
INTEGRALE RICOSTRUZIONE PARCHI EOLICI "Volturino-Volturara"

ADEGUAMENTO TECNICO IMPIANTO EOLICO MEDIANTE INTERVENTO DI REPOWERING DELLE TORRI ESISTENTI E RIDUZIONE NUMERICA DEGLI AEROGENERATORI

Foro Buonaparte 31, 20121 Milano

Integrale Ricostruzione Parco Eolico "Volturino-Volturara".

Adeguamento tecnico impianto eolico mediante intervento di Repowering delle torri esistenti e riduzione numerica degli aerogeneratori.

INDICE

1. PREMESSA	3
1.1 Metodologia ed ipotesi	3
1.2 Forze agenti sulla traiettoria pala	3
1.3 Esperienze e note statistiche	4
2. LEGGE DEL MOTO	7
3. CALCOLO GITTATA DELLA PALA	8
3.1 Calcolo del baricentro	9
3.2 Calcolo della velocità periferica	9
3.3 Calcolo di hG	10
3.4 Calcolo della gittata della pala	10
4. CALCOLO GITTATA DEL FRAMMENTO DELLA PALA	11
4.1 Calcolo del baricentro	12
4.2 Calcolo della velocità periferica	12
4.3 Calcolo di hG	13
4.4 Calcolo della gittata del frammento	13
5. ANALISI E SCELTA DEI RICETTORI SENSIBILI PRESENTI NELL'AREA DI IMPIANTO	15
5.1 Fabbricati	15
5.2 Viabilità	16
6. ANALISI DEL FATTORE DI RISCHIO NELLA DIREZIONE PERPENDICOLARE AL VENTO PREVALENTE	17
7. VERIFICA DI IMPATTO DELLA GITTATA MASSIMA	22
7.1 Fabbricati	22
7.2 Strade	23
8. CONCLUSIONI	23
8.1 Fabbricati	23
8.2 Strade	23
INDICE FIGURE E TABELLE	
Figura 1 – Sistema coordinate (YY Flapwise, XX - Pitchwise. ZZ - Edgewise)	4
Figura 2 – Componenti di una pala	5
Figura 3 – Componenti del rotore	6
Figura 4 - Estremità di pala danneggiata da fulminazione atmosferica	6
Figura 5: Individuazione planimetrica dei ricettori nel buffer di 500 mt	15
Tabella 1: Elenco dei ricettori presenti nel buffer di 500m	16

Protocollo: GMAX
Data emissione: 2023

Committente: Edison Rinnovabili Spa

Foro Buonaparte 31, 20121 Milano

Integrale Ricostruzione Parco Eolico "Volturino-Volturara".

Adeguamento tecnico impianto eolico mediante intervento di Repowering delle torri esistenti e riduzione numerica degli aerogeneratori.

Figura 6: Viabilità interessata dal rischio di gittata nell'area dell'impianto	17
Figura 7: Wind Rose ottenuta dalle elaborazioni mediante Software WindFarm© dei dati anemometrici relativi agli ane	mometri posti
sugli aerogeneratori presenti	18
Figura 8: Ideogramma della gittata massima con P=1 per WTG 1.	19
Figura 9: Ideogramma della gittata massima con P=1 per WTG 2.	19
Figura 10: Ideogramma della gittata massima con P=1 per WTG 3.	20
Figura 11: Ideogramma della gittata massima con P=1 per WTG 4.	20
Figura 12: Ideogramma della gittata massima con P=1 per WTG 5.	21
Figura 13: Ideogramma della gittata massima con P=1 per WTG 6.	21
Figura 14: Flussi di traffico lungo la SP n.134. Fonte PTCP	22
Tabella 2: Elenco dei ricettori rispetto agli aerogeneratori	23

Protocollo: GMAX
Data emissione: 2023

Committente: Edison Rinnovabili Spa

Foro Buonaparte 31, 20121 Milano

Integrale Ricostruzione Parco Eolico "Volturino-Volturara".

Adeguamento tecnico impianto eolico mediante intervento di Repowering delle torri esistenti e riduzione numerica degli aerogeneratori.

1. PREMESSA

La presente relazione si riferisce al calcolo della gittata massima in caso di rottura di una pala dell'aerogeneratore e/o frammento di esso, relativo alla proposta progettuale della ditta Edison Rinnovabili Spa, sita nei comuni di Volturino-Volturara (FG) cod. AU PNXF3G0, costituito da n. 6 aerogeneratori da 6,6 MW per una potenza complessiva di 39,6 MW e aventi un'altezza al mozzo pari a 102,5 metri ed un diametro del rotore pari a 155 metri, calcolo eseguito al fine di prevedere possibili problemi che una simile eventualità, per quanto improbabile, possa procurare danno a cose e/o persone.

Nei paragrafi seguenti è riportata la procedura di prima approssimazione seguita per il calcolo della gittata massima, considerando un angolo di lancio variabile, sia di una pala che di una parte terminale di essa di mt 5 relativamente al seguente aerogeneratore:

Tipo WTG
SIEMENS-GAMESA SG 6.6-155

e ci si è posti nell'ipotesi di distacco della stessa nel punto di attacco sul mozzo, punto di maggiore sollecitazione, per evidente effetto di intaglio dovuto al collegamento.

Le condizioni al contorno considerate per il calcolo in esame, sono le più gravose possibili, in modo da trovarci nella situazione maggiormente cautelativa.

1.1 Metodologia ed ipotesi

Per il calcolo della massima gittata si considerano le seguenti ipotesi:

- Il moto del sistema considerato è quello di un sistema rigido non vincolato (modello che approssima la pala nel momento del distacco);
- Si è considerata la riduzione della velocità periferica pari al 30% per tener conto degli effetti della
 resistenza dovuta al mezzo in cui si svolge il moto (aria) e per considerare le forze di resistenza
 che si generano al momento di rottura della pala;
- Il calcolo della gittata è stato determinato per diversi valori dell'angolo θ;
- La velocità massima del rotore sarà limitata elettronicamente.

I dati geometrici e cinematici sui quali è basato il calcolo sono i seguenti.

- Altezza della torre H = 102,5 m
- Diametro del rotore D = 155 m, quindi lunghezza della pala 77,5 m
- Velocità di rotazione V = 11,6 rpm.

1.2 Forze agenti sulla traiettoria pala

La determinazione delle forze e dei momenti agenti sulla pala a causa di una rottura istantanea, durante il moto rotatorio, è molto complessa. La traiettoria iniziale è determinata principalmente dall'angolo di lancio

Protocollo: GMAX
Data emissione: 2023

Committente: Edison Rinnovabili Spa

Foro Buonaparte 31, 20121 Milano

Integrale Ricostruzione Parco Eolico "Volturino-Volturara".

Adeguamento tecnico impianto eolico mediante intervento di Repowering delle torri esistenti e riduzione numerica degli aerogeneratori.

e dalle forze generalizzate inerziali agenti sulla pala. Queste includono anche, per esempio, oltre all'impulso anche i momenti di *flapwise*, *edgewise e pitchwise* agenti al momento del distacco. La pala, quindi, quando inizierà il suo moto continuerà a ruotare (conservazione della quantità di moto). L'unica forza inerziale agente in questo caso è la forza di gravità. La durata del volo considerato è determinata considerando la velocità verticale iniziale applicata al centro di gravità. Il tempo risultante è usato per calcolare la distanza orizzontale (gittata) nel piano e fuori dal piano.

La gittata è determinata dalla velocità orizzontale al momento del distacco iniziale. Le forze inerziali sono modellate considerando un flusso *irrotazionale e stazionario*.

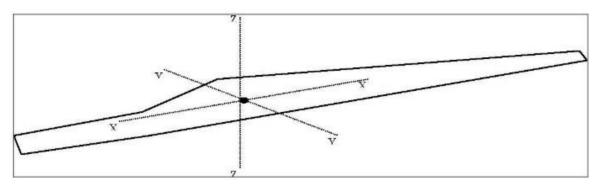


Figura 1 – Sistema coordinate (YY -- Flapwise, XX - Pitchwise. ZZ - Edgewise)

1.3 Esperienze e note statistiche

E' necessario enfatizzare che dal punto di vista progettuale la combinazione di coefficienti di sicurezza per i carichi, i materiali utilizzati e la valutazione delle conseguenze in caso dì rottura rispettano quanto prescritto dalla norma IEC61400-1. In accordo a tale norma le pale degli aerogeneratori sono considerate "fail safe".

Questo paragrafo è stato redatto al fine di presentare alcuni degli elementi fondamentali per poter valutare la reale possibilità dei distacco di una pala, o di frammenti di questa, dagli aerogeneratori.

L'esperienza pratica ha mostrato che in caso di distacco di pala o parti di essa il moto è stato di tipo "rotazionale complesso" e le distanze raggiunte sono normalmente risultate inferiori a quelle stimate con i calcoli semplificati qui riportati.

Frammenti di pala, solitamente di piccole dimensioni, per la maggior parte staccatisi a causa di azioni esterne (tipica la fulminazione atmosferica) o imperizia umana, sono stati ritrovati a non più di 40-50 m dalla base dell'aerogeneratore.

Tralasciando gli incidenti dovuti a cause eccezionali (uragani, tifoni), nei successivi paragrafi vengono descritti alcuni eventi e la valutazione tecnica alla base dell'analisi dei rischi sviluppata per eliminare la possibilità di reiterazione dell'incidente

Protocollo: GMAX
Data emissione: 2023

Committente: Edison Rinnovabili Spa N° commessa: 2023-011

File: Doc_Gittata

Foro Buonaparte 31, 20121 Milano

Integrale Ricostruzione Parco Eolico "Volturino-Volturara".

Adeguamento tecnico impianto eolico mediante intervento di Repowering delle torri esistenti e riduzione numerica degli aerogeneratori.

1.3.1 Distacco di una delle pale dal rotore

Questo tipo di incidente, che comporta il distacco di una pala completa dal rotore dell'aerogeneratore, può essere determinato della rottura della giunzione bullonata fra la pala ed il mozzo.

In occasione di tali tipi di evento, la pala ha raggiunto il terreno ad una distanza inferiore ai cento metri.

Le pale sono costituite da una parte strutturale (longherone) posizionata all'interno della pala e da una parte esterna (gusci) che ha sostanzialmente compiti di forma. Le tre parti, il longherone e i due gusci, sono uniti fra loro mediante incollaggio e, alla fine del processo produttivo, costituiscono un corpo unico.

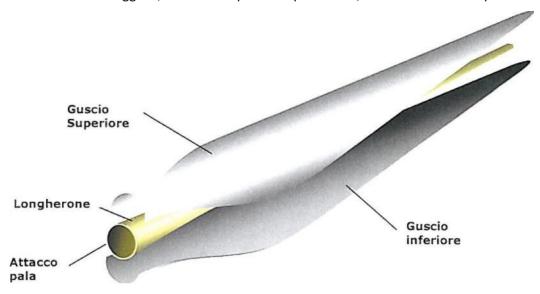


Figura 2 – Componenti di una pala

Il longherone è dotato di attacchi filettati che consentono di collegarlo al mozzo con bulloni (prigionieri) serrati opportunamente durante l'installazione della turbina. Il precarico conferito ai prigionieri durante il serraggio ha un'influenza determinante sulla resistenza dei prigionieri stessi ai carichi di fatica e, per questo motivo, è previsto un controllo di tale serraggio durante le operazioni di manutenzione programmata della turbina.

L'evento si è manifestato a causa di incorretti interventi di manutenzione programmata cui l'aerogeneratore va sottoposto così come riportato nel manuale del costruttore. Per cui l'errata verifica del serraggio ed una plausibile riduzione del precarico possono aver determinato la rottura per fatica dei prigionieri ed al distacco della pala.

Protocollo: GMAX
Data emissione: 2023

Committente: Edison Rinnovabili Spa

Foro Buonaparte 31, 20121 Milano

Integrale Ricostruzione Parco Eolico "Volturino-Volturara".

Adeguamento tecnico impianto eolico mediante intervento di Repowering delle torri esistenti e riduzione numerica degli aerogeneratori.

Figura 3 – Componenti del rotore

1.3.2 Rottura (apertura) dell'estremità di pala

Questo tipo di incidente si è quasi sempre manifestato in concomitanza di fulminazioni di natura atmosferica. Tutte le pale prodotte sono dotate di un sistema di drenaggio della corrente di fulmine costituito da recettori metallici posti all'estremità di pala e lungo l'apertura della pala, da un cavo che collega i recettori alla radice pala e da un sistema di messa a terra, In questo modo si riesce a drenare una buona parte delle correnti indotte dalle fulminazioni atmosferiche senza danni alle pale.

In qualche caso, in cui la corrente di fulmine ha presumibilmente ecceduto i limiti progettuali (fissati dalle norme internazionali) si può manifestare un danneggiamento all'estremità di pala che si apre per la separazione dei due gusci, ma che, normalmente, non si distacca dal corpo della pala. E' possibile che frammenti di guscio possano staccarsi, ma si tratta comunque di parti molto leggere in confronto alla resistenza che oppongono all'aria e che quindi non possono essere oggetto di calcoli di gittata come quelli che si possono effettuare sul corpo pala.

Figura 4 - Estremità di pala danneggiata da fulminazione atmosferica.

Protocollo: GMAX
Data emissione: 2023

Committente: Edison Rinnovabili Spa

Foro Buonaparte 31, 20121 Milano

Integrale Ricostruzione Parco Eolico "Volturino-Volturara".

Adeguamento tecnico impianto eolico mediante intervento di Repowering delle torri esistenti e riduzione numerica degli aerogeneratori.

2. LEGGE DEL MOTO

Supponiamo di trovarci nel caso notevole di un proiettile non puntiforme. Le equazioni che governano il moto sono rispettivamente la prima e la seconda equazione della dinamica:

1) Mg= Ma_G

2) $0 = I d\omega/dt$

Supponendo di concentrare tutto il peso nel centro di massa della pala, il momento della forza peso è nullo, avendo scelto G come polo per il calcolo dei momenti.

Pertanto la seconda equazione ci dice che il corpo durante la traiettoria che percorre, si mette a girare indisturbato intorno al suo asse principale di inerzia.

La soluzione al problema ci viene allora dalla risoluzione della prima equazione. Questa ci evidenzia che la pala si muoverà con il moto di un proiettile puntiforme, pertanto ne compirà il caratteristico moto parabolico.

Per studiare la gittata di un proiettile che si muove con moto parabolico (cioè sotto l'azione della sola forza peso e trascurando l'attrito con l'aria) si è utilizzato un sistema di riferimento cartesiano xy in cui l'origine O degli assi del sistema, coincida con il punto da cui il proiettile è stato lanciato.

Si è considerato il moto bidimensionale di un proiettile, come il moto di un punto materiale, tenendo conto solo delle forze gravitazionali e supponendo trascurabile l'influenza dei vari agenti atmosferici, in particolare le forze di attrito dell'aria e quelle del vento.

Scegliamo un sistema di riferimento con l'asse delle y positivo verso l'alto, in modo che l'origine degli assi sia nel punto (x0,y0) = (0,0) di partenza del proiettile; le componenti dell'accelerazione saranno ax = 0, ay = - g. Dove g = 9.81 m/s 2 è l'accelerazione di gravità.

Utilizzando la legge di caduta di un grave, ricaveremo la traiettoria di un proiettile, verificando che è una parabola e mostrandone poi alcune caratteristiche.

Il vettore velocità v nell'istante iniziale t = 0 ha modulo v0 ed è inclinato di un certo angolo θ rispetto alla direzione positiva dell'asse delle x; le sue componenti sono:

 $v0x = v0 \cos\theta$

 $v0y = v0 sen\theta$

La legge della cinematica che esprime la velocità in funzione del tempo $t \ \dot{e} \ (v(t) = v0 + at)$.

Poiché non esistendo componenti orizzontali dell'accelerazione, la componente orizzontale della velocità vx rimane costante, la componente verticale vy cambia nel tempo perché esiste un accelerazione costante diretta verso il basso (ay = - g):

vx = v0x

vy = v0y - gt

Protocollo: GMAX
Data emissione: 2023

Committente: Edison Rinnovabili Spa N° commessa: 2023-011

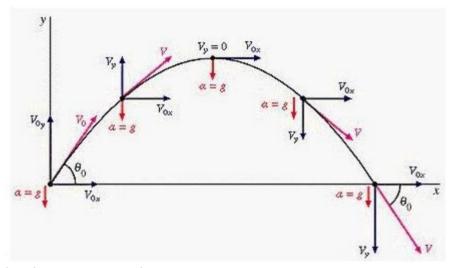
File: Doc_Gittata

Foro Buonaparte 31, 20121 Milano

Integrale Ricostruzione Parco Eolico "Volturino-Volturara".

Adeguamento tecnico impianto eolico mediante intervento di Repowering delle torri esistenti e riduzione numerica degli aerogeneratori.

La legge del moto soluzione delle equazioni indicate in precedenza sono:


$$x(t) = x0 + vxt$$

$$y(t)=y0+vyt-1/2gt2$$

Dove (x0, v0) è la posizione iniziale del punto materiale e (vx, vy) è la sua velocità. La traiettoria del punto materiale intercetta il suolo al tempo T tale che y(T) = 0. Dalla legge del moto si ottiene:

$$T = v_v/g + 1/g Radq v_v^2 + 2y_0g$$

che come si vede è una parabola rivolta verso il basso passante per l'origine degli assi. Una rappresentazione del moto con disegnate le componenti della velocità è mostrato nella figura sottostante.

Dove è stata scarta la soluzione corrispondente a tempi negativi

La posizione e la velocità iniziale sono determinati dall'angolo α e dalla velocità tangenziale V della pala al momento del distacco. Essi sono legati alla posizione ed alla velocità iniziale dalle relazioni:

$$x0 = -R \cos(\alpha)$$

$$y0 = H + R \sin(\alpha)$$

$$v x = V \sin(\alpha)$$

$$v y = V \cos(\alpha)$$

La gittata G è la distanza dal palo del punto di impatto al suolo del frammento di pala. Dalla legge del moto otteniamo:

$$G = x(T)$$

Sostituendo l'espressione per T ricavata sopra, otteniamo la gittata G in termini di V e di α:

Gmax=
$$V_g sen \alpha/g [V_g cos \alpha + ((Radq V_g^2 cos^2 \alpha + 2(H+R_g sen \alpha) g)] - R_g cos \alpha$$

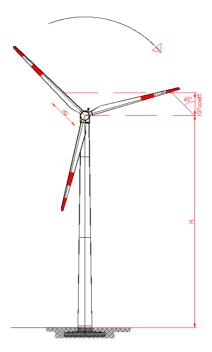
Si noti che, fissato un generico angolo α , la gittata aumenta quadraticamente con V, salvo i casi particolari α = $\pm 90^{\circ}$; 0°; 180°, nei quali la gittata aumenta linearmente con V oppure è pari ad R.

3. CALCOLO GITTATA DELLA PALA

Protocollo: GMAX
Data emissione: 2023

Committente: Edison Rinnovabili Spa

Foro Buonaparte 31, 20121 Milano


Integrale Ricostruzione Parco Eolico "Volturino-Volturara".

Adeguamento tecnico impianto eolico mediante intervento di Repowering delle torri esistenti e riduzione numerica degli aerogeneratori.

Lo schema adottato per il calcolo è il seguente, avendo indicato con G il baricentro del sistema avremo:

Rg = raggio del baricentro

Vg = velocità periferica del baricentro

Prima di effettuare il calcolo della gittata, calcoliamo dei parametri che ci serviranno per il proseguo dello stesso.

3.1 Calcolo del baricentro

Date le caratteristiche geometriche della pala, e considerata la distribuzione dei pesi lungo il profilo della stessa, possiamo ritenere con buona approssimazione che il baricentro sia posizionato ad un terzo rispetto alla lunghezza della pala, cioè:

Tipo WTG	Baricentro r _G
SG 6.6-155 hh= 102,5 m D= 155 m	25,83

3.2 Calcolo della velocità periferica.

Il dato di partenza è Rpm = 11,6 giri/min che corrisponde ad una velocità angolare:

Tipo aerogeneratore	$\omega = 2\pi n/60$
SG 6.6-155 hh= 102,5 m D= 155 m	1,214

Nel moto circolare uniforme, la velocità periferica è direttamente proporzionale al raggio. Ad ogni giro il punto G di raggio R percorre la circonferenza $2\pi R$; dopo n giri al minuto lo spazio percorso sarà $2\pi rn$ metri/minuto. E questo sarà lo spazio percorso da tutti i punti situati sulla periferia del corpo in movimento

Protocollo: GMAX
Data emissione: 2023

Committente: Edison Rinnovabili Spa

Foro Buonaparte 31, 20121 Milano

Integrale Ricostruzione Parco Eolico "Volturino-Volturara".

Adeguamento tecnico impianto eolico mediante intervento di Repowering delle torri esistenti e riduzione numerica degli aerogeneratori.

circolare. Dunque la velocità periferica in metri al secondo di un corpo rotante (considerando la velocità massima del rotore pari a 11,6 giri al minuto), corrisponde a:

Tipo WTG	$V_G = \omega R_G (m/s)$
SG 6.6-155 hh= 102,5 m D= 155 m	31,3

Tenendo conto dell'attrito dell'aria e delle forze di resistenza, il valore della velocità del baricentro risulta ridotta del 30% rispetto all'assenza di resistenze, per cui il valore reale è **21,95 m/s**.

3.3 Calcolo di hG

Il calcolo della proiezione del baricentro sull'asse verticale, che si ritiene con buona approssimazione posizionato ad un terzo rispetto alla lunghezza della pala, ossia Rg = 25,83 m, essendo il raggio di ciascuna pala uguale a 77,5 m, viene valutato all'altezza dell'intera torre più il valore della proiezione di Rg sulla verticale ossia:

$$hg = H + (R_G * sen \alpha)$$

Dove H è l'altezza della torre e il calcolo della proiezione del baricentro sull'asse verticale, viene valutato per i diversi valori dell'angolo α .

3.4 Calcolo della gittata della pala

Il calcolo della gittata è stato eseguito considerando diversi valori dell'angolo α . Noto il valore di gittata massima, date le caratteristiche geometriche della pala, precedentemente valutate, si può calcolare il punto in cui cade il vertice della pala stessa.

Supponendo di prendere in considerazione l'ipotesi più pericolosa, ossia quella in cui la pala cadendo si disponga con la parte più lontana dal baricentro verso l'esterno, si ottiene il punto più lontano di caduta pari al valore massimo di gittata + i 2/3 della lunghezza della pala come evidenziato nella tabella seguente:

		Vertice
Angolo	Gmax	pala
0	-25,8	25,833
5	-11,7	40,009
10	8,6	60,304
15	16,8	68,468
20	30,6	82,263
25	43,8	95,468
30	56,2	107,880
35	67,7	119,327
40	78,0	129,666
45	87,1	138,788
50	95,0	146,617
55	101,4	153,113

Protocollo: GMAX
Data emissione: 2023

Committente: Edison Rinnovabili Spa

Foro Buonaparte 31, 20121 Milano

Integrale Ricostruzione Parco Eolico "Volturino-Volturara".

Adeguamento tecnico impianto eolico mediante intervento di Repowering delle torri esistenti e riduzione numerica degli aerogeneratori.

60	106,6	158,269
65	110,4	162,108
70	113,0	164,681
<i>7</i> 5	114,4	136,348
80	114,7	166,334
85	113,9	165,607
90	112,3	163,989
95	109,9	161,593
100	106,9	158,531
105	103,2	154,910
110	99,2	121,117
115	94,7	146,376
120	90,0	141,634
125	85,0	136,669
130	79,9	131,540
135	74,6	126,294
140	69,3	120,969
145	63,9	115,593
150	58,5	110,189
155	53,1	104,769
160	47,7	99,344
165	42,3	93,917
170	36,8	88,487
175	31,4	83,050
180	25,9	77,600
!		

Dalla tabella si evince che il valore massimo nelle condizioni più gravose si ottiene con un angolo di distacco pari agli 85°, ovvero:

Tipo WTG	GITTATA MAX PALA + TERMINALE PALA
SG 6.6-155 hh= 102,5 m D= 155 m	166,33

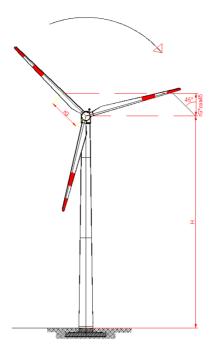
4. CALCOLO GITTATA DEL FRAMMENTO DELLA PALA

Lo schema adottato per il calcolo della gittata nel caso di rottura del frammento di 5 m di una pala è simile a quello adottato per il distacco nel punto di attacco del mozzo, ovvero avendo indicato con G il baricentro del sistema avremo:

Rg = raggio del baricentro

Vg = velocità periferica del baricentro

Protocollo: GMAX
Data emissione: 2023


Committente: Edison Rinnovabili Spa

Foro Buonaparte 31, 20121 Milano

Integrale Ricostruzione Parco Eolico "Volturino-Volturara".

Adeguamento tecnico impianto eolico mediante intervento di Repowering delle torri esistenti e riduzione numerica degli aerogeneratori.

Prima di effettuare il calcolo della gittata, calcoliamo dei parametri che ci serviranno per il proseguo dello stesso.

4.1 Calcolo del baricentro

Date le caratteristiche geometriche della pala, e considerata la distribuzione dei pesi lungo il profilo della stessa, possiamo ritenere con buona approssimazione che il baricentro sia posizionato secondo la seguente relazione:

R_g= D/2-(2/3*5) (lunghezza del frammento)

Tipo WTG	Baricentro R _G
SG 6.6-155 hh= 102,5 m D= 155 m	74,16

4.2 Calcolo della velocità periferica.

Il dato di partenza è Rpm = 11,6 giri/min che corrisponde ad una velocità angolare:

Tipo aerogeneratore	$\omega = 2\pi n/60$
SG 6.6-155 hh= 102,5 m D= 155 m	1,2141

Nel moto circolare uniforme, la velocità periferica è direttamente proporzionale al raggio. Ad ogni giro il punto G di raggio R percorre la circonferenza $2\pi R$; dopo n giri al minuto lo spazio percorso sarà $2\pi rn$ metri/minuto. E questo sarà lo spazio percorso da tutti i punti situati sulla periferia del corpo in movimento circolare. Dunque la velocità periferica in metri al secondo di un corpo rotante (considerando la velocità massima del rotore pari a 11,6 giri al minuto), corrisponde a:

Protocollo: GMAX
Data emissione: 2023

Committente: Edison Rinnovabili Spa

Foro Buonaparte 31, 20121 Milano

Integrale Ricostruzione Parco Eolico "Volturino-Volturara".

Adeguamento tecnico impianto eolico mediante intervento di Repowering delle torri esistenti e riduzione numerica degli aerogeneratori.

Tipo WTG	$V_G = \omega R_G (m/s)$
SG 6.6-155 hh= 102,5 m D= 155 m	90,04

Tenendo conto dell'attrito dell'aria e delle forze di resistenza, il valore della velocità del baricentro risulta ridotta del 30% rispetto all'assenza di resistenze, per cui il valore reale è **63,03 m/s.**

4.3 Calcolo di hG

Il calcolo della proiezione del baricentro sull'asse verticale, che si ritiene con buona approssimazione posizionato ad un terzo rispetto alla lunghezza della pala, ossia Rg = 74,1 m, essendo il raggio di ciascuna pala uguale a 77,5 m, viene valutato all'altezza dell'intera torre più il valore della proiezione di Rg sulla verticale ossia:

$$hg = H + (R_G * sen \alpha)$$

Dove H è l'altezza della torre e il calcolo della proiezione del baricentro sull'asse verticale, viene valutato per i diversi valori dell'angolo α .

4.4 Calcolo della gittata del frammento

Il calcolo della gittata è stato eseguito considerando diversi valori dell'angolo α . Noto il valore di gittata massima, date le caratteristiche geometriche della pala, precedentemente valutate, si può calcolare il punto in cui cade il vertice della pala stessa.

Supponendo di prendere in considerazione l'ipotesi più pericolosa, ossia quella in cui la pala cadendo si disponga con la parte più lontana dal baricentro verso l'esterno, si ottiene il punto più lontano di caduta pari al valore massimo di gittata + i 2/3 della lunghezza del frammento come evidenziato nella tabella seguente:

		Vertice
Angolo	Gmax	pala
0	-74,2	-70,83
5	4,9	8,24
10	126,3	129,59
15	159,3	162,67
20	230,8	234,14
25	296,2	299,49
30	353,9	357,27
35	403,0	406,34
40	442,5	445,87
45	472,1	475,42
50	491,5	494,88
55	501,2	504,54
60	501,7	505,04
65	494,0	497,32
70	479,2	482,58

Protocollo: GMAX
Data emissione: 2023

Committente: Edison Rinnovabili Spa

Foro Buonaparte 31, 20121 Milano

Integrale Ricostruzione Parco Eolico "Volturino-Volturara".

Adeguamento tecnico impianto eolico mediante intervento di Repowering delle torri esistenti e riduzione numerica degli aerogeneratori.

<i>75</i>	458,9	462,21		
80	434,4	437,69		
<i>8</i> 5	407,1	410,47		
90	378,6	381,89		
95	349,8	353,10		
100	321,7	324,99		
105	294,9	298,20		
110	269,8	332,81		
115	246,6	249,93		
120	225,3	228,67		
125	206,0	209,29		
130	188,3	191,65		
130	188,3	188,32		
135	172,3	175,60		
140	157,6	160,97		
145	144,3	147,59		
150	132,0	135,31		
155	120,7	123,99		
160	110,2	113,49		
165	100,4	103,71		
170	91,2	94,53		
175	82,5 85,87			
180	74,3	77,65		

Dalla tabella si evince che il valore massimo nelle condizioni più gravose si ottiene con un angolo di distacco pari agli 60°, ovvero:

	GITTATA MAX FRAMMENTO + TERMINALE
Tipo WTG	FRAMMENTO
SG 6.6-155 hh= 102,5 m D= 155 m	505,04

Sulla base delle operazioni di calcolo della gittata massima, sia della pala intera che del suo frammento pari a 5 mt, è emerso che i valori massimi di gittata si hanno per l'aerogeneratore proposto SONO:

GITTATA MAX PALA + TERMINALE PALA	166,33 mt
GITTATA MAX FRAMMENTO + TERMINALE FRAMMENTO	505,04 mt

assumendo il valore di maggior rischio pari a 1 nella direzione perpendicolare a quella del vento prevalente.

Protocollo: GMAX
Data emissione: 2023

Committente: Edison Rinnovabili Spa

Foro Buonaparte 31, 20121 Milano

Integrale Ricostruzione Parco Eolico "Volturino-Volturara".

Adeguamento tecnico impianto eolico mediante intervento di Repowering delle torri esistenti e riduzione numerica degli aerogeneratori.

5. ANALISI E SCELTA DEI RICETTORI SENSIBILI PRESENTI NELL'AREA DI IMPIANTO

5.1 Fabbricati

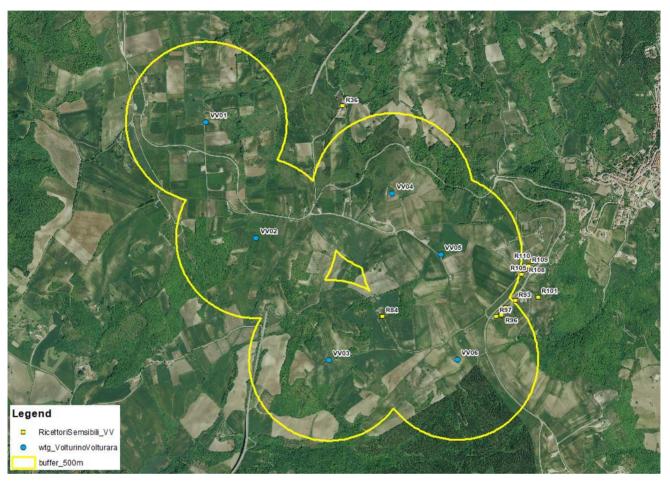


Figura 5: Individuazione planimetrica dei ricettori nel buffer di 500 mt

L'individuazione e la scelta dei fabbricati da considerare come ricettori sensibili nella verifica dell'impatto in caso di rottura accidentale della pala e/o frammenti di essa, è stata effettuata attraverso le stesse considerazioni riportate nell'ambito dello studio acustico allegato. Tale analisi è stata estesa ai potenziali recettori distanti fino a 500 metri dagli aerogeneratori di progetto.

Da tale studio si è evinto che parte dei fabbricati individuati sono risultati ruderi, altri adibiti a ricovero di mezzi ed attrezzi agricoli oppure depositi. Ciò perché l'area di impianto è sede di attività rurale, caratterizzata solo da saltuaria presenza della popolazione. Esistono fabbricati adibiti ad usi abitativo che sono sempre parte di complessi rustici in cui si opera attività di produzione agricola.

I criteri per la definizione delle caratteristiche che debbano avere i fabbricati per essere considerati recettori e la distanza minima che si deve rispettare per essi sono riportati nelle recenti linee guida nazionali per l'autorizzazione alla costruzione e all'esercizio di impianti di produzione di elettricità da fonti rinnovabili (pubblicate nella G.U. del 18/09/2010).

Protocollo: GMAX
Data emissione: 2023

Committente: Edison Rinnovabili Spa

Foro Buonaparte 31, 20121 Milano

Integrale Ricostruzione Parco Eolico "Volturino-Volturara".

Adeguamento tecnico impianto eolico mediante intervento di Repowering delle torri esistenti e riduzione numerica degli aerogeneratori.

N.	Comune	Fg	P.lla	Qualità	Cat.	Tipo	Stato d'uso
R36	Volturino	25	491	Unità immob.	D10	D10 Fabbricati per funzioni produttive connesse alle attività agricole	
R84	Volturara Appula	32	182	Unità immob.	C6	Stalle, scuderie, rimesse, autorimesse (senza fine di lucro)	Disabitato
R93	Volturino	27	363	Unità immob.	D2	Alberghi e pensioni (con fine di lucro)	Disabitato
R94	Volturino	27	363	Unità immob.	D2	Alberghi e pensioni (con fine di lucro)	Disabitato
R95	Volturino	27	363	Unità immob.	D2	Alberghi e pensioni (con fine di lucro)	Disabitato
R96	Volturino	27	363	Unità immob.	D2	Alberghi e pensioni (con fine di lucro)	Disabitato
R97	Volturino	27	363	Unità immob.	D2	Alberghi e pensioni (con fine di lucro)	Disabitato
R101	Volturino	28	829	Unità immob.	C2	Magazzini e locali di deposito	Disabitato
R105	Volturino	27	358	Unità immob.	-	nessuna corrispoendeza trovata	Disabitato
R108	Volturino	27	359	Unità immob.	-	nessuna corrispoendeza trovata	Disabitato
R109	Volturino	27	360	Unità immob.	-	nessuna corrispoendeza trovata	Disabitato
R110	Volturino	27	355	Unità immob.	-	nessuna corrispoendeza trovata	Disabitato

Tabella 1: Elenco dei ricettori presenti nel buffer di 500m

5.2 Viabilità

L'analisi della presenza di strade classificate secondo le Linee Guida Nazionali (pubblicate nella G.U. del 18/09/2010) estesa ad un buffer corrispondente alla gittata massima del frammento che dalle analisi e calcoli precedenti risulta pari a 505 m dagli aerogeneratori individuando le seguenti strade distinte per tipologia:

Protocollo: GMAX
Data emissione: 2023

Committente: Edison Rinnovabili Spa

Foro Buonaparte 31, 20121 Milano

Integrale Ricostruzione Parco Eolico "Volturino-Volturara".

Adeguamento tecnico impianto eolico mediante intervento di Repowering delle torri esistenti e riduzione numerica degli aerogeneratori.

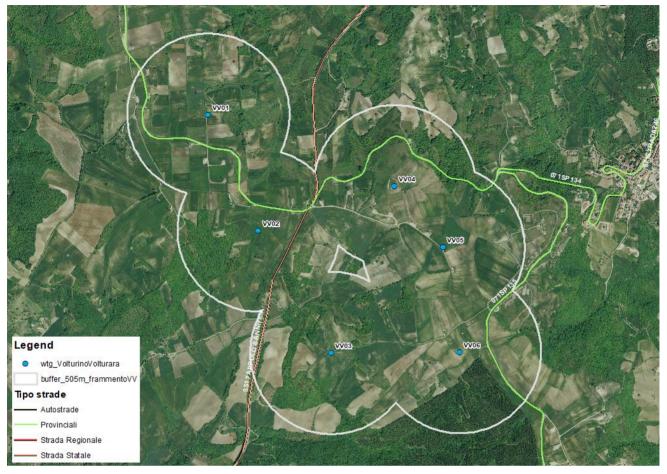


Figura 6: Viabilità interessata dal rischio di gittata nell'area dell'impianto.

Le strade provinciali di cui alla figura precedente sono la SP 134 e la SP 135 che attraversano l'area di impianto.

Strade comunali e/o vicinali

Oltre alla viabilità classificata dalle Linee Guida, vi sono all'interno dell'area dell'impianto anche dalle strade comunali che servono i fondi ed i fabbricati presenti nell'intorno dell'area di progetto.

6. ANALISI DEL FATTORE DI RISCHIO NELLA DIREZIONE PERPENDICOLARE AL VENTO PREVALENTE

Dall'analisi degli studi anemologici di campo dedotti attraverso i dati dell'anemometro posto nell'area dell'impianto in prossimità dell'aerogeneratore si è ricavata la rosa dei venti (figura successiva)

Protocollo: GMAX
Data emissione: 2023

Committente: Edison Rinnovabili Spa

Foro Buonaparte 31, 20121 Milano

Integrale Ricostruzione Parco Eolico "Volturino-Volturara".

Adeguamento tecnico impianto eolico mediante intervento di Repowering delle torri esistenti e riduzione numerica degli aerogeneratori.

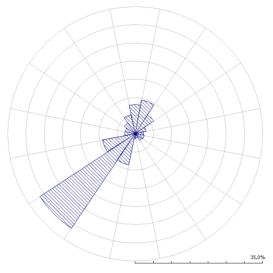


Figura 7: Wind Rose ottenuta dalle elaborazioni mediante Software WindFarm© dei dati anemometrici relativi agli anemometri posti sugli aerogeneratori presenti

Gli aerogeneratori più prossimi a queste due strade provinciali che sono posti ad una distanza inferiore a quella massima del frammento di pala sono i seguenti:

VV 01 distanza mt 176	VV 05 distanza mt 486
VV 02 distanza mt 154	VV 04 distanza mt 216
VV 03 distanza mt 430	VV 06 distanza mt 180

Analizzando la frequenza di direzione dei venti, contenuta nella relazione anemologica e rappresentata dalla cosiddetta "Rosa dei Venti" di cui all'immagine precedente e considerando che il rischio di rottura avviene nelle direzione perpendicolare ad essa, il rischio di caduta lungo la strada provinciale è proporzionale alla frequenza nella direzione ortogonale alla direzione prevalente dei venti in questo caso è SO.

Nelle restanti direzioni del vento (SSE e NNE, ONW) poiché diminuisce la componente energetica della risorsa eolica (figura 7), diminuisce proporzionalmente il fattore di rischio da considerare nel calcolo della gittata massima. Nella condizione di massimo rischio, ovvero nella direzione perpendicolare alla direzione del vento prevalente, la distanza dalle strade provinciali seppur inferiore a quella della gittata max del frammento (pari a 505 mt), come rappresentato nella tabella precedente, per la maggior parte degli aerogeneratori non vi è alcun rischio tranne per l'aerogeneratore VV01 per il solo frammento in quanto la distanza di rischio di rottura della pala intera dell'aerogeneratore n. 1 dalla SP 134 risulta rispettata, ovvero 176 mt > 166 mt della distanza di rottura e dei 150 mt secondo le linee guida del DM 2010.

Protocollo: GMAX
Data emissione: 2023

Committente: Edison Rinnovabili Spa

Foro Buonaparte 31, 20121 Milano

Integrale Ricostruzione Parco Eolico "Volturino-Volturara".

Adeguamento tecnico impianto eolico mediante intervento di Repowering delle torri esistenti e riduzione numerica degli aerogeneratori.

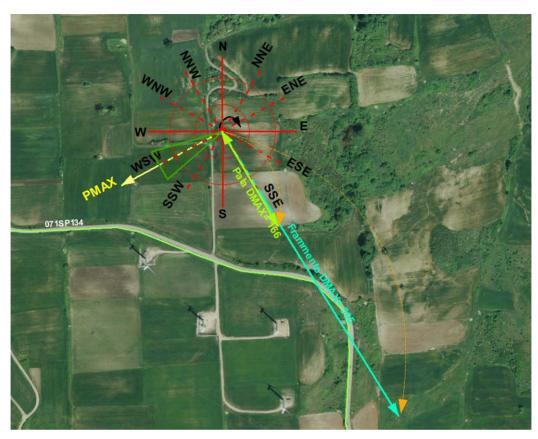


Figura 8: Ideogramma della gittata massima con P=1 per WTG 1.

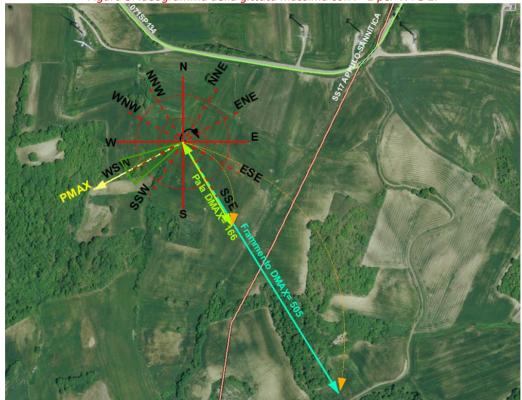


Figura 9: Ideogramma della gittata massima con P=1 per WTG 2.

Protocollo: GMAX
Data emissione: 2023

Committente: Edison Rinnovabili Spa

Foro Buonaparte 31, 20121 Milano

Integrale Ricostruzione Parco Eolico "Volturino-Volturara".

Adeguamento tecnico impianto eolico mediante intervento di Repowering delle torri esistenti e riduzione numerica degli aerogeneratori.

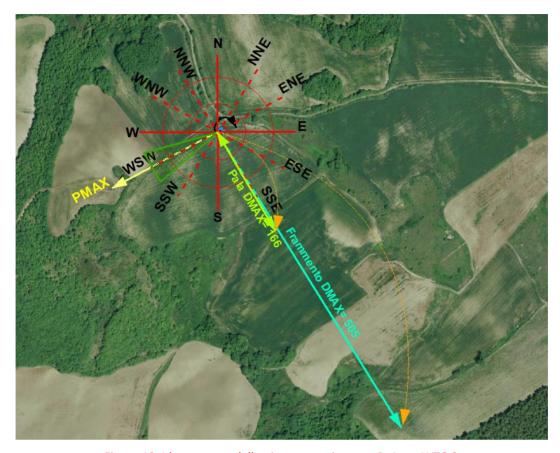


Figura 10: Ideogramma della gittata massima con P=1 per WTG 3.

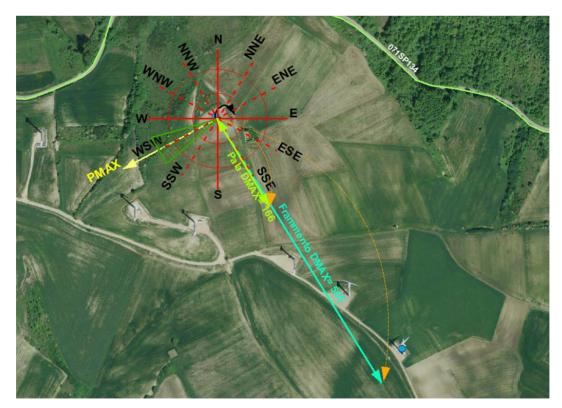


Figura 11: Ideogramma della gittata massima con P=1 per WTG 4.

Protocollo: GMAX
Data emissione: 2023

Committente: Edison Rinnovabili Spa

Foro Buonaparte 31, 20121 Milano

Integrale Ricostruzione Parco Eolico "Volturino-Volturara".

Adeguamento tecnico impianto eolico mediante intervento di Repowering delle torri esistenti e riduzione numerica degli aerogeneratori.

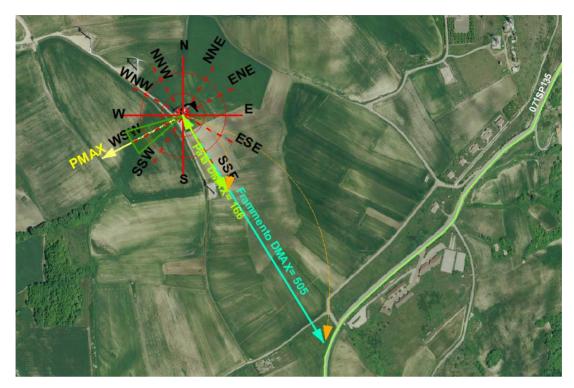


Figura 12: Ideogramma della gittata massima con P=1 per WTG 5.

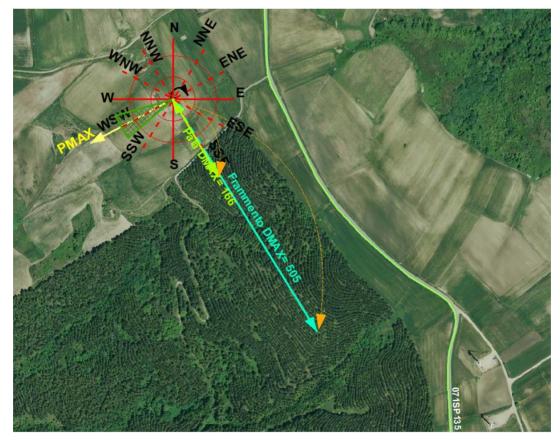


Figura 13: Ideogramma della gittata massima con P=1 per WTG 6.

Protocollo: GMAX
Data emissione: 2023

Committente: Edison Rinnovabili Spa

Foro Buonaparte 31, 20121 Milano

Integrale Ricostruzione Parco Eolico "Volturino-Volturara".

Adeguamento tecnico impianto eolico mediante intervento di Repowering delle torri esistenti e riduzione numerica degli aerogeneratori.

Nel caso dell'aerogeneratore VV01, la probabilità di accadimento dell'evento di un incidente lungo le SP 134 rispetto al frammento di pala presenta un valore statistico vicino allo zero e che considerando nel caso specifico il traffico registrato lungo le SP 134 dal PTCP della Provincia di Foggia si può ritenere che tale probabilità sia pari a zero visto che la strada è classificata in una categoria di bassissima frequenza come si evince dalla figura successiva.

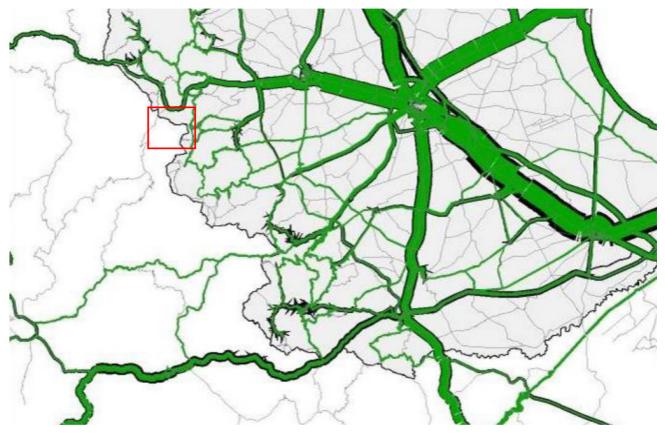


Figura 14: Flussi di traffico lungo la SP n.134. Fonte PTCP

7. VERIFICA DI IMPATTO DELLA GITTATA MASSIMA

Sulla base del valore massimo della gittata nelle condizioni peggiori di rischio, **pari a 505 mt,** sono state condotte le seguenti verifiche di compatibilità dell'impianto rispetto ai ricettori sensibili, fabbricati e strade.

7.1 Fabbricati

Ricettore	Torre più prossima	Distanza m	Gittata max m	Verifica	Note
R36	wtg 4	628	505	123	Assenza di rischio - Disabitato
R84	wtg 3	430	505	-75	Assenza di rischio - Disabitato
R93	wtg 6	513	505	8	Assenza di rischio - Disabitato
R94	wtg 6	440	505	-65	Assenza di rischio - Disabitato
R95	wtg 6	434	505	-71	Assenza di rischio - Disabitato

Protocollo: GMAX
Data emissione: 2023

Committente: Edison Rinnovabili Spa

Foro Buonaparte 31, 20121 Milano

Integrale Ricostruzione Parco Eolico "Volturino-Volturara".

Adeguamento tecnico impianto eolico mediante intervento di Repowering delle torri esistenti e riduzione numerica degli aerogeneratori.

Ricettore	Torre più prossima	Distanza m	Gittata max m	Verifica	Note
R96	wtg 6	389	505	-116	Assenza di rischio - Disabitato
R97	wtg 6	362	505	-143	Assenza di rischio - Disabitato
R101	wtg 6	636	505	131	Assenza di rischio - Disabitato
R105	wtg 5	514	505	9	Assenza di rischio - Disabitato
R108	wtg 5	532	505	27	Assenza di rischio - Disabitato
R109	wtg 5	557	505	52	Assenza di rischio - Disabitato
R110	wtg 5	571	505	66	Assenza di rischio - Disabitato

Tabella 2: Elenco dei ricettori rispetto agli aerogeneratori

La tabella precedente rappresenta la verifica delle distanze dai ricettori da cui si evince come gli aerogeneratori non presentano alcuna criticità in relazione alla gittata rispetto a buona parte dei ricettori presenti nel buffer di 500 m. Per alcuni seppur a distanza inferiore, per gli stessi non vi è alcun rischio data l'assenza di presenza umana, come si evince dalle schede ricettori allegati al progetto.

7.2 Strade

Il controllo di compatibilità dell'impianto rispetto alle strade è stata effettuata ai sensi dell'art. 7.1 del DM 2010 verificando la rispondenza delle distanze dell'aerogeneratore dalla viabilità primaria (Autostrade, Strade Statali e Provinciali). Si rappresenta che per tutti gli altri casi, la compatibilità dell'iniziativa con la viabilità secondaria, risulta sempre verificata: il calcolo della probabilità in condizioni di esigua frequentazione della sede viaria rende inapplicabile il metodo a causa dell'elevata trascurabilità del risultato derivante dall'inviluppo di eventi altamente sporadici.

8. CONCLUSIONI

Dal confronto tra il potenziale rischio di rottura accidentale con lancio della pala (max 166 mt circa) e/o frammento di essa con la relativa distanza massima (max 505 mt) relativamente agli aerogeneratori proposti, si conclude quanto segue:

8.1 Fabbricati

La verifica ha evidenziato l'assoluta compatibilità degli aerogeneratori col grado di antropizzazione dell'area.

8.2 Strade

Ai sensi dell'art. 7.1 DM 2010 la verifica di sicurezza in generale nel rispetto della distanza minima dalle strade ha evidenziato la piena compatibilità dell'iniziativa con il sistema viario dell'area evidenziando la rispondenza dei requisiti minimi anche nelle condizioni peggiori.

Foggia, Ottobre 2023

Il Tecnico

Arch. Antonio DEMAIO

Protocollo: GMAX
Data emissione: 2023

Committente: Edison Rinnovabili Spa