	0,0009
Rame	μg/L	3,5	3,7	1,8	18
Zinco	μg/L	9,9	15,6	3,5	17
Fosforo totale (come P)	mg/L	0,060	0,071	0,034	0,063

La precedente tabella segnala con il colore giallo i parametri più critici, quelli che superano il range di variabilità riscontrato nei monitoraggi anteoperam:

- La richiesta chimica di ossigeno per la decomposizione della sostanza organica (COD) nelle acque della sezione di valle;
- Il Fosforo totale nelle acque della sezione di valle.

La concentrazione di Piombo è il parametro per il quale il confronto (Tab 4.4-A) monte vs valle è più "pesante", cioè quello in cui si ha la massima differenza fra le due sezioni (+180%).

Con la procedura indicata nel D.M. 260/2010 per la valutazione del Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (LIM_{eco}) si è elaborata lo stato Chimico riportato e confrontato nella tabella a seguire.

Tab 4.4-B Valori dell'Indice LIMeco in fase di cantiere e nel monitoraggio anteoperam

Canala Bidaggia	Corso	d'opera				Ante op	eram			
Canale Bidoggia	VAS	VAS05 7/23 VAS		VAS05 6/19 VAS05 9/19		5 9/19	VAS05 11/19		VAS05 1/20	
(VAS05)	M	V	M	V	M	٧	M	٧	M	٧
100-O₂%sat.	0,500	1,000	0,500	0,500	0,500	0,500	0,500	0,500	1,000	1,000
N-NH ₄ (mg/l)	1,000	1,000	0,125	0,125	1,000	1,000	0,125	0,125	0,125	0,125
N-NO ₃ (mg/l)	0,250	0,250	0,125	0,125	0,250	0,250	0,125	0,125	0,250	0,250
Fosforo totale (µg/l)	0,500	0,500	0,500	0,500	0,500	0,500	1,000	1,000	1,000	1,000
Media LIM _{eco}	0,563	0,688	0,313	0,313	0,563	0,563	0,438	0,438	0,594	0,594
CLASSE	ll l	I	IV	IV	ll l	ll l	III	Ш	ll l	ll l
STATO	BUONO	ELEVATO	SCARSO	SCARSO	BUONO	BUONO	SUFF.	SUFF.	BUONO	BUONO

L'Indice LIM_{eco}, calcolato con i risultati analitici rilevati in corso d'opera, evidenzia che nel Canale Bidoggia scorrono acque che sono di:

- Il Classe (Buono) nella sezione di monte;
- I Classe (Elevato) nella sezione di valle.

Il Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (LIM_{eco}) risulta sicuramente di gran lunga migliore rispetto alla condizione rilevata nel monitoraggio

	PROGETTISTA	unità 000	COMMESSA 023113_225A
snam //\v	LOCALITÀ Regione Veneto	SPC. 00-BH-	E-94761
	PROGETTO: Met. Mestre-Trieste: Rifacimento tratto Casale sul Sile-Gonars ed Opere Connesse	Pag. 18 di 64	Rev. 0

anteoperam. Inoltre, nella sezione di valle quindi quella che dovrebbe risentire delle attività di cantiere, lo Stato chimico è elevato.

4.5 Canale Piavon (Stazioni VAS06M e VAS06V)

La complessiva visione di tutti i risultati acquisiti in entrambe le fasi (anteoperam e corso d'opera) del PMA delle Acque superficiali del Canale Piavon è riportata nel ALLEGATO A: RISULTATI PRODOTTI nelle seguenti tabelle:

- Confronto dei Risultati delle analisi fisiche, chimiche e microbiologiche delle acque campionate in fase di cantiere e nell'anteoperam (Tab. 13 e Tab. 14).
- Confronto corso d'opera verso anteoperam del Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (Indice LIM_{eco}) (Tab. 15).

Il 13/11/2023 si sono eseguiti i campionamenti delle acque in concomitanza con un deflusso istantaneo di 0,423 m³/s nella sezione di monte e di 0,865 m³/s a valle.

Le caratteristiche fisiche, chimiche e microbiologiche delle acque analizzate nel corso delle attività di cantiere, nelle sezioni di monte e di valle del Canale Piavon rientrano tutte nei limiti stabiliti per la vita acquatica (D.Lgs. 152/06 e smi).

Le indagini analitiche eseguite sulle acque della Canale Piavon nella fase del corso d'opera hanno, in entrambe le sezioni, prodotto risultati inferiori ai limiti ritenuti idonei per l'uso irriguo e zootecnico delle acque superficiali (Casalicchio e Matteucci, 2000).

Dal confronto dei risultati delle analisi chimiche eseguite nella fase di cantiere con i valori limite degli standard di qualità (SQA-MA) indicati nelle Tab. 1/A e Tab. 1/B (D.M. 260/2010 e D.Lgs. 172/2015) e con i valori soglia proposti nella Tabella 3 del D.M. 260/2010 e D.Lgs. 172/2015 si rileva che nessun elemento, composto o sostanza supera questi limiti.

Con i criteri di confronto, esplicitati nel cap. 3.4, si sono valutate le differenze spaziali e temporali dei risultati ottenuti con il monitoraggio fisico, chimico e batteriologico delle acque superficiali campionate nella fase anteoperam e corso d'opera nel Canale Piavon. L'elaborazione ed il confronto di tutti i risultati ha messo in evidenza i parametri a cui prestare la maggiore attenzione. Si tratta degli elementi e dei composti presenti nelle acque della sezione di valle con valori più "critici" rispetto a quelli analizzati a monte e rispetto al massimo range di variazione rilevato nel monitoraggio anteoperam (Tab 4.5-A).

Tab 4.5-A Parametri con condizioni di valle peggiori di quelle di monte (colore rosa) e/o peggiori rispetto al range di variazione anteoperam (colore giallo)

Canala Biayan (VA	Corso	d'opera	Ante operam		
Callale Plavoii (VA	Canale Piavon (VAS06)			Min	Max
Parametro	U.M.	M	V	IVIII	IVIAX
pH (al prelievo)	pН	7,61	7,75	7,8	8,42
Conducibilità a 25°C	μS/cm	792	806	610	640
Temperatura	°C	11,2	11,5	13,2	19,4
Alcalinità come CaCO₃	mg/L	371	376	270	320
Solidi sospesi totali	mg/L	8,5	21,5	23	34
Rame	μg/L	0,86	1,04	2,2	12
Fosforo totale (come P)	mg/L	0,104	0,128	0,056	0,19
Escherichia coli	UFC/100 ml	4700	3800	5	1200
Toluene	μg/L	0,113	0,121	<0,070	<0,070

PROGETTISTA	SAIPEM	unità 000	COMMESSA 023113_225A
LOCALITÀ Regione Ve	eneto	SPC. 00-BH-	E-94761
PROGETTO: Met. Mestre-Trie Casale sul Sile-Gonars e		Pag. 19 di 64	Rev. 0

La precedente tabella segnala con il colore giallo i parametri più critici, quelli che superano il range di variabilità riscontrato nei monitoraggi anteoperam:

- La densità di Escherichia coli nelle acque di entrambe le sezioni;
- Le concentrazioni di Toluene nelle acque di entrambe le sezioni.

La quantità dei Solidi sospesi totali è il parametro per il quale il confronto (Tab 4.5-A) monte vs valle è più "pesante", cioè quello in cui si ha la massima differenza fra le due sezioni (+153%).

Con la procedura indicata nel D.M. 260/2010 per la valutazione del Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (LIM_{eco}) si è elaborata lo stato Chimico riportato e confrontato nella tabella a seguire.

Corso d'opera Ante operam Canale Piavon VAS06 11/23 VAS06 6/19 VAS06 9/19 VAS06 11/19 VAS06 1/20 (VAS06) M ν М М ν М ν М 100-O₂%sat 1,000 1,000 0,125 0,125 0,250 0,250 0,250 0,250 1,000 1,000 N-NH₄ (mg/l) 0,000 0,000 0,000 0,000 1,000 1,000 0,000 0,000 0,000 0,000 N-NO₃ (mg/l) 0,250 0,250 0,250 0,250 0,250 0,250 0,125 0,125 0,125 0,125 Fosforo totale (µg/I) 0,250 0,250 0,125 0,125 0,250 0,250 0,500 0,500 0,500 0,500 0,406 Media LIM_{eco} 0,375 0,375 0,125 0,125 0,438 0,438 0,219 0,219 0,406

Tab 4.5-B Valori dell'Indice LIMeco in fase di cantiere e nel monitoraggio anteoperam

L'Indice LIM_{eco}, calcolato con i risultati analitici rilevati in corso d'opera, evidenzia che nel Canale Piavon scorrono acque che sono di:

Ш

SUFF. SCARSO SCARSO SUFF.

• **III Classe** (Sufficiente) in entrambe le sezioni di monte e di valle.

Il Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (LIM_{eco}) risulta migliore rispetto alla condizione media rilevata nel monitoraggio anteoperam, identico a quello rilevato nei monitoraggi eseguiti nei mesi di giugno 2019 e gennaio 2020.

4.6 Fiume Lison (Stazioni VAS07M e VAS07V)

CLASSE

Ш

Ш

STATO SUFF. SUFF. CATTIVO CATTIVO SUFF.

La complessiva visione di tutti i risultati acquisiti in entrambe le fasi (anteoperam e corso d'opera) del PMA delle Acque superficiali del Fiume Lison è riportata nel ALLEGATO A: RISULTATI PRODOTTI nelle seguenti tabelle:

- Confronto dei Risultati delle analisi fisiche, chimiche e microbiologiche delle acque campionate in fase di cantiere e nell'anteoperam (Tab. 16 e Tab. 17).
- Confronto corso d'opera verso anteoperam del Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (Indice LIMeco) (Tab. 18).

Il 7/7/2023 si sono eseguiti i campionamenti delle acque in concomitanza con un deflusso istantaneo di 0,012 m³/s nella sezione di monte e di 0,012 m³/s nella sezione di valle.

Le caratteristiche fisiche, chimiche e microbiologiche delle acque analizzate nel corso delle attività di cantiere, nelle sezioni di monte e di valle del Fiume Lison rientrano quasi

Ш

SUFF.

PROGETTISTA	SAIPEM	unità 000	COMMESSA 023113_225A
LOCALITÀ	Regione Veneto	SPC. 00-BH-	E-94761
	Mestre-Trieste: Rifacimento tratto ile-Gonars ed Opere Connesse	Pag. 20 di 64	Rev. 0

tutte nei limiti stabiliti per la vita acquatica (D.Lgs. 152/06 e smi) con la sola eccezione delle concentrazioni del

• Fosforo totale misurato nelle acque della sezione di valle.

Le indagini analitiche eseguite sulle acque della Fiume Lison nella fase del corso d'opera hanno, in entrambe le sezioni, prodotto risultati inferiori ai limiti ritenuti idonei per l'uso irriguo e zootecnico delle acque superficiali (Casalicchio e Matteucci, 2000). Dal confronto dei risultati delle analisi chimiche eseguite nella fase di cantiere con i valori limite degli standard di qualità (SQA-MA) indicati nelle Tab. 1/A e Tab. 1/B (D.M. 260/2010 e D.Lgs. 172/2015) e con i valori soglia proposti nella Tabella 3 del D.M. 260/2010 e D.Lgs. 172/2015 si rileva che nessun elemento, composto o sostanza supera questi limiti.

Con i criteri di confronto, esplicitati nel cap. 3.4, si sono valutate le differenze spaziali e temporali dei risultati ottenuti con il monitoraggio fisico, chimico e batteriologico delle acque superficiali campionate nella fase anteoperam e corso d'opera nel Fiume Lison, L'elaborazione ed il confronto di tutti i risultati ha messo in evidenza i parametri a cui prestare la maggiore attenzione. Si tratta degli elementi e dei composti presenti nelle acque della sezione di valle con valori più "critici" rispetto a quelli analizzati a monte e rispetto al massimo range di variazione rilevato nel monitoraggio anteoperam (Tab 4.6-A).

Tab 4.6-A Parametri con condizioni di valle peggiori di quelle di monte (colore rosa) e/o peggiori rispetto al range di variazione anteoperam (colore giallo)

Fiume Lison (VAS07	Corso	d'opera	Ante operam		
Fiulle Lison (VASU)	VAS0	7 7/23	Min	Max	
Parametro	U.M.	M	V	IVIIII	IVIAX
COD	mg/L	14,2	23,3	8,7	11
Solidi sospesi totali	mg/L	22,5	56	30	140
Azoto ammoniacale come NH ₄	mg/L	0,523	0,409	0,008	0,16
Carbonio organico disciolto (DOC)	mg/L	1,84	3,50	2,3	2,9
Cloruri	mg/L	2,90	4,38	5,7	13
Nitrati	mg/L	0,97	3,05	6	28
Solfati	mg/L	7,86	10,4	20	21
Fosforo totale (come P)	mg/L	0,126	0,145	0,037	0,18

La precedente tabella segnala con il colore giallo i parametri più critici, quelli che superano il range di variabilità riscontrato nei monitoraggi anteoperam:

• l'elevata concentrazione di Azoto ammoniacale nelle acque di entrambe le sezioni.

La concentrazione di Azoto nitrico è il parametro per il quale il confronto (Tab 4.6-A) monte vs valle è più "pesante", cioè quello in cui si ha la massima differenza fra le due sezioni (+214%).

Con la procedura indicata nel D.M. 260/2010 per la valutazione del Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (LIM_{eco}) si è elaborata lo stato Chimico riportato e confrontato nella tabella a seguire.

PROGETTISTA	SAIPEM	unità 000	COMMESSA 023113_225A
LOCALITÀ	Regione Veneto	SPC. 00-BH-	E-94761
	t. Mestre-Trieste: Rifacimento tratto Sile-Gonars ed Opere Connesse	Pag. 21 di 64	Rev. 0

Tab 4.6-B Valori dell'Indice LIMeco in fase di cantiere e nel monitoraggio anteoperam

Firms Licen	Corso	d'opera				Ante ope	ram			
Fiume Lison	VAS	07 7/23	VAS0	7 6/19	VAS	07 9/19	VAS07	′ 11/19	VAS0	7 1/20
(VAS07)	M	V	М	V	M	V	М	٧	M	٧
100-O₂%sat.	0,500	0,250	0,125	0,125	1,000	1,000	0,500	0,500	0,500	0,500
N-NH ₄ (mg/l)	0,000	0,000	0,125	0,125	1,000	1,000	0,125	0,125	0,125	0,125
N-NO₃ (mg/l)	1,000	0,500	0,500	0,500	0,250	0,250	0,000	0,000	0,500	0,500
Fosforo totale (µg/l)	0,250	0,250	0,250	0,125	0,250	0,500	1,000	1,000	1,000	1,000
Media LIM _{eco}	0,438	0,250	0,250	0,219	0,625	0,688	0,406	0,406	0,531	0,531
CLASSE	III	IV	IV	IV	ll l	1	III	III	ll l	ll l
STATO	SUFF.	SCARSO	SCARSO	SCARSO	BUONO	ELEVATO	SUFF.	SUFF.	BUONO	BUONO

L'Indice LIM_{eco}, calcolato con i risultati analitici rilevati in corso d'opera, evidenzia che nel Fiume Lison scorrono acque che sono di:

- III Classe (Sufficiente) nella sezione di monte;
- IV Classe (Scarso) nella sezione di valle.

Il Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (LIM_{eco}) risulta inferiore alla condizione media rilevata nel monitoraggio anteoperam e i macrodescrittori da considerare più critici sono le elevate concentrazioni di Azoto ammoniacale.

Lo Stato Chimico, espresso dall'Indice LIM_{eco} in corso d'opera è da considerare una condizione negativa che interessa prevalentemente la sezione di valle per la quale si è rilevato lo stesso Stato Chimico riscontrato nel giugno 2019, prima dell'inizio delle attività di cantieri.

4.7 Fiume Reghena (Stazioni VAS08M e VAS08V)

La complessiva visione di tutti i risultati acquisiti in entrambe le fasi (anteoperam e corso d'opera) del PMA delle Acque superficiali del Fiume Reghena è riportata nel ALLEGATO A: RISULTATI PRODOTTI nelle seguenti tabelle:

- Confronto dei Risultati delle analisi fisiche, chimiche e microbiologiche delle acque campionate in fase di cantiere e nell'anteoperam (Tab. 19 e Tab. 20);
- Confronto corso d'opera verso anteoperam del Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (Indice LIM_{eco}) (Tab. 21).

Il 28/7/2023 si sono eseguiti i campionamenti delle acque in concomitanza con un deflusso istantaneo elevato che, per ragioni di sicurezza, non è stato possibile misurare a quado.

Le caratteristiche fisiche, chimiche e microbiologiche delle acque analizzate nel corso delle attività di cantiere, nelle sezioni di monte e di valle del Fiume Reghena rientrano tutte nei limiti stabiliti per la vita acquatica (D.Lgs. 152/06 e smi) con la sola eccezione:

 Ossigeno disciolto (per sovrasaturazione) misurato nelle acque di entrambe le sezioni.

Le indagini analitiche eseguite sulle acque del Fiume Reghena nella fase del corso d'opera hanno, in entrambe le sezioni, prodotto risultati inferiori ai limiti ritenuti idonei per l'uso irriguo e zootecnico delle acque superficiali (Casalicchio e Matteucci, 2000). Dal confronto dei risultati delle analisi chimiche eseguite nella fase di cantiere con i valori limite degli standard di qualità (SQA-MA) indicati nelle Tab. 1/A e Tab. 1/B (D.M.

PROC	GETTISTA	SAIPEM	unità 000	COMMESSA 023113_225A
LOCA	ALITÀ	Regione Veneto	SPC. 00-BH-	E-94761
		Mestre-Trieste: Rifacimento tratto e-Gonars ed Opere Connesse	Pag. 22 di 64	Rev. 0

260/2010 e D.Lgs. 172/2015) e con i valori soglia proposti nella Tabella 3 del D.M. 260/2010 e D.Lgs. 172/2015 si rileva che nessun elemento, composto o sostanza supera questi limiti.

Con i criteri di confronto, esplicitati nel cap. 3.4, si sono valutate le differenze spaziali e temporali dei risultati ottenuti con il monitoraggio fisico, chimico e batteriologico delle acque superficiali campionate nella fase anteoperam e corso d'opera Fiume Reghena L'elaborazione ed il confronto di tutti i risultati ha messo in evidenza i parametri a cui prestare la maggiore attenzione. Si tratta degli elementi e dei composti presenti nelle acque della sezione di valle con valori più "critici" rispetto a quelli analizzati a monte e rispetto al massimo range di variazione rilevato nel monitoraggio anteoperam (Tab 4.7-A).

Tab 4.7-A Parametri con condizioni di valle peggiori di quelle di monte (colore rosa) e/o peggiori rispetto al range di variazione anteoperam (colore giallo)

Fiume Reghena (VAS0	Corso	d'opera	Ante operam		
Fluille Regilella (VASU	VAS0	8 7/23	Min	Max	
Parametro	U.M.	M	٧	IVIIII	IVIAX
Azoto ammoniacale come NH ₄	mg/L	0,0247	0,0586	0,0095	0,13
Carbonio organico disciolto (DOC)	mg/L	1,09	1,37	1,3	1,8
Cloruri	mg/L	3,65	3,81	3,9	5,6
Escherichia coli	UFC/100 ml	270	300	8	630

Nella precedente tabella nessun parametro è di colore giallo per cui rientrano tutti nel range di variabilità riscontrato nei monitoraggi anteoperam.

Dal confronto Monte vs Valle si rileva che sono solo quattro i parametri in cui la condizione di valle e peggiore rispetto a quella di monte e per uno solo di essi si verifica un discreto incremento:

concentrazioni di Azoto ammoniacale con aumento del 137%.

Con la procedura indicata nel D.M. 260/2010 per la valutazione del Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (LIM_{eco}) si è elaborata lo stato Chimico riportato e confrontato nella tabella a seguire.

Tab 4.7-B Valori dell'Indice LIMeco in fase di cantiere e nel monitoraggio anteoperam

Firms Dankans	Corso	d'opera		Ante operam								
Fiume Reghena (VAS08)	VAS0	8 7/23	VAS0	8 6/19	VAS0	8 9/19	VAS08	3 11/19	VAS08	8 1/20		
(VASU0)	М	V	M	٧	M	V	M	٧	M	٧		
100-O₂%sat.	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,500	0,500		
N-NH ₄ (mg/l)	1,000	0,500	0,125	0,125	1,000	1,000	0,125	0,250	1,000	0,500		
N-NO ₃ (mg/l)	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250		
Fosforo totale (µg/l)	1,000	1,000	1,000	1,000	0,500	1,000	1,000	1,000	1,000	1,000		
Media LIM _{eco}	0,813	0,688	0,594	0,594	0,688	0,813	0,594	0,625	0,688	0,563		
CLASSE			ll l	ll l			ll l	ll l		II		
STATO	ELEVATO	ELEVATO	BUONO	BUONO	ELEVATO	ELEVATO	BUONO	BUONO	ELEVATO	BUONO		

L'Indice LIM_{eco}, calcolato con i risultati analitici rilevati in corso d'opera, evidenzia che nel Fiume Reghena scorrono acque che sono di:

• I Classe (Elevato) in entrambe le sezioni di monte e di valle.

snam	PROGETTISTA	SAIPEM	UNITÀ COMMESSA 000 023113_22		
	LOCALITÀ	Regione Veneto	SPC. 00-BH-	E-94761	
		. Mestre-Trieste: Rifacimento tratto Bile-Gonars ed Opere Connesse	Pag. 23 di 64	Rev. 0	

Il Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (LIM_{eco}) risulta migliore rispetto alla condizione media rilevata nel monitoraggio anteoperam ed entrambe le sezioni hanno la massima classe di qualità chimica nonostante lo score della sezione di valle sia leggermente inferiore a causa della maggiore concentrazione di Azoto ammoniacale.

4.8 Roggia Versiola (Stazioni VAS09M e VAS09V)

La complessiva visione di tutti i risultati acquisiti in entrambe le fasi (anteoperam e corso d'opera) del PMA delle Acque superficiali della Roggia Versiola è riportata nel ALLEGATO A: RISULTATI PRODOTTI nelle seguenti tabelle:

- Confronto dei Risultati delle analisi fisiche, chimiche e microbiologiche delle acque campionate in fase di cantiere e nell'anteoperam (Tab. 22 e Tab. 23);
- Confronto corso d'opera verso anteoperam del Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (Indice LIM_{eco}) (Tab. 24).

Il 28/7/2023 si sono eseguiti i campionamenti delle acque in concomitanza con un deflusso istantaneo elevato che, per ragioni di sicurezza, non è stato possibile misurare a guado.

Le caratteristiche fisiche, chimiche e microbiologiche delle acque analizzate nel corso delle attività di cantiere, nelle sezioni di monte e di valle della Roggia Versiola rientrano quasi tutte nei limiti stabiliti per la vita acquatica (D.Lgs. 152/06 e smi) con le eccezioni di:

- Fosforo totale misurato nelle acque di entrambe le sezioni;
- Materiali in sospensione nelle acque della sola sezione di valle.

Le indagini analitiche eseguite sulle acque della Roggia Versiola nella fase del corso d'opera hanno, in entrambe le sezioni, prodotto risultati inferiori ai limiti ritenuti idonei per l'uso irriguo e zootecnico delle acque superficiali (Casalicchio e Matteucci, 2000).

Dal confronto dei risultati delle analisi chimiche eseguite nella fase di cantiere con i valori limite degli standard di qualità (SQA-MA) indicati nelle Tab. 1/A e Tab. 1/B (D.M. 260/2010 e D.Lgs. 172/2015) e con i valori soglia proposti nella Tabella 3 del D.M. 260/2010 e D.Lgs. 172/2015 si rileva che nessun elemento, composto o sostanza supera questi limiti.

Con i criteri di confronto, esplicitati nel cap. 3.4, si sono valutate le differenze spaziali e temporali dei risultati ottenuti con il monitoraggio fisico, chimico e batteriologico delle acque superficiali campionate nella fase anteoperam e corso d'opera nella Roggia Versiola.

L'elaborazione ed il confronto di tutti i risultati ha messo in evidenza i parametri a cui prestare la maggiore attenzione. Si tratta degli elementi e dei composti presenti nelle acque della sezione di valle con valori più "critici" rispetto a quelli analizzati a monte e rispetto al massimo range di variazione rilevato nel monitoraggio anteoperam (Tab 4.8-A).

Tab 4.8-A Parametri con condizioni di valle peggiori di quelle di monte (colore rosa) e/o peggiori rispetto al range di variazione anteoperam (colore giallo)

Roggia Versiola (VAS0	ω,	Corso o	l'opera	Ante operam		
Roggia versiola (VASO	3)	VAS09	7/23	Min	Max	
Parametro	U.M.	M	V	IVIIII	IVIAX	
Conducibilità a 25°C	μS/cm	710	774	540	570	
COD	mg/L	11,0	16,5	3,5	3,5	
Solidi sospesi totali	mg/L	72	406	8,5	19	
Nitrati	mg/L	2,79	7,7	8,1	11	
Solfati	mg/L	66,0	104	82	99	
Calcio	μg/L	64000	75000	81000	96000	
Metilterbutiletere	μg/L	<0,076	0,078	<0,076	<0,076	

La precedente tabella segnala con il colore giallo i parametri più critici, quelli che superano il range di variabilità riscontrato nei monitoraggi anteoperam:

Metilterbutiletere nelle acque della sezione di valle.

Dal confronto Monte vs Valle si rileva che sono solo sei i parametri in cui la condizione di valle e peggiore rispetto a quella di monte ma, per alcuni di essi l'incremento fra monte e valle è da considerare rilevante, più in particolare:

- Solidi sospesi totali che hanno un aumento del 464%;
- Concentrazioni di Azoto nitrico con aumento del 176%.

Con la procedura indicata nel D.M. 260/2010 per la valutazione del Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (LIM $_{\rm eco}$) si è elaborata lo stato Chimico riportato e confrontato nella tabella a seguire.

Tab 4.8-B Valori dell'Indice LIMeco in fase di cantiere e nel monitoraggio anteoperam

Donnie Versiele	Corso d	'opera				Ante o	peram					
Roggia Versiola	VAS09	7/23	VAS01.	09 6/19	VAS01.	09 9/19	VAS01.	09 11/19	VAS01.0	9 1/20		
(VAS09)	M	٧	M	V	M	V	M	٧	M	٧		
100-O₂%sat.	0,250	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000		
N-NH ₄ (mg/l)	0,000	0,250	0,125	0,125	1,000	1,000	0,250	0,250	0,500	0,500		
N-NO ₃ (mg/l)	0,500	0,250	0,250	0,250	0,250	0,250	0,250	0,125	0,250	0,125		
Fosforo totale (µg/l)	0,250	0,125	0,500	0,500	0,500	0,500	1,000	1,000	1,000	1,000		
Media LIM _{eco}	0,250	0,406	0,469	0,469	0,688	0,688	0,625	0,594	0,688	0,656		
CLASSE	IV	III	III	III	1	1.0	ll l	ll l	1	ll l		
STATO	SCARSO	SUFF.	SUFF.	SUFF.	ELEVATO	ELEVATO	BUONO	BUONO	ELEVATO	BUONO		

L'Indice LIM_{eco}, calcolato con i risultati analitici rilevati in corso d'opera, evidenzia che nella Roggia Versiola scorrono acque che sono di:

- IV Classe (Scarso) nella sezione di monte;
- III Classe (Sufficiente) nella sezione di valle.

Il Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (LIM_{eco}) risulta inferiore alla condizione media rilevata nel monitoraggio anteoperam. La IV classe della sezione di monte non era mai stata individuata nell'anteoperam e la III classe della sezione di valle, in corso d'opera, è identica a quella che risultava dal monitoraggio anteoperam eseguito nel giugno 2019.

Lo Stato Chimico, espresso dall'Indice LIM_{eco} in corso d'opera è da considerare una condizione negativa che interessa prevalentemente la sezione di monte.

snam	PROGETTISTA	SAIPEM	unità 000	COMMESSA 023113_225A
	LOCALITÀ	Regione Veneto	SPC. 00-BH-E-94761	
		. Mestre-Trieste: Rifacimento tratto ille-Gonars ed Opere Connesse	Pag. 25 di 64	Rev. 0

4.9 Fiume Lemene (Stazioni VAS10M e VAS10V)

La complessiva visione di tutti i risultati acquisiti in entrambe le fasi (anteoperam e corso d'opera) del PMA delle Acque superficiali del Fiume Lemene è riportata nel ALLEGATO A: RISULTATI PRODOTTI nelle seguenti tabelle:

- Confronto dei Risultati delle analisi fisiche, chimiche e microbiologiche delle acque campionate in fase di cantiere e nell'anteoperam (Tab. 25 e Tab. 26);
- Confronto corso d'opera verso anteoperam del Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (Indice LIM_{eco}) (Tab. 27).

Il 11/9/2023 si sono eseguiti i campionamenti delle acque in concomitanza con un deflusso istantaneo di $0.945~\text{m}^3/\text{s}$ nella sezione di monte e di $1.401~\text{m}^3/\text{s}$ nella sezione di valle.

Le caratteristiche fisiche, chimiche e microbiologiche delle acque analizzate nel corso delle attività di cantiere, nelle sezioni di monte e di valle del Fiume Lemene rientrano tutte nei limiti stabiliti per la vita acquatica (D.Lgs. 152/06 e smi).

Le indagini analitiche eseguite sulle acque del Fiume Lemene nella fase del corso d'opera hanno, in entrambe le sezioni, prodotto risultati inferiori ai limiti ritenuti idonei per l'uso irriguo e zootecnico delle acque superficiali (Casalicchio e Matteucci, 2000).

Dal confronto dei risultati delle analisi chimiche eseguite nella fase di cantiere con i valori limite degli standard di qualità (SQA-MA) indicati nelle Tab. 1/A e Tab. 1/B (D.M. 260/2010 e D.Lgs. 172/2015) e con i valori soglia proposti nella Tabella 3 del D.M. 260/2010 e D.Lgs. 172/2015 si rileva che nessun elemento, composto o sostanza supera questi limiti.

Con i criteri di confronto, esplicitati nel cap. 3.4, si sono valutate le differenze spaziali e temporali dei risultati ottenuti con il monitoraggio fisico, chimico e batteriologico delle acque superficiali campionate nella fase anteoperam e corso d'opera nel Fiume Lemene.

L'elaborazione ed il confronto di tutti i risultati ha messo in evidenza i parametri a cui prestare la maggiore attenzione. Si tratta degli elementi e dei composti presenti nelle acque della sezione di valle con valori più "critici" rispetto a quelli analizzati a monte e rispetto al massimo range di variazione rilevato nel monitoraggio anteoperam (Tab 4.9-A).

Tab 4.9-A Parametri con condizioni di valle peggiori di quelle di monte (colore rosa) e/o peggiori rispetto al range di variazione anteoperam (colore giallo)

Fiume Lemene (VAS1	10)	Corso o	l'opera	Ante operam		
Fluille Leilleile (VAS	10)	VAS10	9/23	Min	Max	
Parametro	U.M.	M	V	IVIIII	IVIAX	
Carbonio organico disciolto (DOC)	mg/L	1,24	2,23	0,69	0,93	
Cloruri	mg/L	5,11	5,40	4,6	5	
Nitrati	mg/L	6,38	6,48	7,2	9,3	
Escherichia coli	UFC/100 ml	14000	10000	26	980	
Tetracloroetilene	μg/L	<0,069	0,100	<0.069	<0.069	

La precedente tabella segnala con il colore giallo i parametri più critici, quelli che superano il range di variabilità riscontrato nei monitoraggi anteoperam:

- la concentrazione di Carbonio Organico disciolto in entrambe le sezioni;
- le densità di Escherichia coli nelle acque di entrambe le sezioni;

	PROGETTISTA	SAIPEM	unità 000	COMMESSA 023113_225A
j	LOCALITÀ	Regione Veneto	SPC. 00-BH-	E-94761
		Mestre-Trieste: Rifacimento tratto ile-Gonars ed Opere Connesse	Pag. 26 di 64	Rev. 0

• la concentrazione di Tetracloroetilene nelle acque della sezione di valle.

La concentrazione di Carbonio organico disciolto (DOC) è il parametro per il quale il confronto (Tab 4.9-A) monte vs valle è più "pesante", cioè quello in cui si ha la massima differenza fra le due sezioni (+80%).

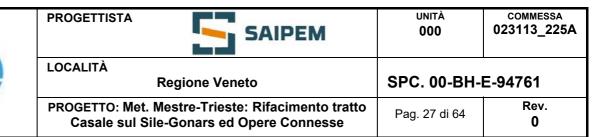
Con la procedura indicata nel D.M. 260/2010 per la valutazione del Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (LIM_{eco}) si è elaborata lo stato Chimico riportato e confrontato nella tabella a seguire.

Tab 4.9-B Valori dell'Indice LIMeco in fase di cantiere e nel monitoraggio anteoperam

Fiume Lemene	Corso o	d'opera			Ante operam					
(VAS10)	VAS1	0 9/23	VAS1	0 6/19	VAS1	0 9/19	VAS10	11/19	VAS10 1/20	
(VAS10)	M	٧	M	٧	M	V	M	٧	M	٧
100-O ₂ %sat.	0,125	0,125	1,000	1,000	1,000	1,000	1,000	1,000	0,500	0,500
N-NH ₄ (mg/l)	1,000	0,500	0,125	0,125	1,000	1,000	0,250	0,250	0,250	0,250
N-NO ₃ (mg/l)	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250
Fosforo totale (µg/l)	1,000	1,000	0,500	0,500	0,500	0,500	0,500	1,000	1,000	1,000
Media LIM _{eco}	0,594	0,469	0,469	0,469	0,688	0,688	0,500	0,625	0,500	0,500
CLASSE	ll l	III	III	III			ll l	II	ll l	ll l
STATO	BUONO	SUFF.	SUFF.	SUFF.	ELEVATO	ELEVATO	BUONO	BUONO	BUONO	BUONO

L'Indice LIM_{eco}, calcolato con i risultati analitici rilevati in corso d'opera, evidenzia che nel Fiume Lemene scorrono acque che sono di:

- Il Classe (Buono) nella sezione di monte;
- III Classe (Sufficiente) nella sezione di valle.


Il Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (LIM_{eco}) risulta inferiore rispetto alla condizione media rilevata nel monitoraggio anteoperam. La III classe della sezione di valle è identica a quella valutata nel mese di giugno 2019 nell'anteoperam e la II classe della sezione di monte era già stato indicato, sia a monte sia a valle, nel monitoraggio anteoperam condotto nei mesi di novembre 2029 e gennaio 2020.

Lo Stato Chimico, espresso dall'Indice LIM_{eco} in corso d'opera è da considerare una condizione negativa che interessa prevalentemente la sezione di valle ed è causato dalla maggiore concentrazione dell'Azoto ammoniacale.

4.10 Fosso Dosson (Stazioni VAS11M e VAS11V)

La complessiva visione di tutti i risultati acquisiti in entrambe le fasi (anteoperam e corso d'opera) del PMA delle Acque superficiali del Fosso Dosson è riportata nel ALLEGATO A: RISULTATI PRODOTTI nelle seguenti tabelle:

- Confronto dei Risultati delle analisi fisiche, chimiche e microbiologiche delle acque campionate in fase di cantiere e nell'anteoperam (Tab. 28 e Tab. 29);
- Confronto corso d'opera verso anteoperam del Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (Indice LIM_{eco}) (Tab. 30).

Il 14/3/2023 si sono eseguiti i campionamenti delle acque in concomitanza con un deflusso istantaneo di $0,487 \text{ m}^3/\text{s}$ nella sezione di monte e di $1,148 \text{ m}^3/\text{s}$ nella sezione di valle.

Le caratteristiche fisiche, chimiche e microbiologiche delle acque analizzate nel corso delle attività di cantiere, nelle sezioni di monte e di valle del Fosso Dosson rientrano quasi tutte nei limiti stabiliti per la vita acquatica (D.Lgs. 152/06 e smi) con la sola eccezione delle concentrazioni del

Fosforo totale misurato nelle acque della sezione di valle...

Le indagini analitiche eseguite sulle acque della Fosso Dosson nella fase del corso d'opera hanno, in entrambe le sezioni, prodotto risultati inferiori ai limiti ritenuti idonei per l'uso irriguo e zootecnico delle acque superficiali (Casalicchio e Matteucci, 2000). Dal confronto dei risultati delle analisi chimiche eseguite nella fase di cantiere con i valori limite degli standard di qualità (SQA-MA) indicati nelle Tab. 1/A e Tab. 1/B (D.M. 260/2010 e D.Lgs. 172/2015) e con i valori soglia proposti nella Tabella 3 del D.M. 260/2010 e D.Lgs. 172/2015 si rileva che nessun elemento, composto o sostanza supera questi limiti.

Con i criteri di confronto, esplicitati nel cap. 3.4, si sono valutate le differenze spaziali e temporali dei risultati ottenuti con il monitoraggio fisico, chimico e batteriologico delle acque superficiali campionate nella fase anteoperam e corso d'opera nel Fosso Dosson. L'elaborazione ed il confronto di tutti i risultati ha messo in evidenza i parametri a cui prestare la maggiore attenzione. Si tratta degli elementi e dei composti presenti nelle acque della sezione di valle con valori più "critici" rispetto a quelli analizzati a monte e rispetto al massimo range di variazione rilevato nel monitoraggio anteoperam (Tab 4.10-A).

Tab 4.10-A Parametri con condizioni di valle peggiori di quelle di monte (colore rosa) e/o peggiori rispetto al range di variazione anteoperam (colore giallo)

Fosso Dosson (VAS1	1)	Corso o	l'opera	Ante operam		
FUSSU DUSSUII (VAST	1)	VAS11	1 3/23	Min	Max	
Parametro	U.M.	M	V	IVIIII	IVIAX	
COD	mg/L	7,44	9,2	5,2	24	
Carbonio organico disciolto (DOC)	mg/L	1,66	1,76	1,1	2,4	
Nitriti	mg/L	0,133	0,137	0,016	1300	
Cromo totale	μg/L	2,35	2,75	2,2	2,6	
Zinco	μg/L	4,9	7,8	3,8	28	
Escherichia coli	UFC/100 ml	14000	10000	26	980	
Tetracloroetilene	μg/L	<0,069	0,100	<0.069	<0.069	

La precedente tabella segnala con il colore giallo i parametri più critici, quelli che superano il range di variabilità riscontrato nei monitoraggi anteoperam:

- L'elevata concentrazione di Cromo totale nelle acque della sezione di valle;
- le densità di Escherichia coli nelle acque di entrambe le sezioni;
- la concentrazione di Tetracloroetilene nelle acque della sezione di valle.

La concentrazione di Zinco è il parametro per il quale il confronto (Tab 4.10-A) monte vs valle è più "pesante", cioè quello in cui si ha la massima differenza fra le due sezioni (+59%).

Con la procedura indicata nel D.M. 260/2010 per la valutazione del Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (LIM_{eco}) si è elaborata lo stato Chimico riportato e confrontato nella tabella a seguire.

Tab 4.10-B Valori dell'Indice LIMeco in fase di cantiere e nel monitoraggio anteoperam

Fosso Dosson	Corso	d'opera				Ante	operam				
(VAS11)	VAS1	1 3/23	VAS1	1 6/19	VAS11	l 9/19	VAS11	l 11/19	VAS1	1/20	
	M	V	М	V	M	V	M	V	M	V	
100-O ₂ %sat.	0,500	0,500	0,500	0,500	0,250	0,250	0,500	0,500	0,500	0,500	
N-NH ₄ (mg/l)	0,000	0,000	0,000	0,000	0,000	1,000	0,000	0,000	0,000	0,000	
N-NO ₃ (mg/l)	0,500	0,500	1,000	1,000	0,500	0,500	0,250	0,250	0,500	0,500	
Fosforo totale (µg/l)	0,250	0,125	0,250	0,250	0,250	0,250	0,500	0,500	1,000	1,000	
Media LIM _{eco}	0,313	0,281	0,438	0,438	0,250	0,500	0,313	0,313	0,500	0,500	
CLASSE	IV	IV	III	III	IV	II	IV	IV	ll l	ll l	
STATO	SCARSO	SCARSO	SUFF.	SUFF.	SCARSO	BUONO	SCARSO	SCARSO	BUONO	BUONO	

L'Indice LIM_{eco}, calcolato con i risultati analitici rilevati in corso d'opera, evidenzia che nel Fosso Dosson scorrono acque che sono di:

• IV Classe (Scarso) in entrambe le sezioni di monte e di valle.

Il Livello di Inquinamento dai Macrodescrittori per lo Stato Ecologico (LIM_{eco}) risulta inferiore rispetto alla condizione media rilevata nel monitoraggio anteoperam.

I macrodescrittori da considerare più critici sono, in entrambe le sezioni, l'elevate concentrazioni di Azoto ammoniacale.

snam	PROGETTISTA SAIPEM	UNITÀ 000	COMMESSA 023113_225A		
	LOCALITÀ Regione Veneto	SPC. 00-BH-E-94761			
	PROGETTO: Met. Mestre-Trieste: Rifacimento tratto Casale sul Sile-Gonars ed Opere Connesse	Pag. 29 di 64	Rev. 0		

5 Specifiche tecniche dei metodi adottati

5.1 Matrice acqua: analisi fisiche, chimiche e microbiologiche

Le indagini analitiche sui campioni di acqua prelevati dagli ambienti monitorati sono state eseguite coi metodi riportati nella seguente tabella.

Tab 5.1-A Metodi adottati per le analisi fisiche, chimiche e microbiologiche delle acque

Parametro	Metodo	Parametro	Metodo
рН	APAT CNR IRSA 2060 Man 29 2003	1,1,2-tricloroetano	EPA 8260D 2018
temperatura	APAT CNR IRSA 2100 Man 29 2003 (III)	1,1-dicloroetano	EPA 8260D 2018
conducibilità	APAT CNR IRSA 2030 Man 29 2003	1,1-dicloroetilene	EPA 8260D 2018
ossigeno disciolto	SM 4500-O G 2017 (III)	1,2,3-tricloropropano	EPA 8260D 2018
alcalinità come CaCO3	APAT CNR IRSA 2010 Man 29 2003 CaCO3	1,2-diclorobenzene	EPA 8260D 2018
BOD5	APHA 5210 D 2017	1,2-dicloroetano	EPA 8260D 2018
COD totale	ISPRA Man 117 2014	1,2-dicloroetilene (cis)	EPA 8260D 2018
solidi sospesi totali	APAT CNR IRSA 2090 B Man 29 2003	1,2-dicloroetilene (trans)	EPA 8260D 2018
azoto ammoniacale come N	APAT CNR IRSA 4030 A2 C Man 29 2003	1,3-diclorobenzene	EPA 8260D 2018
azoto ammoniacale come N	APAT CNR IRSA 3030 Man 29 2003	1,4-diclorobenzene	EPA 8260D 2018
carbonio organico disciolto (DOC)	EPA 9060A 2004 DOC	2-clorotoluene	EPA 8260D 2018
cloruri	EPA 9056A 2007	3-clorotoluene	EPA 8260D 2018
nitrati	EPA 9056A 2007	4-clorotoluene	EPA 8260D 2018
nitriti	APAT CNR IRSA 4050 Man 29 2003	bromodiclorometano	EPA 8260D 2018
nitriti	EPA 9056A 2007	bromoformio	EPA 8260D 2018
solfati	EPA 9056A 2007	carbonio tetracloruro	EPA 8260D 2018
arsenico	EPA 6020B 2014	cloroformio	EPA 8260D 2018
cadmio	EPA 6020B 2014	clorometano	EPA 8260D 2018
calcio	EPA 6020B 2014	cloruro di vinile	EPA 8260D 2018
cromo (VI)	APAT CNR IRSA 3150 C Man 29 2003	dibromoclorometano	EPA 8260D 2018
cromo totale	EPA 6020B 2014	esaclorobutadiene	EPA 8260D 2018
mercurio	EPA 6020B 2014	metilene cloruro	EPA 8260D 2018
nichel	EPA 6020B 2014	tetracloroetilene	EPA 8260D 2018
piombo	EPA 6020B 2014	tricloroetilene	EPA 8260D 2018
rame	EPA 6020B 2014	1,2,4-trimetilbenzene	EPA 8260D 2018
zinco	EPA 6020B 2014	benzene	EPA 8260D 2018
fosforo totale (come P)	APAT CNR IRSA 4110 A2 Man 29 2003	etilbenzene	EPA 8260D 2018
- idrocarburi totali come n-esano	Calcolo	m,p-xilene	EPA 8260D 2018
idrocarburi fraz vol (C6-C10) n-esano	ISPRA Man 123 2015 (V)	o-xilene	EPA 8260D 2018
idrocarburi fraz estr (C10-C40) n-esano	ISPRA Man 123 2015 (E)	stirene	EPA 8260D 2018
- sommatoria organoalogenati (D.Lgs. 152/06 - All 5 Tab2)	EPA 8260D 2018	toluene	EPA 8260D 2018
1,1,1-tricloroetano	EPA 8260D 2018	metilterbutiletere	EPA 8260D 2018

I risultati delle analisi chimiche sono stati confrontati coi valori imperativi e guida (Tab 5.1-B) ritenuti idonei per la sopravvivenza dei Salmonidi e dei Ciprinidi (D.L. 130/92 ripreso nei D.Lgs. 152/99, 258/00 e 152/06).

I risultati analitici sono stati giudicati confrontandoli con i limiti di fruibilità (Tab 5.1-B) delle acque destinate all'irrigazione e all'abbeveraggio del bestiame (Casalicchio e Matteucci, 2000).

Tab 5.1-B Valori limite usati per le finalità d'uso: vita acquatica, irrigazione e abbeveraggio

		D.Lgs.15	2/06 (Alle Tab.	gato 2, Sez 1/B)	Casalicchio e Matteucci, 2000			
		SALMO	NIDI	CIPRI	Irrigazione	Abbeveraggio		
Parametro	UM	G	Ţ	G	I			
Temperatura	°C		21,5		28			
Ossigeno disciolto	% O ₂	50-100	>50	50-100	>50			
Conc. ioni idrog. pH	-	6.0-9.0	9	6.0-9.0		4.5-9.0	6.0-9.0	
Conducibilità totale	mS/cm a 20°					1500	4500	
Cloruri	mg/l		40		40	150		
Materiali in sospensione	mg/l	25	60	25	80			
BOD ₅	mg/l	3	5	6	9			
Fosfoto totale	mg/l P	0,07	0,07	0,14				
Nitriti	mg/l NO ₂	0,01	0,88	0,03	1,77			
Ammoniaca non ionizzata	mg/l NH₃	0,005	0,025	0,005	0,025			
Ammoniaca Totale	mg/l N H₄	0,04	1	0,2	1			
Idrocarburi totali	mg/l	0,2		0,2				
Zinco totale	μg/l Zn		300		400	2000	25000	
Rame	μg/l Cu		40		40			
Cadmio totale	μg/l Cd	0,2	2,5	0,2	2,5			
Cromo totale	μg/l Cr		20		100	100	100	
Mercurio totale	μg/l Hg	0,05	0,5	0,05	0,5	2	3	
Nichel	μg/l Ni		75		75	200	1000	
Piombo	μg/l Pb		10		50	2000	100	
Arsenico	μg/l As		50		50	100	100	

I risultati ottenuti dalle analisi chimiche, fisiche e microbiologiche delle acque consentono di esprimere una circostanziata valutazione dello stato chimico delle acque in ragione dei valori di riferimento o standard di qualità (SQA) relativi a varie sostanze identificate come prioritarie (P), pericolose-prioritarie (PP), altre (E) e dei valori soglia fissati per il buono stato di qualità nel D.M. 260/2010 (Tab 5.1-C).

Più in particolare si è fatto riferimento a due livelli di conoscenza per cui sono stati usati per il confronto:

- i limiti relativi alle acque superficiali riportati nella Tab. 1/A (Standard di qualità nella colonna d'acqua per le sostanze dell'elenco di priorità) e nella Tab. 1/B (Standard di qualità ambientale nella colonna d'acqua per alcune delle sostanze non appartenenti all'elenco di priorità) del D.M. 260/2010 con le modifiche apportate dal D.Lgs. 172/2015;
- i valori soglia, indicati nella Tabella 3 dello stesso D.M. 260/2010, per individuare il buono stato chimico delle acque sotterranee.

L'aver utilizzato, oltre i limiti SQA, anche i valori soglia, indicati per le acque sotterranee, scaturisce da una loro possibile diretta attinenza con le acque superficiali, contemplata nel D.M. 260/2010 che espressamente indica: "I valori soglia di cui alla tabella 3 si basano sui seguenti elementi: l'entità delle interazioni tra acque sotterranee ed ecosistemi acquatici associati ed ecosistemi terrestri che dipendono da essi;

PROGETTISTA	UNITÀ 000	COMMESSA 023113_225A
LOCALITÀ Regione Veneto	SPC. 00-BH-	E-94761
PROGETTO: Met. Mestre-Trieste: Rifacimento tratto Casale sul Sile-Gonars ed Opere Connesse	Pag. 31 di 64	Rev. 0

l'interferenza con legittimi usi delle acque sotterranee, presenti o futuri; la tossicità umana, l'ecotossicità, la tendenza alla dispersione, la persistenza e il loro potenziale di bioaccumulo."

Nei casi in cui sono presenti due dissimili valori limite, si sono scelti quelli a minore concentrazione, quindi i più cautelativi.

Tab 5.1-C Valori limite standard di qualità (SQA-MA) e valori soglia per il buono stato chimico

			\/-l-=-			604	Malana	
Parametro	U. M.	SQA-MA	Valore soglia	Parametro	U. M.	SQA- MA	Valore soglia	
Solfati	mg/l		250	VOC ORGANOALOGENATI		IVIA	Soylia	
Arsenico	μg/l	10	10	1,1,1-Tricloroetano	μg/l			
Alsenico	μg/i	0,08-0,25	0,08-	1,1,1-THOIOIGEIANG	μg/i			
Cadmio	μg/l	(1)	0,00- 0,25 ⁽¹⁾	1,1,2,2-Tetracloroetano	μg/l			
Cromo totale	μg/l	7	50	1,1,2-Tricloroetano	μg/l	10 ⁽³⁾		
Cromo esavalente	μg/l		5	1,1-Dicloroetano	μg/l	10	3 (2)	
Nichel	μg/l	20	20	1,1-Dicloroetilene	μg/l		60	
Mercurio	μg/l	0,03	0,03	1,2,3-Tricloropropano	μg/l			
Piombo	μg/l	7,2	10	1,2-Dicloroetano	μg/l		3	
Rame	μg/l		1000	1,2-Dicloroetilene (cis)	μg/l			
Zinco	μg/l		3000	1,2-Dicloroetilene (trans)	μg/l			
Idrocarburi volatili (C6-C10) come n-esano	μg/l			Bromodiclorometano	μg/l		0,17	
idrocarburi estraibili (C10- C40) come n-esano	μg/l			Clorometano	μg/l			
Idrocarburi totali (n-esano)	μg/l		350	Dibromoclorometano	μg/l		0,13	
VOC ORGANICI AROMATICI				Metilene cloruro	μg/l			
1,2,4-Trimetilbenzene	μg/l			Esaclorobutadiene	μg/l	0,05	0.15	
1,2-Diclorobenzene	μg/l	2		Tetracloroetilene	μg/l	10	1,1	
1,3-Diclorobenzene	μg/l	2		Carbonio tetracloruro	μg/l	12		
1,4-Diclorobenzene	μg/l	2	0,5	Tribromometano (Bromoformio)	μg/l			
2-Clorotoluene	μg/l	1		Tricloroetilene (trielina-TCE)	μg/l	10	1,5	
3-Clorotoluene	μg/l	1		Triclorometano (Cloroformio)	μg/l	2,5	0,15	
4-Clorotoluene	μg/l	1		Cloruro di vinile	μg/l	0,5	0,5	
Benzene	μg/l	10	1					
Etilbenzene	μg/l		50	(1) limite definito in funzione della durezza delle acque				
MTBE-Metilterbutiletere	μg/l			(2) limite relativo a 1,2-Dicloroetano				
(m,p)-Xilene	μg/l	5	10	(3) limite relativo a 1,1,1-Tricloroetano				
o-Xilene	μg/l	5						
Stirene	μg/l							
Toluene	μg/l	5	15					

	PROGETTISTA	SAIPEM	UNITÀ COMMESS 000 023113_22				
snam V//V	LOCALITÀ	Regione Veneto	SPC. 00-BH-E-94761				
		. Mestre-Trieste: Rifacimento tratto Sile-Gonars ed Opere Connesse	Pag. 32 di 64	Rev. 0			

5.2 Livello di Inquinamento dai Macrodescrittori per lo stato ecologico (Indice LIM_{eco})

I nutrienti e l'ossigeno disciolto, ai fini della classificazione, sono stati integrati in un singolo descrittore LIM_{eco} (Livello di Inquinamento dai Macrodescrittori per lo stato ecologico) utilizzato per derivare la classe di qualità chimica. La procedura prevede che sia calcolato un punteggio sulla base della concentrazione, osservata nel sito in esame, dei seguenti macrodescrittori: Ossigeno disciolto (100 - % di saturazione O₂); Azoto ammoniacale (N-NH₄); Azoto nitrico (N-NO₃) e Fosforo totale. Le soglie di concentrazione per il calcolo del LIM_{eco} sono indicate nella seguente tabella:

Tab 5.2-A Concentrazioni soglia per il calcolo del LIMeco

Parametro	Livello 1	Livello 2	Livello 3	Livello 4	Livello 5
100-OD (%sat.)	≤ 10	≤ 20	≤ 40	≤ 80	> 80
NH ₄ (mg/l)	< 0,03	≤ 0,06	≤ 0,12	≤ 0,24	> 0,24
NO ₃ (mg/l)	< 0,6	≤ 1,2	≤ 2,4	≤ 4,8	> 4,8
Fosforo totale (P mg/l)	< 0,05	≤ 0,1	≤ 0,2	≤ 0,4	> 0,4
Punteggio da attribuire	1	0,5	0,25	0,125	0

Dalla media dei punteggi attribuiti ai singoli macrodescrittori si ottiene un unico valore che è usato per la classificazione di qualità in ragione dei valori limite sotto riportati:

Tab 5.2-B Valori limite per le classi di qualità LIMeco

≥ 0,66	1	ELEVATO
≥ 0,50	П	BUONO
≥ 0,33	Ш	SUFFICIENTE
≥ 0,17	IV	SCARSO
< 0,17	V	CATTIVO

Il ruolo della classe di qualità che scaturisce dal LIM $_{\rm eco}$ è subordinato a quello che deriva dagli elementi di qualità biologica (Macroinvertebrati, Diatomee, Macrofite, Pesci), infatti come stabilisce la Direttiva 2000/60/CE, lo stato ecologico del corpo idrico non viene declassato oltre la classe "sufficiente" (III classe) qualora il LIM $_{\rm eco}$ sia di IV o V classe. Questo metodo di giudizio ha il pregio di identificare, fra i macrodescrittori considerati, quelli che abbassano il giudizio complessivo trovandosi ad un livello di inquinamento superiore rispetto agli altri parametri.

6 BIBLIOGRAFIA

A.P.A.T. 2007. Metodi Biologici Acque Superficiali. Parte I. APAT, Roma.

APAT-IRSA CNR, 2003 - *Metodi analitici per le acque. Indice biotico esteso (I.B.E.).* Metodo 9020: 1115-1136.

D.M. 8 novembre 2010, n. 260 del Ministero dell'ambiente e della tutela del territorio e del mare. Regolamento recante i criteri tecnici per la classificazione dello stato dei corpi idrici superficiali, per la modifica delle norme tecniche del decreto legislativo 3 aprile 2006, n. 152, recante norme in materia ambientale, predisposto ai sensi dell'articolo 75, comma 3, del medesimo decreto legislativo. Supplemento ordinario alla "Gazzetta Ufficiale," n. 30 del 7 febbraio 2011 - Serie generale.

Decreto Legislativo 152. 1999. Disposizioni sulla tutela delle acque dall'inquinamento e recepimento della direttiva 91/271/CEE concernente il trattamento delle acque reflue urbane e della direttiva 91/676/CEE relativa alla protezione delle acque dall'inquinamento provocato dai nitrati provenienti da fonti agricole. Gazzetta Ufficiale della Repubblica italiana n. 101/L, Roma

Decreto Legislativo 152. 2006. *Norme in materia ambientale*.. Pubblicato nella *Gazzetta Ufficiale* n. 88 del 14 aprile 2006 - Supplemento Ordinario n. 96.

Decreto Legislativo 258. 2000. Disposizioni correttive e integrative del decreto legislativo 11 maggio 1999, n. 152, in materia di tutela delle acque dall'inquinamento, a norma dell'articolo 1, comma 4, della legge 24 aprile 1998, n. 128. Gazzetta Ufficiale della Repubblica italiana n. 153/L, Roma.

D.Lgs. 13/10/2015, n. 172. Attuazione della Direttiva 2013/39/UE del 12/08/2013 che modifica le direttive 2000/60/CE e 2008/105/CE per quanto riguarda le Sostanze Prioritarie nel settore della politica delle acque.

EC Directive 60/2000. Framework for Community Action in the Field of Water Policy. L.327, 2000.

	PROGETTISTA	UNITÀ 000	COMMESSA 023113_225A
snam //\v	LOCALITÀ Regione Veneto	SPC. 00-BH-	E-94761
	PROGETTO: Met. Mestre-Trieste: Rifacimento tratto Casale sul Sile-Gonars ed Opere Connesse	Pag. 34 di 64	Rev. 0

METANODOTTO MESTRE-TRIESTE DN 400 (16") DP 75 bar ED OPERE CONNESSE

REGIONE VENETO

COMPONENTE AMBIENTALE ACQUE SUPERFICIALI FASE DI CANTIERE - MONITORAGGIO IN CORSO D'OPERA ANNO 2023

ALLEGATO A: RISULTATI PRODOTTI

	PROGETTISTA	UNITÀ 000	COMMESSA 0230113_225A			
snam	LOCALITÀ Regione Veneto	SPC. 00-BH-E-94761				
	PROGETTO: Met. Mestre-Trieste: Rifacimento tratto Casale sul Sile-Gonars ed Opere Connesse	Pag. 35 di 64	Rev. 0			

Tab. 1 Fiume Vallio: risultati delle analisi fisiche, chimiche e microbiologiche eseguite sulle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

Fiume Vallio (VAS02) Corso d'opera				Ante operam									
Fiullie Vallio (VAS02)		VAS02 3/23				VAS0	2 6/19	VAS0	2 9/19	VAS02	2 11/19	VAS0	2 1/20
Parametro	U.M.	М	٧	Parametro	U.M.	M V		M V		М	V	M	V
Portata	m³/s	1,289	1,362	Portata	m³/s	0,2	:64	0,2	242	0,3	304	0,2	255
pH (al prelievo)	рН	7,73	7,54	pH	pН	8,10	8	8,21	8,21	7,98	8	8,02	8,01
Conducibilità a 25°C	μS/cm	513	513	conducibilità	μS/cm	500	500	530	530	520	520	510	510
Temperatura	°C	12,6	12,9	temperatura	°C	21	21	16,1	16,1	13	13	9,30	9,30
Ossigeno disciolto	mg/L	4,81	3,85	ossigeno disciolto	mg/L	7,40	7,40	6,6	6,5	8,4	8,4	9,30	9,30
Ossigeno disciolto saturazione	%	46,7	37,7	ossigeno disciolto	%	85,3	85,3	69,2	68,1	79,1	79,1	83,7	83,7
Alcalinità come CaCO₃	mg/L	225	228	alcalinità come CaCO3	mg/L	220	230	230	230	270	270	220	220
Richiesta biochimica di ossigeno (BOD ₅)	mg/L	<5,0	<5,0	BOD5	mg/L	<2,80	<2,80	<2.80	<2.80	<3.10	<3.10	<3,10	<3,10
COD	mg/L	3,99	9,2	COD totale	mg/L	7,7	6,70	4,8	<3.30	7,2	7,9	4,20	3,80
Solidi sospesi totali	mg/L	26,5	30,5	solidi sospesi totali	mg/L	43,0	38,0	14	16	30	32	23,0	25,0
Azoto ammoniacale come NH ₄	mg/L	0,244	0,201	azoto ammoniacale come N	mg/L	<0,170	<0,170	0,007	0,0087	0,097	0,088	0,260	0,260
Carbonio organico disciolto (DOC)	mg/L	0,85	0,94	carbonio organico disciolto (DOC)	mg/L	2,10	2,80	1,3	1,2	1,1	1,1	0,630	0,750
Cloruri	mg/L	4,33	4,14	cloruri	mg/L	4,80	4,70	5,4	5,2	6,8	6,9	5,20	5,30
Nitrati	mg/L	3,82	3,59	nitrati	mg/L	5,80	5,70	7,1	7,7	10	11	6,4	6,3
Nitriti	mg/L	<0,012	<0,012	nitriti	μg/L	0,28	0,27	590	200	0,37	0,47	120	140
Solfati	mg/L	34,7	32,8	solfati	mg/L	43,0	44,0	45	45	39	40	43,0	43,0
Cromo esavalente (Cr VI)	μg/L	<0,84	<0,84	cromo (VI)	mg/L	<0,00084	<0,00084	0,0041	0,0028	0,0011	0,00099	<0,00084	<0,00084
Arsenico	μg/L	0,56	0,62	arsenico	mg/L	0,00095	0,00120	0,0009	0,00078	0,0019	0,0019	0,00084	0,00072
Cadmio	μg/L	<0,075	<0,075	cadmio	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075
Calcio	μg/L	63000	63000	calcio	mg/L	67	67	69	67	88	86	63,0	61,0
Cromo totale	μg/L	<0,51	<0,51	cromo totale	mg/L	0,00087	0,00160	0,0041	0,0029	0,0011	0,001	0,000210	0,000330
Mercurio	μg/L	0,029	0,030	mercurio	mg/L	<0,000085	<0,000085	0,00023	<0.000085	0,00012	<0.000085	<0,000085	<0,000085
Nichel	μg/L	<0,60	<0,60	nichel	mg/L	0,000420	0,00092	0,00032	<0.000170	0,00093	0,00086	0,000210	0,000330
Piombo	μg/L	<0,15	<0,15	piombo	mg/L	<0,000150	0,000640	<0.000150	<0.000150	0,00098	0,00086	<0,000150	<0,000150
Rame	μg/L	1,82	<0,65	rame	mg/L	0,00340	0,00470	0,021	0,0015	0,027	0,003	<0,000650	0,0130
Zinco	μg/L	<2,4	<2,4	zinco	mg/L	0,00310	0,00640	0,0055	0,0032	0,017	0,0092	0,00470	0,0073
Fosforo totale (come P)	mg/L	0,087	0,079	fosforo totale (come P)	mg/L	0,100	0,120	0,081	0,071	0,038	0,039	0,0180	0,0190
- Idrocarburi totali come n-esano	μg/L	<24	<24	- idrocarburi totali come n-esano	mg/L	<0,03	<0,03	<0.03	<0.03	<0.03	<0.03	<0,03	<0,03
Idrocarburi frazione volatile (C6-C10) come n-esano	μg/L	<20	<20	idrocarburi frazione volatile (C6-C10) come n-esano	mg/L	<0,029	<0,029	<0.029	<0.029	<0.029	<0.029	<0,029	<0,029
Idrocarburi frazione estraibile (C10-C40) come n-esano	μg/L	<24	<24	idrocarburi frazione estraibile (C10-C40) come n-esano	mg/L	<0,024	<0,024	<0.024	<0.024	<0.024	<0.024	<0,024	<0,024
- sommatoria organoalogenati (DLgs 152/06 - All 5 Tab2)	mg/L			- sommatoria organoalogenati (DLgs 152/06 - All 5 Tab2)	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075

	PROGETTISTA	UNITÀ COMMESSA 000 0230113_22				
snam //\V	LOCALITÀ Regione Veneto	SPC. 00-BH-E-94761				
	PROGETTO: Met. Mestre-Trieste: Rifacimento tratto Casale sul Sile-Gonars ed Opere Connesse	Pag. 36 di 64	Rev. 0			

Tab. 2 Fiume Vallio: risultati delle analisi fisiche, chimiche e microbiologiche eseguite sulle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

Fiume Vallio (VAS02)		Corso				Ante operam							
Fluille Valilo (VASU2)		VAS02	2 3/23			VAS0	2 6/19	VAS0	VAS02 9/19 VAS02 11/19				2 1/20
Parametro	U.M.	M	V	Parametro	U.M.	M	V	M	V	M	V	M	V
1,1,1-Tricloroetano	μg/L	<0,057	<0,057	1,1,1-tricloroetano	mg/L	<0,000057	<0,000057	<0.000057	<0.000057	<0.000057	<0.000057	<0,000057	<0,000057
1,1,2,2-Tetracloroetano	μg/L	<0,0049	<0,0049	1,1,2,2-tetracloroetano	mg/L	<0,00000490	<0,00000490	<0.0000049	<0.0000049	<0.0000049	<0.0000049	<0,0000049	<0,0000049
1,1,2-Tricloroetano	μg/L	<0,017	<0,017	1,1,2-tricloroetano	mg/L	<0,0000170	<0,0000170	<0.0000170	<0.0000170	<0.0000170	<0.0000170	<0,0000170	<0,0000170
1,1-Dicloroetano	μg/L	<0,066	<0,066	1,1-dicloroetano	mg/L	<0,000066	<0,000066	<0.000066	<0.000066	<0.000066	<0.000066	<0,000066	<0,000066
1,1-Dicloroetilene	μg/L	<0,0050		1,1-dicloroetilene	mg/L	<0,0000500	<0,00000500	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0,0000050	<0,0000050
1,2,3-Tricloropropano	μg/L	<0,021		1,2,3-tricloropropano	mg/L	<0,0000210	<0,0000210	<0.0000210	<0.0000210	<0.0000210	<0.0000210	<0,0000210	<0,0000210
1,2-Diclorobenzene	μg/L	<0,050	<0,050	1,2-diclorobenzene	mg/L	<0,000050	<0,000050	<0.000050	<0.000050	<0.000050	<0.000050	<0,000050	<0,000050
1,2-Dicloroetano	μg/L	<0,045	<0,045	1,2-dicloroetano	mg/L	<0,0000450	<0,0000450	<0.000045	<0.000045	<0.000045	<0.000045	<0,000045	<0,000045
cis-1,2-Dicloroetilene	μg/L	<0,070	<0,070	1,2-dicloroetilene (cis)	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070
trans-1,2-Dicloroetilene	μg/L	<0,084	<0,084	1,2-dicloroetilene (trans)	mg/L	<0,000084	<0,000084	<0.000084	<0.000084	<0.000084	<0.000084	<0,000084	<0,000084
- 1,2-Dicloroetilene (cis + trans)	μg/L	<0,084	<0,084										
1,3-Diclorobenzene	μg/L	<0,054	<0,054	1,3-diclorobenzene	mg/L	<0,000054	<0,000054	<0.000054	<0.000054	<0.000054	<0.000054	<0,000054	<0,000054
1,4-Diclorobenzene	μg/L	<0,048	<0,048	1,4-diclorobenzene	mg/L	<0,0000480	<0,0000480	<0.000048	<0.000048	<0.000048	<0.000048	<0,000048	<0,000048
2-Clorotoluene	μg/L	<0,042	<0,042	2-clorotoluene	mg/L	<0,0000420	<0,0000420	<0.000042	<0.000042	<0.000042	<0.000042	<0,000042	<0,000042
3-Clorotoluene	μg/L	<0,066	<0,066	3-clorotoluene	mg/L	<0,000066	<0,000066	<0.000066	<0.000066	<0.000066	<0.000066	<0,000066	<0,000066
4-Clorotoluene	μg/L	<0,046	<0,046	4-clorotoluene	mg/L	<0,0000460	<0,0000460	<0.000046	<0.000046	<0.000046	<0.000046	<0,000046	<0,000046
Bromodiclorometano	μg/L	<0,016	<0,016	bromodiclorometano	mg/L	<0,0000160	<0,0000160	<0.0000160	<0.0000160	<0.0000160	<0.0000160	<0,0000160	<0,0000160
Bromoformio	μg/L	<0,021	<0,021	bromoformio	mg/L	<0,0000210	<0,0000210	<0.0000210	<0.0000210	<0.0000210	<0.0000210	<0,0000210	<0,0000210
Carbonio tetracloruro	μg/L	<0,027	<0,027	carbonio tetracloruro	mg/L	<0,000098	<0,000098	<0.000098	<0.000098	<0.000098	<0.000098	<0,000098	<0,000098
Cloroformio	μg/L	<0,013	<0,013	cloroformio	mg/L	<0,0000130	<0,0000130	<0.0000130	<0.0000130	<0.0000130	<0.0000130	<0,0000130	<0,0000130
Clorometano	μg/L	<0,075	<0,075	clorometano	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075
Cloruro di vinile	μg/L	<0,017	<0,017	cloruro di vinile	mg/L	<0,0000170	<0,0000170	<0.0000170	<0.0000170	<0.0000170	<0.0000170	<0,0000170	<0,0000170
Dibromoclorometano	μg/L	<0,013	<0,013	dibromoclorometano	mg/L	<0,0000130	<0,0000130	<0.0000130	<0.0000130	<0.0000130	<0.0000130	<0,0000130	<0,0000130
Esaclorobutadiene	μg/L	<0,015	<0,015	esaclorobutadiene	mg/L	<0,0000150	<0,0000150	<0.0000150	<0.0000150	<0.0000150	<0.0000150	<0,0000150	<0,0000150
Metilene cloruro	μg/L	<0,14	<0,14	metilene cloruro	mg/L	<0,000330	<0,000330	<0.00033	<0.00033	<0.000140	<0.000140	<0,000140	<0,000140
Pentacloroetano	μg/L	<0,076	<0,076										
Tetracloroetilene	μg/L	<0,069	<0,069	tetracloroetilene	mg/L	<0,000069	<0,000069	<0.000069	<0.000069	<0.000069	<0.000069	<0,000069	<0,000069
Tricloroetilene	μg/L	<0,070	<0,070	tricloroetilene	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070
- Solventi clorurati totali	μg/L	<0,14	<0,14										
1,2,4-Trimetilbenzene	μg/L	<0,051	<0,051	1,2,4-trimetilbenzene	mg/L	<0,000051	<0,000051	<0.000051	<0.000051	<0.000051	<0.000051	<0,000051	<0,000051
Benzene	μg/L	<0,091	<0,091	benzene	mg/L	<0,000091	<0,000091	<0.000091	<0.000091	<0.000091	<0.000091	<0,000091	<0,000091
Etilbenzene	μg/L	<0,052	<0,052	etilbenzene	mg/L	<0,000052	<0,000052	0,00006	<0.000052	<0.000052	<0.000052	<0,000052	<0,000052
m,p-Xilene	μg/L	<0,17	<0,17	m,p-xilene	mg/L	<0,000170	<0,000170	<0.000170	<0.000170	<0.000170	<0.000170	<0,000170	<0,000170
o-Xilene	μg/L	<0,065	<0,065	o-xilene	mg/L	<0,000065	<0,000065	<0.000065	<0.000065	<0.000065	<0.000065	<0,000065	<0,000065
Stirene	μg/L	<0,046	<0,046	stirene	mg/L	<0,0000460	<0,0000460	0,00012	<0.000046	<0.000046	<0.000046	<0,000046	<0,000046
Toluene	μg/L	0,288	0,32	toluene	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070
Metilterbutiletere	μg/L	<0,076	<0,076	metilterbutiletere	mg/L	<0,000076	<0,000076	<0.000076	<0.000076	<0.000076	<0.000076	<0,000076	<0,000076
Escherichia coli	UFC/100 ml	1200	1300	Escherichia coli	UFC/100mL	200	240	4	25	2400	2200	230	1100

	PROGETTISTA	SAIPEM	UNITÀ COMMESSA 000 0230113_225				
snam //\v	LOCALITÀ	Regione Veneto	SPC. 00-BH-E-94761				
		Mestre-Trieste: Rifacimento tratto le-Gonars ed Opere Connesse	Pag. 37 di 64	Rev. 0			

Tab. 3 Fiume Vallio: Livello di inquinamento dai Macrodescrittori per lo Stato Ecologico (Indice LIM_{eco}) delle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

	Corso	d'opera				Ante o	peram			
Fiume Vallio (VAS02)	VAS0	2 3/23	VASC	2 6/19	VAS0	2 9/19	VAS02	2 11/19	VAS0	2 1/20
	M	V	M	V	М	V	М	V	M	V
100-O ₂ %sat.	53,26	62,33	14,7	14,7	31	32	21	21	16	16
N-NH4 (mg/I)	0,19	0,16	0,17	0,17	0,01	0,01	0,10	0,09	0,26	0,26
N-NO₃ (mg/l)	0,86	0,81	1,31	1,29	1,60	1,74	2,26	2,48	1,45	1,42
Fosforo totale (µg/l)	87	79	100	120	81	71	38	39	18	19
	Corso	d'opera				Ante o	peram			
Fiume Vallio (VAS02)	VAS02 3/23		VASC	2 6/19	VAS0	2 9/19	VAS02	2 11/19	VAS02 1/20	
	M	V	M	V	M	V	М	V	М	V
100-O ₂ %sat.	0,125	0,125	0,500	0,500	0,250	0,250	0,250	0,250	0,500	0,500
N-NH ₄ (mg/l)	0,125	0,125	0,125	0,125	1,000	1,000	0,250	0,250	0,000	0,000
N-NO ₃ (mg/l)	0,500	0,500	0,250	0,250	0,250	0,250	0,250	0,125	0,250	0,250
Fosforo (µg/l)	0,500	0,500	0,500	0,250	0,500	0,500	1,000	1,000	1,000	1,000
Media LIM _{eco}	0,313	0,313	0,344	0,281	0,500	0,500	0,438	0,406	0,438	0,438
CLASSE	IV	IV	III	IV	ll l	II	III	III	III	III
STATO CHIMICO	SCARSO	SCARSO	SUFF.	SCARSO	BUONO	BUONO	SUFF.	SUFF.	SUFF.	SUFF.

	PROGETTISTA SA	IPEM	UNITÀ COMMESSA 000 0230113_22				
snam	LOCALITÀ Regione Veneto	SP	SPC. 00-BH-E-94761				
	PROGETTO: Met. Mestre-Trieste: Rifa Casale sul Sile-Gonars ed Opere	Pa	ag. 38 di 64	Rev. 0			

Tab. 4 Fiume Meolo: risultati delle analisi fisiche, chimiche e microbiologiche eseguite sulle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

Fiume Meolo (VAS03)			d'opera						Ante o				
Fiullie Medio (VAS03)		VAS0	3 3/23			VAS0	3 6/19	VAS0	3 9/19	VAS03	3 11/19	VAS0	3 1/20
Parametro	U.M.	М	V	Parametro	U.M.	M	٧	M	V	M	V	M	V
Portata	m³/s	1,35	1,64	Portata	m³/s	0,1	02	0,0	60	0,1	159	0,1	132
pH (al prelievo)	pН	7,79	7,82	pH	рН	7,90	8,10	8,2	8,21	7,91	7,91	7,90	7,95
Conducibilità a 25°C	μS/cm	533	520	conducibilità	μS/cm	580	520	530	530	530	530	540	550
Temperatura	°C	12,3	12,4	temperatura	°C	20	20	15,9	15,9	13,4	13,4	10,50	10
Ossigeno disciolto	mg/L	9,07	9,28	ossigeno disciolto	mg/L	8,10	8,10	7,2	7,2	8,7	8,7	8,80	9,80
Ossigeno disciolto saturazione	%	87,5	89,7	ossigeno disciolto	%	91,6	91,6	75,2	75,2	83,5	83,5	81,5	90,7
Alcalinità come CaCO ₃	mg/L	230	226	alcalinità come CaCO3	mg/L	240	230	230	230	270	270	230	240
Richiesta biochimica di ossigeno (BOD ₅)	mg/L	<5,0	<5,0	BOD5	mg/L	<2,80	<2,80	<2.80	<2.80	<3.10	<3.10	<3,10	4,00
COD	mg/L	7,14	9,9	COD totale	mg/L	8,7	8,4	4	<3.30	9,4	10	5,20	6,60
Solidi sospesi totali	mg/L	37,0	27,0	solidi sospesi totali	mg/L	22,0	27,0	32	16	39	59	33	33
Azoto ammoniacale come NH ₄	mg/L	0,74	0,70	azoto ammoniacale come N	mg/L	<0,170	<0,170	0,01	0,0096	0,34	0,38	0,450	0,410
Carbonio organico disciolto (DOC)	mg/L	1,18	1,10	carbonio organico disciolto (DOC)	mg/L	2,30	2,20	1,4	1	1,3	1,3	0,880	1,10
Cloruri	mg/L	6,02	5,74	cloruri	mg/L	5,00	5,00	4,7	4,8	6,9	6,5	7,2	8,6
Nitrati	mg/L	6,19	6,46	nitrati	mg/L	7,3	7,3	8	8,4	8,4	8,6	6,7	6,9
Nitriti	mg/L	0,268	0,266	nitriti	μg/L	0,63	0,63	890	730	0,26	0,45	160	190
Solfati	mg/L	47,6	48,1	solfati	mg/L	45,0	45,0	46	46	41	42	43,0	43,0
Cromo esavalente (Cr VI)	μg/L	<0,84	<0,84	cromo (VI)	mg/L	0,00100	0,00100	0,003	0,003	<0.00084	<0.00084	<0,00084	<0,00084
Arsenico	μg/L	0,48	0,47	arsenico	mg/L	0,00078	0,00078	0,00068	0,00067	0,0018	0,0018	0,00093	0,000590
Cadmio	μg/L	<0,075	<0,075	cadmio	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075
Calcio	μg/L	63000	59000	calcio	mg/L	76	78	70	68	92	92	66,0	66,0
Cromo totale	μg/L	<0,51	<0,51	cromo totale	mg/L	0,00110	0,0120	0,003	0,003	0,00066	0,00069	0,000230	0,000520
Mercurio	μg/L	0,012	0,012	mercurio	mg/L	<0,000085	<0,000085	<0.000085	<0.000085	<0.000085	<0.000085	<0,000085	<0,000085
Nichel	μg/L	<0,60	<0,60	nichel	mg/L	0,00085	0,00130	0,00019	<0.000170	0,00095	0,0012	0,000200	0,000360
Piombo	μg/L	<0,15	<0,15	piombo	mg/L	0,000540	0,000460	<0.000150	<0.000150	0,00093	0,00068	<0,000150	<0,000150
Rame	μg/L	<0,65	<0,65	rame	mg/L	0,00400	0,00370	0,0057	0,0012	0,027	0,0035	<0,000650	0,0160
Zinco	μg/L	2,51	<2,4	zinco	mg/L	0,0067	0,00540	0,0039	0,0052	0,011	0,0062	0,00300	0,0070
Fosforo totale (come P)	mg/L	0,169	0,166	fosforo totale (come P)	mg/L	0,160	0,150	0,12	0,097	0,055	0,062	0,041	0,043
- Idrocarburi totali come n-esano	μg/L	<24	<24	- idrocarburi totali come n-esano	mg/L	<0,03	<0,03	<0.03	<0.03	<0.03	< 0.03	<0,03	<0,03
Idrocarburi frazione volatile (C6-C10) come n-esano	μg/L	<20	<20	idrocarburi frazione volatile (C6-C10) come n-esano	mg/L	<0,029	<0,029	<0.029	<0.029	<0.029	<0.029	<0,029	<0,029
Idrocarburi frazione estraibile (C10-C40) come n-esano	μg/L	<24	<24	idrocarburi frazione estraibile (C10-C40) come n-esano	mg/L	<0,024	<0,024	<0.024	<0.024	<0.024	<0.024	<0,024	<0,024
- sommatoria organoalogenati (DLgs 152/06 - All 5 Tab2)	mg/L			- sommatoria organoalogenati (DLgs 152/06 - All 5 Tab2)	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075

	PROGETTISTA	unità 000	COMMESSA 0230113_225A		
snam //\V	LOCALITÀ Regione Veneto	SPC. 00-BH-E-94761			
	PROGETTO: Met. Mestre-Trieste: Rifacimento tratto Casale sul Sile-Gonars ed Opere Connesse	Pag. 39 di 64	Rev. 0		

Tab. 5 Fiume Meolo: risultati delle analisi fisiche, chimiche e microbiologiche eseguite sulle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

Fiuma Maala (\/AS02)	`	Corso	d'opera						Ante op	eram			
Fiume Meolo (VAS03))	VAS0	4 7/23			VAS0	4 6/19	VAS0	4 9/19	VAS04	11/19	VAS0	4 1/20
Parametro	U.M.	М	V	Parametro	U.M.	М	V	M	V	M	V	M	V
1,1,1-Tricloroetano	μg/L	<0,057	<0,057	1,1,1-tricloroetano	mg/L	<0,000057	<0,000057	<0.000057	<0.000057	<0.000057	<0.000057	<0,000057	<0,000057
1,1,2,2-Tetracloroetano	μg/L	<0,0049	<0,0049	1,1,2,2-tetracloroetano	mg/L	<0,00000490	<0,00000490	<0.0000049	<0.0000049	<0.0000049	<0.0000049	<0,0000049	<0,0000049
1,1,2-Tricloroetano	μg/L	<0,017	<0,017	1,1,2-tricloroetano	mg/L	<0,0000170	<0,0000170	<0.0000170	<0.0000170	<0.0000170	<0.0000170	<0,0000170	<0,0000170
1,1-Dicloroetano	μg/L	<0,066	<0,066	1,1-dicloroetano	mg/L	<0,000066	<0,000066	<0.000066	<0.000066	<0.000066	<0.000066	<0,000066	<0,000066
1,1-Dicloroetilene	μg/L	<0,0050	<0,0050	1,1-dicloroetilene	mg/L	<0,00000500	<0,00000500	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0,0000050	<0,0000050
1,2,3-Tricloropropano	μg/L	<0,021	<0,021	1,2,3-tricloropropano	mg/L	<0,0000210	<0,0000210	<0.0000210	<0.0000210	<0.0000210	<0.0000210	<0,0000210	<0,0000210
1,2-Diclorobenzene	μg/L	<0,050	<0,050	1,2-diclorobenzene	mg/L	<0,000050	<0,000050	<0.000050	<0.000050	<0.000050	<0.000050	<0,000050	<0,000050
1,2-Dicloroetano	μg/L	<0,045	<0,045	1,2-dicloroetano	mg/L	<0,0000450	<0,0000450	<0.000045	<0.000045	<0.000045	<0.000045	<0,000045	<0,000045
cis-1,2-Dicloroetilene	μg/L	0,071	<0,070	1,2-dicloroetilene (cis)	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070
trans-1,2-Dicloroetilene	μg/L	<0,084	<0,084	1,2-dicloroetilene (trans)	mg/L	<0,000084	<0,000084	<0.000084	<0.000084	<0.000084	<0.000084	<0,000084	<0,000084
- 1,2-Dicloroetilene (cis + trans)	μg/L	0,071	<0,084										
1,3-Diclorobenzene	μg/L	<0,054	<0,054	1,3-diclorobenzene	mg/L	<0,000054	<0,000054	<0.000054	<0.000054	<0.000054	<0.000054	<0,000054	<0,000054
1,4-Diclorobenzene	μg/L	<0,048	<0,048	1,4-diclorobenzene	mg/L	<0,0000480	<0,0000480	<0.000048	<0.000048	<0.000048	<0.000048	<0,000048	<0,000048
2-Clorotoluene	μg/L	<0,042	<0,042	2-clorotoluene	mg/L	<0,0000420	<0,0000420	<0.000042	<0.000042	<0.000042	<0.000042	<0,000042	<0,000042
3-Clorotoluene	μg/L	<0,066	<0,066	3-clorotoluene	mg/L	<0,000066	<0,000066	<0.000066	<0.000066	<0.000066	<0.000066	<0,000066	<0,000066
4-Clorotoluene	μg/L	<0,046	<0,046	4-clorotoluene	mg/L	<0,0000460	<0,0000460	<0.000046	<0.000046	<0.000046	<0.000046	<0,000046	<0,000046
Bromodiclorometano	μg/L	<0,016	<0,016	bromodiclorometano	mg/L	<0,0000160	<0,0000160	<0.0000160	<0.0000160	<0.0000160	<0.0000160	<0,0000160	<0,0000160
Bromoformio	μg/L	<0,021	<0,021	bromoformio	mg/L	<0,0000210	<0,0000210	<0.0000210	<0.0000210	<0.0000210	<0.0000210	<0,0000210	<0,0000210
Carbonio tetracloruro	μg/L	<0,027	<0,027	carbonio tetracloruro	mg/L	<0,000098	<0,000098	<0.000098	<0.000098	<0.000098	<0.000098	<0,000098	<0,000098
Cloroformio	μg/L	<0,013	0,047	cloroformio	mg/L	<0,0000130	<0,0000130	<0.0000130	<0.000130	<0.0000130	<0.0000130	<0,0000130	<0,0000130
Clorometano	μg/L	<0,075	<0,075	clorometano	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075
Cloruro di vinile	μg/L	<0,017	<0,017	cloruro di vinile	mg/L	<0,0000170	<0,0000170	<0.0000170	<0.0000170	<0.0000170	<0.0000170	<0,0000170	<0,0000170
Dibromoclorometano	μg/L	<0,013	<0,013	dibromoclorometano	mg/L	<0,0000130	<0,0000130	<0.0000130	<0.0000130	<0.0000130	<0.0000130	<0,0000130	<0,0000130
Esaclorobutadiene	μg/L	<0,015	<0,015	esaclorobutadiene	mg/L	<0,0000150	<0,0000150	<0.0000150	<0.0000150	<0.0000150	<0.0000150	<0,0000150	<0,0000150
Metilene cloruro	μg/L	<0,14	<0,14	metilene cloruro	mg/L	<0,000330	<0,000330	<0.00033	<0.00033	<0.000140	<0.000140	<0,000140	<0,000140
Pentacloroetano	μg/L	<0,076	<0,076										
Tetracloroetilene	μg/L	0,096	0,121	tetracloroetilene	mg/L	0,000100	0,000094	<0.000069	<0.000069	<0.000069	<0.000069	<0,000069	<0,000069
Tricloroetilene	μg/L	<0,070	<0,070	tricloroetilene	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070
- Solventi clorurati totali	μg/L	0,167	0,168										
1,2,4-Trimetilbenzene	μg/L	<0,051	<0,051	1,2,4-trimetilbenzene	mg/L	<0,000051	<0,000051	<0.000051	<0.000051	<0.000051	<0.000051	<0,000051	<0,000051
Benzene	μg/L	<0,091	<0,091	benzene	mg/L	<0,000091	<0,000091	<0.000091	<0.000091	<0.000091	<0.000091	<0,000091	<0,000091
Etilbenzene	μg/L	<0,052	<0,052	etilbenzene	mg/L	<0,000052	<0,000052	<0.000052	<0.000052	<0.000052	<0.000052	<0,000052	<0,000052
m,p-Xilene	μg/L	<0,17	<0,17	m,p-xilene	mg/L	<0,000170	<0,000170	<0.000170	<0.000170	<0.000170	<0.000170	<0,000170	<0,000170
o-Xilene	μg/L	<0,065	<0,065	o-xilene	mg/L	<0,000065	<0,000065	<0.000065	<0.000065	<0.000065	<0.000065	<0,000065	<0,000065
Stirene	μg/L	<0,046	<0,046	stirene	mg/L	<0,0000460	<0,0000460	<0.000046	0,000066	0,00014	0,00014	<0,000046	<0,000046
Toluene	μg/L	0,077	0,084	toluene	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070
Metilterbutiletere	μg/L	<0,076	<0,076	metilterbutiletere	mg/L	<0,000076	<0,000076	<0.000076	<0.000076	<0.000076	<0.000076	<0,000076	<0,000076
Escherichia coli	UFC/100 ml	0	0	Escherichia coli	UFC/100mL	17	27	7	20	620	440	340	1100

	PROGETTISTA	SAIPEM	UNITÀ COMMESSA 000 0230113_225				
snam //\v	LOCALITÀ Re	egione Veneto	SPC. 00-BH-E-94761				
		stre-Trieste: Rifacimento tratto Gonars ed Opere Connesse	Pag. 40 di 64	Rev. 0			

Tab. 6 Fiume Meolo: Livello di inquinamento dai Macrodescrittori per lo Stato Ecologico (Indice LIMeco) delle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

	Corso d'opera Ante operam											
Fiume Meolo (VAS03)	VAS0	3 3/23	VAS0	3 6/19	VAS0	3 9/19	VAS03 11/19		VAS03 1/20			
	M	V	M	V	M	V	M	V	М	V		
100-O₂%sat.	12,45	10,25	8,4	8,4	25	25	17	17	19	9		
N-NH ₄ (mg/l)	0,58	0,54	0,17	0,17	0,01	0,01	0,34	0,38	0,45	0,41		
N-NO ₃ (mg/l)	1,40	1,46	1,65	1,65	1,81	1,90	1,90	1,94	1,51	1,56		
Fosforo totale (µg/l)	169	166	160	150	120	97	55	62	41	43		

	Corso	d'opera				Ante d	peram			
Fiume Meolo (VAS03)	VAS03 3/23		VAS03 6/19		VAS03 9/19		VAS03 11/19		VAS03 1/20	
	M	V	M	V	M	V	M	V	M	٧
100-O₂%sat.	0,500	0,500	1,000	1,000	0,250	0,250	0,500	0,500	0,500	1,000
N-NH4 (mg/l)	0,000	0,000	0,125	0,125	1,000	1,000	0,000	0,000	0,000	0,000
N-NO₃ (mg/l)	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250
Fosforo totale (µg/l)	0,250	0,250	0,250	0,250	0,250	0,500	0,500	0,500	1,000	1,000
Media LIM _{eco}	0,250	0,250	0,406	0,406	0,438	0,500	0,313	0,313	0,438	0,563
CLASSE	IV	IV	III	III	III	II	IV	IV	III	II
STATO CHIMICO	SCARSO	SCARSO	SUFF.	SUFF.	SUFF.	BUONO	SCARSO	SCARSO	SUFF.	BUONO

	PROGETTISTA	unità 000	COMMESSA 0230113_225A		
snam //\v	LOCALITÀ Regione Veneto	SPC. 00-BH-E-94761			
	PROGETTO: Met. Mestre-Trieste: Rifacimento tratto Casale sul Sile-Gonars ed Opere Connesse	Pag. 41 di 64	Rev. 0		

Tab. 7 Canale Grassaga: risultati delle analisi fisiche, chimiche e microbiologiche eseguite sulle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

Canale Grassaga (VAS04)		Corso	d'opera						Ante	operam			
Callale Grassaga (VASU4)		VAS04	4 7/23			VAS0	4 6/19	VAS0	4 9/19	VAS04	11/19	VAS0	4 1/20
Parametro	U.M.	M	٧	Parametro	U.M.	М	V	М	V	М	V	M	V
Portata	m³/s	0,357	0,378	Portata	m³/s	0,0)82	0,0)62	0,1	42	0,1	.21
pH (al prelievo)	pН	8,90	7,74	pH	рН	7,70	7,70	8,33	8,3	8	7,98	8,08	8,15
Conducibilità a 25°C	μS/cm	390	422	conducibilità	μS/cm	430	430	530	530	620	620	550	550
Temperatura	°C	23,6	22,7	temperatura	°C	25	25	18,4	18,4	13	13	9,30	9,30
Ossigeno disciolto	mg/L	9,24	6,72	ossigeno disciolto	mg/L	6,30	6,30	9,1	9,1	9,2	9,2	11,0	11,0
Ossigeno disciolto saturazione	%	111,3	79,7	ossigeno disciolto	%	77,7	77,7	99,8	99,8	87,0	87,0	99,0	99,0
Alcalinità come CaCO ₃	mg/L	175,8	175,0	alcalinità come CaCO3	mg/L	180	180	240	240	310	310	240	240
Richiesta biochimica di ossigeno (BOD ₅)	mg/L	<5,0	<5,0	BOD5	mg/L	<2,80	4,00	<2.80	<2.80	<3.10	<3.10	<3,10	<3,10
COD	mg/L	14,6	8,32	COD totale	mg/L	18,0	19,0	5,6	4,4	11	11	4,30	4,10
Solidi sospesi totali	mg/L	10,0	20,5	solidi sospesi totali	mg/L	5,00	6,00	34	41	37	49	21,0	22,0
Azoto ammoniacale come NH ₄	mg/L	2,24	0,0150	azoto ammoniacale come N	mg/L	0,450	0,460	0,086	0,0065	0,37	0,33	0,65	0,63
Carbonio organico disciolto (DOC)	mg/L	4,65	3,10	carbonio organico disciolto (DOC)	mg/L	6,80	6,40	1,5	1,4	2,5	2,5	1,00	1,00
Cloruri	mg/L	7,5	7,1	cloruri	mg/L	8,9	8,9	5,7	5,6	11	11	7,6	8,0
Nitrati	mg/L	<0,19	5,60	nitrati	mg/L	8,3	8,3	6,9	7,6	19	19	7,5	7,5
Nitriti	mg/L	<0,012	<0,012	nitriti	μg/L	0,34	0,34	1300	770	0,53	0,51	130	130
Solfati	mg/L	28,3	32,6	solfati	mg/L	32,0	32,0	42	42	46	46	42,0	42,0
Cromo esavalente (Cr VI)	μg/L	<0,84	<0,84	cromo (VI)	mg/L	0,00100	0,00098	0,0029	0,0034	0,0011	0,0011	<0,00084	<0,00084
Arsenico	μg/L	1,00	1,00	arsenico	mg/L	0,00140	0,00150	0,00075	0,00078	0,002	0,0018	0,000650	0,000580
Cadmio	μg/L	<0,075	<0,075	cadmio	mg/L	0,000078	0,000090	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075
Calcio	μg/L	51000	54000	calcio	mg/L	57,0	56,0	70	71	110	110	69	69
Cromo totale	μg/L	<0,51	<0,51	cromo totale	mg/L	0,00100	0,00098	0,003	0,0035	0,0011	0,0012	<0,000180	
Mercurio	μg/L	0,016	0,015	mercurio	mg/L	0,00310	0,00370	<0.000085	<0.000085	<0.000085	<0.000085	<0,000085	<0,000085
Nichel	μg/L	0,73	1,10	nichel	mg/L	0,00150	0,00130	0,00023	0,00028	0,0021	0,0018	0,000330	0,000310
Piombo	μg/L	0,187	1,30	piombo	mg/L	0,000240	0,000270	<0.000150	<0.000150	0,00093	0,0011	<0,000150	<0,000150
Rame	μg/L	1,76	2,38	rame	mg/L	0,034	0,043	0,005	0,0016	0,015	0,0062	0,00420	0,00410
Zinco	μg/L	13,1	7,8	zinco	mg/L	0,0110	0,0085	0,0042	0,0045	0,01	0,0089	0,00560	0,00560
Fosforo totale (come P)	mg/L	0,493	0,110	fosforo totale (come P)	mg/L	0,270	0,260	0,1	0,1	0,04	0,044	0,0210	0,0220
- Idrocarburi totali come n-esano	μg/L	<24	<24	- idrocarburi totali come n-esano	mg/L	<0,03	<0,03	<0.03	<0.03	<0.03	<0.03	<0,03	<0,03
Idrocarburi frazione volatile (C6-C10)	μg/L	<20	<20	idrocarburi frazione volatile (C6-C10)	mg/L	<0.029	<0.029	<0.029	<0.029	<0.029	<0.029	<0.029	<0.029
come n-esano	µg/∟	~20	`~20	come n-esano	ilig/L	\0,029	₹0,023	₹0.023	₹0.023	₹0.023	₹0.02∂	₹0,02∂	10,023
Idrocarburi frazione estraibile (C10-C40) come n-esano	μg/L	<24	<24	idrocarburi frazione estraibile (C10-C40) come n-esano	mg/L	<0,024	<0,024	<0.024	<0.024	<0.024	<0.024	<0,024	<0,024
- sommatoria organoalogenati (DLgs 152/06 - All 5 Tab2)	mg/L			- sommatoria organoalogenati (DLgs 152/06 - All 5 Tab2)	mg/L	0,000100	0,000094	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075

	PROGETTISTA	SAIPEM	unità 000	COMMESSA 0230113_225A		
snam //\v	LOCALITÀ Re	egione Veneto	SPC. 00-BH-E-94761			
		stre-Trieste: Rifacimento tratto Gonars ed Opere Connesse	Pag. 42 di 64	Rev. 0		

Tab. 8 Canale Grassaga: risultati delle analisi fisiche, chimiche e microbiologiche eseguite sulle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

	U.M.	VAS04	7/23			1/400	4 6/40	1/400	4 6 / 4 6	1/400			Ante operam								
	U.M.					VASU	VAS04 6/19		4 9/19	VAS04 11/19		VAS0	4 1/20								
		М	V	Parametro	U.M.	М	V	M	V	M	V	M	V								
1,1,1-Tricloroetano	μg/L	<0,057	<0,057	1,1,1-tricloroetano	mg/L	<0,000057	<0,000057	<0.000057	<0.000057	<0.000057	<0.000057	<0,000057	<0,000057								
	μg/L	<0,0049	<0,0049	1,1,2,2-tetracloroetano	mg/L	<0,00000490	<0,00000490	<0.0000049	<0.0000049	<0.0000049	<0.0000049	<0,0000049	<0,0000049								
1,1,2-Tricloroetano	μg/L	<0,017	<0,017	1,1,2-tricloroetano	mg/L	<0,0000170	<0,0000170	<0.0000170	<0.0000170	<0.0000170	<0.0000170	<0,0000170	<0,0000170								
1,1-Dicloroetano	μg/L	<0,066	<0,066	1,1-dicloroetano	mg/L	<0,000066	<0,000066	<0.000066	<0.000066	<0.000066	<0.000066	<0,000066	<0,000066								
1,1-Dicloroetilene	μg/L	<0,0050	<0,0050	1,1-dicloroetilene	mg/L	<0,00000500	<0,00000500	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0,0000050	<0,0000050								
1,2,3-Tricloropropano	μg/L	<0,021	<0,021	1,2,3-tricloropropano	mg/L	<0,0000210		<0.0000210	<0.0000210	<0.0000210	<0.0000210	<0,0000210	<0,0000210								
1,2-Diclorobenzene	μg/L	<0,050	<0,050	1,2-diclorobenzene	mg/L	<0,000050	<0,000050	<0.000050	<0.000050	<0.000050	<0.000050	<0,000050	<0,000050								
1,2-Dicloroetano	μg/L	<0,045	<0,045	1,2-dicloroetano	mg/L	<0,0000450	<0,0000450	<0.000045	<0.000045	<0.000045	<0.000045	<0,000045	<0,000045								
cis-1,2-Dicloroetilene	μg/L	0,071	<0,070	1,2-dicloroetilene (cis)	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070								
trans-1,2-Dicloroetilene	μg/L	<0,084	<0,084	1,2-dicloroetilene (trans)	mg/L	<0,000084	<0,000084	<0.000084	<0.000084	<0.000084	<0.000084	<0,000084	<0,000084								
- 1,2-Dicloroetilene (cis + trans)	μg/L	0,071	<0,084																		
1,3-Diclorobenzene	μg/L	<0,054	<0,054	1,3-diclorobenzene	mg/L	<0,000054	<0,000054	<0.000054	<0.000054	<0.000054	<0.000054	<0,000054	<0,000054								
1,4-Diclorobenzene	μg/L	<0,048	<0,048	1,4-diclorobenzene	mg/L	<0,0000480	<0,0000480	<0.000048	<0.000048	<0.000048	<0.000048	<0,000048	<0,000048								
2-Clorotoluene	μg/L	<0,042	<0,042	2-clorotoluene	mg/L	<0,0000420	<0,0000420	<0.000042	<0.000042	<0.000042	<0.000042	<0,000042	<0,000042								
3-Clorotoluene	μg/L	<0,066	<0,066	3-clorotoluene	mg/L	<0,000066	<0,000066	<0.000066	<0.000066	<0.000066	<0.000066	<0,000066	<0,000066								
4-Clorotoluene	μg/L	<0,046	<0,046	4-clorotoluene	mg/L	<0,0000460	<0,0000460	<0.000046	<0.000046	<0.000046	<0.000046	<0,000046	<0,000046								
Bromodiclorometano	μg/L	<0,016	<0,016	bromodiclorometano	mg/L	<0,0000160	<0,0000160	<0.0000160	<0.0000160	<0.0000160	<0.0000160	<0,0000160	<0,0000160								
Bromoformio	μg/L	<0,021	<0,021	bromoformio	mg/L	<0,0000210	<0,0000210	<0.0000210	<0.0000210	<0.0000210	<0.0000210	<0,0000210	<0,0000210								
Carbonio tetracloruro	μg/L	<0,027	<0,027	carbonio tetracloruro	mg/L	<0,000098	<0,000098	<0.000098	<0.000098	<0.000098	<0.000098	<0,000098	<0,000098								
Cloroformio	μg/L	<0,013	0,047	cloroformio	mg/L	<0,0000130	<0,0000130	<0.0000130	<0.0000130	<0.0000130	<0.0000130	<0,0000130	<0,0000130								
Clorometano	μg/L	<0,075	<0,075	clorometano	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075								
Cloruro di vinile	μg/L	<0,017	<0,017	cloruro di vinile	mg/L	<0,0000170	<0,0000170	<0.0000170	<0.0000170	<0.0000170	<0.0000170	<0,0000170	<0,0000170								
Dibromoclorometano	μg/L	<0,013	<0,013	dibromoclorometano	mg/L	<0,0000130	<0,0000130	<0.0000130	<0.0000130	<0.0000130	<0.0000130	<0,0000130	<0,0000130								
	μq/L	<0,015	<0,015	esaclorobutadiene	mg/L	<0,0000150	<0,0000150	<0.0000150	<0.0000150	<0.0000150	<0.0000150	<0,0000150	<0,0000150								
Metilene cloruro	μg/L	<0,14	<0,14	metilene cloruro	mg/L	<0.000330	<0.000330	<0.00033	<0.00033	<0.000140	<0.000140	<0,000140	<0,000140								
	μg/L	<0,076	<0,076		J.	.,	.,					.,	.,								
	μg/L	0.096	0,121	tetracloroetilene	mg/L	0,000100	0,000094	<0.000069	<0.000069	<0.000069	<0.000069	<0,000069	<0,000069								
	μg/L	<0,070	<0.070	tricloroetilene	mg/L	<0.000070	<0.000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070								
	μq/L	0,167	0,168		J.	.,	.,					.,	.,								
	μg/L	<0,051	<0.051	1,2,4-trimetilbenzene	mg/L	<0,000051	<0,000051	<0.000051	<0.000051	<0.000051	<0.000051	<0,000051	<0,000051								
	μq/L	<0.091	<0.091	benzene	mg/L	<0.000091	<0.000091	<0.000091	<0.000091	<0.000091	<0.000091	<0.000091	<0.000091								
	µg/L	<0.052	<0.052	etilbenzene	mg/L	<0.000052	<0.000052	<0.000052	<0.000052	<0.000052	<0.000052	<0.000052	<0.000052								
	µg/L	<0.17	<0,17	m,p-xilene	mg/L	<0,000170	<0.000170	< 0.000170	<0.000170	<0.000170	<0.000170	<0,000170	<0,000170								
-1	µg/L	<0.065	<0.065	o-xilene	mg/L	<0,000065	<0,000065	<0.000065	<0.000065	<0.000065	<0.000065	<0,000065	<0.000065								
	μg/L	<0,046	<0.046	stirene	mg/L	<0.0000460	<0,0000460	<0.000046	0,000066	0,00014	0,00014	<0,000046	<0,000046								
	μg/L	0.077	0.084	toluene	mg/L	<0.000070	<0.000070	<0.000070	<0.000070	<0.000070	<0.000070	<0.000070	<0.000070								
	ua/L	<0.076	<0.076	metilterbutiletere	ma/L	<0,000076	<0.000076	<0.000076	<0.000076	<0.000076	<0.000076	<0,000076	<0,000076								
	C/100 ml	0	0	Escherichia coli	UFC/100mL	17	27	7	20	620	440	340	1100								

	PROGETTISTA	UNITÀ 000	COMMESSA 0230113_225A
snam	LOCALITÀ Regione Veneto	SPC. 00-BH-	E-94761
	PROGETTO: Met. Mestre-Trieste: Rifacimento t Casale sul Sile-Gonars ed Opere Conness	Pag 43 di 64	Rev. 0

Tab. 9 Canale Grassaga: Livello di inquinamento dai Macrodescrittori per lo Stato Ecologico (Indice LIMeco) delle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

	Corso	d'opera				Ante op	eram			
Canale Grassaga (VAS04)	VAS0	4 7/23	VAS0	4 6/19	VAS	04 9/19	VAS04	11/19	VAS0	4 1/20
	M	٧	M	V	M	V	M	٧	M	V
100-O₂%sat.	11,33	20,28	22,3	22,3	0	0	13	13	1	1
N-NH ₄ (mg/l)	1,74	0,01	0,45	0,46	0,09	0,01	0,37	0,33	0,65	0,63
N-NO ₃ (mg/l)	0,04	1,26	1,87	1,87	1,56	1,72	4,29	4,29	1,69	1,69
Fosforo totale (µg/l)	493	110	270	260	100	100	40	44	21	22
	Corso	d'opera				Ante op	eram			
Canale Grassaga (VAS04)	VAS04 7/23		VAS0	4 6/19	VAS	VAS04 9/19		VAS04 11/19		4 1/20
	M	٧	М	V	M	V	M	V	М	V
100-O ₂ %sat.	0,500	0,250	0,250	0,250	1,000	1,000	0,500	0,500	1,000	1,000
N-NH ₄ (mg/l)	0,000	1,000	0,000	0,000	0,250	1,000	0,000	0,000	0,000	0,000
N-NO ₃ (mg/l)	1,000	0,250	0,250	0,250	0,250	0,250	0,125	0,125	0,250	0,250
Fosforo totale (µg/l)	0,000	0,250	0,125	0,125	0,500	0,500	1,000	1,000	1,000	1,000
Media LIMeco	0,375	0,438	0,156	0,156	0,500	0,688	0,406	0,406	0,563	0,563
CLASSE	III	III	V	V	ll l		III	III	II	П
STATO CHIMICO	SUFF.	SUFF.	CATTIVO	CATTIVO	BUONO	ELEVATO	SUFF.	SUFF.	BUONO	BUONO

	PROGETTISTA	UNITÀ 000	COMMESSA 0230113_225A			
snam V/\V	LOCALITÀ Regione Veneto	SPC. 00-BH-E-94761				
	PROGETTO: Met. Mestre-Trieste: Rifacimento tratto Casale sul Sile-Gonars ed Opere Connesse	Pag. 44 di 64	Rev. 0			

Tab. 10 Canale Bidoggia: risultati delle analisi fisiche, chimiche e microbiologiche eseguite sulle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

Canala Bidaggia (VASOE)		Corso	d'opera]					Ante o	peram			
Canale Bidoggia (VAS05)		VAS0	5 7/23			VAS0	5 6/19	VAS0	5 9/19	VAS05	5 11/19	VAS0	5 1/20
Parametro	U.M.	М	٧	Parametro	U.M.	M	V	M	V	М	V	M	V
Portata	m³/s	0,173	1,125	Portata	m³/s	1,2	229	0,3	364	0,0	64	0,	51
pH (al prelievo)	pН	7,74	7,80	pH	рН	8	8,10	8,3	8,36	7,95	7,96	8,09	8,09
Conducibilità a 25°C	μS/cm	544	584	conducibilità	μS/cm	560	560	550	550	590	600	580	580
Temperatura	°C	23,7	23,6	temperatura	°C	23	23	17,8	17,8	13,2	13,2	9,10	9,20
Ossigeno disciolto	mg/L	7,30	7,60	ossigeno disciolto	mg/L	6,80	6,80	7,7	7,8	8,5	8,5	12,0	11,0
Ossigeno disciolto saturazione	%	88,06	91,57	ossigeno disciolto	%	81,1	81,1	83,5	84,6	81,1	81,1	107,5	98,7
Alcalinità come CaCO ₃	mg/L	233	241	alcalinità come CaCO3	mg/L	250	250	240	240	300	300	250	250
Richiesta biochimica di ossigeno (BOD ₅)	mg/L	<5,0	<5,0	BOD5	mg/L	<2,80	<2,80	<2.80	<2.80	<3.10	<3.10	<3,10	<3,10
COD	mg/L	8,7	10,5	COD totale	mg/L	6,70	5,90	4,5	4,6	9,6	7,4	4,20	9,2
Solidi sospesi totali	mg/L	76	72	solidi sospesi totali	mg/L	16,0	19,0	34	35	38	45	36,0	40,0
Azoto ammoniacale come NH ₄	mg/L	0,0140	<0,010	azoto ammoniacale come N	mg/L	<0,170	<0,170	0,0081	<0.0062	0,24	0,24	0,210	0,180
Carbonio organico disciolto (DOC)	mg/L	5,76	5,47	carbonio organico disciolto (DOC)	mg/L	3,20	2,90	1,3	1,4	2	2	1,00	1,10
Cloruri	mg/L	9,0	9,2	cloruri	mg/L	6,6	6,6	6	6,1	9,9	11	7,9	8,2
Nitrati	mg/L	9,2	8,9	nitrati	mg/L	11,0	11,0	8,6	8,1	14	17	8,6	8,7
Nitriti	mg/L	<0,012	<0,012	nitriti	μg/L	0,27	0,27	9,5	9,5	0,23	0,24	160	160
Solfati	mg/L	44,3	46,4	solfati	mg/L	49,0	49,0	48	48	46	48	48,0	49,0
Cromo esavalente (Cr VI)	μg/L	<0,84	<0,84	cromo (VI)	mg/L	0,00091	0,00095	0,0034	0,0031	<0.00084	0,001	<0,00084	<0,00084
Arsenico	μg/L	0,81	0,80	arsenico	mg/L	0,000560	0,000550	0,00062	0,00055	0,0017	0,0017	0,00073	0,000530
Cadmio	μg/L	<0,075	<0,075	cadmio	mg/L	<0,000075	0,000079	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075
Calcio	μg/L	75000	78000	calcio	mg/L	81	81	78	72	110	110	71	72
Cromo totale	μg/L	0,92	1,36	cromo totale	mg/L	0,00092	0,00095	0,0036	0,0032	0,0012	0,0011	0,000240	0,000220
Mercurio	μg/L	<0,004	0,005	mercurio	mg/L	<0,000085	<0,000085	<0.000085	<0.000085	<0.000085	<0.000085	<0,000085	<0,000085
Nichel	μg/L	4,06	1,52	nichel	mg/L	0,00093	0,00097	0,00034	0,00026	0,0013	0,0013	0,000390	0,000320
Piombo	μg/L	<0,15	0,420	piombo	mg/L	<0,000150	<0,000150	<0.000150	<0.000150	0,00081	0,0009	<0,000150	<0,000150
Rame	μg/L	3,5	3,7	rame	mg/L	0,00240	0,00240	0,0047	0,0018	0,018	0,0043	<0,000650	
Zinco	μg/L	9,9	15,6	zinco	mg/L	0,00400	0,00320	0,0039	0,0035	0,017	0,011	0,00390	0,00300
Fosforo totale (come P)	mg/L	0,060	0,071	fosforo totale (come P)	mg/L	0,088	0,062	0,059	0,063	0,034	0,043	0,0160	0,0180
- Idrocarburi totali come n-esano	μg/L	<24	<24	- idrocarburi totali come n-esano	mg/L	<0,03	<0,03	<0.03	<0.03	0,04	<0.03	<0,03	<0,03
Idrocarburi frazione volatile (C6-C10)	μg/L	<20	<20	idrocarburi frazione volatile (C6-C10)	mg/L	<0.029	<0.029	<0.029	<0.029	<0.029	<0.029	<0.029	<0,029
come n-esano	ру/с	\2 0	~20	come n-esano	mg/L	\0,029	~ 0,029	\0.029	\0.029	~0.029	\0.029	\0,029	~0,029
Idrocarburi frazione estraibile (C10-C40) come n-esano	μg/L	<24	<24	idrocarburi frazione estraibile (C10-C40) come n-esano	mg/L	<0,024	<0,024	<0.024	<0.024	0,04	<0.024	<0,024	<0,024
- sommatoria organoalogenati (DLgs 152/06 - All 5 Tab2)	mg/L			- sommatoria organoalogenati (DLgs 152/06 - All 5 Tab2)	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075

	PROGETTISTA	UNITÀ 000	COMMESSA 0230113_225A
snam V/\V	LOCALITÀ Regione Veneto	SPC. 00-BH-	E-94761
	PROGETTO: Met. Mestre-Trieste: Rifacimento tratto Casale sul Sile-Gonars ed Opere Connesse	Pag. 45 di 64	Rev. 0

Tab. 11 Canale Bidoggia: risultati delle analisi fisiche, chimiche e microbiologiche eseguite sulle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

Canale Bidoggia (VAS0	E \	Corso							Ante op	eram			
Canale Bluoggia (VASO	3)	VAS0	5 7/23			VAS0	5 6/19	VAS0	5 9/19	VAS05	5 11/19	VAS0	5 1/20
Parametro	U.M.	М	V	Parametro	U.M.	M	V	M	V	M	V	М	V
1,1,1-Tricloroetano	μg/L	<0,057	<0,057	1,1,1-tricloroetano	mg/L	<0,000057	<0,000057	<0.000057	<0.000057	<0.000057	<0.000057	<0,000057	<0,000057
1,1,2,2-Tetracloroetano	μg/L	<0,0049	<0,0049	1,1,2,2-tetracloroetano	mg/L	<0,00000490	<0,00000490	<0.0000049	<0.0000049	<0.0000049	<0.0000049	<0,0000049	<0,0000049
1,1,2-Tricloroetano	μg/L	<0,017	<0,017	1,1,2-tricloroetano	mg/L	<0,0000170	<0,0000170	<0.0000170	<0.0000170	<0.0000170	<0.0000170	<0,0000170	<0,0000170
1,1-Dicloroetano	μg/L	<0,066	<0,066	1,1-dicloroetano	mg/L	<0,000066	<0,000066	<0.000066	<0.000066	<0.000066	<0.000066	<0,000066	<0,000066
1,1-Dicloroetilene	μg/L	<0,0050	<0,0050	1,1-dicloroetilene	mg/L	<0,00000500	<0,00000500	<0.000050	<0.000050	<0.000050	<0.000050	<0,0000050	<0,0000050
1,2,3-Tricloropropano	μg/L	<0,021	<0,021	1,2,3-tricloropropano	mg/L	<0,0000210	<0,0000210	<0.0000210	<0.0000210	<0.0000210	<0.0000210	<0,0000210	<0,0000210
1,2-Diclorobenzene	μg/L	<0,050	<0,050	1,2-diclorobenzene	mg/L	<0,000050	<0,000050	<0.000050	<0.000050	<0.000050	<0.000050	<0,000050	<0,000050
1,2-Dicloroetano	μg/L	<0,045	<0,045	1,2-dicloroetano	mg/L	<0,0000450	<0,0000450	<0.000045	<0.000045	<0.000045	<0.000045	<0,000045	<0,000045
cis-1,2-Dicloroetilene	μg/L	<0,070	<0,070	1,2-dicloroetilene (cis)	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070
trans-1,2-Dicloroetilene	μg/L	<0,084	<0,084	1,2-dicloroetilene (trans)	mg/L	<0,000084	<0,000084	<0.000084	<0.000084	<0.000084	<0.000084	<0,000084	<0,000084
- 1,2-Dicloroetilene (cis + trans)	μg/L	<0,084	<0,084										
1,3-Diclorobenzene	μg/L	<0,054	<0,054	1,3-diclorobenzene	mg/L	<0,000054	<0,000054	<0.000054	<0.000054	<0.000054	<0.000054	<0,000054	<0,000054
1,4-Diclorobenzene	μg/L	<0,048	<0,048	1,4-diclorobenzene	mg/L	<0,0000480	<0,0000480	<0.000048	<0.000048	<0.000048	<0.000048	<0,000048	<0,000048
2-Clorotoluene	μg/L	<0,042	<0,042	2-clorotoluene	mg/L	<0,0000420	<0,0000420	<0.000042	<0.000042	<0.000042	<0.000042	<0,000042	<0,000042
3-Clorotoluene	μg/L	<0,066	<0,066	3-clorotoluene	mg/L	<0,000066	<0,000066	<0.000066	<0.000066	<0.000066	<0.000066	<0,000066	<0,000066
4-Clorotoluene	μg/L	<0,046	<0,046	4-clorotoluene	mg/L	<0,0000460	<0,0000460	<0.000046	<0.000046	<0.000046	<0.000046	<0,000046	<0,000046
Bromodiclorometano	μg/L	<0,016	<0,016	bromodiclorometano	mg/L	<0,0000160	<0,0000160	<0.0000160	<0.0000160	<0.0000160	<0.0000160	<0,0000160	<0,0000160
Bromoformio	μg/L	<0,021	<0,021	bromoformio	mg/L	<0,0000210	<0,0000210	<0.0000210	<0.0000210	<0.0000210	<0.0000210	<0,0000210	<0,0000210
Carbonio tetracloruro	μg/L	<0,027	<0,027	carbonio tetracloruro	mg/L	<0,000098	<0,000098	<0.000098	<0.000098	<0.000098	<0.000098	<0,000098	<0,000098
Cloroformio	μg/L	<0,013	<0,013	cloroformio	mg/L	<0,0000130	<0,0000130	<0.0000130	<0.0000130	<0.0000130	<0.0000130	<0,0000130	<0,0000130
Clorometano	μg/L	<0,075	<0,075	clorometano	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075
Cloruro di vinile	μg/L	<0,017	<0,017	cloruro di vinile	mg/L	<0,0000170	<0,0000170	<0.0000170	<0.0000170	<0.0000170	<0.0000170	<0,0000170	<0,0000170
Dibromoclorometano	μg/L	<0,013	<0,013	dibromoclorometano	mg/L	<0,0000130	<0,0000130	<0.0000130	<0.0000130	<0.0000130	< 0.0000130	<0,0000130	<0,0000130
Esaclorobutadiene	μg/L	<0,015	<0,015	esaclorobutadiene	mg/L	<0,0000150	<0,0000150	<0.0000150	<0.0000150	<0.0000150	<0.0000150		
Metilene cloruro	μg/L	<0,14	<0,14	metilene cloruro	mg/L	<0,000330	<0,000330	<0.00033	<0.00033	<0.000140	<0.000140	<0,000140	<0,000140
Pentacloroetano	μg/L	<0,076	<0,076			·	·						
Tetracloroetilene	μg/L	0,072	<0,069	tetracloroetilene	mg/L	<0,000069	<0,000069	<0.000069	<0.000069	<0.000069	<0.000069	<0,000069	<0,000069
Tricloroetilene	μg/L	<0,070	<0,070	tricloroetilene	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070
- Solventi clorurati totali	μg/L	0,072	<0,14										
1,2,4-Trimetilbenzene	μg/L	<0,051	<0,051	1,2,4-trimetilbenzene	mg/L	<0,000051	<0,000051	<0.000051	<0.000051	<0.000051	<0.000051	<0,000051	<0,000051
Benzene	μg/L	<0,091	<0,091	benzene	mg/L	<0,000091	<0,000091	<0.000091	<0.000091	<0.000091	<0.000091	<0,000091	<0,000091
Etilbenzene	μg/L	<0,052	<0,052	etilbenzene	mg/L	<0,000052	<0,000052	0,000088	0,000075	<0.000052	<0.000052	<0,000052	<0,000052
m,p-Xilene	μg/L	<0.17	<0,17	m,p-xilene	mg/L	<0,000170	<0,000170	<0.000170	<0.000170	<0.000170	<0.000170	<0,000170	<0,000170
o-Xilene	μg/L	<0,065	<0,065	o-xilene	mg/L	<0,000065	<0,000065	<0.000065	<0.000065	< 0.000065	<0.000065	<0,000065	<0,000065
Stirene	μg/L	<0,046	<0,046	stirene	mg/L	<0,0000460	<0,0000460	0.00013	0,000084	<0.000046	<0.000046	0,000083	0,000067
Toluene	µg/L	<0.070	<0.070	toluene	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0.000070
Metilterbutiletere	μg/L	<0.076	<0.076	metilterbutiletere	mg/L	<0,000076	<0,000076	<0.000076	<0.000076	<0.000076	<0.000076	<0,000076	<0.000076
Escherichia coli	UFC/100 ml	0	0	Escherichia coli	UFC/100mL	70	65	4	22	480	600	1100	500

	PROGETTISTA	SAIPEM	unità 000	COMMESSA 0230113_225A			
snam //\v	LOCALITÀ Re	egione Veneto	SPC. 00-BH-E-94761				
		stre-Trieste: Rifacimento tratto Gonars ed Opere Connesse	Pag. 46 di 64	Rev. 0			

Tab. 12 Canale Bidoggia: Livello di inquinamento dai Macrodescrittori per lo Stato Ecologico (Indice LIMeco) delle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

	Corso	d'opera				Ante o	peram			
Canale Bidoggia (VAS05)	VAS	05 7/23	VAS0	5 6/19	VAS0	5 9/19	VAS05	5 11/19	VAS0	5 1/20
	M	V	М	V	М	V	M	٧	M	٧
100-O₂%sat.	11,94	8,43	18,9	18,9	16	15	19	19	8	1
N-NH4 (mg/l)	0,01	0,01	0,17	0,17	0,01	0,01	0,24	0,24	0,21	0,18
N-NO₃ (mg/l)	2,08	2,01	2,48	2,48	1,94	1,83	3,16	3,84	1,94	1,96
Fosforo totale (µg/l)	60	71	88	62	59	63	34	43	16	18
	Corso	d'opera				Ante o	peram			
Canale Bidoggia (VAS05)	VAS	05 7/23	VAS0	5 6/19	VAS05 9/19		VAS05 11/19		VAS0	5 1/20
	M	V	М	V	М	V	M	٧	M	V
100-O ₂ %sat.	0,500	1,000	0,500	0,500	0,500	0,500	0,500	0,500	1,000	1,000
N-NH ₄ (mg/l)	1,000	1,000	0,125	0,125	1,000	1,000	0,125	0,125	0,125	0,125
N-NO₃ (mg/l)	0,250	0,250	0,125	0,125	0,250	0,250	0,125	0,125	0,250	0,250
Fosforo totale (µg/l)	0,500	0,500	0,500	0,500	0,500	0,500	1,000	1,000	1,000	1,000
Media LIM _{eco}	0,563	0,688	0,313	0,313	0,563	0,563	0,438	0,438	0,594	0,594
CLASSE	II		IV	IV	II	II	III	III	II	II
STATO CHIMICO	BUONO	ELEVATO	SCARSO	SCARSO	BUONO	BUONO	SUFF.	SUFF.	BUONO	BUONO

	PROGETTISTA	UNITÀ 000	COMMESSA 0230113_225A			
snam //\V	LOCALITÀ Regione Veneto	SPC. 00-BH-E-94761				
	PROGETTO: Met. Mestre-Trieste: Rifacimento tratto Casale sul Sile-Gonars ed Opere Connesse	Pag. 47 di 64	Rev. 0			

Tab. 13 Canale Piavon: risultati delle analisi fisiche, chimiche e microbiologiche eseguite sulle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

Canale Piavon (VAS06)		Corso	d'opera						Ante	operam			
Canale Plavon (VASUO)		VAS06	11/23			VAS0	6 6/19	VAS0	6 9/19	VAS06	3 11/19	VAS0	6 1/20
Parametro	U.M.	M	V	Parametro	U.M.	M	V	М	V	M	V	М	V
Portata	m³/s	0,423	0,865	Portata	m³/s	0,1	102	0,0)99	0,1	65	0,1	33
pH (al prelievo)	pН	7,61	7,75	pH	рН	7,70	7,70	8,42	8,34	7,8	7,8	8,01	8,02
Conducibilità a 25°C	μS/cm	792	806	conducibilità	μS/cm	550	550	610	620	640	640	660	660
Temperatura	°C	11,2	11,5	temperatura	°C	23	23	19,4	19,4	13,2	13,2	10,90	10,90
Ossigeno disciolto	mg/L	9,71	9,89	ossigeno disciolto	mg/L	3,50	3,50	5,8	5,8	7,7	7,7	11,0	11,0
Ossigeno disciolto saturazione	%	91,4	93,7	ossigeno disciolto	%	41,8	41,8	64,9	64,9	73,1	73,1	102,8	102,8
Alcalinità come CaCO₃	mg/L	371	376	alcalinità come CaCO3	mg/L	250	240	270	270	320	320	280	280
Richiesta biochimica di ossigeno (BOD ₅)	mg/L	<5,0	<5,0	BOD5	mg/L	<2,80	<2,80	3	<2.80	<3.10	<3.10	<3,10	<3,10
COD	mg/L	10,1	9,4	COD totale	mg/L	12,0	12,0	6,4	6,8	9,3	9,7	5,50	6,50
Solidi sospesi totali	mg/L	8,5	21,5	solidi sospesi totali	mg/L	24,0	24,0	24	23	27	34	32,0	33
Azoto ammoniacale come NH ₄	mg/L	0,85	0,81	azoto ammoniacale come N	mg/L	0,95	0,93	0,0088	<0.0062	0,76	0,74	0,50	0,50
Carbonio organico disciolto (DOC)	mg/L	2,39	2,25	carbonio organico disciolto (DOC)	mg/L	4,60	4,50	2,2	2,1	2,7	2,6	1,50	1,50
Cloruri	mg/L	20,2	19,9	cloruri	mg/L	13,0	13,0	11	11	14	14	15,0	15,0
Nitrati	mg/L	10,0	10,0	nitrati	mg/L	7,7	7,6	10	10	16	16	15,0	15,0
Nitriti	mg/L	0,244	0,251	nitriti	μg/L	0,81	0,68	1400	1100	0,26	0,27	520	520
Solfati	mg/L	46,1	46,1	solfati	mg/L	38,0	38,0	44	44	41	40	46	46,0
Cromo esavalente (Cr VI)	μg/L	<0,84	<0,84	cromo (VI)	mg/L	0,00090	0,00093	0,003	0,0028	<0.00084	0,001	<0,00084	<0,00084
Arsenico	μg/L	0,420	0,347	arsenico	mg/L	0,00099	0,00093	0,0007	0,00061	0,0019	0,0019	0,00100	0,00100
Cadmio	μg/L	<0,075	<0,075	cadmio	mg/L	0,000150	0,000170	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075
Calcio	μg/L	110000	113000	calcio	mg/L	74	73	76	76	110	120	78	77
Cromo totale	μg/L	<0,51	1,67	cromo totale	mg/L	0,00092	0,00470	0,003	0,003	0,00092	0,001	0,000310	0,000270
Mercurio	μg/L	0,058	0,019	mercurio	mg/L	0,000420	0,00200	0,00038	<0.000085	<0.000085	<0.000085	<0,000085	<0,000085
Nichel	μg/L	1,12	0,97	nichel	mg/L	0,00180	0,00180	0,00024	0,00019	0,0014	0,0021	0,000600	0,000510
Piombo	μg/L	<0,15	<0,15	piombo	mg/L	0,000230	0,000230	<0.000150	<0.000150	0,001	0,0014	<0,000150	<0,000150
Rame	μg/L	0,86	1,04	rame	mg/L	0,047	0,051	0,0061	0,0022	0,012	0,0051	0,00076	0,00070
Zinco	μg/L	7,9	7,8	zinco	mg/L	0,0110	0,0097	<0.00240	<0.00240	0,017	0,013	0,0070	0,0100
Fosforo totale (come P)	mg/L	0,104	0,128	fosforo totale (come P)	mg/L	0,210	0,210	0,19	0,18	0,056	0,06	0,057	0,057
- Idrocarburi totali come n-esano	μg/L	<24	<24	- idrocarburi totali come n-esano	mg/L	<0,03	<0,03	< 0.03	< 0.03	<0.03	< 0.03	<0,03	<0,03
Idrocarburi frazione volatile (C6-C10) come n-esano	μg/L	<20	<20	idrocarburi frazione volatile (C6-C10) come n-esano	mg/L	<0,029	<0,029	<0.029	<0.029	<0.029	<0.029	<0,029	<0,029
Idrocarburi frazione estraibile (C10-C40) come n-esano	μg/L	<24	<24	idrocarburi frazione estraibile (C10-C40) come n-esano	mg/L	<0,024	<0,024	<0.024	<0.024	<0.024	<0.024	<0,024	<0,024
- sommatoria organoalogenati (DLgs 152/06 - All 5 Tab2)	mg/L			- sommatoria organoalogenati (DLgs 152/06 - All 5 Tab2)	mg/L	0,000099	0,000100	<0.000075	<0.000075	<0.000075	<0.000075	0,000110	0,000110

	PROGETTISTA	SAIPEM	unità 000	COMMESSA 0230113_225A			
snam //\v	LOCALITÀ	Regione Veneto	SPC. 00-BH-E-94761				
		Mestre-Trieste: Rifacimento tratto e-Gonars ed Opere Connesse	Pag. 48 di 64	Rev. 0			

Tab. 14 Canale Piavon: risultati delle analisi fisiche, chimiche e microbiologiche eseguite sulle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

Canale Piavon (VAS06)	\	Corso							Ante op	eram			
Canale Plavon (VASUO))	VAS06	11/23			VAS0	6 6/19	VAS0	6 9/19	VAS06	6 11/19	VAS0	6 1/20
Parametro	U.M.	М	V	Parametro	U.M.	M	V	М	V	M	V	М	V
1,1,1-Tricloroetano	μg/L	<0,057	<0,057	1,1,1-tricloroetano	mg/L	<0,000057	<0,000057	<0.000057	<0.000057	<0.000057	<0.000057	<0,000057	<0,000057
1,1,2,2-Tetracloroetano	μg/L	<0,0049	<0,0049	1,1,2,2-tetracloroetano	mg/L	<0,00000490	<0,00000490	<0.000049	<0.0000049	<0.0000049	<0.0000049	<0,0000049	<0,0000049
1,1,2-Tricloroetano	μg/L	<0,017	<0,017	1,1,2-tricloroetano	mg/L	<0,0000170	<0,0000170	<0.0000170	<0.0000170	<0.0000170	<0.0000170	<0,0000170	<0,0000170
1,1-Dicloroetano	μg/L	<0,066	<0,066	1,1-dicloroetano	mg/L	<0,000066	<0,000066	<0.000066	<0.000066	<0.000066	<0.000066	<0,000066	<0,000066
1,1-Dicloroetilene	μg/L	<0,0050	<0,0050	1,1-dicloroetilene	mg/L	<0,00000500	<0,0000500	<0.000050	<0.000050	<0.0000050	<0.0000050	<0,0000050	<0,0000050
1,2,3-Tricloropropano	μg/L	<0,021	<0,021	1,2,3-tricloropropano	mg/L	<0,0000210	<0,0000210	<0.0000210	<0.0000210	<0.0000210	<0.0000210	<0,0000210	<0,0000210
1,2-Diclorobenzene	μg/L	<0,050	<0,050	1,2-diclorobenzene	mg/L	<0,000050	<0,000050	<0.000050	<0.000050	<0.000050	<0.000050	<0,000050	<0,000050
1,2-Dicloroetano	μg/L	<0,045	<0,045	1,2-dicloroetano	mg/L	<0,0000450	<0,0000450	<0.000045	<0.000045	<0.000045	<0.000045	<0,000045	<0,000045
cis-1,2-Dicloroetilene	μg/L	<0,070	<0,070	1,2-dicloroetilene (cis)	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070
trans-1,2-Dicloroetilene	μg/L	<0,084	<0,084	1,2-dicloroetilene (trans)	mg/L	<0,000084	<0,000084	<0.000084	<0.000084	<0.000084	<0.000084	<0,000084	<0,000084
- 1,2-Dicloroetilene (cis + trans)	μg/L	<0,084	<0,084										
1,3-Diclorobenzene	μg/L	<0,054	<0,054	1,3-diclorobenzene	mg/L	<0,000054	<0,000054	<0.000054	<0.000054	<0.000054	<0.000054	<0,000054	<0,000054
1,4-Diclorobenzene	μg/L	<0,048	<0,048	1,4-diclorobenzene	mg/L	<0,0000480	<0,0000480	<0.000048	<0.000048	<0.000048	<0.000048	<0,000048	<0,000048
2-Clorotoluene	μg/L	<0,042	<0,042	2-clorotoluene	mg/L	<0,0000420	<0,0000420	<0.000042	<0.000042	<0.000042	<0.000042	<0,000042	<0,000042
3-Clorotoluene	μg/L	<0,066	<0,066	3-clorotoluene	mg/L	<0,000066	<0,000066	<0.000066	<0.000066	<0.000066	<0.000066	<0,000066	<0,000066
4-Clorotoluene	μg/L	<0,046	<0,046	4-clorotoluene	mg/L	<0,0000460	<0,0000460	<0.000046	<0.000046	<0.000046	<0.000046	<0,000046	<0,000046
Bromodiclorometano	μg/L	<0,016	<0,016	bromodiclorometano	mg/L	<0,0000160	<0,0000160	<0.0000160	<0.0000160	<0.0000160	< 0.0000160	<0,0000160	<0,0000160
Bromoformio	μg/L	<0,021	<0,021	bromoformio	mg/L	<0,0000210	<0,0000210	<0.0000210	<0.0000210	<0.0000210	<0.0000210	<0,0000210	<0,0000210
Carbonio tetracloruro	μg/L	<0,027	<0,027	carbonio tetracloruro	mg/L	<0,000098	<0,000098	<0.000098	<0.000098	<0.000098	<0.000098	<0,000098	<0,000098
Cloroformio	μg/L	<0,013	<0,013	cloroformio	mg/L	0,000060	0,000062	< 0.0000130	<0.0000130	0,000034	0,000034	<0,0000130	<0,0000130
Clorometano	μg/L	<0,075	<0,075	clorometano	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075
Cloruro di vinile	μg/L	0,148	0,132	cloruro di vinile	mg/L	0,0000390	0,0000410	0,000049	0,000047	<0.0000170	<0.0000170	0,000110	0,000110
Dibromoclorometano	μg/L	<0,013	<0,013	dibromoclorometano	mg/L	<0,0000130	<0,0000130	<0.0000130	< 0.0000130	<0.0000130	< 0.0000130	<0,0000130	<0,0000130
Esaclorobutadiene	μg/L	<0,015	<0,015	esaclorobutadiene	mg/L	<0,0000150	<0,0000150	<0.0000150	<0.0000150	< 0.0000150	< 0.0000150	<0,0000150	<0,0000150
Metilene cloruro	μg/L	<0,14	<0,14	metilene cloruro	mg/L	<0,000330	<0,000330	<0.00033	<0.00033	<0.000140	<0.000140	<0.000140	<0,000140
Pentacloroetano	μg/L	<0,076	<0,076			ĺ	·					ĺ	,
Tetracloroetilene	μg/L	<0.069	<0,069	tetracloroetilene	mg/L	<0,000069	<0,000069	<0.000069	<0.000069	<0.000069	<0.000069	<0,000069	<0,000069
Tricloroetilene	μg/L	<0,070	<0,070	tricloroetilene	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070
- Solventi clorurati totali	μg/L	0,148	0,132			ĺ	,					ĺ	·
1,2,4-Trimetilbenzene	μg/L	<0,051	<0,051	1,2,4-trimetilbenzene	mg/L	<0,000051	<0,000051	<0.000051	<0.000051	<0.000051	<0.000051	<0,000051	<0,000051
Benzene	μg/L	<0.091	<0.091	benzene	mg/L	<0.000091	<0.000091	<0.000091	<0.000091	<0.000091	<0.000091	<0.000091	<0.000091
Etilbenzene	µg/L	<0.052	<0.052	etilbenzene	mg/L	<0,000052	<0,000052	<0.000052	<0.000052	<0.000052	<0.000052	<0,000052	<0.000052
m,p-Xilene	µg/L	<0,17	<0,17	m,p-xilene	mg/L	<0,000170	<0,000170	<0.000170	<0.000170	<0.000170	<0.000170	<0,000170	<0,000170
o-Xilene	µg/L	<0.065	<0.065	o-xilene	mg/L	<0,000065	<0,000065	<0.000065	<0.000065	<0.000065	<0.000065	<0,000065	<0,000065
Stirene	μg/L	<0,046	<0.046	stirene	mg/L	<0,0000460	<0,0000460	0.000059	0,000049	<0.000046	<0.000046	<0,000046	0,000063
Toluene	μg/L	0,113	0,121	toluene	mg/L	<0.000070	<0.000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0.000070
Metilterbutiletere	µa/L	<0.076	<0.076	metilterbutiletere	ma/L	<0,000076	<0.000076	<0.000076	<0.000076	<0.000076	<0.000076	0.000093	0.000088
Escherichia coli	UFC/100 ml	4700	3800	Escherichia coli	UFC/100mL	280	270	5	14	870	1200	980	1200

	PROGETTISTA	SAIPEM	unità 000	COMMESSA 0230113_225A
snam //\v	LOCALITÀ Ro	egione Veneto	SPC. 00-BH-	E-94761
		estre-Trieste: Rifacimento tratto Gonars ed Opere Connesse	Pag. 49 di 64	Rev. 0

Tab. 15 Canale Piavon: Livello di inquinamento dai Macrodescrittori per lo Stato Ecologico (Indice LIM_{eco}) delle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

	Corso	d'opera				Ante o	peram			
Canale Piavon (VAS06)	VAS06	3 11/23	VAS0	6 6/19	VAS0	6 9/19	VAS06	6 11/19	VAS0	6 1/20
	M	V	M	V	M	V	M	V	M	٧
100-O₂%sat.	8,57	6,26	58,2	58,2	35	35	27	27	3	3
N-NH4 (mg/l)	0,66	0,63	0,95	0,93	0,01	0,01	0,76	0,74	0,50	0,50
N-NO ₃ (mg/l)	2,26	2,26	1,74	1,72	2,26	2,26	3,61	3,61	3,39	3,39
Fosforo totale (µg/l)	104	128	210	210	190	180	56	60	57	57
	Corso	d'opera				Ante o	peram			
Canale Piavon (VAS06)	VAS06 11/23		VAS06 6/19		VAS06 9/19		VAS06 11/19		VAS0	6 1/20
	M	٧	M	V	M	٧	M	V	М	٧
100-O ₂ %sat.	1,000	1,000	0,125	0,125	0,250	0,250	0,250	0,250	1,000	1,000
N-NH ₄ (mg/l)	0,000	0,000	0,000	0,000	1,000	1,000	0,000	0,000	0,000	0,000
N-NO ₃ (mg/l)	0,250	0,250	0,250	0,250	0,250	0,250	0,125	0,125	0,125	0,125
Fosforo totale (µg/l)	0,250	0,250	0,125	0,125	0,250	0,250	0,500	0,500	0,500	0,500
Media LIM _{eco}	0,375	0,375	0,125	0,125	0,438	0,438	0,219	0,219	0,406	0,406
CLASSE	III	III	V	V	III	III	IV	IV	III	III
STATO CHIMICO	SUFF.	SUFF.	CATTIVO	CATTIVO	SUFF.	SUFF.	SCARSO	SCARSO	SUFF.	SUFF.

	PROGETTISTA	AIPEM	unità 000	COMMESSA 0230113_225A			
snam	LOCALITÀ Regione Veneto		SPC. 00-BH-E-94761				
	PROGETTO: Met. Mestre-Trieste: F Casale sul Sile-Gonars ed Op		Pag. 50 di 64	Rev. 0			

Tab. 16 Fiume Lison: risultati delle analisi fisiche, chimiche e microbiologiche eseguite sulle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

Fiume Lison (VAS07)		Corso	d'opera						Ante o	peram			
Fluille Lison (VASO7)		VAS0	7 7/23			VAS0	7 6/19	VAS0	7 9/19	VAS07	7 11/19	VAS0	7 1/20
Parametro	U.M.	M	V	Parametro	U.M.	M	V	M	V	M	V	M	V
Portata	m³/s	0,0117	0,0117	Portata	m³/s	0,2	224	0,	14	0,2	242	0,1	155
pH (al prelievo)	рН	7,90	7,60	рН	рН	8,30	8,40	8,35	8,36	8		8,29	8,25
Conducibilità a 25°C	μS/cm	420	361	conducibilità	μS/cm	440	440	500	500	570	570	470	470
Temperatura	°C	24,2	22,6	temperatura	°C	28	28	24	24,1	13,3	13,3	12,10	12,10
Ossigeno disciolto	mg/L	7,11	5,25	ossigeno disciolto	mg/L	12,0	12,0	7,6	7,6	9,3	9,3	12,0	12,0
Ossigeno disciolto saturazione	%	86,5	62,2	ossigeno disciolto	%	154,8	154,8	92,1	92,1	88,6	88,6	115,4	115,4
Alcalinità come CaCO ₃	mg/L	221	170,3	alcalinità come CaCO3	mg/L	230	230	240	230	290	290	240	240
Richiesta biochimica di ossigeno (BOD ₅)	mg/L	<5,0	<5,0	BOD5	mg/L	<2,80	<2,80	4		<3.10	<3.10	<3,10	<3,10
COD	mg/L	14,2	23,3	COD totale	mg/L	14,0	13,0	11	8,7	9,5		6,70	5,10
Solidi sospesi totali	mg/L	22,5	56	solidi sospesi totali	mg/L	130	140	140	130	30		32,0	34,0
Azoto ammoniacale come NH ₄	mg/L	0,523	0,409	azoto ammoniacale come N	mg/L	<0,170	<0,170	0,008	<0.0062	0,14	0,16	0,180	0,190
Carbonio organico disciolto (DOC)	mg/L	1,84	3,50	carbonio organico disciolto (DOC)	mg/L	4,10	3,70	2,3	2,4	2,9		1,50	1,50
Cloruri	mg/L	2,90	4,38	cloruri	mg/L	5,60	5,40	5,7	5,7	12		5,50	5,60
Nitrati	mg/L	0,97	3,05	nitrati	mg/L	4,00	3,70	6	9,4	28	28	3,00	3,50
Nitriti	mg/L	<0,012	<0,012	nitriti	μg/L	0,180	0,20	1100	770	0,34	0,38	100	95
Solfati	mg/L	7,86	10,4	solfati	mg/L	9,2	9,1	20	20	21	21	13,0	13,0
Cromo esavalente (Cr VI)	μg/L	<0,84	<0,84	cromo (VI)	mg/L	0,00110	0,00110	0,0032	0,0031	0,00092	0,00094	<0,00084	<0,00084
Arsenico	μg/L	1,71	1,76	arsenico	mg/L	0,00360	0,00370	0,0013	0,0013	0,0022	0,0022	0,00150	0,00120
Cadmio	μg/L	<0,075	<0,075	cadmio	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075
Calcio	μg/L	46000	41000	calcio	mg/L	52,0	51,0	59	56	98	98	50,0	49,0
Cromo totale	μg/L	<0,51	<0,51	cromo totale	mg/L	0,00120	0,00120	0,0035	0,0032	0,001		0,000520	0,000420
Mercurio	μg/L	0,017	0,017	mercurio	mg/L	0,00180	0,00170	0,00044	<0.000085	<0.000085	<0.000085	<0,000085	<0,000085
Nichel	μg/L	<0,60	0,74	nichel	mg/L	0,00100	0,00097	0,00024	<0.000170	0,0022	0,0015	0,000340	0,000290
Piombo	μg/L	0,177	<0,15	piombo	mg/L	0,000160	<0,000150	<0.000150	<0.000150	0,00063	0,00063	<0,000150	<0,000150
Rame	μg/L	6,1	1,59	rame	mg/L	0,087	0,083	0,0029	0,0013	0,0068	0,0024	0,0150	<0,000650
Zinco	μg/L	10,8	61	zinco	mg/L	0,0074	0,0071	0,0027	<0.00240	0,0084	0,0047	0,00310	0,00350
Fosforo totale (come P)	mg/L	0,126	0,145	fosforo totale (come P)	mg/L	0,180	0,220	0,18	0,087	0,038	0,037	0,0220	0,0220
- Idrocarburi totali come n-esano	μg/L	<24	<24	- idrocarburi totali come n-esano	mg/L	<0,03	<0,03	<0.03	<0.03	<0.03	<0.03	<0,03	<0,03
Idrocarburi frazione volatile (C6-C10) come n-esano	μg/L	<20	<20	idrocarburi frazione volatile (C6-C10) come n-esano	mg/L	<0,029	<0,029	<0.029	<0.029	<0.029	<0.029	<0,029	<0,029
Idrocarburi frazione estraibile (C10-C40) come n-esano	μg/L	<24	<24	idrocarburi frazione estraibile (C10-C40) come n-esano	mg/L	<0,024	<0,024	<0.024	<0.024	<0.024	<0.024	<0,024	<0,024
- sommatoria organoalogenati (DLgs 152/06 - All 5 Tab2)	mg/L			- sommatoria organoalogenati (DLgs 152/06 - All 5 Tab2)	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075

snam	PROGETTISTA	SAIPEM	unità 000	COMMESSA 0230113_225A
	LOCALITÀ R	Regione Veneto	SPC. 00-BH-	E-94761
		estre-Trieste: Rifacimento tratto -Gonars ed Opere Connesse	Pag. 51 di 64	Rev. 0

Tab. 17 Fiume Lison: risultati delle analisi fisiche, chimiche e microbiologiche eseguite sulle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

Firms Licen (MASO7)		Corso							Ante op	eram			
Fiume Lison (VAS07)		VAS0	7 7/23			VAS0	7 6/19	VAS0	7 9/19	VAS07	7 11/19	VAS0	7 1/20
Parametro	U.M.	M	V	Parametro	U.M.	М	V	М	V	М	V	М	V
1,1,1-Tricloroetano	μg/L	<0,057	<0,057	1,1,1-tricloroetano	mg/L	<0,000057	<0,000057	<0.000057	<0.000057	<0.000057	<0.000057	<0,000057	<0,000057
1,1,2,2-Tetracloroetano	μg/L	<0,0049	<0,0049	1,1,2,2-tetracloroetano	mg/L	<0,00000490	<0,00000490	<0.0000049	<0.0000049	<0.0000049	<0.0000049	<0,0000049	<0,0000049
1,1,2-Tricloroetano	μg/L	<0,017	<0,017	1,1,2-tricloroetano	mg/L	<0,0000170	<0,0000170	<0.0000170	<0.0000170	<0.0000170	<0.0000170	<0,0000170	<0,0000170
1,1-Dicloroetano	μg/L	<0,066	<0,066	1,1-dicloroetano	mg/L	<0,000066	<0,000066	<0.000066	<0.000066	<0.000066	<0.000066	<0,000066	<0,000066
1,1-Dicloroetilene	μg/L	<0,0050	<0,0050	1,1-dicloroetilene	mg/L	<0,00000500	<0,00000500	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0,0000050	<0,0000050
1,2,3-Tricloropropano	μg/L	<0,021	<0,021	1,2,3-tricloropropano	mg/L	<0,0000210	<0,0000210	<0.0000210	<0.0000210	<0.0000210	<0.0000210	<0,0000210	<0,0000210
1,2-Diclorobenzene	μg/L	<0,050	<0,050	1,2-diclorobenzene	mg/L	<0,000050	<0,000050	<0.000050	<0.000050	<0.000050	<0.000050	<0,000050	<0,000050
1,2-Dicloroetano	μg/L	<0,045	<0,045	1,2-dicloroetano	mg/L	<0,0000450	<0,0000450	<0.000045	<0.000045	<0.000045	<0.000045	<0,000045	<0,000045
cis-1,2-Dicloroetilene	μg/L	<0,070	<0,070	1,2-dicloroetilene (cis)	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070
trans-1,2-Dicloroetilene	μg/L	<0,084	<0,084	1,2-dicloroetilene (trans)	mg/L	<0,000084	<0,000084	<0.000084	<0.000084	<0.000084	<0.000084	<0,000084	<0,000084
- 1,2-Dicloroetilene (cis + trans)	μg/L	<0,084	<0,084										
1,3-Diclorobenzene	μg/L	<0,054	<0,054	1,3-diclorobenzene	mg/L	<0,000054	<0,000054	<0.000054	<0.000054	<0.000054	<0.000054	<0,000054	<0,000054
1,4-Diclorobenzene	μg/L	<0,048	<0,048	1,4-diclorobenzene	mg/L	<0,0000480	<0,0000480	<0.000048	<0.000048	<0.000048	<0.000048	<0,000048	<0,000048
2-Clorotoluene	μg/L	<0,042	<0,042	2-clorotoluene	mg/L	<0,0000420	<0,0000420	<0.000042	<0.000042	<0.000042	<0.000042	<0,000042	<0,000042
3-Clorotoluene	μg/L	<0,066	<0,066	3-clorotoluene	mg/L	<0,000066	<0,000066	<0.000066	<0.000066	<0.000066	<0.000066	<0,000066	<0,000066
4-Clorotoluene	μg/L	<0,046	<0,046	4-clorotoluene	mg/L	<0,0000460	<0,0000460	<0.000046	<0.000046	<0.000046	<0.000046	<0,000046	<0,000046
Bromodiclorometano	μg/L	<0,016	<0,016	bromodiclorometano	mg/L	<0,0000160	<0,0000160	<0.0000160	<0.0000160	<0.0000160	<0.0000160	<0,0000160	<0,0000160
Bromoformio	μg/L	<0,021	<0,021	bromoformio	mg/L	<0,0000210	<0,0000210	<0.0000210	<0.0000210	<0.0000210	<0.0000210	<0,0000210	<0,0000210
Carbonio tetracloruro	μg/L	<0,027	<0,027	carbonio tetracloruro	mg/L	<0,000098	<0,000098	<0.000098	<0.000098	<0.000098	<0.000098	<0,000098	<0,000098
Cloroformio	μg/L	<0,013	<0,013	cloroformio	mg/L	<0,0000130	<0,0000130	<0.0000130	<0.0000130	<0.0000130	<0.0000130	<0,0000130	<0,0000130
Clorometano	μg/L	<0,075	<0,075	clorometano	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075
Cloruro di vinile	μg/L	<0,017	<0,017	cloruro di vinile	mg/L	<0,0000170	<0,0000170	<0.0000170	<0.0000170	<0.0000170	<0.0000170	<0,0000170	<0,0000170
Dibromoclorometano	μg/L	<0,013	<0,013	dibromoclorometano	mg/L	<0,0000130	<0,0000130	<0.0000130	<0.0000130	<0.0000130	<0.0000130	<0,0000130	<0,0000130
Esaclorobutadiene	μg/L	<0,015	<0,015	esaclorobutadiene	mg/L	<0,0000150	<0,0000150	<0.0000150	<0.0000150	<0.0000150	<0.0000150	<0,0000150	<0,0000150
Metilene cloruro	μg/L	<0,14	<0,14	metilene cloruro	mg/L	<0,000330	<0,000330	<0.00033	<0.00033	<0.000140	<0.000140	<0,000140	<0,000140
Pentacloroetano	μg/L	<0,076	<0,076										
Tetracloroetilene	μg/L	<0,069	<0,069	tetracloroetilene	mg/L	<0,000069	<0,000069	<0.000069	<0.000069	<0.000069	<0.000069	<0,000069	<0,000069
Tricloroetilene	μg/L	<0,070	<0,070	tricloroetilene	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070
- Solventi clorurati totali	μg/L	<0,14	<0,14										
1,2,4-Trimetilbenzene	μg/L	<0,051	<0,051	1,2,4-trimetilbenzene	mg/L	<0,000051	<0,000051	<0.000051	<0.000051	<0.000051	<0.000051	<0,000051	<0,000051
Benzene	μg/L	<0,091	<0,091	benzene	mg/L	<0,000091	<0,000091	<0.000091	<0.000091	<0.000091	<0.000091	<0,000091	<0,000091
Etilbenzene	μg/L	<0,052	<0,052	etilbenzene	mg/L	<0,000052	<0,000052	<0.000052	<0.000052	<0.000052	<0.000052	<0,000052	<0,000052
m,p-Xilene	μg/L	<0,17	<0,17	m,p-xilene	mg/L	<0,000170	<0,000170	<0.000170	<0.000170	<0.000170	<0.000170	<0,000170	<0,000170
o-Xilene	μg/L	<0,065	<0,065	o-xilene	mg/L	<0,000065	<0,000065	<0.000065	<0.000065	<0.000065	<0.000065	<0,000065	<0,000065
Stirene	μg/L	<0,046	<0,046	stirene	mg/L	<0,0000460	<0,0000460	<0.000046	<0.000046	<0.000046	0,00011	<0,000046	<0,000046
Toluene	μg/L	0,123	0,097	toluene	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070
Metilterbutiletere	μg/L	<0,076	<0,076	metilterbutiletere	mg/L	<0,000076	<0,000076	<0.000076	<0.000076	<0.000076	<0.000076	<0,000076	<0,000076
Escherichia coli	UFC/100 ml	270	120	Escherichia coli	UFC/100mL	56	78	30	39	1100	1000	120	140

	PROGETTISTA	UNITÀ 000	COMMESSA 0230113_225A
snam	LOCALITÀ Regione Veneto	SPC. 00-BH-	E-94761
	PROGETTO: Met. Mestre-Trieste: Rifacimento Casale sul Sile-Gonars ed Opere Connes	Pag 52 di 64	Rev. 0

Tab. 18 Fiume Lison: Livello di inquinamento dai Macrodescrittori per lo Stato Ecologico (Indice LIMeco) delle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

	Corso	d'opera				Ante op	eram			
Fiume Lison (VAS07)	VAS0	7 7/23	VAS0	7 6/19	VAS	7 9/19	VAS07	7 11/19	VAS0	7 1/20
	М	V	M	V	М	V	M	V	М	٧
100-O ₂ %sat.	13,50	37,80	54,8	54,8	8	8	11	11	15	15
N-NH ₄ (mg/l)	0,41	0,32	0,17	0,17	0,01	0,01	0,14	0,16	0,18	0,19
N-NO ₃ (mg/l)	0,22	0,69	0,90	0,84	1,35	2,12	6,32	6,32	0,68	0,79
Fosforo totale (µg/l)	126	145	180	220	180	87	38	37	22	22
	Corso	d'opera		Ante operam						
Fiume Lison (VAS07)	VAS07 7/23		VAS07 6/19		VAS07 9/19		VAS07 11/19		VAS0	7 1/20
	M	V	М	V	М	V	M	V	M	٧
100-O ₂ %sat.	0,500	0,250	0,125	0,125	1,000	1,000	0,500	0,500	0,500	0,500
N-NH ₄ (mg/l)	0,000	0,000	0,125	0,125	1,000	1,000	0,125	0,125	0,125	0,125
N-NO ₃ (mg/l)	1,000	0,500	0,500	0,500	0,250	0,250	0,000	0,000	0,500	0,500
Fosforo totale (µg/l)	0,250	0,250	0,250	0,125	0,250	0,500	1,000	1,000	1,000	1,000
Media LIM _{eco}	0,438	0,250	0,250	0,219	0,625	0,688	0,406	0,406	0,531	0,531
CLASSE	III	IV	IV	IV	II		III	III	II	II
STATO CHIMICO	SUFF.	SCARSO	SCARSO	SCARSO	BUONO	ELEVATO	SUFF.	SUFF.	BUONO	BUONO

	PROGETTISTA	unità 000	COMMESSA 0230113_225A	
snam V/\V	LOCALITÀ Regione V	eneto	SPC. 00-BH-	E-94761
	PROGETTO: Met. Mestre-Trie Casale sul Sile-Gonars e		Pag. 53 di 64	Rev. 0

Tab. 19 Fiume Reghena: risultati delle analisi fisiche, chimiche e microbiologiche eseguite sulle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

Firms Backens (VASOS)		Corso	d'opera						Ante o	peram			
Fiume Reghena (VAS08)		VAS0	8 7/23			VAS0	8 6/19	VAS0	8 9/19	VAS08	3 11/19	VAS0	8 1/20
Parametro	U.M.	M	٧	Parametro	U.M.	M	V	М	V	М	V	M	V
Portata	m³/s	n.m.	n.m.	Portata	m³/s	0,4	84	0,4	22	0,5	79	0,5	522
pH (al prelievo)	рН	8,19	8,16	pH	pН	8,30	8,40	8,32	8,29	8,13	8,12	8,20	8,18
Conducibilità a 25°C	μS/cm	759	740	conducibilità	μS/cm	560	550	540	540	490	500	580	580
Temperatura	°C	19,0	19,7	temperatura	°C	18	18	18	18	13,2	13,2	11,10	11,10
Ossigeno disciolto	mg/L	9,44	8,96	ossigeno disciolto	mg/L	10	10	9,1	9	9,6	9,6	12,0	12,0
Ossigeno disciolto saturazione	%	104,8	100,8	ossigeno disciolto	%	108,9	108,9	99,1	98,0	91,7	91,7	112,7	112,7
Alcalinità come CaCO₃	mg/L	204	201	alcalinità come CaCO3	mg/L	200	200	190	190	210	210	210	210
Richiesta biochimica di ossigeno (BOD ₅)	mg/L	<5,0	<5,0	BOD5	mg/L	<2,80	<2,80	<2.80	<2.80	<3.10	<3.10	<3,10	<3,10
COD	mg/L	3,42	8,23	COD totale	mg/L	4,10	4,50	5,9	<3.30	6,1	6,5	<3,30	4,50
Solidi sospesi totali	mg/L	28,0	17,5	solidi sospesi totali	mg/L	24,0	13	8	9	12	32	25,0	17,0
Azoto ammoniacale come NH ₄	mg/L	0,0247	0,0586	azoto ammoniacale come N	mg/L	<0,170	<0,170	0,0095	0,016	0,13	0,12	0,029	0,031
Carbonio organico disciolto (DOC)	mg/L	1,09	1,37	carbonio organico disciolto (DOC)	mg/L	1,60	2,10	1,8	1,3	1,7	1,6	0,510	0,460
Cloruri	mg/L	3,65	3,81	cloruri	mg/L	3,80	3,80	3,9	4	5,6	5,2	4,00	4,10
Nitrati	mg/L	6,75	6,10	nitrati	mg/L	8,4	8,3	5,5	5,7	7,1	6,8	10,0	10,0
Nitriti	mg/L	<0,012	<0,012	nitriti	μg/L	0,023	0,027	22	25	0,22	0,17	23	23
Solfati	mg/L	101	99	solfati	mg/L	99	100	93	93	76	77	93	94
Cromo esavalente (Cr VI)	μg/L	<0,84	<0,84	cromo (VI)	mg/L	<0,00084	<0,00084	0,0029	0,004	<0.00084	<0.00084	<0,00084	<0,00084
Arsenico	μg/L	<0,24	<0,24	arsenico	mg/L	0,000370	0,000350	0,00068	0,00068	0,0017	0,0016	0,00076	0,000640
Cadmio	μg/L	<0,075	<0,075	cadmio	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075
Calcio	μg/L	75000	74000	calcio	mg/L	78	79	76	76	81	82	75	76
Cromo totale	μg/L	<0,51	<0,51	cromo totale	mg/L	0,00088	0,00088	0,0029	0,011	0,00055	0,00055	0,000500	0,000380
Mercurio	μg/L	0,006	0,005	mercurio	mg/L	<0,000085	<0,000085	0,00011	<0.000085	<0.000085	<0.000085	<0,000085	<0,000085
Nichel	μg/L	<0,60	<0,60	nichel	mg/L	0,000340	0,000300	<0.000170	0,00062	0,00051	0,00041	<0,000170	0,000250
Piombo	μg/L	<0,15	<0,15	piombo	mg/L	<0,000150	<0,000150	<0.000150	<0.000150	0,00036	0,00036	<0,000150	<0,000150
Rame	μg/L	<0,65	<0,65	rame	mg/L	0,00130	0,00130	0,0078	0,0017	0,007	0,00068	0,00570	<0,000650
Zinco	μg/L	<2,4	<2,4	zinco	mg/L	0,00410	0,00260	0,0063	0,0061	0,0078	0,0055	0,00410	0,00520
Fosforo totale (come P)	mg/L	<0,012	<0,012	fosforo totale (come P)	mg/L	0,033	0,035	0,052	0,047	0,024	0,029	0,0130	<0,0130
- Idrocarburi totali come n-esano	μg/L	<24	<24	- idrocarburi totali come n-esano	mg/L	<0,03	<0,03	0,07	<0.03	<0.03	<0.03	<0,03	<0,03
Idrocarburi frazione volatile (C6-C10)	μg/L	<20	<20	idrocarburi frazione volatile (C6-C10)	mg/L	<0,029	<0,029	<0.029	<0.029	<0.029	<0.029	<0.029	<0,029
come n-esano	µg/L	\2 0	\2 0	come n-esano	IIIg/L	\0,023	~ 0,029	~0.029	\0.029	~0.029	\0.029	\0,029	\0,029
Idrocarburi frazione estraibile (C10-C40) come n-esano	μg/L	<24	<24	idrocarburi frazione estraibile (C10-C40) come n-esano	mg/L	<0,024	<0,024	0,07	<0.024	<0.024	<0.024	<0,024	<0,024
- sommatoria organoalogenati (DLgs 152/06 - All 5 Tab2)	mg/L			- sommatoria organoalogenati (DLgs 152/06 - All 5 Tab2)	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075

	PROGETTISTA	UNITÀ 000	COMMESSA 0230113_225A
snam V/\V	LOCALITÀ Regione Veneto	SPC. 00-BH-	E-94761
	PROGETTO: Met. Mestre-Trieste: Rifacimento tratto Casale sul Sile-Gonars ed Opere Connesse	Pag. 54 di 64	Rev. 0

Tab. 20 Fiume Reghena: risultati delle analisi fisiche, chimiche e microbiologiche eseguite sulle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

Fiume Reghena (VAS0	۵۱	Corso				Ante operam							
Fiullie Regilella (VASO	0)	VAS0	8 7/23			VAS0	8 6/19	VAS0	8 9/19	VAS08	3 11/19	VAS0	8 1/20
Parametro	U.M.	M	V	Parametro	U.M.	M	V	M	V	М	V	M	V
1,1,1-Tricloroetano	μg/L	<0,057	<0,057	1,1,1-tricloroetano	mg/L	<0,000057	<0,000057	<0.000057	<0.000057	<0.000057	<0.000057	<0,000057	<0,000057
1,1,2,2-Tetracloroetano	μg/L	<0,0049	<0,0049	1,1,2,2-tetracloroetano	mg/L	<0,00000490	<0,00000490	<0.0000049	<0.0000049	<0.0000049	<0.0000049	<0,0000049	<0,0000049
1,1,2-Tricloroetano	μg/L	<0,017	<0,017	1,1,2-tricloroetano	mg/L	<0,0000170	<0,0000170	<0.0000170	<0.0000170	<0.0000170	<0.0000170	<0,0000170	<0,0000170
1,1-Dicloroetano	μg/L	<0,066	<0,066	1,1-dicloroetano	mg/L	<0,000066	<0,000066	<0.000066	<0.000066	<0.000066	<0.000066	<0,000066	<0,000066
1,1-Dicloroetilene	μg/L	<0,0050	<0,0050	1,1-dicloroetilene	mg/L	<0,00000500	<0,00000500	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0,0000050	<0,0000050
1,2,3-Tricloropropano	μg/L	<0,021	<0,021	1,2,3-tricloropropano	mg/L	<0,0000210	<0,0000210	<0.0000210	<0.0000210	<0.0000210	<0.0000210	<0,0000210	<0,0000210
1,2-Diclorobenzene	μg/L	<0,050	<0,050	1,2-diclorobenzene	mg/L	<0,000050	<0,000050	<0.000050	<0.000050	<0.000050	<0.000050	<0,000050	<0,000050
1,2-Dicloroetano	μg/L	<0,045	<0,045	1,2-dicloroetano	mg/L	<0,0000450	<0,0000450	<0.000045	<0.000045	<0.000045	<0.000045	<0,000045	<0,000045
cis-1,2-Dicloroetilene	μg/L	<0,070	<0,070	1,2-dicloroetilene (cis)	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070
trans-1,2-Dicloroetilene	μg/L	<0,084	<0,084	1,2-dicloroetilene (trans)	mg/L	<0,000084	<0,000084	<0.000084	<0.000084	<0.000084	<0.000084	<0,000084	<0,000084
- 1,2-Dicloroetilene (cis + trans)	μg/L	<0,084	<0,084	, , ,									
1,3-Diclorobenzene	μg/L	<0,054	<0,054	1,3-diclorobenzene	mg/L	<0,000054	<0,000054	<0.000054	<0.000054	<0.000054	<0.000054	<0,000054	<0,000054
1,4-Diclorobenzene	μg/L	<0,048	<0,048	1,4-diclorobenzene	mg/L	<0,0000480	<0,0000480	<0.000048	<0.000048	<0.000048	<0.000048	<0,000048	<0,000048
2-Clorotoluene	μg/L	<0,042	<0,042	2-clorotoluene	mg/L	<0,0000420	<0,0000420	<0.000042	<0.000042	<0.000042	<0.000042	<0,000042	<0,000042
3-Clorotoluene	μg/L	<0,066	<0,066	3-clorotoluene	mg/L	<0,000066	<0,000066	<0.000066	<0.000066	<0.000066	<0.000066	<0,000066	<0,000066
4-Clorotoluene	μg/L	<0,046	<0,046	4-clorotoluene	mg/L	<0,0000460	<0,0000460	<0.000046	<0.000046	<0.000046	<0.000046	<0,000046	<0,000046
Bromodiclorometano	μg/L	<0,016	<0,016	bromodiclorometano	mg/L	<0,0000160	<0,0000160	<0.0000160	<0.0000160	<0.0000160	<0.0000160	<0,0000160	<0,0000160
Bromoformio	μg/L	<0,021	<0,021	bromoformio	mg/L	<0,0000210	<0,0000210	<0.0000210	<0.0000210	<0.0000210	<0.0000210	<0,0000210	<0,0000210
Carbonio tetracloruro	μg/L	<0,027	<0,027	carbonio tetracloruro	mg/L	<0,000098	<0,000098	<0.000098	<0.000098	<0.000098	<0.000098	<0,000098	<0,000098
Cloroformio	μg/L	<0,013	<0,013	cloroformio	mg/L	<0,0000130	<0,0000130	<0.000130	<0.0000130	<0.0000130	<0.000130	<0,0000130	<0,0000130
Clorometano	μg/L	<0,075	<0,075	clorometano	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075
Cloruro di vinile	μg/L	<0,017	<0,017	cloruro di vinile	mg/L	<0,0000170	<0,0000170	<0.0000170	<0.0000170	<0.0000170	<0.0000170	<0,0000170	<0,0000170
Dibromoclorometano	μg/L	<0,013	<0,013	dibromoclorometano	mg/L	<0,0000130	<0,0000130	<0.0000130	<0.0000130	<0.0000130	<0.0000130	<0,0000130	<0,0000130
Esaclorobutadiene	μg/L	<0,015	<0,015	esaclorobutadiene	mg/L	<0,0000150	<0,0000150	<0.0000150	<0.0000150	<0.0000150	<0.0000150	<0,0000150	<0,0000150
Metilene cloruro	μg/L	<0,14	<0,14	metilene cloruro	mg/L	<0,000330	<0,000330	<0.00033	<0.00033	<0.000140	<0.000140	<0,000140	<0,000140
Pentacloroetano	μg/L	<0,076	<0,076										
Tetracloroetilene	μg/L	<0,069	<0,069	tetracloroetilene	mg/L	<0,000069	<0,000069	<0.000069	<0.000069	<0.000069	<0.000069	<0,000069	<0,000069
Tricloroetilene	μg/L	<0,070	<0,070	tricloroetilene	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070
- Solventi clorurati totali	μg/L	<0,14	<0,14										
1,2,4-Trimetilbenzene	μg/L	<0,051	<0,051	1,2,4-trimetilbenzene	mg/L	<0,000051	<0,000051	<0.000051	<0.000051	<0.000051	<0.000051	<0,000051	<0,000051
Benzene	μg/L	<0,091	<0,091	benzene	mg/L	<0,000091	<0,000091	<0.000091	<0.000091	<0.000091	<0.000091	<0,000091	<0,000091
Etilbenzene	μg/L	<0,052	<0,052	etilbenzene	mg/L	<0,000052	<0,000052	<0.000052	<0.000052	<0.000052	<0.000052	<0,000052	<0,000052
m,p-Xilene	μg/L	<0,17	<0,17	m,p-xilene	mg/L	<0,000170	<0,000170	<0.000170	<0.000170	<0.000170	<0.000170	<0,000170	<0,000170
o-Xilene	μg/L	<0,065	<0,065	o-xilene	mg/L	<0,000065	<0,000065	<0.000065	<0.000065	<0.000065	<0.000065	<0,000065	<0,000065
Stirene	μg/L	<0,046	<0,046	stirene	mg/L	<0,0000460	<0,0000460	<0.000046	<0.000046	<0.000046	<0.000046	0,000076	0,000087
Toluene	μg/L	<0,070	<0,070	toluene	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070
Metilterbutiletere	μg/L	0,152	<0,076	metilterbutiletere	mg/L	<0,000076	<0,000076	<0.000076	<0.000076	<0.000076	<0.000076	<0,000076	<0,000076
Escherichia coli	UFC/100 ml	270	300	Escherichia coli	UFC/100mL	58	87	11	8	570	630	230	200

	PROGETTISTA		unità 000	COMMESSA 0230113_225A			
snam //\	LOCALITÀ Regione Veneto	SPC	SPC. 00-BH-E-94				
	PROGETTO: Met. Mestre-Trieste: Rifacimer Casale sul Sile-Gonars ed Opere Conn	Pag I Pag	. 55 di 64	Rev. 0			

Tab. 21 Fiume Reghena: Livello di inquinamento dai Macrodescrittori per lo Stato Ecologico (Indice LIMeco) delle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

	Corso	d'opera				Ante o	oeram			
Fiume Reghena (VAS08)	VAS0	8 7/23	VAS0	8 6/19	VAS0	8 9/19	VAS08	3 11/19	VAS08	3 1/20
_	M	V	M	٧	M	V	M	V	M	V
100-O₂%sat.	4,8	0,79	8,9	8,9	1	2	8	8	13	13
N-NH4 (mg/l)	0,02	0,05	0,17	0,17	0,01	0,02	0,13	0,12	0,03	0,03
N-NO ₃ (mg/l)	1,52	1,38	1,90	1,87	1,24	1,29	1,60	1,54	2,26	2,26
Fosforo totale (µg/l)	12	12	33	35	52	47	24	29	13	13
	Corso	d'opera	Ante operam							
Fiume Reghena (VAS08)	VAS0	8 7/23	VAS0	8 6/19	VAS0	8 9/19	VAS08	3 11/19	VAS08	3 1/20
	M	V	M	٧	M	V	M	V	M	V
100-O₂%sat.	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,500	0,500
N-NH4 (mg/l)	1,000	0,500	0,125	0,125	1,000	1,000	0,125	0,250	1,000	0,500
N-NO ₃ (mg/l)	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250
Fosforo totale (µg/l)	1,000	1,000	1,000	1,000	0,500	1,000	1,000	1,000	1,000	1,000
Media LIM _{eco}	0,813	0,688	0,594	0,594	0,688	0,813	0,594	0,625	0,688	0,563
CLASSE			ll l	ll l			II	II		II
STATO CHIMICO	ELEVATO	ELEVATO	BUONO	BUONO	ELEVATO	ELEVATO	BUONO	BUONO	ELEVATO	BUONO

	PROGETTISTA	UNITÀ 000	COMMESSA 0230113_225A			
snam //\V	LOCALITÀ Regione Veneto	SPC. 00-BH-E-94761				
	PROGETTO: Met. Mestre-Trieste: Rifacimento tratto Casale sul Sile-Gonars ed Opere Connesse	Pag. 56 di 64	Rev. 0			

Tab. 22 Roggia Versiola: risultati delle analisi fisiche, chimiche e microbiologiche eseguite sulle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

Paggie Versiele (VASOO)		Corso	d'opera						Ante o	peram			
Roggia Versiola (VAS09)		VAS0	9 7/23			VAS01	09 6/19	VAS01	.09 9/19	VAS01.	09 11/19	VAS01	.09 1/20
Parametro	U.M.	M	V	Parametro	U.M.	M	V	M	V	M	V	M	V
Portata	m³/s	n.m.	n.m.	Portata	m³/s	0,5	512	0,4	154	0,5	550	0,3	394
pH (al prelievo)	рН	7,71	7,95	pH	pН	8,30	8,30	8,34	8,32	8,06	8,05	8,16	8,10
Conducibilità a 25°C	μS/cm	710	774	conducibilità	μS/cm	560	560	570	570	540	540	570	580
Temperatura	°C	19,5	21,4	temperatura	°C	18	18	17,1	17,1	13,5	13,5	10,50	10,50
Ossigeno disciolto	mg/L	6,55	8,59	ossigeno disciolto	mg/L	9,90	9,90	9	9,1	9,5	9,5	11,0	11,0
Ossigeno disciolto saturazione	%	73,3	99,7	ossigeno disciolto	%	107,8	107,8	96,3	97,3	91,1	91,1	101,9	101,9
Alcalinità come CaCO ₃	mg/L	210	325	alcalinità come CaCO3	mg/L	200	200	200	200	230	240	200	200
Richiesta biochimica di ossigeno (BOD ₅)	mg/L	<5,0	<5,0	BOD5	mg/L	<2,80	<2,80	<2.80	<2.80	<3.10	<3.10	<3,10	<3,10
COD	mg/L	11,0	16,5	COD totale	mg/L	3,70	4,30	<3.30	<3.30	3,5	<3.30	5,30	3,50
Solidi sospesi totali	mg/L	72	406	solidi sospesi totali	mg/L	4,50	6,00	8,5	19	11	13	20	20,0
Azoto ammoniacale come NH ₄	mg/L	0,310	0,089	azoto ammoniacale come N	mg/L	<0,170	<0,170	0,0094	0,0098	0,086	0,067	0,057	0,057
Carbonio organico disciolto (DOC)	mg/L	3,38	0,98	carbonio organico disciolto (DOC)	mg/L	2,10	1,50	1,1	0,87	1,1	1,1	0,520	0,630
Cloruri	mg/L	6,32	4,37	cloruri	mg/L	4,20	4,20	3,9	3,9	6,4	7,1	4,50	4,60
Nitrati	mg/L	2,79	7,7	nitrati	mg/L	8,5	8,5	8,1	8,1	10	11	8,6	11
Nitriti	mg/L	<0,012	<0,012	nitriti	μg/L	0,068	0,067	39	59	0,23	0,26	61	71
Solfati	mg/L	66,0	104	solfati	mg/L	100	100	99	99	82	82	96	98
Cromo esavalente (Cr VI)	μg/L	<0,84	<0,84	cromo (VI)	mg/L	<0,00084	<0,00084	0,0031	0,0034	<0.00084	<0.00084	<0,00084	<0,00084
Arsenico	μg/L	1,46	0,75	arsenico	mg/L	0,000440	0,000410	0,0005	0,00048	0,0015	0,0016	0,000570	0,000500
Cadmio	μg/L	<0,075	<0,075	cadmio	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075
Calcio	μg/L	64000	75000	calcio	mg/L	79	79	82	81	96	95	72	74
Cromo totale	μg/L	<0,51	<0,51	cromo totale	mg/L	0,00083	0,00085	0,0032	0,0035	0,00054	0,00054	0,000390	0,000480
Mercurio	μg/L	0,005	0,005	mercurio	mg/L	<0,000085	<0,000085	0,000098	<0.000085	<0.000085	<0.000085	<0,000085	<0,000085
Nichel	μg/L	<0,60	<0,60	nichel	mg/L	0,000260	0,000310	0,00024	<0.000170	0,00048	0,00046	<0,000170	0,000290
Piombo	μg/L	<0,15	<0,15	piombo	mg/L	<0,000150	<0,000150	<0.000150	<0.000150	0,00026	0,00036	<0,000150	<0,000150
Rame	μg/L	0,93	0,70	rame	mg/L	0,00140	0,00130	0,0085	0,0014	0,0074	0,0011	0,00270	<0,000650
Zinco	μg/L	4,7	<2,4	zinco	mg/L	<0,00240	<0,00240	0,0049	0,0048	0,0048	0,0041	0,00310	0,0075
Fosforo totale (come P)	mg/L	0,195	0,312	fosforo totale (come P)	mg/L	0,058	0,054	0,069	0,078	0,022	0,023	0,0180	0,0200
- Idrocarburi totali come n-esano	μg/L	<24	<24	- idrocarburi totali come n-esano	mg/L	<0,03	<0,03	< 0.03	< 0.03	< 0.03	< 0.03	<0,03	<0,03
Idrocarburi frazione volatile (C6-C10) come n-esano	μg/L	<20	<20	idrocarburi frazione volatile (C6-C10) come n-esano	mg/L	<0,029	<0,029	<0.029	<0.029	<0.029	<0.029	<0,029	<0,029
Idrocarburi frazione estraibile (C10-C40) come n-esano	μg/L	<24	<24	idrocarburi frazione estraibile (C10-C40) come n-esano	mg/L	<0,024	<0,024	<0.024	<0.024	<0.024	<0.024	<0,024	<0,024
- sommatoria organoalogenati (DLgs 152/06 - All 5 Tab2)	mg/L			- sommatoria organoalogenati (DLgs 152/06 - All 5 Tab2)	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075

	PROGETTISTA	SAIPEM	unità 000	COMMESSA 0230113_225A			
snam //\V	LOCALITÀ	Regione Veneto	SPC. 00-BH-E-94761				
		Mestre-Trieste: Rifacimento tratto ile-Gonars ed Opere Connesse	Pag. 57 di 64	Rev. 0			

Tab. 23 Roggia Versiola: risultati delle analisi fisiche, chimiche e microbiologiche eseguite sulle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

Roggia Versiola (VAS0	۵۱	Corso					0.0000049								
Roggia versidia (VASU	9)	VAS0	9 7/23			VAS01.	09 6/19	VAS01.	09 9/19	VAS01.	09 11/19	VAS01.	.09 1/20		
Parametro	U.M.	M	٧	Parametro	U.M.	М	V	М	V	М	•	М	•		
1,1,1-Tricloroetano	μg/L	<0,057	<0,057	1,1,1-tricloroetano	mg/L	<0,000057	<0,000057	<0.000057	<0.000057	<0.000057	<0.000057	<0,000057	<0,000057		
1,1,2,2-Tetracloroetano	μg/L	<0,0049	<0,0049	1,1,2,2-tetracloroetano	mg/L	<0,00000490	<0,00000490	<0.0000049	<0.0000049	<0.0000049	<0.0000049	<0,0000049	<0,0000049		
1,1,2-Tricloroetano	μg/L	<0,017	<0,017	1,1,2-tricloroetano	mg/L	<0,0000170	<0,0000170	<0.0000170	<0.0000170	<0.0000170	<0.0000170	<0,0000170	<0,0000170		
1,1-Dicloroetano	μg/L	<0,066	<0,066	1,1-dicloroetano	mg/L	<0,000066	<0,000066	<0.000066	<0.000066	<0.000066	<0.000066	<0,000066	<0,000066		
1,1-Dicloroetilene	μg/L	<0,0050	<0,0050	1,1-dicloroetilene	mg/L	<0,00000500	<0,0000500	<0.000050	<0.000050	<0.0000050	<0.0000050	<0,0000050	<0,0000050		
1,2,3-Tricloropropano	μg/L	<0,021	<0,021	1,2,3-tricloropropano	mg/L	<0,0000210		<0.0000210	<0.0000210	<0.0000210	<0.0000210	<0,0000210	<0,0000210		
1,2-Diclorobenzene	μg/L	<0,050	<0,050	1,2-diclorobenzene	mg/L	<0,000050	<0,000050	<0.000050	<0.000050	<0.000050	<0.000050	<0,000050	<0,000050		
1,2-Dicloroetano	μg/L	<0,045	<0,045	1,2-dicloroetano	mg/L	<0,0000450	<0,0000450	<0.000045	<0.000045	<0.000045	<0.000045	<0,000045	<0,000045		
cis-1,2-Dicloroetilene	μg/L	<0,070	<0,070	1,2-dicloroetilene (cis)	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070		<0,000070		
trans-1,2-Dicloroetilene	μg/L	<0,084	<0,084	1,2-dicloroetilene (trans)	mg/L	<0,000084	<0,000084	<0.000084	<0.000084	<0.000084	<0.000084	<0,000084	<0,000084		
- 1,2-Dicloroetilene (cis + trans)	μg/L	<0,084	<0,084												
1,3-Diclorobenzene	μg/L	<0,054	<0,054	1,3-diclorobenzene	mg/L	<0,000054	<0,000054	<0.000054	<0.000054	<0.000054	<0.000054	<0,000054	<0,000054		
1,4-Diclorobenzene	μg/L	<0,048	<0,048	1,4-diclorobenzene	mg/L	<0,0000480	<0,0000480	<0.000048	<0.000048	<0.000048	<0.000048	<0,000048	<0,000048		
2-Clorotoluene	μg/L	<0,042	<0,042	2-clorotoluene	mg/L	<0,0000420	<0,0000420	<0.000042	<0.000042	<0.000042	<0.000042	<0,000042	<0,000042		
3-Clorotoluene	μg/L	<0,066	<0,066	3-clorotoluene	mg/L	<0,000066	<0,000066	<0.000066	<0.000066	<0.000066	<0.000066	<0,000066	<0,000066		
4-Clorotoluene	μg/L	<0,046	<0,046	4-clorotoluene	mg/L	<0,0000460	<0,0000460	<0.000046	<0.000046	<0.000046	<0.000046	<0,000046	<0,000046		
Bromodiclorometano	μg/L	<0,016	<0,016	bromodiclorometano	mg/L	<0,0000160	<0,0000160	<0.0000160		<0.0000160	<0.0000160	<0,0000160	<0,0000160		
Bromoformio	μg/L	<0,021	<0,021	bromoformio	mg/L	<0,0000210	<0,0000210	<0.0000210	<0.0000210	<0.0000210	<0.0000210	<0,0000210	<0,0000210		
Carbonio tetracloruro	μg/L	<0,027	<0,027	carbonio tetracloruro	mg/L	<0,000098	<0,000098	<0.000098	<0.000098	<0.000098	<0.000098	<0,000098	<0,000098		
Cloroformio	μg/L	<0,013	<0,013	cloroformio	mg/L	0,0000280	0,0000270	<0.0000130	<0.000130	<0.0000130	<0.0000130	<0,0000130	<0,0000130		
Clorometano	μg/L	<0,075	<0,075	clorometano	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075		
Cloruro di vinile	μg/L	<0,017	<0,017	cloruro di vinile	mg/L	<0,0000170	<0,0000170	<0.0000170	<0.0000170	<0.0000170	<0.0000170	<0,0000170	<0,0000170		
Dibromoclorometano	μg/L	<0,013	<0,013	dibromoclorometano	mg/L	<0,0000130	<0,0000130	<0.0000130	<0.0000130	<0.0000130	<0.0000130	<0,0000130	<0,0000130		
Esaclorobutadiene	μg/L	<0,015	<0,015	esaclorobutadiene	mg/L	<0,0000150	<0,0000150	<0.0000150	<0.0000150	<0.0000150	<0.0000150	<0,0000150	<0,0000150		
Metilene cloruro	μg/L	<0,14	<0,14	metilene cloruro	mg/L	<0,000330	<0,000330	<0.00033	<0.00033	<0.000140	<0.000140	<0,000140	<0,000140		
Pentacloroetano	μg/L	<0,076	<0,076												
Tetracloroetilene	μg/L	<0,069	<0,069	tetracloroetilene	mg/L	<0,000069	<0,000069	<0.000069	<0.000069	<0.000069	<0.000069	<0,000069	<0,000069		
Tricloroetilene	μg/L	<0,070	<0,070	tricloroetilene	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070		
- Solventi clorurati totali	μg/L	<0,14	<0,14												
1,2,4-Trimetilbenzene	μg/L	<0,051	<0,051	1,2,4-trimetilbenzene	mg/L	<0,000051	<0,000051	<0.000051	<0.000051	<0.000051	<0.000051	<0,000051	<0,000051		
Benzene	μg/L	<0,091	<0,091	benzene	mg/L	<0,000091	<0,000091	<0.000091	<0.000091	<0.000091	<0.000091	<0,000091	<0,000091		
Etilbenzene	μg/L	<0,052	<0,052	etilbenzene	mg/L	<0,000052	<0,000052	<0.000052	<0.000052	<0.000052	<0.000052	<0,000052	<0,000052		
m,p-Xilene	μg/L	<0,17	<0,17	m,p-xilene	mg/L	<0,000170	<0,000170	<0.000170	<0.000170	<0.000170	<0.000170	<0,000170	<0,000170		
o-Xilene	μg/L	<0,065	<0,065	o-xilene	mg/L	<0,000065	<0,000065	<0.000065	<0.000065	<0.000065	<0.000065	<0,000065	<0,000065		
Stirene	μg/L	<0,046	<0,046	stirene	mg/L	<0,0000460	<0,0000460	0,000077	0,000058	<0.000046	<0.000046	<0,000046	<0,000046		
Toluene	μg/L	<0,070	<0,070	toluene	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070		
Metilterbutiletere	μg/L	<0,076	0,078	metilterbutiletere	mg/L	<0,000076	<0,000076	<0.000076	<0.000076	<0.000076	<0.000076	<0,000076	<0,000076		
Escherichia coli	UFC/100 ml	1100	400	Escherichia coli	UFC/100mL	130	140	28	39	1800	2500	1600	950		

	PROGETTISTA	UNITÀ 000	COMMESSA 0230113_225A
snam	LOCALITÀ Regione Veneto	SPC. 00-BH-	E-94761
	PROGETTO: Met. Mestre-Trieste: Rifacimento tra Casale sul Sile-Gonars ed Opere Connesse	Pag. 58 di 64	Rev. 0

Tab. 24 Roggia Versiola: Livello di inquinamento dai Macrodescrittori per lo Stato Ecologico (Indice LIMeco) delle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

	Corso o	l'opera				Ante o	peram							
Roggia Versiola (VAS09)	VAS09	7/23	VAS01.	.09 6/19	VAS01.	.09 9/19	VAS01.0	09 11/19	VAS01.0	09 1/20				
	М	٧	M	٧	M	V	M	V	M	٧				
100-O₂%sat.	26,65	0,35	7,8	7,8	4	3	9	9	2	2				
N-NH4 (mg/l)	0,24	0,07	0,17	0,17	0,01	0,01	0,09	0,07	0,06	0,06				
N-NO₃ (mg/l)	0,63	1,74	1,92	1,92	1,83	1,83	2,26	2,48	1,94	2,48				
Fosforo totale (µg/l)	195	312	58	54	69	78	22	23	18	20				
	Corso o	l'opera				Ante o	peram							
Roggia Versiola (VAS09)	VAS09	7/23	VAS01.	.09 6/19	VAS01.	.09 9/19	VAS01.0	09 11/19	VAS01.0	09 1/20				
	М	٧	M	٧	M	V	М	V	M	٧				
100-O₂%sat.	0,250	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000				
N-NH4 (mg/l)	0,000	0,250	0,125	0,125	1,000	1,000	0,250	0,250	0,500	0,500				
N-NO₃ (mg/l)	0,500	0,250	0,250	0,250	0,250	0,250	0,250	0,125	0,250	0,125				
Fosforo totale (µg/l)	0,250	0,125	0,500	0,500	0,500	0,500	1,000	1,000	1,000	1,000				
Media LIM _{eco}	0,250	0,406	0,469	0,469	0,688	0,688	0,625	0,594	0,688	0,656				
CLASSE	IV	III	III	III	ı		ll l	II		II				
STATO CHIMICO	SCARSO	SUFF.	SUFF.	SUFF.	ELEVATO	ELEVATO	BUONO	BUONO	ELEVATO	BUONO				

	PROGETTISTA	UNITÀ 000	COMMESSA 0230113_225A			
snam //\V	LOCALITÀ Regione Veneto	SPC. 00-BH-E-94761				
	PROGETTO: Met. Mestre-Trieste: Rifacimento tratto Casale sul Sile-Gonars ed Opere Connesse	Pag. 59 di 64	Rev. 0			

Tab. 25 Fiume Lemene: risultati delle analisi fisiche, chimiche e microbiologiche eseguite sulle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

Fiume Lemene (VAS10)		Corso	d'opera						Ante o	peram			
Flume Lemene (VAS10)		VAS1	0 9/23			VAS1	0 6/19	VAS1	0 9/19	VAS1	11/19	VAS1	0 1/20
Parametro	U.M.	M	V	Parametro	U.M.	М	V	М	V	M	V	M	V
Portata	m³/s	0,945	1,401	Portata	m³/s	1	,7	1.	,3	1,	66	1,	54
pH (al prelievo)	рН	8,40	8,06	pH	pН	8,20	8,20	8,34	8,35	7,94	7,98	8,05	8,07
Conducibilità a 25°C	μS/cm	576	801	conducibilità	μS/cm	550	550	570	570	510	510	570	570
Temperatura	°C	20,3	20,8	temperatura	°C	17	17	17,3	17,3	14	14	12,20	12,90
Ossigeno disciolto	mg/L	3,77	3,56	ossigeno disciolto	mg/L	9,80	9,80	9,1	9	9,4	9,4	8,50	8,50
Ossigeno disciolto saturazione	%	42,9	40,9	ossigeno disciolto	%	104,6	104,6	97,7	96,7	91,5	91,5	81,9	83,2
Alcalinità come CaCO ₃	mg/L	179,9	174,1	alcalinità come CaCO3	mg/L	190	190	190	190	200	200	190	190
Richiesta biochimica di ossigeno (BOD ₅)	mg/L	<5,0	<5,0	BOD5	mg/L	<2,80	<2,80	<2.80	<2.80	<3.10	<3.10	<3,10	<3,10
COD	mg/L	4,70	3,78	COD totale	mg/L	3,90	4,50	<3.30	<3.30	4	<3.30	<3,30	<3,30
Solidi sospesi totali	mg/L	5,0	8,0	solidi sospesi totali	mg/L	5,00	<2,50	<2.50	3	11	11	16,0	26,0
Azoto ammoniacale come NH ₄	mg/L	0,0373	0,0601	azoto ammoniacale come N	mg/L	<0,170	<0,170	0,015	0,017	0,081	0,081	0,088	0,092
Carbonio organico disciolto (DOC)	mg/L	1,24	2,23	carbonio organico disciolto (DOC)	mg/L	2,10	1,70	0,9	0,93	0,81	0,69	0,610	0,580
Cloruri	mg/L	5,11	5,40	cloruri	mg/L	4,10	4,20	4,6	4,6	4,9	5	5,00	4,90
Nitrati	mg/L	6,38	6,48	nitrati	mg/L	8,2	8,2	7,3	7,2	9,3	9,2	9,3	9,3
Nitriti	mg/L	<0,012	<0,012	nitriti	μg/L	0,100	0,100	69	57	0,03	0,043	110	100
Solfati	mg/L	104	104	solfati	mg/L	100	100	100	100	90	90	100	100
Cromo esavalente (Cr VI)	μg/L	<0,84	<0,84	cromo (VI)	mg/L	<0,00084	<0,00084	0,0027	0,0027	<0.00084	0,001	<0,00084	<0,00084
Arsenico	μg/L	<0,24	<0,24	arsenico	mg/L	0,000280	0,000300	0,0003	0,00035	0,0017	0,0015	0,00074	0,00086
Cadmio	μg/L	<0,075	<0,075	cadmio	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075
Calcio	μg/L	71000	69000	calcio	mg/L	78	77	73	72	86	89	70	70
Cromo totale	μg/L	<0,51	<0,51	cromo totale	mg/L	0,00081	0,00085	0,0028	0,0028	0,00056	0,0012	0,00130	0,000480
Mercurio	μg/L	0,007	0,008	mercurio	mg/L	0,00580	0,00500	<0.000085	0,0013	0,000093	<0.000085	<0,000085	<0,000085
Nichel	μg/L	<0,60	<0,60	nichel	mg/L	0,000360	0,00100	<0.000170	<0.000170	0,00033	0,00044	0,000240	<0,000170
Piombo	μg/L	<0,15	<0,15	piombo	mg/L	<0,000150	0,000290	<0.000150	<0.000150	0,00042	0,0003	<0,000150	<0,000150
Rame	μg/L	<0,65	<0,65	rame	mg/L	0,053	0,047	0,00083	0,012	0,0073	0,0065	0,00200	<0,000650
Zinco	μg/L	5,3	4,20	zinco	mg/L	0,00630	0,0120	<0.00240	0,0092	0,0081	0,027	0,00440	0,0099
Fosforo totale (come P)	mg/L	<0,012	<0,012	fosforo totale (come P)	mg/L	0,065	0,063	0,084	0,086	0,065	0,026	0,027	0,027
- Idrocarburi totali come n-esano	μg/L	<24	<24	- idrocarburi totali come n-esano	mg/L	<0,03	<0,03	<0.03	< 0.03	< 0.03	< 0.03	<0,03	<0,03
Idrocarburi frazione volatile (C6-C10) come n-esano	μg/L	<20	<20	idrocarburi frazione volatile (C6-C10) come n-esano	mg/L	<0,029	<0,029	<0.029	<0.029	<0.029	<0.029	<0,029	<0,029
Idrocarburi frazione estraibile (C10-C40) come n-esano	μg/L	<24	<24	idrocarburi frazione estraibile (C10-C40) come n-esano	mg/L	<0,024	<0,024	<0.024	<0.024	<0.024	<0.024	<0,024	<0,024
- sommatoria organoalogenati (DLgs 152/06 - All 5 Tab2)	mg/L			- sommatoria organoalogenati (DLgs 152/06 - All 5 Tab2)	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	0,000078	<0.000075	<0,000075	<0,000075

	PROGETTISTA	UNITÀ 000	COMMESSA 0230113_225A
snam //\v	LOCALITÀ Regione Veneto	SPC. 00-BH-	E-94761
	PROGETTO: Met. Mestre-Trieste: Rifacimento tratto Casale sul Sile-Gonars ed Opere Connesse	Pag. 60 di 64	Rev. 0

Tab. 26 Fiume Lemene: risultati delle analisi fisiche, chimiche e microbiologiche eseguite sulle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

Fiume Lemene (VAS10) Corso d'opera						Ante operam								
Fluine Lemene (VAS10)	VAS1	0 9/23			VAS1	1 6/19	VAS1	1 9/19	VAS11	l 11/19	VAS1	1 1/20	
Parametro	U.M.	M	٧	Parametro	U.M.	М	V	М	V	М	V	M	V	
1,1,1-Tricloroetano	μg/L	<0,057	<0,057	1,1,1-tricloroetano	mg/L	<0,000057	<0,000057	<0.000057	<0.000057	<0.000057	<0.000057	<0,000057	<0,000057	
1,1,2,2-Tetracloroetano	μg/L	<0,0049	<0,0049	1,1,2,2-tetracloroetano	mg/L	<0,00000490	<0,00000490	<0.0000049	<0.0000049	<0.0000049	<0.0000049	<0,0000049	<0,0000049	
1,1,2-Tricloroetano	μg/L	<0,017	<0,017	1,1,2-tricloroetano	mg/L	<0,0000170	<0,0000170	<0.0000170	<0.0000170	<0.0000170	<0.0000170	<0,0000170	<0,0000170	
1,1-Dicloroetano	μg/L	<0,066	<0,066	1,1-dicloroetano	mg/L	<0,000066	<0,000066	<0.000066	<0.000066	<0.000066	<0.000066	<0,000066	<0,000066	
1,1-Dicloroetilene	μg/L	<0,0050	<0,0050	1,1-dicloroetilene	mg/L	<0,00000500	<0,00000500	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0,0000050	<0,0000050	
1,2,3-Tricloropropano	μg/L	<0,021	<0,021	1,2,3-tricloropropano	mg/L	<0,0000210	<0,0000210	<0.0000210	<0.0000210	<0.0000210	<0.0000210	<0,0000210	<0,0000210	
1,2-Diclorobenzene	μg/L	<0,050	<0,050	1,2-diclorobenzene	mg/L	<0,000050	<0,000050	<0.000050	<0.000050	<0.000050	<0.000050	<0,000050	<0,000050	
1,2-Dicloroetano	μg/L	<0,045	<0,045	1,2-dicloroetano	mg/L	<0,0000450	<0,0000450	<0.000045	<0.000045	<0.000045	<0.000045	<0,000045	<0,000045	
cis-1,2-Dicloroetilene	μg/L	<0,070	<0,070	1,2-dicloroetilene (cis)	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070	
trans-1,2-Dicloroetilene	μg/L	<0,084	<0,084	1,2-dicloroetilene (trans)	mg/L	<0,000084	<0,000084	<0.000084	<0.000084	<0.000084	<0.000084	<0,000084	<0,000084	
- 1,2-Dicloroetilene (cis + trans)	μg/L	<0,084	<0,084											
1,3-Diclorobenzene	μg/L	<0,054	<0,054	1,3-diclorobenzene	mg/L	<0,000054	<0,000054	<0.000054	<0.000054	<0.000054	<0.000054	<0,000054	<0,000054	
1,4-Diclorobenzene	μg/L	<0,048	<0,048	1,4-diclorobenzene	mg/L	<0,0000480	<0,0000480	<0.000048	<0.000048	<0.000048	<0.000048	<0,000048	<0,000048	
2-Clorotoluene	μg/L	<0,042	<0,042	2-clorotoluene	mg/L	<0,0000420	<0,0000420	<0.000042	<0.000042	<0.000042	<0.000042	<0,000042	<0,000042	
3-Clorotoluene	μg/L	<0,066	<0,066	3-clorotoluene	mg/L	<0,000066	<0,000066	<0.000066	<0.000066	<0.000066	<0.000066	<0,000066	<0,000066	
4-Clorotoluene	μg/L	<0,046	<0,046	4-clorotoluene	mg/L	<0,0000460	<0,0000460	<0.000046	<0.000046	<0.000046	<0.000046	<0,000046	<0,000046	
Bromodiclorometano	μg/L	<0,016	<0,016	bromodiclorometano	mg/L	<0,0000160	<0,0000160	<0.0000160	<0.0000160	<0.0000160	<0.0000160	<0,0000160	<0,0000160	
Bromoformio	μg/L	<0,021	<0,021	bromoformio	mg/L	<0,0000210	<0,0000210	<0.0000210	<0.0000210	<0.0000210	<0.0000210	<0,0000210	<0,0000210	
Carbonio tetracloruro	μg/L	<0,027	<0,027	carbonio tetracloruro	mg/L	<0,000098	<0,000098	<0.000098	<0.000098	<0.000098	<0.000098	<0,000098	<0,000098	
Cloroformio	μg/L	<0,013	<0,013	cloroformio	mg/L	<0,0000130	<0,0000130	0,000049	0,000017	<0.0000130	<0.0000130	<0,0000130	<0,0000130	
Clorometano	μg/L	<0,075	<0,075	clorometano	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075	
Cloruro di vinile	μg/L	<0,017	<0,017	cloruro di vinile	mg/L	<0,0000170	<0,0000170	<0.0000170	<0.0000170	<0.0000170	<0.0000170	<0,0000170	<0,0000170	
Dibromoclorometano	μg/L	<0,013	<0,013	dibromoclorometano	mg/L	<0,0000130	<0,0000130	<0.0000130	<0.0000130	<0.0000130	<0.0000130	<0,0000130	<0,0000130	
Esaclorobutadiene	μg/L	<0,015	<0,015	esaclorobutadiene	mg/L	<0,0000150	<0,0000150	<0.0000150	<0.0000150	<0.0000150			<0,0000150	
Metilene cloruro	μg/L	<0,14	<0,14	metilene cloruro	mg/L	<0,000330	<0,000330	<0.00033	<0.00033	<0.000140	<0.000140	<0,000140	<0,000140	
Pentacloroetano	μg/L	<0,076	<0,076			·								
Tetracloroetilene	μg/L	<0,069	0,100	tetracloroetilene	mg/L	<0,000069	<0,000069	<0.000069	<0.000069	<0.000069	<0.000069	<0,000069	<0,000069	
Tricloroetilene	μg/L	<0,070	<0,070	tricloroetilene	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070	
- Solventi clorurati totali	μg/L	<0,14	0,10											
1,2,4-Trimetilbenzene	μg/L	<0,051	<0,051	1,2,4-trimetilbenzene	mg/L	<0,000051	<0,000051	<0.000051	<0.000051	<0.000051	<0.000051	<0,000051	<0,000051	
Benzene	μg/L	<0,091	<0,091	benzene	mg/L	<0,000091	<0,000091	<0.000091	<0.000091	<0.000091	<0.000091	<0,000091	<0,000091	
Etilbenzene	μg/L	<0,052	<0,052	etilbenzene	mg/L	<0,000052	<0,000052	<0.000052	< 0.000052	0,000059	<0.000052	<0,000052	<0,000052	
m,p-Xilene	μg/L	<0,17	<0,17	m,p-xilene	mg/L	<0,000170	<0,000170	<0.000170	<0.000170	<0.000170	<0.000170	<0,000170	<0,000170	
o-Xilene	μg/L	<0,065	<0,065	o-xilene	mg/L	<0,000065	<0,000065	<0.000065	<0.000065	< 0.000065	<0.000065	<0,000065	<0,000065	
Stirene	μg/L	<0,046	<0,046	stirene	mg/L	<0,0000460	<0,0000460	<0.000046	<0.000046	0,00017	0,00011	<0,000046	<0,000046	
Toluene	µg/L	0,073	<0,070	toluene	mg/L	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070	
Metilterbutiletere	µg/L	0,213	0,106	metilterbutiletere	mg/L	0,00053	0,00052	0,0014	0,0017	0,0007	0,0006	0,00310	0.00320	
Escherichia coli	UFC/100 ml	14000	10000	Escherichia coli	UFC/100mL	36	5	32	26	590	980	460	2400	

	PROGETTISTA	SAIPEM	unità 000	COMMESSA 0230113_225A			
snam //\v	LOCALITÀ Regione Vo	eneto	SPC. 00-BH-E-94761				
	PROGETTO: Met. Mestre-Trie Casale sul Sile-Gonars e		Pag. 61 di 64	Rev. 0			

Tab. 27 Fiume Lemene: Livello di inquinamento dai Macrodescrittori per lo Stato Ecologico (Indice LIMeco) delle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

	Corso	d'opera				Ante op	eram			
Fiume Lemene (VAS10)	VAS10 9/23		VAS1	VAS10 6/19		VAS10 9/19		11/19	VAS1	0 1/20
	M	V	M	V	M	V	M	V	M	V
100-O₂%sat.	57,10	59,10	4,6	4,6	2	3	9	9	18	17
N-NH4 (mg/l)	0,03	0,05	0,17	0,17	0,02	0,02	0,08	0,08	0,09	0,09
N-NO₃ (mg/I)	1,44	1,46	1,85	1,85	1,65	1,63	2,10	2,08	2,10	2,10
Fosforo totale (µg/l)	12	12	65	63	84	86	65	26	27	27
	Corso	d'opera	Ante operam							
Fiume Lemene (VAS10)	VAS10 9/23		VAS10 6/19		VAS10 9/19		VAS10 11/19		VAS10 1/20	
	М	٧	M	V	М	V	М	V	M	V
100-O ₂ %sat.	0,125	0,125	1,000	1,000	1,000	1,000	1,000	1,000	0,500	0,500
N-NH ₄ (mg/l)	1,000	0,500	0,125	0,125	1,000	1,000	0,250	0,250	0,250	0,250
N-NO ₃ (mg/l)	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250	0,250
Fosforo totale (µg/l)	1,000	1,000	0,500	0,500	0,500	0,500	0,500	1,000	1,000	1,000
Media LIM _{eco}	0,594	0,469	0,469	0,469	0,688	0,688	0,500	0,625	0,500	0,500
CLASSE	II	III	III	III	ı		II	II	II	II
STATO CHIMICO	BUONO	SUFF.	SUFF.	SUFF.	ELEVATO	ELEVATO	BUONO	BUONO	BUONO	BUONO

snam // \V	PROGETTISTA	UNITÀ 000	COMMESSA 0230113_225A		
	LOCALITÀ Regione Veneto	SPC. 00-BH-	E-94761		
	PROGETTO: Met. Mestre-Trieste: Rifacimento tratto Casale sul Sile-Gonars ed Opere Connesse	Pag. 62 di 64	Rev. 0		

Tab. 28 Fosso Dosson: risultati delle analisi fisiche, chimiche e microbiologiche eseguite sulle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

Fosso Dosson (VAS11) Corso d'opera		d'opera				Ante operam							
POSSO DOSSON (VASTI)		VAS11 3/23				VAS1	1 6/19	VAS1	1 9/19	VAS11	l 11/19	VAS1	1 1/20
Parametro	U.M.	M	٧	Parametro	U.M.	M	٧	М	V	М	V	M	V
Portata	m³/s	0,487	1,148	Portata	m³/s	0,0	0,083		50	0,115		0,101	
pH (al prelievo)	pН	7,80	7,87	pH	рН	8,20	8,20	8,4	8,17	8,02	8,05	7,92	8
Conducibilità a 25°C	μS/cm	490	460	conducibilità	μS/cm	510	540	490	490	550	540	530	530
Temperatura	°C	12,8	13,2	temperatura	°C	24	24	16,6	16,6	12,1	8,8	8,10	8,10
Ossigeno disciolto	mg/L	8,43	9,06	ossigeno disciolto	mg/L	9,80	9,80	6,2	6,3	8,8	8,8	9,20	9,20
Ossigeno disciolto saturazione	%	82,3	89,3	Ossigeno disciolto saturazione	%	118,8	118,8	65,6	66,7	81,1	81,1	80,4	80,4
Alcalinità come CaCO ₃	mg/L	218	204	Alcalinità come CaCO₃	mg/L	260	280	220	220	270	270	240	240
Richiesta biochimica di ossigeno (BOD ₅)	mg/L	<5,0	<5,0	BOD₅	mg/L	3,00	<2,80	<2.80	11	<3.10	<3.10	<3,10	<3,10
COD	mg/L	7,44	9,2	COD totale	mg/L	7,7	9,4	5,2	24	7,8	8,2	5,40	4,80
Solidi sospesi totali	mg/L	44,5	30,5	solidi sospesi totali	mg/L	32,0	34	36	34	61	70	42,0	37,0
Azoto ammoniacale come NH ₄	mg/L	0,66	0,603	azoto ammoniacale come N	mg/L	0,380	0,390	0,25	0,0077	0,25	0,27	0,63	0,66
Carbonio organico disciolto (DOC)	mg/L	1,66	1,76	carbonio organico disciolto (DOC)	mg/L	2,20	2,10	1,2	1,1	2,4	2,3	1,30	1,10
Cloruri	mg/L	18,4	17,3	cloruri	mg/L	20,0	20,0	19	18	20	20	20,0	20,0
Nitrati	mg/L	3,51	3,49	nitrati	mg/L	0,80	0,085	3,4	3,6	8	8	4,30	4,30
Nitriti	mg/L	0,133	0,137	nitriti	μg/L	0,097	0,016	140	1300	0,57	0,46	130	110
Solfati	mg/L	19,6	18,7	solfati	mg/L	18,0	18,0	18	18	27	27	19,0	19,0
Cromo esavalente (Cr VI)	μg/L	<0,84	<0,84	cromo (VI)	mg/L	<0,00084	<0,00084	<0.00084	0,0028	0,0021	0,0021	0,00085	<0,00084
Arsenico	μg/L	3,07	2,60	arsenico	mg/L	0,0067	0,00610	0,0039	0,004	0,0053	0,0052	0,00360	0,00290
Cadmio	μg/L	<0,075	<0,075	cadmio	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075
Calcio	μg/L	45000	41000	calcio	mg/L	53,0	49,0	46	47	79	77	48,0	48,0
Cromo totale	μg/L	2,35	2,75	cromo totale	mg/L	0,000310	0,000370	<0.000180	0,0028	0,0022	0,0022	0,00150	0,000300
Mercurio	μg/L	0,014	0,015	mercurio	mg/L	<0,000085	<0,000085	<0.000085	<0.000085	0,0003	<0.000085	<0,000085	<0,000085
Nichel	μg/L	<0,60	<0,60	nichel	mg/L	0,00072	0,00072	0,00029	0,00043	0,0025	0,0025	0,000550	0,000390
Piombo	μg/L	<0,15	<0,15	piombo	mg/L	0,000220	0,000230	<0.000150	<0.000150	0,0038	0,0037	<0,000150	<0,000150
Rame	μg/L	1,70	1,66	rame	mg/L	0,00170	0,00170	<0.000650	0,0017	0,05	0,0046	0,0180	<0,000650
Zinco	μg/L	4,9	7,8	zinco	mg/L	0,00610	0,00330	0,0038	0,006	0,028	0,015	0,0086	0,00530
Fosforo totale (come P)	mg/L	0,140	0,211	fosforo totale (come P)	mg/L	0,130	0,150	0,15	0,15	0,061	0,066	0,044	0,042
- Idrocarburi totali come n-esano	μg/L	<24	<24	- idrocarburi totali come n-esano	mg/L	<0,03	<0,03	<0.03	<0.03	<0.03	<0.03	<0,03	<0,03
Idrocarburi frazione volatile (C6-C10) come n-esano	μg/L	<20	<20	idrocarburi frazione volatile (C6-C10) come n-esano	mg/L	<0,029	<0,029	<0.029	<0.029	<0.029	<0.029	<0,029	<0,029
Idrocarburi frazione estraibile (C10-C40) come n-esano	μg/L	<24	<24	idrocarburi frazione estraibile (C10-C40) come n-esano	mg/L	<0,024	<0,024	<0.024	<0.024	<0.024	<0.024	<0,024	<0,024
- sommatoria organoalogenati (DLgs 152/06 - All 5 Tab2)	mg/L			- sommatoria organoalogenati (DLgs 152/06 - All 5 Tab2)	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075

snam	PROGETTISTA	unità 000	COMMESSA 0230113_225A		
	LOCALITÀ Regione Veneto	SPC. 00-BH-E-94761			
	PROGETTO: Met. Mestre-Trieste: Rifacimento tratto Casale sul Sile-Gonars ed Opere Connesse	Pag. 63 di 64	Rev. 0		

Tab. 29 Fosso Dosson: risultati delle analisi fisiche, chimiche e microbiologiche eseguite sulle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

Faces Decem (VAS44	`	Corso	d'opera			Ante operam								
Fosso Dosson (VAS11)	VAS1	1 3/23			VAS11 6/19		VAS1	1 9/19	VAS11	l 11/19	VAS1	1 1/20	
Parametro	U.M.	M	V	Parametro	U.M.	М	٧	M	V	M	V	М	V	
1,1,1-Tricloroetano	μg/L	<0,057	<0,057	1,1,1-tricloroetano	mg/L	<0,000057	<0,000057	<0.000057	<0.000057	<0.000057	<0.000057	<0,000057	<0,000057	
1,1,2,2-Tetracloroetano	μg/L	<0,0049	<0,0049	1,1,2,2-tetracloroetano	mg/L	<0,00000490	<0,00000490	<0.0000049	<0.0000049	<0.0000049	<0.0000049	<0,0000049	<0,0000049	
1,1,2-Tricloroetano	μg/L	<0,017	<0,017	1,1,2-tricloroetano	mg/L	<0,0000170	<0,0000170	<0.0000170	<0.0000170	<0.0000170	<0.0000170	<0,0000170	<0,0000170	
1,1-Dicloroetano	μg/L	<0,066	<0,066	1,1-dicloroetano	mg/L	<0,000066	<0,000066	<0.000066	<0.000066	<0.000066	<0.000066	<0,000066	<0,000066	
1,1-Dicloroetilene	μg/L	<0,0050	<0,0050	1,1-dicloroetilene	mg/L	<0,00000500	<0,00000500	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0,0000050	<0,0000050	
1,2,3-Tricloropropano	μg/L	<0,021	<0,021	1,2,3-tricloropropano	mg/L	<0,0000210	<0,0000210	<0.0000210	<0.0000210	<0.0000210	<0.0000210	<0,0000210	<0,0000210	
1,2-Diclorobenzene	μg/L	<0,050	<0,050	1,2-diclorobenzene	mg/L	<0,000050	<0,000050	<0.000050	<0.000050	<0.000050	<0.000050	<0,000050	<0,000050	
1,2-Dicloroetano	μg/L	<0,045	<0,045	1,2-dicloroetano	mg/L	<0,0000450	<0,0000450	<0.000045	<0.000045	<0.000045	<0.000045	<0,000045	<0,000045	
cis-1,2-Dicloroetilene	μg/L	<0,070	<0,070	1,2-dicloroetilene (cis)	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070	
trans-1,2-Dicloroetilene	μg/L	<0,084	<0,084	1,2-dicloroetilene (trans)	mg/L	<0,000084	<0,000084	<0.000084	<0.000084	<0.000084	<0.000084	<0,000084	<0,000084	
- 1,2-Dicloroetilene (cis + trans)	μg/L	<0,084	<0,084											
1,3-Diclorobenzene	μg/L	<0,054	<0,054	1,3-diclorobenzene	mg/L	<0,000054	<0,000054	<0.000054	<0.000054	<0.000054	<0.000054	<0,000054	<0,000054	
1,4-Diclorobenzene	μg/L	<0,048	<0,048	1,4-diclorobenzene	mg/L	<0,0000480	<0,0000480	<0.000048	<0.000048	<0.000048	<0.000048	<0,000048	<0,000048	
2-Clorotoluene	μg/L	<0,042	<0,042	2-clorotoluene	mg/L	<0,0000420	<0,0000420	<0.000042	<0.000042	<0.000042	<0.000042	<0,000042	<0,000042	
3-Clorotoluene	μg/L	<0,066	<0,066	3-clorotoluene	mg/L	<0,000066	<0,000066	<0.000066	<0.000066	<0.000066	<0.000066	<0,000066	<0,000066	
4-Clorotoluene	μg/L	<0,046	<0,046	4-clorotoluene	mg/L	<0,0000460	<0,0000460	<0.000046	<0.000046	<0.000046	<0.000046	<0,000046	<0,000046	
Bromodiclorometano	μg/L	<0,016	<0,016	bromodiclorometano	mg/L	<0,0000160	<0,0000160	<0.0000160	<0.0000160	<0.0000160	<0.0000160	<0,0000160	<0,0000160	
Bromoformio	μg/L	<0,021	<0,021	bromoformio	mg/L	<0,0000210	<0,0000210	<0.0000210	<0.0000210	<0.0000210	<0.0000210	<0,0000210	<0,0000210	
Carbonio tetracloruro	μg/L	<0,027	<0,027	carbonio tetracloruro	mg/L	<0,000098	<0,000098	<0.000098	<0.000098	<0.000098	<0.000098	<0,000098	<0,000098	
Cloroformio	μg/L	<0,013	<0,013	cloroformio	mg/L	<0,0000130	<0,0000130	0,000049	0,000017	<0.0000130	<0.0000130	<0,0000130	<0,0000130	
Clorometano	μg/L	<0,075	<0,075	clorometano	mg/L	<0,000075	<0,000075	<0.000075	<0.000075	<0.000075	<0.000075	<0,000075	<0,000075	
Cloruro di vinile	μg/L	<0,017	<0,017	cloruro di vinile	mg/L	<0,0000170	<0,0000170	<0.0000170	<0.0000170	<0.0000170	<0.0000170	<0,0000170	<0,0000170	
Dibromoclorometano	μg/L	<0,013	<0,013	dibromoclorometano	mg/L	<0,0000130	<0,0000130	<0.0000130	<0.0000130	<0.0000130	<0.0000130	<0,0000130	<0,0000130	
Esaclorobutadiene	μg/L	<0,015	<0,015	esaclorobutadiene	mg/L	<0,0000150	<0,0000150	<0.0000150	<0.0000150	<0.0000150	<0.0000150	<0,0000150	<0,0000150	
Metilene cloruro	μg/L	<0,14	<0,14	metilene cloruro	mg/L	<0,000330	<0,000330	<0.00033	<0.00033	<0.000140	<0.000140	<0,000140	<0,000140	
Pentacloroetano	μg/L	<0,076	<0,076											
Tetracloroetilene	μg/L	<0,069	0,100	tetracloroetilene	mg/L	<0,000069	<0,000069	<0.000069	<0.000069	<0.000069	<0.000069	<0,000069	<0,000069	
Tricloroetilene	μg/L	<0,070	<0,070	tricloroetilene	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070	
- Solventi clorurati totali	μg/L	<0,14	0,10											
1,2,4-Trimetilbenzene	μg/L	<0,051	<0,051	1,2,4-trimetilbenzene	mg/L	<0,000051	<0,000051	<0.000051	<0.000051	<0.000051	<0.000051	<0,000051	<0,000051	
Benzene	μg/L	<0,091	<0,091	benzene	mg/L	<0,000091	<0,000091	<0.000091	<0.000091	<0.000091	<0.000091	<0,000091	<0,000091	
Etilbenzene	μg/L	<0,052	<0,052	etilbenzene	mg/L	<0,000052	<0,000052	<0.000052	<0.000052	0,000059	<0.000052	<0,000052	<0,000052	
m,p-Xilene	μg/L	<0,17	<0,17	m,p-xilene	mg/L	<0,000170	<0,000170	<0.000170	<0.000170	<0.000170	<0.000170	<0,000170	<0,000170	
o-Xilene	μg/L	<0,065	<0,065	o-xilene	mg/L	<0,000065	<0,000065	<0.000065	<0.000065	<0.000065	<0.000065	<0,000065	<0,000065	
Stirene	μg/L	<0,046	<0,046	stirene	mg/L	<0,0000460	<0,0000460	<0.000046	<0.000046	0,00017	0,00011	<0,000046	<0,000046	
Toluene	μg/L	0,073	<0,070	toluene	mg/L	<0,000070	<0,000070	<0.000070	<0.000070	<0.000070	<0.000070	<0,000070	<0,000070	
Metilterbutiletere	μg/L	0,213	0,106	metilterbutiletere	mg/L	0,00053	0,00052	0,0014	0,0017	0,0007	0,0006	0,00310	0,00320	
Escherichia coli	UFC/100 ml	14000	10000	Escherichia coli	UFC/100mL	36	5	32	26	590	980	460	2400	

	PROGETTISTA	SAIPEM	unità 000	COMMESSA 0230113_225A			
snam //\v	LOCALITÀ Regio	ne Veneto	SPC. 00-BH-E-94761				
		-Trieste: Rifacimento tratto ars ed Opere Connesse	Pag. 64 di 64	Rev. 0			

Tab. 30 Fosso Dosson: Livello di inquinamento dai Macrodescrittori per lo Stato Ecologico (Indice LIMeco) delle acque superficiali delle sezioni di monte (M) e di valle (V) nel monitoraggio in corso d'opera e nel monitoraggio anteoperam.

	Corso	d'opera				Ante c	peram			
Fosso Dosson (VAS11)	VAS11 3/23		VAS11 6/19		VAS1	1 9/19	VAS11	l 11/19	VAS1	1 1/20
	M	V	М	٧	M	V	M	V	M	V
100-O₂%sat.	17,68	10,74	18,8	18,8	34	33	19	19	20	20
N-NH4 (mg/I)	0,51	0,47	0,38	0,39	0,25	0,01	0,25	0,27	0,63	0,66
N-NO ₃ (mg/l)	0,79	0,79	0,18	0,02	0,77	0,81	1,81	1,81	0,97	0,97
Fosforo totale (µg/l)	140	211	130	150	150	150	61	66	44	42
	Corso	d'opera	Ante operam							
Fosso Dosson (VAS11)	VAS11 3/23		VAS11 6/19		VAS11 9/19		VAS11 11/19		VAS11 1/20	
	M	V	M	٧	M	V	M	V	M	V
100-O₂%sat.	0,500	0,500	0,500	0,500	0,250	0,250	0,500	0,500	0,500	0,500
N-NH4 (mg/l)	0,000	0,000	0,000	0,000	0,000	1,000	0,000	0,000	0,000	0,000
N-NO₃ (mg/l)	0,500	0,500	1,000	1,000	0,500	0,500	0,250	0,250	0,500	0,500
Fosforo totale (µg/l)	0,250	0,125	0,250	0,250	0,250	0,250	0,500	0,500	1,000	1,000
Media LIM _{eco}	0,313	0,281	0,438	0,438	0,250	0,500	0,313	0,313	0,500	0,500
CLASSE	IV	IV	III	≡	IV	II	IV	IV	II	ll l
STATO CHIMICO	SCARSO	SCARSO	SUFF.	SUFF.	SCARSO	BUONO	SCARSO	SCARSO	BUONO	BUONO