		COM	UNE DI SAN SEVERO PROVINCIA DI FOGGIA
			PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO RICHIESTA DI AUTORIZZAZIONE UNICA D.Lgs. 387/2003
	Sustainable Eng	ineerinç	PROCEDIMENTO UNICO AMBIENTALE (PUA) VALUTAZIONE DI IMPATTO AMBIENTALE (VIA) D.Lgs. 152/2006 ss.mm.ii. (Art.27) "Norme in materia ambientale"
PROGETTO	AQUIL	ONE 1	
DITTA	NVA Aqı	uilone srl	
)8 	tolo dell'allegato:	RELAZIONE GEOTECNICA
		05/01/20 DAT/	CARATTERISTICHE GENERALI D'IMPIANTO GENERATORE IMPIANTO • Altezza mozzo: fino a 175 m • Numero generatori: 29 024 • Diametro rotore: fino a 172 m • Potenza complessiva: fino a 208,8 MW • Potenza unitaria: fino a 7,2 MW • Potenza complessiva: fino a 208,8 MW
Il proponente NVA Aqui Via Lepetit 20045 Lain nvaaquilon	: lone Srl , 8 ate (MI) e@legalmail.it	II progettist ATS Eng P.zza Gio 71017 To 0882/393 atseng@p	a: gineering srl ovanni Paolo II, 8 orremaggiore (FG) 3197 pec.it II Tecnico Gea Pechologie orl NGEGNERE GIANFRANCO LEANDRO * Sez. 6-10.284 * Orremageirent Portemageirent * Sez. 6-10.284 * Orremageirent * Orremageirent * Sez. 6-10.284 * Orremageirent * Sez. 6-10.284 * Orremageirent * Orremageirent * Orremageirent * Sez. 6-10.284 * Orremageirent * Orrema

AQUILONE 1						
IMPIANTO EOLICO C	COMPOSTO DA 29	Data: 05/01/2024				
AEROGENERATORI P COMPLESSIVA DI 208,8 MW	UBICATO NEL COMUNE	Revisione:	1			
DI SAN SI	EVERO	Codice Elaborato:	REL 08			
Società:	NVA Aquilone S.r.I.					

Elaborato da:	Data	Approvato da:	Data Approvazione	Rev	Commenti
Geo Tecnologie S.r.l	05/01/2024	ATS Engineering S.r.I	05/01/2024	1	

1	PREMESSA	2
2	NORMATIVA DI RIFERIMENTO	6
3	GEOLOGIA	7
3.1	Iquadramento geologico generale	7
3.2	Inquadramento geologico di dettaglio	10
3.3	INQUADRAMENTO TETTONICO	12
4	GEOMORFOLOGIA ED IDROGEOLOGIA	15
5 FO	CALCOLO DELLA PORTANZA E VERIFICA ALLO SCORRIMENTO DELLA NDAZIONE DELLA TORRE EOLICA	23

1 PREMESSA

La presente relazione è stata redatta per descrivere i caratteri geologico – tecnici, nell'ambito del "Progetto per la realizzazione di un parco eolico", la cui area di approccio ricade nell'agro del territorio comunale di San Severo (FG).

Figura 1_ Stralcio carte IGM : Foglio 155 II S.O. "Torremaggiore", Foglio 155 II N.E. "Apricena", Foglio 155 II S.E. "San Severo", Foglio 155 II N.O. "Coppa di Rose", Foglio 163 I NE "Masseria Farella", Foglio 163 I N.O. "Masseria Figurella Nuova"

In particolare, il progetto prevede la realizzazione/installazione di:

- n. 29 aerogeneratori con potenza nominale fino a 7,2 MW, per una potenza complessiva fono a 208,8 MW;

GEO TECNOLOGIE S.R.L.

- n. 29 fondazioni aerogeneratori, plinti circolari su pali di fondazione, dimensionate e progettate tenendo conto le massime sollecitazioni che l'opera trasmette al terreno;

- n. 1 stazione di Elevazione AT/AAT sita nel Comune di San Severo, di ricezione dai gruppi di aerogeneratori e trasformazione, costituita da elementi prefabbricati in C.A.V. (Calcestruzzo Armato Vibrato) le cui dimensioni saranno tali da consentire tutte le operazioni necessarie per la corretta gestione dell'impianto, compresa la manutenzione;

- la viabilità interna, di collegamento di ciascuna delle postazioni con la viabilità principale, costituita da una serie di strade e di piazzole necessarie ad un agevole raggiungimento di tutti gli aerogeneratori.;

- cavidotto interrato interno AT, che collega gli aerogeneratori in gruppi e i gruppi alla cabina di smistamento sita all'interno della stazione di Elevazione;

- n. 1 Storage per accumulo energia elettrica;

- rete telematica di monitoraggio interna per il controllo dell'impianto mediante trasmissione dati via modem.

Più dettagliatamente, per la realizzazione dell'impianto sono previste le seguenti opere ed infrastrutture:

 Opere civili di fondazione che nello specifico sono di tipo indiretto, su pali e verranno dimensionate sulla base delle risultanze geotecniche del sito. In particolare, la fondazione sarà eseguita con un plinto a base circolare con diametro di circa 36 m, ancorato a un numero adeguato di pali, di tipo trivellato, infissi nel terreno ad una profondità variabile tra 25-40 m.

• Opere impiantistiche:

Torre: composta da un cilindro in acciaio di altezza fino a 175 m. Il cilindro tubolare sarà formato da più conci, montati in sito, fino a raggiungere l'altezza voluta. All'interno del tubolare saranno inserite la scala di accesso alla navicella e il cavedio in cui correranno i cavi elettrici necessari al vettoriamento dell'energia. Alla base della torre, dove una porta consentirà l'accesso all'interno, nello spazio utile, sarà ubicato il quadro di controllo che, oltre a consentire il controllo da terra di tutte le apparecchiature della navicella, conterrà l'interfaccia necessaria per il controllo remoto dell'intero processo tecnologico. La base della torre è dipinta di

verde più scuro, fino ad un'altezza di 5-8 m. Più in alto le variazioni di colore si verificano dopo 2-3 m. L'altezza delle bande di colore è adatto a ogni tipo di torre al fine di garantire un quadro armonico;

- Navicella: costituita da un involucro in vetroresina, conterrà tutte le \cap al apparecchiature necessarie funzionamento elettrico е meccanico dell'aerogeneratore. In particolare, includerà la turbina che, azionata dalle eliche, con un sistema di ingranaggi e riduttori oleodinamici trasmetterà il moto al generatore elettrico. Oltre ai dispositivi per la produzione energetica, nella navicella saranno ubicati anche i motori che consentono il controllo della posizione della navicella e delle eliche. La prima può ruotare a 360° sul piano di appoggio navicella-torre, le eliche, invece, possono ruotare di 90° sul loro asse longitudinale.
- Eliche: le eliche o pale realizzate in fibra di vetro, impregnate con resine epossidiche, rinforzate con fibra di carbonio, assicurano leggerezza e non creano fenomeni indotti di riflessione dei segnali ad alta frequenza che percorrono l'etere. Nel caso specifico la macchina adotta un sistema a tre eliche calettate attorno ad un mozzo, a sua volta fissato all'albero della turbina. Il diametro del sistema mozzo-eliche è fino a 172 m. Ciascuna pala/elica, in grado di ruotare intorno al proprio asse longitudinale, ad una velocità di rotazione variabile, assume sempre il profilo migliore ai fini dell'impianto del vento. Al rotore dell'aerogeneratore tipo, formato da tre pale e avente un diametro fino a 172 m corrisponde un'area spazzata di 23.235 m².

2 NORMATIVA DI RIFERIMENTO

La presente relazione è stata redatta in conformità con quanto previsto dalla normativa al riguardo, ed in particolare:

- Decreto Ministeriale 14.17.2018. Testo Unitario-Norme Tecniche per le Costruzioni;
- Consiglio Superiore dei Lavori Pubblici. Istruzione per l'applicazione delle norme tecniche per le costruzioni di cui al D.M. 14 gennaio 2008. Circolare 2 febbraio 2009;
- Consiglio superiore dei Lavori Pubblici. Pericolosità sismica e criteri generali per la classificazione sismica del territorio nazionale. Allegato al voto n.36 del 27.07.2007;
- Eurocodice 8 (1998) -Indicazioni progettuali per la resistenza fisica delle strutture. Parte
 5: fondazioni, strutture di contenimento ed aspetti geotecnici (stesura finale 2003);
- Eurocodice 7.1 (1997). Progettazione geotecnica-Parte I: regole generali.UNI.
- Eurocodice 7.2 (2002). Progettazione geotecnica-Parte II: progettazione assistita da prove di laboratorio (2002). UNI.
- Eurocodice 7.3 (2002). Progettazione geotecnica-Parte II: progettazione assistita con prove in sito (2002). UNI.

3 GEOLOGIA

3.1 Iquadramento geologico generale

Per conoscere le condizioni nelle quali si trovano i terreni in esame, si espongono alcuni brevi cenni sui caratteri geologici dei terreni affioranti nell'area in progetto. Assumendo

come riferimento la Carta Geologica d'Italia scala 1:100.000: Foglio 155 "San Severo" e Foglio 163 "Lucera".

Figura 2_Inquadramento su Carta Geologica D'Italia.

Di seguito si riportano le formazioni presenti nella carta geologica d'Italia in scala 1:100.000 foglio 155 "San Severo" affioranti nell'area di intervento:

Possono essere distinti, dal basso verso l'alto, in:

Sabbie di Serracapriola (Q°) Calabriano - Pliocene Sup. – Sabbie giallastre, a grana più o meno grossa, più o meno cementate, a stratificazione spesso indistinta con intercalazioni lentiformi di conglomerati grossolani e di argille; abbondante macrofauna a gasteropodi e lamellibranchi(Ostrea, Pecten ecc.); microfauna a Bulimina marginata d'ORB., B. fusiformis WILL, Eponides frigidus granulatus DI NAPOLI, Ammonia beccarii L.

Alluvioni ghiaioso – sabbioso – argillose del III ordine di terrazzi (fl³) Pleistocene.
 Alluvioni prevalentemente limoso – argillose del IV ordine di terrazzi (fl⁴) Pleistocene.

Sabbie di Serracapriola Q^c

Le sabbie di Serracapriola sono costituite prevalentemente da sabbie giallastre quarzose in grossi banchi; a luoghi sono presenti intercalazioni di arenarie abbastanza ben cementate, argille biancastre o verde chiaro.

Non mancano i livelli lentiformi di conglomerati ad elementi prevalentemente arenacei e calcareo - marnosi.

Poggiano in concordanza sulle Argille di Montesecco, alle quali passano gradualmente per alternanza, con locali fenomeni di eteropia. Il limite tra le due formazioni è stato posto convenzionalmente ove iniziano banchi sabbiosi più potenti, caratterizzati dalla presenza di intercalazioni arenacee, con locali episodi di sedimentazioni più grossolana.

Ove il passaggio è più netto, le Sabbie di Serracapriola spiccano con evidenza morfologica sulle tenere argille sottostanti.

Nella zona di Apricena le Sabbie di Serracapriola poggiano direttamente in trasgressione sui terreni mesozoici e miocenici del Gargano.

Le sabbie sono più quarzose e grossolane nella zona di Torremaggiore, San Severo esse diventano molto più argillose e a grana più fine; si presume che in questa zona le Sabbie di Serracapriola comprendano un intervallo stratigrafico più esteso in parziale eteropia con le Argille di Montesecco; lo spessore della formazione, che è normalmente di circa 30 m, diventa qui più considerevole. Fra i macrofossili rinvenuti prevalgono i

lamellibranchi a guscio più spesso (Ostrea, Pecten). Dal punto di vista micropaleontologico non si è notato un evidente differenza rispetto alla parte superiore delle argille sottostanti, salvo una maggiore scarsità o povertà di forme, per il problema di attribuzione al Pliocene superiore o al Calabriano si pone nei termini già discussi. Peraltro anche Selli non esclude la presenza del Calabriano nella parte alta delle Sabbie di Serracapriola. In questa formazione saranno realizzati 25 aerogeneratori.

<u>Alluvioni ghiaioso-sabbioso-argillose del III ordine di terrazzi fl³</u>

Si tratta di depositi più fini dei precedenti con prevalenza di sabbie e argille e rari livelli ghiaiosi. Essi sono stati individuati lungo il F. Fortore ove costituiscono una piattaforma estesa specie sul versante destro del fiume. Lo spessore del sedimento è di qualche metro ed il suo dislivello sull'attuale alveo del fiume nella zona meridionale del foglio e di circa 40 m. Il terrazzo è evidente solo fino all'altezza del Ponte di Civitate: più a Nord è di difficile separazione da fl2.

In questa formazione saranno realizzati 2 aerogeneratori.

Alluvioni prevalentemente limoso-argillose del IV ordine di terrazzi fl⁴

Si tratta di limi, argille e sabbie provenienti essenzialmente dall'erosione dei sedimenti plio-pleistocenici; nella parte alta del F. Fortore a questo materiale fine s'intercalano lenti di ciottoli grossolani di provenienza appenninica. Lo spessore supera i 10 m; solo raramente (lungo il F. Fortore) si osserva la base della formazione costituita da sabbie, localmente poggianti sulla superficie erosa delle Argille di Montesecco.

Le alluvioni terrazzate costituiscono ripiani elevati al massimo di una decina di metri rispetto agli alvei attuali; verso il mare però tale valore decresce progressivamente fino ad annullarsi.

In questa formazione saranno realizzati 2 aerogeneratori.

Di seguito si riportano le formazioni presenti nella carta geologica d'Italia in scala 1:100.000 foglio 163 "Lucera" affioranti nell'area di intervento:

Possono essere distinti, dal basso verso l'alto, in:

Sabbie (Qm₂) Pleistocene – Sabbie gialle fini con molluschi litorali e salmastri (Chalamys varia, C. flexuosa, O. lamellosa, P. jacobaeus.) siciliano.

Formano superfici spianate, inclinate ad Est, comprese fra quote 300 e 100 m. > Depositi fluviali (Qt) Olocene – Depositi fluviali terrazzati a quote superiori ai 7 m sull'alveo del fiume (Qt).

Sabbie Qm2

Sabbie fini gialle con molluschi salmastri, in contrada Feudo sono state segnalate: Chlamys varia L., Chlamys flexuosa POL., Pecten jacobaeus I.

In località Casalorda, tra il torrente Triolo e San Severo, è abbastanza frequente Ostrea edulis I. della forma lamellosa BROCCHI.

Questi depositi rappresentano probabilmente un passaggio laterale del termine Qc₂. Nei dintorni di San Severo fu raccolto un molare di Paleoloxdon antiquus BL. Nell'insieme essi costituirebberp le facies continentali e litorali di una trasgressione medio-pleistocenica(Siciliano?).

<u>Depositi fluviali Qt</u>

I rilievi spianati che formano il Tavoliere della Capitanata, tra i quali possiamo prendere come esempio tipico quello su cui sorge Lucera, sono separati da valli amplissime, palesemente sproporzionate ai corsi d'acqua che le solcano. Il fondo di queste valli è coperto da una coltre alluvionale prevalentemente sabbiosa, con livelletti di ciottolame siliceo minuto, che raggiunge al massimo una decina di metri di spessore. Essa è stata incisa da corsi d'acqua attuali, che scorrono adesso circa 7 metri più in basso.

3.2 Inquadramento geologico di dettaglio

In considerazione del Foglio n. 163 "Lucera", Foglio n.155 "San Severo" e della Carta Idrogeomorfologica della Regione Puglia, le formazioni geologiche affioranti vengono raggruppate in alcune macro-unità distinte in base all'età, alla litologia e all'ambiente di sedimentazione.

Le formazioni sono di seguito così elencate:

- Rocce prevalentemente arenitiche (arenarie e sabbie)
- Depositi sciolti a prevalente componente pelitica e/o sabbiosa (alluvioni recenti e attuali, depositi eluviali e colluviali, "terra rossa")

Assieme al raggruppamento definito nella Carta Geologica di figura 2 è presente una sezione geologica schematica identificata dalle lettere A_A' e riportata in figura 3.

Figura 3_Stralcio carta geologica di dettaglio

Figura 4_Sezione geologica schematica.

3.3 INQUADRAMENTO TETTONICO

L'area del Foglio "San Severo" comprende sia settori appartenenti al dominio geodinamico-strutturale dell'Avampaese apulo sia al domino della Fossa bradanica. Il primo comprende un tratto del margine occidentale del Promontorio del Gargano, costituito in prevalenza da rocce carbonatiche autoctone mesozoiche, interessate da strutture legate a deformazione di natura fragile prodottesi in prevalenza durante il Terziario, in seguito alle diverse fasi deformative che hanno determinato l'orogenesi appenninico-dinarica; il secondo corrisponde ad un tratto della Fossa bradanica colmata da depositi plio-pleistocenici silicoclastici marini e continentali (Immagine 1).

Figura 5_Schema tettonico del Foglio 396 "San Severo"

Dal Miocene al Quaternario il sistema sudappenninico, a seguito dell'arretramento della placca adriatica migra verso E coinvolgendo nella migrazione anche l'avanfossa pliopleistocenica che nel tratto pugliese si differenzia rispetto alle restanti parti del bacino per essere delimitata da ambedue i lati: ad O dai rilievi appenninici, ad E da quelli dell'Avampaese apulo emerso. L'arretramento determinava già nel Miocene mediosuperiore la subsidenza della rampa regionale con la conseguente sedimentazione di unità carbonatiche mioceniche di mare sottile (es. formazione di Masseria Belvedere).

L'avanfossa plio-pleistocenica si costituisce a partire dal Pliocene inferiore allorché la strutturazione della catena è quasi ultimata per l'intero arco appenninico (Fossa bradanica). Dal punto di vista strutturale si tratta di un foreland basin che si sviluppa in gran parte sulla rampa regionale dell'avampaese, e che migra verso E per effetto dell'arretramento e abbassamento della rampa stessa; contestualmente anche le strutture compressive appenniniche avanzano in sequenza verso E, immettendo nel bacino enormi volumi di terreni alloctoni. A seguito di tali fenomeni il bacino si presenta, in sezione trasversale, asimmetrico per avere un margine occidentale appenninico molto acclive, e un margine orientale di avampaese caratterizzato da bassi gradienti. In un quadro paleogeografico così articolato la sedimentazione si è necessariamente differenziata sia per diversità di facies e di spessori, sia per diversi caratteri petrografici (Moretti et alii,2011).

Lungo l'area marginale appenninica, i materiali terrigeni prodotti dallo smantellamento della catena alimentavano sistemi costieri in facies di spiaggia-delta, che passavano distalmente ad una sedimentazione di tipo argilloso, la cui unità emblematica è rappresentata dalle argille subappennine.

4 GEOMORFOLOGIA ED IDROGEOLOGIA

L'area di studio corrisponde ad un'area di basso strutturale delimitata da importanti lineamenti tettonici di estensione regionale

Questo settore dell'unità morfologica del Tavoliere, procedendo da monte verso mare, è caratterizzato da una serie di ripiani disposti ad altezze diverse fra le quote 150 e 5 metri.

In generale morfologicamente San Severo rientra nella piana del Tavoliere di Puglia, appartenente al dominio di Avanfossa, litologicamente le piatte e poco elevate colline del Tavoliere sono costituite da depositi alluvionali e/o marini costieri silicoclastici molto recenti e poco sollevati, quindi anche blandamente incisi, il paesaggio è dato da spianate intervallate da vallecole ampie ma poco profonde. Presenta gli aspetti di un modellamento fluviale di tipo policiclico, caratterizzato da superfici pianeggiati variamente estese intagliate da analoghe forme più recenti, ben riconoscibili nei profili longitudinali e trasversali degli ampi interfluvi dell'alto bacino idrografico del Torrente Candelaro e degli affluenti Torrente Triolo, con i subaffluenti Canale Ferrante e Canale S. Maria, e del tratto terminale del Torrente Salsola. Mentre Il Torrente Radicosa, con andamento sinuoso, recapita le sue fluenze direttamente nel Torrente Candelaro di cui ne costituisce il principale affluente in sinistra nella tratta di monte.

Dal punto di vista genetico, tali superfici corrispondono a lembi relitti di superfici strutturali, impostate su depositi terrigeni sabbiosi e ghiaiosi, di origine sia marina (piane di regressione) o fluviale (piane alluvionali). Fra le paleosuperifici di origine marina la più elevata in quota è localizzata presso in corrispondenza del rilievo tabulare di Coppa degli Ulivi, limitato sul lato meridionale da un evidente gradino; il successivo, in ordine altimetrico, occupa una vasta area attorno alla cittadina di San Severo con debole immersione ad O ed elevazione massima intorno al centinaio di metri; il terrazzo più basso si estende sul lato orientale del precedente, delimitato a monte da un modesto e discontinuo pendio, con superficie sommitale posta a quote prossime ai 65 metri in leggera pendenza verso la piana alluvionale del Torrente Triolo.

Come visibile dalle foto di seguito riportate le aree interessate dalla realizzazione degli aerogeneratori sono prevalentemente pianeggianti.

Figura 6_Area di realizzazione aerogeneratore wtg01

Figura 7_ Area di realizzazione aerogeneratore wtg12_wtg18

Figura 8_Area di realizzazione aerogeneratore wtg25

Figura 9_Area di realizzazione aerogeneratore wtg28

I bacini idrografici del Torrente Candelaro e dei suoi affluenti sono molto estesi arealmente, e caratterizzati, a causa della generale morfologia pianeggiante da spartiacque indeterminato e da una fittezza di brevi linee di deflusso cataclinali che si diramano sia dai versanti delle superfici terrazzate che dalla scarpata del rilievo garganico, tutte confluenti nelle aste principali dei torrenti Candelaro, Triolo e Salsano. Pertanto questi corsi d'acqua, caratterizzati da bassi profili di equilibrio presentano, a seconda delle condizioni metereologiche, una naturale tendenza a divagare oppure ad

inondare le valli nelle quali scorrono, nonostante le numerose opere di bonifica sinora eseguite.

Le risorse idriche a cui attingono i numerosi pozzi d'acqua sparsi un po' ovunque nel Tavoliere, sono legate prevalentemente alla falda acquifera presente nelle coperture alluvionali e subordinatamente alla falda profonda. La superficie piezometrica segue grossomodo l'andamento del substrato argilloso pliocenico (argille subappennine), cosicché si registra un maggiore spessore ed una maggiore produttività dell'acquifero laddove il substrato argilloso impermeabile è più depresso e forma dei veri e propri impluvi; la produttività dell'acquifero risulta quindi essere strettamente dipendente dallo spessore e dalle caratteristiche granulometriche degli strati acquiferi.

In prossimità dell'area di realizzazione dell'impianto eolico, sono presenti dei pozzi per acqua, figura 5, censiti nell'archivio nazionale delle indagini nel sottosuolo (Legge 464/1984) dai quali si evince una falda a profondità di 18.50 m da piano campagna nel pozzo 1 e l'altra a 25 m di profondità dal piano campagna nel pozzo 2.

Figura 10 - Pozzi per acqua, rappresentato con un cerchio rosso pozzo 1 e verde pozzo 2, presente in prossimità dell'impianto eolico

() ISPR					Istituto Su	periore per An	r la Protezione ibientale	e la Ricerca
		Archivio naz	zionale del	le indagini nel	sottosuolo ((Legge 464	/1984)	
	1	Dati generali			Ubicazi	one indicat	tiva dell'area d	'indagine
Regione: Provinci Comune Tipologi Opera: F Profondi Quota po Anno res Numero Presenza Portata i Portata o Numero Numero Numero Stratigra Certifica Numero Longitus	: PUGLIA ia: FOGGIA :: APRICENA la: PERFORAZ POZZO PER A/ ità (mi): 98,00 c slm (m): ND alizzazione: 19 diametri: 0 a acqua: S1 massima (l/s): falde: 4 filtri: 0 piezometrie: 1 afia: S1 azione(*): NO strati: 6 dine WGS84 (e	20NE CQUA 93 5,000 ND			+		-	500
Latitudi Longitus Latitudin (*)Indice compilaz	ine WGS84 (dd dine WGS84 (d ine WGS84 (dn a la presenza d zione della stra	l): 41,771781 dms): 15° 19' 42. ns): 41° 46' 18,4) li un professionis ttigrafia	100" E 1" N sta nella				1/2	Maaar, Mieros
Latitudi Longitu Latitudi (*)Indice compilaz	ne WGS84 (dd dine WGS84 (d ne WGS84 (dn a la presenza d zione della stra	i): 41,771781 dms): 15° 19' 42. ns): 41° 46' 18.41 li un professionis tigrafia	100" E 1" N sta nella	FALDE ACQUI	TRE		1/	Maxar, Micros
Latitudi Longitu Latitudi (*)Indice compilaz	ne WGS84 (dd dine WGS84 (d ne WGS84 (dn a la presenza d zione della stra	i): 41,771781 dms): 15° 19' 42. ns): 41° 46' 18.41 li un professioni: digrafia Da profondità (r	100" E I" N sta nella m)	FALDE ACQUI	PERE refondità (i	m)	Leng	Maxar, Micros
Latitudi Longitud Latitudi (*)Indica compilaz	ne WGS84 (dd dine WGS84 (d ne WGS84 (dn a la presenza d zione della stra r 18,50	i): 41,771781 dms): 15° 19' 42. ns): 41° 46' 18.41 li un professioni: digrafia Da profondità (r	100" E 1" N sta nella m)	FALDE ACQUII Ap 48,00	PERE rofoedità (i	m)	Lung 29,50	Maxar, Micros
Latitudi Longitud Latitudi (*)Indica compilaz Prog 1 2	ne WGS84 (dd dine WGS84 (d ne WGS84 (dn a la presenza d zione della stra r 18,50 48,00	i): 41,771781 dms): 15° 19' 42. ns): 41° 46' 18,41 li un professioni: digrafia Da profondità (r	100" E 1" N sta nella m)	FALDE ACQUII 48,00 60,00	PERE rofoedità (i	m)	Lung 29,50 12,00	Maxar, Micros
Latitudi Longitud Latitudi (*)Indica compilaz Prog 1 2 3	ne WGS84 (dd dine WGS84 (d ne WGS84 (dn a la presenza d zione della stra 18,50 48,00 60,00	i): 41,771781 dms): 15° 19' 42. ns): 41° 46' 18,41 li un professioni: digrafia Da profondità (r	100" E 1" N sta nella m)	FALDE ACQUII 48,00 60,00 78,00	PERE rofoedità (i	m)	Leng 29,50 12,00 18,00	Maxar, Micros
Latitudi Longitus Latitudi (*)Indice compilaz Prog 1 2 3 4	ne WGS84 (dd dine WGS84 (d ne WGS84 (dn a la presenza d zione della stra 18,50 48,00 60,00 78,00	i): 41,771781 dma): 15° 19' 42. ns): 41° 46' 18.41 li un professionis ttigrafia Da profondità (r	100" E I" N sta nella m)	FALDE ACQUII 48,00 60,00 78,00 98,00	PERE rofondità (i	m)	Lengi 29,50 12,00 18,00 20,00	Maxar, Mierro hezza (m)
Latitudi Longitu Latitudi (*)Indici compilaz	ne WGS84 (dd dine WGS84 (d ne WGS84 (dn a la presenza d zione della stra 18,50 48,00 60,00 78,00	i): 41,771781 ims): 15° 19' 42. ns): 41° 46' 18,41 ii un professionis tigrafia Da profondità (n	100" E I" N sta nella m) MI	FALDE ACQUII 48,00 60,00 78,00 98,00 SURE PIEZOME	FERE rofoedità ()	m)	Lung 29,50 12,00 18,00 20,00	Maxar, Misroo
Latitudi Longitu Latitudi (*)Indici compilaz	ne WGS84 (dd dine WGS84 (d ne WGS84 (dn a la presenza d zione della stra (n 18,50 48,00 60,00 78,00 rilevamento	i): 41,771781 ims): 15° 19' 42. ns): 41° 46' 18,41 ii un professionis tigrafia Da profondità (n Lávello stati	100" E 1" N sta nella m) 	FALDE ACQUII 48,00 60,00 78,00 98,00 SURE PIEZOME Lávello dina	FERE rofoedità (i TRICHE mico (m)	m)	Lengi 29,50 12,00 18,00 20,00	Maxar, Mixroo
Latitudi Longitus Latitudi (*)Indici compila. Prog 1 2 3 4 4 Data mar/1991	ne WGS84 (dd dine WGS84 (d ne WGS84 (dn a la presenza d zione della stra 18,50 48,00 60,00 78,00 78,00	i): 41,771781 ims): 15° 19' 42. ns): 41° 46' 18.41 ii un professionis tigrafia Da profondità (n Livello stati 48,00	100" E 1" N sta nella m) MI co (m)	FALDE ACQUII 48,00 60,00 78,00 98,00 SURE PIEZOME Lávello dina 50,00	FERE rofoedità (i TRICHE mico (m)	m)	Lung 29,50 12,00 18,00 20,00 ssamento (m)	Maxar, Micros hezza (m)
Latitudi Longitus Latitudi (*)Indici compila. Prog 1 2 3 4 4 Data mar/1993	ne WGS84 (dd dine WGS84 (d ne WGS84 (dn a la presenza d zione della stra 18,50 48,00 60,00 78,00 78,00 rilevamento 3	i): 41,771781 ims): 15° 19' 42. ns): 41° 46' 18,41 ii un professionis tigrafia Da profondità (n Livello stati 48,00	100" E I" N sta nella m) MI co (m)	EALDE ACQUII 48,00 60,00 78,00 98,00 SURE PIEZOME Livello dina 50,00	TRICHE mico (m)	m)	Lung 29,50 12,00 18,00 20,00 samento (m)	Maxar, Micros hezza (m) Portata (k 5,000
Latitudi Longitus Latitudi (*)Indici compila (*)Indici compila 1 2 3 4 2 3 4 4 Data mar/1993	ne WGS84 (dd dine WGS84 (d ne WGS84 (dn a la presenza d zione della stra (r 18,50 48,00 60,00 78,00 78,00 rilevamento 3 Da profondità	i): 41,771781 ims): 15° 19' 42. ns): 41° 46' 18.41 ii un professionis tigrafia Da profondità (n Livello stati 48,00 A profondità	100" E 1" N sta nella m) <u>co (m)</u> Spessor	FALDE ACQUII 48,00 60,00 78,00 98,00 SURE PIEZOME Livello dina 50,00 STRATIGRAJ c Età	FERE TRICHE mico (m)	m)	Lang 29,50 12,00 18,00 20,00	Maxar, Micros hezza (m) Portata (la 5,000
Latitudi Longitus Latitudi (*)Indici compila: Prog Progr I Progr I	ne WGS84 (dd dine WGS84 (d ne WGS84 (dn a la presenza d zione della stra (n) 18,50 48,00 50,00 78,00 78,00 rilevamento 3 Da profondità (m)	i): 41,771781 ims): 15° 19' 42. ns): 41° 46' 18.41 ii un professionis tigrafia Da profondità (n Livello stati 48,00 A profondità (m)	100" E 1" N sta nella m) Co (m) Spessor (m)	FALDE ACQUIT 48,00 60,00 78,06 98,00 SURE PIEZOME Lávello dina 50,00 STRATIGRAD c Età geologica	FERE rofoedità (i TRICHE mico (m)	(Abbas) (12,00) (12,00)	Lung 29,50 12,00 18,00 20,00 ssamento (m)	Maxar, Micros hezza (m) Portata (la 5,000
Latitudi Longitus Latitudi (*)Indici compilas Progr 1 2 3 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ne WGS84 (dd dine WGS84 (d ne WGS84 (dn a la presenza d zione della stra (n) 18,50 48,00 60,00 78,00 78,00 rilevamento 3 Da profondità (m) 00	i): 41,771781 ims): 15° 19' 42. ns): 41° 46' 18.41 ii un professionis tigrafia Da profondità (n Livello stati 48,00 A profondità (m) 1,00	100" E 1" N sta nella m) MI co (m) Spessor (m) 1,00	FALDE ACQUIT A p 48,00 60,00 78,00 98,00 SURE PIEZOME Livello dina 50,00 STRATIGRAD c Età geologica	FERE rofoedità (i TRICHE mico (m)	m) Abbas 12,00 Deser	Lungi 29,50 12,00 18,00 20,00 ssamento (m)	Maxar, Micros hezza (m) Portata (la 5,000
Latitudi Longitus Latitudi (*)Indici compilas Progr 1 2 3 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ne WGS84 (dd dine WGS84 (d ne WGS84 (dn a la presenza d zione della stra (n) 18,50 48,00 60,00 78,00 78,00 rilevamento 3 Da profondità (m) 00	I): 41,771781 Ims): 15° 19' 42. ns): 41° 46' 18.41 Ii un professionis tiigrafia Da profondità (n Livello stati [48,00] A profondità (m) 1,00 18,50	100" E I" N sta nella m) MI co (m) [,00 17,50	FALDE ACQUII A p 48,00 60,00 78,00 98,00 SURE PIEZOME Livello dina 50,00 STRATIGRAJ e Età geologica	TRICHE mico (m) TERRENCIA	Abbas 12,00 Desci DVEGETA BLU SECO	Lengi 29,50 12,00 18,00 20,00 samento (m) rizione litologic LB CA	Maxar, Miseree hezza (m) Portata (l 5,000
Latitudi Longitus Latitudi (*)Indici compila: Progr 1 2 3 4 Progr 1 1 0,/ 2 1, 3 1 8 1 0,/ 1 9 1 0,/ 1 9 1 1 0,/ 1 1 9 1 1 2 3 1 8 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ne WGS84 (dd dine WGS84 (d ne WGS84 (dn a la presenza d zione della stra (n) 18,50 48,00 60,00 78,00 78,00 rilevamento 3 Da profondità (m) ,00 ,00 8,50	I): 41,771781 Ims): 15° 19' 42. ns): 41° 46' 18.41 Ii un professionistigrafia Da profondità (n Livello stati 48,00 A profondità (m) 1,00 18,50 48,00	100" E I" N sta nella m) MI co (m) 1,00 17,50 29,50	FALDE ACQUII A p 48,00 60,00 78,00 98,00 SURE PIEZOME Livello dina 50,00 STRATIGRAJ c Età geologica	TRICHE mico (m) TERRE TERRENC ARGILLA SABBIA C	Abbas 12,00 Desci DVEGETA BLU SECO FRIGIA CH	Lengl 29,50 12,00 18,00 20,00 samento (m) rizione litologia LB CA TARA C/ACQU	Maxar, Mierres hezza (m) Portata (k 5,000
Latitudi Longitus Latitudi (*)Indici compila. Progr I 1 0,/ 2 1,/ 3 18 4 48	ne WGS84 (dd dine WGS84 (d ne WGS84 (dn a la presenza d zione della stra 18,50 48,00 60,00 78,00 78,00 rilevamento 3 Da profondità (m) ,00 ,00 8,50 8,00	I): 41,771781 Ims): 15° 19' 42. ns): 41° 46' 18.41 Ii un professionistigrafia Da profondità (n Livello stati 48,00 A profondità (m) 1,00 18,50 48,00 60,00	100" E I" N sta nella m) Co (m) Spessor (m) 1,00 17,50 29,50 12,00	FALDE ACQUII 48,00 60,00 78,06 98,00 SURE PIEZOME Livello dina 50,00 STRATIGRAI c Età geologica	TRICHE mice (m) TERRENC ARGILLA SABBIA C	m) Abbas 12.00 Desc VEGETA BLU SECO FRIGLA CH DURA CON	Lung 29,50 12,00 18,00 20,00 ssamento (m) rizione litologie LE CA IARA C/ACQU	Maxar, Micros hezza (m) Portata (k 5,000
Latitudi Longitus Latitudi (*)Indici compila: 2 3 4 2 3 4 4 Data mar/1997 1 0,0,1 2 1,0,1 3 18 4 4 8 5 60	ne WGS84 (dd dine WGS84 (d ne WGS84 (dn a la presenza d zione della stra 18,50 48,00 60,00 78,00 78,00 78,00 78,00 78,00 00 8,50 8,00 0,00	I): 41,771781 Ims): 15° 19' 42. ns): 41° 46' 18.41 Ii un professionistigrafia Da profondità (n Livello stati 48,00 A profondità (m) 1,00 18,50 48,00 60,00 78,00	100" E 1" N sta nella m) MI co (m) 1,00 17,50 29,50 12,00 18,00	FALDE ACQUII 48,00 60,00 78,06 98,00 SURE PIEZOME Livello dina 50,00 STRATIGRAJ c Età geologica	TRICHE mico (m) TERRENC ARGILLA SABBIA C SABBIA C	Abbas 12.00 Desci DVEGETA BLU SECO FRIGIA CH DURA CON Z/ STRATI	Lengi 29,50 12,00 18,00 20,00 ssamento (m) rizione litologic LE CA IARA C/ACQU ACQUA DI ARENARIA	Maxar, Mierres hezza (m) Portata (k 5,000

ISPRA - Copyright 2018

Figura 11_Stratigrafia pozzo 1 per acqua archivio ISPRA

					51	ampa documen	10		
ISPI			astonaler Sone Yaanna			Istituto Super	riore per la F Ambien	rotezione tale	e la Ricerca
		A	rehivio na	zionale d	elle indagini ne	l sottosuolo (Le	gge 464/198	0	
	I)ati p	generali		1	Ubicazione	e indicativa e	lell'area d'	indagine
Codice Region Provin Comur Tipolog Opera: Profon Quota Anno r Numer Portats Portats Portats Numer Stratig Cortifi Numer Latituc Latituc (*)Indi compil	: 206907 : 206907 cis: FOGGIA ie: SAN SEVERK gia: PERFORAZI POZZO PER AC dità (m): 62,00 pc slm (m): 69,00 ualizzazione: 19: o diametri: 1 za acqua: SI o massima (1/s): 8 o falde: 2 o filtri: 1 o piezometrie: 3 rafia: SI cazione(*): NO o strati: 8 udine WGS84 (di line WGS84 (din cala presenza di azione della strat	D IONE CQU, 0 91 8,000 8,000 8,000 10:11 10:41, 10:51:4 10:11 10:11 10:11 10:11	5,355561 5,355561 755389 15° 21' 20 1° 45' 19,44 professioni fla	03* E)" N sta nella		+			Janit
Prog	r Da prof	fondi	ità (m)	D	IAMETRI PERFO profondità (m)	Lang	hezza (m)	Dia	umetro (mm)
1	I0,00			62,00	FALDE ACQU	162,00		500	
Pro	gr 1	Dapt							
1	25,00		Progr Da profondità (m)			profondità (m)	2	Lungh	hezza (m)
3	-		rofondità (m)	A 30,00	profondità (m)	5,00	Lung)	hezza (m)
4	38,00	_	rofondità (m)	A 30,00 52,00	profondità (m)	5,00 14,0	Lung))0	hezza (m)
4	38,00		rofondità (m)	A 30,00 52,00 POSIZIONE F	profondità (m) ILTRI	5,00 14,0	Lung))0	hezza (m)
Prog	38,00	fondi	rofondità (ità (m)	m)	A 30,00 52,00 POSIZIONE F profondità (m)	profondità (m) ILTRI Lung	5,00 14,0 hezza (m)	Lung))0 Dia	hezza (m) umetro (mm)
Prog	38,00 r Da prof 25,00	fondi	rofondità (ità (m)	m) A 52,00	A 30,00 52,00 POSIZIONE F profondità (m)	profondità (m) 11.7183 Lung 27,00	5,00 14,0 hezza (m)	Lung))00 Dia 300	hezza (m) umetro (mm)
Prog	38,00 r Da prof 25,00	fondi	ità (m)	m) A 52,00 3	A 30,00 52,00 POSIZIONE F profondità (m)	profondità (m) ILTRI 27,00 ETRICHE	5,0(14,(thezza (m)	Lung))00 Dia 300	hezza (m) umetro (mm)
Prog 1 Dat	Da prof 25,00 a rilevamento	fondi	ità (m) .ivello stati	m) A 52,00 3 co (m)	A 30,00 52,00 POSIZIONE F profondità (m) IISURE PIEZOM	profondità (m) 11.783 27,00 ETRICHE amico (m)	5,00 14,0 hezza (m)	Lung) 00 300 300 ento (m)	hezza (m) metro (mm) Portata (l/s
Prog 1 Dat mar/19	Da prof 25,00 a rilevamento 91	fondi 12,0	ità (m) .ivello stati 0	m) 52,00 52,00 52,00	A 30,00 52,00 POSIZIONE F profondità (m) IISURE PIEZOM Livello din 52,00 52,00	profondità (m) ILTRI Lung 27,00 ETRICHE amico (m) 4	5,00 14,0 hezza (m) Abbassam 0,00 5,00	Lungi))0 Dia 300 	hezza (m) metro (mm) Portata (l/s 8,000
2 Prog 1 Dat mar/19 mar/19 mar/19	38,00 r Da prof 25,00 a rilevamento 91 91	ondi 12,0 12,0	ità (m) ità (m) ivello stati 0 0 0	m) A 52,00 3 co (m)	A 30,00 52,00 POSIZIONE F profondità (m) IISURE PIEZOM Livello din 52,00 35,00	profondità (m) ILTRI Lung 27,00 ETRICHE amico (m) 4 2 3	Abbassam 0,00 3,00 0,00	Lungl) 00 00 00 00 00 00 00 00 00 00 00 00 0	ezza (m) emetro (mm) 8,000 3,000 5,000
Prog 1 Dat mar/19 mar/19 mar/19	Da profondită	I 12,0 12,0 12,0 12,0	ivello stati 0 0 0 0	m) A 52,00 50,000 52,00 50,000 52,000 52,000 50,0000 50,0000 50,0000 50,00000000	A 30,00 52,00 POSIZIONE F profondità (m) IISURE PIEZOM Livello din 52,00 35,00 42,00 STRATIGR/ Spessore (m)	profondità (m) ILTRI Lung 27,00 ETRICHE amico (m) 4 2 3 AFIA Età geologica	Abbassam 0,00 3,00 0,00 De	Lungi) 00 300 ento (m) scrizione li	emetro (mm) Portata (l/s 8,000 3,000 5,000 itologica
Prog 1 Dat mar/19 mar/19 mar/19	Da prof 25,00 a rilevamento 91 91 91 92	fondi 12,0 12,0 12,0 (m)	ivello stati 0 0 0 0 0 0 0 0 0 0 0 0	m) 52,00 3 co (m) dità (m)	A 30,00 52,00 POSIZIONE F profondità (m) ISURE PIEZOM Livello din 52,00 35,00 42,00 STRATIGR/ Spessore (m) 0,90 0,90	profondità (m) ILTRI Lung 27,00 ETRICHE amico (m) 4 2 3 NFIA Età geologica	Abbassam 0,00 3,00 0,00 3,00 0,00 TERRENO	Lungi))00 300 sento (m) secrizione li VEGETAL	hezza (m) metro (mm) Portata (l/s 8,000 3,000 5,000 5,000 E
Prog 1 Dat mar/19 mar/19 Progr 1 2 3	Da prof 25,00 a rilevamento 91 91 91 91 91 91 91 91 91 91 91 91 91	I 12,0 12,0 12,0 (m)	ivello stati 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	m) A 52,00 3 co (m) dità (m)	A 30,00 52,00 POSIZIONE F profondità (m) ISURE PIEZOM Livello din 52,00 35,00 42,00 STRATIGR/ Spessore (m) 0,90 9,10 15 00	profondità (m) ILTRI ILUNG 27,00 ETRICHE amico (m) 4 2 3 AFIA Età geologica	Abbassam 0,00 3,00 0,00 TERRENO ARGILLA C	Lungi) Dia 300 ento (m) scrizione li VEGETAL RALLA	netro (mm) Portata (l/s 8,000 3,000 5,000 itologica E
Prog 1 mar/19 mar/19 Progr 1 2 3 4	Da prof 25,00 a rilevamento 91 91 91 91 91 91 92 93 94 95 96 97 98 99 91 91 92 93 94 95 96 97 98 99 91 91 91 92 93 94 95 96 97 98 99 90 90 90 90 91 92 93 94 95 96 97 98 99 91 <td>[ondi 12,0 12,0 12,0 (m)</td> <td>ivello stati 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>m) 52,00 3 co (m) dità (m)</td> <td>A 30,00 52,00 POSIZIONE F profondità (m) IISURE PIEZOM ILivello din 52,00 35,00 42,00 STRATIGR/ Spessore (m) 0,90 9,10 15,00 5,00</td> <td>profondità (m) ILTRI ILUNG 27,00 ETRICHE amico (m) 4 2 3 VFIA Età geologica</td> <td>Abbassam 0,00 3,00 0,00 TERRENO ARGILLA C ARGILA C</td> <td>Lungi) Dia 300 ento (m) scrizione li VEGETALI RALLA SA IALLA SA GIALLA</td> <td>netro (mm) Portata (l/s 8,000 3,000 5,000 itologica E</td>	[ondi 12,0 12,0 12,0 (m)	ivello stati 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	m) 52,00 3 co (m) dità (m)	A 30,00 52,00 POSIZIONE F profondità (m) IISURE PIEZOM ILivello din 52,00 35,00 42,00 STRATIGR/ Spessore (m) 0,90 9,10 15,00 5,00	profondità (m) ILTRI ILUNG 27,00 ETRICHE amico (m) 4 2 3 VFIA Età geologica	Abbassam 0,00 3,00 0,00 TERRENO ARGILLA C ARGILA C	Lungi) Dia 300 ento (m) scrizione li VEGETALI RALLA SA IALLA SA GIALLA	netro (mm) Portata (l/s 8,000 3,000 5,000 itologica E
Prog 1 Dat mar/19 mar/19 Progr 1 2 3 4 5	Da prof z 5,00 a rilevamento 91 92 93 94 95 96 97 98 99 91 92 93 94 95 96 97 </td <td>I 12,0 12,0 12,0 (m)</td> <td>ivello stati 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>m) 52,00 3 co (m) dità (m)</td> <td>A 30,00 52,00 POSIZIONE F profondità (m) IISURE PIEZOM ILivello din 52,00 35,00 42,00 STRATIGR/ SPESSORE (m) 0,90 9,10 15,00 5,00 8,00</td> <td>profondità (m) ILTRI Lung 27,00 ETRICHE amico (m) 4 2 3 UFIA Età geologica</td> <td>Abbassam 0,00 3,00 0,00 TERRENO ARGILLA C ARGILLA C ARGILLA C</td> <td>Lungi) Dia 300 scrizione li vegetali RALLA GIALLA GIALLA</td> <td>metro (mm) Portata (l/s 8,000 3,000 5,000 itologica E ABBIOSA</td>	I 12,0 12,0 12,0 (m)	ivello stati 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	m) 52,00 3 co (m) dità (m)	A 30,00 52,00 POSIZIONE F profondità (m) IISURE PIEZOM ILivello din 52,00 35,00 42,00 STRATIGR/ SPESSORE (m) 0,90 9,10 15,00 5,00 8,00	profondità (m) ILTRI Lung 27,00 ETRICHE amico (m) 4 2 3 UFIA Età geologica	Abbassam 0,00 3,00 0,00 TERRENO ARGILLA C ARGILLA C ARGILLA C	Lungi) Dia 300 scrizione li vegetali RALLA GIALLA GIALLA	metro (mm) Portata (l/s 8,000 3,000 5,000 itologica E ABBIOSA
Progr 1 Dat mar/19 mar/19 Progr 1 2 3 4 5 6	Da prof z 5,00 a rilevamento 91 92 93 94 95 96 97 98 99 99 91 92 93 94 95 96 97 98 </td <td>fondi 12,0 12,0 12,0</td> <td>ivello stati 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>m) 52,00 3 co (m) dità (m)</td> <td>A 30,00 52,00 POSIZIONE F profondità (m) IISURE PIEZOM Livello din 52,00 35,00 42,00 STRATIGR/ Spessore (m) 0,90 9,10 15,00 5,00 8,00 14,00</td> <td>profondità (m)</td> <td>Abbassam 0,00 3,00 0,00 TERRENO ARGILLA C ARGILLA C ARGILLA C ARGILLA C</td> <td>Lungi) Dia 300 scrizione li VEGETAL RALLA GIALLA RALLA GIALLA</td> <td>hezza (m) metro (mm) Portata (l/s 8,000 3,000 5,000 itologica E ABBIOSA</td>	fondi 12,0 12,0 12,0	ivello stati 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	m) 52,00 3 co (m) dità (m)	A 30,00 52,00 POSIZIONE F profondità (m) IISURE PIEZOM Livello din 52,00 35,00 42,00 STRATIGR/ Spessore (m) 0,90 9,10 15,00 5,00 8,00 14,00	profondità (m)	Abbassam 0,00 3,00 0,00 TERRENO ARGILLA C ARGILLA C ARGILLA C ARGILLA C	Lungi) Dia 300 scrizione li VEGETAL RALLA GIALLA RALLA GIALLA	hezza (m) metro (mm) Portata (l/s 8,000 3,000 5,000 itologica E ABBIOSA
Progr 1 Dat mar/19 mar/19 Progr 1 2 3 4 5 5 6 7	Da prof 25,00 a rilevamento 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 93 94 95 96 97 98,00 52,00	fondi 12,0 12,0 12,0	ivello stati 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	m) 52,00 3 co (m) dità (m)	A 30,00 52,00 POSIZIONE F profondità (m) IISURE PIEZOM Livello din 52,00 35,00 42,00 STRATIGR/ Spessore (m) 0,90 9,10 15,00 5,00 8,00 14,00 3,00	profondità (m)	Abbassam 0,00 3,00 0,00 ARGILLA C ARGILLA C ARGILA A ARGILA A ARGILA A	Lungi) 00 Dia 300 scrizione li VEGETALI RALLA RALLA RALLA RALLA RALLA RALLA	hezza (m) metro (mm) Portata (l/s 8,000 3,000 3,000 5,000 itologica E ABBIOSA ACQUIFERA

ISPRA - Copyright 2018

Figura 12_Stratigrafia pozzo 2 per acqua archivio ISPRA

In relazione alla situazione stratigrafica e strutturale dell'area del Tavoliere, si riconoscono tre unità acquifere principali, situate a differenti profondità: acquifero poroso superficiale (che si rinviene nelle lenti sabbioso-ghiaiose dei depositi marini e alluvionali terrazzati pleistocenico - olocenici); acquifero poroso profondo (situato in corrispondenza dei livelli sabbiosi intercalati nella successione prevalentemente argillosa di età plio-pleistocenica); acquifero fessurato carsico profondo (situato in corrispondenza del substrato carbonatico prepliocenico del Tavoliere, collegato lateralmente alla vasta falda del Gargano). Tutti i depositi miocenico-quaternari, marini e continentali del territorio del Tavoliere in senso lato, sono composte prevalentemente da sedimenti clastici e sono caratterizzate da permeabilità per porosità mentre le rocce calcareo-dolomitiche del substrato prepliocenico sono caratterizzate da permeabilità secondaria per fratturazione e carsismo.

5 Calcolo della portanza e verifica allo scorrimento della fondazione della torre eolica

NORMATIVE DI RIFERIMENTO

Norme tecniche per le Costruzioni 2018

Aggiornamento alle Norme tecniche per le costruzioni D.M. 17 gennaio 2018.

Gli **stati limite ultimi** per sviluppo di meccanismi di collasso determinati dal raggiungimento della resistenza del terreno interagente con le fondazioni (**GEO**) riguardano:

- collasso per carico limite nei terreni di fondazione;
- scorrimento sul piano di posa.

In tali verifiche, tutte le azioni su un elemento di fondazione possono essere ricondotte a una forza risultante applicata al piano di posa.

Per le verifiche agli stati limite ultimi di tipo geotecnico (**GEO**) per carico limite e per scorrimento si deve fare riferimento all'**approccio 2**.

L'analisi deve essere condotta con la Combinazione (A1+M1+R3), nella quale i coefficienti parziali sui parametri di resistenza del terreno (M1) sono unitari, i coefficienti parziali sulle azioni (A1) sono indicati dalla tabella 6.2.1 e la resistenza globale del sistema è ridotta tramite i coefficienti \Box_R del gruppo R3 riportati in tab. 6.4.1.

	Effetto	Coefficient e Parziale γF (ογE)	EQU	(A1)	(A2)
Carichi	Favorevole	γG1	0.9	1.0	1.0
permanenti G ₁	Sfavorevole		1.1	1.3	1.0
Carichi	Favorevole	γG2	0.8	0.8	0.8
permanenti G ₂	Sfavorevole		1.5	1.5	1.3
(1)					
Azioni variabili	Favorevole	γQi	0.0	0.0	0.0
Q	Sfavorevole		1.5	1.5	1.3

Tab. 6.2.I – Coefficienti parziali per	e azioni o per l'effetto delle azioni
--	---------------------------------------

(1) Per i carichi permanenti G₂ si applica quanto indicato alla Tabella 2.6.1. Per la spinta delle terre si fa riferimento ai coefficienti ' γ_{G1}

Verifica	Coefficiente parziale
	(R3)
Carico limite	γ _R = 2.3
Scorrimento	γ _R = 1.1

Tab. 6.4.I – Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di fondazioni superficiali

STATI LIMITE DI ESERCIZIO (SLE)

La capacità di garantire le prestazioni previste per le condizioni di esercizio (SLE) deve essere verificata confrontando il valore limite di progetto associato a ciascun aspetto di funzionalità esaminato (Cd), con il corrispondente valore di progetto dell'effetto delle azioni (Ed), attraverso la seguente espressione formale:

Ed < Cd Dove:

- Ed valore di progetto dell'azione o degli effetti dell'azione;
- Cd valore limite dell'effetto delle azioni (spostamenti e deformazioni che possano compromettere

la funzionalità di una struttura).

I valori degli spostamenti e delle distorsioni andranno calcolati considerando le combinazioni di carico per gli SLE specificate al §2.5.3:

- Combinazione frequente;
- Combinazione quasi permanente s l.t.

Le verifiche relative alle deformazioni (cedimenti) e agli spostamenti si effettuano adoperando i valori caratteristici dei parametri (f_k).

Nelle analisi, devono essere impiegati i valori caratteristici delle proprietà meccaniche e pertanto i relativi coefficienti parziali di sicurezza devono sempre essere assunti unitari ($f_k = f_d$): si adottano i valori caratteristici dei moduli di deformazione dei terreni (E'_k, Eed_k).

Sotto l'effetto **dell'azione sismica** di progetto le opere e i sistemi geotecnici devono rispettare gli stati limite ultimi e di esercizio già definiti in precedenza (§ 3.2.1 NTC), con i requisiti di sicurezza indicati nel § 7.1.

Le verifiche degli stati limite ultimi in presenza di azioni sismiche devono essere eseguite ponendo pari a 1 i coefficienti parziali sulle azioni e sui parametri geotecnici e impiegando le resistenze

di progetto, con i coefficienti parziali \Box_R indicati nel presente Capitolo 7 oppure con i \Box_R indicati nel Capitolo 6 laddove non espressamente specificato.

Stato Limite Ultimo (SLV) per carico limite (§ 7.11.5.3.1)

Le azioni derivano dall'analisi della struttura in elevazione come specificato al § 7.2.5. Le resistenze sono i corrispondenti valori limite che producono il collasso del complesso fondazione-terreno; esse sono valutabili mediante l'estensione di procedure classiche al caso di azione sismica, tenendo conto dell'effetto dell'inclinazione e dell'eccentricità delle azioni in fondazione. Il corrispondente valore di progetto si ottiene applicando il coefficiente $\Box_{\underline{R}}$ di Tabella 7.11.11. **Se, nel calcolo del carico limite**, si considera esplicitamente l'effetto delle azioni inerziali sul volume di terreno significativo (e.g. Richards et al., Paolucci e Pecker), il coefficiente $\Box_{\underline{R}}$ può essere ridotto a 1.8.

Stato Limite Ultimo (SLV) per scorrimento sul piano di posa (§ 7.11.5.3.1)

Per azione si intende il valore della forza agente parallelamente al piano di scorrimento, per resistenza si intende la risultante delle tensioni tangenziali limite sullo stesso piano, sommata, in casi particolari, alla risultante delle tensioni limite agenti sulle superfici laterali della fondazione.

<u>Specificamente</u>, si può tener conto della resistenza lungo le superfici laterali nel caso di contatto diretto fondazione-terreno in scavi a sezione obbligata o di contatto diretto fondazione-calcestruzzo o fondazione-acciaio in scavi sostenuti da paratie o palancole.

In tali casi, il progettista deve indicare l'aliquota della resistenza lungo le superfici laterali che intende portare in conto, da giustificare con considerazioni relative alle caratteristiche meccaniche dei terreni e ai criteri costruttivi dell'opera.

Ai fini della verifica allo scorrimento, si può considerare la resistenza passiva solo nel caso di effettiva permanenza di tale contributo, portando in conto un'aliquota non superiore al 50%.

STATO LIMITE DI ESERCIZIO (SLE)

A meno dell'impiego di specifiche analisi dinamiche, in grado di fornire la risposta deformativa del sistema fondazione-terreno, <u>la verifica nei confronti dello stato limite di danno può essere ritenuta soddisfatta impiegando le azioni corrispondenti allo SLD e determinando il carico limite di progetto con il coefficiente \Box_R riportato nella Tabella 7.11.II.</u>

Tab. 7.11.II - Coefficienti parziali \Box_R per le verifiche degli stati limite (SLV) delle fondazioni superficiali con azioni sismiche

Verifica	Coefficiente parziale
Carico limite	2.3
Scorrimento	1.1
Resistenza sulle superfici laterali	1.3

CARICO LIMITE DI FONDAZIONI SU TERRENI

Il carico limite di una fondazione superficiale può essere definito con riferimento a quel valore massimo del carico per il quale in nessun punto del sottosuolo si raggiunge la condizione di rottura (metodo di Frolich), oppure con riferimento a quel valore del carico, maggiore del precedente, per il quale il fenomeno di rottura si è esteso ad un ampio volume del suolo (metodo di Prandtl e successivi).

Prandtl ha studiato il problema della rottura di un semispazio elastico per effetto di un carico applicato sulla sua superficie con riferimento all'acciaio, caratterizzando la resistenza a rottura con una legge del tipo:

 $\tau = c + \sigma \cdot \tan \phi$ valida anche per i terreni.

Le ipotesi e le condizioni introdotte dal Prandtl sono le seguenti:

- Materiale privo di peso e quindi γ=0
- Comportamento rigido plastico
- Resistenza a rottura del materiale esprimibile con la relazione τ = $c + \sigma \cdot tan \phi$
- Carico uniforme, verticale ed applicato su una striscia di lunghezza infinita e di larghezza 2b (stato di deformazione piana)
- Tensioni tangenziali nulle al contatto fra la striscia di carico e la superficie limite del semispazio.

All'atto della rottura si verifica la plasticizzazione del materiale racchiuso fra la superficie limite del semispazio e la superficie *GFBCD*.

Nel triangolo *AEB* la rottura avviene secondo due famiglie di segmenti rettilinei ed inclinati di $45^{\circ}+\varphi/2$ rispetto all'orizzontale.

Nelle zone ABF e EBC la rottura si produce lungo due famiglie di linee, l'una costituita da segmenti rettilinei passanti rispettivamente per i punti A ed E e l'altra da archi di de famiglie di spirali logaritmiche.

l poli di queste sono i punti *A* ed *E*. Nei triangoli *AFG e ECD* la rottura avviene su segmenti inclinati di $\pm (45^\circ + \varphi/2)$ rispetto alla verticale.

Meccanismo di rottura di Prandtl

Individuato così il volume di terreno portato a rottura dal carico limite, questo può essere calcolato scrivendo la condizione di equilibrio fra le forze agenti su qualsiasi volume di terreno delimitato in basso da una qualunque delle superfici di scorrimento.

Si arriva quindi ad una equazione q =B·c, dove il coefficiente B dipende soltanto dall'angolo di attrito ϕ del terreno.

 $B = \cot g\phi \left[e^{\pi t g\phi} t g^2 (45^\circ + \phi/2) - 1 \right]$

Per ϕ =0 il coefficiente B risulta pari a 5.14, quindi q=5.14·c.

Nell'altro caso particolare di terreno privo di coesione (c=0, $\gamma \neq 0$) risulta q=0, secondo la teoria di **Prandtl**, non sarebbe dunque possibile applicare nessun carico sulla superficie limite di un terreno incoerente.

Questa teoria, anche se non applicabile praticamente, ha dato inizio a tutte le ricerche ed i metodi di calcolo successivi.

Infatti, *Caquot* si pose nelle stesse condizioni di Prandtl ad eccezione del fatto che la striscia di carico non è più applicata sulla superficie limite del semispazio, ma a una profondità h, con $h \le 2b$; il terreno compreso tra la superficie e la profondità h ha le seguenti caratteristiche: $\gamma \neq 0$, $\varphi=0$, c=0, rappresenta un mezzo dotato di peso ma privo di resistenza.

Risolvendo le equazioni di equilibrio si arriva all'espressione:

 $q = A \cdot \gamma_1 + B \cdot c$

che è sicuramente è un passo avanti rispetto a Prandtl, ma che ancora non rispecchia la realtà.

METODO DI TERZAGHI (1955)

Terzaghi, proseguendo lo studio di Caquot, ha apportato alcune modifiche per tenere conto delle effettive caratteristiche dell'insieme opera di fondazione-terreno.

Sotto l'azione del carico trasmesso dalla fondazione il terreno che si trova a contatto con la fondazione stessa tende a sfuggire lateralmente, ma ne è impedito dalle resistenze tangenziali che si sviluppano fra la fondazione ed il terreno. Ciò comporta una modifica dello stato tensionale nel terreno posto direttamente al di sotto della fondazione; per tenerne conto **Terzaghi** assegna ai lati AB ed EB del cuneo di Prandtl una inclinazione ψ rispetto all'orizzontale, scegliendo il valore di ψ in funzione delle caratteristiche meccaniche del terreno al contatto terreno-opera di fondazione.

L'ipotesi $\gamma_2 = 0$ per il terreno sotto la fondazione viene così superata ammettendo che le superfici di rottura restino inalterate, l'espressione del carico limite è quindi:

 $q = A \cdot \gamma_1 \cdot h + B \cdot c + C \cdot \gamma \cdot b$

in cui C è un coefficiente che risulta funzione dell'angolo di attrito φ del terreno posto al di sotto del piano di posa e dell'angolo φ prima definito; b è la semilarghezza della striscia.

Inoltre, basandosi su dati sperimentali, *Terzaghi* passa dal problema piano al problema spaziale introducendo dei fattori di forma.

Un ulteriore contributo è stato apportato da *Terzaghi* sull' effettivo comportamento del terreno. Nel metodo di Prandtl si ipotizza un comportamento del terreno rigido-plastico, *Terzaghi* invece ammette questo comportamento nei terreni molto compatti.

In essi, infatti, la curva carichi-cedimenti presenta un primo tratto rettilineo, seguito da un breve tratto curvilineo (comportamento elasto-plastico); la rottura è istantanea ed il valore del carico limite risulta chiaramente individuato (rottura generale).

In un terreno molto sciolto invece la relazione carichi-cedimenti presenta un tratto curvilineo accentuato fin dai carichi più bassi per effetto di una rottura progressiva del terreno (rottura locale); di conseguenza l'individuazione del carico limite non è così chiara ed evidente come nel caso dei terreni compatti.

Per i terreni molto sciolti, Terzaghi consiglia di prendere in considerazione il carico limite il valore che si calcola con la formula precedente introducendo però dei valori ridotti delle caratteristiche meccaniche del terreno e precisamente:

 $\tan \phi_{rid} = \frac{2}{3} \tan \phi \quad \mathbf{e} \quad c_{rid} = \frac{2}{3} \mathbf{c}$

Esplicitando i coefficienti della formula precedente, la formula di Terzaghi può essere scritta:

$$q_{ult} = c \cdot N_c \cdot s_c + \gamma \cdot D \cdot N_q + 0.5 \cdot \gamma \cdot B \cdot N_\gamma \cdot s_\gamma$$

dove:

$$\begin{split} \mathbf{N}_{q} &= \frac{a^{2}}{2 \cdot \cos^{2}(45 + \phi/2)} \\ a &= e^{(0.75\pi - \phi/2)\tan\phi} \\ \mathbf{N}_{c} &= \left(\mathbf{N}_{q} - 1\right) \text{cot}\phi \\ \mathbf{N}_{\gamma} &= \frac{\tan\phi}{2} \bigg(\frac{\mathbf{K}_{p\gamma}}{\cos^{2}\phi} - 1\bigg) \end{split}$$

FORMULA DI MEYERHOF (1963)

Meyerhof propose una formula per il calcolo del carico limite simile a quella di *Terzaghi*; le differenze consistono nell'introduzione di ulteriori coefficienti di forma.

Egli introdusse un coefficiente s_q che moltiplica il fattore N_q , fattori di profondità d_i e di pendenza i_i per il caso in cui il carico trasmesso alla fondazione è inclinato sulla verticale.

I valori dei coefficienti N furono ottenuti da Meyerhof ipotizzando vari archi di prova BD (v. meccanismo Prandtl), considerando valori approssimati del taglio che si sviluppa nel terreno al di sopra del piano di posa. I fattori di forma tratti da Meyerhof sono di seguito riportati, insieme all'espressione della formula.

 $\begin{array}{l} \textbf{Carico verticale} \\ q_{ult} = c \cdot N_c \cdot s_c \cdot d_c + \gamma \cdot D \cdot N_q \cdot s_q \cdot d_q + 0.5 \cdot \gamma \cdot B \cdot N_\gamma \cdot s_\gamma \cdot d_\gamma \end{array}$

Carico inclinato

 $q_{ult} = c \cdot N_c \cdot s_c \cdot d_c \cdot i_c + \gamma \cdot D \cdot N_q \cdot s_q \cdot d_q \cdot i_q + 0.5 \cdot \gamma \cdot B \cdot N_\gamma \cdot s_\gamma \cdot d_\gamma \cdot i_\gamma$

$$N_{q} = e^{(0.75\pi - \phi/2)} \cdot \tan^{2} (45 + \phi/2)$$
$$N_{c} = (N_{q} - 1) \cot \phi$$
$$N_{\gamma} = (N_{q} - 1) \tan(1.4 \cdot \phi)$$

fattore di forma:

$$\begin{split} s_{c} &= 1 + 0.2 \cdot k_{p} \cdot \frac{B}{L} \qquad & \text{per } \phi > 0 \\ s_{q} &= s_{\gamma} = 1 + 0.1 \cdot k_{p} \cdot \frac{B}{L} \qquad & \text{per } \phi = 0 \end{split}$$

fattore di profondità:

$$d_{c} = 1 + 0.2\sqrt{k_{p}} \cdot \frac{D}{B}$$

$$d_{q} = d_{\gamma} = 1 + 0.1\sqrt{k_{p}} \cdot \frac{D}{B} \quad \text{per } \phi > 10$$

$$d_{q} = d_{\gamma} = 1 \qquad \qquad \text{per } \phi > 10$$

inclinazione:

$$i_{c} = i_{\gamma} = \left(1 - \frac{\theta}{90}\right)^{2}$$
$$i_{\gamma} = \left(1 - \frac{\theta}{\varphi}\right)^{2} \text{ per } \varphi > 0$$
$$i_{\gamma} = 0 \qquad \text{ per } \varphi = 0$$

dove:

$$k_{\rm p} = \tan^2 \left(45 + \varphi / 2 \right)$$

• θ = Inclinazione della risultante sulla verticale.

FORMULA DI HANSEN (1970)

È una ulteriore estensione della formula di *Meyerhof*; le estensioni consistono nell'introduzione di bi che tiene conto della eventuale inclinazione sull'orizzontale del piano di posa e un fattore gi per terreno in pendenza.

La formula di Hansen vale per qualsiasi rapporto *D/B*, quindi sia per fondazioni superficiali che profonde, ma lo stesso autore introdusse dei coefficienti per meglio interpretare il comportamento reale della fondazione, senza di essi, infatti, si avrebbe un aumento troppo forte del carico limite con la profondità.

Per valori di D/B <1:

$$d_{c} = 1 + 0.4 \cdot \frac{D}{B}$$
$$d_{q} = 1 + 2 \cdot \tan(1 - \sin \phi)^{2} \cdot \frac{D}{B}$$

Per valori D/B >1:

$$d_{c} = 1 + 0.4 \cdot \tan^{-1} \frac{D}{B}$$

$$d_q = 1 + 2 \cdot \tan(1 - \sin \phi)^2 \cdot \tan^{-1} \frac{D}{B}$$

Ne	l caso q	<i>⊨0</i>							_
D/B	0	1	1.1	2	5	10	20	100	-
d' _C	0	0.40	0.33	0.44	0.55	0.59	0.61	0.62	-

Nei fattori seguenti le espressioni con apici (') valgono quando $\varphi=0$.

Fattore di forma:

$$s'_{c} = 0.2 \frac{B}{L}$$

 $s_{c} = 1 + \frac{N_{q}}{N_{c}} \frac{B}{L}$
 $s_{c} = 1$ per fondazioni nastriformi

$$s_q = 1 + \frac{B}{L} \tan \phi$$

 $s_\gamma = 1 - 0.4 \frac{B}{L}$

Fattori di inclinazione del carico:

$$\begin{split} \mathbf{i'_c} &= 0.5 - 0.5 \sqrt{1 - \frac{\mathbf{H}}{\mathbf{A_f} \cdot \mathbf{c_a}}}.\\ \mathbf{i_c} &= \mathbf{i_q} - \frac{1 - \mathbf{i_q}}{\mathbf{N_q} - 1}\\ \mathbf{i_q} &= \left(1 - \frac{0.5 \cdot \mathbf{H}}{\mathbf{V} + \mathbf{A_f} \cdot \mathbf{c_a} \cdot \cot \phi}\right)^5\\ \mathbf{i_q} &= \left(1 - \frac{0.7 \cdot \mathbf{H}}{\mathbf{V} + \mathbf{A_f} \cdot \mathbf{c_a} \cdot \cot \phi}\right)^5 \quad (\eta = 0)\\ \mathbf{i_q} &= \left(1 - \frac{(0.7 - \eta / 450) \cdot \mathbf{H}}{\mathbf{V} + \mathbf{A_f} \cdot \mathbf{c_a} \cdot \cot \phi}\right)^5 \quad (\eta = 0) \end{split}$$

Fattori di inclinazione del terreno (fondazione su pendio):

$$g'_{c} = \frac{\beta}{147}$$
$$g_{c} = 1 - \frac{\beta}{147}$$
$$g_{q} = g_{\gamma} = (1 - 0.5 \tan \beta)^{5}$$

Fattori di inclinazione del piano di fondazione (base inclinata):

$$b'_{c} = \frac{\eta^{\circ}}{147^{\circ}}$$
$$b_{c} = 1 - \frac{\eta^{\circ}}{147^{\circ}}$$

 $b_q \exp(-2\eta \cdot \tan \phi)$

FORMULA DI VESIC (1975)

La formula di Vesic è analoga alla formula di Hansen, con Nq ed Nc come per la formula di Meyerhof ed N γ come sotto riportato:

 $N_{\gamma} = 2 \cdot (N_q + 1) \cdot \tan \varphi$

I fattori di forma e di profondità che compaiono nelle formule del calcolo della capacità portante sono uguali a quelli proposti da Hansen; alcune differenze sono invece riportate nei fattori di inclinazione del carico, del terreno (fondazione su pendio) e del piano di fondazione (base inclinata).

FORMULA BRICH-HANSEN (EC 7 - EC 8)

Affinché una fondazione possa sostenere il carico di progetto con sicurezza nei riguardi della rottura generale, deve essere soddisfatta la seguente disuguaglianza per tutte le combinazioni di carico relative allo SLU (stato limite ultimo): $Vd \leq Rd$

Dove Vd è il carico di progetto allo SLU, normale alla base della fondazione, comprendente anche il peso della fondazione stessa; mentre Rd è il carico limite di progetto della fondazione nei confronti di carichi normali, tenendo conto anche dell'effetto di carichi inclinati o eccentrici.

Nella valutazione analitica del carico limite di progetto Rd, nei terreni a grana fine, si devono considerare le situazioni a breve e a lungo termine.

Il carico limite di progetto in condizioni non drenate si calcola come:

$$\frac{\mathbf{R}}{\mathbf{A}'} = (2 + \pi) \cdot \mathbf{c}_{\mathbf{u}} \cdot \mathbf{s}_{\mathbf{c}} \cdot \mathbf{i}_{\mathbf{c}} + \mathbf{q}$$

Dove:

- A' = B' L' area della fondazione efficace di progetto, intesa, in caso di carico eccentrico, come l'area ridotta al cui centro viene applicata la risultante del carico;
- c_u coesione non drenata;
- q pressione litostatica totale sul piano di posa
- s_c fattore di forma;
- $s_c = 1 + 0.2 \cdot \left(\frac{B'}{L'}\right)$, per fondazioni rettangolari
- $s_c = 1.2$, per fondazioni quadrate o circolari
- i_c Fattore correttivo per l'inclinazione del carico dovuta ad un carico H.

$$i_{c} = 0.5 + 0.5 \sqrt{1 - \frac{H}{A'_{f} \cdot c_{a}}}.$$

Per le condizioni drenate il carico limite di progetto è calcolato come segue:

$$\frac{\mathbf{R}}{\mathbf{A}'} = \mathbf{c'} \cdot \mathbf{N}_{\mathbf{c}} \cdot \mathbf{s}_{\mathbf{c}} \cdot \mathbf{i}_{\mathbf{c}} + \mathbf{q'} \cdot \mathbf{N}_{\mathbf{q}} \cdot \mathbf{s}_{\mathbf{q}} \cdot \mathbf{i}_{\mathbf{q}} + 0.5 \cdot \gamma' \cdot \mathbf{B'} \cdot \mathbf{N}_{\gamma} \cdot \mathbf{s}_{\gamma} \cdot \mathbf{i}_{\gamma}$$

Dove:

$$N_{q} = e^{\pi \cdot \tan \phi'} \cdot \tan^{2} (45 + \phi'/2)$$
$$N_{c} = (N_{q} - 1) \cot \phi'$$
$$N_{\gamma} = 2 \cdot (N_{q} - 1) \tan \phi'$$

Fattori di forma:

$s_q = 1 + \frac{B'}{L'} \cdot sen\phi'$	per forma rettangolare				
$s_q = 1 + sen\phi'$	per circola	forma are	quadrata	0	
$s_{\gamma} = 1 - 0.3 \frac{B'}{L'}$	per fo	rma retta	ngolare		
$s_{\gamma} = 0.7$	per circola	forma are	quadrata	0	
$\mathbf{s}_{c} = \frac{\mathbf{s}_{q} \cdot \mathbf{N}_{q} - 1}{\mathbf{N}_{q} - 1}$	per quadr	forma ata o circ	rettangolar olare	e,	

Fattori inclinazione risultante dovuta ad un carico orizzontale H:

$$\begin{split} \mathbf{i'_c} &= 0.5 - 0.5 \sqrt{1 - \frac{H}{A_f \cdot c_a}}.\\ \mathbf{i_c} &= \mathbf{i_q} - \frac{1 - \mathbf{i_q}}{N_q - 1}\\ \mathbf{i_q} &= \left(1 - \frac{H}{V + A' \cdot c' \cdot \cot \phi'}\right)^m\\ \mathbf{i_\gamma} &= \left(1 - \frac{H}{V + A' \cdot c' \cdot \cot \phi'}\right)^{m+1}\\ \mathbf{i_c} &= \frac{\mathbf{i_q} \cdot N_q - 1}{N_q - 1} \end{split}$$

Dove:

$$m = m_{B} = \frac{\left[2 + \left(\frac{B'}{L'}\right)\right]}{\left[1 + \left(\frac{B'}{L'}\right)\right]} \qquad \text{con} \quad H //.B'$$

$$\mathbf{m} = \mathbf{m}_{L} = \frac{\left[2 + \left(\frac{L'}{B'}\right)\right]}{\left[1 + \left(\frac{L'}{B'}\right)\right]}. \quad \text{ con } \mathbf{H} //.L'$$

Se H forma un angolo θ con la direzione di L', l'esponente "m" viene calcolato con la seguente espressione:

$$m = m_{\theta} = m_{L} \cdot \cos^{2} \theta + m_{B} \cdot \sin^{2} \theta$$

Oltre ai fattori correttivi di cui sopra sono considerati quelli complementari della profondità del piano di posa e dell'inclinazione del piano di posa e del piano campagna (Hansen).

MEYERHOF E HANNA (1978)

Tutta l'analisi teorica sviluppata per la determinazione del carico limite è stata basata sull'ipotesi che il terreno sia isotropico ed omogeneo fino a notevole profondità.

Tale ipotesi però non rispecchia la realtà perché, in natura, il terreno presenta disomogeneità litologica per cui può essere costituito da diverse percentuali delle componenti granulometriche come ghiaia, sabbia, limo e argilla.

Le relazioni per la stima del carico limite, ricavate dall'ipotesi di terreno omogeneo risultano essere molto approssimative se il terreno è stratificato, soprattutto se le superfici di rottura interferiscono con i limiti degli strati del terreno.

Si consideri un sistema costituito da due strati di terreno distinti ed una fondazione posizionata sullo strato superiore a una profondità D dal piano campagna, le superfici di rottura a carico limite possono svilupparsi completamente sullo strato superiore oppure coinvolgere anche il secondo strato. Può accadere che lo strato superiore sia più resistente rispetto allo strato inferiore o viceversa.

In entrambi i casi verrà presentata un'analisi generale per c = 0 e si dimostrerà che sarà valida anche nel caso di terreni sabbiosi o argillosi.

Lo studio della capacità portante di un sistema a strati è stato affrontato da diversi autori: Button (1953), Vesic (1975), Meyerhof (1974), Meyerhof e Hanna (1978)

Meyerhof (1974) ha analizzato un sistema a due strati composto da sabbia densa su argilla morbida e sabbia sciolta su argilla rigida e ha supportato il suo studio con alcuni test su modello. Successivamente Meyerhof e Hanna (1978) hanno integrato lo studio di Meyerhof (1974) includendo nelle analisi il terreno privo di coesione.

Si riporta la trattazione di Meyerhof (1974) e Meyerhof e Hanna (1978).

Nella figura 12.16 (a) è rappresentata una fondazione di larghezza B e profondità D in uno strato di terreno resistente (strato 1). Lo strato debole si trova a distanza H dal piano di posa della fondazione.

Se si verificano le condizioni per cui la distanza H non è sufficientemente ampia, oppure, si ha un carico eccezionale, una parte dello stesso carico verrà trasferito oltre il livello mn. Questa condizione indurrà il formarsi di superfici di rottura anche nello strato più debole (strato 2). Se la distanza H è relativamente grande, le superfici di rottura si svilupperanno completamente nello strato 1 come evidenziato in Figura 12.16b.

Figure 12.16 Failure of soil below strip footing under vertical load on strong layer overlying weak deposit (after Meyerhof and Hanna, 1978)

Il carico limite negli strati 1 e 2 può essere espresso dalle seguenti relazioni:

$$\boldsymbol{q}_1 = \boldsymbol{c}_1 \cdot \boldsymbol{N}_{c1} + \frac{1}{2} \boldsymbol{\gamma}_1 \cdot \boldsymbol{B} \cdot \boldsymbol{N}_{\gamma 1}$$

Strato 2

$$\mathbf{q}_2 = \mathbf{c}_2 \cdot \mathbf{N}_{c2} + \frac{1}{2}\gamma_2 \cdot \mathbf{B} \cdot \mathbf{N}_{\gamma 2}$$

Dove:

- $N_{c1}, N_{\gamma 1}$ fattori di capacità portante dello strato 1 con angolo di resistenza a taglio ϕ_1
- N_{c2} , $N_{\gamma 2}$ fattori di capacità portante dello strato 2 con angolo di resistenza a taglio ϕ_2

Se il piano di posa della fondazione si trova ad una distanza D_f rispetto al piano campagna e la distanza H è relativamente grande l'espressione del carico limite è la seguente:

$$\boldsymbol{q}_{u} = \boldsymbol{q}_{t} = \boldsymbol{c}_{1} \cdot \boldsymbol{N}_{c1} + \boldsymbol{q'}_{0} \cdot \boldsymbol{N}_{q1} + \frac{1}{2} \boldsymbol{\gamma}_{1} \cdot \boldsymbol{B} \cdot \boldsymbol{N}_{\gamma 1}$$

Se q₁ è maggiore di q₂ e se la distanza H non è sufficiente a formare una condizione di plasticizzazione completa nello strato 1, allora la rottura è legata alla spinta del terreno che si sviluppa dallo strato più debole allo strato più resistente. La formulazione per la stima del carico limite diventa:

$$q_u = q_b + \frac{2 \cdot (c_a + P_p \sin \delta)}{B} - \gamma_1 \cdot H$$

Dove:

- qb carico limite nello strato 2;
- Pp spinta passiva;
- C_a adesione;
- δ inclinazione della spinta passiva rispetto all'orizzontale

Con:

$$P_{p} = \frac{\gamma_{1} \cdot H^{2}}{2\cos\delta} \left(1 + \frac{2D_{f}}{H}\right) \cdot K_{p}$$

METODO DI RICHARDS ET AL.

Richards, Helm e Budhu (1993) hanno sviluppato una procedura che consente, in condizioni sismiche, di valutare sia il carico limite sia i cedimenti indotti, e quindi di procedere alle verifiche di entrambi gli stati limite (ultimo e di danno). La valutazione del carico limite viene perseguita mediante una semplice estensione del problema del carico limite al caso della presenza di forze di inerzia nel terreno di fondazione dovute al sisma, mentre la stima dei cedimenti viene ottenuta mediante un approccio che segue il metodo di Newmark (cfr. Appendice H di "Aspetti geotecnici della progettazione in zona sismica" – Associazione Geotecnica Italiana). Gli autori hanno esteso la classica formula trinomia del carico limite nel seguente modo:

$$q_{L} = \frac{\gamma_{I} \cdot H^{2}}{2 \cos \delta} \left(1 + \frac{2D_{f}}{H} \right) \cdot K_{p}$$
$$q_{L} = N_{q} \cdot q + N_{c} \cdot c + 0.5N_{\gamma} \cdot \gamma \cdot B$$

Dove i fattori di capacità portante vengono calcolati con le seguenti formule:

$$N_{c} = (N_{q} - 1) \cdot \cot(\phi)$$
$$N_{q} = \frac{K_{pE}}{K_{AE}}$$

$$N_{\gamma} = \left(\frac{K_{pE}}{K_{AE}} - 1\right) \cdot \tan(\rho_{AE})$$

Gli autori hanno, inoltre, esaminato un meccanismo di tipo Coulomb, con un approccio che segue quello dell'equilibrio limite, considerando anche le forze di inerzia agenti sul volume di terreno sottoposto a rottura. In campo statico, il classico meccanismo di Prandtl può essere infatti approssimato come mostrato nella figura che segue, eliminando la zona di transizione (ventaglio di Prandtl) ridotta alla sola linea AC, che viene considerata come una parete ideale in equilibrio sotto l'azione della spinta attiva e della spinta passiva che riceve dai cunei I e III:

Schema di calcolo del carico limite (qL).

Gli autori hanno ricavato le espressioni degli angoli $\rho_A e \rho_P$ che definiscono le zone di spinta attiva e passiva, e dei coefficienti di spinta attiva e passiva K_A e K_P in funzione dell'angolo di attrito interno ϕ del terreno e dell'angolo di attrito δ terreno – parete ideale:

$$\begin{split} \rho_{A} &= \varphi + \tan^{-1} \cdot \left\{ \frac{\sqrt{\tan \varphi \cdot (\tan \varphi \cdot \cot \varphi) \cdot (1 + \tan \delta \cdot \cot \varphi)} - \tan \varphi}{1 + \tan \delta \cdot (\tan \varphi + \cot \varphi)} \right\} \\ \rho_{P} &= -\varphi + \tan^{-1} \cdot \left\{ \frac{\sqrt{\tan \varphi \cdot (\tan \varphi \cdot \cot \varphi) \cdot (1 + \tan \delta \cdot \cot \varphi)} + \tan \varphi}{1 + \tan \delta \cdot (\tan \varphi + \cot \varphi)} \right\} \\ K_{A} &= \frac{\cos^{2}(\varphi)}{\cos(\delta) \left\{ 1 + \sqrt{\frac{\sin(\varphi + \delta) \cdot \sin(\varphi)}{\cos(\delta)}} \right\}^{2}} \\ K_{P} &= \frac{\cos^{2}(\varphi)}{\cos(\delta) \left\{ 1 - \sqrt{\frac{\sin(\varphi + \delta) \cdot \sin(\varphi)}{\cos(\delta)}} \right\}^{2}} \end{split}$$

È comunque da osservare che l'impiego delle precedenti formule assumendo ϕ =0.5 δ , conduce a valori dei coefficienti di carico limite prossimi a quelli basati su un'analisi di tipo Prandtl. Richards et al. hanno quindi esteso l'applicazione del meccanismo di Coulomb al caso sismico, portando in conto le forze d'inerzia agenti sul volume di terreno a rottura. Tali forze di massa, dovute ad accelerazioni k_h g e k_v g, agenti rispettivamente in direzione orizzontale e verticale, sono a loro volta pari a k_h γ e k_v γ . Sono state così ottenute le estensioni delle espressioni di ρ a e ρ p, nonché di K_A e K_P, rispettivamente indicate come ρ_{AE} e ρ_{PE} e come K_{AE} e K_{PE} per denotare le condizioni sismiche:

$$\rho_{AE} = (\phi - \theta) + \tan^{-1} \cdot \left\{ \frac{\sqrt{\left(1 + \tan^2(\phi - \theta)\right)} \cdot \left[1 + \tan(\delta + \theta) \cdot \cot(\phi - \theta)\right]} - \tan(\phi - \theta)}{1 + \tan(\delta + \theta) \cdot (\tan(\phi - \theta) + \cot(\phi - \theta))} \right\}$$

$$\rho_{PE} = -(\varphi - \theta) + \tan^{-1} \cdot \left\{ \frac{\sqrt{\left(1 + \tan^{2}(\varphi - \theta)\right)} \cdot \left[1 + \tan(\delta + \theta) \cdot \cot(\varphi - \theta)\right] - \tan(\varphi - \theta)}{1 + \tan(\delta + \theta) \cdot (\tan(\varphi - \theta) + \cot(\varphi - \theta))} \right\}$$

$$K_{AE} = \frac{\cos^{2}(\varphi - \theta)}{\cos(\theta) \cdot \cos(\delta + \theta) \left\{ 1 + \sqrt{\frac{\sin(\varphi + \delta) \cdot \sin(\varphi - \theta)}{\cos(\delta + \theta)}} \right\}^{2}}$$

$$K_{PE} = \frac{\cos^{2}(\varphi - \theta)}{\cos(\theta) \cdot \cos(\delta + \theta) \left\{ 1 - \sqrt{\frac{\sin(\varphi + \delta) \cdot \sin(\varphi - \theta)}{\cos(\delta + \theta)}} \right\}^{2}}$$

I valori di Nq e N γ sono determinabili ancora avvalendosi delle formule precedenti, impiegando naturalmente le espressioni degli angoli ρ_{AE} e ρ_{PE} e dei coefficienti K_{AE} e K_{PE} relative al caso sismico. In tali espressioni compare l'angolo θ definito come:

$$\tan(\theta) = \frac{k_{h}}{1 - k_{v}}$$

Nella tabella sottostante sono mostrati i fattori di capacità portante calcolati per i seguenti valori dei parametri:

 $\phi=30^\circ~\delta=15^\circ$

Per diversi valori dei coefficienti di spinta sismica:

86476
9915
33132
90786
41079
38476
160159

Tabella dei fattori di capacità portante per φ =30°

VERIFICA A CARICO LIMITE DELLE FONDAZIONE (SLU)

La verifica a carico limite delle fondazioni secondo l'approccio SLU si esegue con la seguente diseguaglianza:

 $E_d \leq \frac{R_d}{\gamma_{RV}}$

Dove:

- Ed pressioni agenti alla base della fondazione;
- Rd capacità portante di calcolo;
- γ_{RV} coefficiente riduttivo della capacità portante verticale

Le pressioni agenti alla base della fondazione si calcolano con dalla seguente espressione:

$$E_{d} = \frac{N_{d}}{A_{ef}}$$

Dove:

- N_d azione normale di progetto;
- A_{ef} $B_R \cdot L'$ area ridotta;

FONDAZIONI QUADRATE O RETTANGOLARI

L'area ridotta risulta essere:

 $A_{ef} = B' \cdot L'$

$$L' = L - 2e_x; B' = B - e_y; e_x = \frac{M_x}{N}; e_y = \frac{M_y}{N}$$

Per le verifiche a carico limite allo SLU è lecito considerare la "plasticizzazione" del terreno, in tal caso si può assumere una distribuzione uniforme delle pressioni agenti sul piano di posa.

Come evidenziato nella seguente immagine, la distribuzione delle pressioni si considera estesa sulla base "ridotta" $B_R=B-2e$.

Dove:

• $e=N_d/M_d$ - eccentricità dei carichi

FONDAZIONI CIRCOLARI

Una fondazione circolare sottoposta ad un carico verticale applicato con un'eccentricità e = Md / Nd può essere considerata equivalente ad una fondazione fittizia con un carico applicato centralmente (Figura seguente), come suggerito da Meyerhof (1953) e Vesic (1973). In questo caso, l'area della fondazione fittizia, A', può essere calcolata con questa espressione:

$$A' = \frac{D^2}{2} \left(\arccos \frac{2e}{D} - \frac{2e}{D} \sqrt{1 - \left(\frac{2e}{D}\right)^2} \right)$$

Il rapporto delle lunghezze dei lati della fondazione rettangolare equivalente può essere approssimato al rapporto tra le lunghezze b ed l, si ricava da:

$$\frac{B}{L'} = \frac{b}{l} = \sqrt[t]{\frac{D-2e}{D+2e}}$$

Metodo di calcolo delle dimensioni equivalenti di una fondazione circolare soggetta a carico non baricentrico.

VERIFICA A SLITTAMENTO

In conformità con i criteri di progetto allo SLU, la stabilità di un plinto di fondazione deve essere verificata rispetto al collasso per slittamento oltre a quello per rottura generale. Rispetto al collasso per slittamento la resistenza viene valutata come somma di componenti: una delle componenti è dovuta all'adesione, l'altra è dovuta all'attrito fondazione-terreno. La resistenza laterale derivante dalla spinta passiva del terreno può essere messa in conto secondo una percentuale indicata dall'utente. La resistenza di calcolo per attrito ed adesione è valutata secondo l'espressione:

 $F_{Rd} = N_{sd} \cdot \tan \delta + c_a \cdot A'$

Nella quale N_{sd} è il valore di calcolo della forza verticale, δ è l'angolo di resistenza a taglio alla base del plinto, c_a è l'adesione plinto-terreno e A' è l'area della fondazione efficace, intesa, in caso di carichi eccentrici, come area ridotta al centro della quale è applicata la risultante.

CARICO LIMITE DI FONDAZIONI SU ROCCIA

Per la valutazione della capacità portante ammissibile delle rocce si deve tener conto di di alcuni parametri significativi quali le caratteristiche geologiche, il tipo di roccia e la sua qualità, misurata con l'RQD. Nella capacità portante delle rocce si utilizzano normalmente fattori di sicurezza molto alti e legati in qualche modo al valore del coefficiente RQD: ad esempio, per una roccia con RQD pari al massimo a 0.75 il fattore di sicurezza varia tra 6 e 10. Per la determinazione della capacità portante di una roccia si possono usare le formule

di Terzaghi, usando angolo d'attrito e coesione della roccia, o quelle proposte da **Stagg** e **Zienkiewicz** (1968) in cui i coefficienti della formula della capacità portante valgono:

$$N_{q} = \tan^{6}(45 + \varphi/2)$$
$$N_{c} = 5\tan^{4}(45 + \varphi/2)$$
$$N_{\gamma} = N_{q} + 1$$

Con tali coefficienti vanno usati i fattori di forma impiegati nella formula di Terzaghi.La capacità portante ultima calcolata è comunque funzione del coefficiente RQD secondo la seguente espressione:

 $q' = q_{ult} (RQD)^2$

Se il carotaggio in roccia non fornisce pezzi intatti (RQD tende a 0), la roccia viene trattata come un terreno stimando al meglio i parametri c e φ .

FATTORI CORRETTIVI SISMICI (PAOLUCCI E PECKER)

Quando si determina q_{lim}, per tener conto degli effetti inerziali indotti dal sisma sulla determinazione del vengono introdotti i fattori correttivi z:

$$z_{q} = \left(1 - \frac{k_{h}}{tg\phi}\right)^{0.35}$$
$$z_{c} = 1 - 0.32 \cdot k_{h}$$
$$z_{\gamma} = z_{q}$$

Dove kh è il coefficiente sismico orizzontale.

CEDIMENTI ELASTICI

I cedimenti di una fondazione rettangolare di dimensioni B×L posta sulla superficie di un semispazio elastico si possono calcolare in base aduna equazione basata sulla teoria dell'elasticità (Timoshenko e Goodier, 1951):

$$\Delta H = q_0 B' \frac{1 - \mu^2}{E_s} \left(I_1 + \frac{1 - 2\mu}{1 - \mu} I_2 \right) \cdot I_F$$
(1)

dove:

- q₀ Intensità della pressione di contatto
- B' Minima dimensione dell'area reagente,
- E e μ Parametri elastici del terreno.
- I_i Coefficienti di influenza dipendenti da: L'/B', spessore dello strato H, coefficiente di Poisson μ,

profondità del piano di posa D;

l coefficienti *l*₁ e *l*₂ si possono calcolare utilizzando le equazioni fornite da *Steinbrenner (1934)* (V. Bowles), in funzione del rapporto L'/B' ed H/B, utilizzando B'=B/2 e L'=L/2 per i coefficienti relativi al centro e B'=B e L'=L per i coefficienti relativi al bordo.

Il coefficiente di influenza IF deriva dalle equazioni di *Fox* (1948), che indicano il cedimento si riduce con la profondità in funzione del coefficiente di *Poisson* e del rapporto *L/B*.

In modo da semplificare l'equazione (1) si introduce il coefficiente IS:

$$I_{S} = I_{1} + \frac{1 - 2\mu}{1 - \mu} \cdot I_{2}$$

Il cedimento dello strato di spessore H vale:

$$\Delta \mathbf{H} = \mathbf{q}_0 \cdot \mathbf{B}' \frac{1 - \mu^2}{\mathbf{E}_S} \cdot \mathbf{I}_S \cdot \mathbf{I}_F$$

Per meglio approssimare i cedimenti si suddivide la base di appoggio in modo che il punto si trovi in corrispondenza di uno spigolo esterno comune a più rettangoli. In pratica si moltiplica per un fattore pari a 4 per il calcolo dei cedimenti al centro e per un fattore pari a 1 per i cedimenti al bordo. Nel calcolo dei cedimenti si considera una profondità del bulbo delle tensioni pari a 5B, se il substrato roccioso si trova ad una profondità maggiore. A tal proposito viene considerato substrato roccioso lo strato che ha un valore di E pari a 10 volte dello strato soprastante. Il modulo elastico per terreni stratificati viene calcolato come media pesata dei moduli elastici degli strati interessati dal cedimento immediato.

CEDIMENTI EDOMETRICI

Il calcolo dei cedimenti con l'approccio edometrico consente di valutare un cedimento di consolidazione di tipo monodimensionale, prodotto dalle tensioni indotte da un carico applicato in

condizioni di espansione laterale impedita. Pertanto, la stima effettuata con questo metodo va considerata come empirica, piuttosto che teorica.

Tuttavia, la semplicità d'uso e la facilità di controllare l'influenza dei vari parametri che intervengono nel calcolo, ne fanno un metodo molto diffuso.

L'approccio edometrico nel calcolo dei cedimenti passa essenzialmente attraverso due fasi:

- a) Il calcolo delle tensioni verticali indotte alle varie profondità con l'applicazione della teoria dell'elasticità;
- b) la valutazione dei parametri di compressibilità attraverso la prova edometrica.

In riferimento ai risultati della prova edometrica, il cedimento è valutato come:

$$\Delta H = H_0 \cdot RR \cdot \log \frac{\sigma_{v0} + \Delta \sigma_v}{\sigma_{v0}}$$

se si tratta di un terreno sovraconsolidato (OCR>1), ossia l'incremento di tensione dovuto all'applicazione del carico non fa superare la pressione di preconsolidazione $\sigma'_p (\sigma'_p + \Delta \sigma_V < \sigma'_p)$. Se invece il terreno è normalconsolidato ($\sigma'_{V0} = \sigma'_p$) le deformazioni avvengono nel tratto di compressione ed il cedimento è valutato come:

$$\Delta H = H_0 \cdot CR \cdot \log \frac{\sigma'_{v0} + \Delta \sigma_v}{\sigma'_{v0}}$$

dove:

- *RR* Rapporto di ricompressione;
- CR Rapporto di compressione;
- H₀ Spessore iniziale dello strato;
- σ'_{V0} Tensione verticale efficace prima dell'applicazione del carico;
- $\Delta \sigma_V$ Incremento di tensione verticale dovuto all'applicazione del carico.

In alternativa ai parametri $RR \in CR$ si fa riferimento al modulo edometrico M; in tal caso però occorre scegliere opportunamente il valore del modulo da utilizzare, tenendo conto dell'intervallo tensionale ($\sigma'_0 + \Delta \sigma_V$) significativo per il problema in esame.

L'applicazione corretta di questo tipo di approccio richiede:

- la suddivisione degli strati compressibili in una serie di piccoli strati di modesto spessore (< 2.00 m);
- la stima del modulo edometrico nell'ambito di ciascuno strato;
- il calcolo del cedimento come somma dei contributi valutati per ogni piccolo strato in cui è stato suddiviso il banco compressibile.

Le espressioni sopra riportate per il calcolo del cedimento di consolidazione vengono utilizzate sia per le argille che per le sabbie di granulometria da fina a media, perché il modulo di elasticità impiegato è ricavato direttamente da prove di consolidazione. Tuttavia, per terreni a grana più grossa le dimensioni dei provini edometrici sono poco significative del comportamento globale dello strato e, per le sabbie, risulta preferibile impiegare prove penetrometriche statiche e dinamiche.

GEO TECNOLOGIE S.R.L.

CEDIMENTO SECONDARIO

Il cedimento secondario è calcolato facendo riferimento alla relazione:

$$\Delta H_{\rm S} = H_{\rm c} \cdot C_{\rm \alpha} \cdot \log \frac{\rm T}{\rm T_{100}}$$

in cui:

- H_C altezza dello strato in fase di consolidazione;
- C_{α} coefficiente di consolidazione secondaria come pendenza nel tratto secondario della curva

cedimento-logaritmo tempo;

- *T* tempo in cui si vuole il cedimento secondario;
- T₁₀₀ tempo necessario all'esaurimento del processo di consolidazione primaria.

CEDIMENTI DI SCHMERTMANN

Un metodo alternativo per il calcolo dei cedimenti è quello proposto da Schmertmann (1970) il quale ha correlato la variazione del bulbo delle tensioni alla deformazione. L'autore ha considerato nel suo modello un diagramma delle deformazioni di forma triangolare in cui la profondità alla quale si hanno deformazioni significative è assunta pari a 4B, nel caso di fondazioni nastriformi, e pari a 2B per fondazioni quadrate o circolari.

Secondo tale approccio il cedimento si esprime attraverso la seguente espressione:

$$\mathbf{w} = \mathbf{C}_1 \cdot \mathbf{C}_2 \cdot \Delta \mathbf{q} \cdot \sum \frac{\mathbf{I}_z \cdot \Delta z}{\mathbf{E}}$$

nella quale:

- Δq rappresenta il carico netto applicato alla fondazione;
- I_Z è un fattore di deformazione il cui valore è nullo a profondità di **2B**, per fondazione circolare o

quadrata, e a profondità **4B**, per fondazione nastriforme.

Il valore massimo di I_Z si verifica a una profondità rispettivamente pari a:

- B/2, per fondazione circolare o quadrata
- B, per fondazioni nastriformi

e vale:

$$I_{z max} = 0.5 + 0.1 \cdot \left(\frac{\Delta q}{\sigma_{vi}}\right)^{0.5}$$

Dove:

σ'_{vi} rappresenta la tensione verticale efficace a profondità B/2 per fondazioni quadrate o circolari, e

a profondità B per fondazioni nastriformi;

- Ei rappresenta il modulo di deformabilità del terreno in corrispondenza dello strato i-esimo considerato nel calcolo;
- Δ_{zi} rappresenta lo spessore dello strato i-esimo;
- C₁ e C₂ sono due coefficienti correttivi.

Il modulo E viene assunto pari a 2.5 q_c per fondazioni circolari o quadrate e a 3.5 q_c per fondazioni nastriformi. Nei casi intermedi, si interpola in funzione del valore di L/B.

Il termine **q**_C che interviene nella determinazione di E rappresenta la resistenza alla punta fornita dalla prova CPT.

Le espressioni dei due coefficienti C₁ e C₂ sono:

$$C_1 = 1 - 0.5 \cdot \frac{\sigma_{V0}}{\Delta q} > 0.5$$

che tiene conto della profondità del piano di posa.

 $C_2 = 1 + 0.2 \cdot \log \frac{t}{0.1}$

che tiene conto delle deformazioni differite nel tempo per effetto secondario.

Nell'espressione t rappresenta il tempo, espresso in anni dopo il termine della costruzione, in corrispondenza del quale si calcola il cedimento.

CEDIMENTI DI BURLAND e BURBIDGE

Qualora si disponga di dati ottenuti da prove penetrometriche dinamiche per il calcolo dei cedimenti è possibile fare affidamento al metodo di Burland e Burbidge (1985), nel quale viene correlato un indice di compressibilità

Ic al risultato N della prova penetrometrica dinamica. L'espressione del cedimento proposta dai due autori è la seguente:

$$\mathbf{S} = \mathbf{f}_{\mathbf{S}} \cdot \mathbf{f}_{\mathbf{H}} \cdot \mathbf{f}_{\mathbf{t}} \cdot \left[\mathbf{\sigma}_{\mathbf{v}0}^{'} \cdot \mathbf{B}^{0.7} \cdot \mathbf{I}_{\mathbf{C}} / 3 + \left(\mathbf{q}^{'} - \mathbf{\sigma}_{\mathbf{v}0}^{'} \right) \cdot \mathbf{B}^{0.7} \cdot \mathbf{I}_{\mathbf{C}} \right]$$

nella quale:

- q' pressione efficace lorda;
- σ'_{VO} tensione verticale efficace alla quota d'imposta della fondazione;
- B larghezza della fondazione;
- Ic Indice di compressibilità;
- f_s, f_H, f_t fattori correttivi che tengono conto rispettivamente della forma, dello spessore dello

strato compressibile e del tempo, per la componente viscosa.

L'indice di compressibilità Ic è legato al valore medio Nav di Nspt all'interno di una profondità significativa z:

$$I_{\rm C} = \frac{1.706}{N_{\rm AV}^{1.4}}$$

Per quanto riguarda i valori di Nspt da utilizzare nel calcolo del valore medio N_{AV} va precisato che i valori vanno corretti, per sabbie con componente limosa sotto falda e Nspt>15, secondo l'indicazione di Terzaghi e Peck (1948):

 $N_{c} = 15 + 0.5 \cdot (Nspt - 15)$

dove N_c è il valore coretto da usare nei calcoli.

Per depositi ghiaiosi o sabbioso-ghiaiosi il valore corretto è pari a:

 $N_c = 1.25 \cdot Nspt$

Le espressioni dei fattori correttivi f_S, f_H e f_t sono rispettivamente:

$$f_{S} = \left(\frac{1.25 \cdot L/B}{L/B + 0.25}\right)^{2}$$
$$f_{H} = \frac{H}{z_{i}} \left(2 - \frac{H}{z_{i}}\right)$$
$$f_{t} = \left(1 + R_{3} + R \cdot \log \frac{t}{3}\right)$$

Con:

- t tempo in anni > 3;
- R₃ costante pari a 0.3 per carichi statici e 0.7 per carichi dinamici;
- R 0.2 nel caso di carichi statici e 0.8 per carichi dinamici.

DATI GENERALI

NormativaNTC_2018ZonaSan SeveroLat./ Long. [WGS84]41.6854209899902/15.3795156478882Diametro della fondazione36.0 mProfondità piano di posa1.5 mCorrezione parametri

STRATIGRAFIA TERRENO

Spessore	Peso unità	Peso unità	Angolo di	Coesione	Coesione	Modulo	Modulo	Poisson	Coeff.	Coeff.	Descrizio
strato	di volume	di volume	attrito	[kN/m ²]	non	Elastico	Edometric		consolida	consolida	ne
[m]	[kN/m ³]	saturo	[°]		drenata	[kN/m ²]	0		Ζ.	zione	
		[kN/m ³]			[kN/m ²]		[kN/m ²]		primaria	secondari	
									[cmq/s]	а	
40.0	17.65	18.63	28.0	0.0	0.0	9806.65	0.0	0.0	0.0	0.0	

Carichi di progetto agenti sulla fondazione

Nr.	Nome	Pressione	Ν	Mx	Му	Hx	Ну	Tipo
	combinazione	normale di	[kN]	[kN·m]	[kN·m]	[kN]	[kN]	
		progetto [kN/m²]						
1	A(1)+M(1)+R	364.23	7110.00	0.00	0.00	0.00	0.00	Progetto
	(3)							

Sisma + Coeff. parziali parametri geotecnici terreno + Resistenze

		<u> </u>						
Nr C	Correzione	Tangente	Coesione	Coesione non	Peso Unità	Peso unità	Coef. Rid.	Coef.Rid.Cap

	Sismica	angolo di resistenza al taglio	efficace	drenata	volume in fondazione	volume copertura	Capacità portante verticale	acità portante orizzontale
1	No	1	1	1	1	1	2.3	1.1

CARICO LIMITE FONDAZIONE COMBINAZIONE...A(1)+M(1)+R(3) Autore: TERZAGHI (1955)

Carico limite [Qult]	1092.69 kN/m ²
Resistenza di progetto[Rd]	475.08 kN/m ²
Tensione [Ed]	364.23 kN/m ²
Fattore sicurezza [Fs=Qult/Ed]	3
Condizione di verifica [Ed<=Rd]	Verificata

COEFFICIENTE DI SOTTOFONDAZIONE BOWLES (1982)Costante di Winkler43707.66 kN/m³

A(1)+M(1)+R(3)

Autore: TERZAGHI (1955) (Condizione drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume	17.65 kN/m³	
Peso unità di volume saturo	18.63 kN/m ³	
Angolo di attrito	28.0 °	
Coesione	0.0 kN/m ²	
Fattore [Nq]	======================================	
Fattore [Nc]	17.24	
Fattore [Ng]	4.74	
Fattore forma [Sc]	1.3	
Fattore forma [Sg]	0.6	
Fattore correzione sismico inerziale	e [zq] 1.0	
Fattore correzione sismico inerziale	e [zg] 1.0	
Fattore correzione sismico inerziale	e [zc] 1.0	
Carico limite	======================================	
Resistenza di progetto	475.08 kN/m ²	

Condizione di verifica [Ed<=Rd] Verificata